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Abstract 

The herein illustrated Master project presents novel and unprecedented approaches towards 
the synthesis of chiral racemic and chiral non-racemic C2,3-disubstituted cis-aziridines through 
organocatalytic aza-Darzens reaction. 

A first section includes introduction part for all the subsections listed below where as second 
section will give more insight on the result and discussion. The First introductory subsection is 
dedicated to the properties, synthesis and importance of aziridines. These three-membered 
nitrogen-containing heterocycles are considered valuable building blocks, as much as their 
parent epoxides, and pharmacologically active compounds on there own.    

A second subsection dedicated to the Synthesis of optically pure C2,3-disubstituted N-aryl and 
N-H cis-aziridines was achieved by means of a chiral BINOL-derived N-triflylphosphoramide 
Brønsted acid catalyst. The observed excellent yields, regioselectivities and enantioselectivities 
find no rivals in other organocatalytic aziridine synthesis. Successful cleavage of various N-
substitutions gave access to valuable N-H aziridines and pharmacologically active compounds. 

A third subsection dedicated to investigate and develop the ability of series of bespoke, unique 
and optically active organocatalysts derived from the readily available cinchona alkaloid are able 
to mediate the asymmetric synthesis of enantiopure aziridines. A one step transfer-fluorination 
of the quinidine moiety with N-fluoropyridinium triflate gave the [N-F]⁺reagent, this [N-F]⁺ 
species is highly reactive and unstable. Starting from N-aryl imine and N-alkyl diazoacetate 
using 10 mol% of chiral non-racemic organocatalyst N-fluoro quaternary ammonium salt gives a 
highly pure N-alkyl and N-aryl aziridine. The whole process is environmentally friendly, giving 
only water and nitrogen as a byproduct at the end. 

A fourth subsection described the synthesis of stable enantiomerically pure chiral NH-
oxaziridine and also described attempts towards the synthesis of five membered heterocycle by 
cyclization of NH-oxaziridines with alkenes are considered as novel and interesting aspects. 
Furthermore NH – Oxaziridines is potentially of great value today as relatively ‘green’ sources 
of electrophilic nitrogen. 
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DCE 1,2-Dichloroethane 
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INTRODUCTION 

1 Aziridines: A Comprehensive Overview 
Aziridines, which are three-membered nitrogen containing heterocycles, have created 

considerable research interest because of their fundamental and practical importance, they 

have been known as a class of versatile intermediates in the synthesis of different kinds of 

amino acids, natural products and biologically active compounds.  

A recent review by Pellissier based on developments of asymmetric aziridination, testifies 

that the synthesis of chiral non-racemic aziridines is still a hot issue in synthetic chemistry.1 

Reports on the generic subject of aziridines have always covered an extensive part of 

literature. Interest in the three-member nitrogen-containing heterocycles can be dated back to 

Gabriel’s studies in 1888.2 For their analogies with epoxides and cyclopropanes and their 

unique chemical and physical properties, aziridines are valuable compounds in terms of 

chemical, biological and pharmacological activities. The high strain energy (27 Kcal/mol) 

associated with the three-membered aziridine cyclic structure is at the origin of several 

features characteristic of this class of compounds, including physical and chemical properties, 

as well as synthesis and reactivity. 

1.1 Physical and chemical properties of aziridines 

The chemical bonding system of the aziridine ring resides in the category of bent bonds (or 

banana bonds, Figure 1). Thus, for the atoms involved in ring formation, it is not possible to 

assume a 60° angle required by the cycle with a standard sp3-hybridization. The σ-bonds that 

comprise the cycle result in an increase in p-character. At the same time, the C-H and N-H 

molecular orbitals gain more s-character and, as a result, they are shorter. The increased s-

character of the nitrogen lone pair causes the weaker basicity of aziridines (the aziridinium 

ion has pKa = 7.98) compared to acyclic aliphatic amines.3  

                                                

Figure 1. Chemical bonding system of cyclopropane made of bent bonds. 
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The additional bond strain caused by the geometric constraints of the trigonal ring system 

also has a significant effect on the barrier to inversion at nitrogen, which results considerably 

higher than in acyclic analogues.4 

The chemical reactivity of an aziridine originates from the high strain energy associated with 

their three-membered cyclic nature. This property facilitates cleavage of the C–N bonds of 

the ring under either acidic or basic conditions. Aziridines can either undergo ring-opening 

reactions with a range of nucleophiles or cycloaddition reactions with dipolarophiles, 

constituting precious building blocks towards the synthesis of a plethora of chemical 

compounds. 

1.2 Cleavage of the aziridine ring 
1.2.1 Importance of aziridines in pharmacology  

Aziridines are powerful alkylating agents, whose toxicity is at the origin of their intrinsic in 

vivo potency.5 The three-membered ring does not show selectivity or specific activity in the 

alkylation process. However, if the aziridine ring is incorporated in a larger organic 

framework, such selectivity could be achieved, as it is the case of several aziridine-containing 

natural products, i.e. mitosanes A-C. 	
  

Scheme 1. Mode of action of mitosanes. 

The mitosanes are a class of compounds isolated from soil extracts of the bacteria 

Streptomyces verticillatus. The observed anti-tumour and antibiotic activity of these natural 

products is attributed to the presence of the aziridine ring. The anti-tumour activity of these 

natural products relies on DNA alkylation, in which the aziridine ring-opening is the key 

feature. Scheme 1 illustrates the postulated mechanism of action of mitosanes.  

Another important class of natural products displaying cytotoxic activity is the Azinomycin 
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family (Figure 2), isolated from Streptomyces grieseofuscus S42227 by Nagaoka and 

coworkers. Similarly to Mitosanes, Azinomycins incorporate in their structure the three-

membered aziridine ring, which is the active site for the cross-linkage of DNA. Again, the 

ring confers a potent anti-tumour activity against a wide range of cancers, including solid 

tumours. To better understand the role of the aziridine ring in biological systems, Figure 2 

offers a selection of aziridine-containing compounds, which, regardless of their structure 

complexity, show pharmacological activity. 
 

 

Figure 2. Examples of pharmacologically active products that contain the aziridine moiety.  

1.2.2 General features of ring-opening reactions 

At the origin of tendency to ring-open, one could identify the Bæyer strain inherent in the 

three-membered heterocycle and the electronegativity of the heteroatom that polarizes the 

bonds of the ring. Intuitively, due to the diminished electronegativity of nitrogen compared to 

oxygen, ring-opening reactions of aziridines are less facile than the corresponding reactions 

of epoxides. Still, a wealth of examples of such chemistry is possible, as outlined in Figure 3. 
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Figure 3. Overview diagram for ring-opening reactions of aziridines. 

Analogously to epoxide, a ring-cleavage reaction of aziridines takes place via nucleophilic 

attack at carbon, in both acidic and basic conditions. When aziridines are unsymmetrically 

substituted, the nucleophilic cleavage can lead to the formation of two products of ring 

opening (Figure 4).  

 
Figure 4. Nucleophilic ring opening of an aziridine. 

The regiospecificity of the attack obeys the classic rules for nucleophilic substitution 

reactions, i.e. the combination of steric and electronic factors will drive the nucleophile 

towards one carbon or the other, dictating the final distribution of products. Generally, high 

regiospecificity could be achieved. 

1.3 Effect of Lewis acids and N-substituents on the ring-opening of aziridines 

Having a basic non-bonded electron pair, the aziridine nitrogen is susceptible to interaction 

with Lewis acids, similarly to their analogous epoxides. Co-ordination to a Lewis acid 

enhances the rate of ring-opening processes. Indeed, the Lewis acid-coordinated aziridine 

nitrogen would greatly suffer from the strain of the cycle. Nonetheless, Lewis acid-mediated 

ring-opening of aziridines are not as common as for epoxides. The reason behind this lies on 

the requirement for polar activating N-substituents to facilitate the ring-opening process of 



	
   12 

aziridines. In the majority of the cases, these N-substituents contain at least an oxygen atom, 

i.e. carbonyl, sulfonyl, phosphoryl groups, etc. The presence of the oxygen atom impedes the 

direct interaction of the aziridine nitrogen with the Lewis acid. As a matter of fact, the acid 

will coordinate preferentially to the oxygen of the N-substituent rather than to the nitrogen 

itself (Figure 5). Nonetheless, the desirability of a polar, oxygenated N-substituent for ring-

opening still allows for some use of this type of activation, via coordination of oxygen lone-

pairs to Lewis acid (vide infra).  

 
Figure 5. General features of Lewis acid coordination to epoxide and aziridines 

Since the 1960s, aziridines have been classified as ‘activated’ or ‘non-activated’ according to 

whether or not nucleophilic ring-opening reactions proceed in the absence of positive charge 

at nitrogen6 and this classification is intimately related to the nature of the substituent at the 

nitrogen atom of the heterocycle. Typically, non-activated aziridines contain a basic nitrogen 

atom. N-aryl, N-alkyl and free N-H aziridines 6 are considered as non-activated towards the 

ring-opening reaction (Scheme 2). Ring-opening of non-activated aziridines usually occurs 

only after protonation, quaternization or formation of a Lewis acid adduct, as shown for 7. 

Instead, activated aziridines contain N-substituents capable of conjugatively and/or 

inductively stabilizing the negative charge that develops on the aziridine nitrogen atom as a 

consequence of the nucleophilic attack, cf 10 and 11. Thus, the role of activating group is 

often neatly filled by oxygenated substituents such as sulfonyl, sulfinyl, phosphoryl, 

phosphinyl or carbonyl functional groups (Figure 6).  

 
Scheme 2. Nucleophilic ring-opening of non-activated and activated aziridines. 
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Figure 6. Activating N-functionalised groups for the ring-opening of aziridines. 

The aziridines shown in Figure 6 are all functionalised with activating groups. The activation 

is primarily due to inductive effects, exerted by the electron-withdrawing groups that further 

polarize the C-N bonds of the ring. Resonance effects play a very limited role in the overall 

kinetic activation.  Indeed, the nitrogen lone pair of 12 would not be easily involved in the 

X=O π-bond system as for 13 (Figure 6), as this would lead to an increase of the ring-strain. 

The electron-withdrawing N-substituent also offers a thermodynamic contribution to the 

activation, as it would stabilize the anion produced after the nucleophilic attack. The 

stabilization of sulfonamide, phosphonamide and phosphinamide anions is again primarily 

based on inductive effect. 

Recently, Antilla et al.7 reported the enantioselective ring-opening of N-activated meso-

aziridines 15 with trimethylsilylazide using 10 mol% of chiral (R)-VAPOL-derived 

phosphoric acid (R)-14 (Scheme 3). The reaction provides a good example for this chemistry, 

being also closely related to the content of this dissertation.  
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Scheme 3. Antilla’s (R)-14-catalysed desymmetrization of meso-aziridine.  

Antilla’s preliminary studies into the mechanism of the organocatalytic desymmetrization of 

meso-aziridines suggested that the presence of the trimethylsilyl group is required for the 

formation of the ring-opened product. Preliminary 1H-NMR studies indicated formation of 

the TMS-containing compound 19 (Scheme 4). The proposed mechanism involves generation 

of the active catalyst 17 by displacement of the azide. The resulting silylated 15 coordinates 

to the carbonyl functionality of the N-substituent of the aziridine 15, resulting in the 

formation of 18. The species 18 then undergoes nucleophilic attack by the hydrazoic acid, 
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affording 19 and regenerating the catalyst (R)-14. The desired product 16 was finally 

obtained by decomposition of 19 on silica gel during the workup procedure.  
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Scheme 4. Antilla’s proposed mechanism for the (R)-14-catalysed desymmetrization reaction 

of meso-aziridines.	
  

However, if on the one hand, electron-withdrawing N-substitutions proved to be highly 

effective for the activation of aziridines towards ring opening, their reluctance to undergo N-

deprotection reaction is a significant drawback of the system. The possibility to afford 

unprotected N-H products, either aziridines or their ring-opened derivatives, becomes a 

crucial point whenever embarking on the synthesis of these three-membered heterocycles. 

The choice of the N-substitution is therefore critical not only for the synthesis of aziridines 

but also for their subsequent transformation. The requirement for easily cleavable N-

substitutions on aziridines strongly influenced the development of the synthetic 

methodologies introduced by this dissertation.  

1.4 Aziridine synthesis overview 

Preparation of aziridines can now count on a number of methodologies, as in Figure 7. The 

majority of synthetic protocols developed for the synthesis of aziridines can be grouped into 

three main reaction categories: carbon transfer to imines, nitrogen transfer to alkenes and 

cyclization reactions.  
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Figure 7. Synthetic methods affording aziridines grouped in three categories of reaction.  

A more versatile and perhaps efficient approach to the synthesis of aziridines consists in the 

ring-closure of amines bearing a leaving group. The amine and the leaving group 

functionalities must be in a 1,2-relationship with each other. The process may be considered 

as the reverse of the ring opening of aziridines, as both the processes occur via SN2-type 

mechanism. The only difference is that, for the ring-closure, the position next to the amine 

must be occupied by, or must be converted into, a nucleofuge. The cyclisation process may 

involve materials such 1,2-amino alcohols, 1,2-amino halides, 1,2-azido alcohols, 1,2-amino 

sulfides, 1,2-amino selenides or epoxides. This synthetic route becomes particularly useful for 

the preparation of enantiopure aziridines. In this case, however, the method requires the use 

of already established stereocenters on the starting material in order to afford the 

corresponding chiral non-racemic aziridine product. Moreover, stoichiometric amount of 

auxiliaries and/or reagents are often employed, which are discarded as by-products once the 

reaction takes place. This generates poor atom economy and chemical waste issues.  

A third convincing approach to obtain aziridines groups a class of transformations that goes 

under the name of aza-Darzens reactions. The strategy involves the reaction of imines with 

carbenes/carbenoids, α-haloenolates or ylides (Figure 9 and 10), or in general, with stabilised 

anions bearing α-leaving groups, i.e. α-halogeno, α-diazo and α-sulfonio anions. These anions 

could be stabilised via a broad range of substitutions, often being carbonyl or sulfur 

functionalities. The great choice of anions confers a high degree of flexibility to the aza-

Darzens reaction, which has become one of the most suitable techniques to afford aziridines, 

especially in an enantiopure fashion. Enantiocontrol can be achieved by using either chiral 
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imines, chiral nucleophiles or, more conveniently, chiral catalysts. The mechanism of the aza-

Darzens reaction has two distinct steps: initial nucleophilic attack upon the C=N bond, 

followed by favoured (and normally irreversible) 3-exo-tet cyclization of the intermediate 

amide anions (Figure 9).  

 
Figure 9. Two-steps mechanism for the aza-Darzens reaction. 
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Figure 10. Examples of nucleophiles employed in the aza-Darzens reaction. 

Moreover, the reaction offers the possibility for either nucleophile or electrophile activation. 

Nucleophiles such as carbenoids, for example, can be successfully activated to more reactive 

carbenes by transition-metal based catalysts (especially rhodium, cobalt and copper-based 

complexes), thermolysis or photolysis. Formation of carbine-coupling products, e.g. 

fumarates or maleates, could however represent a problem. Alternatively, electrophile 

activation by Lewis or Brønsted acid catalysis occurs by lowering the LUMO energy of the 

electrophile. Coordination of an acid to the lone pair of the nitrogen atom of an imine would 

induce a positive charge on the already polarized imine substrate. 

As the project discussed in this thesis involved acid-catalysed aza-Darzens reactions between 

imines and diazoacetate, the following introductory sections will be confined to this synthetic 

methodology and to currently reported organocatalytic methods affording chiral non-racemic 

aziridines  
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1.5 Acid-catalysed addition of alkyl diazoacetates to N-substituted imines 

As mentioned before, the aza-Darzens reaction between imines and diazoacetates requires the 

activation of at least one of the components. Although imines are fairly tuneable electrophiles 

due to functionalization of the N-substituent, no reaction occurs simply by mixing the two 

species together. This observation is consistent with the poor nucleophilicity resulting from 

the diazoacetate structure (Figure 11). The negative charge is highly delocalised by both 

diazo and carbonyl electronic π-system. In addition, the inductive effect exerted by these two 

electron-withdrawing substituents contributes to further stabilisation of compound. These 

features confer enhanced stability to carbenoid species, opposite to that of carbenes, known 

for their explosive nature. Ethyl diazoacetate however was found to be thermally stable 

against detonations and other safety concerns. 

O

OR
N

N O

OR
N

N O

OR
N

N

 
Figure 11. Diazoacetate resonance structures.  

1.6 Lewis acid-catalysed aza-Darzens reaction 

Following the pioneering work of Jørgensen and Rasmussen on the copper(II) triflate-

catalysed addition of ethyl diazoacetate to N-substituted benzylideneimines8 for the synthesis 

of aziridine, the Lewis acid-catalysed aza-Darzens reaction became a valid strategy towards 

the synthesis of C2,3-disubstituted aziridines.9 The technique has made use of the metal-

centred catalysts, i.e. aluminium(III) chloride, boron trifluoride / diethyl ether complex, 

titanium(IV) chloride, zinc(II) triflate, ytterbium(III) triflate, just to mention a few. Under 

certain reaction conditions cis-aziridines could be returned in a highly diastereoselective 

fashion and in good to excellent yields. Moreover, the system matches atom-economy criteria 

as the waste material resulting from the reaction only consists of nitrogen gas. The possibility 

to establish a catalytic process, with all the benefits and potentialities associated to it, also 

contributed to develop an interest in both industrial and academic contexts.  
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Scheme 5. Jørgensen’s copper(II) triflate-catalysed reactions between 20 and 21. 
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The major contributions to the development of Lewis acid-catalysed aza-Darzens reactions 

came from the study of Templeton et al.10 The results obtained by Templeton, combined with 

the simplicity of the method, were very promising indeed and encouraged further exploration 

of the methodology. C2,3-disubstituted aziridines 24 were produced catalytically, in good to 

excellent yields (up to 93%) and diastereoselectivities (up to 100%), and employing readily 

available starting materials (Scheme 6). The Templeton group observed a tendency of the 

system to afford cis-aziridines preferentially.   

 
Scheme 6. Templeton’s boron trifluoride-catalysed aza-Darzens reaction. 

Templeton’s proposed mechanism for formation of C2,3-disubstituted cis-aziridines (Scheme 

7) involves coordination to Lewis acid, including the simplest proton, allowing the 

nucleophilic addition of diazoacetate 26, resulting in formation of the zwitterionic 

intermediate 27. Subsequent ring closure and loss of nitrogen gas provides aziridines 28. By-

products 31 and 32 result at the zwitterionic intermediate from 1,2-migration of either the R1 

substituent or H to the incipient carbocation to yield initially 29 and 30. The tautomeric 

equilibrium favours formation of enamides 31 and 32, which have a conjugated π-system and 

a six-membered hydrogen-bonded ring conformation.  
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Scheme 7. Templeton’s mechanism accounting for the formation of aziridine 28 and enamide 
byproducts 31 and 32. 

These achiral catalytic systems foreshadowed the work of Wulff et al. To date, Wulff’s 

studies are among the most successful contributions to the Lewis acid-catalyzed 

enantioselective aziridination of N-substituted imines with alkyl diazoacetates.11 The first 

catalytic system developed in 1999 by Wulff and Antilla was based on the use of the chiral 
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vaulted biphenanthrol ligand (S)-VAPOL-derivative (S)-34 (Scheme 8). The chiral Lewis 

acid was prepared from the reaction of the (S)-VAPOL ligand with borane-tetrahydrofuran 

complex. The achievement of a high level of both diastereoselectivity and enantioselectivity 

was restricted to the use N-benzhydryl substituted imines 33. 
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CHPh2
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(S)-34 (10mol%)
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Scheme 8. Wulff’s (S)-34-catalysed enantioselective synthesis of C2,3-disubstituted cis-
aziridines 

Further optimization studies led to a refinement of the catalyst structure as well as to the 

identification of an active (S)-VAPOL-derived boroxinate catalytic species (S)-40, generated 

from the reaction between (S)-VAPOL (S)-36 and triphenyl borate B(OPh)3 (Scheme 9).11h  
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Scheme 9. (S)-VAPOL-derived boroxinate species (S)-40 formation and potential catalytic 
aziridine formation. 
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Mechanistic investigations carried out by the Wulff research group have found evidences for 

Brønsted acid catalysis, which would be exerted by the boroxinate anion / immonium cation 

complex intermediate 41, depicted in the reaction Scheme 9. According to Wulff, reaction of 

(S)-VAPOL (S)-36 with a solution of borane and phenol affords two species, characterized by 

the mesoborate (S)-37 and the pyroborate (S)-38 functionality (Scheme 9). However, 

treatment of this mixture with three equivalents of imine 39 generated the boroxinate 

intermediate 41, which was scrutinized and identified by 1H- and 11B-NMR spectroscopy. 

The boroxinate catalyst (S)-40 was found to induce high levels of asymmetry for the addition 

of ethyl diazoacetate to N-benzhydrylimine. If the activation mode proposed by Wulff and his 

group is correct, then the developed catalytic system would no longer be a Lewis acid but a 

Brønsted acid.  

1.7 Brønsted acid-catalysed aza-Darzens reaction 

Johnston’s observation that Brønsted acids could catalyse addition of ethyl diazoacetate to N-

substituted imines12 holds the same importance of Templeton’s and Jorgensen’s studies in the 

regard of the corresponding Lewis acid-catalysed reaction. Johnston’s discovery allowed 

organocatalysis to access the aza-Darzens synthetic system, offering the chance to develop 

organocatalytic enantioselective methodologies. Johnston’s group, after investigating the 

effect of the strength of Brønsted acids on the aza-Darzens reaction, developed a triflic acid-

catalysed protocol for the synthesis of cis-aziridines 44 from N-benzhydryl imines 43 and 

ethyl diazoacetate 21 (Scheme 10). The Johnston group found that formation of the resulting 

cis-aziridines 44 heavily depended on the strength of the acid employed as catalyst. They 

observed no reaction when acetic acid (pKa = 4.76) was used as catalyst. However, catalysis 

by stronger acids (pKa < 0) resulted in a high yielding and faster (2.5-5h) process (58-74%). 

The triflic acid catalysis afforded an excellent level of yield and diastereoselectivity for 

aziridines 44 when the N-benzhydryl imines 43 were functionalized with electron-deficient 

C-substituents, affording racemic cis-aziridines 44 as the major isomers.  

R
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N2 CO2Et
TfOH (25mol%)

          propionitrile
-78°C (rt when R= alkyl) R

N

CO2Et

CHPh2

N2
43 21
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40-89% yields
 20-90% d.e

R=CO2Alk, aryl, alkyl

 
Scheme 10. Johnston’s synthesis of cis-aziridines 44 catalysed by triflic acid. 

In apparent contradiction to the effect of pKa on the aza-Darzens reaction found by Johnston, 

Maruoka et al. described the trans-selective asymmetric aziridination of diazoacetamide 46 
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and N-Boc-imines 45 catalysed by axially chiral dicarboxylic acid (R)-47 (Scheme 11).13 
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Scheme 11. Maruoka’s asymmetric aziridination of diazoacetamide 46 and N-Boc-imines 46 
catalysed by (R)-47. The transition states leading to the alkylation products 49 (Path a, 
dashed arrows) and to the formation of aziridines 50 (path b, continuous arrows) are shown, 
as well as for the H-bonding system (bold dashed lines).  
  

Maruoka et al. envisaged that lowering the acidity of the α-proton of the diazocarbonyl group 

by using diazoamides, the formation of the aziridine motif 50 would become the favoured 

synthetic path over the Friedel-Crafts type adduct 49 observed. The BINOL-derived 

dicarboxylic acid catalytic system (R)-47 returned C2,3-disubstituted trans-aziridines 50 in 

high diastereo- and enantioselectivities, although yields were relatively low for many 

examples. The trans-selectivity was explained in terms of steric and H-bonding interactions 

of the diazoamide functionality 46 respectively with the aryl group and the Boc-protecting 

groups of imines 45 (Figure 12). 
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Figure 12. Maruoka’s possible explanation for the observed diastereoselectivity. 

Formation of alkylation products can also be inhibited in favour of the aziridine synthesis 

increasing the nucleophilicity of the nitrogen, i.e. replacing the electron-withdrawing N-Boc-

group with an appropriate N-substituent. The Akiyama14 research group reported a very high 

yielding and highly selective asymmetric addition of ethyl diazoacetate to N-(p-

methoxyphenyl)-substituted imines 52 catalyzed by (R)-BINOL-derived phosphoric acid (R)-
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53 (Scheme 12). However, the method is restricted to the use of electron-deficient aryl-

substituted glyoxals 51, which are among the most reactive starting materials for the aza-

Darzens reaction. It is interesting to note that Maruoka’s and Akiyama’s (and perhaps 

Wulff’s) methods are the only organocatalytic asymmetric aza-Darzens reactions affording 

chiral non-racemic aziridines reported to date, although their methods are shadowed by 

strong limitations.  
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Scheme 12. Akiyama’s enantioselective aza-Darzens reaction of glyoxals 51 catalysed by 
(R)-53. 

1.8 Other organocatalytic methods for the synthesis of chiral non-racemic aziridines 

The use of quaternary salts of chiral cinchona alkaloids as phase-transfer catalysts15 

represented the main catalytic approach, although chiral Troger’s base16 and quinine17 were 

also found to promote the asymmetric reaction. Nevertheless, the induced level of 

enantioselectivity for these examples was promising but still unsatisfactory, as for yields in 

many cases too.  

Excellent progress on the organocatalytic enantioselective aziridination of electron-deficient 

olefins were reported by Cordova et al. in 2007.18 The Cordova research group reported a 

highly chemo- and enantioselective organocatalytic aziridination of α,β-unsaturated 

aldehydes 56 with acylated hydroxycarbamates 55 (Scheme 13). The organocatalyst 

employed to promote the reaction consisted in the simple chiral pyrrolidine derivative 57, 

which afforded trans-2-formylaziridines 58 in moderate-to-good yields with 

diastereoselectivities of up to 82% and enantioselectivities of up to 99%.  
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Scheme 13. Cordova’s enantioselective aziridination of α,β-unsaturated aldehydes 56. 
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Scheme 14. Melchiorre’s asymmetric aziridination of enones 60 catalysed by salt 61. 

A closely related strategy was applied by Melchiorre et al. in 2008 to the asymmetric 

aziridination of α,β-unsaturated ketones. The catalytic system introduced was a chiral 

primary amine salt 61 (Scheme 14), derived from reaction between the easily available 9-

amino(9-deoxy)epi-hydroquinine with D-N-Boc-phenylglycine.19 Catalyst 61 mediated the 

reaction of both linear and cyclic α,β-unsaturated ketones 60 with tosylated 

hydroxycarbamates 59. Trans-aziridines 62 were afforded in high selectivities. 
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2 Organocatalysis 
The use of small organic molecules to catalyse organic transformations, called 

organocatalysis, has been documented periodically over the past century; the field had to wait 

the 1990s to be born.20 There are essentially four types of organocatalysis, Lewis bases, 

Lewis acids, Brønsted bases and Brønsted acids. These catalysts initiate their catalytic cycles 

by providing or removing electrons or protons from the transition state. The state-of-the-art in 

asymmetric catalysis is dominated by metal based chiral catalysts almost exclusively. The 

kingdom of metal-centred catalysis covered a wealth of asymmetric oxidation, reduction, σ-

bond insertions, π-bond activations and Lewis-acid-catalysed reactions.  

Metal-centred Lewis acid catalysis is certainly a highly versatile and powerful technique and 

it may seem to have several key advantages for Brønsted acid catalysis. Lewis acids are 

highly tuneable, which is a fundamental aspect of catalyst design.21 The steric and electronic 

environment of the catalyst could be adjusted through a number of parameters, e.g. the 

identity of the Lewis acidic element, the counterion, and the chiral organic ligand framework. 

Moreover, a Lewis acid/base interaction consists of dative bonds, which are considerably 

stronger and more directional than H-bonds. 

The great success of the field lies indeed upon the identification of generic modes of catalyst 

activation, induction and reactivity.22 These properties are crucial for determining the 

efficiency of a catalytic system. Privileged catalysts are those that, because of their generic 

mode of action, can participate in many reaction types with consistently high 

enantioselectivity (as opposed to one or two unique transformations). The catalytic species 

interacts with one or more functional groups (such as a ketone, aldehyde, alkene or imine) in 

a highly organised and predictable manner. The value of generic activation modes is that, 

after they have been established, it is relatively straightforward to use them as a platform for 

designing new enantioselective reactions. Indeed, most of the 130 organocatalytic reactions 

that have been reported since 1998 are based on only five or six activation modes.  

2.1 Activation modes in organocatalysis 

Catalysis by means of proton donors has been widely understood in the course of the past 

decades.23 There are two fundamental mechanisms according to which Brønsted acids can 

accelerate organic reactions: reversible protonation of the electrophile prior to nucleophilic 

attack (specific acid catalysis), or proton transfer to the transition state in the rate-determining 

step (general acid catalysis). The discussion of the activation modes that follows herein is 

also meant to group and classify the various classes of organocatalysts, as reported by 
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Jacobsen in his excellent review.21 Thus, organocatalysts could be classified as: bifunctional 

hydrogen-bond donor catalysts, double hydrogen-bond donor catalysts and single hydrogen-

bond donor catalysts. Particular emphasis is given to BINOL-derived Brønsted acid catalysts, 

which are the main subject of this dissertation. More detailed informations about 

enantioselective organocatalysed chemical transformation are available in several excellent 

reviews.24  

2.2 Bifunctional hydrogen-bond donor catalysts 

The development of dual activation strategies represents one of the most innovative 

advantages that organocatalysis offers over metal-centered catalytic systems. A bifunctional 

catalyst is a molecule bearing both Lewis basic and acidic sites, thus capable of simultaneous 

activation of nucleophile and electrophile. Proline and its analogues, cinchona alkaloids and 

their derivatives, bifunctional thiourea derivatives, oligopeptides, catalytic antibodies, RNA 

and H-bonding phase transfer catalysts belong to this class of organocatalysts (Figure 13).  
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Figure 13. Examples of generic bifunctional catalysts. Activation sites for nucleophiles (in 
blue) and electrophiles (in red) are shown. 

This chapter describes the synthesis of chiral non-racemic enantiopure aziridines using N-

triflylphosphoramide catalysts, while highlighting the synthesis of (+)-chloramphenicol, 

which is the main goal of this project. (S)-BINOL-derived N-triflylphosphoramides were 

used as catalysts, which had already been prepared in the Bew group, inspired from 

Yamamoto’s work using his methodology and results. Since Yamamoto’s report was 

published at the end of 2006, the novel N-triflyl phosphoramide catalytic system has 

experienced an impressively growing number of successful applications in asymmetric 

synthesis.25 
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In an effort to expand the substrate scope of chiral Brønsted-acid-catalysed reactions, 

Yamamoto and co-workers developed a stronger chiral Brønsted acid catalytic system. The 

Yamamoto group synthesised the N-triflyl phosphoramide (S)-65, bearing an axially chiral 

BINOL backbone, and demonstrated its ability to catalyse the Diels-Alder reaction of the 

α,β-unsaturated ketone 66 with electron-rich dienes 67 affording cyclohexene derivatives 68 

with high enantioselectivities (Scheme 16) 
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Scheme 16. Yamamoto’s asymmetric Diels-Alder reaction catalysed by the chiral N-
triflylphosphoramide (S)-65. 

2.3 Synthesis of the (S)-BINOL-derived N-triflylphosphoramides 

By using Yamamoto’s concept mentioned above, the Bew group came up with a new strategy 

and developed a stronger chiral Brønsted acid catalytic system. The synthesis of the N-

triflylphosphoramides was accomplished following Yamamoto’s synthetic protocol (Scheme 

17). Suzuki couplings were carried out with the BINOL diboronic acid 69. The 

phosphoramidation reactions consisted of straightforward one-pot two-step transformations 

involving the 3,3’-substituted BINOL (S)-69 as starting material. Similar to the 

phosphorylation reaction protocol, (S)-70 was reacted with phosphorus oxychloride (1.2 eq) 

in the presence of organic bases, such as triethylamine (7 eq) and 4-dimethylaminopyridine (2 
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eq), at room temperature. Subsequent in situ addition of trifluoromethanesulfonylamide 

generated catalyst (S)-71 (57% yield). 
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2) CF3SO2NH2
propionitrile
100°C, 12 hr

O
O
P NHSO2CF3
O

(S)-69

(S)-70 (S)-71
 Scheme 17. Synthesis of Bew group’s catalyst (S)-71 

2.4 Aza-Darzens reactions catalyzed by the N-triflylphosphoramides (S)-71  

The catalytic activity of the chiral Brønsted acids (S)-71 was investigated by performing the 

experiment depicted in Scheme 18. This catalyst was used to promote the reaction between 

the N-benzylimine 72 and ethyl diazoacetate 73 at room temperature. The Bew group 

observed in all the experiments not only the exclusive formation of the aziridine cis-74 

(~85% yield), but also the completion of the reaction overnight. Moreover, careful 

scrutinization of the 1H-NMR crude spectra proved that 1) consumption of the starting N-

benzylimine 72 was achieved; 2) the only by-product consisted in the formation of enamide 

75 (~15% yield); 3) no traces of trans-aziridine were found in the crude mixtures.  

 
Scheme 18. Bew group’s template reaction for the screening of catalyst (S)-71. 

In terms of yields, the experiment fully demonstrated the importance of the strength of the 

Brønsted acid employed to catalyse the aza-Darzens reaction under these conditions. By 

simply replacing BINOL-derived phosphoric acids with the analogue N-

triflylphosphoramides, the yields and reaction rates for the formation of the aziridine cis-74 

changed drastically from less than 5% to up to 85%. After reaching this point The Bew group 

studied different parameters such as observations about the spatial geometry of the catalyst 

structures, screening of the N-protecting group on the starting imine, screening of the 
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temperature, concentration, solvent, catalyst loading, C-substituent on the starting N-(2-tert-

butoxyphenyl) imine etc. and finally they established  a optimized method and catalyst for the 

synthesis of aziridines which gave excellent yields (99%) and high enantioselectivities (99% 

e.e) 

2.5 Synthesis of (+)-Chloramphenicol 

The last stage when developing a synthetic methodology is to ensure that its efficiency could 

find practical applications. For their tendency to ring-open, chiral non-racemic aziridines are 

extremely valuable intermediates, representing the precursors for the synthesis of a great 

number of pharmacologically and biologically active compounds. Here we propose the 

synthesis of (+)-chloramphenicol, which seemed to be suitable to our task to provide a simple 

example of the efficiency of the method.  
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3 Asymmetric Organocatalytic Synthesis of Aziridine 
Using F+ Salt  

As discussed in Chapter 1, aziridines are relatively reactive, synthetically useful, three-

membered ring heterocycles that are commonly employed in the synthesis of other 

heterocyclic entities.26 Although there are numerous protocols for the synthesis of N-activated 

aziridines,11b, 27 there are in comparison fewer protocols that detail generally applicable 

methods for N-trimethylsilyl or N-arylaziridine synthesis from imines.28 Furthermore, few 

innovative organocatalytic methods that generate NH16, 29 and N-arylaziridines30 have been 

reported, despite the acknowledged potent biological activity of N-arylaziridines.31 

Methodology for N-arylaziridine synthesis has focused, in the main, on employing strong 

Lewis acid or transition-metal complexes. Thus, Templeton et al. reacted ethyl diazoacetate 

with a Lewis acid, i.e. BF3•Et2O, AlCl3, or TiCl4 (10 mol %) activated N-arylimine and 

generated racemic mixtures of cis- and trans-C2,3-disubstituted N-arylaziridines in variable 

yields (2-76%).  

The Bew group has reported the first application of the fluoronium cation i.e., F+ derived 

from an N-fluoroheterocyclic salt. They have demonstrated in this work that N-

fluoroheterocyclic salts are powerful, versatile organocatalysts. One organocatalytic entity is 

capable of generating both N-aryl- and NH-C2,3-disubstituted aziridines. The successful 

application of the pyridinium triflate catalysis to the aza-Darzens reaction, led us to explore 

the catalytic properties of a structurally similar salt, the N-fluoropyridinium triflate. To date, 

there is no application of the fluoronium cation, F+, derived from N-fluoroheterocyclic salts,32 

as a convenient, highly effective organocatalyst in organic synthesis. The use of this class of 

compounds has been so far restricted to fluorination reactions. The results reported in this 

project demonstrate that easily available N-fluoroheterocyclic salts are powerful, versatile 

organocatalysts that mediate, possibly through halogen bonding substrate activation, the 

reaction between ethyl diazoacetate and N-arylimines or N-trimethysilylimines such that a 

diverse range of N-aryl-C2,3-disubstituted aziridines or NH-C2,3-disubstituted aziridines are 

generated in good yields and often with good stereoselectivities.33  

The Bew group discounted the use of triflic acid (cfr. Johnston work)34 and the application of 

protic salts and acids because of their incompatibility35 with our desire to utilize N-TMS 

imines as precursors to C2,3-disubstituted N-TMS-aziridines. The N-TMS protecting group 

offers several advantages to this particular study: 1) the lower stability of the N-F bond, 

compared to the N-H bond, should prevent any eventual cleavage of the TMS group exerted 
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by the triflate; 2) considering the high electrophilic nature of the F+ ion, eventuality of redox 

processes taking place in the system must be taken in account; if this happened, the resulting 

fluoride F– would probably be subtracted from the equilibrium by the TMS and the catalytic 

cycle would stop; 3) The N-TMS group is so labile that was found to be easily removed from 

aziridines during the chromatographic purification on silica gel, therefore allowing a direct 

one-pot synthesis of valuable N-H aziridines from the corresponding imines. The Bew group 

also considered the fluoronium salts to have properties and benefits that many currently 

employed Lewis and Brønsted acids do not always have, i.e., easily handled, stable, 

crystalline, non-hygroscopic, organic soluble salts which produce a relatively benign and 

easily removed by-product.36 

3.1 Optimization studies of the catalytic system  

The Bew group’s preliminary studies focused on the reaction between N-arylimine 76 (X = 

N), ethyl diazoacetate 73, and N-fluoropyridinium triflate 77 (10 mol %, Scheme 19). 

Gratifyingly, after 5 hours at ambient temperature, TLC analysis indicated complete 

consumption of 76.  

Scheme 19. Synthesis of N-arylaziridines rac-78 

Workup (filtration through a plug of alumina) and 1H-NMR analysis indicated that rac-78 

was afforded cleanly (83% yield), and, from the J2,3  coupling constant of 6.8 Hz, with C2,3-

cis-stereochemistry. There was no indication that any of the trans- isomer of rac-78 was 

present.  

As part of our on-going investigation towards new synthetic routes to aziridines, we wanted 

to develop a chiral non-racemic organocatalyst using an F⁺ salt. Cinchona alkaloids have a 

venerable history in the field of asymmetric synthesis owing to their established ability to 

induce asymmetry, and we decided to take advantage of this naturally occurring cheap source 

of chirality. In this chapter we demonstrate that a unique and optically active chinchona 

alkaloid organocatalyst can mediate the asymmetric synthesis of enantiopure aziridine. 

3.2 Introduction of cinchona alkaloid 

The role of cinchona alkaloids in organic chemistry was firmly established with the discovery 
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of their potential as resolving agents by Pasteur in 1853, which ushered in an era of racemate 

resolutions by the crystallisation of diastereomeric salts.37 Today, there are countless 

examples in which cinchona alkaloids are used as chiral resolving agents38 Besides the 

classical resolution process, significant progress has also been made in the past two decades 

in the field of cinchona-based enantioseparation, as well as in their use as enantioselective 

analytical tools.  
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Figure 14. Activated electrophile and nucleophile in Quinine and Quinidine  
However, possibly the most interesting application of cinchona alkaloids in chemistry resides 

in their ability to promote enantioselective transformations in both homogeneous and 

heterogeneous catalysis. Pracejus was first to obtain useful levels of enantioselectivity (74% 

e.e) by using O-acetylquinine as a catalyst (1 mol%), in the addition of methanol to 

phenylmethylketene, affording (-)-phenylmethylpropionate.39 Two decades (in the late 1970s 

and early 1980s) after Pracejus, Wynberg and coworkers began a new era in asymmetric 

catalysis driven by cinchona alkaloids.40 Their extensive studies on the use of cinchona 

alkaloids as chiral Lewis base/nucleophilic catalysts demonstrated that this class of alkaloid 

could serve as highly versatile catalysts for a broad spectrum of enantioselective 

transformations (e.g., conjugate additions and the addition of ketenes to carbonyl compounds, 

resulting in β-lactones). During the late 1980s and early 1990s, quite successful examples in 

terms of the catalytic activity and enantioselectivity were reported, where the asymmetry was 

induced by cinchona alkaloids. Furthermore, since 2000, the dramatically expanding interest 

in chiral organocatalysis as a new stream of catalysis41 has sparked a second renaissance in 

the use of cinchona alkaloids. Thus, nowadays, cinchona alkaloids and their derivatives are 

classified as one of the most privileged of organic chirality inducers efficiently catalysing 

nearly all classes of organic reactions in a highly stereoselective fashion. 

3.3 Active Sites in Cinchona Alkaloids  

The key feature responsible for their successful utility in catalysis is that they possess diverse 

chiral skeletons and are easily tuneable for diverse types of reactions (Figure 15). The 

presence of the 1,2-aminoalcohol subunit containing the highly basic and bulky quinuclidine, 
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which complements the proximal Lewis acidic hydroxyl function, is primarily responsible for 

their catalytic activity. The presence of the quinuclidine base functionality makes them 

effective ligands for a variety of metal-catalysed processes. The most representative example 

is the osmium-catalysed asymmetric dihydroxylation of olefins.42 The metal binding 

properties of the quinuclidine nitrogen also allows the use of cinchona alkaloids as metal 

surface modifiers. 
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R' = CH=CH2: Quinidine
R' = CH2CH3: Dihydroquinidine 	
  

Figure: 15	
  Active sites in cinchona alkaloids and their derivatives. 

In addition to its utility for metal binding, the quinuclidine nitrogen can be used as a chiral 

base or a chiral nucleophilic catalyst promoting many of organocatalytic reactions. Finally, 

the related quaternized ammonium salts of cinchona alkaloids have proved to catalyse 

numerous reactions under phase-transfer conditions, where asymmetric inductions occur 

through a chiral ion pairing mechanism between the cationic ammonium species and an 

anionic nucleophile.43 The secondary 9-hydroxy group can serve as an acid site or hydrogen 

bond donor. The derivatization of the OH group into ureas, amides, and so on, with either 

retention or inversion of configuration, provides a more powerful acidic site or hydrogen 

bond donor. The 6'-methoxy group of quinine and quinidine can also be readily derivatized 

for example to the free OH group or thiourea moiety, which can serve as an effective H-bond 

donor. Moreover, the substitution of 9-OH by a free amino group with the inversion of the 
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configuration enables enantioselective aminocatalysis, which includes reactions of the so-

called generalized enamine cycle44 and charge-accelerated reactions through the formation of 

iminium intermediates.45 However, in general, these active sites in cinchona alkaloids and 

their derivatives act in catalysis not independently but cooperatively; that is, they interact 

with reacting molecules simultaneously. Furthermore, in many cases, the catalysis is also 

supported by a π–π interaction with the aromatic quinoline ring or by its steric hindrance. 

3.4 Structural information of cinchona alkaloids  

Cinchona alkaloids have characteristic structural features that separate their conformations 

and self-association phenomena. Therefore, knowledge of their real structure in solution can 

provide original information on the chiral inducing and discriminating ability of these 

alkaloids.  

Conformational investigations of this class of alkaloids, based on computational and 

spectroscopic methods, have been undertaken with the aim of providing information that 

would help to understand these chiral induction and discrimination processes. Dijkstra et al. 

were the first to investigate in 1989 the conformational behaviour by means of NMR 

spectroscopic and molecular mechanics (MM) calculations, and to identify that the C8-C9 

and C4'-C9 bonds are the most important in determining the overall conformation, resulting 

in four low-energy conformers (syn-closed, syn-open, anti-closed, and anti-open conformers) 

(Figure 16).46 MM calculations showed that the parent alkaloids preferentially adopt an anti-

open conformation in nonpolar solvents. More sophisticated ab initio calculations conducted 

later also revealed that anti-open is the most stable conformer in apolar solvents.47,48  In polar 

solvents, two other conformers, syn-closed and anti-closed, are strongly stabilized compared 

to the anti-open conformer, due to the greater support provided by their large dipole 

moments48. 

However, upon protonation, the anti-open conformation is observed exclusively.48 The 

protonation of cinchona alkaloids appears to hinder rotation around the C4'-C9 and C9-C8 

bonds and favour only a narrow range of the conformational space of the molecule.49 The 

pivotal role of the conformational behaviour of a cinchona alkaloid (e.g., cinchonidine) on its 

enantioselectivity was nicely illustrated in the platinum-catalysed enantioselective 

hydrogenation of keto-pantolactone in different solvents.48 The achieved enantiomeric excess 

shows the same solvent dependence as the fraction of anti-open conformer in solution, 

suggesting that this conformer plays a crucial role in the enantiodifferentiation. In addition to 
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the solvent polarity, many other factors such as intermolecular interactions are also 

responsible for the complex conformational behaviour of cinchona alkaloids in solution. 
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Figure 16. The four conformers of quinidine showing the lowest energy. 

As discussed, the solvent dipole moments, concentration, and temperature play a significant 

role in determining the structure of cinchona alkaloids and their derivatives in solution. In 

order to delineate the intimate details of the mechanism of action of cinchona alkaloids and 

their derivatives, a thorough understanding of their real structure in solution is needed. 

Furthermore, such detailed information on the real structure in solution would make it 

possible to develop new and more powerful chiral catalysts and discriminators. 

3.5 Cincona alkaloids and their derivatives in organocatalysis 

The bifunctional mode of activation of these compounds arises from the acidic hydroxy 

group that is present on their structure. Wynberg and Hiemstra in 1981 observed that the 

enantioselective conjugate addition of aromatic thiols, i.e. 79, to cycloalkenones, i.e. 80, 

(Scheme 20) proceeds with highest reaction rates and enantioselectivies when alkaloids that 

possess a free hydroxy group, such as cinchonidine 83, cinchonine 85, quinine 82, and 

quinidine 84 (Figure 17), are used as catalysts.50 This led Wynberg and Hiemstra to consider 

the bifunctional nature of these compounds, by which the nucleophile is activated by general 

base catalysis, and the electrophile by H-bonding. 
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Scheme 20. Wynberg’s enantioselective conjugate addition of thiol 79 to cycloalkenone 80. 

In contrast, Deng and co-workers51 reported a highly enantioselective variant of this 

transformation employing a cinchona-derived catalyst that lacked the free hydroxy group. 

The catalyst employed was the dimeric ligand (DHQD)2-PYR 86 (Figure 17), previously 

developed by Sharpless et al. for asymmetric osmium-catalysed dihydroxylation of alkenes. 

However, it is likely that such a ligand operates by a different mechanism from that proposed 

by Wynberg, possibly discriminating between the prochiral faces of the substrate by steric 

factors rather than by hydrogen-bonding coordination.   

	
  

Figure 17. Examples of natural and semi-synthetic alkaloids. 

In support of the bifunctional activation mode of these alkaloids, Hatakeyama et al. reported 

the organocatalysed enantioselective Baylis–Hillman reactions of hexafluoroisopropyl 

acrylate 89 with aromatic and aliphatic aldehydes, i.e. 88 (Scheme 21).52 The catalyst 

employed was β-isocupreidine 87 (Figure 17), which bears an acidic phenolic hydroxy group. 

When the hydroxy group was methylated, the catalyst dramatically lost its enantioselectivity. 

Hatakeyama suggested that the occurrence of a hydrogen bond between catalyst and 

intermediate was the key for the high level of enantioinduction. 

Scheme 21. Hatakeyama’s Baylis–Hillman-type reactions catalysed by β-isocupreidine 87. 
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4 Attempted Synthesis of Five-Membered Ring 
Heterocycles by Cyclization of NH-Oxaziridines with 
Alkenes 

Oxaziridines, three-membered rings containing nitrogen, oxygen and carbon, have been of 

mechanistic and structural interest since their first report in a classic paper by Emmons in 

1957.53 This paper not only describes the preparation and structural proof of a new 

heterocycle, it also contains the basis for most oxaziridine chemistry known to the present 

day, including rich rearrangement chemistry and the decomposition of oxaziridines by low-

valent metal salts.54 In the years that followed, oxaziridines were mostly a curiosity that 

found little synthetic utility. This was despite significant efforts to devise nice methods for 

the synthesis of oxaziridines-ultimately settling on the oxidation of imines with peracids as 

the best method-and the attention of chemists interested in the configurational stabilization of 

a potential nitrogen stereocentre. It turns out that the combination of placing a nitrogen in a 

three-membered ring (which destabilizes the 120" angle of the sp2-like transition state 

involved in pyramidal inversion) with attaching the electron-withdrawing oxygen atom 

(which opposes the increased S-orbital character of nitrogen during inversion) makes simple 

oxaziridines the most easily prepared and synthetically useful class of compounds containing 

a bonafide nitrogen stereogenic centre. More recently, N-sulfonyl oxaziridines have become 

popular oxygen-transfer agents for the oxidation of olefins, sulfides and especially enolates. 

Asymmetric induction is often possible. This area has considerable promise in the use of 

oxaziridines as nitrogen-transfer reagents, for example for the synthesis of aziridines and 

hydrazine derivatives. 

4.1 Stereochemistry of oxaziridine 

The stereochemistry of the oxaziridine ring has received considerable attention mainly due to 

the chirality of the nitrogen atom and the appreciable barrier to its inversion. This barrier to 

inversion was determined to be 25-32 kcal/mol in N-alkyl oxaziridines.55 The transition state 

for thermal epimerization was shown to have increased ring strain, thus providing the large 

barrier to nitrogen inversion.56 
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Oxaziridines have also been shown to epimerize photochemically through a nitrone 

intermediate.57 While the inversion barrier is considerable in N-alkyl oxaziridines, when the 

N- substituent is capable of p- conjugation or hyperconjugation the inversion barriers are 

smaller. N-aryl as well as N-acyl oxaziridines both have inversion barriers near 20 kcal/mol58 

due to their p-conjugation. N-sulfonyl oxaziridines also exhibit lower barriers to inversion 

due to the hyperconjugation present in the system. 

4.2 Synthesis and reactivity of oxaziridines 

Chemical reactions involving electrophilic sources of nitrogen commonly require toxic or 

otherwise undesirable reagents, including tosyl azide, nitroso compounds, diimides, or 

azodicarboxylates, and new reagents are therefore desirable; indeed, the use of green sources 

of electrophilic nitrogen has been identified as an “aspirational reaction” by the 

pharmaceutical manufacturers.59 Oxaziridines, characterized by a reactive strained C,N,O 

three-membered ring, have shown interesting reactivities as nitrogen and oxygen atom 

transfer reagents, and the synthesis and chemistry of oxaziridines have been widely studied.60 

It has been established that the attack of a nucleophile occurs at either the oxygen or the 

nitrogen atoms of the ring, depending upon the nature of the nucleophile and the substituents 

on the oxaziridine, especially at the nitrogen atom. For example, oxaziridines bearing 

electron-withdrawing substituents on the nitrogen atom or on both the nitrogen and the 

carbon atoms of the three-membered ring have been developed for their ability to transfer 

oxygen atoms to nucleophiles. In particular, N-(fluoroalkyl)oxaziridines,61 N-

phosphanyloxaziridines62 and N-sulfonyloxaziridines 63 have proved to be efficient reagents 

for the oxidation of sulfides to sulfoxides, the asymmetric hydroxylation of enolates, and the 

stereoselective epoxidation of olefins. Davis in particular has shown that N-substituted 

camphoryl oxaziridines transfer oxygen to various nucleophiles with very good 

stereoselectivity, perhaps due to the steric hindrance close to the oxaziridine ring.64 Oxygen 

transfer may also be performed with hindered oxaziridines and hindered nucleophiles,65  and 

may be promoted by acid, forming an N-protonated oxaziridinium ion which is believed to be 

the active oxidizing species.66  

Nitrogen transfer has also been performed, mainly using N-H, N-alkyl-, N-aryl-, N-acyl-, N-

carboxamido- or N-(alkoxycarbonyl) oxaziridines, with sulfur, nitrogen, phosphorus and 

carbon nucleophiles.67 However, few electrophilic aminations have been carried out with 

enantiomerically pure chiral N-substituted oxaziridines.68 To date, only a handful of reports 

of enantiomerically pure chiral N-acyloxaziridines have been published.68-69 N-H 

oxaziridines, first reported in the early 1960s,70 can be effective for the amination of nitrogen, 
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oxygen, sulphur and carbon nucleophiles,71 and are potentially of great value today as 

relatively “green” sources of electrophilic nitrogen. Due to their general instability, however, 

very few N-H oxaziridines have been prepared, and fewer used for their ability to transfer 

nitrogen.72 N-H oxaziridines also offer the attractive additional potential as enantioselective 

nitrogen transfer agents by incorporation of chiral elements into their structure. 

4.3 Synthesis and Reactivity of NH-oxaziridine 

N-H oxaziridines, first reported in the early 1960s, induce amination of nitrogen, oxygen, 

sulfur and carbon nucleophiles,73 including aziridination of alkenes and amination of 

enolates. Page group reported the preparation of the first stable enantiomerically pure chiral 

N-H oxaziridines 92 and 93 together with a brief survey of their derivatization and chemical 

reactivity. Due to their instability, N-H oxaziridines must generally be prepared and used in 

dilute solution. The only one that has been isolated as a stable compound in pure form is 

compound 94,72 and the chemical reactivity of only one has been thoroughly investigated 

(compound 95). 

Their instability no doubt accounts for the dearth of knowledge and awareness of N-H 

oxaziridines. Nevertheless, this functional group appears to offer an intriguing alternative 

potential solution to the problem of asymmetric electrophilic nitrogen transfer, usually 

accomplished by use of chiral auxiliary chemistry.74 For this reason Page group turned their 

attention to the synthesis and chemistry of chiral, non-racemic N-H oxaziridines 92 and 93, 

derived from camphor and fenchone, respectively.  

 

N-Acyl- and N-alkoxycarbonyloxaziridines have been shown to transfer their nitrogen moiety 

to a number of sulfur, nitrogen, phosphorus, and carbon nucleophiles and tend to be more 

stable. There has, however, been only one report of a chiral enantiomerically pure N-

acyloxaziridine.69 Most of N-acyl- and N alkoxycarbonyloxaziridines have been prepared by 

oxidation of N-protected imines of benzaldehydes.75 N-Sulfonyl-76 and N-

phosphinoyloxaziridines,77 useful oxygen transfer agents, are prepared in the same way. This 

method is efficient for the oxidation of N-sulfonylimines, which are commonly easily 

prepared and stable, but is less satisfactory for the oxidation of N-phosphinoylimines, which 

are more prone to hydrolysis. N-Acylimines are even less stable and are commonly only 
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available when prepared from a ketone that is non-enolizable and contains R-electron-

withdrawing groups.78 Derivatization at the nitrogen atom of an oxaziridine, as opposed to 

oxidation of the derivatized imine, could therefore provide a useful alternative method of 

preparation of N-functionalized oxaziridines, if the corresponding N-H oxaziridines can 

themselves be readily prepared. Indeed, some examples of acyl derivatives have been 

prepared in situ by use of solutions of unstable N-H oxaziridines.79 N-H oxaziridines have 

been prepared from ketones by treatment with hydroxylamine-O-sulfonic acid or precursors 

of chloramine.73 Neither of these two techniques proved successful for camphor or fenchone, 

possibly due to the steric hindrance about the ketone moiety.  

	
  

Scheme 22. Synthesis of N-camphor oxaziridine               

The Page group therefore sought an alternative route and selected oxidation of the primary 

(N-H) imine with peracid, a method used in the preparation of N-H oxaziridines 94 and 96, 

derived respectively from di-tert-butyl ketone and benzophenone. Preparation of primary 

imines by simple condensation of ammonia with ketones is problematic, as primary imines 

are commonly unstable above room temperature. Sealed tube methods have been used,80 but 

they are unreliable. The primary imines 100 and 104, derived from camphor and fenchone, 

respectively, are, however, both stable up to ca. 30 °C and were prepared via the nitrimines 

99 and 103.81 Nitrosation/rearrangement of the corresponding oximes 98 and 102 followed by 

ammonolysis of the resulting nitrimines in THF82 gave the primary imines in quantitative 

yields. Oxidation of each imine with 1 equiv of m-CPBA at -30 to -40 °C in dichloromethane 

took place to give the N-H oxaziridines 92 and 93 in 98% and 86% yields respectively. 
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Scheme 23. Synthesis of N-fenchone oxaziridine               

These N-H oxaziridines are remarkably stable in their pure form in comparison to their 

simpler analogues and can be kept at 5 °C for at least 6 months without decomposition. They 

are stable to silica gel chromatography. The camphor-derived oxaziridine 92 is crystalline 

and can be heated under reflux in THF solution for at least 6 h without decomposition, 

although it is unstable under reflux in toluene. In this context, it is interesting to note that 92 

has been implicated as a reactive intermediate in the thermal rearrangement of camphor 

oxime.83 The fenchone-derived oxaziridine 93, an oily liquid, is stable under reflux overnight 

in THF and toluene solutions.  

The aim of this part of research work was to discover a friendly protocol for the synthesis of 

five membered ring heterocycles using NH-oxaziridine and alkene as reactant, through 

cleavage of the N-O bond. 
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RESULTS AND DISCUSSION 

1 Organocatalysis 
1.1 Synthesis of the starting material N-(2-tert-butoxy 4-methoxy phenyl)imine 107  

	
  
Scheme 24. Synthesis of (E)-2-tert-butoxy-4-methoxy-N-(4-nitrobenzylidene)aniline 

In these reactions, the imine is the most important starting material for the synthesis of 

aziridines. To obtain the desired imine product, the by-product water must be removed from 

the reaction mixture in order to drive the equilibrium in favour of the imine. This result can 

be achieved by using dry molecular sieve or magnesium sulfate powder. 2-tert-Butoxy-4-

methoxy phenyl amine 106 (1eqⁿ) reacted with 4-nitro benzaldehyde 105 (1.02 eqⁿ) in 

anhydrous chloroform in the presence of 4Å molecular sieve and the reaction mixture was 

left overnight at room temperature. The reaction mixture was filtered and solvent removed 

under reduced pressure. ¹H NMR analysis of the crude mixture showed this to be the desired 

product 107 (99% yield). 

1.2 Screening of the catalyst loading for the synthesis of cis-109 

	
  
Scheme 25. Catalyst loading experiment for the synthesis of cis-109. 

It is stated that by controlling different parameter such as solvent, temperature, loading of 

catalyst, substituent on starting material imine, etc., a better yield as well as enantioselectivity 

can be obtained. This experiment was designed to complete the studies for the optimisation of 

the reaction conditions, therefore providing a fully optimised protocol. (E)-2-tert-Butoxy-

4methoxy-N-(4-nitrobenzylidene) imine 107 was reacted with tert-butyl diazoacetate 108 in 

chloroform at -50 °C. To promote the reaction, a catalyst loading of only 1 mol% of (S)-71 
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was employed. The experiment went to completion in 16 hrs as observed by TLC. The 

resulting reaction mixture was dried, affording crude brownish oil. Purification via column 

chromatography using solvent petroleum ether and diethyl ether (80:20), eluent mixture gave 

pure product cis-109 with excellent yield 98% and 81% enantioselectivity. Having 

established that substitution of the ortho-position of the N-aryl group has a strong effect on 

the enantiomeric enrichment, the eventuality of steric hindrance was taken in consideration. 

More specifically, the functionalisation of the aryl with bulky o-alkoxy substituents was 

thought to force the catalyst to approach the imine from the unsubstituted side. On the other 

hand, the introduction of the alkoxy functionality on the aromatic N-substitution should also 

facilitate the subsequent removal of the N-protecting group to afford cleaved N-H aziridines. 

1.3 One pot reaction for synthesis of cis-109 by decreasing temperature 

To increase the enantioselectivity, the method now known to work on this system, it should 

be possible to use this knowledge for changing other parameters. Temperature control is one 

of the most powerful tools that organic chemists can use to optimise and influence the 

performance of a reaction. Every change in a molecule (from simple bond rotations to any 

structural modifications) implies an energetic barrier to be overcome. To act directly on the 

energy content of the system by means of the temperature may allow a strong degree of 

control over the specificity and/or selectivity of a process. 

  
Scheme 26. Temperature screening experiment for the synthesis of cis-109. 

We decided to bring the temperature down from -50°C to -80°C, but by decreasing the 

temperature, the solvent chloroform froze. We decided to use dichloromethane instead of 

chloroform. Although decreasing the temperature substantially slowed down the reaction 

rates, it conferred great benefit to both yields and enantiomeric enrichments. Synthesising 

aziridines directly from aldehydes and amines has significant experimental advantages over 

multi-step procedures that require imine isolation. Investigating the possibility of simplifying 

the aziridination procedure, one equivalent each of 4-nitrobenzaldehyde 105 and 2-tert-

butoxy-4-methoxyaniline 106 was reacted with tert-butyl 2-diazoacetate 108 in 

dichloromethane at -80°C in the presence of 4Å molecular sieve and a loading of the catalyst 
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of only 1 mol% of (S)-71 was employed. The reaction was vigorously stirred for two days 

and found complete by TLC analysis. The resulting reaction mixture was filtered and solvent 

removed under reduced pressure affording a crude brownish oil. Purification by column 

chromatography using solvent petroleum ether and diethyl ether (80:20), eluent mixture gave 

pure product cis-109 in an excellent yield of 96%. The reaction carried out at –80 °C was 

found to be very slow. Nonetheless, almost quantitative conversion of aldehyde 105 and 

amine 106 into aziridine cis-109 was observed at –80 °C (96% yield), but we found 

surprisingly low enantioselectivity (75%e.e). 

1.4 Synthesis of rac-109 for parallel study 

Basically all the aziridines previously shown were part of a systematic program of 

investigation regarding the synthesis of chiral non-racemic aziridines. The Bew group has 

already developed a methodology to use pyridinium triflate 110 as catalyst allowed an easy, 

fast, robust and high yielding preparation of racemic aziridines, which confers additional 

merits to a protocol already valuable on its own.  

Scheme 27. Synthesis of rac-109. 

One equivalent each of 4-nitrobenzaldehyde 105, 2-tert-butoxy-4-methoxyaniline 106, and 

tert-butyl diazoacetate 108 were reacted in dichloromethane in the presence of 4Å molecular 

sieve, and a catalytic amount of triflate salt 110 (10 mol%). The pyridinium triflate 110 

catalyses the imine formation as well as the aziridine synthesis, and shows excellent substrate 

selectivity. The combination between high nucleophilicity of 106, catalysis of 110, and the 

presence of molecular sieve makes the imine formation step kinetically very fast, moving the 

overall equilibrium towards aziridine formation. After 5 hr at ambient temperature, TLC 

analysis indicated complete consumption of starting material. Purification using flash 

chromatography afforded the desired product as light yellowish oil; NMR analysis indicated 

product to be rac-109 (85% yield).	
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1.5 Screening of catalysts (S)-111, (S)-112, (S)-113, (S)-114, (S)-115, (S)-71 

Having found so far that the 9-anthracenyl substitution of the 3,3’-positions on the (S)-

BINOL scaffold, i.e. (S)-71, had afforded the best enantiomeric enrichments, at this point we 

decided to spend more time investigating different selective catalysts and increasing the 

loading of catalysts from 1 mol% to 10 mol%. With this intent, catalysts (S)-111 – (S)-113 

were tested on the aza-Darzens reaction of the N-arylimine 107 with tert-butyl diazoacetate 

108. Catalyst (S)-111, bearing the 3,5-bis(trifluoromethyl)phenyl substitution, is a good 

example of aliphatic transversal shielding. Unfortunately the enantiofacial discrimination 

exerted on imine 107 was to be inconsistent, returning poorly enantiomerically enriched 

aziridine cis-109 (54% e.e.). The enantioselectivity substantially improved when the reaction 

was promoted by catalyst (S)-113. The four condensed aromatic rings of the 1-pyrenyl 

groups, expected to behave like large flat shields, raised the enantiomeric excess to 74%. This 

is not surprising, considering that the 1-pyrenyl group extends its aromatic system both 

transversally and longitudinally, more or less as the 9-phenanthryl does (Scheme 28).  

Scheme 28. Screening of catalysts for the synthesis of aziridine cis-109. 

 It was anticipated that the efficiency of catalyst (S)-114 would be higher, as the structure of 

the 1-thiantryl elongates transversally even more than the 9-anthracenyl. The tetrahedral 

character of the sulfur atoms confers a peculiar bending to the shape of the substituent. 

Disappointingly, the observed enantiomeric excess (71% e.e.) was inferior to the one 

afforded by catalyst (S)-71 (75% e.e.) and similar to as (74% e.e.) obtained with catalyst (S)-

127. Optimization of the catalyst (S)-129 with aza-Darzens reactions; imine 107 was prepared 

and reacted with tert-butyl diazoacetate 108 at -50°C (Scheme 28), disappointingly, the 

enantiomeric enrichment achieved by the experiment was poor (15% e.e.). The efficiency of 
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catalyst (S)-112 was affected by the bulkiness of the diazoacetate negatively; when imine 107 

was used as substrate with tert-butyl diazoacetate 108 low enantioselectivity was observed 

(S)-115 (10% e.e.). Finally with great pleasure, bringing up the catalyst loading from 1 mol% 

to 10 mol%, affected the reaction efficiency. Formation of aziridine cis-109 was found in the 

case of catalyst (S)-71 to be fast, TLC analysis indicated complete consumption of starting 

material. Purification using flash chromatography afforded clean, high yielding (98% yield) 

and highly enantioenriched (96% e.e.) product. 

1.6 Fully optimised protocol for the synthesis of cis-109  

In order to extend the scope of the optimised catalytic system and encouraged by the 

excellent results obtained for the asymmetric synthesis of aziridine cis-109 (98% yield, 96% 

e.e.), in order to obtained excellent enantioselectivity, we decided to decrease the temperature 

from -50°C to -60°C.  

	
  
Scheme 29. (S)-71-catalysed synthesis of aziridine cis-109. 

4-Nitrobenzaldehyde 105 and 2-tert-butoxy-4-methoxyaniline 106 reacted with tert-butyl 2-

diazoacetate 108 in chloroform at –60 °C. To promote the reaction, a catalyst loading of 10 

mol% of (S)-71 was employed. The reactions were vigorously stirred overnight and found to 

be complete the following morning. The ¹H-NMR spectra of the crude mixtures were so clean 

that purification by simple filtration on a pad of silica to remove the catalyst was sufficient. 

An excellent level of enantioselectivity (99%) and high yield (98%) was achieved for the 

synthesis of aziridine cis-109. The method afforded overall satisfactory results, providing the 

basis for useful practical applications. 
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1.7.1 Synthesis of racemic-chloramphenicol 
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pot organocatalytic protocol (vide infra) or by the expeditious removal of a suitable electron-
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the N-substituent from rac-cis-117 using ammonium cerium (IV) nitrate (CAN). The NH- 

aziridine rac-cis-118 was afforded in a 72% yield (Scheme 30).  

	
  
Scheme 30. Cleavage of electron-rich N-aryl group off rac-cis-117. 

Reacting EDA, catalyst 77 and 119 (Scheme 31) afforded, presumably, (based on 1H-NMR of 

the crude reaction) rac-120. Gratifyingly, when rac-120 was purified by column 

chromatography using silica gel, the TMS group cleaved affording rac-118 (J2,3 = 6.4 Hz, 

60% yield from 119), in agreement with Jørgensen’s observation. Exemplifying our 

methodology, we synthesised racemic chloramphenicol rac-122, applying Wulff’s protocol. 

Rac-cis-118 was ring-opened with dichloroacetic acid affording rac-121. Subsequent 

reduction of the ethyl ester of rac-121 afforded the corresponding primary alcohol and 

completed the synthesis of rac-122 in four steps from the p-nitrobenzaldehyde 105. However, 

although the aziridination carried on the N-TMS-imine 119 was successful, a weakness of the 

method is represented by the synthesis of 119 itself. The reaction is not very clean; 

purification of 119 is required and generally consists in a bulb-to-bulb distillation carried out 

under very harsh conditions (180 °C, 0.3 Torr), which requires the use of good equipment 

and elaborate procedures. 

	
  
Scheme 31. Synthesis of racemic chloramphenicol rac-122 from 105.  
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1.7.2 Synthesis of chiral enantiopure(–)-chloramphenicol 

(–)-Chloramphenicol is one of the oldest antibacterial agents, first isolated from Streptomyces 

venezuelae in 1947. This antibiotic is obtained commercially by chemical synthesis and is 

biologically active only as its (2R,3R)-enantiomer. It is used clinically as a broad-spectrum 

antibiotic and is particularly useful for the treatment of salmonella, rickettsia, and meningeal 

infections. A number of chemical syntheses of racemic chloramphenicol have been reported, 

as well as a few in the past decade that are selective for the formation of (–)-chloramphenicol. 

Wulff et al. reported an asymmetric synthesis of optically pure (–)-chloramphenicol that is 

the shortest of all syntheses reported to date. Their synthetic strategy is outlined in (Figure 

18, 19) and featured an asymmetric catalytic aza-Darzens reaction as key step promoted by 

the (R)-VAPOL-derived borate Lewis acid (R)-124, protocol. The synthetic strategy for the 

synthesis of optically pure (-)chloramphenicol is, however, undoubtedly valid. The 

alternative approach proposed towards the synthesis of chiral non-racemic chloramphenicol is 

an adaptation of the Wulff protocol to the N-triflylphosphoramide catalytic method. The two 

methods are illustrated in Figure 18, 19 to facilitate comparison. 

 
Figure 18. Wulff’s protocol for the synthesis of optically active chloramphenicol. 

Both the methods involve the aza-Darzens reaction as key step. The Wulff protocol afforded 
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benzahydrylimine 123 was first formed by reaction of 105 with benzahydrylamine and then 

reacted with ethyl diazoacetate in the presence of 10 mol% of catalyst (R)-124 to afford the 

corresponding aziridine cis-125 in 87% yield and 96% enantiomeric excess. In an effort to 

minimize the number of steps required, we demonstrated that a one-step one-pot reaction 

could be successfully performed using our organocatalytic approach, involving a tandem 

imine formation / aziridination reaction. p-Nitrobenzaldehyde 105, 2-tert-butoxy-4-

methoxyamine 106 and tert-butyl diazoacetate 108 were dissolved in chloroform and the 

reaction promoted by (S)-71 at –60 °C. A catalyst loading of 10 mol% was required to afford 

aziridine cis-109 in 99% yield and 96% enantiomeric excess. A lower loading of (S)-71 (1 

mol%) returned cis-109 in 77% e.e., although in quantitative yields from the aldehyde 105. 

The introduction of the p-methoxy substituent on the N-aryl group of amine 106 was made 

necessary in order to perform the following cleavage reaction. Indeed, any attempt to perform 

the cleavage of the 2-tert-butoxyphenyl N-group systematically returned starting material. 

	
  
Figure 19. Bew’s N-triflylphosphoramide catalytic protocol for the synthesis of optically 
active chloramphenicol. 
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the aldehyde 105, whereas Wulff’s method required a two-step reaction for the formation of 

cis-125 from 123, affording cis-125 in 64% overall yield, although the same level of 

enantioinduction (96% e.e.) was achieved by the two methods. On the other hand, Wulff’s 

synthetic approach benefits from the one-pot N-group cleavage / ring-opening reaction 

performed in a single step using dichloroacetic acid. The reaction afforded intermediate (–)-

121 in 80% yield. In our case, the removal of the alkoxyaryl N-protecting group required the 

use of an oxidant. Therefore, the synthesis of the unprotected N-H aziridine cis-126 was 

accomplished in 67% yield by reaction of cis-109 with ammonium cerium (IV) nitrate (CAN) 

in water / acetonitrile solvent system. Although the reaction conditions have not been 

optimised, the oxidation is fast and formation of cerium (III), resulting from the one-electron 

transfer, is clearly detected by colour change. The ring-opening reaction was then performed 

on aziridine cis-126 using dichloroacetic acid, as described by Wulff et al, affording 

intermediate 127 in 76% yield. It is note worthy that, although the cleavage and ring-opening 

are two different steps and do not represent an advantage for this particular example, having 

the two steps separated could be desirable, if not even necessary, in other circumstances. The 

synthesis of N-H aziridines, i.e. cis-126, represents both the goal of our method and the 

starting point towards a plethora of applications. The N-cleaved ring could be incorporated as 

it is in larger molecular frameworks or subject to ring-opening reactions, regardless if 

promoted by acids, bases, nucleophiles or electrophiles.  

Finally, reduction of the ester moiety of (–)-121 and 127 with sodium borohydride afforded 

respectively the natural (–)-chloramphenicol in 74% yield for Wulff and coworkers and the 

unnatural (+)-chloramphenicol in 79% yield in our case. In order to confirm the possibility to 

generate the active (–)-configuration of the antibiotic, we embarked in the synthesis of the 

opposite (+)-enantiomer of aziridine cis-109, promoted by catalyst (R)-71, that is the 

corresponding N-triflylphosphoramide catalyst derived from (R)-BINOL rather than from (S)-

BINOL. The one-pot imine formation / aziridination reaction quantitatively returned aziridine 

(–)-cis-109 in 95% enantiomeric excess.  
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Future work 
In this Chapter the development of an efficient methodology for the organocatalytic synthesis 

of enantiomerically enriched N-aryl-C2,3-disubstituted aziridines and NH-C2,3-disubstituted 

aziridines is described. The development of a catalytic protocol capable of achieving yields 

up to 99% and enantioselectivities up to 98% is a remarkable. However, although the 

protocol is an efficient asymmetric organocatalytic aza-Darzens synthetic strategy, it is still to 

be considered as a pioneering study that would surely benefit from several improvements. 

The scope of the reaction needs to be extended, as well as the structural diversity of the chiral 

non-racemic aziridines created; the enantiomeric enrichments have to be possibly brought to 

a level; the reaction has to be carried out preferably at room temperature; the synthesis of the 

catalyst made as simple as possible; finally, the possibility to set up efficient in-situ acid-

catalysed “domino” or “cascade” transformations of the formed aziridines has to be taken in 

account.  
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2 Asymmetric Organocatalytic Synthesis of Aziridine 
Using F+ Salt  

Whenever examining a reaction system, several parameters must be taken in account: nature 

of the reagents, structure of the catalyst, temperature, solvent, concentration, catalyst loading, 

etc. In order to maximize the efficiency of a reaction system in terms of yield and 

stereoselectivity, the systematic variation of one parameter time needs to be undertaken. 

Thus, the first fundamental component to be preliminary screened in this study was the 

asymmetric organocatalyst. The choice of the candidate catalysts was mainly influenced by 

previous investigations carried out in our research group. As discussed in the Introduction, 

the aza-Darzens synthesis of broadly functionalized chiral but racemic cis-aziridines was 

efficiently achieved by means of pyridinium triflate catalysis. Mimicking the mode of action 

of the pyridinium triflate salt, our current research on the asymmetric aza-Darzens reaction 

focused on the use of triflate salts of chiral cinchona alkaloids or camphor sulphonic acid 

derived heterocyclic salts. In the time mean, a new class of chiral Brønsted acid started to 

rapidly flourish in the field of organocatalysis. Chiral BINOL-derived phosphoric acids have 

being found capable of highly effective catalysis as discussed in chapter 2. 

2.1 Electrophilic Fluorination 

The synthesis of cyclic and acyclic chiral fluoro-organic compounds is an important topic in 

modern pharmaceutical chemistry. The replacement of hydrogen atoms with fluorine 

substituents in organic substrates is of great interest in synthetic chemistry because of the 

strong electronegativity of fluorine and relatively small steric footprint of fluorine atoms. 

Many sources of nucleophilic fluorine are available for the derivatization of organic 

molecules under acidic, basic, and neutral conditions. However, electrophilic fluorination has 

historically required molecular fluorine, whose notorious toxicity and explosive tendencies 

limit its application in research.  There are several advantages of fluorine substitution, 

including an increase in stability, changes in lipophilicity, introduction of a centre of high 

electronegativity, and altered patterns of reactivity of the C-F vs the C-H bond. The necessity 

for an electrophilic fluorination reagent that is safe, stable, highly reactive, and amenable to 

industrial production as an alternative to very hazardous molecular fluorine was the 

inspiration for the discovery of selectfluor 129. This reagent is not only one of the most 

reactive electrophilic fluorinating reagents available, but it is also safe, nontoxic, and easy to 

handle.  Now days there are many procedures reporting enantioselective fluorination. 
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2.2 Synthesis of N-fluoro quaternary ammonium salt (F-CD-BF₄) 

The synthesis of the N-fluoro ammonium salt of chinchona alkaloids was accomplished by as 

following Dominique Cahard’s synthetic protocol. Cahard reported the first ever enantiopure 

N-fluoro quaternary ammonium salt of cinchonidine (F-CD-BF₄), prepared as an 

enantioselective fluorinating agent. A one step transfer-fluorination of the quinuclidine 

moiety with selectfluor gave the [N-F]	
  ⁺reagent. At first the fluorine-transfer procedure was 

applied to an equimolar mixture of chinchonidine and selectfluor in acetonitrile. Complete 

transfer was achieved within 20 min according to the ¹⁹F NMR analysis of the reaction 

mixture. A double precipitation procedure yielded the N-fluoro cinchonidinium salt, which 

was recrystallised in acetone to yield pure F-CD-BF₄ (Scheme 32). It is virtually non-

hygroscopic, free flowing, crystalline and high melting (189°C) colourless solid. 

	
  

Scheme 32. Synthesis of F-CD-BF₄ 

To evaluate the ability of this reagent to promote enantioselective fluorination, Cahard report 

the first enantioselective electrophilic fluorination on the trimethylsilyl enol ether 131 of 2-

methyl-1-tetralone in presence of sodium hydroxide at -40°C afforded quaternary α-fluoro 

carbonyl compounds in excellent yield (93%) and good enantioselectivity (61%). 

	
  

Scheme 33. Cahard’s Fluorination of the Trimethyl Silyl Enol Ether of 2-Methyl-1-tetralone.	
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quinuclidine moiety with an equimolar mixture of chinchonidine and N-fluoropyridinium 

triflate in acetonitrile at 0°C for 20 min, change in the colour of the reaction mixture 

immediately occoured after addition of triflate salt 77 indicating the formation of N-

fluoroquaternary ammonium salt (S)-133. This enantiopure quaternary ammonium salt of 

chinchonidine (F-CD-OTf ¯ˉ) (S)-133 is highly unstable and reactive. Complete transfer was 

achieved within 20 min according to ¹⁹F NMR analysis of the reaction mixture. 

	
  

Scheme 34. Synthesis of enantioselective N-fluoroquaternary ammonium salt	
  

At this point we decided to spend some more time on experiment to discover a simple 

protocol for the formation of the reactive intermediate called N-fluoroquaternary ammonium 

salt (F-CD-OTf¯) (S)-133.	
  We based our development of the alkaloid / N-fluoropyridinium 

triflate combination as enantioselective fluorinating reagent on the fundamental idea that 

transfers fluorination would generate the N-fluorocinchona alkaloid (Scheme 34). Our hope 

was that the N-fluoropyridinium species 77 would be capable of transferring fluorine to a 

cinchona alkaloid (DHQ) enantioselectively. The successful realisation of enantioselective 

fluorination is suggestive of this mechanism (Scheme 35) but, in itself, does not prove that N-

fluorocinchona alkaloids are intermediates. Therefore, we have examined this question in 

greater depth. We report here the results of experiments that confirm that this novel 

enantioselective fluorination reaction is mediated by N-fluoropyridinium triflate 77. 

	
  

Scheme 35. Transfer-fluorination of (S)-134 with Pyridinium triflate. 
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produced by the (S)-134 and 77 combination,  (S)-135, with ¹⁹F NMR spectroscopy at O°C in 

CD₃CN displayed singlets at different intensity  -73.2 ppm and -73.9 ppm. The peak at -73.2 

ppm was larger than the peak at -73.9 ppm. As we expected, the singlet at -79.3 ppm 

disappeared completely with addition of (S)-134 (1 eq), while the singlets at -73.2 ppm and -

73.9 ppm remained. Unfortunately the 77 singlet (at -73.3 ppm) wasn’t disappeared; it was 

larger than the (S)-135 (-73.2 ppm and -73.9 ppm) singlets. Different temperatures and 

different solvents were used to find a useful protocol. The results obtained from increasing 

the temperature of the reaction from 0 °C to 20 °C affected the reaction efficiency. Formation 

of (S)-135 was found to be faster at 20 °C (completion reached in 20 min) than at 0°C, clean 

and high yielding (98%), but the enantioselectivity of (S)-135 was affected when the reaction 

was screened to obtain cis-137. Further increase of the temperature resulted, in the 

decomposition of the product.  

2.4 Screening of the solvent for the synthesis of cis-137 to check the reactivity of N-
fluoroquaternary ammonium salt 

Scheme 36. Solvent screening for the synthesis of cis-137  

The quinine/N-fluoropyridinium triflate combination was prepared as follows; DHQB (1 eqn) 

and N-fluoropyridinium triflate 77 were stirred in dry CH₃CN at 0 °C for 2 h. The resulting 

N-fluoroquaternary ammonium salt was used without any further treatment. Imine 136 and 

ethyl diazoacetate 73 were the standard substrates used to examine this system under 

different reaction conditions. In our initial experiment we were encouraged to find that cis-

aziridine 137 was formed 30% yield with 20% e.e (Scheme 36). Optimisation of the reaction 

conditions by altering the solvent did not improve the yield (Table 3) 
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Entry     Solvent Yield (%) 
1 Acetonitrile 27 
2 Propionitrile 30 
3 Dichloromethane 24 
4 Chloroform 50 
5 Dimethylformamide 15 

Table 3. Solvent screening for the synthesis of cis-137 

The expected outcome of the reaction (Scheme 36) was to show an increase of the N-

fluoroquaternary ammonium salt (S)-135 singlet and disappearance of the 77 singlets. As 

discussed above unfortunately the N-fluoropyridinium triflate 77 peak was larger than the 

resulting (S)-135 combination singlets. Acetonitrile is the best solvent for fluorination 

reaction. DHQB (S)-134 (1 eq) and N-fluoropyridinium triflate 77 (1 eq) were stirred in dry 

CH₃CN at 0 °C for 2 h. The reaction solvent was removed under reduced pressure and free 

residue dissolved in CDCl₃.	
   The 300 MHz ¹⁹F NMR showed an outstanding result, with 

increased singlet integral of DHQB/N-fluoropyridinium triflate (S)-135 and decreased singlet 

integral of N-fluoropyridinium triflate 77. In order to understand the reasons behind this, we 

study the mechanism of the reaction, which state that acetonitrile is the best solvent and 

carries the fluoronium cation. 

 
Scheme 37. Hypothetical mechanism of synthesis of reactive intermediate. 

The mechanism of fluorination with N-F reagents has been a subject of debate since their 

introduction. There are two possible mechanistic pathways: single-electron transfer (SET) or 

nucleophilic SN2 substitution. The hypothetical mechanism shown in (Scheme 37) indicates 

that the electrophilic transformation of fluorine is carried out via acetonitrile. The pair of 

electron on nitrogen of acetonitrile 138 attacks the fluorine of the triflate salt 77 and forms an 

intermediate 133. Further nucleophilic attack of the nitrogen of cinchona alkaloid on 140 

forms a reactive N-fluoroquaternary ammonium salt species (S)-141. It perhaps happens 

because of low concentration of corresponding starting material 77 and 140 as compare to 

solvent, resulted give chance to acetonitrile to attack first on triflate salt 77. 
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2.5 Asymmetric IFB reaction of ethyl bromopyruvate using catalyst (S)-145 

To prove the validity of the role of the N-fluoroquaternary ammonium salt in the aza-Darzens 

reaction, it was necessary to prepare a more reactions cinchona alkaloid derivative. The task 

was achieved thanks to an article published by Sheng-Yong Zhang et al. in 2008, reported the 

asymmetric Feist-Benary reaction catalysed by the chiral 3,6-dichloropyridazine 145 

cinchona alkaloid derivatives  (Scheme 38). 

 
Scheme 38. Asymmetric IFB reaction of ethyl bromopyruvate with 1,3 cyclohexadione. 

The idea is based on the concept that changes in the substituents of the catalyst or in the 

nature of the cinchona alkaloid used significantly affected the enantiometric purity of the 

products. Encouraged by these results, Sheng-Yong Zhang further investigated the reaction 

with various organocatalysts to search for more active and enantioselective catalysts. He 

reported the preparation of cinchona alkaloid ester derivatives and the evaluation of their 

potential as asymmetric catalysts in the IFB reaction. 

2.6 Synthesis of cinchona alkaloid ester derivatives 

The synthesis of the cinchona alkaloid ester derivatives was accomplished by us using Sheng-

Yong Zhang’s synthetic protocol (Scheme 39). The ester derivatives were prepared from the 

corresponding carboxylic acids and cinchona alkaloid with excellent yield. A mixture of 

corresponding carboxylic acid and thionyl chloride was heated under reflux and turned clear 

after 5 h. The excess of thionyl chloride was subsequently removed by distillation. After 

purification by recrystallisation from CCl₄	
  or	
  toluene, the product (shown in scheme 39) was 

obtained as a colourless solid. 

Into a solution of cinchona alkaloid in anhydrous dichloromethane, 0.5M anhydrous triethyl 

amine at 0°C was added. A solution of the corresponding chloride in anhydrous 
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dichloromethane was slowly added. After 1 h, the reaction mixture was warmed to room 

temperature and stirred for an additional 2 h. Upon completion of reaction as indicated by 

TLC, after work up followed by purification by flash chromatography on silica gel, excellent 

yield were obtained. 

Scheme 39. Synthesis of catalysts 

2.7 Aza-Darzens reactions catalyzed by the N-fluorocinchona alkaloid (S)-162 - (S)-163  

The catalytic activity of the chiral the N-fluorocinchona alkaloid (S)-162 - (S)-163 was 

investigated by performing the experiment depicted in Scheme 40. These catalysts were used 

to promote the reaction between the p-methoxy benzylimine 136 and ethyl diazoacetate 73 at 

0 °C temperature. 1H-NMR crude spectra proved that consumption of the starting N-

benzylimine 136 was achieved and no traces of trans-aziridine were found in the crude 

mixtures. 
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Scheme 40. Template reaction for the screening of catalysts (S)-162 and (S)-163. 

In terms of yields, the described experiment fully demonstrated the importance and the 

reactivity of the N-fluorocinchona alkaloid employed to catalyse the aza-Darzens reaction 

under these conditions. By simply replacing the cinchona alkaloid derivative with analogues, 

the yields and reaction rates for the formation of the aziridine cis-137a changed drastically 

from less than 5% to up to 50% overnight. Although this was only the starting point of a long 

study towards the development of an optimised asymmetric methodology. The crude 

mixtures were filtered on a pad of silica gel to remove the catalyst, and after evaporation of 

the solvent; the residues were eluted through a Chiralpak-AD analytical HPLC column. The 

measured enantiomeric excesses were found to be 8% when the reaction was catalysed by 

(S)-162 and non-existent for the (S)-162 catalysed synthesis of cis-137. Formation of racemic 

product from the (S)-163 catalysed process was assumed to be caused by temperature. In 

order to achieve better result we tried the same reaction at different temperatures.  In the case 

of catalyst (S)-162, at -30 °C, -50 °C and -80 °C the resulting formation of cis-137a was 

observed 26%, 21%, 18% yields and enantioselectivity 9%, 12% and 13% respectively. 

2.8 Alternative protocols for the synthesis of chiral (S)-cinchona alkaloid derivatives 

The synthesis of differently disubstituted N- fluorocinchona alkaloid derivatives was 

undertaken, as per the observation of change in the substituent of the catalyst affecting the 

enantiometric purity. An alternative approach for the synthesis of N-fluorocinchona alkaloid 

derivatives was sought. 
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2.8.1 9-anthracene substituted (S)-cinchona alkaloid derivatives 

 
Scheme 41. Synthesis of catalyst (S)-167 

Oxone, a potassium triple salt containing potassium peroxymonosulfate, is an effective 

oxidant for numerous transformations. 9-anthracenaldehyde 164 (1eq) was reacted with 

Oxone (1.1equiv) in DMF at room temperature. The reaction went to completion overnight, 

with complete consumption of the aromatic aldehyde to the corresponding carboxylic acid 

165 in (67%yield). As per the well known procedure, carboxylic acid 165 was converted into 

chloride 166 using thionyl chloride at reflux and 1 drop of DMF to activate the reaction. 

Complete consumption of starting material 165 into chloride 166 occurred in overnight gave 

92% yield. Further Aryl chloride 166 reacted with cinchona alkaloid (DHQ) (S)-128 (1eq) in 

anhydrous dichloromethane in presence of triethyl amine at 0 °C for 2 hr to give (S)-167 in 

(55% yield). 

2.8.2 Synthesis of the cinchona alkaloid derivative1,4-Bis(9-0-dihydroquinidinyl) phthalazine 

A big jump in effectiveness came with the discovery of the phthalazine class of ligands 

(DHQ)₂PHAL (S)-162 which have two dihydroquinine entities attached at the 1,4-position of 
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activate the reaction. The condenser was fitted with a calcium chloride drying tube and 

directly connected to the condenser to prevent moisture contamination and allow HCl 

evolution, the solid mixture was gently heated from room temperature to 145 °C over 60 min, 

upon which a steady (over~3h) evolution of HCl occurred. The resulting white solid was 

dissolved in methylene chloride and eluted through the neutral alumina Column. After further 
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work up, the colourless solid isolated, was recrystallised from THF to give a pure colourless 

needle-like crystals of 169 (78% yield). 

	
  
Scheme 42. Synthesis of catalyst (S)-162 

The crystal of 1,4-dichlorophthalazine (1eq) 169 was reacted with (S)-128 (2eq) in the 

presence of K₂CO₃ (3eq) and KOH (3eq) in toluene, equipped with a Dean-Stark-condenser 

under nitrogen, the mixture was heated under reflux at 135°c for 14 hours with azeotropic 

removal of water. The reaction was followed by TLC, after further work up procedure gave a 

solid which was dried in vacuo to give pure ligand (S)-162 (88% yield). The same protocol 

was applied to the synthesis of catalyst (S)-171. 3,6-Dichloropyridazine 170 was reacted with 

DHQ 128 (2eq) in the presence of K₂CO₃ (3eq) and KOH (3eq) in toluene to give (S)-171 

70% yield.  

Scheme 43. Synthesis of catalyst (S)-171 

2.8.3 Synthesis of the cinchona alkaloid derivative (S)-174 Anthraquinone core 

Anthraquinone core (S)-174 was synthesised by the following method 2-(2,5)-

difluorobenzoic acid (1eq) 172 was reacted with excess polyphosphoric acid and the mixture 
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easily displaced by dihydroquinidine (S)-128 to give a anthraquinone (S)-174. Addition of 

173 to a mixture of dihydroquinidine (2.5eq) and nBuLi (2.5eq) in THF at 0 °C, then stirring 

for 18 hour at room temperature and 2 hours at 40 °C, provided 35% overall yield. 

	
  
Scheme 44. Synthesis of catalyst (S)-174 

2.9 Screening of (S)-Cinchona alkaloid-derived N-fluoroquaternary salt catalysts 

The initial screening involved chinchona alkaloids (S)-146, (S)-147, (S)-148, (S)-150 (S)-151, 

(S)-155 and (S)-156. Some of the catalysts were not used, and therefore the efficiency of catalyst 

(S)-152, (S)-153, (S)-159, (S)-149 remained undetermined, due to the large number of reactions 

resulting from the set of experiment. N-Benzyl imine 136 was reacted with ethyl diazoacetate 73 

in the presence of chiral N-fluoroquaternary ammonium salt catalysts at -65°C to afford 

aziridine cis-137 in poor yields, i.e. ~30% (Scheme 45). Products were isolated through 

chromatographic purification on a silica column. The pure samples obtained were directly 

submitted to chiral HPLC analysis. The observed enantiomeric excess is shown in Table 4. 

When bulky substituted aryl groups were attached to the (S)-N fluoro-chinchona alkaloid 

scaffold (catalysts (S)-150, 151, 161 and (S)-158), the induced enantioselectivity was 

revealed to be very poor (5-8%), if not nonexistent, independently of the starting materials 

employed. A slight improvement in the e.e.’s was observed when formation of aziridines cis-

137 was promoted by catalysts (S)-146, 145, 155 (18%, 11% and 9% respectively). The 

efficiency of catalysts (S)-158, 150, 151, and 161 was affected by the bulkiness of the 

attached group, positively for the transformation of imine (8% to 21% e.e.). 
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Scheme 45. Reaction scheme for the screening of catalysts. 

Aryl groups (Ar) Yield e.e. (cis-137) 
(DHQ)2-PHL-(S)-146-a 26% 21% 
(DHQ)-benzoate-(S)-147-b 30% 6% 
(DHQ)-pentafluorobenzoate-(S)-148-c 17% (R) 
(DHQ)₂-pyridine-dicarboxylate-(S)-145-d 21% 11% 
(DHQ)-3-phenoxybenzoate-(S)-150-e 18% 4% 
(DHQ)-2-phenoxybenzoate-(S)-151-f 25% 7% 
(DHQ)-4-bromobenzoyl ester-(S)-154-g 19% 8% 
(DHQ)-2-bromobenzoyl ester-(S)-155-h 35% 8% 
(DHQ)-thiophene-2-carboxylate-(S)-156-i 38% 4% 
(DHQ)-2-(pyridin-4-yl)-acetate-(S)-157-j 18% 7% 
(DHQ)-pivalate-(S)-158-k 31% 5% 
(DHQ)-5-phenylfuran-2-carboxylate-(S)-160-l 21% 5% 
(DHQ)-biphenyl-4-carboxylate-(S)-161-m 23% 6% 

Table 4. Enantiomeric enrichments for the reactions in Scheme 45. 

The disubstituted N-fluorocinchona alkaloid catalyst (S)-145 was able to induce a higher, but 

still unsatisfactory, level of enantioselectivity (17%) with the N-benzyl imine 136. The spatial 
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environment shaped by the “homologue” catalyst (S)-174 anthraquinone core ligand showed 

a enantioselectivity (18%). The -substituted cinchona alkaloid catalyst (S)-171 afforded very 

poor enantiomerically enriched products (7-12% e.e.). Extremely useful information was 

collected from the (S)-cinchona alkaloid-derived catalytic systems functionalized with 

disubstitutions of N-fluorochinchona alkaloid. Aziridinations promoted by catalysts (S)-146 - 

(S)-174 and (S)-167 on the N-benzylimine 136 worked better in terms of e.e. Although the 

174 and (S)-156, (S)-157, (S)-154, (S)-160 substituted systems displayed a low selectivity 

(13%,4%, 7% ,8%, 5%, and 8% e.e.’s of cis-137), higher e.e. values were obtained with 

catalysts (S)-146 (21%), 145 (17%), 174 (18%)  and (S)-171 (11%). These experimental 

findings could contribute to shed light on the mechanism of co-ordination or complex 

formation at the transition states of the reaction. 

2.10  Screening of catalysts (S)-174, (S)-146, (S)-162 

Having found so far that the disubstitution of the cinchona alkaloid on benzyl ring of the 3,3’-

positions, i.e. (S)-146, had afforded at least some enantiomeric enrichments (Table 4 above), 

it seemed appropriate to carry forward the experiment for further investigating. With this 

intent, catalysts (S)-146, 174 and (S)-162 were tested in the aza-Darzens reaction of the N-

benzyllimine 136 with ethyl diazoacetate 73 (Scheme 46). Catalyst (S)-146, carrying the di 

substitution of cinchona alkaloid on 1,2 position of phthalate ring, is a good ligand for 

enantiometric enrichment. The enantioselectivity substantially improved when the reaction 

was promoted at -80°C, raising the enantiomeric excess to 30%. This value is closer to the 

one afforded for the same reaction by the disubstitution of anthraquinone core of (S)-174 

(18% e.e.) than by the disubstitution of cinchona alkaloid on the 1,4-position of the 

phthalazine ring of (S)-162 (16% e.e.).  
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Scheme 46. Screening of catalysts (S)-174, (S)-146, (S)-162 for the synthesis of aziridine cis-

137. 

Catalyst (S)-174, gave an enantioselectivity of 21%. Disappointingly, the observed 

enantiomeric excess for use of catalyst (S)-162 (23%) was inferior to the one afforded by 

catalyst (S)-146 (31% e.e.) at -80°C. 

2.11 Screening of the temperature for the synthesis of cis-137 

Temperature control is one of the most powerful tools that organic chemists can use to 

optimise and influence the performance of the reaction. A transformation carried out under 

kinetic control may end up with a different distribution of products than the same reaction 

carried on under thermodynamic control. To act directly on the energy content of the system 

by means of the temperature may allow a strong degree of control over the specificity and/or 

selectivity of a process. Hydrogen bonds are temperature sensitive. Increase of temperature 

increases the vibrational motion of the A-H bonds in an A-H…B hydrogen-bonding 

equilibrium system, thus weakening the hydrogen bonding itself.  

	
  

Scheme 47. Temperature screening experiment for the synthesis of cis-137. 
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Entry Catalyst T(0C)    e.e. (%)  Yield 
(%) 

Reaction 
time (h) 

1 (DHQ)2PHAL RT (R) 51 6 
2 (DHQB)-Cl 0 (R) 37 8 
3 (DHQB)-Cl –40 11 21 ~14 
4 (DHQ)2PHAL –80 13 24 ~24 
5 (DHQ)2PHAL –50 14 30 ~16 
6 (DHQ)2PHL –65 21 20 ~20 
7 DHQB –35 19 22 ~12 
8 (DHQ)2PHAL –65 18 19 ~20 
9 (DHQ)2PHL –80 30 20 ~24 

Table 5. Temperature effect for the synthesis of aziridine cis-137 illustrated in Scheme 47. 

Although decreasing the temperature substantially slowed down the reaction rates, it 

conferred great benefit to both yields and enantiomeric enrichments. Complete consumption 

of the starting materials was quickly achieved above room temparature in 4 to 8 hours 

(entries 1). The reactions were performed in the range from –50 °C to –20 °C (entries 2-4) 

were checked the following day and found complete. The reaction carried out at –80 °C 

(entry 4-9) was found to be exceptionally slow. Nonetheless, some conversion of imine 136 

into aziridine cis-137 was observed at –50 °C and –80 °C (20% yield). Performing the 

reaction at -40 °C or -35°C is not advisable, as the reaction shows no real improvement in 

either yield or enantiomeric excess (11% and 19%, respectively). 

2.12  Screening of the N-substituted imine for the synthesis of cis-aziridine 

In order to extend the scope of the optimized catalytic system and encouraged by the results 

obtained for the asymmetric synthesis of aziridine cis-182 (50% yield, 31% e.e.), the method 

was applied to a range of electron-withdrawing and electron-donating C-substituted N-(O-

methoxyphenyl)imines (Scheme 48).  
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 Scheme 48. Screening of the N-substituted imine 

N-O-methoxyphenyl) imines 175, 176, 136, 177 and 178 were reacted with ethyl diazoacetate 

73 in chloroform at –60 °C. To promote the reaction, a catalyst loading of 10 mol% of (S)-

146, 162 was employed. The reactions were vigorously stirred overnight. The 1H-NMR 

spectra of the crude mixtures were clean; purification by flash chromatography on silica gel 

resulted, in many cases, the pure product. As already observed for the O-methoxy-substituted 

aziridine cis-179, the reaction works generally very well only when the starting imine 136, 

was functionalized with electron-rich aromatic groups on the carbon, i.e. c- 136 (50% yield 

and 31% e.e); reaction with an electron deficient aromatic substituted imine i.e. 175 and 176 resulted 

in an unsatisfactory yield and enantioselectivity (24%, 21% yield and 13%, 11% e.e. 

respectively). Reaction with 177 and 178 did not improve the yields (10% and 9% yield); 

because of the low yields enantioselectivity of these compound were not calculated.  

Future work 
As we have already discussed in the introduction section that the nature of the reagents, 

structure of the catalyst, temperature, solvent, concentration, catalyst loading, etc are very 

important. In order to maximize the efficiency of a reaction system in terms of yield and 

stereoselectivity, the systematic variation of one parameter per time needs to be undertaken. 

Thus, the first fundamental component to be preliminary screened in this study was the 

asymmetric organocatalyst. As we have made known in the study the catalyst (S)-146 gave 

50% yield and 30% enantioselectivity. The disubstitution of the cinchona alkaloid scaffold 

shows moderate enantiometric enrichment. Therefore the future work is to modify the 

disubstituted cinchona alkaloid scaffold catalyst and to study all the parameters such as 

nature of the reagents, structure of the catalyst, temperature, solvent, concentration, catalyst 
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loading, etc. In order to develop the catalyst or the system to more efficient we attempted 

some of the experiments using (S)-BINOL as a Bronsted acid. Continuous efforts are 

dedicated not only to optimising already existing catalytic systems, but also to extending the 

scope and the limits of organocatalysis itself, and, for this particular case, of Brønsted acid 

catalysis. Due to the interest in chiral Brønsted acids and their contributions to 

organocatalysis, the search for novel and universal “super-acids” is still open and constitutes 

a big challenge for organocatalysis. 

Scheme 49. Attempted synthesis of (S)-188. 

Thus, after treatment of 183 with triflic anhydride, the resulting triflate 184 was subjected to 

palladium-catalysed carbonylation in the presence of Pd(OAc)2/dppp catalyst and 

diisopropylethylamine in DMSO–MeOH at 120°C for 72 h under 5 atm of carbon monoxide 

to afford (S)-2,2'-bis(methoxycarbonyl)- 6-(2-methoxycarbonyl)ethyl-1,'1-binaphthyl ((S)-

185) in 66% yield. The triester 185 was hydrolysed under aqueous alkaline conditions, and 

the resulting 6-aliphatic acid was selectively protected to give 2,2'-bis(hydroxycarbonyl)-1, 

10-binaphthyl (S)- 186. A mixture of (S)-186 and thionyl chloride was heated at reflux and 

turned clear after 5 h. The excess of thionyl chloride was subsequently removed by 

distillation. The product 187 was obtained as a white solid. Into a solution of cinchona 

alkaloid in anhydrous dichloromethane, 0.5M anhydrous triethyl amine at 0°C was added. A 

solution of the corresponding chloride 187 in anhydrous dichloromethane was slowly added. 

After 1 h the reaction mixture was warmed to room temperature and stirred for additional 2 h. 

Upon completion of reaction indicated by TLC, after work up followed by purification by 

flash chromatography on silica gel, an excellent yield of 188 was isolated. Unfortunately, 

because of the lack of time we didn’t test the resulting catalyst (S)-188 in Aza-darzen 

reaction.  
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3 Attempted Synthesis of Five-Membered Ring 
Heterocycles by Cyclization of NH-Oxaziridines with 
Alkenes 

3.1 Synthesis of NH-oxaziridine 

As already discussed in the introduction, novel and interesting NH-oxaziridine syntheses 92, 

were carried out by oxidation of the corresponding imines with m-chloroperbenzoic acid (m-

CPBA) in presence of anhydrous dichloromethane at -40°	
  C. The crude mixture was isolated 

by chromatographic purification providing NH-oxaziridine 92 in 94% yield (Scheme 50). 

	
  

Scheme 50. Synthesis of N-camphor oxaziridine 92 

3.2 Attempt to synthesise 4,5-diarylisoaxazolidines using alkenes 

The first step towards the synthesis of five membered-heterocycle using alkenes and NH-

oxaziridine was to use a simple alkene and to investigate temperature control and suitable 

solvent etc. Here we have tried to discover simple protocol, which gives the efficient [3+2] 

cycloaddition of a variety of aryl alkenes with our NH-oxaziridine, leading to 4,5-

diarylisoxazolidines. 

	
  

Scheme 51. Synthesis of 192 
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NH-oxaziridine 92 was treated with each of alkene 189, 190, 191 (1.5eq) in the presence of 

toluene at 40 °C, unfortunately the resulting reaction mixture did not contain any of the 

desired products. The first reaction was carried out with styrene at different temperatures 

such as 20°C, 40°C, 60°C, but the result obtained at different temperatures disappointingly 

did not show the desired product. No reaction occurred at 20°C and 40°C, and the oxaziridine 

was found to decompose at 60°C.  

3.3 Deprotonation of NH-oxaziridine using diisopropylamine and nBuLi 

We next attempted to deprotonate the NH-oxaziridine 92, using LDA to determine if addition 

conjugate to alkene 189 would result in cleavage of the N-O bond and formation of a cyclic 

product. NH-camphore oxaziridine was reacted with (1.5 eq) of LDA at -78°C in THF as 

solvent. After 2 hours cinnamaldehyde (1eq) was added at room temperature. 

	
  

Scheme 52. Synthesis of 197	
  

3.4 Synthesis of 199 from NH-oxaziridine using diisopropylamine and nBuLi  

Unfortunately this reaction did not show any of the desired products. We therefore decided to 

check if the deprotonation of the NH-oxaziridine was effectively working or not. 

. 

Scheme 53. Synthesis of 199 
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As before isopropyamine (1.5 eq) and n-BuLi (1.5eq) were reacted at -78 °C in anhydrous 

THF under nitrogen. Reaction of diisopropylamine with nBuLi in THF is significantly fast 

and rapid, the deprotonation of di-isopropylamine easily obtained. The resulting LDA is a 

strong base suitable for the deprotonation of weakly acidic compound. After 1 hour NH-

oxaziridine 92 (1eq) was added, and after 2 hours methyl iodide was added to the reaction 

mixture. Methyl iodide is an excellent substrate for substitutions reactions. It is sterically 

open for attack by nucleophiles, and iodide is a good leaving group.  Successful 

deprotonation of the NH-oxaziridine occurred, and the resulting reaction mixture was worked 

up and purified using column chromatography. ¹H NMR spectroscopy confirmed the 

resulting compound 199 which wasisolated in (79% yield). After obtaining this successful 

result, allyl bromide was used. The same procedure was applied as discussed above. 

 
Scheme 54. Synthesis of 201 

The reaction was monitored by TLC and showed an additional spot after 2 hours. The crude 

reaction mixture was worked up and purified by column chromatography.	
   ¹H NMR 

spectroscopy confirmed the resulting compound to be 201, which was isolated in 57% yield. 

3.5 Attempt to synthesize five-membered heterocycle using LDA  

The above experiments demonstrated the success of the LDA, deprotonation of the NH-

oxaziridine 92 by LDA 195 followed by alkylation with methyl iodide 198 and allyl bromide 

200. The successful deprotonation of NH-oxaziridine 92 led us to test a number of electron-

deficient alkenes in the hope that a cyclization would occur.   
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Scheme 55. Synthesis of 205 

Di-isopropylamine (1.5 eq) and n-BuLi (1.5eq) was reacted at -78°C in anhydrous THF under 

nitrogen. After 1 hour NH-oxaziridine (1eq) was added to the reaction mixture. After 2 hours, 

methyl acrylate 203, acrolein 202, chalcone 204, 1,2-dihydro-4-phenylnaphthalene 191 were 

added in separate reaction to the reaction mixture. The reactions were monitored by TLC. 

Acrolein is the simplest unsaturated aldehyde, and unfortunately did not work. Reaction with 

methyl acrylate 203 showed an additional spot by TLC but the resulting compound 

decomposed upon chromatographic purification. Chalcone 204 and 1,2-dihydro-4-

phenylnaphthalene 191 were unsuccessful for the protocol. 

3.6 Attempt to synthesize five-membered heterocycle using Lewis acid 

Disappointingly, it was necessary to seek a new method for the synthesis of five membered-

heterocycles. There is some literature that reports the use of Lewis acids for related 

cyclization reactions. Yoon reported the cycloaddition of N-sulfonyl nitrones generated by a 

Lewis acid catalysed rearrangement of oxaziridines. He reported a novel method for Lewis 

acid-catalysed formation and cycloaddition of inaccessible N-nosyl nitrones, which produce 

isoxazolidines that can be deprotected under mild conditions without accompanying ring 

cleavage. Inspired from Yoon’s result we decided to investigate Lewis acid catalysed 

protocols. 
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Scheme 56. Attempted synthesis of 211 using Lewis acid  

We hypothesized that Lewis acid activation of oxaziridines 92 would increase their 

electrophilicity and, consequently, their reactivity towards alkenes. The reaction was carried 

out between oxaziridine 92 and methyl acrylate 203 (1 eq) catalysed by Lewis acid BF₃·∙OEt₂ 

206 (10 mol %) in anhydrous THF at -78°C. As expected from earlier reports of oxaziridine 

reactivity, the reaction was unsuccessful. The new reaction was attempted in the presence of a 

variety of Lewis acid. Sc(III)OTf was used with catalyst loadings as low as 10 mol % under 

optimized reaction conditions. An additional spot was detected by TLC plate but 

unfortunately that proved not to be the desired product. TiCl4 208 (10 mol %) was employed 

with methyl acrylate 203 (1eq) and oxaziridine 92 (1eq), giving an immediate colour change 

was occure immediately. The reaction was followed by TLC, shown that all starting material 

oxaziridine 92 was reacted within 5 hours. The reaction mixture was worked up and purified 

by column chromatography, but the resulting compound decomposed on the column. 

Cu(II)OTf  209 and Bi(III)OTf 210 was employed for further investigation. Both catalysts 

gave fast colour immediately after addition of methyl acrylate 203. The reactions were left 

stirring overnight for in order to obtain the product. The resulting reaction mixtures were 

worked up and purified but only the starting material camphor 98 was observed by ¹H NMR 

spectroscopy.  
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4 EXPERIMENTAL SECTION  
	
  

1. General experimental methods 

The chiller employed in experiments was a Cole-Parmer Immersion Cooler equipped with a 

flexible hose connected to an immersible probe. The probe was placed in a dewar of the 

appropriate size filled with iso-propanol. Analytical Thin Layer Chromatography (TLC) was 

performed on Silica Gel 60 F254 pre-coated aluminum sheets and visualized under UV light 

by dipping in an appropriate TLC stain anisaldehyde followed by heating with heat gun. 

Flash chromatography was carried out using Silica gel 60 (40-63 mesh). Optical rotation [α]D  

were measured using Perkin-Elmer Model 241 Polarimeter. FTIR spectra were recorded on a 

Perkin Elmer Spectrum BX. Nuclear Magnetic Resonance (NMR) spectra were recorded on a 

Varian 300 MHz Gemini 2000 or a 400 MHz Unity Plus 400 NMR. 

2. General procedure for the preparation of the asymmetric samples  

A 5 mL microwave-type vial was charged with a magnetic stirrer bar and flame dried. The 

vial was capped with a rubber seal. The rubber seal was pierced with a syringe needle 

connected to an Schlenk line. An inert gas was allowed to flow from the Schlenk line into the 

vial and the vial was cooled to room temperature. The vial was subsequently loaded with the 

starting material imine (0.26 mmol) and catalyst (S)-71 / (S)-XX (2.1 mg, 2.6 mmol, 1mol%). 

Three cycles of vacuum / nitrogen were applied to the vial using the Schlenk line before any 

liquid was introduced. The cycles ensure the removal of moisture from the vial volume, 

replacing air with an inert gas (argon or nitrogen). Anhydrous chloroform (1 mL, 0.26 M) 

was then injected via syringe through the seal and the vial was placed in the cooling bath of 

iso-propanol at –60 °C as close as possible to the external thermometer. Vigorous stirring is 

required to ensure the best performance for the reaction in terms of reaction time. After a pre-

stirring time of one minute, generally enough to take all the reactants into solution, tert-butyl 

diazoacetate (0.28 mmol, 38 µL, 1.1 eqn) was added by syringe. The reaction mixture was 

stirred vigorously for 12 hours or until completion. The presence of the rubber seal allows a 

facile monitoring of the reaction by TLC, without compromising the overall setting of the 

system.  

3. General procedure for the preparation of N-fluoroquaternary ammonium salt 

A 5 mL microwave-type vial was charged with a magnetic stirrer bar and flame dried. The 

vial was capped with a rubber seal. The rubber seal was pierced with a syringe needle 
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connected to a Schlenk line. An inert atmosphere was allowed to flow from the Schlenk line 

into the vial and the vial was cooled to room temperature. Application of this procedure is 

intended to remove moisture from the glass surface of the vial. The vial was subsequently 

loaded with the starting material N-fluoropyridinium triflate 77 (64.2 mg, 0.26mmol), and 

dihydroquinidine 128 (84 mg, 0.26mmol, 1eqn / 2 eqⁿ). Three vacuum / nitrogen cycles were 

applied to the vial. The mixture was dissolved in anhydrous acetonitrile (1 mL) and stirred for 

two hours at 0 °C solvents were removed under reduced pressure.  
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SYNTHESIS AND CHARACTERISATION 

Organocatalysis 

Synthesis of cis-109 via a three component one-pot imine condensation / aza-Darzens 
reaction 

	
  

Asymmetric synthesis. A 5 mL microwave vial was charged with a magnetic stirrer bar. The 

vial was flame dried and then cooled to room temperature under an inert atmosphere. 2-tert-

butoxy-4-methoxyaniline 106 (51 mg, 0.26 mmol), 4-nitrobenzaldehyde 105 (39.3 mg, 0.26 

mmol), (S)-71 (21 mg, 0.026 mmol, 10 mol %) and 4Å molecular sieve (~100 mg) were 

loaded into the reaction vial. Three vacuum / nitrogen cycles were applied to the vial. 

Anhydrous chloroform (1 mL) was injected into the microwave vial via the rubber seals on 

the tube. The reaction vial was then transferred to a Dewar containing iso-propanol as coolant 

at -60 °C, The solution was cooled to -60 °C and stirred for one minute. Liquid tert-butyl 

diazoacetate (0.038 mL, 0.28 mmol, 1.1 eqn) was added via syringe and the solution was 

stirred at -60 °C for a further 12 hours. A subsequent TLC (hexane / diethyl ether: 80 / 20) 

indicated complete consumption of the starting material. Chloroform was removed in vacuo 

and the residue was purified by flash chromatography on silica gel (elution with hexane / 

diethyl ether : 8 / 2). Subsequent physicochemical analysis of the purified product confirmed 

formation of the title compound. A sample of cis-109 was submitted to chiral analytical 

HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol : 95 / 5, 1 mL / min, 13.6 min (1st 

peak), 16.9 min (2nd peak)]. The reaction afforded cis-109 as a thick orange oil in 99% yield 

and 96% e.e. 

Racemic synthesis.  A 5 mL reaction vial was charged with a magnetic stirrer bar. The vial 

was loaded with 2-tert-butoxy-4-methoxyaniline 106 (51 mg, 0.26 mmol), 4-

nitrobenzaldehyde 105 (39.3 mg, 0.26 mmol), (S)-71 (21 mg, 0.026 mmol, 10 mol%) and 4Å 

molecular sieve (~100 mg). The mixture was dissolved in dichloromethane (1 mL) and stirred 

for one minute. Liquid tert-butyl diazoacetate (0.038 mL, 0.28 mmol, 1.1 eqn) was added by 

H2N

OMe

N

CO2
tBu

H H

O2N

OMe

cis-109

N2 CO2
tBu

       ASYMMETRIC
      (S)-71 (10mol%
  4Å MS, CHCl3, !60°C
  99% yield, 96% e.e.OtBu OtBu

O2N

O
             RACEMIC
pyridinium triflate (10mol%)
       4Å MS, CH2Cl2, rt
             83% yield

N2106

105
108



	
   77 

syringe at room temperature while stirring the solution. The reaction was stirred for 15 hours. 

A subsequent TLC (hexane / diethyl ether : 80 / 20) indicated complete consumption of the 

starting material. Dichloromethane was removed in vacuo and the reaction residue was 

purified by flash chromatography on silica gel (elution with hexane / diethyl ether : 8 / 1). 

Subsequent physicochemical analysis of the purified product confirmed formation of the title 

compound rac-109 was afforded in 83% yield.   

1H NMR (CDCl3, 400 MHz) 8.19 (d, J = 8.8 Hz, 2H), 7.70 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 

8.6 Hz, 1H), 6.61 (d, J = 2.6 Hz, 1H), 6.50 (dd, J = 8.6, 2.7 Hz, 1H), 3.74 (s, 3H), 3.46 (d, J = 

6.7 Hz, 1H), 3.06 (d, J = 6.8 Hz, 1H), 1.34 (s, 9H), 1.21 (s, 9H); 13C NMR (CDCl3, 75 MHz) 

165.4, 154.8, 147.7, 146.3, 142.2, 137.9, 128.0, 121.9, 119.7, 108.5, 106.1, 80.8, 79.5, 54.5, 

46.8, 45.9, 27.7, 26.8; [α]D
26 = -84.6 (c = 4.3, CHCl3), FT-IR (thin film, cm-1): 2979, 2934, 

1742 (CO), 1715, 1606, 1585, 1517, 1498, 1346, 1226, 1151, 1046, 972, 912, 854, 810, 736; 

MS (EI)+: m/z 443.1 (40%) [M+H]+, m/z 465.2 (100%) [M+Na]+, m/z 907.4 (30%) 

[2M+Na]+; HRMS (EI)+: exact mass calculated for [C24H30N2O6 + H]+ requires m/z 443.2177, 

found m/z 443.2176. 

Synthesis of cis-109  

 

Procedure is same as asymmetric synthesis of cis-109 stated above, except the catalyst (S)-71 

loading was employed 1 mol %.  Reaction mixture was purified by flash chromatography on 

silica gel (elution with hexane / diethyl ether : 8 / 2). Subsequent physicochemical analysis of 

the purified product confirmed formation of the title compound. A sample of cis-109 was 

submitted to chiral analytical HPLC analysis [Chiralpak AD, iso-hexane / iso-propanol : 95 / 

5, 1 mL / min, 13.6 min (1st peak), 16.9 min (2nd peak)]. The reaction afforded cis-109 as 

thick orange oil in 98% yield and 81% e.e. Spectroscopical data is also same as cis -109. 
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Synthesis of cis-126  

 

A solution of a ammonium cerium(IV) nitrate (1.56 g, 2.85 mmol, 2.2 eqn) in water (7 mL) 

was slowly added to an ice-cold solution of (–)-cis-109 (573 mg, 1.2 mmol) in acetonitrile 

(26 mL). The reaction mixture was stirred at room temperature and monitored by TLC until 

complete consumption of the starting material aziridine (–)-cis-109 was observed. The pH of 

the solution was then adjusted to neutral by addition of a few drops of 5% aqueous sodium 

hydrogen carbonate solution. Solid sodium sulfite was added in small portions until 

formation of brown slurry. After extraction with ethyl acetate (3x10 mL), the combined 

organic phases were dried over anhydrous magnesium sulfate and concentrated under reduced 

pressure. Purification via flash chromatography on silica gel (eluent diethyl ether / hexane: 1 / 

1 → 2 / 1→ diethyl ether) afforded 200 mg of a white solid in 87% yield. Subsequent 

physicochemical analysis of the purified product confirmed formation of the title compound 

cis-126. 

M.p. = 133.5 – 135.6 °C; 1H NMR (300 MHz, CDCl3):  8.18 (d, J = 8.8 Hz, 2H), 7.55 (d, J = 

8.5 Hz, 2H), 3.50 (s, 1H), 3.06 (d, J = 6.5 Hz, 1H), 1.9 (s, 1H), 1.19 (s, 9H); 13C NMR (75 

MHz, CDCl3):  167.5 (CO), 147.4, 142.8, 128.8, 123.2, 82.2, 38.6, 38.1, 27.7; [α]D
26 = -8.0 (c 

= 1.0, CHCl3), FT-IR (thin film, cm-1): 3208, 2976, 2933, 1725 (CO), 1600, 1515, 1369, 

1347, 1218, 1154, 908, 883, 859, 854, 733; MS (EI)+: m/z 663.2 (100%), 465 (20%). HRMS 

(EI)+: exact mass calculated for [C13H16N2O4+ H]+ requires m/z 265.1188, found m/z 

265.1190. 
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Synthesis of rac-cis-118 

	
  

A solution of Ammonium cerium(IV) nitrate (1.2 g, 2.19 mmol, 4 eqn) in water (4 mL) was 

slowly added to an an ice-cold solution of rac-cis-117 (204 mg, 0.55 mmol)	
  in acetonitrile (8 

mL). Purification via flash chromatography on silica gel (eluent diethyl ether / hexane : 1 / 1 

→ 2 / 1→ diethyl ether) afforded a yellow solid in 72% yield. Subsequent physicochemical 

analysis of the purified product confirmed formation of the title compound rac-cis-118. 

(Procedure same as cis-126). 

1H NMR (300 MHz, CD3CN) 8.13 (d, J = 8.8 Hz, 2H), 7.60 (d, J = 8.7 Hz, 2H), 3.88 (q, J = 

7.0 Hz, 2H), 3.60 (d, J = 6.4 Hz, 1H), 3.10 (d, J = 6.4 Hz, 1H), 1.3 (d, J = 6.3 Hz, 1H), 0.90 

(t, J = 7.0 Hz, 3H); 13C NMR (75 MHz, CD3CN): δ  168.5 (CO), 147.5, 144.6, 129.1, 123.0, 

60.7, 37.9, 29.6, 13.7; FT-IR (thin film, cm-1): 2983, 1732 (CO), 1602, 1519, 1344, 1201, 

1108, 1026, 852, 741. MS (EI)+: m/z 237.2 (100%) [M+H]+, m/z 607.3 (100%).  

Synthesis of (–)-127 

 

A 10 mL two-necked round-bottom flask was equipped with a condenser and a magnetic 

stirrer bar. The flask was loaded with a solution of cis-126 (160 mg, 0.6 mmol) in 2.5 mL of 

1,2-dichloroethane. Dichloroacetic acid (0.5 mL, 6 mmol, 10 eqn) was added to the solution 

and the mixture was heated at reflux for one hour. The excess of dichloroacetic acid was 

removed by evaporation. The resulting residue was dissolved in dichloromethane and treated 

with a saturated aqueous solution of sodium carbonate. The aqueous layer was extracted with 

dichloromethane and the combined organic extracts were dried over anhydrous magnesium 

sulfate. Purification via flash chromatography on silica gel (hexane / diethyl ether: 1 / 2) 
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afforded 180 mg of a red oil in 76% yield. Subsequent physicochemical analysis of the 

purified product confirmed formation of the title compound 127. 

1H NMR (300 MHz, CDCl3) 8.20 (d, J = 8.6 Hz, 2H), 7.58 (d, J = 8.8 Hz, 2H), 7.17 (d, J = 

9.3 Hz, 1H), 5.77 (s, 1H), 5.49 (s, 1H), 4.77 (dd, J = 9.1, 2.6 Hz, 1H), 2.98 (s, 1H), 1.51 (s, 

9H). 13C NMR (75 MHz, CDCl3):  167.8, 164.1, 147.8, 146.4, 126.9, 123.7, 84.1, 72.7, 65.9, 

58.1, 27.8; [α]D
26 = + 13.3 (c = 1.0, CHCl3), IR (thin film, cm-1): 3406, 2958, 2926, 2854, 

1732 (CO), 1683, 1608, 1520, 1348, 1259, 1157, 1074, 811, 735; MS (EI)+: m/z 441 (20%), 

365 (5%), 337 (20%), 268 (100%), 264 (50%), 247 (35%); HRMS (EI)+: exact mass 

calculated for [C15H18Cl2N2O6 + H]+ requires m/z 421.0569, found m/z 421.0570. 

Synthesis of rac-121 

	
  

Purification via flash chromatography on silica gel (hexane / diethyl ether : 1 / 2) afforded a 

light yellow solid in 45% yield.	
  Subsequent physicochemical analysis of the purified product 

confirmed formation of the title compound rac-121. (Procedure same as 143127 

1H NMR (300 MHz, CD3CN) 8.21 (d, J = 8.2 Hz, 2H), 7.60 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 

2.7 Hz, 1H), 6.05 (s, 1H), 5.50 (d, J = 2.4 Hz, 1H), 4.79 (dd, J = 8.9, 2.8 Hz, 1H), 4.30 (dd, J 

= 8.9, 2.3 Hz, 1H), 4.21 (q, J = 7.2 Hz, 2H), 1.23 (t, J = 7.0 Hz, 3H); 13C NMR (75 MHz, 

CD3CN):	
  168.9 (CO), 164.2 (CO), 148.3, 147.9, 127.6, 123.4, 71.7, 66.2, 61.9, 58.5, 13.4; 

FT-IR (thin film, cm-1): 2926, 1742 (CO), 1683, 1608, 1517, 1348, 1206, 1110, 1074, 1015, 

812.  

Synthesis of (+)-chloramphenicol (+)-122 

 

O2N

H
N

CO2Et

rac-cis-118

CHCl2CO2H (10 eqn)

1,2-DCE
reflux, 1h
  (45%)

O2N

OH

HN

CO2Et

O

CHCl2

121

O2N

OH

HN

O

CHCl2

OH

O2N

OH

HN

CO2
tBu

O

CHCl2

NaBH4

 MeOH
0°C, 0.5
 (79%)

(+)-122
127



	
   81 

A 2 mL vial was flame dried and charged with a magnetic stirrer bar. The vial was cooled to 

room temperature under inert atmosphere.  Compound (–)-127 (29 mg, 0.07 mmol) was 

loaded into the vial and three vacuums / nitrogen cycles were applied. 127 was then dissolved 

in 0.2 mL of methanol and cooled to 0 °C. Sodium borohydride (14 mg, 0.4 mmol, 5 eqn) was 

added to the solution all at once and the reaction mixture was stirred for 30 minutes. The 

product was quenched with water (2.5 mL) and extracted with ethyl acetate three times. The 

combined organic phases were dried over anhydrous magnesium sulfate. Purification via 

flash chromatography on silica gel (hexane / ethyl acetate : 3 / 7) afforded 19 mg of a white 

solid in 79% yield. Subsequent physicochemical analysis of the purified product confirmed 

formation of the title compound (+)-122.  

1H NMR (300 MHz, DMSO): 8.32 (d, J = 9.0 Hz, 1H), 8.15 (d, J = 8.7 Hz, 2H), 7.56 (d, J = 

8.7 Hz), 6.46 (s, 1H), 6.06 (s, 1H), 5.04 (s, 1H), 4.97 (s, 1H), 3.92 (q, J1 = 8.1 Hz, 1H), 3.57 

(t, J = 8.1 Hz, 1H), 3.34 (m, 1H). 13C NMR (75 MHz, DMSO): 163.6, 151.5, 146.6, 127.5, 

123.1, 69.1, 66.5, 60.3, 56.9; [α]D
26 = + 23.9 (c = 1.0, EtOAc); FT-IR (thin film, cm-1): 3298, 

2924, 1682, 1514, 1348, 1070, 812.  

Synthesis of rac-118 via imine 119   

	
  

A 25 mL two-necked round-bottom flask was equipped with a dropping funnel and a 

magnetic stirrer bar. The flask was charged with a solution of 4-nitrobenzaldehyde (1.0 g, 

6.66 mmol) in tetrahydrofuran (5 mL) and cooled to 0 °C. A 1.06 M solution of lithium 

bis(trimethylsilyl)amide in tetrahydrofuran (6.28 mL, 6.28 mmol, 0.95 eqn) was added 

dropwise to the flask at 0°C. The reaction mixture was allowed to warm at room temperature, 

stirred for 2 hours and then treated with chlorotrimethylsilane (6.66 mmol, 0.85 mL). After 1 

hour, anhydrous hexane was added resulting in a white precipitate. The solution was filtered 

under argon through anhydrous sodium sulfate and washed with a small amount of anhydrous 

hexane. The solvents were removed in vacuo and the impure N-TMS-imine 119 (1.0 g, ~ 4.5 

mmol) placed in a 10 mL two-necked round-bottom flask under an inert atmosphere. The 

same flask was charged with N-fluoropyridinum triflate (111 mg, 0.45 mmol, 0.1 eqn). 
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Anhydrous dichloromethane (6.5 mL) was injected into the flask and the resulting solution 

stirred for one minute. Liquid ethyl diazoacetate (0.52 mL, 5.0 mmol, 1.1 eqn) was added via 

syringe to the solution. The reaction mixture was stirred at room temperature for 12 hours, 

the solvent was removed in vacuo and the crude product purified via flash chromatography 

on silica (gradient elution: petroleum ether / ethyl acetate, 9 /1 → 4 /1). Subsequent 

physicochemical analysis of the purified product confirmed formation of the title compound. 

Compound rac-cis-118 was afforded as a yellow solid in 20% overall yield from 4-

nitrobenzaldehyde.  

1H NMR (300 MHz, CD3CN) 8.13 (d, J = 8.8 Hz, 2H), 7.60 (d, J = 8.7 Hz, 2H), 3.88 (q, J = 

7.0 Hz, 2H), 3.60 (d, J = 6.4 Hz, 1H), 3.10 (d, J = 6.4 Hz, 1H), 1.3 (d, J = 6.3 Hz, 1H), 0.90 

(t, J = 7.0 Hz, 3H); 13C NMR (75 MHz, CD3CN): 168.5 (CO), 147.5, 144.6, 129.1, 123.0, 

60.7, 37.9, 29.6, 13.7; FT-IR (thin film, cm-1): 2983, 1732 (CO), 1602, 1519, 1344, 1201, 

1108, 1026, 852, 741. MS (EI)+: m/z 237.2 (100%) [M+H]+, m/z 607.3 (100%). 

Synthesis of rac-cis-131 

 

A 5 mL microwave vial was charged with a magnetic stirrer bar. The vial was flame dried 

and then cooled to room temperature under an inert atmosphere. The vial was loaded with 

(E)-2,4-dimethoxy-N-(4-nitrobenzylidene)phenylamine 116 (1.68 g, 5.86 mmol) and N-

fluoropyridinium triflate (145 mg, 0.58 mmol, 10 mol%). The mixture was dissolved in 

dichloromethane (1 mL) and stirred for one minute. Liquid ethyl diazoacetate (0.7 mL, 6.45 

mmol, 1.1 eqn) was added via syringe at room temperature while stirring the solution. The 

reaction was stirred for 15 hours. A subsequent TLC (hexane / diethyl ether: 80 / 20) 

indicated complete consumption of the starting imine 116. Dichloromethane was removed in 

vaccuo and the reaction residue was purified via flash chromatography on silica gel (elution 

with hexane / diethyl ether : 80 / 20). Subsequent physicochemical analysis of the purified 

product confirmed formation of the title compound. Sample rac-cis-117 was afforded in 60% 

yield.   
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1H NMR (300 MHz, CDCl3) 8.09 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H), 6.75 (d, J = 

8.4 Hz, 1H), 6.38 (s, 1H), 6.29 (d, J = 8.4 Hz, 1H), 3.98 (q, J = 7.0 Hz, 1H), 3.89 (q, J = 7.1 

Hz, 1H), 3.68 (s, 3H), 3.67 (s, 3H), 3.45 (d, J = 6.6 Hz, 1H), 3.05 (d, J = 6.6 Hz, 1H), 0.94 (t, 

J = 7.1 Hz, 3H); 13C NMR (75 MHz, CDCl3): 166.4 (CO), 155.9, 151.8, 146.3, 141.8, 132.6, 

127.9, 126.4, 122.0, 118.6, 102.6, 98.5, 60.1, 54.6, 54.5, 46.0, 45.2, 13.0. FT-IR (thin film, 

cm-1): 2963, 1746 (CO), 1592, 1506, 1437, 1341, 1185, 1120, 1031. MS (EI)+: m/z 373.1 

(60%) [M+H]+, m/z 395.2 (100%) [M+Na]+, m/z 767.4 (20%) [2M+Na]+; HRMS (EI)+: exact 

mass calculated for [C19H21N2O6 + H]+ requires m/z 373.1394, found m/z 373.1395. 

Synthesis of rac-cis-118 

	
  

Purification via flash chromatography on silica gel (eluent diethyl ether / hexane: 1 / 1 → 2 / 

1→ diethyl ether) afforded a yellow solid in 72% yield. Subsequent physicochemical analysis 

of the purified product confirmed formation of the title compound rac-cis-118. (Procedure 

same as cis-126) 

1H NMR (300 MHz, CD3CN) 8.13 (d, 2H, J = 8.8 Hz), 7.60 (d, 2H, J = 8.7 Hz), 3.88 (q, 2H, 

J = 7.0 Hz), 3.60 (d, 1H, J = 6.4 Hz, C2-H), 3.10 (d, 1H, J = 6.4 Hz), 1.3 (d, 1H, J = 6.3 Hz), 

0.90 (t, 3H, J = 7.0 Hz); 13C NMR (75 MHz, CD3CN): δ ppm 168.5, 147.5, 144.6, 129.1, 

123.0, 60.7, 37.9, 29.6, 13.7; FT-IR (thin film, cm-1): 2983, 1732 (CO), 1602, 1519, 1344, 

1201, 1108, 1026, 852, 741. MS (EI)+: m/z 237.2 (100%) [M+H]+, m/z 607.3 (100%).  
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Asymmetric Organocatalytic Synthesis of Aziridine Using F+ Salt  

Synthesis of cis-133 

 

A 5 mL microwave vial was charged with a magnetic stirrer bar. The vial was flame dried 

and then cooled to room temperature under an inert atmosphere. The vial was loaded with N-

fluoropyridinium triflate 77 (64.2 mg, 0.26mmol), dihydroquinidine 128 (84 mg, 0.26mmol, 

1eqn). The mixture was dissolved in anhydrous acetonitrile (1 mL) and stirred for two hour at 

0°C. Solvent was removed under reduced pressure. 133 afforded in 98% yield. 

 1H NMR (CDCl3, 400 MHz) 8.44 (d, J = 6.1 Hz, 1H), 7.64 (d, J = 8.4 Hz, 1H), 7.52 (m, 1H), 

7.29 (m, 2H), 6.48 (s, OH), 5.17 (m, 3H), 4.88-4.69 (s, 1H), 3.98 (s, 3H), 3.49(d, J = 5.2 Hz, 

1H), 2.91-2.82 (m, 1H), 2.78-2.74 (m, 2H), 1.55-1.90 (m, 3H), 1.29-1.37 (q, J = 7.2 Hz, 2H); 

13C NMR (CDCl3, 75 MHz) 150.3, 148.9, 144.5, 136.9, 132.7, 129.8, 128.2, 127.6, 125.7, 

123.9, 120.8, 118.4, 68.6 (d, J = 8.7 Hz), 63.8 (d, J = 5.8 Hz), 59.5 (d, J = 9.4 Hz), 43.8 (d, J 

= 3.6 Hz), 28.9 (d, J = 5.1 Hz), 27.8 (d, J = 5.1 Hz), 24.1 (d, J = 1.5 Hz); ¹⁹F NMR(CDCl₃ 

400M Hz) δ -73.2 (1F), -73.9 (3F) ppm. 

Synthesis of cis-179 

	
  

A 5 mL microwave vial was charged with a magnetic stirrer bar. The vial was flame dried 

and then cooled to room temperature under an inert atmosphere. The vial was loaded with N-

fluoroquternary ammonium salt (S)-146, 162 (0.026 mmol, 10 mol%). (E)-4-methoxy-N-(4-

nitrobenzylidene) phenylamine 175 (127 mg, 0.50 mmol), and 4Å molecular sieves (~100 
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mg) were added into the reaction vial. Anhydrous chloroform (1 mL) was injected into the 

microwave vial via the rubber seals on the tube. The solution was cooled to -60 °C and stirred 

for one minute. Liquid tert-butyl diazoacetate (0.038 mL, 0.28 mmol, 1.1 eqn) was added via 

syringe and the solution was stirred at -60 °C for a further 15 hours. A subsequent TLC 

(hexane / diethyl ether : 80 / 20) indicated complete consumption of the starting material 175. 

Chloroform was removed in vacuo and the reaction residue was purified via flash 

chromatography on silica gel (hexane / diethyl ether : 80 / 20 → 70 / 30). Subsequent 

physicochemical analysis of the purified products confirmed formation of the title 

compounds cis- 179 afforded in 24% yield and 13% e.e. 

1H NMR (CDCl3, 400 MHz) 8.21 (d, J = 8.8 Hz, 2H), 7.70 (d, J = 8.8 Hz, 2H), 6.98 (d, J = 

9.0 Hz, 2H), 6.83 (d, J = 9.0 Hz, 2H), 4.09-3.95 (m, 2H), 3.78 (s, 3H), 3.57 (d, J = 6.7 Hz, 

1H), 3.22 (d, J = 6.7 Hz, 1H), 1.05 (t, J = 7.2 Hz, 3H); 13C NMR (CDCl3, 75 MHz) 167.1 

(CO), 156.3, 147.7, 144.9, 142.2, 128.7, 123.3, 120.7, 114.6, 61.2, 55.4, 46.4, 46.0, 13.8; FT-

IR (thin film, cm-1): 2979, 1747 (CO), 1506, 1343, 1242, 1185, 1040; MS (EI)+: m/z 343.1 

(100%) [M+H]+; HRMS (EI)+: exact mass calculated for [C18H18N2O5 + H]+ requires m/z 

343.1288, found m/z 343.1292. 

Synthesis of cis-180  

 

Subsequent physicochemical analysis of the purified product confirmed formation of the title 

compound cis-180 was submitted to chiral analytical HPLC analysis [Chiralpak AD, iso-

hexane / iso-propanol: 95 / 5, 1 mL / min, 13.6 min (1st peak), 16.9 min (2nd peak)]. The 

reaction afforded cis-180 as a thick orange oil in 21% yield and 11% e.e. (Procedure same as 

179) 

1H NMR (CDCl3, 400 MHz) 8.19 (d, J = 8.8 Hz, 2H), 7.70 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 

8.6 Hz, 1H), 6.61 (d, J = 2.6 Hz, 1H), 6.50 (dd, J = 8.6 Hz, J1 = 2.7 Hz, 1H), 3.74 (s, 3H), 

3.46 (d, J = 6.7 Hz, 1H), 3.06 (d, J = 6.8 Hz, 1H), 1.34 (s, 9H), 1.21 (s, 9H); 13C NMR 
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(CDCl3, 75 MHz) 165.4 (CO), 154.8, 147.7, 146.3, 142.2, 137.9, 128.0, 121.9, 119.7, 108.5, 

106.1, 80.8, 79.5, 54.5, 46.8, 45.9, 27.7, 26.8; FT-IR (thin film, cm-1): 2979, 2934, 1742 

(CO), 1715, 1606, 1585, 1517, 1498, 1346, 1226, 1151, 1046, 972, 912, 854, 810, 736; MS 

(EI)+: m/z 443.1 (40%) [M+H]+, m/z 465.2 (100%) [M+Na]+, m/z 907.4 (30%) [2M+Na]+; 

HRMS (EI)+: exact mass calculated for [C24H30N2O6 + H]+ requires m/z 443.2177, found m/z 

443.2176. 

Synthesis of cis-182 

 

Reaction residue was purified via flash chromatography on silica gel (hexane / ethyl acetate : 

5 / 1). Subsequent physicochemical analysis of the purified product confirmed formation of 

the title compound. (Procedure same as 179)  

M.p. 116.1 – 117.8 °C, 1H NMR (CDCl3, 400 MHz) 8.43-8.41 (m, 1H), 7.61-7.56 (m, 4H), 

7.47-7.44 (m, 2H), 7.34-7.29 (m, 2H), 7.26-7.22 (m, 2H), 7.18-7.13 (m, 1H), 7.12-7.08 (m, 

1H), 3.99-3.91 (m, 3H), 3.38 (d, J = 6.8 Hz, 1H), 2.76 (d, J = 6.8 Hz, 1H), 1.00 (t, J = 7.1 Hz, 

3H); 13C NMR (CDCl3, 75 MHz) 167.7 (CO), 155.4, 148.8, 142.6, 142.4, 136.4, 128.8, 

127.8, 127.7, 127.5, 127.3, 122.95, 122.6, 77.7, 60.9, 49.5, 46.3, 14.2; FT-IR (thin film, cm-

1): 3062, 3027, 2981, 1742 (CO), 1590, 1569, 1493, 1477, 1454, 1436, 1373, 1354, 1304, 

1208, 1186, 1094, 1068, 1038, 1005, 854, 747, 703; MS (EI)+: m/z 359.1 (100%) [M+H]+; 

HRMS (EI)+: exact mass calculated for [C23H22N2O2 + H]+ requires m/z 359.1754, found m/z 

359.1753. 

Synthesis of cis-181 
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Reaction residue was purified via flash chromatography on silica gel (hexane / ethyl acetate: 

5 / 1). Subsequent physicochemical analysis of the purified product confirmed formation of 

the title compound cis-181 was afforded as a white solid in 10% yield. (Procedure same as 

179) 

1H NMR (CDCl3, 400 MHz) 8.48-8.46 (m, 1H), 7.65-7.59 (m, 1H), 7.58-7.56 (m, 1H), 7.44-

7.41 (m, 2H), 7.35-7.25 (m, 3H), 7.16-7.11 (m, 1H), 4.05-3.88 (m, 3H), 3.67 (d, J = 13.6 Hz, 

2H), 3.25 (d, J = 6.9 Hz, 1H), 2.72 (d, J = 6.9 Hz, 1H), 1.02 (t, J = 7.1 Hz, 3H); 13C NMR 

(CDCl3, 75 MHz) 167.9 (CO), 155.4, 148.8, 137.6, 136.0, 128.5, 128.1, 127.4, 122.8, 122.4, 

63.3, 60.7, 48.8, 45.4, 13.8; IR (thin film, cm-1): 3430, 2983, 2092, 1738 (CO), 1638, 1591, 

1472, 1455, 1435, 1372, 1264, 1195, 1095, 748, 700; MS (EI)+: m/z 283.1 (85%) [M+H]+ m/z 

305.1 (95%) [M+Na]+ m/z 587.3 (100%) [2M+Na]+; HRMS (EI)+: exact mass calculated for 

[C17H18N2O2 + H]+ requires m/z 283.1441, found m/z 283.1441. 

 Synthesis of 137 

	
  

Reaction residue was purified via flash chromatography on silica gel (hexane / diethyl ether : 

80 / 20). Subsequent physicochemical analysis of the purified product confirmed formation of 

the title compound cis-137 was submitted to chiral analytical HPLC analysis [Chiralpak AD, 

iso-hexane / iso-propanol : 95 / 5, 1 mL / min].  Sample cis-137 was afforded in 50% yield 

and 31% e.e. (Procedure same as 179) 

1H NMR (300 MHz, CDCl3)	
  7.50 (d, J = 7.4 Hz, 2H), 7.33 (d, J = 7.6 Hz, 2H), 7.00 (d, J = 

8.6 Hz, 1H), 6.82 (d, J = 8.7 Hz, 1H), 4.09-3.95 (m, 3H), 3.77 (s, 3H), 3.53 (d, J = 6.8 Hz, 

2H), 3.14 (d, J = 7.2 Hz, 1H), 0.98 (t, J = 6.9 Hz, 3H); 13C NMR (CDCl3, 75 MHz) 167.1 

(CO), 156.3, 147.7, 144.9, 142.2, 128.7, 128.5, 127.9, 123.3, 120.7, 114.6, 61.2, 55.4, 46.4, 

46.0 (C3-H), 13.8; FT-IR (thin film, cm-1): 2979, 1747 (CO), 1506, 1343, 1242, 1185, 1040; 

MS (EI)+: m/z 298.1 (100%) [M+H]+; HRMS (EI)+: exact mass calculated for [C18H18O3 + 

H]+ requires m/z 298.1488, found m/z 298.1492. 
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SYNTHESIS OF CINCHONA ALKALOID DERIVATIVES 

9-O-dihydroquinyl benzoyl ester - 147 

	
  

Into a solution of cinchona alkaloid (S)-128 (389 mg, 2.75 mmol, 1 eqn) in anhydrous 

dichloromethane (5 ml), 0.5M anhydrous triethyl amine (2 ml) at 0°C was added. A solution 

of benzoyl chloride (1gm, 2.75 mmol, 1 eqn) in anhydrous dichloromethane (5ml) was slowly 

added. After 1 h the reaction mixture was warmed to room temperature and stirred for 

additional 2 h. Upon completion of reaction indicated by TLC, resulting mixture was poured 

into (10 ml) of distilled water; the organic layer was separated and washed with saturated 

NaHCO₃	
  solution, and then with water. The organic solution was dried by anhydrous MgSO₄	
  

and	
  evaporated	
  in	
  vaccuo	
  after work up followed by purification by flash chromatography on 

silica gel (ethyl acetate / ethanol / triethyl amine : 7 / 0.15 / 0.15). Subsequent 

physicochemical analysis of the purified product confirmed formation of the title compound 

(S)-147 was afforded in 95% yield.  

White solid, mp; 104- 107°C; [α]20
D = + 113.2 (c = 1.0, CHCl₃); 	
  ¹H NMR (400 MHz, CDCl3) 

8.64 (d, J = 4.5 Hz, 1H), 8.13-8.00 (m, 3H), 7.95 (d, J = 9.2 Hz, 1H), 7.52 (d, J = 7.3 Hz, 

2H), 7.40 (dd, J = 27.0 Hz, 2H), 7.21 (s, 2H), 6.69 (d, J = 6.8 Hz, 1H), 4.05 (d, J = 7.1 Hz, 

2H), 3.94-3.80 (m, 1H),  3.62 (q, J = 6.9 Hz, 1H), 3.33 (d, J = 7.3 Hz, 3H), 2.75 (m, 4H), 

2.47 (d, J = 7.1 Hz, 1H), 2.28 (s, 1H), 1.98 (s, 1H), 1.85 (d, J = 9.1 Hz, 1H), 1.74-1.63 (m, 

1H), 1.43 (s, 1H), 1.16 (dd, J = 14.1 Hz, 1H), 0.96 (t, J = 7.1 Hz, 1H), 0.83 (t, J = 7.0 Hz, 

1H); 13C NMR (75 MHz, CDCl3) 164.2, 157.1, 146.2, 143.5, 142.3, 132.4, 130.7, 129.4, 

127.5, 126.7, 120.9, 117.2, 100.3, 73.0, 57.9, 57.0, 54.7, 41.5, 36.1, 27.1, 26.5, 24.2, 22.2, 

10.9; IR (KBr, cm- 1): 2932, 2864,1788, 1620, 1593, 1508, 1473, 1315, 1267, 1108, 1068, 

1026, 918, 854, 768, 711; HRMS for C₂₇H₃₀N₂O₃ : m/z 431.2 (M+H⁺). 
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1,2-Bis (9-O-dihydroquinyl) phthalate 146 

	
  

Into a solution of cinchona alkaloid (S)-128 (9 gm, 1.23 mmol, 2 eqn) in anhydrous 

dichloromethane (20 ml), 0.5M anhydrous triethyl amine (8 ml) at 0°C was added. A solution 

of phthaloyl dichloride (1gm, 2.75 mmol, 1 eqn) in anhydrous dichloromethane (20 ml) was 

slowly added. After 1 h the reaction mixture was warmed to room temperature and stirred for 

additional 2 h. Upon completion of reaction indicated by TLC, resulting mixture was poured 

into (30 ml) of distilled water; the organic layer was separated and washed with saturated 

NaHCO₃	
  solution, and then with water. The organic solution was dried by anhydrous MgSO₄	
  

and	
  evaporated	
  in	
  vacuo	
  after work up followed by purification by flash chromatography on 

silica gel (ethyl acetate / ethanol / triethyl amine: 7 / 0.15 / 0.15). Subsequent 

physicochemical analysis of the purified product confirmed formation of the title compound 

(S)-146 was afforded in 89% yield. 

White solid, mp; 108- 110°C; [α]20
D = + 13.2 (c = 1.0, CHCl₃); 	
  1H NMR (400 MHz, CDCl₃) 

8.70 (d, J = 4.5 Hz, 2H), 7.96 (d, J = 9.1 Hz, 2H), 7.67 (dd, J = 5.7 Hz, 2H), 7.53 (dd, J = 

5.7 Hz, 2H), 7.33 (m, 4H), 6.54 (d, J = 8.1 Hz, 2H), 3.86 (s, 6H), 3.15 (m, 2H), 2.73 (m, 2H), 

2.54 (m, 2H), 2.00 (s, 2H), 1.64 (dd, J = 13.3 Hz, 8H), 1.30 (m, 10H), 0.75 (t, J = 7.1 Hz, 

6H) ; 13C NMR (75 MHz, CDCl3) 12.1, 24.4, 25.0, 26.3, 27.7, 37.4, 42.4, 50.7, 55.7, 58.1, 

59.6, 101.6, 108.5, 121.9, 128.6, 129.5, 129.7, 131.8, 144.0, 144.8, 147.4, 157.8, 157.9, 163.1 

; HRMS for C₄₈H₅₄N₄O₆ : m/z 783.2 (M+H⁺) 

2,6-Bis (9-O-dihydroquinyl)- pyridine-dicarboxylate 145  
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Purification by flash chromatography on silica gel (ethyl acetate / ethanol / triethyl amine : 7 / 

0.15 / 0.15). Subsequent physicochemical analysis of the purified product confirmed 

formation of the title compound. Sample (S)-145 was afforded in 95% yield. (Procedure same 

as 146) 

White solid, mp; 110- 113°C; [α]20
D = + 124.8 (c = 1.0, CHCl₃); 	
  ¹H NMR (400 MHz, CDCl₃)	
  

0.82, (m, 10H), 1.83-1.21 (m, 10H), 3.15-2.06 (m, 10H), 3.87 (s, 2H), 3.99 (s, 6H), 7.26 (m, 

2H), 7.41 (d, J = 9.3 Hz, 2H), 7.48 (m, 4H), 8.03 (m, 3H), 8.32 (d, J = 7.8 Hz, 2H), 8.68 (d, J 

= 4.5 Hz, 2H); HRMS for C₄₇H₅₅N₅O₆: m/z 785.0 (M+H⁺); 13C NMR (75 MHz, CDCl3) 

168.1, 157.3, 148.2, 147.6, 147.1, 143.9, 141.3, 139.8, 130.9, 127.9, 126.8, 122.0, 121.2, 

114.4, 101.3, 73.6, 56.7, 55.8, 42.9, 39.9, 27.4, 21.5. 

9-O-dihydroquinyl-2-bromobenzoyl ester 155 

 

Subsequent physicochemical analysis of the purified product confirmed formation of the title 

compound (S)-155 was afforded in 92% yield. (Procedure same as 147) 

White solid; 94% yield;	
  ¹H NMR (400 MHz, CDCl3)	
  8.64 (d, J = 4.5 Hz, 1H), 8.13-8.00 (m, 

1H), 7.95 (d, J = 9.2 Hz, 1H), 7.40 (dd, J = 27 Hz, 1H), 6.69 (d, J = 6.8 Hz, 1H), 4.05 (d, J = 

7.1 Hz, 1H), 3.94-3.80 (m, 3H), 3.62 (q, J = 6.9 Hz, 1H), 3.33 (d, J = 7.3 Hz, 1H), 2.75 (m, 

3H), 2.47 (d, J = 7.1 Hz, 1H), 2.28 (s, 1H), 1.98 (s, 1H), 1.85 (d, J = 9.1 Hz, 2H), 1.74-1.63 

(m, 3H), 1.43 (s, 1H), 1.16 (dd, J = 14.1 Hz, 3H), 0.83 (t, J = 7.0 Hz, 3H); 13C NMR (75 

MHz, CDCl3) 158.16, 147.65, 147.31, 144.98, 134.79, 133.15, 132.44-130.93, 127.46, 

122.10, 119.23, 101.59, 78.93, 75.86, 59.63, 55.92, 50.50, 37.51, 25.97, 12.13. 
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9-O-dihydroquinyl-4-bromobenzoyl ester 154 

 

Subsequent physicochemical analysis of the purified product confirmed formation of the title 

compound. Sample (S)-154 was afforded in 90% yield. (Procedure same as 147) 

White solid; 90% yield	
  ;¹H NMR (400 MHz, CDCl3)	
  8.65 (d, J = 4.5 Hz, 1H), 7.91 (dd, J = 

25.7 Hz, 1H), 7.55 (d, J = 8.6 Hz, 2H), 7.43 (s, 1H), 7.31 (dd, J = 11.3 Hz, 2H), 7.19 (s, 1H), 

3.92 (s, 3H), 3.35 (q, J = 8.6 Hz, 2H), 3.03-2.49 (m, 3H), 1.98 (s, 2H), 1.83 (s, 2H), 1.71 (s, 

1H), 1.63-1.32 (m, 3H), 1.19 (t, J = 7.1 Hz, 3H), 0.84 (t, J = 7.1 Hz, 3H); 13C NMR (75 

MHz, CDCl3) 158.16, 147.55, 147.21, 144.98, 134.79, 133.17, 132.24, 131.5, 130.93, 127.46, 

122.10, 119.23, 101.59, 78.93, 75.86, 59.63, 55.92, 50.50,  37.51, 25.97, 12.13.  

9-O-dihydroquinyl-2-phenoxybenzoate 151 

 

Subsequent physicochemical analysis of the purified product confirmed formation of the title 

compound. Sample (S)-151 was afforded in 84% yield. (Procedure same as 147) 

Brownish solid ;	
   ¹H NMR (400 MHz, CDCl₃) 8.58 (d, J = 4.5 Hz, 2H), 7.92 (m, 2H), 7.45 

(m, J = 1H), 7.30 (dd, J = 13.9 Hz, 1H), 7.24-7.19 (m, 1H), 7.15 (m, 1H), 7.07 (t, J = 7.3 Hz, 

1H), 6.93 (dd, J = 22.1 Hz, 1H), 6.67 (d, J = 8.0 Hz, 1H), 5.26 (s, 1H), 4.08 (q, J = 7.14 Hz, 

1H), 3.90 (s, 3H), 3.20 (d, J = 8.4 Hz, 1H), 2.83 (dd, J = 13.6 Hz, 1H), 2.63 (d, J = 8.1 Hz, 

1H), 2.01 (s, 1H), 1.70 (dd, J = 27.8 Hz, 3H), 1.41 (dd, J = 17.8 Hz, 3H), 1.22 (t, J = 7.15 

Hz, 3H), 0.82 (t, J = 7.0 Hz, 3H); 13C NMR (75 MHz, CDCl3) 165.32, 157.91, 155.21, 
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148.32, 147.14, 146.29, 144.82, 135.63, 134.29, 131.88, 130.07, 123.83, 121.68, 118.35, 

117.55, 105.57, 102.48, 100.34, 59.84, 49.63, 38.35, 28.32, 25.81, 17.98, 12.08. 

9-O-dihydroquinyl-2-phenoxybenzoate 150 

	
  
Subsequent physicochemical analysis of the purified product confirmed formation of the title 

compound. Sample (S)-150 was afforded in 87% yield. (Procedure same as 147) 

White solid;	
  ¹H NMR (400 MHz, CDCl₃)	
  8.64 (d, J = 4.5 Hz, 1H), 7.93 (d, J = 9.2 Hz, 1H), 

7.75 (d, J = 7.7 Hz, 1H), 7.68-7.60 (m, 1H), 7.40 (d, J = 2.6 Hz, 1H), 7.33 (m, 1H), 7.27 (dd, 

J = 13.9 Hz, 1H), 7.19 (s, 1H), 7.13 (dd, J = 8.2 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 6.93 (dd, J 

= 8.66 Hz, 1H), 6.63 (d, J = 7.3 Hz, 1H), 4.03 (q, J = 7.1 Hz, 1H), 3.87 (s, 3H), 3.33 (m, 

3H), 2.83 (dd, J = 13.6 Hz, 1H), 2.64 (t, J = 8.3 Hz, 1H), 1.96 (s, 1H), 1.76 (d, J = 8.9 Hz, 

3H), 1.48 (dd, J = 75.4 Hz, 3H), 1.17 (t, J = 7.1 Hz, 3H), 0.80 (t, J = 7.1 Hz, 3H); 

9-O-dihydroquinyl-biphenyl-4-carboxylate 161 

 

Subsequent physicochemical analysis of the purified product confirmed formation of the title 

compound. Sample (S)-161 was afforded in 82% yield. (Procedure same as 147) 
1H NMR (300 MHz, CDCl₃) 8.76 (d, J = 4.6 Hz, 1H), 8.03 (d, J = 8.8 Hz, 1H), 7.39 (dd, J = 

13.7 Hz, 2H), 7.26 (d, J = 0.8 Hz, 2H), 6.73 (d, J = 7.9 Hz, 1H), 3.97 (s, 3H), 3.41 (q, J = 8.3 

Hz, 3H), 2.91 (dd, J = 13.9 Hz, 3H), 2.83-2.50 (m, 2H), 2.17 (s, 1H), 2.04 (s, 3H), 1.92-1.71 

(m, 3H), 1.56 (m, 3H), 1.25 (t, J = 7.0 Hz, 3H), 0.89 (t, J = 6.9 Hz, 3H). 
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9-O-dihydroquinyl-5-phenylfuran-2-carboxylate 160  

	
  

Subsequent physicochemical analysis of the purified product confirmed formation of the title 

compound. Sample (S)-160 was afforded in 82% yield. (Procedure same as 147) 

White solid;	
  ¹H NMR (400 MHz, CDCl₃) 8.66 (d, J = 4.5 Hz, 1H), 7.95 (d, J = 9.2 Hz, 2H), 

7.72 (dd, J = 8.3 Hz, 2H), 7.32 (m, 2H), 6.72 (d, J = 3.6 Hz, 2H), 3.93 (s, 3H), 3.34 (dd, J = 

15.0 Hz, 3H), 2.82 (d, J = 68.7 Hz, 3H), 1.98 (s, 3H), 1.75 (s, 2H), 1.47 (m, 3H), 1.19 (t, J = 

7.1 Hz, 3H), 0.83 (t, J = 7.2 Hz, 3H). 

9-O-dihydroquinyl pivalate 158 

	
  
Subsequent physicochemical analysis of the purified product confirmed formation of the title 

compound. Sample (S)-158 was afforded in 93% yield. (Procedure same as 147) 

¹H NMR (400 MHz, CDCl₃)	
  8.66 (d, J = 4.5 Hz, 1H), 7.93 (d, J = 9.2 Hz, 1H), 7.38 (s, 1H), 

7.30 (dd, J = 9.1 Hz, 1H), 7.24 (d, J = 4.2 Hz, 1H), 7.20 (d, J = 0.9 Hz, 1H), 3.91 (s, 3H), 

3.34-3.14 (m, 9H), 2.87 (s, 3H), 2.67 (s, 1H), 1.70 (s, 3H), 1.59-1.34 (m, 3H), 1.17 (s, 3H), 

0.86 (t, J = 7.02 Hz, 3H); 13C NMR (75 MHz, CDCl3) 178.68, 165.38, 148.9, 147.1, 143.9, 

141.3, 138.34, 131.96, 121.3, 122.6, 126.09, 109.99, 56.48, 52.50, 49.96, 39.05, 27.3, 23.56, 

12.15,  
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9-O-dihydroquinyl-2-(pyridin-4-yl)-acetate 157 

	
  
Subsequent physicochemical analysis of the purified product confirmed formation of the title 

compound. Sample (S)-157 was afforded in 73% yield. (Procedure same as 147) 

¹H NMR (400 MHz, CDCl₃) 8.63 (d, J = 4.4 Hz, 1H), 7.81 (d, J = 9.5 Hz, 1H), 7.55 (d, J = 

4.5 Hz, 1H), 7.37 (dd, J = 21.9 Hz, 1H), 7.12 (d, J = 8.0 Hz, 1H), 7.03 (s, 1H), 3.69 (s, 3H), 

3.10 (m, 3H), 2.86 (m, 1H), 2.66 (d, J = 8.6 Hz, 1H), 2.52 (s, 1H), 2.11 (s, 1H), 1.77 (m, 3H), 

1.66-1.30 (m, 3H), 1.21 (s, 3H), 0.96 (s, 3H), 0.84 (t, J = 7.1 Hz, 3H) 

9-O-dihydroquinyl-thiophene-2-carboxylate 156 

	
  

Subsequent physicochemical analysis of the purified product confirmed formation of the title 

compound. Sample (S)-156 was afforded in 78% yield. (Procedure same as 147)	
  

¹H NMR (400 MHz, CDCl₃)	
  8.65 (d, J = 4.5 Hz, 1H), 7.94 (d, J = 9.2 Hz, 1H), 7.80 (dd, J = 

3.7 Hz, 1H), 7.56 (dd, J = 4.9 Hz, 1H), 7.47 (s, 1H), 7.32 (dd, J = 9.1 Hz, 1H), 7.20 (s, 1H), 

7.08 (dd, J = 4.9 Hz, 1H), 3.96 (s, 3H), 3.43-3.23 (m, 3H), 3.03-2.61 (m, 1H), 1.98 (s, 1H), 

1.75 (s, 3H), 1.48 (m, 3H), 1.19 (t, J = 7.1 Hz, 3H), 0.86 (t, J = 7.0 Hz, 3H). 
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9-O-dihydroquinyl-2,3,4,5,6-pentalfluorobenzoate 148 

	
  

Subsequent physicochemical analysis of the purified product confirmed formation of the title 

compound. Sample (S)-148 was afforded in 73% yield. (Procedure same as 147) 

¹H NMR (300 MHz, CDCl₃) 8.76 (d, J = 4.6 Hz, 1H), 8.03 (d, J = 8.8 Hz, 1H), 7.40 (m, 1H), 

6.73 (d, J = 7.9 Hz, 1H), 3.97 (s, 3H), 3.41 (q, J = 8.5 Hz, 3H), 2.91 (dd, J = 13.6 Hz, 1H), 

2.68 (m, 3H), 2.04 (s, 1H), 1.75 (s, 1H), 1.52 (dd, J = 45.0 Hz, 3H), 1.25 (t, J = 7.14 Hz, 3H), 

0.89 (t, J = 6.9 Hz, 3H) 

1,4-Bis (9-O-dihydroquinyl) phthalazine 162  

Preparation of 1,4-Dichlorophthalazine 169 

 
A 250 mL round-bottomed flask was equipped with a condenser and a mechanical stirrer. 

The system was flame-dried under a strong flow of nitrogen and cooled to room temperature. 

The flask was charged with (8.0 g, 0.049 mol, 1 eqn) of phthalhydrazide 168 (Aldrich), and 

(22.0 g, 1.05 mol, 2.1 eqn) of phosphorus pentachloride, and 2 drops of DMF. The condenser 

was fitted with a calcium chloride drying tube (4 × 1 in. of CaCl₂ having a cotton plug on 

each side and directly connected to the condenser to prevent moisture contamination and 

allow HCl evolution), and the solid mixture was gently heated from room temperature to 145 

°C (oil bath temperature) over 60-min period. The mixture slowly liquefied, and the orange 

solution was heated for an additional 4 hours. The condenser was then replaced with a 

distillation apparatus, and the phosphorus oxychloride was distilled off. The residual off-

white solid was cooled to room temperature, crushed to a fine powder, and then dissolved in 
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100 mL of dichloromethane with stirring. After 1 h the solution was filtered and the filtrate 

was added to 25 g of neutral alumina. After being stirred for an additional 1 hour, the solution 

was filtered through a 3 in. deep pad of alumina, and the pad was washed with more DCM. 

The organic layers were combined, dried over MgSO, and then evaporated in vacuo to give a 

white solid. Recrystallization from 75 mL of THF gave 5.2g of product 169; concentration of 

the mother liquor and crystalisation gave an additional 2.0 g of pure white needles (78% 

yield) (Rf 0.35, CH₂Cl₂), mp 162-163.5°C (lit.10 mp 164°C). ¹H NMR (300 MHz, CDCl3) 8.33 

(dd, J = 5.6 Hz, 2H), 8.08 (dd, J = 6.3 Hz, 2H). 

Preparation of1,4-Bis (9-O-dihydroquinyl) phthalazine 162 

 

A 250 mL flame-dried one-neck round-bottom flask was charged with dihydroquinidine (S)-

128 (8.49 g, 2.6 mmol, 2 eqn), 1,4-dichlorophthalazine 169 (2.70 g, 1.35 mmol, 1eqn), K₂CO₃ 

(5.61 g, 4.05 mmol, 3eqn), and 100 mL of anhydrous toluene. The flask was equipped with a 

Dean-Stark-condenser. Under nitrogen atmosphere, the mixture was refluxed for 2 hour. 

Then, KOH pellets (87%) (2.27 g, 4.05 mmol, 3eqn) were added and the mixture was refluxed 

(with azeotropic removal of water) under nitrogen atmosphere for an additional 12 h. [The 

reaction can be followed by TLC using 20:1, CH₂Cl₂ / MeOH. The Rf of the ligand is 0.22]. 

The light orange solution was cooled to room temperature, mixed with (20 mL) of water, and 

then extracted with EtOAc (3 × 30 mL). The organic layer was washed with water (20 mL) 

and brine (20 mL), dried over MgS0₄, and evaporated to dryness. The crude slightly yellow 

solid was dissolved in absolute EtOH (50 mL), and a solution of 4.6 ml of concentrated 

H₂SO₄ in 100 mL of absolute EtOH was added over a 10-min period with vigorous stirring. 

The clear solution was refrigerated (-5 °C) for 2 hour, the resulting white precipitate of the 

tetrasulfate salt was collected by filtration through a 10-20-μcm sintered glass funnel and 

washed first with cold EtOH (20 mL) and then with diethyl ether (50 mL). If difficulty occurs 

during the filtration, the ethanolic precipitate solution should be heated until clear and cooled 

at -5 °C to provide a salt easier to filter. The free base was easily prepared by dissolving the 
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off-white tetrasulfate salt in water (20 mL) and adding saturated sodium bicarbonate 

(NaHCO₃) until the solution became basic (pH 9-10), This solution was then extracted with 

EtOAc (3 Χ 20 mL), dried over MgS0₄, and concentrated to yield a solid which was dried in 

vacuo to give (88% yield) pure ligand.  

mp 133-135°C; [α]20
D = -262.5 (c = 1.15, MeOH); ¹H NMR (400 MHz, CDC1₃) 8.63 (d, J = 

4.5 Hz, 2H), 8.31 (m, 2 H), 7.97 (d, J = 9.2 Hz, 2 H), 7.91 (m, 2 H), 7.55 (d, J = 2.6 Hz, 2 H), 

7.43 (d, J = 4.6 Hz, 2 H), 7.35 (d, J = 9.2 Hz, 1 H), 7.34 (d, J = 9.2 Hz, 1H), 6.96 (d, J = 6.6 

Hz, 2H), 3.9 (s, 6H), 3.39 (q, J = 15.7 Hz, 2H), 2.81-2.60 (m, 8H), 2.34 (s, 1H), 2.20 (s, 1 H), 

1.94 (t, J = 11.1 Hz, 2H), 1.68 (s, 2H), 1.58-1.50 (m, 4H), 1.46-1.38 (m, 6H), 0.79 (t, J = 7.1 

Hz, 6H); 13C NMR (75 MHz, CDCl3) 156.40, 147.36, 145.03, 144.70, 132.09, 131.55, 

127.38, 122.79, 122.42, 121.77, 118.54, 102.09, 76.30, 60.26, 55.56, 50.87, 49.96, 37.45, 

27.32, 26.28, 25.29, 23.56, 11.88; IR (KBr, cm- 1)ν	
   : 2933, 2871, 1623, 1509, 1474, 1455, 

1393, 1354, 1262; HRMS for C₄₈H₅₄N₆O₄: m/z 911.3270 (M+H⁺). 

Preparation of 1,4-Bis (9-O-dihydroquinyl) pyridazine 171 

 

A 250 mL flame-dried one-neck round-bottom flask was charged with dihydroquinidine (S)-

128 (13 g, 4.01 mmol, 2 eqn), 3,6-dichloropyridazine 170 (3 g, 2.01 mmol, 1eqn), K₂CO₃ 

(8.33 g, 6.03 mmol, 3eqn), and 125 mL of anhydrous toluene. The flask was equipped with a 

Dean-Stark-condenser. Under nitrogen atmosphere, the mixture was refluxed for 2 hour. 

Then, KOH pellets (87%) (3.38 g, 6.03 mmol, 3eqn) were added and the mixture was refluxed 

(with azeotropic removal of water) under nitrogen atmosphere for an additional 12 h. [The 

reaction can be followed by TLC using 20:1, CH₂Cl₂ / MeOH. The Rf of the ligand is 0.22]. 

The light orange solution was cooled to room temperature, mixed with (25 mL) of water, and 

then extracted with EtOAc (3 × 35 mL). The organic layer was washed with water (25 mL) 

and brine (25 mL), dried over MgS0₄, and evaporated to dryness. The crude slightly yellow 

solid was dissolved in absolute EtOH (75 mL), and a solution of 7.5 ml of concentrated 
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H₂SO₄ in 163 mL of absolute EtOH was added over a 10-min period with vigorous stirring. 

The clear solution was refrigerated (-5 °C) for 2 hour, the resulting white precipitate of the 

tetrasulfate salt was collected by filtration through a 10-20-μcm sintered glass funnel and 

washed first with cold EtOH (25 mL) and then with diethyl ether (75 mL). The free base was 

easily prepared by dissolving the off-white tetrasulfate salt in water (25 mL) and adding 

saturated sodium bicarbonate (NaHCO₃) until the solution became basic (pH 9-10), This 

solution was then extracted with EtOAc (3 × 25 mL), dried over MgS0₄, and concentrated to 

yield a solid which was dried in vacuo to give (70% yield) pure ligand. 

White solid;	
  ¹H NMR (400 MHz, CDCl₃) 8.60 (d, J = 4.64 Hz, 2H), 7.89 (dd, J = 22.0 Hz, 

2H), 7.32 (m, 1H), 7.28 (d, J = 0.7 Hz, 4H), 6.88 (d, J = 28.6 Hz, 2H), 3.81 (s, 6H), 3.21 (d, 

J = 6.7 Hz, 2H), 2.79 (m, 4H), 1.98 (s, 2H), 1.64 (m, J = 15.3 Hz, 2H), 1.39 (m, 4H), 1.19 (t, 

J = 7.1 Hz, 6H), 0.78 (t, J = 7.1 Hz, 6H); 13C NMR (75 MHz, CDCl3) 157.3, 152.5, 148.2, 

144.7, 139.3, 131.2, 127.6, 123.8, 122.4, 121.8, 114.8, 101.5, 81.2, 57.5, 56.9, 55.8, 43.9, 

40.2, 37.5, 27.4, 26.9, 25.5, 24.1, 12.9; 

 Preparation of 1,4-Difluoroanthracene-9,10-dione 173 

	
  

A mixture of 2-(2,5-Difluorobenzoyl) benzoic acid (3gm, 0.011 mol, 1 eq) and 

polyphosphoric acid (0.2 M) was heated under reflux at 140°C and turned clear after 2 hour. 

Upon cooling the reaction mixture was poured into ice water and extracted with DCM. The 

organic layer was washed with water and brine (25 mL), dried over MgS0₄, and evaporated to 

dryness. The crude brownish black sticky reaction residue was purified via flash 

chromatography on silica gel (elution with chloroform only). Subsequent physicochemical 

analysis of the purified product confirmed formation of the title compound 173 30% yield 
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Preparation of 1,4-Bis (9-O-dihydroquinyl) anthracene-9,10-dione 174 

 

The flask was charged with dihydroquinidine (S)-128 (2.36 g, 0.72 mol, 2.5 eqn) and 50 mL 

anhydrous THF. nBuLi (2.5 M, 2 mL) at -78°C was slowly added in the reaction mixture, 

then 1,4-Difluoroanthracene-9, 10-dione (0.70 g, 0.29 mol, 1 eqn) was added and the reaction 

mixture was stirred for 2 hour at -78°C, additional 18 hour at room temperature and 2 hour at 

40°C. Reaction can be followed by TLC using (EtOAc / EtOH / Et₃N; 96%: 2%: 2%). The 

reaction mixture allows cooling down at room temperature, quenched with saturated NH₄Cl 

at 0°C and then extracted with EtOAc (3 Χ 10 ml). The organic layer was washed with water 

(25 mL), dried over MgS0₄, and evaporated to dryness. The crude yellowish solid was 

purified via flash chromatography on silica gel (elution with EtOAc / EtOH / Et₃N; 96%: 2% 

: 2%). Subsequent physicochemical analysis of the purified product confirmed formation of 

the title compound 174 35% yield. 

¹H NMR (300 MHz, CDCl₃) 8.60 (dd, J = 12.5 Hz, 2H), 8.26-8.10 (m, 2H), 7.97 (dd, J = 

14.5 Hz, 2H), 7.75 (dd, J = 9.3 Hz, 2H), 7.58 (m, 2H), 6.86 (d, J = 1.9 Hz, 2H), 6.41 (s, 2H), 

3.98 (d, J = 28.0 Hz, 4H), 3.41 (m, J = 7.0 Hz, 2H), 3.30-3.10 (m, 4H), 3.05-2.83 (m, 1H), 

2.39-2.11 (m, 1H), 1.98 (s, 2H), 1.84 (s, 2H), 1.59 (m, 4H), 1.19 (t, J = 7.1 Hz, 4H), 0.87 (t, J 

= 5.8 Hz, 6H) 

Synthesis of anthracene -9-carboxylic acid 165 

	
  

A 50 mL flame-dried round-bottom flask was charged with 9-anthracenaldehyde (1 g, 0.48 

mmol, 1 eqn), Oxone (3.19 g, 0.52 mmol, 1.1 eqn) and then added anhydrous DMF (5 ml). 
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The reaction mixture was stirred at room temperature. After 16 hour TLC analysis (75: 25; 

petroleum ether / diethyl ether) indicate the absence of starting material. The resulting solid 

residue was dissolved by the addition of aqueous HCl (1 M) and the mixture was transferred 

into separating funnel, and then extracted with EtOAc (3 Χ 20 ml). The combined organic	
  

layer was washed with (1 M) HCl (3 Χ 20 ml) and once with brine (20 ml). The organic layer 

was dried over MgS0₄, and evaporated to dryness. The residue was dissolve in DCM (10 ml), 

solution was transferred into separating funnel and then extracted with (0.4 M) of NaOH (4 Χ 

20 ml). The basic aqueous extract was acidified with (1 M) HCl and then extracted with 

EtOAc (4 Χ 10 ml). The organic layer was dried over MgS0₄, and evaporated to dryness. 

Recrystalisation from toluene gave orange needle like crystals. Subsequent physicochemical 

analysis of the purified product confirmed formation of the title compound 165 67% yield. 

¹H NMR (300 MHz, CDCl₃) 8.68 (d, J = 1.1 Hz, 1H), 8.40 (s, 2H), 8.02 (t, J = 7.7 Hz, 2H), 

7.53 (m, 4H); 

Synthesis of (9-O-dihydroquinyl) anthracene -9-carboxylate 167 

	
  

A mixture of anthracene-9-carboxylic acid (0.72 g, 0.32 mmol, 1 eqn) and thionyl chloride 

(1.5 ml) was heated in reflux and turned clear after 5 h. The excess of thionyl chloride was 

subsequently removed by distillation or evaporated	
  in	
  vacuo. The product was obtained as a 

solid (99% yield). Into a solution of cinchona alkaloid (S)-128 (1.74 g, 0.42 mmol, 1eqn) in 

anhydrous dichloromethane (5 ml), 0.5M anhydrous triethyl amine (2 ml) at 0°C was added. 

A solution of anthracene-9-carbonyl chloride (1 g, 0.42 mmol, 1 eqn) in anhydrous 

dichloromethane (5 ml) was slowly added. After 1 h the reaction mixture was warmed to 

room temperature and stirred for additional 2 h. Upon completion of reaction indicated by 

TLC, resulting mixture was poured into (10 ml) of distilled water; the organic layer was 

separated and washed with saturated NaHCO₃	
   solution, and then with water. The organic 

solution was dried by anhydrous MgSO₄	
  and	
  evaporated	
  in	
  vacuo	
  after work up followed by 

purification by flash chromatography on silica gel (ethyl acetate / ethanol / triethyl amine : 7 / 

O OH

SOCl2 , reflux

1 drop DMF

O Cl

CH2Cl2 , Et3N
0°C to rt

(55% yield)
165 166

(S)-167

O

N

N

H

H
O

O
HDHQ (S)-128

92% yield
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0.15 / 0.15). Subsequent physicochemical analysis of the purified product confirmed 

formation of the title compound afforded in 55% yield. 

¹H NMR (300 MHz, CDCl₃) 8.56 (m, 3H), 8.44 (d, J=1.5Hz, 1H), 7.92 (m, 2H), 7.76 (d, J = 

7.3 Hz, 1H), 7.48 (m, 5H), 7.29 (m, 2H), 6.63 (s, 1H), 6.33 (d, J=3.8 Hz, 2H), 3.98 (s, 3H), 

3.38 (m, 1H), 3.30-3.10 (m, 1H), 2.97 (m, 2H), 2.78 (m, 1H), 2.25 (m, 1H), 2.39 (1H) 1.98 (s, 

1H), 1.84 (s, 2H), 1.19 (t, J = 7.1 Hz, 4H), 0.87 (t, J = 5.8 Hz, 3H); 13C NMR (75 MHz, 

CDCl3) 158.2, 156.9, 148.2, 144.7, 143.7, 132.3, 130.9, 129.7, 128.4, 127.6, 127.2, 126.5, 

126.8, 125.8, 122.2, 121.8, 117.1, 104.8, 101.5, 78.8, 60.3, 55.8, 51.0, 43.9, 37.5, 27.4, 26.9, 

25.5, 24.1, 12.9; 

 

Attempted Synthesis of Five-Membered Ring Heterocycles by 
Cyclization of NH-Oxaziridines with Alkenes 

Synthesis of (E)-1, 7, 7-trimethylbicyco[2.2.1]heptan-2-one oxime 98 

	
  

A 100 mL round bottom flask was loaded with hydroxylamine hydrochloride (1.98 g, 2.8 

mmol, 2.2 eqn), (1R)-(+)-camphor (2 g, 1.3 mmol, 1 eqn) and picoline (2 ml, 1.95 mmol, 1.5 

eqⁿ) were heated under reflux in presence of ethanol (20 ml) for 5 hours. After cooling, the 

reaction mixture was concentrated. Water was then added, causing the crude oxime to 

precipitate from the solution as colourless crystals, which were isolated by filtration and 

washed with distilled water. The crystalline material was dissolve in DCM and dried over 

MgSO₄ and evaporated in vacuo to afford camphor oxime (87 % yield). 

White solid mp 119-121°C; ¹H NMR (300 MHz, CDCl₃) 6.19 (s, 1H), 2.66-2.40 (m, 1H), 

2.02 (d, J = 17.8 Hz, 1H), 1.89 (t, J = 4.3 Hz, 3H), 1.79 (m, 1H), 1.65 (m, J = 11.9 Hz, 1H), 

1.50-1.34 (m, 1H), 1.28-1.13 (m, 1H), 0.97 (s, 3H), 0.88 (s, 3H), 0.76 (s, 3H); 13C NMR (75 

MHz, CDCl3) 169.7, 51.8, 48.2, 43.6, 33.1, 32.6, 27.7, 19.4, 18.5, 11.1; IRνmax /cm-1 3293, 

1684; HRMS calcd. For C₁₀H₁₇NO (M⁺) 167.13101, found 167.13095. 

 

97
O

NH2OH.HCl
pyridine, ethanol

reflux, 5 h
87% yield

N OH98
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Synthesis of (E)-N-(1, 7, 7-trimethylbicyco[2.2.1]heptan-2-ylidene)nitramide 99 

	
  

A 150 ml round bottom flask was loaded with (1R, 4S)-(–)-Camphor oxime 98 (2 g, 1.2 

mmol) in glacial acetic acid (60 ml) was treated with 5T aqueous sodium nitrite (30 ml). A 

bright yellow colour developed and dispersed over 30 minutes. After a further 1.5 hours, 

water was added and the product was extracted with diethyl ether (2 Χ 20 ml), dried over 

MgSO₄ and the solvent removed under reduced pressure. The product was purified by 

column chromatography on silica gel (dichloromethane / light petroleum) to afford the title 

compound 72% yield as a colourless crystalline solid. 

Mp 41-42°C; ¹H NMR (300 MHz, CDCl₃) 2.70 (m, 1H), 2.13 (d, J = 18.6 Hz, 1H), 2.00-1.74 

(m, 3H), 1.61-1.43 (m, 1H), 1.34-1.21 (m, 1H), 1.00 (s, 3H), 0.94 (s, 3H), 0.84 (s, 3H); 13C 

NMR (300 MHz, CDCl3) 189.8, 54.5, 49.2, 43.8, 35.5, 31.9, 27.1, 19.8, 19.0, 10.7; IRνmax 

/cm-1 1645, 1569. 

Synthesis of 1, 7, 7-trimethylbicyco[2.2.1]heptan-2-imine 100  

 

A 50 ml round bottom flask was loaded with (1R, 4S)-(–)-Camphor nitrimine 99 (1.87g, 1.0 

mmol, 1 eqⁿ) and anhydrous THF (14 ml) was treated at 0°C with slow stream of ammonia 

gas for 15 minute. The mixture was allowed to reach at room temperature and solvent was 

removed under reduced pressure (keeping water bath below 30°C) to give the imine 100 as 

pale yellow solid (97% yield). 

¹H NMR (300 MHz, CDCl₃) 8.13 (s, 1H), 2.5 (m, 1H), 2.03 (d, J = 17.6, 1H), 1.95 (t, J = 4.4, 

1H), 1.93-1.84 (m, 1H), 1.69 (dt, J = 12.8, 1H), 1.41-1.22 (m, 2H), 0.97 (s, 3H), 0.94 (s, 3H), 

0.81 (s, 3H); 13C NMR (75 MHz, CDCl3) 194.0, 54.8, 47.3, 43.8, 40.4, 32.1, 27.1, 19.6, 19.2, 

10.4; IRνMax (CH₂Cl₂) /cm-1 3446, 1667. 

9998
N OH

5% NaNO2
     H2O

AcOH, rt
72% yield N NO2

99 100
N NO2

NH3(g)
THF, 0°C

97% yield NH



	
   103 

Synthesis of (1R, 4S)-(–)-Camphoryl oxaziridine 92 

 

A solution of purified m-CPBA (10.35 g, 0.06 mol, 1eqⁿ) in dry DCM (150 ml) was cooled to 

-40°C, causing some of the peracid to crystallize from the solution. A solution of the imine 

(6.44 g, 0.04 mol, 1.5eqⁿ) in dry DCM (90 ml) was added in the reaction mixture over period 

of 4-5 minute. The reaction mixture was stirred overnight at -40°C, and allowed to reach at 

room temperature. The reaction mixture was stirred at room temperature for further 2 hour 

until all the peracid had reacted (TLC), by which time much of the m-chlorobenzoic acid by-

product had crystallized from the solution. The solution was concentrated under reduced 

pressure until approximately 25% of the original volume remained. Petroleum ether was 

added and the process was repeated three times, and finally petroleum ether (90 ml) was 

added in the mixture. The precipitated m-chlorobenzoic acid was removed by filtration, and 

the rest of this by-product washed from the resulting solution with aqueous NaOH. The 

organic layer was dried over MgSO₄ and the solvent was removed under reduced pressure to 

give the crude product, which was purified by column chromatography on silica gel (light 

petroleum / ethyl acetate) to afford the desired oxaziridine 92  (83% yield). 

Colourless solid mp 153-155°C; [α]νmax + 6˚ (C=1.0,CHCl3); ¹H NMR (300 MHz, CDCl₃) 

4.19 (s, 1H), 3.71 (s, 1H), 2.35-2.14 (m, 1H), 1.92-1.29 (m, 1H), 1.25-1.10 (m, 1H), 1.00 (m, 

3H), 0.83 (s, 3H), 0.63 (s, 3H), 0.62 (s, 3H); 13C NMR (75 MHz, CDCl3) 89.7, 89.4, 48.1, 

47.8, 47.7, 47.5, 44.5, 44.3, 37.7, 36.5, 30.3, 29.5, 27.3, 27.0, 19.6, 19.5, 19.34, 19.31, 8.6, 

8.4; HRMS Calcd. for C10H17NO (M+) 167.13101, found 167.13120; IRνmax (CH₂Cl₂) /cm-1 

3202  

 

 

 

 

100 92
NH

m-CPBA, DCM
      -40°C

83% yield
O

NH
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1,2',7,7-tetramethylspiro[bicycle[2.2.1]heptanes-2.3’-[1,2]oxaziridine 199 

	
  

A 25 ml flame dried round bottom flask was loaded with a solution of Diisopropylamine 

(0.32 ml, 0.0023 mmol, 1.5 eqⁿ) and anhydrous THF (5 ml), while cooling the ice bath to -

78°C. nBuLi (0.22 ml, 0.0023 mmol, 1.5 eqⁿ) at -78°C was slowly added in the reaction 

mixture while stirring. After 1 hour the oxaziridine (0.25 g, 0.0015 mmol, and 1eqⁿ) was 

added in the reaction mixture. The reaction mixture was stirred for additional 2 hours and 

then methyl iodide (0.21 g, 0.0015 mmol, 1eqⁿ) was added at room temperature. Completion 

of the reaction after 4 hour by TLC. Solvent was removed under reduced pressure to give the 

crude product, which was purified by column chromatography on silica gel (petroleum ether / 

ethyl acetate; 8:1) to afford the desired product 199. Subsequent physicochemical analysis of 

the purified product confirmed formation of the title compound 199 afforded 52% yield. 

¹H NMR (400 MHz, CDCl₃) 5.95-5.42 (m, 1H), 5.20 (s, 1H), 2.87 (s, 1H) 2.40-2.30 (m, 1H), 

2.21-2.13 (m, 1H), 2.09 (s, 1H) 2.08 (s, 1H) 1.95-1.82 (m, 1H), 1.80-1.70 (m, 1H), 1.60-1.58 

(m, 1H), 1.22-1.20 (m, 1H), 1.00 (m, 1H), 0.83 (s, 1H), 0.80 (s, 3H), 0.72 (s, 3H); 13C NMR 

(400 MHz, CDCl3) 170.6, 140.8, 120.2, 40.7, 30.7, 30.6, 20.6, 20.0, 10.25.  

O
N

NH n-BuLi
THF

-78°C
N Li

O
NH

THF
-78°C

O
N

RT

193 195
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