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Abstract  

 

 Sulphur is essential for all living organisms and often a limiting nutrient for the 

growth of terrestrial plants and freshwater algae, therefore the response to sulphate 

deficiency has been broadly analysed in these organisms by system biology approaches. 

On the other hand, with a concentration of 28 mM in today’s ocean, sulphate does not limit 

the growth of marine phytoplankton. Moreover, high sulphate abundance in seawater 

promotes the biosynthesis of dimethylsulphoniopropionate (DMSP), a unique sulphur 

compound with implications for plankton biology and ecology, environmental function and 

the global sulphur cycle. Unfortunately, little is known about the regulation of sulphate 

uptake and assimilation by marine phytoplankton species. In an effort to advance 

knowledge of metabolic sulphur pathways in the marine microalgae, this thesis aimed to 

investigate how sulphate availability regulates physiological, biochemical and molecular 

changes in the coccolithophore Emiliania huxleyi CCMP 1516.  

 Algal cultures were subjected to artificial variations in ambient sulphur 

concentration and physiological and biochemical responses were assessed. Next, the global 

transcriptome response of E. huxleyi CCMP 1516 to limited sulphate supply was analysed 

by RNA sequencing. 

 Cell abundance and intracellular DMSP concentration decreased with 5 mM 

sulphate compared to 25 mM controls. Comparative experiments with E. huxleyi CCMP 

1516, 370 and 373 showed that the magnitude of this response varied amongst strains. 

Growth and DMSP synthesis were enhanced when sulphur-limited cultures were 

replenished with sulphate. Low sulphate medium stimulated sulphate uptake and decreased 

glutathione concentration, but did not affect adenosine 5’-phosphosulphate reductase 

(APR) activity. Transcriptome data showed 8222 genes were altered in expression, the vast 

majority up-regulated. Sulphate deficiency induced genes involved in carbohydrate and 

lipid metabolism, whereas genes involved in amino acid metabolism were frequently 

down-regulated. 

 The sulphate deficiency response in E. huxleyi shows some similarities to the well 

described responses of Arabidopsis and Chlamydomonas but also has many unique 

features. This dataset allows comparison of the response to sulphate deficiency over a large 

evolutionary distance and shows that even though E. huxleyi is adapted to high sulphate 

concentration and it retains the ability to re-program its gene expression in response to 

these conditions. 
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1.1.  The sulphur cycle, climate and marine plankton 

 

1.1.1. Sulphur cycle 

 

 The definition of a biogeochemical cycle is the transport and a transformation of 

matter through all four components of the Earth system: atmosphere, hydrosphere, 

lithosphere and biosphere. One of the principal global nutrient cycles is that for the 

element sulphur (S). Figure 1.1 shows the simplified biogeochemical cycle of sulphur; 

sulphur occurs in a variety oxidation states, ranging from +6 to -2 and as a very reactive 

element it can be transformed both chemically and biologically. The ocean is a major 

reservoir of sulphur mainly in the form of dissolved sulphate, gypsum and pyrite minerals 

(Sievert et al. 2007). Furthermore, the ocean is a main source of dimethylsulphide 

((CH3)2S; DMS) which is mostly derived from dimethylsulphoniopropionate 

((CH3)2S
+
CH2CH2COO

-
; DMSP) and dimethyl sulphoxide ((CH3)2SO2; DMSO). DMS is 

a volatile sulphur compound that is readily transferred from ocean to the atmosphere by 

sea-to-air gas exchange (Lovelock et al. 1972). The marine production of DMS is thought 

to contribute ~28 Tg S yr
-1 

(~ 50%) to the global atmosphere (Lana et al. 2011). 

 Other natural sources of sulphur are volcanic eruptions, weathering of rock and 

terrestrial vegetation. However, over the recent centuries, human activities have disturbed 

the natural sulphur cycle. Anthropogenic emissions caused by burning of fossil fuel were 

assessed by Roelofs et al. (1998) who estimated it at 67 Tg S yr
-1

, which significantly 

exceeds the marine biogenic flux. High sulphur emissions rates result in low rainwater pH 

(as oxidised sulphur readily reacts with water to form sulphuric acid). This wet deposition 

(acid rain) damages forests, freshwaters, soil and has even been shown proven to cause 

human illness (Jin and Bierma 2011). The global release of sulphur dioxide (SO2) due to 

industrial development has also provided large amounts of S to the soil, but from 1970s 

this deposition significantly declined after the emission limits were forced by 

environmental law. 
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Figure 1.1 The sulphur cycle. The main component of the cycle is sulphate present the water, the soil 

and the atmosphere. Sulphate assimilation by plants and algae is indicated by green and blue arrows 

respectively. Dissimilative sulphur reactions are carried out by soil microorganisms that mineralise S-

compounds to sulphate. Oceans and volcanoes are the natural sources of the volatile sulphur 

compounds released to the atmosphere that are subsequently oxidised to sulphate (Takahashi et al. 

2011). 

 

1.1.2. Climatic importance of sulphur (CLAW hypothesis) 

 

 First published in the 1970s (Lovelock and Margulis 1974), the Gaia theory states 

that organisms maintain a global homeostasis between biotic and abiotic systems through 

self-regulating feedback mechanisms. DMS production in the ocean and its consequences 

for the climate on Earth is an example of Gaia-like regulation. 

 The year 1987 saw a was breakthrough for the studying DMS(P) since Charlson et 

al. (1987) proposed the hypothesis that DMS was the one of the Earth’s climate 

regulators. This idea became known as the CLAW hypothesis after the initials of its 

authors’ names. The authors suggest that marine phytoplankton synthesises DMSP and 

part of this enters the atmosphere in the form of DMS and is oxidised to sulphate particles 

that can reflect sunlight back into space. These particles can also act as cloud 

condensation nuclei (CCN) brightening clouds and increasing global albedo. This changes 

the solar radiation (shading effect) and thereby also the temperature (cooling effect), and 

in turn this negatively affects algae growth closing the feedback loop. Despite intensive 

study of the CLAW hypothesis, the complexity of the interrelated processes that are 

involved and the lack of quantitative, real time measurements do not yet allow to for 

confirmation of this feedback loop. The gaps in this picture were discussed in a recent 

paper by Ayers and Cainey (2007) and are summarised briefly here. 
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 First of all, DMS concentration in the water column significantly depends on 

species composition as well as on bacterial, grazers and virus activity. Secondly, the exact 

physiological role of DMS(P) remains somewhat elusive, and therefore, our knowledge 

about how the environment influences emissions is poorly constrained. Wingenter et al. 

(2007) carried out a mesocosm experiment in Norway and showed that doubling carbon 

dioxide (CO2) increases DMS emissions, however measurements from the very similar 

experiment performed by Vogt et al. (2007) show that doubling or tripling CO2 did not 

increase the DMS concentration. This suggests that the biological response to change in 

CO2 level is inconsistent. Mesocosm study carried out by Wingenter et al. (2007) did not 

unambiguously show whether the increase of DMS emission was provoked by a direct 

response in the phytoplankton community such as increased lyase activity or a speciation 

change, or an indirect factor such as increased viral lysis or decreased bacterial turnover 

of DMS. 

 Another big challenge is estimating DMS flux from seawater to the atmosphere 

especially during rough weather conditions, which commonly occur but are dangerous for 

humans to work in at sea. Recently, the direct measurement of gas exchange based on 

micrometeorological techniques e.g. relaxed eddy accumulation and eddy covariance, 

have made better evaluation of ocean-atmosphere exchange of DMS possible (Blomquist 

et al. 2006; Marandino et al. 2008). 

 Beyond oceanic production and air-sea flux, to verify the CLAW hypothesis and 

complete cycle of sulphur, one needs to understand atmospheric sulphur chemistry. 

Anthropogenic activity further complicates these processes through the burning of fossil 

fuels. Regardless of the true situation, the CLAW hypothesis has inspired scientists from 

multidisciplinary areas and advanced us in our understanding of the connections within 

the Earth’s systems. 
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1.1.3. The DMSP/DMS cycle in the marine ecosystems 

 

 The ocean ecosystem regulates the production, conversion and emission of DMS(P) 

through various and complex biological, chemical and physical interactions (Figure 1.2). The 

fundamental elements of the cycle are the DMSP producers belonging to many phytoplankton 

groups. This is why a species specific composition is an important factor controlling oceanic 

DMS concentration. Keller et al. (1989) did a substantial pioneering study where they 

investigated 123 individual microalgae clones for the production of DMSP. They found a 

relationship between DMSP concentration and phytoplankton taxonomy. A significant 

amount of this compound is produced by species belonging to the prymnesiophytes 

(including coccolithophores) and dinoflagellates, with intracellular concentrations of several 

hundred mM of DMSP. Generally smaller, but still important  

amounts of DMSP characterise members of the chrysophytes and diatoms (Keller 1988; 

Keller et al. 1989; Matrai and Keller 1994). Although some microalgae are not major 

producers of DMSP on a per cell basis, the ability to form massive blooms may lead to 

increases in DMS concentration in the ocean. 
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Figure 1.2 Generalised diagram focusing on the production and fate pathways of DMSP and the 

products of its transformations due to biological and abiotic factors. These factors are indicated in 

colour as follows: green, phytoplankton; blue, zooplankton; red, bacteria; black, abiotic. Other 

abbreviations are: CCN, cloud-condensation nuclei; DOM, dissolved organic material; DMSO, 

dimethyl sulphoxide; MeSH, methanethiol;MPA, mercaptopropionate; MMPA, 

methylmercaptopropionate; MSA, methanesulphonic acid (Stefels et al. 2007). 

 

 

 

 DMSP is not simply the precursor of DMS but also plays many physiological roles 

within algal. DMSP can be a significant component of cellular organic carbon (1-16%) in 

different phytoplankton groups; for example in the haptophytes class, Phaeocystis. DMS and 

DMSP are also significant carbon sources for bacteria (Matrai and Keller 1994). Moreover, 

we know that just a small fraction (10-20%) of the DMSP originally produced is ultimately 

emitted in the form of DMS. The fate of these sulphur compounds is highly regulated by 

biological and physical processes (Figure 1.2). 
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 At the pH of seawater the chemical half-life of DMSP is about 8 years (Dacey and 

Blough 1987), therefore biological DMS formation due to enzymatic catalysis by bacteria 

and algae seems to be the dominant process. Some species have intra- and/or extracellular 

DMSP-lyase enzymes that may result in enhanced DMS concentrations directly or after 

DMSP is released into the water (Steinke et al. 1998; Steinke et al. 2000). In its dissolved 

form, DMSP is consumed and transformed at a high rate by the microbial food web (Figure 

1.2). Dissolved DMSP (DMSPd) concentration is usually lower (1-50 nM) and often 

overestimated (Kiene and Slezak 2006) compared with the particulate pool (1 to >300 mM). 

However, DMSPd turnover is fast and ranges between 1 and 129 nM d
-1

 (Turner et al. 1988; 

Kettle et al. 1999; Kiene and Linn 2000). The bacterial community degrades DMSPd not only 

by enzymatic breakdown to DMS, acrylate and H
+
. An alternative to the DMSP-lyase 

enzyme(s) breakdown process is the catabolism of DMSP to methanethiol (MeSH) via 

demethylathion/demethiolathion reactions (Kiene 1996). The latter pathway quantitatively 

dominates over the DMSP lyase pathway (Taylor 1993; Kiene 1996). Kiene et al (1999) have 

identified that MeSH is a very reactive compound and might be a major sulphur source for 

the synthesis of amino-acids and proteins in marine bacteria. The authors suggest that, in the 

ocean, microbial organisms prefer to utilise the trace amounts of available reduced sulphur 

instead of abundant sulphate in order to save energy. 

 A proportion of DMS undergoes either photochemical oxidation or biological 

transformation to form non volatile dimethyl sulphoxide ((CH3)2SO; DMSO). This 

compound is still poorly understood, however it is recognised as an effective radical 

scavenger and widely used in industry and medicine as a drug transporter and 

cryoprotectant(Hatton et al. 2005). Biologically produced DMS can be converted to DMSO 

by the dehydrogenase enzyme allowing photoautotrophic bacteria to grow with DMS as the 

electron donor. On the other hand, DMSO-reductase enzyme catalyses the reverse reaction 

producing DMS from DMSO (Bentley and Chasteen 2004). 

 Whilst microbial conversion of DMSP occurs, some fractions of particulate DMSP is 

transported from surface waters down to the seafloor. For example, Belviso et al. (2006) 

measured the downward flux in the Malangen fjord, Norway, using sediment traps and found 

that a significant fraction of the intracellular DMSP standing stock (up to 8% per day) and 

daily production (up to 56% per day) was lost by sedimentation. However, the magnitude of 

this loss pathway is likely to vary between different sites depending upon the dominant types 

of phytoplankton present. 
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1.2.  Sulphur metabolism in photosynthetic organisms 

 

1.2.1. Sulphate uptake 

 

 Sulphur is an essential macromolecule for the cell growth as it is a constituent of the 

amino acids (cysteine and methionine), oligopeptides such as glutathione, vitamins, co-

factors and numerous secondary metabolites. Sulphur has important functions in the catalytic 

or electrochemical processes in the cell. 

 Sulphate is the major sulphur form acquired and assimilated by bacteria, algae, fungi 

and plants. Most of the information about its uptake comes from green algae e.g. 

Chlamydomonas reinhardtii (Melis and Chen 2005; Lindberg and Melis 2008) and vascular 

plants e.g. Arabidopsis thaliana (Buchner et al. 2004; Barberon et al. 2008; Takahashi 2010). 

Figure 1.3 shows the generally accepted pathway of sulphate transport, and assimilatory 

reduction in plants. 

 The sulphate ion (SO4
2-

) has a negative charge and cannot go passively through the 

plasma membrane; therefore the uptake is facilitated by H
+
-ATPase co-transporters driven by 

the trans-membrane proton (H
+
) gradient. Plant sulphate transporters are predicted to have 12 

membrane-spanning domains connected to the C-terminal STAS (sulphate transporters and 

anti-sigma factor antagonist) domain. For example, A. thaliana has 14 genes encoding 

H
+
/SO4

2-
 co-transporters clustered in 5 functional groups based on sequence similarity, 

localisation and kinetic properties (Kopriva 2006). In A. thaliana, SO4
2-

 influx from the 

external environment into the root is assured by high affinity transporters, SULTR 1;1 and 

SULTR1;2. On the other hand, a low affinity system consisting of SULTR 2;1 SULTR 2;2 

and SULTR3;5 transporters, presumably allocates sulphate anions from the roots to the 

shoots and leaves (Takahashi et al. 2000; Kataoka et al. 2004). Transporters from the 

SULTR4 group are involved in influx of sulphate from the vacuole to the cytoplasm (Kataoka 

et al. 2004). 
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Figure 1.3 Proposed pathway of assimilatory sulphate (SO4
2-

) reduction and methionine (Met) 

synthesis. Adapted from Kopriva and Koprivova (2004). 
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 Algae have a distinct sulphate transport system compared to vascular plants. Analysis 

of the C. reinhardtii genome revealed 3 genes (SULTR1, SULTR2 and SULTR3) encoding the 

H
+
/SO4

2-
 co-transporters that are similar to those found in plant. Another 3 transporters 

(SLT1, SLT2 and SLT3) belong to the Na
+
/ SO4

2-
 transporter family are found in bacteria and 

mammals but not in vascular plants. Interestingly, the marine chlorophyte Ostreococcus tauri 

has only 2 Na
+
/ SO4

2-
 transporters which is might be energetically beneficial as sodium 

concentration in the ocean is high (Pootakham et al. 2010). Apart from a plasma membrane 

sulphate transport system, C .reinhardtii has a chloroplast envelope transport system, SulP, 

which is similar to the ATP-binding cassette (ABC) transporters of bacteria. This transporter 

is found in chloroplast genomes of a few basal plants, but not in vascular plants where the 

plastidic sulphate transporter still awaits discovery (Takahashi et al. 2011). 

 Plants and algal sulphate transport is highly regulated by sulphur availability. 

Sulphate uptake affinity and capacity increase within hours of sulphate removal and decrease 

again upon sulphate restoration. However, we do not know much about sulphate transport 

regulation in marine microalgae. The high and constant sulphate concentration in the ocean 

suggests that marine phytoplankton may not require as efficient transport as terrestrial and 

freshwater organisms.  

 

1.2.2. Sulphate reduction 

 

 Sulphate is the most oxidised and stable sulphur compound and it has to be reduced 

after being transported into plastids to be assimilated. For this reason, in the initial step of 

assimilatory reduction, sulphate is activated by adenylation to adenosine 5’-phosphosulphate 

(APS) (Figure 1.3). This reaction is catalysed by ATP sulphurylase (ATPS). In some groups 

of organisms such as bacteria and fungi a second activation step occurs, where APS is 

phosphorylated by APS kinase to form adenosine 3’-phosphate 5’-phosphosulphate (PAPS). 

Patron and co-workers (2008) revealed that plant ATPS genes are more closely related to 

animal ATPS genes than to those in green algae. Marine microalgae such as diatoms and 

haptophytes have both types of ATPS genes. E. huxleyi and T. pseudonana possess a plant-

like form fused with APS kinase and inorganic pyrophosphatase which presumably results in 

much higher APS synthesis rate  

(Kopriva et al. 2009; Takahashi et al. 2011). Interestingly, in the dinoflagellate Heterocapsa 

triquetra ATPS is fused with the subsequent enzyme in the pathway, APS reductase (APR), 

which is another way to improve ATPS efficiency (Kopriva et al. 2009). Activated SO4
2-

 of 
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APS molecules are reduced to sulphite (SO3
2-

) in the reaction catalysed by APS reductase 

(APR) (Figure 1.3). In flowering plants and green algae the APR protein consists of an N-

terminal reductase domain, that binds [4Fe-4S] cluster cofactors and a C-terminal thioredoxin 

domain (Gutierrez-Marcos et al. 1996; Kopriva et al. 2002; Kopriva and Koprivova 2004). 

Marine microalgae have an APR isoform called APR-B. This protein was first identified in 

the moss Physcomitrella patens (Kopriva et al. 2007a) and it is unique in its ability to reduce 

APS despite lacking the [4Fe-4S] cluster (Kopriva et al. 2007b; Patron et al. 2008). The 

recently sequenced genomes of T. pseudonana and other marine microalgae include genes 

that encode homologues of APR-B, which probably represents an adaptation to iron 

limitation in the ocean (Falkowski et al. 1998). Gao et al. (2000) investigated APR and PAPS 

reductase activity of several marine microalgal species from diverse groups. They showed 

that APS is the main substrate being reduced and that activity is significantly higher than that 

found for higher plants. 

 For further assimilation, SO3
2-

 generated from APS is reduced by plastidic sulphite 

reductase (SiR). This enzyme uses reduced ferreodoxin as a reductant and six electrons are 

needed form sulphide (S
2-

). The activity of SiR was detected by Schmidt (1973) in cell-free 

extract from green alga Chlorella. C. reinhardtii  has two genes (SIR1 and SIR2) encoding 

ferreodoxin-dependent eukaryotic sulphite reductase and SIR3 gene encoding putative 

bacterial like enzyme using NADPH as an electron donor. Marine microalgae have these both 

types of genes. By contrast, in A. thaliana SiR is encoded by a single copy gene (Bork et al. 

1998). 

 

1.2.3. Cysteine and methionine synthesis 

 

 The final step of the assimilatory sulphate reduction pathway is the synthesis of 

cysteine (Cys) by incorporation of sulphide into O-acetylserine (OAS). This reaction is 

catalysed by O-acetylserine(thiol)lyase (OASTL) and follows OAS formation from serine 

and acetyl-coA catalysed by serine acetyltransferase (SAT). These two enzymes form a 

complex called cysteine synthase that is important for regulation of Cys synthesis. Plants can 

synthesise Cys in 3 compartments: cytosol, chloroplasts and mitochondria (Heeg et al. 2008).  

Multiple genes encoding SAT and OASTL proteins were found in the T. pseudonana and E. 

huxleyi genomes suggesting synthesis in different subcellular compartments.  

 Cys synthesis is the terminal point in sulphur assimilation and the starting point for 

production of methionine (Met) and various other metabolites containing reduced sulphur.  
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Met is synthesised in 3 consecutive reactions (Figure 3.1): first cystathionine γ-synthase 

combines O-phosphohomoserine (OPH) with Cys to form cystathionine. Then, the second 

enzyme, cystathionine β-lyase converts cystathionine to homocysteine (HCys), and in the 

final step, the thiol group of HCys is methylated in a reaction catalysed by methionine 

synthase (MS). 

 

1.2.4. DMSP synthesis 

 

 Met is an essential amino acid not only for building proteins and cofactors such as S-

adenosylmethionine, but also as the precursor of DMSP. In an early study, Green (1962) 

reported methionine to be the first molecule for the biosynthesis of DMSP n the marine alga 

Ulva lactuca. He showed that methyl group and the sulphur in dimethylsulphoniopropionate 

came from methionine. Currently, it is believed that biochemical pathway from Met to DMSP 

evolved in three independent ways (Gage et al. 1997; Stefels 2000). Based on in vivo isotope 

labelling, Gage and co-workers (1997) revealed that the green macroalga, Enteromorpha 

intestinalis, performs DMSP synthesis in four steps (Figure 1.4). A transamination reaction 

forms 4-methylthio-2-oxybutyrate (MTOB) by removing the NH3 group from Met. This 

reaction possibly reflects the elevated levels of DMSP observed under N-limited conditions 

(Groene 1995). MTOB is subsequently converted to 4-methylthio-2-hydroxybutyrate 

(MTHB) by MTOB reductase. Whilst the first 2 reactions also occur in non-DMSP 

producers, the following transformations are unique to DMSP producers (Gage et al. 1997). 

MTHB is S-methylated by MTHB S-methyltranspherase to generate 4-dimethylsulphonio-2- 

hydroxybutyrate (DMSHB) and the last step involves oxidative decarboxylation of DMSHB 

which yields DMSP. 

 There are far fewer DMSP producers amongst higher plants compared to algae. The 

strand plant Wollastonia biflora is an example of DMSP producing vascular plant (Hanson et 

al. 1994; Otte et al. 2004). In this species, DMSP synthesis pathway differs from that 

described for algae. The first step is the formation of S-methyl-methionine (SMM) by 

methionine S-methylation catalysed by methylmethionine synthetase. Then, SMM undergoes 

transamination/decarboxylation resulting in DMSP-aldehyde (DMSP-ald) synthesis. 

Ultimately, the oxidation reaction of DMSP-ald yields DMSP. 

 The third pathway is thought to be characteristic for the Poaceae and was identified in 

the salt marshes grass Spartina alterniflora (Kocsis and Hanson 2000). In this organism, 3-
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dimethylsulfoniopropylamine (DMSP-amine) is an intermediate molecule between SMM and 

DMSP-ald. This distinguishes DMSP production between grasses and higher plants. 

 

 

Figure 1.4 The methionine (Met) to dimethylsulphoniopropionate (DMSP) biosynthesis pathway in 

marine algae established for the green macroalga Enteromorpha intestinalis by Gage at al. (1997). 

DMSHB, 4-dimethylsulfonio-2-hydroxy-butyrate; MTHB, 4-methylthio-2-hydroxybutyrate; MTOB, 

4-methylthio-2-oxobutyrate. 

 

1.3.  Regulatory mechanisms of sulphur metabolism 

 

1.3.1. Sulphate assimilation under sulphur deficiency stress 

 

 Sulphate acquisition and assimilation is a precisely controlled at the metabolic and 

molecular level according to demand for reduced sulphur. Most of our knowledge is derived 

from investigations of the model species A. thaliana and C. reinhardtii. 

Sulphate availability seems to be among the most important factor controlling its assimilation 

rate. Removing sulphate from the environment induced the expression of genes encoding 

SO4
2-

 transporters, especially the high-affinity SULTR1;1 and SULTR1;2 (Hirai et al. 2003; 

Maruyama-Nakashita et al. 2003; Nikiforova et al. 2003). The increase in mRNA abundance 

under S-starvation was accompanied by accumulation of both transporters and up-regulation 

of sulphate uptake activity (Yoshimoto et al. 2007). A similar response was demonstrated in 

C. reinhardtii by Yildiz and colleagues (1994). These authors observed that sulphate 

transport parameters were altered in S-starved algae: the Vmax increased ~10-fold, whereas 

the KM decreased ~ 7-fold. The induction of the high-affinity transport system in this green 

alga is supported by the recent finding that transcripts encoding three sulphate transporters 

(SLT1, SLT2 and SULTR2) noticeably increased in response to S-limitation (González-

Ballester et al. 2010). An additional sulphate assimilation step induced by S-deprivation is 

APS reduction both mRNA and enzyme activity affected (Takahashi et al. 1997; Leustek et 
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al. 2000). Interestingly, in S-starved C. reinhardtii 4h after beginning of the treatment APR 

transcript level started to decline while its activity kept increasing. This suggests that the 

APR activity is at least partly controlled at the posttranslational level (Ravina et al. 1999). 

Downstream the S metabolic pathway is also regulated by sulphate availability; under S-

limitation conditions the pool of S-metabolites such as sulphate, cysteine and glutathione 

decreased whereas serine and OAS that are Cys precursors accumulated (Nikiforova et al. 

2006). 

 

1.3.2. Transcriptional regulation of sulphate transport and metabolism 

 

 Recent advances in functional genomics have led to the identification of the key 

regulators in sulphate transport and assimilation for plants and green algae (Takahashi et al. 

2011) (Figure 1.5). 

 Maruyama-Nakashita and co-workers (2006) identified a central transcription factor, 

Sulphur Limitation 1 (SLIM1) that regulates the expression of many genes involved in 

sulphate assimilation and secondary metabolism (Figure 1.5 A). The authors performed a 

genetic screen for mutants, with a sulphur-responsive promoter-GFP, that were unable to 

induce the sulphate transporter gene SULTR1;2 by S-starvation. SLIM1 belongs to ethylene-

insensitive-like (EIL) transcription factors family composed of six members (EIN3 and EIL1 

to EIL5). In fact, EIL3 vas verified to be the only member of the family that was able to 

restore the sulphur limitation in a response-less phenotype slim1 mutant, therefore it was 

renamed SLIM1 (Maruyama-Nakashita et al. 2006). SLIM1 is responsible for increase of 

sulphate uptake and for reduction of synthesis of sulphur-containing secondary metabolites, 

glucosinolates. It also regulates other components of the signalling pathways, such as 

microRNA-395 (miR395). Under sulphur-limited conditions SLIM1 induces miR395 in 

shoots and roots. The miR395 gene is involved in the regulation of sulphate accumulation 

and its allocation in the plant in such way that it limits expression of SULTR 2;1 to xylem 

parenchyma which enhance sulphate translocation to the shoot but inhibits shoot to roots 

transport (Liang et al. 2010; Kawashima et al. 2011). 

Sulphur deficiency represses expression of several MYB transcription factors belonging to 

the R2R3-type MYB family. These factors are another example of sulphur regulation in the 

plants (Figure 1.5 A). MYB28 and MYB29 are expressed preferentially in leaves and 

positively regulate the biosynthesis of methionine-derived aliphatic glucosinolates, whereas 

MYB34 expressed in roots activates the synthesis of indole glucosinolates (Lewandowska 
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and Sirko 2008). Yatusevich et al. (2010) showed that MYB transcription factors also 

regulate genes of primary sulphate metabolism and therefore the genes involved in the 

synthesis of activated sulphate are part of the glucosinolates biosynthesis network. Under S-

limitation SLIM1 negatively controls some members of MYB family to restrict sulphur 

utilisation to primary metabolism (Maruyama-Nakashita et al. 2006). The final addition to the 

list of transcription factors regulating sulphur metabolism in plants is Long Hypocotyl 5 

linking the pathway to light signalling (Lee et al. 2011). 

 

 

 

 

 

Figure 1.5 Complex regulatory network of pathways driven by S-limitation in: A: the vascular plant 

Arabidopsis thaliana and B: the green alga Chlamydomonas reinhardtii. Sulphur transport and 

metabolism regulations are indicated by red lines, whereas other general pathways modulated by S-

limitation are indicated by grey lines (Takahashi et al. 2011). 
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1.3.3. Sulphur Acclimation1 (SAC1) 

 

 Similarly to A. thaliana, molecular regulation by S availability has also been studied 

in C. reinhardtii (Figure 1.5 B). Interestingly, the knowledge of sulphur sensing is much 

more advanced in this alga than in plants. In addition, in contrast to higher plants this green 

alga is able to secure sulphate supply under S-deprived condition by hydrolysing sulphate 

esters via the action of arylsulphatase. 

 The SAC1 gene encodes for an integral membrane protein associated with an 

adaptation to low sulphate conditions. Although, SAC1 is homologous to Na
+
/SO4

2-
 

transporters (SLC 13 family), it seems to play a role as a sensor of extracellular sulphate level 

rather than as a transporter (Davies et al. 1996; Moseley et al. 2009). It is also involved in 

photosynthesis reduction essential when the capacity to assimilate sulphate decreases in the 

cell (Davies et al.1996). Its regulatory functions were identified by genetic screening of sac 

mutants that were unable to synthesise arylsulphatase under low sulphate conditions and were 

less efficient in sulphate uptake than wild type cells (Davies et al. 1996). Studies of the sac1 

mutant indicate SAC1 controls not only proteins related to sulphate assimilation but also 

alters proteins involved in the reconstruction of cell walls and the photosynthetic apparatus 

when C. reinhardtii is S-starved (Takahashi et al. 2001; Ravina et al. 2002; Zhang et al. 

2004). 

 There are two other genes encoding regulatory proteins in response to S-limitation in 

C. reinhardtii. They are the SNRK2 family Ser/Thr protein kinases, SNRK2.1 and SNRK2.2 

(also known as SAC3) (Gonzalez-Ballester et al. 2008). SNRK2.1 kinase is essential for the 

expression of S-responsive genes and for maintaining the viability of S-starved cells 

(González-Ballester et al. 2010). When cells are replete for sulphate SNRK2.2 inhibits 

SNRK2.1 and thus represses the acclimation response. However, under sulphur-limitation, 

SAC1 acts as a negative controller of SNRK2.2 which in turn releases SNRK2.1 (Moseley et 

al. 2009). 
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1.4.  Physiological roles of sulphur in marine phytoplankton 

 

 The fact that DMSP synthesis is limited to just a few taxonomic groups of marine 

phytoplankton and a few higher plants is very intriguing. The intracellular concentration of 

this molecule ranges between 50 and 400 mM which correspond to 50 to almost 100% of the 

total organic sulphur in the cell (Matrai and Keller 1994; Keller et al. 1999). Additionally, 

various strains within one species can differ substantially in biological DMSP production 

terms (Steinke et al. 1998). Broad interest in DMSP and DMS has led to suggestions of 

several hypothetical roles for these compounds in cell metabolism, however, not all of these 

are fully elucidated. These roles are discussed below. 

 

1.4.1. Compatible solutes (osmo- and cryoprotectors) 

 

 Turgor pressure is the difference between the internal (cellular) and external 

hydrostatic pressures. Marine algae precisely regulate their turgor by accumulation of 

intracellular inorganic ions, mainly Na
+
, K

+
, Cl

-
 (Bisson and Kirst 1995). This is achieved by 

passive or active ion transport via pores and channels located in the cell membrane. 

Although, inorganic ion uptake is very efficient and a low energy cost process, the high 

concentration necessary to balance external hyperosmotic potential may exert a negative 

effect on cell metabolism. Thus, algae favour the accumulation of compatible solutes, low 

molecular weight organic compounds, especially under long term hyperosmotic conditions. 

The main property of these compounds is the ability to modulate osmotic balance without 

inhibiting individual enzyme activities or overall cellular functions (Brown 1976). Most of 

these molecules are photosynthetic products e.g. sugars, polyols and heterosides. Other 

molecules like tertiary sulphonium compounds (DMSP) and quaternary ammonium 

compounds (glycine betaine) are not direct photosynthetates but they play an important role 

in some algae, cyanobacteria, bacteria and salt marsh plants (Csonka and Hanson 1991; 

Stefels 2000; Welsh 2000). In fact, DMSP levels increase in response to high salinity 

conditions (Vairavamurthy 1985; Dickson and Kirst 1986), whereas salinity down-shock 

results in DMSP release from the cell (Niki et al. 2007).  

 Osmolytes that accumulate under hyperosmotic stress can also assist in protein 

stabilisation provoked by temperature change. Nishiguchi and Somero (1992) demonstrated 

in their study that DMSP is an effective cryoprotectant of protein structure. This appeared to 
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be confirmed by the 5-fold higher intracellular DMSP concentration seen in Antarctic green 

microalgae grown at 0
o
C compared to 10

o
C (Karsten et al. 1992). 

 

1.4.2. Antioxidant protection 

 

 Various stressors like excess of light energy, starvation or toxins can result in 

induction of reactive oxygen species (ROS), such as singlet oxygen (
1
O2), superoxide    (O2

-
), 

hydrogen peroxide (H2O2) and hydroxyl radicals (•OH) that can damage not only the 

photosynthetic components but also DNA, proteins and lipids. 

 Sunda and et al. (2002) proposed that DMSP and its metabolic products, DMS, 

acrylate, DMSO and methane sulphinic acid (MNSA), may form a cascade of radical 

scavengers as part of the overall antioxidant system. They observed an increase in DMSP and 

DMS-production via DMSP lyase activity in microalgae in response to CO2 and Fe 

limitation, high Cu
2+

, H2O2 and ultraviolet radiation. Similar up-regulation of DMSP 

concentration was reported in T. pseudonana grown under nutrient limitation (Bucciarelli and 

Sunda 2003). 

 DMSP and its derivatives are not the only S-metabolites involved in the ROS 

removal. The S-containing amino acids Cys and Met are very reactive, especially with 
1
O2 

and •OH (Møller et al. 2007). GSH, which is the main non-protein thiol, is also used to 

remove H2O2 and so it is important in redox homeostasis (Noctor and Foyer 1998).  

 

1.4.3. Overflow mechanism  

 

 Stefels (2000) proposed a concept that increased production and release of DMSP 

could represent an overflow mechanism for excess reduced sulphur, and possibly also carbon, 

under unbalanced growth conditions. She argued that under nitrogen limitation this process 

could maintain cysteine and methionine concentrations at a sufficiently low level for 

reductive sulphate assimilation to continue and thus ensure continuation of other metabolic 

reactions. Indeed, several studies are consistent with this hypothesis. It was observed that 

algae responded to N-limitation by increasing DMSP concentration (Turner et al. 1988; 

Grone and Kirst 1992; Bucciarelli and Sunda 2003). If DMSP does function as an overflow 

compound its intracellular homeostasis should be regulated by the releasing processes rather 

than production (Stefels et al. 2007). Another possible role for the overflow mechanism 
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proposed by Stefels (2000) is in protein turnover and amino acid reallocation as an adaptation 

to new environmental conditions.  

 

1.4.4. DMSP as a chemical defence compound  

 

 There are ~10
7
 viruses in every millilitre of surface seawater. This means that viruses 

are the most numerous biological entities in the aquatic systems with ~15 times the total 

number of bacteria and archaea. Thus marine viruses play an important role in altering 

community structure and biogeochemical cycling (Danovaro et al. 2011). One of the most 

significant impacts on phytoplankton communities is algal bloom termination associated with 

viral lysis (Suttle 1992; Fuhrman 1999; Baudoux et al. 2006). From observation in the 

laboratory studies, it was reported that viral infection of DMSP producers such as E. huxleyi 

enhances DMSP release to the dissolved pool which can be subsequently converted to DMS 

mostly by bacterial but also by algal DMSP lyase enzymes (Malin et al. 1998; Niki et al. 

2000). On the other hand, Evans et al (2006) observed that DMSP cleavage products: DMS 

and acrylic acid (AA) inhibited infectivity of the large phycodnavirus –E. huxleyi virus 86 

(EhV-86). This suggests that the cleavage of DMSP into DMS and AA might have a potential 

role in reducing the propagation of viral particles within an E. huxleyi population. In support 

of this idea, E. huxleyi strains characterised by high DMSP-lyase activity were resistant to 

virus infection whereas low DMSP-lyase strains did not escape the viral infection (Schroeder 

et al. 2002). 

 DMSP and its degradation products were also found to be mediators in marine 

microbial interactions. Wolfe and Steinke (1996) demonstrated that grazing by the 

dinoflagellate Oxyrrhis marina on E.huxleyi triggered DMSP release and its conversion into 

DMS and presumably also acrylate. These products reacted in turn as a grazing deterrent on 

the herbivore. It was also shown that O. marina preferred to feed on low DMSP lyase activity 

strains rather than on those with high lyase activity (Wolfe et al. 1997). Furthermore, DMS 

can attract zooplankton predators that feed on herbivores and thereby reduce the grazing 

pressure on the microalgae (Steinke et al. 2002). 
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1.5.  Emiliania huxleyi 

 

 Emiliania huxleyi (Figure 1.6 A), the subject of this thesis, is a coccolithophore 

belonging to the division Haptophyceae and the class Prymnesiophyceae. Haptophytes are 

unicellular algae containing chlorophyll a + c that occur mostly in littoral, costal and oceanic 

waters. Some are capable of forming colonies. The name of this division is associated with 

the presence of a unique flagella-like organelle, the haptonema (from the Greek hapsis- 

touch). This is considered to play a role in cell attachment or/and prey capture in some 

species. In many coccolithophores the haptonema is reduced to a vestigial structure (de 

Vargas 2007). Haptophytes, along with other eukaryotic lineages, the cryptophytes, 

alveolates and heterokonts (stramenopiles), arose from a secondary endosymbiosis of a 

heterotrophic eukariote with a red alga. Recently phylogenetic clock analysis based on the 

slow evolving 18S rDNA nuclear gene and the fast evolving plastid gene tufA, revealed that 

haptophytes diverged from other chromista ~1200 Ma (Medlin et al. 2008). According to 

Medlin et al. (1997) the origin of Haptophyceae is much older than the heterokont lineage 

that comprises diatoms and dated between 170 and 270 Ma. Within the haptophytes, 

coccolithophores make a distinct clade indicating that calcification evolved only once within 

the division (Fujiwara et al. 2001; Young and Henriksen 2003). Interestingly, Medlin et al. 

(2008) suggested that modern coccolithophores originated from a few lineages that survived 

the major extinction at the Cretaceous/Tertiary (K/T) boundary, whereas this extinction did 

not affect non-calcifying haptophytes; possibly due to their ability to switch from autotrophy 

to mixotrophy feeding (Liu et al. 2010). The molecular genetic phylogenies tally with the 

fossil records showed that calcifying haptophytes originated ~220 Ma ago in the late Triassic 

waters and they diversified into ~400 morphological species (Bown 1987). 

 The fossil records of E. huxleyi indicate that it is comparatively young 

coccolithophore morphospecies that appeared ~290 ka ago (Raffi et al. 2006). Since the SSU 

rDNA and RUBISCO rbcL genes are genetically identical in E. huxleyi and Gephyrocapsa 

oceanica (Fujiwara et al. 2001), which has a longer fossil record than E. huxleyi, it is believed 

that E. huxleyi diverged from G. oceanica. At the beginning of its evolution, E. huxleyi was a 

minor species among the coccolithophores but with time it started to dominate spreading 

from low latitudes (~85 ka) to middle latitudes (~70 ka) and high latitudes (~60 ka) of the 

North Atlantic.  
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Today, E. huxleyi is the most abundant and cosmopolitan coccolithophore in the ocean 

(Brown and Yoder 1994) and ofte makes up more than 50% of the coccolithophore flora 

(Okada and Honjo 1973). Being temperature and salinity tolerant E. huxleyi is a cosmopolitan 

species that lives in the entire photic zone, especially in nutrient-rich subpolar waters, the 

borders of the subtropical oceanic gyres as well as in equatorial and costal upwelling regions 

(Okada and Honjo 1975; Winter et al. 1994; Flores et al. 2010). Because of its high 

environmental tolerance, E. huxleyi can form massive blooms (Figure1.6 B) sometimes 

covering very large areas; e.g. a bloom in the Bering Sea covered an area of 2 x 10
5
 km

2
 with 

cell concentration reaching almost 3 x 10
6
 cells L

-1
 (Sukhanova and Flint 1998). As a result 

E.huxleyi can have a significant impact on the local environment. As a producer of calcium 

carbonate (CaCO3, calcite) coccoliths E.huxleyi is responsible for a large proportion of 

carbon cycling via CO2 consumption during photosynthesis and CO2 generation during 

calcification (Westbroek et al. 1993). Moreover, this microalga contributes to the export of 

calcite to the seabed via settling of coccoliths after bloom termination (Baumann 2004). 

Aside from global carbon cycling, E. huxleyi is a key DMSP producer and is important for 

the sulphur cycle. This process is described in greater detail above (see section 1.1.1). 

 

 

 

Figure 1.6 A, scanning electron microscope micrograph of Emiliania huxleyi with formed calcified 

platelets (coccoliths). Photography was taken from Jeremy R Young, The Natural History Museum, 

London (http://protozoa.uga.edu/portal/coccolithophores.html). B, Satellite picture of E. huxleyi 

bloom in the English Channel, coast of Plymouth (Cornwall). Photography was taken from (NASA 

http://visibleearth.nasa.gov). 
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 Another interesting feature of Emiliania and other coccolithophores is its life cycle 

consisting of the coccolith-bearing non-motile stage that is diploid (2N) and haploid (1N) 

scale-bearing flagellated phase; both forms can reproduce asexually (Green et al. 1996; 

Paasche 2001). Coccolithophores are able to alternate from asexual to sexual reproduction by 

meiosis and syngamy (Billard and Inouye 2004). This haplodiploic character of the life cycle 

was confirmed by Green et al (1996) using flow cytometric techniques. The heteromorphic 

life cycle is the most important biological feature differentiating the prymnesiophytes from 

other groups of microalgae (de Vargas 2007). In diatoms (2N life cycle) only the gametes are 

haploid, whereas in dinoflagellates (1N life cycle) diploid cells are limited to zygotes. 

Recently, Frada and co-workers (2008) demonstrated that viral attack triggers a shift of the E. 

huxleyi population from 2N cells that initially dominate in the bloom to 1N phase cells that 

are more virus-resistant. By this ‘escape’ mechanism haploid E. huxleyi cell can mate and 

return to the diploid cell type and possibly repopulate a new E.huxleyi bloom. 

 All these E.huxleyi characteristics and the environmental importance of this species 

led to the E. huxleyi CCMP1516 genome sequencing project. The draft version of the genome 

has been released by the Department of Energy Joint Genome Institute (JGI) and thus 

introduces great opportunities for the advanced molecular study of this fascinating organism. 
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1.6.  The motivations for this research project 

 

 Multidisciplinary studies from many fields of the science that gradually link 

together are critical to describe the broad range of elements and processes that shape the 

Earth’s ecosystems. Thanks to the contribution from many disciplines we better 

understand how, when and why these various components act together, although many 

gaps remain to be discovered. 

 Diverse research on sulphur, one of the most versatile elements, is a good example 

of how the contributions from various research fields increasingly allow us to recognise 

how the environment functions. On the biological level, sulphur is a very important 

element due to its reactivity in different oxidation and reduction states. Sulphur is 

incorporated into amino acids, oligopeptides, vitamins, cofactors, lipids and 

polysaccharides. Additionally many oceanic phytoplankton species have an extra demand 

for sulphur due to the production of another S-metabolite - DMSP. On the other hand, 

DMSP is the precursor of DMS the compound with the important role in climate 

regulation. Recognition of metabolic and molecular processes occurring at the cellular 

level are essential in order to obtain deep understanding of the biological, physical and 

chemical relationships between marine ecosystems and climate. 

 Most of the information about sulphur metabolism relates to organisms that are 

potentially exposed to S starvation like higher plants or freshwater algae. The high 

sulphate concentration in seawater means that marine microplankton does not experience 

S-deprivation and as a results sulphur assimilation and metabolism is rather poorly 

studied in these organisms. The aim of the research described in this thesis was to 

advance knowledge of metabolic sulphur pathways in the coccolithophore Emiliania 

huxleyi (CCMP 1516). To understand how sulphur metabolism varies, we subjected 

cultures to artificial variations in ambient sulphur concentration and assessed the 

physiological and molecular responses. In addition to illuminating the sulphur metabolism 

in marine organism, the results obtained during the project have further potential for 

future comparative studies between phylogenetically and ecologically distant organisms. 



 

 

 

2. Materials and Methods 
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 This chapter describes general methods and techniques that have been used for the 

laboratory experiments. It covers the standardised preparation and maintenance of 

Emiliania huxleyi cultures as well as measurements of various growth parameters. 

The principle sulphur metabolism-related methods are also described. In addition, the 

thesis contains relevant and specific ‘Materials and Methods’ sections in Chapter 3, 4    

and 5. 

 

2.1. Algal culture 

 

2.1.1.  Culture growth conditions 

 

 E. huxleyi strains CCMP1516, CCMP370 and CCMP373 were obtained from the 

Provasoli-Guillard National Center for Culture of Marine Phytoplankton (CCMP). They 

were originally isolated from the North Pacific, the North Sea and Sargasso Sea, 

respectively. Stock cultures were maintained in the LGMAC (Laboratory for Global 

Marine and Atmospheric Cycles) Marine Trace Gas Biology Laboratory. E. huxleyi was 

grown in 100 mL conical flasks with 50 mL (ESAW) medium (see Section 2.1.2). Cultures 

were kept in a MLR-351 Plant Growth Chamber (Sanyo E & E Europe BV, 

Loughborough, U.K.) at 15
o
C under a light:dark cycle of 14:10 h and an irradiance of 180 

µE m
-2

 s
-1

 (Scalar PAR Irradiance Sensor QSL 2101, Biospherical Instruments Inc., San 

Diego, U.S.A). Both stock and experimental cultures were incubated under the same 

temperature and light regimes. With these culture conditions E. huxleyi usually produced 

no coccoliths. In order to keep cells in suspension, the culture flasks were gently swirled 

by hand on a daily basis. New stock cultures were established every 10 days by 

transferring an inoculum from the exponentially growth culture into fresh media. To 

maintain sterile conditions and avoid contamination aseptic procedures were applied. All 

culture media and glassware were autoclaved at 120
o
C for 30 min. All culture transfers and 

culture sub-sampling were carried out in a Class II Microbiological Safety Cabinet (Class 

II, Walker, Glossop, U.K.). In addition, the interior of the cabinet was wiped with 70% 

ethanol before use and the neck of the glassware was flamed with gas burner before and 

after manipulation. To examine the axenicity of the cultures we used nucleic acid staining 

with 4',6-diamidino-2-phenylindole (DAPI) followed by epifluorescence microscopy (see 

Section 2.1.4).  
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2.1.2. Medium preparation 

 

 All cultures of E.huxleyi were grown in Enriched Seawater, Artificial Water 

(ESAW) medium, which allowed us to control the sulphur concentration and ionic 

strength. The recipe was originally designed by Harrison et al.(1980) for coastal and open 

ocean phytoplankton and was modified by Berges et al. (2001). The seawater base is 

composed of anhydrous salts and hydrated salts (Table 2.1) that were prepared separately 

to prevent precipitates formation. One litre of ESAW was made by dissolving anhydrous 

and hydrated salts in 600 mL and 300 mL of distilled water, respectively. Next, the 

solutions were autoclaved, cooled down, aseptically combined and made up to a final 

volume of 1 L with sterile distilled water.  The pH of the prepared synthetic seawater 

should be ~8.2 and it was always checked before using the medium. 

 Solutions of macronutrients, iron, trace metals and vitamins (Table 2.2) were 

prepared separately and stored in 4
o
C with the exception of vitamin solution which was 

stored in -20
o
C. Since these 4 solutions could encourage bacterial growth in the medium, 

the seawater base was enriched with syringe filter sterilised 1mL L
-1

 aliquots of each 

solution just before cells inoculation.  
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Table 2.1 Composition of ESAW media with the final molar concentrations. 

Compound 
Stock solution 
(g L

-1
 dH2O) 

Quantity in 1L ESAW 
Final concentration 

in the ESAW medium 
(M) 

Anhydrous salts:    

NaCl  21.194 g 3.63 x 10
-1 

Na2SO4  3.550 g 2.50 x 10
-2 

KCl  0.599 g 8.03 x 10
-3 

NaHCO3  0.174 g 2.07 x 10
-3 

KBr  0.0863 g 7.25 x 10
-4 

H3BO3  0.0230 g 3.72 x 10
-4 

NaF  0.0028 g 6.67 x 10
-5 

Hydrated salts:    

MgCl2.6H2O  9.592 g 4.71 x 10
-2 

CaCl2.2H2O  1.344 g 9.14 x 10
-3 

SrCl2.6H2O  0.0218 g 8.18 x 10
-5 

Macronutrients:    

NaNO3 46.670 1 mL 5.49 x 10
-4 

NaH2PO4.H2O 3.094 1 mL 2.24 x 10
-5 

Na2SiO3.9H2O 15.000 1 mL 5.30 x 10
-7 

Iron solution  1 mL  

Trace metals solution  1 mL  

Vitamins solution  1 mL  

 
Table 2.2 Composition of the solutions added to the seawater base with the final molar 

concentration in the ESAW. 

Compound 
Stock solution 

(g L
-1

 dH2O) 
Quantity used 

Final concentration 

in the ESAW medium 

(M) 

Iron solution:    

Na2EDTA. 2H2O  2.44 g 6.56 x 10
-6 

FeCl3. 6H2O  1.77 g 6.55 x 10
-6 

Trace metal solution:    

Na2EDTA.2H2O  3.090 g 8.30 x 10
-6 

ZnSO4.7H2O  0.073 g 2.54 x 10
-7 

CoSO4.7H2O  0.016 g 5.69 x 10
-8 

MnSO4. 4H2O  0.540 g 2.42 x 10
-6 

Na2MoO4.2H2O 1.480 1 mL 6.12 x 10
-9 

Na2SeO3 0.173 1 mL 1.00 x 10
-9 

NiCl2.6H2O 1.490 1 mL 6.27 x 10
-9 

Vitamins solution:    

Thiamine HCl  0.1 g 2.96 x 10
-7 

Biotin 1 g 1 mL 4.09 x 10
-9 

B12 2 g 1 mL 1.48 x 10
-9 
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2.1.3. Cell characteristics in culture 

 

 The growth of cultures was examined using a Coulter particle counter (Beckman 

Multisizer 3 Coulter Counter, High Wycombe, UK) with a 100 μm aperture tube. This 

instrument allowed rapid and precise measure of the E. huxleyi growth parameters: cell 

diameter (µm), cell density (cells mL
-1

) and cell volume (μm
3
 mL

-1
). The Coulter principle 

is based on the change in the electric field when a particle (e.g. microalgal cell) from a 

sample passes through an aperture. The cell suspension has to be diluted such that only one 

cell passes through the aperture at a time to prevent coincidence. The number of electric 

pulses is then equal to the number of particles and the amplitude of a pulse is proportional 

to the volume of the particle. The electric signal is processed and translated to give the 

particle characteristics and the instrument gives a cell diameter derived from the primary 

volume measurement assuming that the particle is spherical. To measure the change in E. 

huxleyi parameters during the time course, 100 or 500 µL (depending on the cell density) 

of culture sample was diluted with filtered seawater to 10 mL of final volume. Seawater 

background was subtracted from the measured sample. 

 

2.1.4. Testing of E. huxleyi culture axenicity by DAPI staining 

 

 The stain 4',6-diamidino-2-phenylindole (DAPI) binds to DNA forming a 

fluorescent complex and was used to detect possible bacterial contamination of microalgal 

cultures. A sample for DAPI staining was prepared by withdrawing 1-4 mL from the 

culture and fixing it with 3 µL mL
-1

 of Lugol’s iodine (aqueous KI 10 % w/v and iodine 5 

% w/v) and 50 µL mL
-1

 of neutralised formalin  (20 % aqueous formaldehyde with 100 g 

L
-1

 hexamine). The mixture was distained with a drop of 3% w/v sodium thiosulphate 

(stored in 4
o
C). All 3 solutions were syringe filtered prior addition to the samples. Then, 10 

µL mL
-1

 of DAPI solution (Sigma-Aldrich, 1 mg mL
-1

 stock solution, stored at -20
o
C) was 

added and the sample was dark-incubated for 15 min. The DAPI stained sample was 

filtered under vacuum onto a 0.2 µm pore black polycarbonate filter placed on a 0.45 µm 

pore cellulose nitrate backing filter and washed with sterile seawater. Next the 

polycarbonate filter was laid on microscope slide bearing a drop of immersion oil. Another 

drop of immersion oil and a coverslip was put over the filter.  
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The presence of bacteria was checked by examining the filters under UV light using a 

fluorescence microscope (Olympus BX40, Essex, UK). Bacteria appeared as small bright 

dots in the background of large algal cells (Figure 2.1). 

 

2.1.5. Purification of E. huxleyi cultures 

 

 Although, the rigorous aseptic conditions were applied to avoid contamination of E. 

huxleyi, occasional bacterial infections were unavoidable. In such cases cultures were 

treated with a cocktail of antibiotics (Jan Strauss, University of East Anglia, personal 

communication). All the antibiotic stock solutions were prepared by dissolving the solid 

form in a suitable solvent and passing the solution through a 0.2 µm syringe filter. Aliquots 

of the stock solutions were stored at -20
o
C. 

 The antibiotic treatment was carried out by transferring cells in the mid-exponential 

growth into fresh medium containing the antibiotic mixture (Table 2.3). Next, cultures 

were re-grown to the exponential phase. These incubated cells were then inoculated into 

fresh medium, this time without antibiotics, and the culture was allowed to re-grow again 

to exponential phase. The effectiveness of the antibiotics treatment was checked by DAPI 

staining (Figure 2.1). 

 

 

Table 2.3 Composition of antibiotics mixture added to non-axenic E. huxleyi cultures. 

Antibiotic 
Stock concentration 

(mg mL
-1

) 
Type of solvent Working concentration 

(µg mL
-1

) 

Ampicilin 15 Milli-Q water 50 
Gentamicin 1 Milli-Q water 10 
Streptomycin 25 Milli-Q water 25 
Chloramphenicol 34 100% ethanol 1 
Ciprofloxacin 1 0.1M HCl 10 
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Fig. 2.1 DAPI stained cultures of E.huxleyi before (A) and after (B) treatment with antibiotics. No 

bacteria attached to the cells nor free-living bacteria were observed in the antibiotic-treated 

cultures. 

  

 

2.2.  DMSP measurements 

 

2.2.1. Sample preparation 

 

The content of particulate dimethylsulphoniopropionate (DMSPp) in E. huxleyi was 

analysed as dimethyl sulphide (DMS) using headspace gas chromatography (GC). The 

method was adapted from the Steinke et al. (2000) procedure primarily designed for DMSP 

lyase activity measurements. Depending on the cell density, between 2 and 3 mL of culture 

was gently filtered by hand vacuum pump (< 10 cm Hg) through 25mm Whatman GF/F 

filters (nominal pore size 0.7 µm. Whatman UK Ltd., Maidstone, U.K.). These filters were 

then transferred into 4 mL vials containing 3 mL of 0.5 M NaOH and the vials were 

immediately closed using a gas-tight screw thread cap with a Teflon faced septum (Alltech, 

Stamford, UK). Cold alkali hydrolysis of DMSP yields DMS with a 1:1 ratio. Volatile 

DMS was released to the headspace of the vial. To assure complete DMSP to DMS 

conversion the samples have been incubated for at least 24 h in darkness at room 

temperature before they were analysed on the GC. 

 

 

 

 

 

E. huxleyi cells

bacterial cells

A B
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2.2.2. Gas chromatography- headspace measurement 

 

Following conversion to DMS, DMSPp was quantified using the GC (GC-2010, Shimadzu 

UK Ltd., Milton Keynes, UK) equipped with a 30 m x 0.53 mm CP-SIL 5CB column 

(Varian, Oxford, UK) and a flame photometric detector (FPD). The carrier gas was helium 

with a flow rate 35 mL min
-1

 and the air and hydrogen flame gases had flow rates of 60 

and 70 mL min
-1

, respectively. The temperatures settings were: 200
o
C, 120

o
C and 250

o
C 

for the injector, column and detector, respectively. 

The headspace method was used to measure gaseous DMS in the headspace of 4 mL vials. 

To achieve equilibrium between DMS in the headspace and in the aqueous phase, prior to 

GC analysis, vials were incubated for 1 h at 30
o
C. Fifty µL headspace was withdrawn by 

the autosampler (Multipurpose Sampler MPS Gerstel, Mülheim an der Ruhr, Germany) 

equipped with the 100 µL gas-tight syringe and injected into GC for DMS quantification. 

 

2.2.3. Calibration 

 

The GC was calibrated using a duplicate series of known concentration (1-25 µM) of 

DMSP standards prepared in identical vials to those used for experimental samples. In each 

case the appropriate volume (4-10 µL) of DMSP stock solution was placed on the septum 

inside the cap and very carefully and rapidly inverted to seal a vial containing 3 mL of 500 

mM NaOH. In this way the DMSP did not come into contact with the NaOH until the vial 

was closed and shaken. The calibration was obtained by relating detection signal as the 

square root of the peak area (y) to DMSP concentration (x). The linear relationship 

y=ax+b, where a is the slope and b the intercept, was used to quantify the DMSPp 

concentration in each sample. DMSP concentrations in the samples were always in excess 

of that in the lowest calibration standard. 
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2.3.  APS reductase Activity (APR) 

 

 Adenosine 5’-phosphosulphate (APS) reductase (APR) activity was measured as 

the the formation of [
35

S] sulphite from [
35

S] APS and dithioerythritol (DTE) (Brunold 

1990) with a modification of a procedure described by Kopriva et al. (1999). The culture 

was concentrated by centrifuging for 10 min at 10000 x g. The supernatant was removed 

and the pellets were re-suspended in 1.5 mL of fresh culture medium and centrifuged at 

10000 x g for 5 min. The pellets from the second centrifugation step were snap frozen in 

liquid nitrogen and stored at -80
o
C until analysis. 

 A crude extract was generated by sonication (Soniprep 150, MSE, London, UK) of 

the frozen pellet in 500 µL extraction buffer (50 mM Na/KPO4 adjusted to pH 8; 30mM 

Na2SO3; 0.5 mM, adenosine 5’monophosphate (AMP) and 10 mM DTE, dithioerythritol). 

The extracts were centrifuged for 30 s at 400 rpm to remove cell debris. To measure 

activity, 20 µL of supernatant was added to 240 µL of reaction assay mixture (Table 2.3) in 

a 1.5 mL tube without lid and incubated for 30 min at 37
o
C. After incubation, 100 µL of 

1M Na2SO3 was added and the tubes were transferred into 20 mL scintillation vials filled 

with 1 mL of 1 M triethanolamine solution. Two hundred L 1 M H2SO4 was added to the 

tubes, the vials were closed immediately and incubated overnight at room temperature. The 

acidification of the reaction mix causes the [
35

S]sulphite to form gaseous [
35

S]SO2 which is 

trapped in the triethanolamine solution. The next day the tubes were removed from the 

vials, their bottoms washed with 200 L water and 2.5 mL scintillation ncoctail Optisafe 3 

(Perkin Elmer) were added. Sulphur radioactivity was determined in a scintillation counter 

(Wallac 1409 Liquid Scintillation Counter). 

 

Table 2.4 Composition of the APR reaction assay mixture.  

Component Concentration 
Volume 

(µl) 

2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris) - HCl, adjusted 

to pH 9 
1 M 25 

Magnesium sulphate (MgSO4) 2 M 100 

Dithioerythritol (DTE) 200 mM 10 

Adenosine [
35

S]5’phosphosulphate (APS), specific activity 1kBq 

/10 µL 
3.75 mM 5 

H2O  100 
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 Total protein concentration in the extract was measured with a Bio-Rad protein 

assay kit (Bio-Rad Laboratories, München, Germany) based on the method of Bradford 

(1976). The cell extracts (100-200 µL) was diluted with distilled water to 800 µL and then 

200 µL of Bio-Rad protein assay was added to give a final volume of 1 mL. The mixture 

was incubated for 15 min at room temperature and the protein level was determined by 

measuring absorbance at 595 mm using uv-vis spectrophotometer (Lambda Bio, Bucks, 

UK). Bovine serum albumin was used as the protein standard. 

The APR activity (nmol min
-1

 mg protein
-1

) was calculated according to the formula: 

 

 

where: 

 

cpmAPS = specific activity (counts per minute, cpm) of APS reductase activity (APR) 

     Cprot = protein concentration in extract (mg mL
-1

) 

       VE = volume of extract in the assay (mL) 

         T = time of incubation (min) 

 

 

2.4.  HPLC analysis of low molecular weight thiols 

 
 

 Algal cells were collected by gentle (< 5 psi) filtration of 15 to 25 mL (depending 

on density of culture) through a 25 mm diameter GF/F filter, which was then snap frozen 

in liquid nitrogen and stored at -80
o
C until extraction and analysis. Thiol extraction was 

carried out according to Dupont et al. (2004). Briefly, the filters were placed into a 

grinding chamber containing 2 mL of 10 mM methanesulphonic acid (MSA) and incubated 

at70
o
C for 2 min, chilled on ice and then homogenised with a Wheaton Overhead Stirrer. 

The resultant cellular homogenate was then centrifuged for 10 min at 16060 x g and 4°C. 

Then 800 µL of supernatant was taken and adjusted to pH 9 by adding 84 µL of 100 mM 

tetraborate buffer supplemented with 10 mM diethylenetriaminepentaacetic acid (DTPA). 

The analysis of cysteine (Cys) and glutathione (GSH) was performed following the method 

of Koprivova et al. (2008). In order to reduce disulfides, 50 µL of pH 9 extract was 

incubated in the dark at 37°C for 15 min with 1 µL of 100 mM dithiothreitol (DTT). 

Afterwards, 35 µL water, 10 µL of 1 M Tris pH 8 and 5 µL of 100 mM 

monobromobrimane (Thiolyte® MB, Calbiochem) were added and the derivatisation 

reaction was allowed to proceed in dark at 37°C for 15 min.  
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The reaction was stopped by adding 100 µL of 9 % acetic acid. Analyses were performed 

on a Waters 2695 HPLC (Waters Ltd., Elstree, U.K.) equipped with a reverse-phase 

column (Spherisorb
TM

 ODS2, 250 x 4.6 mm, 5 µm, Waters). Monobromobrimane 

derivates were quantified by fluorescence detection (474 detector, Waters) with excitation 

at a wavelength of 390 nm and emission at 480 nm. The optimal separation of thiols was 

achieved using a linear eluting gradient program (Table 2.4)  

Standards of GSH and Cys were analysed to verify retention times and to develop standard 

curves for peak area calibrations.The calibration curve and retention times were established 

by plotting peak areas vs. GSH and Cys standards (0.025, 0.0625, and 0.125 nmol). 

 

 

Table 2.5 Elution gradient programme for optimised GSH and Cys analysis. Solution A was 10% 

(v/v) methanol, 0.25% (v/v) acetic acid (pH adjusted to 3.9) and solution B was 90% (v/v) 

methanol, 0.25% (v/v) acetic acid (pH adjusted to 3.9). The flow rate of the solvent pump was 

kept constant at 1 mL min
-1

. 

 

Mobile phase A (%) Mobile phase B (%) Time (min) 

96 4 0 
86 14 2 
84 16 22 
0 100 28 
96 4 34 

 

 

2.5. Statistical analysis  

 

 All data were submitted to statistical analysis of standard deviation and t-test using 

Microsoft Excel unless otherwise stated. Only differences with p-value < 0.05 were 

considered significant. 

 

 

 

 

 

 

 

 



 

 

 

3.  Physiological and biochemical responses of 

E. huxleyi to sulphur availability 
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3.1.  Introduction 

 
 Sulphur is an essential mineral nutrient, therefore, its deficiency has severe 

consequences for photosynthetic organisms as described in detail in Chapter 1. Since 

sulphur is important for crop yield and quality, sulphur metabolism has attracted 

considerable attention (for review see Takahashi et al. 2011). However, published 

investigations have focused on higher plants and freshwater green algae and, accordingly, 

rather little is known about sulphur metabolism in marine phytoplankton. The rationale for 

the low interest is the fact that, unlike nitrogen or phosphorus, sulphate is present in high 

concentration in the ocean (~28 mM) and so is not considered to limit growth. On the other 

hand, isotopic measurements indicate that sulphate concentration in the ocean fluctuated 

across the geological history of the Earth and this may have influenced algal evolution 

(Gill et al. 2007; Gill et al. 2011). Indeed, coccolithophorids along with diatoms and 

dinoflagellates, flourished in the oceans between Palaeozoic and Mesozoic when sulphate 

concentration varied from 13 to 27 mM (Ratti et al. 2011). This may suggest that these taxa 

achieved evolutionary success in the ocean because of the high sulphate concentration. 

Since the ocean is S-replete, many marine algae synthesise significant amounts of S-

metabolites including DMSP. Indeed, Matrai and Keller (1994) reported that DMSP may 

account for between 50 to 100% of the total organic sulphur in some marine microalgae, 

though the 100% value must be an overestimate (see Chapter 1). This has implications for 

the global sulphur cycle through the DMSP breakdown product, DMS, some of which is 

liberated to the atmosphere. As Emiliania huxleyi accumulates high levels of DMSP, we 

examined the physiological and biochemical responses of this phytoplankton species to 

sulphur availability. 

 Initially we tested the response of E. huxleyi to a range of sulphate concentrations 

using a chemically defined seawater medium. This allowed us to established S-limited 

conditions for further experiments. We also compared the effect of sulphate depletion in 

three different strains of E. huxleyi. Further experiments were designed based on 

previously published data on the physiological and metabolic reaction to sulphur limitation 

in plants and/or chlorophytes. Thus, we investigated the effect of sulphate availability on 

sulphate uptake, 5’-adenylsulphate reductase (APR) activity and thiol concentrations.  
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 The results described in this chapter were also the foundation for a molecular study 

using RNA sequencing of S-limited versus S-replete E.huxleyi, and they helped us to draw 

a meaningful analysis of the transcriptomic results discussed in Chapter 5. 

 

3.2.  Materials and Methods  

 

3.2.1. E. huxleyi response to sulphur limitation 

 

 Three biological replicate batch cultures of E. huxleyi were grown in 250 mL 

conical flasks containing 150 mL of ESAW medium containing 25, 10, 5 or 1 mM Na2SO4. 

The ionic strength was kept constant in all media by increasing concentration of NaCl and 

cultures were grown as described in Chapter 2. The experiment commenced when media 

were inoculated with exponentially growing stock culture (ESAW, 25 mM Na2SO4) to give 

an initial cell density of ~4 x 10
4
 cells mL

-1
. Culture growth parameters (cell number, 

culture biovolume and cell volume) were measured on a daily basis, whereas samples for 

intracellular DMSP and maximum efficiency of PS II (Fv/Fm) measurements were taken 

every other day. 

 

3.2.2. Comparison of growth and DMSP synthesis between E. huxleyi strains: 

CCMP 1516, 370 and 373 

 

 Triplicate batch cultures of Emiliania huxleyi strains CCMP 1516, 370 and 373 

were grown in 500 mL conical flasks with 250 mL of 25 or 5 mM SO4
2-

 medium. Cultures 

were inoculated with exponentially growing stock culture to give an initial cell density of 

~1 x 10
4
 cells mL

-1
. Cell growth was monitored on a daily basis and samples for 

intracellular DMSP were taken every other day starting from day 3. 
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3.2.3. Sulphate uptake 

 

 To measure sulphate uptake, triplicate E. huxleyi cultures were grown in 500 mL 

conical flasks 250 mL ESAW medium containing 25 mM (control) and 5 mM SO4
2-

. When 

cultures entered exponential phase, 50 mL (control) or 100 mL (5mM SO4
2-

) of each 

culture was filtered onto a 47-mm diameter, 1.2 µm filter (Millipore
TM

 Membrane Filter), 

and then washed with S-free medium to remove sulphate. The cells were re-suspended in 

50 mL tubes with 10 mL ESAW medium containing 25 mM or 5 mM sulphate. The cell 

density and volume was determined in each tube. [
35

S]sulphate was added to the cultures to 

a specific activity of 192 kBq mL
-1

 (Hartman Analytic) and the cells were incubated for 60 

min in the light. After the incubation, the cells were collected by filtration, washed 

extensively with S-free medium and placed into 20 mL scintillation vials. To dissolve the 

filters and disrupt the cells, 5 mL of tissue solubiliser (Solene
®
-350, PerkinElmer, 

www.perkinelmer.co.uk) was added and the vials were kept overnight at room 

temperature. The next day 10 mL of scintillation cocktail Optisafe 3 (Perkin Elmer) was 

added and [
35

S] radioactivity was determined in a scintillation counter (Wallac 1409, 

Perkin Elmer). 

 

3.2.4. Collection of samples for APS reductase activity time course 

 

 E. huxleyi batch cultures were grown in 500 mL conical flasks with 250 mL of 25 

mM or 5 mM SO4
2-

 medium. Cultures were inoculated with exponentially growing stock 

culture to give an initial cell density of ~5 x 10
4
 cells mL

-1
 and cell growth was monitored 

daily. Samples for APR activity and DMSP analysis were collected at 5 time points 

representing the different culture growth phases. For enzyme assays cells were harvested 

with a 2-step centrifugation. Firstly, 25 mL aliquots were centrifuged for 10 min at 10000 

x g and 4
o
C, and then the cell pellets were re-suspended in 1.5 mL of ESAW medium and 

centrifuged for 10 min at 10000 x g and 4
o
C. The samples were snap-frozen in liquid 

nitrogen and stored at -80
o
C prior to APR activity analysis (see Chapter 2). 
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3.2.5. Collection of samples for measurements of thiols time course. 

 

 To measure cysteine (Cys) and glutathione (GSH) in Emiliania huxleyi, triplicate 

batch cultures were grown in 1 L conical flasks with 500 mL of 25 mM or 5 mM SO4
2-

 

medium. Cultures were inoculated with an exponentially growing stock culture to give an 

initial cell density of ~5 x 10
4
 cells mL

-1
. Samples were taken at 3 time points representing 

the mid-, late-exponential and stationary phases of culture growth. Depending on the cell 

concentration, between 15 and 30 mL of culture was filtered onto a 25 mm diameter GF/F 

filter, snap-frozen in liquid nitrogen and stored in -80
o
C prior to extraction and analysis 

(see Chapter 2). 

 

3.2.6. E.huxleyi growth and DMSP production in response to S-compounds 

resupply 

 

Sulphate resupply 

 

 Sulphate was added back to S-limited (5 mM SO4
2-

) cultures of E. huxleyi using 

two different approaches. Figure 3.1 shows the scheme for the first approach. Briefly, E. 

huxleyi batch cultures were grown in 2 L conical flasks with 1.2 L of 25 or 5 mM SO4
2-

 

ESAW medium. Cultures were inoculated with exponentially growing stock. After E. 

huxleyi had been grown in control and S-limited media for 10 days, cultures were split into 

3 duplicate sets of 250 mL each. From the S-limited cultures, one set was resupplied with 

20mM SO4
2-

 and the other set was left without extra sulphate. The third set derived from 

the S-replete culture. All 3 sets were balanced in terms of ionic strength by adding NaCl to 

the S-limited cultures. Aliquots of dissolved Na2SO4 and NaCl were sterilised using a 

disposable syringe filter (0.2 µm). The culture growth and intracellular DMSP were 

measured every 24h before and after sulphate restoration. 
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5 mM Na2SO4

1200 mL
Ionic strength 618 mM

mid-log phase

250 mL 5mM Na2SO4

+28 mL additional aliquot
containing:
0.97g NaCl
0.02g Na2SO4

Ionic strength  617.5 mM

25 mM Na2SO4 (control)
1200 mL
Ionic strength 618 mM

250 mL 5+20 mM Na2SO4

+28 mL additional aliquot
containing:
0.81g Na2SO4

Ionic strength  618.3 mM

250 mL 25 mM Na2SO4

+28 mL ESAW medium
Ionic strength  618.0 mM

1st set 2nd set 3rd set

 

Figure 3.1 Experimental design used in sulphate replenishment experiment (1
st
 approach). 

 

 

 

 

 In the second approach, triplicate batch cultures were grown in 500 mL conical 

flasks with 200 mL of 25 or 5 mM SO4
2-

 medium. All cultures were inoculated with 

exponentially growing stock culture grown in standard ESAW medium. The experiment 

commenced when cultures were in exponential phase and there was a significant difference 

in cell density and intracellular DMSP between the control and low-S cultures. At this 

point, 20 mM SO4
2-

 was added into one set of S-limited cultures. The S-limited and S-

replete cultures were again adjusted with NaCl to have the same ionic strength. Samples 

were taken every 24 h to measure growth parameters, intracellular DMSP and APR 

activity. 
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Cysteine and methionine resupply  

 

 Triplicate E. huxleyi batch cultures were grown in 250 mL conical flask with 150 

mL of 25 or 5 mM SO4
2-

 medium. The experiment was carried out in the same manner as 

the one described above. S-compounds added to S-limited cultures were sterile aliquots of 

L-cysteine or L-methionine (Sigma-Aldrich, UK) used at a final concentration of 0.2 and 

1mM for Cys or 0.1 and 0.5 mM for Met. 

 

Equimolar S-compounds resupply 

 

 To test the response of S-limited E. huxleyi culture to addition of equimolar 

concentrations of different S-compounds a final concentration of 5 mM sulphate, L-

cysteine or L-methionine was used. The experiment was carried out with the approach 

described above  

 

3.2.7. Salinity down-shock 

 

 Water of two different salinities was prepared by diluting standard ESAW medium 

to 80% and 70% with Milli-Q water. In order to maintain the same sulphur and pH status 

in all 3 salinities, the concentration of sodium sulphate (Na2SO4) and sodium bicarbonate 

(NaHCO3) was adjusted in the media (to standard ESAW concentration) and the 

autoclaving procedure was replaced by filter sterilisation. Triplicate cultures (250 mL 

conical flask, 50 mL medium) were inoculated with exponentially growing stock culture to 

give an initial cell density of ~5x10
4
 cells mL

-1
 Cell growth was monitored daily, whereas 

samples for intracellular DMSP were taken at 3 time points of the culture growth: day 4, 7 

and 8 representing log, linear and stationary growth phases, respectively. 
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3.3.  Results 

 

3.3.1. E. huxleyi response to sulphur limitation 

 

 The effect of sulphate availability on E. huxleyi growth and capacity for noncyclic 

photosynthetic electron flow (Fv/Fm) was examined over 13 days in batch cultures grown 

in ESAW media containing various sulphate concentrations: 25 (control), 10, 5 and 1 mM 

(Figure 3.2; Table 3.1). The data show that lowering sulphate concentration down to 10 

mM had only a marginal effect on the cell growth (Fig 3.2, A). The specific growth rate 

measured around day 6 in the logarithmic growth phase was 0.62 (±0.03) and 0.58 (±0.02) 

d
-1

 in the control and 10mM SO4
2-

 cultures, respectively. This indicated that even 2.5-fold 

reduction in sulphate did not inhibit cell division. In contrast, at 5 mM of SO4
2-

 the growth 

rate was reduced by ~50% (0.30 ±0.04 d
-1

). When sulphate concentration was further 

lowered to 1 mM, the E. huxleyi culture was unable to grow (Figure 3.2, A). The decrease 

in the specific growth rate of the culture exposed to the low sulphate concentration was 

paralleled with an increase in overall volume of the cell (Figure 3.2, B). The average cell 

volume was the same at 25 and 10mM SO4
2-

 and decreased throughout the time course to 

~50% of the initial values. Contrary to this, we observed that E. huxleyi grown at 5 and 

1mM SO4
2-

 had significantly bigger cell volumes than cells grown at the higher sulphate 

concentration. Moreover, in the 1 mM SO4
2-

 culture the cell size increased sharply over the 

time course attained ~6-fold bigger volume than control but did not divide. Surprisingly, 

Fv\Fm (the apparent efficiency of photosystem II) measured in dark-adapted samples 

(Figure 3.2, C) did not show a clear response to low sulphate conditions, the exception 

being 1mM SO4
2-

 where there was an initial drop to 0.41 (±0.01) and then the Fv\Fm 

recovered to within the range recorded for the cultures grown with higher sulphate 

concentration.  
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Figure 3.2 Cell density (A), cell volume (B) and efficiency of photosystem II (C) from batch 

cultures of Emiliania huxleyi grown at 4 different sulphate concentrations. Results are shown as 

means ±standard deviation from 3 biological replicates. In this and subsequent figures error bars 

are sometimes invisible when they fall within the symbol. 

 

 

Table3.1. Specific growth rate (d
-1

), cell volume, photosynthetic efficiency and intracellular DMSP 

during E.huxleyi exponential growth at 25, 10, 5 and 1mM sulphate. Values in brackets are 

standard deviation of biological triplicate. 

 

[SO4
2-

] 
Growth rate  

(d
-1

) 
Cell volume  

(µm
3
) 

Photosynthetic efficiency  
(Fv\Fm) 

DMSP  
(mM) 

25 mM 0.62 (± 0.03) 19.61 (± 2.27) 0.52 (± 0.00) 256 (± 35) 

10 mM 0.58 (± 0.02) 17.89 (± 0.60) 0.55 (± 0.00) 184 (± 4) 

5 mM 0.30 (± 0.04) 27.64 (± 1.64) 0.55 (± 0.01) 113 (± 4) 

1 mM 0.05 (± 0.02) 49.17 (± 1.98) 0.51 (± 0.01) 65 (± 1) 

 

 

 Intracellular DMSP was also measured in the E. huxleyi cultures grown under the 

various sulphate conditions. DMSP concentration was normalised to cell number and cell 

volume (Figure 3.3). Given that cell volume changed with the S status of the medium and 

also depended on the growth phase, the data can only be properly compared when DMSP 

content is calculated on a cell volume basis. For this reason, in the subsequent experiments 

only DMSP data expressed per cell volume is shown. 
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 Under control growth conditions intracellular DMSP was relatively stable and at a 

high level (~250 mM, Table 3.1). On the other hand, cells that grew under low sulphate 

showed a notable reduction in DMSP content. In all S-limited cultures we observed a 

continuous decrease in DMSP concentration until day 8 when it dropped to about 68, 28 

and 20% of the control value at 10, 5 and 1 mM SO4
2-

, respectively. It is noteworthy that 

at10 mM SO4
2-

 DMSP production was altered but cell growth was not affected, whereas 

cultivation at 5 and 1 mM of SO4
2-

 decreased both cell growth and DMSP accumulation.  

This experiment indicated that a 5 fold reduction in sulphate in the medium results in 

reduction in growth rate and apparent DMSP biosynthesis, whilst the cell density was high 

enough to allow cell harvesting. Thus 5 mM SO4
2-

 was chosen as the low-S condition for 

the subsequent experiments. 
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Figure 3.3 DMSP concentration normalised to cell number (A) and cell volume (B) for batch 

cultures of Emiliania huxleyi grown under 4 different sulphate concentrations. Results are shown as 

means ±standard deviation from 3 biological replicates. 
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3.3.2. Comparison of the growth and DMSP concentration E. huxleyi strains: 

CCMP 1516, 370 and 373 

 

 Cultures of E. huxleyi strains CCMP 370, 373 and 1516 (used in this experiment as 

the control) were grown in ESAW medium containing 25 and 5 mM SO4
2-

. These strains 

were chosen for the experiment based on the work carried out by Steinke et al. (1998), who 

demonstrated variation in intracellular DMSP level and DMSP lyase activity among 6 E. 

huxleyi strains. CCMP 370 was characterised as a high intracellular DMSP content /low 

DMSP lyase activity strain, whereas 373 had high intracellular DMSP content/ high DMSP 

lyase activity. The data obtained here show that these 3 strains did not respond uniformly 

to sulphate depletion (Figure 3.4). The specific growth rates measured in the exponential 

phase (days 2 and 7) of the S-limited cultures were 0.47 (± 0.03), 0.71 (±0.05) and 0.73 (± 

0.00) d
-1

 for E. huxleyi strains 1516, 370 and 373, respectively. It should be noted that the 

cell abundance decreased in S-limited strains 1516 and 370, whereas the growth of strain 

373 was unaffected by SO4
2-

 limitation. Similar to previous experiments, in strain 1516, the 

growth rate of low-S cells was not significantly different (Student’s t-test; p>0.05) from the 

control until day 7. After that day growth decreased markedly with cell density reaching 

~50% of the control (Figure 3.4). On the other hand, the response of strain 370 to SO4
2-

 

reduction was already observed after day 1 with the growth rate in exponential phase 

significantly different (Student’s t-test, p<0.05) from the control.  

 Intracellular DMSP concentration was measured in all the E. huxleyi strains every 

other day between days 3 and 14 and showed a similar trend in all strains (Figure 3.4). As 

with cell density, DMSP concentration in 1516 and 370 exhibited a decrease in the low 

sulphate medium. In the exponential phase DMSP decrease was slightly less marked in 

1516 (by ~35%) than in 370 (by~50%). In E. huxleyi 373, lowering sulphate concentration 

in the medium had no apparent effect on DMSP production during exponential growth, 

though a small decrease in DMSP level of ~20% was seen when S-limited cells entered 

late exponential/early stationary growth (Figure 3.4). In doing this experiment we 

demonstrated that in E. huxleyi the reaction to reduction in sulphur availability, in terms of 

growth and DMSP concentration was strain specific. 
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Figure 3.4 Changes in cell density (mL
-1

) and intracellular DMSP concentration (mM) over the 

time course for E. huxleyi strains 1516, 370 and 373 grown in 25 mM and 5 mM SO4
2-

Results are 

shown as means ±standard deviation from 3 biological replicates. 
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3.3.3. Sulphate uptake 

 

 In plants and C. reinhardtii a typical response to sulphate starvation is an increase 

in sulphate uptake capacity (Takahashi et al. 2011). Therefore we analysed the effect of 

low sulphate concentration on its acquisition by E. huxleyi using incubation with 
35

SO4
2-

. 

The sulphate uptake was tested in 4 different scenarios:  

(i) control culture incubated in control medium (25 in 25);  

(ii) control culture incubated in low SO4
2-

 medium (25 in 5);  

(iii) low SO4
2-

 culture incubated in control medium (5 in 25) and  

(iv) low SO4
2-

 culture incubated in low SO4
2-

 medium (5 in 5).  

 

 The results from this experiment are presented in Figure 3.5. On the day of the 

incubation with radioactive sulphate the specific growth rates were 0.55 (±0.03) and 0.36 

(±0.02) d
-1

 in the control and low S media, respectively. Cells grown in 5 mM SO4
2-

 

showed ~3-fold higher uptake capacity than control cells in both 25 mM and 5 mM 

incubation medium. The uptake was higher in 25 mM medium than in 5 mM medium for 

both types of culture indicating a very low affinity of the sulphate uptake system in E. 

huxleyi. These results are consistent with an increase in sulphate uptake in sulphur 

deficient plants and were corroborated by expression analysis showing induction of mRNA 

encoding for sulphate transporters upon sulphate limitation (see Chapter 4). 
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Figure 3.5 E. huxleyi sulphate uptake normalised to cell number. Labels on the x axis indicated 4 different 

experimental conditions for 
35

SO4
2-

 uptake: 25 in 25, cells grown and incubated in 25 mM SO4
2-

; 25 in 5, 

cells grown in 25 mM but incubated in 5 mM SO4
2-

; 5 in 25 cells grown in 5mM but incubated in 25 mM 

SO4
2-

; 5 in 5, cells grown and incubated in 5 mM SO4
2-

. Results are shown as means ±standard deviation 

from 3 biological replicates. 
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3.3.4. APS reductase activity 

 

 APS reductase (APR) activity is another indicator of sulphur status of plants as it is 

strongly induced by sulphate deficiency (Takahashi et al. 2011). Therefore the activity was 

measured over the time course of batch culture growth in control (25mM) and low sulphate 

(5mM) conditions (Figure 3.6). The time points when cells were harvested for the APR 

activity measurements corresponded to the different phases of E. huxleyi growth. At day 4 

in the early stage of exponential growth, cells in control medium showed ~48% higher 

APR activity compared to S-limited cells (Student’s t-test, p<0.05). By contrast, on day 7 

when cultures were in mid-exponential stage, we observed no significant difference 

(Student’s t-test, p>0.05) between control and low-S cultures (Figure 3.6). This was due to 

an increase in APR activity in S-limited cultures to ~40 nmol min
-1

 mg protein
-1

 whereas 

APR activity in the controls stayed unchanged. This indicates that even with 5-fold lower 

SO4
2-

 concentration, cells were able to maintain APR activity at a similar level to the 

control and that, in contrast to plants, in E. huxleyi the enzyme is not regulated by sulphate 

limitation. On day 9, APR activity dropped in both control and S-limited cultures and this 

coincided with a decline in the growth rate between day 8 and day 9 in all the cultures. At 

the following time points (day 11 and day 13) in the late exponential and early stationary 

growth phases activity was higher for all cultures than on day 9. Comparable levels of APR 

activity were measured on day 13 in both conditions, whereas there was ~2 fold lower 

intracellular DMSP concentration in the S-limited cultures (Figure 3.6, C and D). 

Interestingly, the level of enzyme activity we found in E.huxleyi was about 10-fold higher 

than usually measured in higher plants or green algae. 

The results from these APR activity assays were consistent with transcriptome results (see 

Chapter 5) where mRNA encoding APS reductase was very abundant but not differently 

regulated in E. huxleyi grown under low S condition. 
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Figure 3.6 Changes in cell density (mL
-1

) (A), cell volume (µm
3
) (B), and intracellular DMSP 

concentration (mM) (C) and APR activity (nmol min
-1

 mg protein
-1

) (D) over the time course of  

growth of E. huxleyi in 25 mM (black symbols) and 5 mM SO4
2-

 (white symbols). Results are 

shown as means ±standard deviation from 3 biological replicates. 

 

 

3.3.5. Thiol concentrations over the time course  

 

 The concentrations of cysteine (Cys) and glutathione (GSH) were measured in E. 

huxleyi cultures grown in 25 and 5 mM SO4
2-

 (Table 3.2). Samples were taken at 3 

different time points (days 3, 6 and 10) corresponding to mid-, late exponential and early-

stationary phase. The specific growth rate and thiol content in these phases are shown in 

Table 3.2. The accumulation of cellular Cys declined markedly from 2.57 mM on day 3 to 

0.79 mM on day 10. There was no  significant difference in amount of Cys between control 

and low-S cultures over the time-course (Student’s t-test, p>0.05). This suggests that, 

despite lowering the sulphate in the medium, E. huxleyi maintained the intracellular Cys 

homeostasis that is needed for synthesis of essential metabolites. GSH concentrations were 

in the same range as for Cys, however significant differences (Student’s t-test, p<0.05) 

were observed between the 25 and 5 mM SO4
2-

 cultures. GSH concentrations increased by 

about 20% between day 3 and day 10 in the control cultures (Table 3.2). By contrast, under 

low-S conditions, the GSH pool was similar to that of the control culture at day 3 but 

decreased to 50% of the control concentration at the end of the exponential phase (day 10).  
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Table 3.2 Specific growth rate and the concentrations (mM) of the thiols cysteine (Cys) and  

glutathione (GSH) in E. huxleyi grown under control (25 mM) and sulphate limited (5 mM) 

conditions. Values in brackets are standard deviation of biological triplicates. 

 Control Low S 

 Growth 

rate (d
-1

) 
Cys 

(mM) 
GSH 
(mM) 

Growth rate 

(d
-1

) 
Cys 

(mM) 
GSH 
(mM) 

Mid-log 
(day3) 

0.63 
(±0.07) 

2.57 
(±0.38) 

2.71 
(±0.17) 

0.60 
(±0.11) 

2.70 
(±0.36) 

2.46 
(±0.17) 

Late-log 
(day 6) 

0.58 
(± 0.04) 

0.97 
(±0.05) 

2.35 
(±0.27) 

0.38 
(± 0.07) 

1.08 
(±0.05) 

1.34 
(±0.16) 

stationary 
(day 10) 

0.19 
(±0.03) 

0.79 
(±0.05) 

3.47 
(±0.18) 

0.25 
(± 0.02) 

0.75 
(±0.05) 

1.75 
(±0.30) 

 

 

3.3.6. E. huxleyi responses to sulphur re-supply 

 

To confirm that sulphate indeed affects E.huxleyi growth we tested whether the slower 

growth at 5 mM sulphate can be restored after sulphate re-supply and two different 

experimental approaches were used for this. In the first approach, (Figure 3.7) the initial S-

limited batch (5 mM SO4
2-

) was split into 2 duplicate sets. One set was supplemented with 

20 mM SO4
2-

, whereas in another set the sulphate concentration was maintained. Adding 

sulphate to S-limited cultures resulted in ~20% increase in cell density compared to the 

unchanged cultures after 72 h (Figure 3.7, A). Similarly, the cell volume gradually 

decreased after re-supply of sulphate, although after 72 h the cells in 5+20 mM media were 

still larger than control cells (Figure 3.7, B). This was accompanied by a rapid increase in 

the intracellular DMSP pool which reached, within 72 h, the same level of DMSP (~250 

mM) as in the control cultures (Figure 3.7, C). 
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Figure 3.7 Effect of 20mM sulphate addition on the growth of S-limited E. huxleyi (A), cell 

volume (B) and intracellular DMSP (C). Dashed lines indicated before splitting and sulphate 

replenishment. Results are shown as means ±standard deviation from 3 biological replicates. 

 

 

 The second experimental approach also used triplicate batch cultures and confirmed 

the observations described above. The experiment started with cells that were in late 

exponential phase. At that time point (marked on the x-axis as 0, Figure 3.8) the S-limited 

cultures showed about 2 fold lower cell density and intracellular DMSP concentration 

compared to the sulphate sufficient controls. The addition of 20 mM SO4
2-

 resulted in a 

rapid increase in the specific growth rate; 0.32 (±0.03) d
-1

 when sulphate was re-supplied 

compared with 0.15 (±0.01) d
-1

 in the sulphate-limited cultures. This increase was 

accompanied by a ~30% decrease in the cell volume which may indicate an enhancement 

of cell division capacity upon sulphate addition. Sulphate restoration enhanced DMSP 

accumulation with a dramatic increase within 72 h from 89 (± 8) to 238 (±6) mM (Figure 

3.8, C). By the end of the experiment the DMSP concentration in the sulphate re-supplied 

cultures reached the level of sulphate–sufficient cultures. Unlike DMSP, APS reductase 

activity was not significantly different (Student’s t-test, p>0.05) between cultures with 

different sulphate status, and after a decrease at 24 h it stayed within the same range of ~ 

40 nmol min
-1

 mg protein 
-1 

over the time course (Figure 3.8, D). 
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Figure 3.8 Effect of 20mM sulphate addition on S-limited E. huxleyi growth (A), cell volume (B) 

and intracellular DMSP (C) and APS reductase activity (D). Results are shown as means ±standard 

deviation from 3 biological replicates. 

 

 

 To compare the ability of different sulphur sources to restore growth of S-limited 

cells and their DMSP content we examined the response of S-limited E. huxleyi to cysteine 

(Figure 3.9) and methionine (Figure 3.10) additions. Culture growth, cell volume and 

DMSP concentration were unaffected by the addition of 0.2 mM Cys. On the other hand, 

the addition of 1 mM Cys was found to enhance the specific growth rate within 24h from 

0.25 (±0.02) to 0.36 (±0.03). This concentration of Cys had a small, but significant 

(Student’s t-test, p<0.05) effect on the increase in DMSP concentration.  

 Similarly to Cys, addition of 0.1 or 0.5 mM Met, which is a precursor of DMSP, to 

S-limited cultures had no clear effect on E. huxleyi growth and cell volume. After an initial 

(24 h) increase of DMSP in Met supplemented cultures its concentration dropped and 

stayed within the range of S-limited cultures until the end of the experiment. 
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Figure 3.9 Effect of 0.2 and 1 mM Cys addition on S-limited E. huxleyi growth (A), cell volume 

(B) and intracellular DMSP (C). Results are shown as means ±standard deviation from 3 biological 

replicates. 
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Figure 3.10 Effect of the 0.1 and 0.5 mM Met addition on S-limited E. huxleyi growth (A), cell 

volume (B) and intracellular DMSP (C). Results are shown as means ±standard deviation from 3 

biological replicates 
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Equimolar S-compound resupply 

 

 To make a qualitative comparison between different S-sources we carried out the 

same experiment but adding equimolar (5 mM) concentration of sulphate, Cys and Met to 

triplicates of S-limited batch culture (Figure 3.11). In all 3 cases we observed continual 

increases of cell abundance and specific growth rate after S-compound addition. The 

specific growth rate measured after 48 h of incubation was higher in all S-supplemented 

cultures than in two controls: 25 and 5 mM SO4
2-

,with the highest value (0.38 ±0.02 d
-1

) 

following Met addition compared to 0.16 (±0.04) and 0.18 (±0.01) d
-1

 in 25 and 5 mM 

SO4
2-

, respectively. The addition of S-compounds did not result in a strong decrease in cell 

volume and the cells were ~50% bigger than those grown in control (Figure 3.11, B). 

Figure 3.11 C shows that upon addition of Cys, intracellular DMSP concentrations 

increased from 112 (±5) to 162 (±6) mM within 24 h. This suggests that the uptake of Cys 

was faster than the uptake of sulphate and Met. Seventy two hours after S-resupply the 

final DMSP concentration was similar in all 3 treatments and was ~25% higher than the 5 

mM SO4
2- 

culture and ~50% lower than the 25 mM SO4
2- 

culture. 
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Figure 3.11 Effect of the 0.1 and 0.5 mM Met addition on S-limited E. huxleyi growth (A), cell 

volume (B) and intracellular DMSP (C). Results are shown as means ±standard deviation from 3 

biological replicates. 
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3.3.7. Salinity down-shock 

 

 In this experiment we examined the effect of low salinity shock on the growth and 

intracellular DMSP concentration of E. huxleyi (Figure 3.12). The aim of this was to test 

whether lowering salinity by dilution, but keeping constant sulphate concentrations, had a 

comparable effect on growth and DMSP synthesis. To do this we used control (100%) and 

low-salinity (80 and 70%) ESAW media. 

 The specific growth rate measured when E. huxleyi cultures reached exponential 

phase markedly decreased under low-salinity from 0.72 (±0.05) to 0.66 (±0.01) and 0.61 

(±0.00) in 80 and 70% ESAW dilutions respectively. Also cell number clearly decreased 

with decreasing salinity resulting in about 2-fold lower cell density in the 70% dilution 

culture than that in the control. The change of cell volume throughout the time course 

showed the same pattern in all 3 salinities, however the volume of algal cells grown in 

70% dilute medium was ~10 µm
3
 bigger than the total volume of algal cells grown in 100 

and 80% salinity medium. 

 Low salinity had a clear effect on intracellular DMSP concentration (Figure 3.12, 

C). In the mid-exponential growth phase (day 4) DMSP concentration stayed the same 

level in both the 80 and 70% dilution cultures and was ~2-fold lower than the control. We 

observed a slight enhancement of DMSP during the experiment in salinity altered cultures, 

and the increase was significantly higher (Student’s t-test, p<0.05) in cultures grown in less 

diluted medium. DMSP concentrations measured in the late exponential phase (day 8) 

were 224 (±5), 164 (±) and 121 (±7) in the 100, 80 and 70% ESAW dilutions respectively. 
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Figure 3.12 Effect of the salinity down-shock on E. huxleyi cell density (A), cell volume (B) and 

intracellular DMSP concentration (C). The medium salinity was expressed as the percentage of the 

standard ESAW salinity. Results are shown as means ±standard deviation from 3 biological 

replicates. 
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3.4.  Discussion 

 

 Whilst sulphur forms part of many important molecules in marine algae, sulphur 

uptake and metabolism in these organisms is still rather poorly understood. The exception 

is the extensive work on DMSP since marine phytoplankton are the main producers of this 

S-metabolite. However even here there is very little knowledge of molecular mechanisms 

of the control of DMSP synthesis. This is particularly relevant as sulphate deficiency is one 

of the most studied environmental stresses in plant biology and so the lack of data makes 

comparisons between these groups difficult (Takahashi et al. 2011). In this chapter, 

therefore, we used various sulphate-limitation experiments as a tool to better understand 

sulphur metabolism in Emiliania huxleyi. 

 In the first experiment we compared growth and DMSP synthesis of this microalga 

under the range of low sulphate concentrations to test how it is affected by limited sulphate 

supply. At low sulphate levels E. huxleyi grew slower, with a decrease in growth rate 

observed below 10 mM SO4
2-

 in the medium (Figure 3.2). These results are consistent with 

those published very recently by Ratti et al. (2011) who found that the growth rate of 

E.huxleyi dropped at 5 and 1 mM SO4
2-

 below 0.40 d
-1

 but did not change above 10 mM.  

Our experiments showed clearly that E. huxleyi actually requires a high concentration of 

sulphate for optimal growth. The sulphate concentration of 5 mM that significantly limited 

E. huxleyi growth is 3 orders of magnitude higher than the concentration of sulphate that 

limits the growth of plants. Indeed , plants growth normally even at 5 µM sulphate  

(Hawkesford and De Kok 2006) whereas freshwater algae can adapt to environments with 

sulphate concentrations in the range of 0.01-1 mM  (Giordano et al. 2005). 

This high demand for sulphur supports the hypothesis that coccolithophorids, along with 

diatoms and dinoflagellates became dominant in the oceans when the sulphate 

concentration in seawater increased between Palaeozoic and Mesozoic times (Falkowski et 

al. 2004; Gill et al. 2007; Gill et al. 2011; Ratti et al. 2011). In addition to culture growth 

rate, sulphate limitation had an impact on cell morphology. In S-reduced cultures, cell size 

was larger than in the control which could indicate repressed cell division (Figure 3.2, C) 

 Interestingly, the photosynthetic efficiency did not show change at low sulphate 

with the exception of an initial decrease of Fv/Fm by ~25% at very low (1mM) SO4
2-

 

concentration, which then recovered within 2 days (Figure 3.2, C). Although, more 

experimental work is needed, this result combined with E. huxleyi transcriptome data 

indicating no change in expression of the genes involved in photosynthesis, suggests that 
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this process is unaffected by reduced sulphur availability. By contrast, sulphur limitation 

triggers down-regulation of photosynthesis in plants (Lunde et al. 2008) and green algae 

correlating with a reduction of ribulose-1,5- bisphosphate carboxylase/oxyganase 

(Rubisco) accumulation (Wykoff et al. 1998; Giordano et al. 2000). Since Rubisco requires 

reduced sulphur (Ferreira and Teixeira 1992) S may be reallocated to this protein from 

other sources in E. huxleyi. Indeed, we observed that the level of intracellular DMSP 

decreased concurrently with decreasing sulphate in the culture. This suggests that DMSP 

synthesis is regulated by sulphur availability, and that the change in the intracellular pool 

of DMSP could enable stored sulphur to be used for other metabolites. However, in order 

to prove this hypothesis, knowledge of the DMSP synthesis rate and turnover, rather than 

intracellular DMSP content is required. A similar but much weaker decrease of DMSP 

under S-deficiency was observed in the chlorophyte Ulva pertusa by Ito et al (2011). These 

authors measured ~30% reduction in DMSP content at 0.01 mM SO4
2-

 compared to control 

alga (30 mM SO4
2-

). Surprisingly, Ratti et al. (2011) did not observe a significant change 

of DMSP in E.huxleyi (strain PML 92/11) at sulphate concentration between 5 and 20 mM. 

In their studies, intracellular DMSP per cell and cell volume was ~3 fmol cell
-1

 and ~100 

mM, respectively, which is within the range of our cultures grown under 1 mM SO4
2-

. This 

suggests that E. huxleyi strain PML 92/11 is a lower DMSP producer than the strain we 

used (1516) and so less affected by sulphate deprivation. However, to verify this 

hypothesis exactly the same experimental conditions should be applied to both strains. 

Since the 5 mM SO4
2-

 culture responded with the greatest decrease in both growth rate 

(though still with a positive growth rate) and intracellular DMSP concentration (Table 3.1), 

we used this concentration as the S-limited baseline condition in the proceeding S-addback 

experiments. However, it has to be noted that while the growth of E. huxleyi decreased in 5 

mM sulphate, typical sulphate concentration in plant growth media is 0.75 mM and it has 

to be diminished to under 0.02 mM to affect plant growth and metabolism. 

 To test the hypothesis that response to sulphate limitation may be linked to DMSP 

content  we compared three E. huxleyi strains (CCMP 1516, 370 and 373) which have been 

previously shown to have distinctive intracellular DMSP content and DMSP-lyase activity 

(Steinke et al. 1998). These authors described strain 370 and 373 as having notably higher 

DMSP producer than strain 1516, but our results demonstrate that the latter has the highest 

DMSP content in sulphate replete conditions (Figure 3.4). The discrepancy between 

Steinke et al. and our study may be related to the method of cell size measurement, as we 

used a Coulter counter approach rather than microscopic enumeration; however there is no 
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direct evidence explaining these different values. Sulphate limitation induced a decrease in 

both cell density and intracellular DMSP concentration in strain 1516 and 370 but not in 

strain 373. A possible reason why this strain was not affected by sulphate depletion may be 

that its high DMSP-lyase activity could recycle sulphur from DMSP more efficiently and 

so increase the availability of sulphur-containing metabolites. Wolfe et al (2002) proposed 

that DMSP cleavage can maintain DMSP/DMS homeostasis and thereby help the cell to 

adjust to the environmental changes. Further work, e.g. measurement of DMSP lyase 

activity upon exposure to low S-conditions, would help to better understand the differences 

between these E. huxleyi strains. 

 One of the typical responses to sulphur depletion is an increase of exogenous 

sulphate uptake in plants (Clarkson et al. 1999; Koralewska et al. 2009) and green algae 

(Yildiz et al. 1994; Weiss et al. 2001; Koralewska et al. 2009; Pootakham et al. 2010). We 

assessed 
35

S acquisition in E. huxleyi grown in low and replete sulphate conditions in both 

5 and 25 mM sulphate. Similarly to green algae and plants, E. huxleyi responded to low-S 

condition by inducing the uptake rate ~4 fold (Figure 3.5). Although no dedicated attempt 

to characterise sulphate uptake in E. huxleyi was performed, the fact that the uptake rate 

was more than two-fold higher at 25 mM sulfate than at 5 mM sulphate shows that uptake 

is not saturated at 5 mM sulphate. This suggests that the uptake is in the low affinity range 

with a KM higher than 5 mM. This is significantly higher than the Arabidopsis low affinity 

transporters SULTR2;1 and -2;2 which have KM values of 0.41 mM and 1.2 mM, 

respectively (Takahashi et al. 2001) and in agreement with a study of marine red alga 

Rhodella maculate which has a sulphate uptake system with KM of 21.9 mM (Millard and 

Evans 1982). 

 The increase in sulphate uptake activity correlated with an induction of the 

expression of sulphate transporter genes detected in S-limited E. huxleyi (see Chapter 5). 

This is consistent with the responses of plants and green algae (Maruyama-Nakashita et al. 

2006; Pootakham et al. 2010) and may suggest that as in these organisms, sulphur 

molecules have a signalling function in sulphur metabolism in E. huxleyi. However, our 

results differ from those presented by Ratti and co-workers (2011) where E.huxleyi (strain 

PML 92/11) grown at 5 mM SO4
2-

 exhibited lower sulphate uptake rate compare to cells 

grown under ambient sulphate. Thus, there seems to be substantial variation in response to 

sulphate limitation between different E. huxleyi strains, as also seen in the different 

regulation of DMSP content (Figure 3.4). 
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 In contrast to the sulphate uptake results, S-limitation did not lead to the up-

regulation of APR activity in E. huxleyi (Figure 3.6, D). Moreover, we observed that the 

activity of this enzyme was lower in S-limited cultures relative to the control during the 

early log phase. The difference in APR activity measured with the time course between S-

replete and S-deplete cultures was not straightforward. Conversely, the withdrawal of 

sulphate from the environment is usually associated with an induction of transcript 

abundance and APR activity in plants (Takahashi et al. 1997; Hopkins et al. 2004; Kopriva 

2006; Koralewska et al. 2008). Although we did not notice a strong effect of S-limitation 

on APR, its observed activity in E. huxleyi was an order of magnitude higher than the 

activity measured in A. thaliana. (Vauclare et al. 2002) and C. reinhardtii (Ravina et al. 

2002). In addition, the APR mRNA was one of the most abundant in the E. huxleyi 

transcriptome (see Chapter 4) and Gao and colleagues (2000) demonstrated relatively high 

APR activity in marine phytoplankton species Enteromorpha intestinalis that produce 

DMSP. This may be related to substantial requirements for reduced sulphur in these 

species compare to low/non-DMSP producers; however we did not find a correlation 

between intracellular DMSP concentration and APR activity. Neither was a strong 

correlation observed in E. intestinalis (Gao et al. 2000). 

 We induced sulphate limitation to examine the changes not only in DMSP 

concentration but also other important S-metabolites: Cys and GSH. These thiols are very 

important for S-metabolism. Cys is the final product of S-assimilation and it gives rise to 

various metabolites (e.g. GSH) which in turn is considered (similarly to DMSP) as an 

important antioxidant (Polle and Rennenberg 1992; Foyer and Noctor 2005). Like DMSP, 

GSH concentration was down-regulated in E. huxleyi under sulphate limitation (Table 3.2). 

GSH down-regulation under S deficiency was also described in plants (Nikiforova et al. 

2003; Lunde et al. 2008). Conversely, Cys concentration was not affected by S-limitation 

in the same way reported in plants (Nikiforova et al. 2003; Kaur et al. 2011). Our 

transcriptomic analysis revealed the expression of genes involved in re-cycling GSH back 

to Cys in response to low sulphate conditions, indicating that E. huxleyi may re-allocate 

sulphur to other metabolites via Cys as a central point keeping thus its concentration 

constant. 

 Since S-limitation leads to a decline in cell abundance and intracellular DMSP 

levels in E. huxleyi, we intended to test whether S-resupply would restore growth and 

DMSP concentration in S-deplete cultures. Indeed, when 20 mM of sulphate was added 

back to 5 mM sulphate, within 2 days cultures regained previous levels of intracellular 
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DMSP and moved significantly toward their original cell density.(Figure 3.7 and 3.8). Our 

preliminary experiments providing different concentrations of Cys (0.2 and 1 mM) or Met 

(0.1 and 0.5 mM) into S-limited cultures, did not result in an increase of the growth and/or 

DMSP production compared with S-depleted cultures (Figure 3.9). Probably, the amount 

of sulphur taken up from these additional sources was not sufficient to fill the internal 

sulphur pools. Indeed, when higher concentration (5 mM) of SO4
2-

, Met or Cys was added, 

we observed a significantly higher cell counts and intracellular DMSP concentrations 

compared with the low S culture. However, this response was similar in all 3 addback 

experiments. An earlier study by Uchida et al. (1993) showed that when sulphate was 

replaced with 5 mM Cys or Met, growth of the heterotrophic dinoflagellate 

Crypthecodinium cohni was much better with Cys than Met, whereas intracellular DMSP 

levels were highest in the Met treatment, indicating that it is a closely coupled with the 

DMSP precursor. Unfortunately no information exists regarding the E. huxleyi 

transcriptomic profile after sulphate replenishment, as this information would greatly aid to 

the interpretation of our results. 

 As a compatible solute, intracellular DMSP concentration is known to alter in 

response to salinity changes (Vairavamurthy 1985; Van Bergeijk et al. 2002; Van Bergeijk 

et al. 2003). Low salinity experiments are usually conducted by mixing seawater with 

distilled water. In our experiment we tested whether previously observed DMSP decreases 

are the effect of salinity down-shock or simply the effect of sulphate dilution in the 

medium. To do so, we kept sulphate concentration constant in all low salinity media. 

Indeed, our results suggest that decrease of the cell density and DMSP is closely related to 

the salinity reduction. Niki et al (2007) revealed that salinity-down shock triggered rapid 

DMSP realised from dinoflagellate Heterocapsa triquerta and that it also instantaneously 

converted released DMSP to DMS. Based on their observations, they conclude that low 

salinity condition may increase algal DMS production and at the same time decrease 

bacterial DMSP consumption.  
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3.5. Conclusions 

 

 This chapter focussed on the effect of sulphate availability on physiology and 

sulphur metabolism in E. huxleyi. Low availability of sulphate reduced the growth rate and 

yield, the intracellular concentration of the S-metabolites DMSP, GSH and Cys, whilst 

inducing the sulphate uptake rate. We showed that the response to S-limitation was strain 

specific in respect to growth and DMSP concentration. Although E. huxleyi was affected 

by sulphate limitation the response is different to that reported for higher plants and green 

algae. We observed substantially higher APS reductase activity compared to plants and 

freshwater algae, and in E. huxleyi the activity of this enzyme was not regulated by sulphur 

availability. We suggest that this is most likely due to sulphur metabolism having evolved 

in a different way in the seawater environment compared to terrestrial and freshwater 

habitats where organisms are more likely to face sulphur deprivation.   

 Whilst our approach does not allow us to fully explain DMSP biosynthesis and 

breakdown, our data show that by altering the sulphur pool available in the growth medium 

one can regulate intracellular DMSP levels, at least in E. huxleyi. We have demonstrated a 

clear effect of salinity on DMSP concentration, and for future work combining salinity 

changes with altered sulphate availability would provide more information about the role 

of DMSP and its regulation in marine microalgae.  

 More detailed studies will be needed to improve our understanding of S metabolism 

in marine algae. The results presented here led to an in-depth analysis of the effects of 

sulphate limitation in E. huxleyi at the molecular level and this is presented in Chapter 5. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

4.  Diurnal variation of sulphur metabolism 

in Emiliania huxleyi 
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4.1.  Introduction 

 

 The photosynthetic machinery uses light energy, ATP and an electron donor to 

convert the inorganic molecules carbon dioxide and water into energy-rich carbohydrates 

and the by product oxygen. In nature the variation in light intensity is usually linked to the 

light:dark cycle and this determines physiological and metabolic changes in living 

organisms, especially photosynthetic organisms. Although, sulphur does not directly act in 

photosynthesis it is an important molecule for the photosynthetic apparatus as a constituent 

of the amino acids methionine (Met) and cysteine (Cys) and important co-factors of 

photosynthetic proteins such as iron sulphur centres. Apart from being a part of structure of 

photosynthetic proteins, sulphur in form of Cys, Met, glutathione (GSH) and 

dimethylsulphoniopropionate (DMSP) are essential for cellular antioxidant defence 

mechanism (Schupp and Rennenberg 1988; Sunda et al. 2002; Møller et al. 2007). All 

organisms need to eliminate reactive oxygen species (ROS); in the case of plants and algae 

ROS are also generated by light-dependent processes associated with photosynthesis and 

photorespiration. This is a particular issue under high light intensities or nutrient stress 

(Sunda et al. 2002). In this way S-metabolites that act as antioxidants might be expected to 

vary across the light:dark cycle. 

 There are very few studies showing diurnal changes of S-compounds in marine 

microalgae. Culture and field studies by Dupont and co-workers (2004) revealed that GSH 

concentration in the coccolithophore Emiliania huxleyi and diatom Thalassiosira 

pseudonana varied during the light/dark cycle reaching the highest values during light 

periods. In addition, Bucciarelli et al. (2007) recently showed that DMSP concentration is 

also affected by the diurnal rhythm in E. huxleyi. Unfortunately, the different 

methodological approaches e.g. light regime used in the experiments make the comparison 

between these two investigations difficult. 

 Here we describe diel oscillations in growth parameters and concentrations of the 

S-metabolites Cys, GSH and DMSP. Moreover, since it was shown that in vascular plants 

APS reductase (APR) activity is modulated by light:dark cycle (Kopriva et al. 1999), we 

also tested whether the same is true for E. huxleyi. A parallel experiment was carried out 

by Nicola Hockin (University of East Anglia and John Innes Centre) on T. pseudonana 

which allowed direct comparison between these two species. In addition, a further diurnal 

experiment was performed to study the effect of the light on the recovery of S-limited 

cultures of the E. huxleyi. 
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4.2.  Materials and Methods  

 

 Triplicate batch cultures of Emiliania huxleyi were grown in 2 L conical flasks 

containing 1.5 L of ESAW medium. The experimental setup was prepared by inoculation 

the media with exponentially growing stock cultures to give an initial cell density of ~5 x 

10
4
 cells mL

-1
. Cultures were grown at 15

o
C under a light:dark cycle of 14:10 hours as 

detailed in Chapter 2. The diurnal experiment commenced when cultures were in mid-

exponential phase with a cell density ~1 x 10
6
 cells mL

-1
. The first samples were taken just 

before the dark to light transition and the subsequent samples were taken every 2 or 3 h 

over 29 h. At each time point cultures aliquots of 2, 10 and 20 mL were withdrawn for the 

measurement of intracellular DMSP concentration, APR activity and the analysis of thiol 

concentrations (Cys and GSH) respectively. Aliquots for DMSP and thiol measurements 

were gently filtered by hand vacuum pump (< 10 cm Hg) through 25mm Whatman GF/F 

filters (nominal pore size 0.7 µm, Whatman UK Ltd., Maidstone, U.K.). Similarly, aliquots 

for APR activity measurement were filtered through 25 mm Nucleopore™ track-etched 

polycarbonate filters (nominal pore size 1.0 µm, Whatman UK Ltd., Maidstone, U.K.). 

Samples were stored and analysed according the procedures described in the chapter 2. The 

culture growth parameters cell number and cell volume were measured simultaneously at 

each sample collection point. 

 In the second experiment triplicate batch cultures were grown in 1 L conical flasks 

with 500 mL of ESAW medium with 25 or 5 mM SO4
2-

. When cultures reached 

exponential phase the experiment commenced by adding 20 mM SO4
2-

 into one set of S-

limited cultures and adjusting the ionic strength in S-limited and S-replete cultures. The 

growth parameter measurements and DMSP sample collections were done as described 

above. Again, further details can be found in Chapter 2. 
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4.3.  Results and Discussion  

 

4.3.1. Growth parameters  

 

Figure 4.1 shows the diurnal cycle of the growth parameters and S-metabolites in 

E. huxleyi (strain CCMP 1516) grown in batch cultures under nutrient-replete conditions. 

The cell abundance did not change during the light period but there was a sharp increase in 

cell number during the night indicating that the cell division occurs in the dark phase 

(Figure 4.1, A). The same pattern was observed in E. huxleyi in previous studies (Paasche 

1967; Bucciarelli et al. 2007). The cells exhibited a clear diurnal periodicity in cell size 

(Figure 4.1, B). The cell volume increased over the light period reaching the maximum 

value at the end of the light period and decreased in the dark period, reaching the minimum 

value at the end of the dark phase. The light:dark fluctuation in cell volume was 

responsible for the differing patterns observed for DMSP per cell and DMSP concentration 

i.e. normalised to cell volume (Figure 4.2, C and D). Intriguingly, in the diatom T. 

pseudonana grown under the same conditions the cell size was unchanged across the 

diurnal cycle (Nicola Hockin, University of East Anglia and John Innes Centre, personal 

communication). 
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Figure 4.1 Effect of diurnal light variation on E. huxleyi cell abundance (A), cell volume (B), 

intracellular DMSP concentration (C), APS reductase activity (D), cysteine concentration (E) and 

glutathione concentration (F). The light:dark cycle is indicated by the white (light) or black (dark) 

bars. Time point 0 h corresponds to the beginning of the light period. Results are shown as means ± 

standard deviation of 3 replicates. 
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4.3.2. DMSP 

 

The average intracellular DMSP concentration during the time-course experiment 

was 232 (±12) mM. There was no obvious trend in change of DMSP content expressed per 

cell volume over the light:dark period (Figure 4.1, C). Our results are in agreement with 

Rijssel and Gieskes (2002) who found that neither light regime nor light intensity affected 

DMSP concentration in E. huxleyi strain L. In contrast, Bucciarelli and co-workers (2007) 

reported a decrease in intracellular DMSP concentration during the light period and its 

increase in darkness in strain CCMP 374. Another diurnal pattern was revealed in low 

DMSP-producer T. pseudonana by Nicola Hockin (University of East Anglia and John 

Innes Centre, personal communication). She observed a continuous increase of 

intracellular DMSP during the day and its plateau at night. It is worth mentioning that the 

intracellular DMSP concentration in T. pseudonana was two orders of magnitude lower 

than this measured in E. huxleyi. Fairly constant level of DMSP over light:dark period 

should not rule out the potential for this molecule functioning in the cell antioxidant 

defence system as proposed by Sunda et al. (2002). According to these authors, DMSP is 

involved in an antioxidant cascade mechanism whereby the DMSP degradation products 

DMS and acrylate are even more effective in ROS scavenging than DMSP itself. In this 

system DMS could react with hydroxyl radicals (•OH) to form dimethylsulphoxide 

(DMSO). Keeping a high and constant level of intracellular DMSP might be the part of the 

cellular strategy for ensuring that the antioxidant system keeps running, especially since 

this multifunctional molecule is presumably involved in other physiological processes (see 

Chapter 1). However, to verify this hypothesis, DMSP synthesis rate data would be 

required. 

 

4.3.3. Thiols 

 

 In addition to measuring intracellular DMSP we also examined diurnal variations in 

GSH and its precursor Cys as these thiols compounds are also involved in ROS 

detoxification. Cys concentration declined from ~2 to ~1 mM between the beginning and 

the end of the light period but we did not observed a diurnal cycle since after this initial 

decrease the concentration stayed at about the same level until the end of the experiment 
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(Figure 4.1, E). Nicola Hockin (personal communication) also found no fluctuation in Cys 

concentration in T. pseudonana.  

The lack of Cys regulation by the diurnal cycle underlines the importance of this amino 

acid as central point mediating various metabolic pathways. Contrary to Cys, GSH 

concentration in E. huxleyi exhibited a clear diurnal pattern with the highest value of ~6 

mM at 8 hours into the 14 hour light period and the lowest value of ~4 mM at the 

beginning the dark period. The concentration then stayed unchanged until the lights came 

on again (Figure 4.1, F). A similar diurnal cycle has been revealed for other marine algae 

including E.huxleyi strain CCMP 373 and T. pseudonana (Dupont et al. 2004; Nicola 

Hockin, personal communication), as well as in spruce needles (Schupp and Rennenberg 

1988). Interestingly, the overall Cys and GSH concentrations in E. huxleyi strain CCMP 

1516 were ~2 fold higher than in T. pseudonana (Nicola Hockin, personal 

communication). 

 

 The diurnal alteration in GSH concentration observed in these marine microalgae 

supports its role in oxidative stress response. GSH is the most abundant low-molecular-

weight thiol a major electron donor to reduce oxidased ascorbate which is primary 

scavenger of H2O2 (Rouhier et al. 2008). 

 

 

4.3.4. APS reductase  

 

 Although APS reductase (APR) activity regulation by light is well documented in 

plants (Neuenschwander et al. 1991; Kopriva et al. 1999) no information exists regarding 

diurnal variation in APR activity in marine microalgae. Here, we made an attempt to test 

APR activity variations in E. huxleyi under the light:dark cycle (Figure 4.1, D). The 

enzyme activity values varied between ~10 and ~19 nmol min
-1

 mg protein
-1

 however the 

data are relatively noisy and there was no a clear difference (Student’s t-test, p>0.05) 

between the light and dark period. A similarly lack of diurnal fluctuation was shown for T. 

pseudonana (Nicola Hockin, personal communication). On the other hand Kopriva and co-

workers (1999) observed a diurnal rhythm of both APR activity and mRNA level in 

Arabidopsis thaliana. They found that enzyme activity was the highest during the light and 

the lowest at the beginning of the dark period. This discrepancy could indicate that sulphur 

assimilation is differently regulated in plants and marine algae. This might be related not 
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only to phylogenetic distance, but also to the very different habitats these organisms 

occupy in terms of sulphur-availability. 

 

4.3.5. Diurnal variation in S-resupplied E. huxleyi cultures 

 

 In Chapter 3 we presented data that showed how cell abundance and DMSP 

concentration increased following sulphate re-supply to S-limited cultures. Here, we aimed 

to examine the dynamic of these increases in relation to the diurnal cycle (Figure 4.2). The 

experiment commenced 7 days after inoculation of the E. huxleyi cultures when 

intracellular DMSP concentration was ~35% lower in the S-limited (5 mM SO4
2-

) than in 

control (25 mM SO4
2-

) cultures (Figure 4.2, E). During the first 14 h light period, cell 

number and cell volume were the same in the 5 mM and S-resupplied (5+20 mM SO4
2-

) 

cultures (Figure 4.1, A & B). By contrast, at the end of the dark period there was a 

significant difference (Student’s t-test, p<0.05) observed in cell number in that the  cell 

density in the 5+20 mM cultures was ~33% higher than in 5 mM culture after 24 h (Figure 

4.2, A). This increase was accompanied by a steeper drop in cell volume in the 5+20 mM 

culture compared to the 5 mM cultures (Figure 4.2, B). 

 During the light period the amount of DMSP per cell markedly increased in the 

5+20 mM cultures from ~3 to ~5 fmol cell
-1

, whereas there was far less variation in DMSP 

in the 5 mM cultures over the whole time-course (Figure 4.2, C). Since, during the first 14 

h of the experiment the the cell volume changed at a similar rate in both the 5 mM and 

5+20 mM cultures, the up-regulation in cellular DMSP content could be at least in part 

attributed to the light. 

 Intriguingly, intracellular DMSP in the S-limited E. huxleyi cultures exhibited a 

steady decrease from ~140 mM at the early light period down to ~80 mM at the early dark 

period and then small increase back to ~117 mM at the early light of the next day (Figure 

4.2, C). This may suggest that, in contrast with S-replete conditions, in S-limited cultures 

the pool of antioxidant DMSP cannot be kept constant due to the insufficient sulphate 

supply from the external environment. 
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Figure 4.2 Effect of diurnal light variation on E. huxleyi under different sulphate status: 25 mM, S-

replete; 5 mM, S-limited; 5+20 mM, S-restored cultures. The graphs show: cell abundance (A), cell 

volume (B), DMSP concentration per cell (C), intracellular DMSP concentration (D), intracellular 

DMSP concentration before and after the 29 h experiment (E). The light:dark cycle is indicated by 

the white (light) or black (dark) bars. Time point 0 h and black arrow in figure E correspond to the 

beginning of the light period. Results are shown as means ± standard deviation from 3 replicates. 
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4.4.  Conclusions  

 

In this chapter we examined the diurnal variation in growth and sulphur compounds 

in the marine microalga E. huxleyi. The temperature was constant during the experiments, 

so the main factor controlling these changes was the light. We demonstrated that the cell 

division takes place during the dark period and this process is preceded by an increase in 

the cell size during the light period when photosynthesis occurs.  

Under control conditions intracellular DMSP concentration was maintained at a 

fairly similar level throughout the light:dark cycle, reflecting its modulation due to changes 

in cell volume. The high and relatively constant level of this S-molecule suggests that cells 

control the DMSP concentration quite tightly and/or that its various physiological roles, 

including that in ROS detoxification, do not have a substantial effect on DMSP 

concentration. In addition, light regulation of GSH concentration confirmed its function as 

ROS scavenger which when combined with the DMSP-DMS-DMSO antioxidant cascade 

may form an efficient ROS-scavenging mechanism in E. huxleyi. 

While APR activity is altered by the light in plants, this seems to be not true for 

marine phytoplankton indicating that sulphate assimilation is differently regulated in these 

organisms. 

The second experiment focused on the effect of the light:dark cycle on DMSP 

concentration in the E. huxleyi after sulphate restoration. Our results indicate that 

immediate and continuous increase in DMSP content in the light period is driven by the 

light, however this would need to be confirmed with more experiments e.g. looking at the 

affect of sulphate re-supply to S-limited cultures just before the dark period. To our 

knowledge, this was the first attempt to better understand DMSP regulation by sulphur 

availability and light status in marine algae. The results suggest that there is a synergistic 

regulation of DMSP by these environmental conditions, but further experiments are needed 

to better understand their relationship. 

 

 

 

 

 



 

 

 

5. Transcriptome analysis of sulphur limitation 

in Emiliania huxleyi CCMP1516 
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5.1.  Introduction 

 

 Sulphate deprivation is well known in the terrestrial soil and freshwater 

environments. This had led to substantial research on S-metabolism in higher plants such 

as Arabidopsis thaliana (Hirai et al. 2003; Maruyama-Nakashita et al. 2003; Nikiforova et 

al. 2003; Nikiforova et al. 2005a; Nikiforova et al. 2005b; Lewandowska and Sirko 2008; 

Kopriva et al. 2009) and the freshwater alga Chlamydomonas reinhardtii (Irihimovitch and 

Stern 2006; Gonzalez-Ballester et al. 2008; Nguyen et al. 2008; González-Ballester et al. 

2010). Overall this body of research has revealed that removing sulphur from the external 

environment significantly decreases the level of various S-metabolites and this induces 

sulphate uptake transporters and key enzymes involved in the sulphate assimilation 

pathway. This stimulation was controlled primarily at the transcriptional level since genes 

encoding sulphate transporters,  ATP sulphurylase and APS reductase are greatly up-

regulated under low S-conditions. 

 In contrast to land and freshwater habitats, where S-metabolism is influenced by 

low sulphate conditions, the sulphate-rich ocean could possibly have influenced a different 

course in the evolution of S-metabolism in marine organisms. The biosynthesis of the S-

molecule dimethylsulphoniopropionate (DMSP) by several phytoplankton groups (Keller 

et al. 1999a; Keller et al. 1999b) and the high ratio of sulpholipid to phospholipid in the  

marine cyanobacterium  Prochlorococcus (Van Mooy et al. 2006) are good examples that 

illustrate the distinctive physiology of these organisms. Nevertheless, since sulphur is 

unlikely to ever be limiting in the sea, there are still many gaps in our understanding of S-

metabolism in marine microalgae. Investigation of model marine microalgal species such 

the coccolithophore Emiliania huxleyi using novel sequencing approaches offers strong 

possibilities for filling these knowledge gaps.  

 E. huxleyi is a well studied and characterised eukaryotic phytoplankton species. It is 

very abundant which has implications not only for the ocean but also for the whole earth 

system, particularly the carbon and sulphur biogeochemical cycles. As such it has been 

used as a model organism to elucidate a range of complex and cross-linked environmental 

processes. Unfortunately, despite the continuing progress in E. huxleyi gene sequencing, 

there is still lack of valuable genomic resources for this microalga. Most of the gene 

expression studies in E. huxleyi were carried out with the expressed sequence tag (EST) 

analysis that can provides an expression profile for different environmental conditions. 

Wahlund et al. (2004) analysed 3000 ESTs generated under conditions that enhanced 
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coccolith formation with the aim of increasing the sequence database for E. huxleyi as well 

as the catalogue of genes potentially involved in calcification processes. As the result they 

obtained a unigene set of ~1523 ESTs with numerous transcripts related to the sexual 

reproduction and calcium homeostasis. More recent developments in molecular 

technologies have initiated further progress towards a better characterisation of 

coccolithophores. The draft genome of E. huxleyi CCMP 1516 released in 2006 by the 

International E. huxleyi Genome Sequencing Consortium and US Department of Energy 

Joint Genome Institute (http://www.jgi.doe.gov/) was a major step forward. The resulting, 

168-megabases (Mb) draft genome was generated using a whole-genome shotgun 

approach, with 10 x coverage, followed by assembly of 7809 scaffolds. The genome was 

very difficult to sequence as E. huxleyi has high G+C content of 66%. To date, the E. 

huxleyi draft genome contains 39126 functionally annotated genes and gene models. Gene 

identifications and functional annotation was carried out based on more than 80000 

EST/cDNA sequences generated under calcifying and non-calcifying conditions.  

 Besides the E. huxleyi nuclear genome sequenced, the complete plastid and 

mitochondrial genomes have also been sequenced and published (Sánchez Puerta et al. 

2004; Puerta et al. 2005). The E. huxleyi chloroplast genome (cpDNA) consists of 105309 

bp and it is much smaller than other cpDNAs from the red algal lineage. The analysis of E. 

huxleyi cpDNA suggests a close relationship between haptophyte plastid and the chl c-

containing plastids from heterokonts and cryptophytes (Puerta et al. 2005). 

 With access to the genome of E. huxleyi high-throughput gene expression analysis 

became possible and a number of microarray experiments have been done. Quinn et al. 

(2006) used a cDNA microarray approach to characterise gene expression profiles in 

calcifying and noncalcifying E. huxleyi cultures grown in phosphate-limiting and 

phosphate-replete media, respectively. They detected 127 significantly different regulated 

genes out of 3000 transcripts, and these were mainly involved in cellular metabolism, ion 

channels, transport proteins, vesicular trafficking, and cell signaling. 

In a different study, Rokitta et al. (2011) used microarray data to determine significant 

differences in gene expression between the haploid and diploid life –cycle stages of E. 

huxleyi Recently, the microarray-based technique was also employed to examine the 

transcriptome profile of virus-infected E. huxleyi during bloom progression (Pagarete et al. 

2011). The authors observed a large change in transcriptome profile associated with amino 

acid and nucleotide metabolism, transcription and replication, as well as lipid metabolism.  
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 To date explorations of the molecular features of E. huxleyi have mostly focussed 

on investigations on calcification and viral interactions, processes which make this 

coccolithophore a key player in numerous biogeochemical and ecological processes  

(Kegel et al. 2007; Richier et al. 2009; Von Dassow et al. 2009; Richier et al. 2010). 

Further characteristics such as high intracellular DMSP content and strain specific DMSP 

lyase activity suggest E. huxleyi could also be a model for studies of sulphur metabolism in 

marine organisms. 

 Measuring the expression of thousands of genes simultaneously under particular 

conditions has become possible thanks to the successful application of microarray 

technology and this is widely used for gene analysis. However, there are some limitations 

due to background noise, cross-hybridizations and ability to detect known sequences a 

priori (Forster et al. 2003; Russo et al. 2003). Novel Next-Generation Sequencing (NGS), 

approaches are high-throughput sequencing platforms that can overcome the problems 

often associated with microarrays. One of these commercially available technologies is the 

Solexa Illumina Gene Analyzer outlined by Morozova and Marra (2009). In brief, Illumina 

attaches specially designed adapters to the ends of previously prepared fragments from a 

library (Figure 5.1). Next, the DNA molecules are immobilized onto a solid surface called 

a flow cell using an adapter. A fixed single DNA fragment bends over to form a hybrid 

with the complementary linker and creates a “bridge” structure that can then serve as a 

template in the amplification step. The clusters formed in this way typically consist of 

~1000 copies. With eight flow cell lines the instrument allows for several million clusters. 

Following this step, prepared single stranded amplification products undergo massive 

parallel sequencing-by-synthesis using a reversible terminate-based method. The 

nucleotides are modified with a fluorescently labelled terminator, which permits the 

incorporation of a single nucleotide into the growing DNA strand during each cycle. After 

recording its colour image, the terminator is cleaved off to allow incorporation of the next 

base in the following cycle. Although there are some limitations in form of short reads, 50 

base pairs (bp) in this work, Illumina along with other NGS platforms, have become useful 

tools for pursuing transcriptome sequencing (RNA-seq). 

 The main goal addressed in this chapter was to investigate the role of sulphur in E. 

huxleyi at the molecular level using a transcriptomic approach. The results combined with 

the findings described in the previous chapters, served as an informative tool for 

comparing the different responses to S-availability amongst phylogenetically and 

ecologically distant organisms. 
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Figure 5.1 Schematic overview of the DNA and cDNA sequencing (RNA-Seq) workflow using 

Illumina‟s Genome Analyser. RNA is converted to a library of cDNA fragments attached with 

sequencing adaptors during library preparation. Using high-throughput sequencing technology a 

short sequence is obtained from each cDNA after cluster generation, and sequencing. Source: 

http://www.illumina.com/documents/products/brochures/brochure_genome_analyzer.pdf. 
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5.2.  Methods 

 

5.2.1. Growth conditions 

 

 Triplicate control and experimental batch cultures of E. huxleyi (CCMP 1516) were 

grown in 2 L conical flasks with 1L ESAW control medium (25 mM sulphate) or sulphur-

limited (5 mM sulphate) as described earlier (see Chapter 2). The cell numbers were 

monitored on a daily basis. Samples for RNA extraction were collected when cultures 

entered mid-exponential phase. At this point, duplicate aliquots, 250 ml control and 350 ml 

experimental cultures were filtered onto 47-mm diameter 1.2 µm filters (Millipore
TM

 

Membrane Filter), placed into cryogenic vials, snap frozen in liquid nitrogen and stored at -

80
o
C prior to RNA extraction. Along with RNA, samples from each biological replicate 

were taken for particulate DMSP analysis (see Chapter 2). 

 

5.2.2. RNA isolation 

 

 Total RNA was extracted with TRI
®
 Reagent (Sigma-Aldrich). After removing 

from the -80
o
C freezer, each filter was placed on a sterile Petri dish. Immediately, cells 

were washed from the filter with 800 µL of TRI
®

 Reagent solution, transferred into 2 mL 

Eppendorf tubes and shaken for 15 min at room temperature to completely disrupt the 

cells. In order to precipitate DNA and proteins, 800 µl of chloroform was added, the 

shaking step was repeated and the tubes were centrifuged for 30 min at 9500 x g and 4
o
C. 

The supernatants were then transferred to new tubes and ice-cold isopropanol (vol:vol) was 

added. The nucleic acid precipitated during 20 min incubation at -20
o
C. Next, the 

centrifugation step was repeated. DNase digestion was carried out using the RNeasy
®

 Plant 

Mini Kit (Qiagen) according to the manufacturer‟s protocol. After discarding the 

supernatant, the pellets were washed twice with 1 mL of ice-cold 75% ethanol and 

centrifuged for 2 min at 9500 x g and 4
o
C. Dry pellets were dissolved in 100 µL of RNase-

free water. RNA concentrations were measured by absorbance at OD260 using a NanoDrop 

ND-1000 spectrophotometer (Thermo Scientific) and its purity was confirmed by 

measuring the ratios OD260:OD280 and OD230:OD260. Prior to sending samples for Illumina 

deep-sequencing, RNA integrity was assessed by 1% agarose gel electrophoresis. 
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5.2.3. Illumina RNA-seq workflow 

 

 In this study, biological triplicates of control (25 mM SO4
2-

) and sulphur-limited (5 

mM SO4
2-

) samples, each containing 5 µg of total RNA, were submitted to the GenePool 

research facility in Edinburgh, UK for sequencing on the Illumina Solexa GAIIx platform. 

Briefly, mRNA was obtained from total RNA using oligo-dT beads and converted into 

cDNA by random priming. The constructed cDNA library was loaded onto the flow cell 

and sequenced as 50-bp pair-end reads (Figure 5.1). Next, the sequences were aligned to 

the E. huxleyi reference transcriptome taken from the E. huxleyi CCMP1516 main genome 

assembly v1.0 using Mapping and Assembly with Qualities (MAQ) software set at a 

threshold of ≥ 30. This scoring system is based on two factors: singleness of the read and 

quality or mismatches of the read. In the case where a read matched at more than 2 

locations, it was aligned randomly and a lower mapping quality was assigned. No more 

than 2 mismatches in the first 28 bp were allowed. 

 To identify functional categories, the transcripts were annotated against the 

Superfamily database 1.73 (http://supfam.cs.bris.ac.uk/SUPERFAMILY/). The 

superfamily/family description was attached to all genes with a domain assignment 

available. As part of their service, the Edinburgh GenePool generated the final data output 

with a raw read count of transcripts for each individual sample and provided these along 

with the read sequences and mapping statistics. 

 

5.2.4. Data analysis 

 

 In order to investigate the difference in the gene expression pattern, the raw read 

counts were normalised in each library by dividing the number of reads by the total 

number of reads in the library. To identify which genes were up- or down-regulated in the 

low-S condition, the value of the normalised read counts from replicates (n=3) was 

averaged and a log2 ratio gene fold change was calculated using. Statistical comparison 

using the false discovery rate (FDR) was performed by Sam Mugford (John Innes Centre) 

according to Storey and Tibshirani (2003). The genes were considered to be differentially 

expressed when their q-values (proportion of false positives incurred when a particular test 

was called significant) were ≤ 0.05 and log2 ratios were either ≥1 or ≤-1. 
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5.2.5. Detection of differently expressed groups and iterative group analysis 

 

 To allow biological interpretation of changes resulting from S-deprivation, iterative 

group analysis was employed (Breitling et al. 2004). This is an automated procedure based 

on hypergeometric statistic that individually assigns a PC or Probability of Change value to 

each functional group. This highlights groups that have low absolute changes in expression 

despite their biological significance (Breitling et al. 2006). The enrichment was obtained 

separately for up- and down-regulated genes annotated to pathways from the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto 2000), the EuKaryotic 

Orthologous Group (KOG) (Tatusov et al. 2003) and the Gene Ontology (GO) terms 

(Ashburner et al. 2000). The lists of annotated genes were sorted by the descending (for 

up-regulated genes) or ascending (for down-regulated genes) S-limited/S-replete 

expression ratios. The significance threshold of each PC-value was calculated using an 

algorithm derived from the number of groups and the selected sensitivity. 

 

5.2.6.  Quantitative RT-PCR 

 

 To validate the transcriptomic data quantitative RT-PCR of selected genes from 

triplicate S-replete and S-limited cultures was performed. Total RNA was isolated from S-

replete and S-limited cells as described above. A total of 1 µg of RNA was used for cDNA 

synthesis using a QuantiTec reverse transcription kit (Qiagen), which included a DNase 

treatment to ensure DNA-free RNA was obtained. No reverse transcription control was 

prepared to check for DNA contamination. The gene-specific primers were designed using 

Primer Premier 1.6 software (Premier Biosoft) (Table 5.1). The amplification efficiency 

was tested for each primer pair using a cDNA dilution series and this gave reaction 

efficiency values between 90 and 100%. The Q-PCR reactions were performed in 96-well 

plates. For each primer pair a 10 µM working stock was made using distilled water. The 

reaction mixture contained 4 µL of primer mix, 1 µL of cDNA template and 5 µL SYBR 

Green JumpStart Taq Ready Mix (Sigma-Aldrich). The reactions were run in the Opticon 2 

continuous fluorescence detector (Bio-Rad, Hemel Hempstead, UK) for 4 min at 95
o
C for 

initial denaturation, followed by 39 cycles of 15 sec of denaturation at 95
o
C, 30 sec of 

annealing at 60
o
C and 30 sec of elongation at 72

o
C. Final dissociation was carried out for 

10 min at 72
o
C to ensure that each amplicon was a single product. 
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The E. huxleyi gene encoding actin (JGI protein ID 74049) was used as a reference and for 

each gene tested Ct values, defined as the PCR cycle number at which the fluorescence 

passes the threshold, were used to calculated relative expression values using comparative 

Ct method (Livak and Schmittgen 2001). 

 

Table 5.1 Gene specific primers for quantitative RT-PCR analysis. 

 

ID
a
 

Product 

length 

(bp) 

Forward primer (5’-3’) Reverse primer(5’-3’) 

450514 86 CTGTGCGGAGATCGACAAGGTG CGACGAGGTCCGTGTTCCAGAT 

452597 85 AGACCAACACCGACGACCTCTC AACTTGAGCATCGCCAACGCAT 

437926 91 GAGCACGGGCAACCTCATCTTC CGACATGGCGACCTTGAATCCG 

441761 127 TCGCCGAGGACAAGTACAACCT CGCTGCTGGACGAGATGCTTT 

454260 113 ACCGAAGACGGCACCACGAT AGGTCGCACTCACGCTCGTT 

440242 97 ATGCTGCCGATGGTGAACGAAG AGCCGTAGCCGTACAGGAAGAC 

442972 86 ATGAGGGACCGATGGGTATGGG CAGCGAGTGAGCGAGTTGCT 

74049
b
  85 AGTGCCATTCACCGCAAG TGCTCGAGTACAAGCAGCAAG 

a
JGI protein accession number. 

b
Reference gene. 
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5.3.  Results 

 

5.3.1. Basic quantitative parameters 

 

 Previous experiments (see Chapter 3) have demonstrated that sulphur limitation 

induced a decrease in E. huxleyi cell growth, intracellular DMSP and GSH content while 

sulphate uptake increased. This suggested that these changes might be regulated on the 

transcriptional level. In order to examine the E. huxleyi transcriptome with respect to 

sulphur availability, RNA was obtained from replicate cultures that had been grown with 

25 mM (control) and 5 mM (S-limited) sulphate. On the day of harvesting the average 

growth rate was 0.67 (± 0.04) day
-1

 and 0.46 (± 0.05) day
-1

 in control and S-limited 

cultures, respectively. Average intracellular DMSPp concentrations were 226 (± 5) and 

103 (± 7) mM in control and treated cultures, respectively. In all cases the cell growth and 

intracellular DMSP were significantly different (Student‟s t-test; p≤0.05). Total RNA 

samples were further processed and analysed in the GenePool in Edinburgh (see section 

5.2.3). Before sequencing, a cDNA library was prepared for each individual control (cont1, 

cont2 and cont3) and S-limited culture (S-limit1, S-limit2 and S-limit3) and the output for 

each sample was summarised in Table 5.2. The number of high-throughput paired-end 

sequences yielding reads ranged from 5 to 14.5 million per sample. Of these, 

approximately 70% could be mapped against the E. huxleyi CCMP1516 main genome 

assembly (v1.0). The remaining unmatched sequences were assembled de novo in the 

contigs. Apart from a few Illumina adapters (5 -10% are expected) no hit to contaminant 

sequences was found.  

Subsequently, the generated transcripts were annotated with the Superfamily database 

1.73. The total number of tags was 21.9 million and ranged from 1.8 to 5.2 million per 

sample (Table 5.2). 
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Table 5.2 Summary of sequencing output of the Illumina sequencing for control and sulphur-

limited samples of E. huxleyi. 

 

Sample 

Read 

length 

(bp) 

Reads number Bases (Mb) Paired end reads (PE) Mapped PE reads 

Cont1 50 1815582 90 4992234 3554470 (71%) 

Cont2 50 4976244 249 13322358 9895842 (74%) 

Cont 3 50 2654631 133 7040884 5124762 (73%) 

S-limt1 50 5177502 259 14550654 10074492 (69%) 

S-limit2 50 4207815 210 11482428 8151742 (71%) 

S-limt3 50 3089598 154 8355714 6092740 (73%) 

 
 Total 21921372 1095 

    

 

 Altogether the RNA sequencing detected 27904 expressed genes. Most of these 

genes were found in at least one library each for control and sulphur-limited cultures. 

However, 404 genes were found only in the sulphur-limited samples while 10 were 

detected only in control ones. Out of these 27904 genes, 4945 differentially expressed 

genes were found at a False Discovery Rate (FDR) of 5%, including 4165 up-regulated 

genes and 780 down-regulated genes in the low sulphate condition. As shown in the gene 

expression histogram (Figure 5.2), the induction of gene expression ranged from 1.2 fold 

(log2 ratio=0.3) to more than 32-fold (log2 ratio>5), whereas the reduction of gene 

expression ranged from 0.9-fold change (log2 ratio=-0.1) to less than 0.03 fold change (log2 

ratio<-5). Particularly, 2888 genes were up-regulated at least 2 fold (log2 ratio≥1) including 

the 404 genes that were unique to the sulphur-limited libraries, while 236 genes were 

down-regulated at least 2 fold, including 10 genes uniquely expressed in the controls. 

 

 

Figure 5.2 Histogram showing the distribution of observed fold changes in transcript expression 

with log2 ratios for S-limited and S-replete E. huxleyi cultures.  
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 The transcript expression patterns for the Illumina RNA-seq was verified by 

quantitative RT-PCR for seven differently regulated genes (FDR; q≤0.05) (Figure 5.3). 

For all the genes tested the direction of the change observed in the RNA-seq data was 

consistent with the qRT-PCR results (Table 5.3). 

 

 

Figure 5.3 Transcript levels of the selected genes determined by quantitative RT-PCR for Illumina 

RNA-seq validation. Values are means ±SD from triplicate E. huxleyi cultures. All the values for 

the S-limited cultures were significantly different from S-replete controls (Student‟s t-test; p≤0.05). 

 

 

 

Table 5.3 Comparison of the Illumina RNA-seq and quantitative RT-PCR. 

ID
a
 function 

Fold change (log2 values) 

RNA-seq qRT-PCR 

450514 oxidoreductase activity 2.9 0.8 

452597 aconitate hydratase 3.1 1.5 

437926 acyl-CoA dehydrogenase activity 3.2 1.0 

441761 predicted transmembrane sulphate ion transporter 3.3 1.1 

454260 pseudouridine synthase activity -3.5 -6.8 

440242 putative 3-hydroxyacyl-CoA dehydrogenase -2.1 -0.9 

442972 hypothetical protein -2 -0.7 
a
JGI protein accession number.
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5.3.2. Analysis of general transcriptome response based on functional 

classification 

 

 To obtain information on the E. huxleyi biological processes affected by sulphur 

availability a transcriptome wide analysis was performed. Figure 5.4 shows the percentage 

share of KOG groups specifically assigned to significantly different genes (FDR; q≤ 0.05) 

with the log2 expression level either ≥1 or ≤-1. This simplifies denoted 1422 versus 109 

annotated genes in up- and down-regulated categories, respectively. In the up-regulated 

group, transcripts associated with „cellular processes and signalling‟ were the most 

represented (40%), mainly by genes involved in signal transduction (12%), post-

translational modification (10%) and cytoskeleton organization (8%). Although, the 

cytoskeleton organisation functional category was also represented in a major way in the 

down-regulated group (29%), the majority of genes were related to „information storage 

and processing‟ (34%) mostly represented by genes involved in RNA processing (11%), 

transcription (5%) and translation (15%). 

 Interestingly, among 25 KOG groups enriched in up-regulation, 3 groups: 

„carbohydrate transport and metabolism‟ (4%); „cell cycle control, cell division, 

chromosome partitioning‟ (4%) and „cell motility‟ (0.14%) were absent amongst the down-

regulated genes, which could reflect the general metabolic changes triggered by S-

deficiency. 
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Figure 5.4 Pie chart showing a KOG functional classification comparison of up- and down-

regulated genes for each functional class. Only significantly regulated genes (q≤ 0.05) with a fold 

change 2 or more were considered. 
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 The iterative Gene Analysis (iGA) was another approach employed for 

transcription-wide analysis. Using the KEGG pathway classification, 2723 genes (from 

total of 27904) were annotated and clustered into 90 groups. To increase the number of 

KEGG groups, the higher sensitivity of the program was applied giving the PC-value a cut-

off 0.055. Thus, 23 up-regulated and 30 down-regulated groups were identified and sorted 

by their statistical significance (Table 5.4). The first point to note is that 6 carbohydrate 

metabolism (a) and 5 lipid metabolism (c) groups are strongly represented in the up-

regulated set. By contrast, the down-regulated set has no single prominent group but is 

rather equally represented by various KEGG classes. Most of the differentially expressed 

functional groups are assigned to the metabolism category, however other categories: 

genetic information processing (k) and environmental information processing (l) are also 

present among the down-regulated groups. Furthermore, 4 groups (pyrimidine metabolism, 

porphyrin and chlorophyll metabolism, folate metabolism and glycerolipid metabolism) 

were present in both up- and down-regulated lists. Interestingly, the degradation pathway 

for a range of xenobiotics was down-regulated under S depletion. Xenobiotics are foreign 

chemicals that are often detoxified by sulphur metabolites such as glutathione. Among the 

KEGG pathways triggered by low sulphur stress, there are groups known to be closely 

linked to sulphur metabolism. Glutathione metabolism was found among the up-regulated 

groups, whereas the methionine, thiamine and serine metabolic pathways were found 

among the down-regulated groups. 

 The iGA procedure was also used to do a KOG annotation (Table 5.5). Of the 

27904 genes, 9947 were annotated and clustered into 2259 functional groups. The table 

shows 40 and 23 KOG groups enriched among the up- and down-regulated transcripts, 

respectively (PC-value ≤ 0.002). The KOG groups uniquely detected in the up-regulated 

list included 10 clusters assigned to the „Cytoskeleton‟ class, 5 clusters assigned to the 

„inorganic ion transport and metabolism‟ class and 1 cluster assigned to „energy production 

and conversion‟, „nuclear structure‟ and „function unknown‟. In contrast, the groups 

appeared more evenly distributed throughout the down-regulated list, with 2 clusters 

uniquely assigned to „RNA processing and modification‟ and 1 cluster assigned to „defense 

mechanism‟ and „secondary metabolites‟. 

 Interestingly, the „cytoskeleton‟ class contains significantly up-regulated groups of 

genes encoding for kinesine and myosin motor proteins which are involved in numerous 

processes such as cell division, cellular transport and organelle relocation. 
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Sulphate depletion also resulted in an enrichment of the „sulphate/bicarbonate/oxalate 

exchanger SAT-1 and related transporters (SLC26 family)‟ class, which is partially driven 

by strong expression of two sulphate transporter transcripts. 

 Results from iGA with both KEGG and KOG annotations were supported by using 

Gene Ontology (GO) annotations of the „biological process‟ category. Of the 27904 genes, 

3335 were annotated and clustered into 461 groups. Table 5.6 represents 31 up-regulated 

and 16 down-regulated groups enriched with a PC-value less than 0.01. GO analysis 

suggests an induction of cell signalling and DNA processes, accompanied by a reduction in 

RNA processing and protein biosynthesis at low-S. It is worth noting that whilst asparagine 

can accumulate in terrestrial plants due to S deficiency (Shewry et al. 2009), asparagine 

biosynthesis was down-regulated in E. huxleyi  

 To better visualise gene expression in the E. huxleyi global metabolic network , the 

Interactive Pathways Explorer (iPath2) was applied (Letunic et al. 2008). The general 

metabolic pathway (Figure 5.5) was designed by mapping the Enzyme Commission (EC) 

numbers of differently expressed genes that met the log2 ≥1 (FDR; q ≤ 0.05) criterion. For 

more accuracy further selection was applied to obtain enzymes with a unique identification 

(four-digit EC number). This displayed 222 up-regulated enzymes on the iPath2 metabolic 

pathway map. 

 This analysis revealed that low S-conditions triggered induction of the transcripts 

encoding enzymes associated with fatty acid biosynthesis and metabolism, as well as these 

for carbohydrate, amino acid and nucleotide metabolism over a number of others metabolic 

processes. 
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Table 5.4 An overview of metabolic responses to sulphur limitation in Emiliania huxleyi using 

enrichment in KEGG metabolic pathways identified by iGA. Only significantly regulated groups 

with Probability of Change (PC) value ≤ 0.056 are shown. The number of change versus total 

group members is given as a percentage. KEGG pathway classes: a: carbohydrate metabolism; b: 

energy metabolism; c: lipid metabolism; d: nucleotide metabolism; e: amino acid metabolism; f: 

metabolism of other amino acids; g: glycan biosynthesis and metabolism: h: metabolism of 

cofactors and vitamins; i: metabolism of other secondary metabolites; j: biodegradation of 

xenobiotics; k: translation; l: membrane translation. 

KEGG groups Members 
Number 

changed 
PC % 

Up-regulated 

Biotin metabolism (h) 2 2 0.003 100 

Fatty acid metabolism (c) 19 16 0.004 84 

Bile acid biosynthesis (c) 13 3 0.005 23 

beta-Alanine metabolism (f) 4 1 0.007 25 

Pyrimidine metabolism (d) 126 6 0.008 5 

Sphingoglycolipid metabolism (c) 58 5 0.008 9 

Glutamate metabolism (e) 23 13 0.008 57 

Ascorbate and aldarate metabolism (a) 15 2 0.009 13 

Purine metabolism (d) 122 8 0.011 7 

Flavonoids, stilbene and lignin biosynthesis (g) 36 20 0.014 56 

Tryptophan metabolism (e) 17 15 0.018 88 

Butanoate metabolism (a) 15 2 0.023 13 

Pyruvate metabolism (a) 23 10 0.023 43 

Ubiquinone biosynthesis (h) 125 7 0.024 6 

Prostaglandin and leukotriene metabolism (c) 13 12 0.029 92 

Vitamin B6 metabolism (h) 7 5 0.032 71 

Citrate cycle (TCA cycle) (a) 6 4 0.035 67 

Glutathione metabolism (f) 35 8 0.039 23 

Porphyrin and chlorophyll metabolism (h) 37 1 0.040 3 

Folate biosynthesis (h) 84 14 0.046 17 

Glycerolipid metabolism (c) 68 1 0.049 1 

Aminosugars metabolism (a) 5 4 0.052 80 

Galactose metabolism (a) 17 1 0.055 6 

Down-regulated 

Fatty acid biosynthesis (path 1) (c) 25 2 0.000 8 

Pantothenate and CoA biosynthesis (h) 16 16 0.005 100 

Fructose and mannose metabolism (a) 29 3 0.005 10 

Type III secretion system (l) 29 29 0.005 100 

Arginine and proline metabolism (e) 33 30 0.007 91 

Aminoacyl-tRNA biosynthesis (k) 43 34 0.008 79 

Pyrimidine metabolism (d) 126 3 0.008 2 

Glycolysis / Gluconeogenesis (a) 35 30 0.010 86 

Alanine and aspartate metabolism (e) 8 7 0.013 88 

Methionine metabolism (e) 13 9 0.014 69 

Type II secretion system (l) 4 2 0.015 50 

Nicotinate and nicotinamide metabolism (h) 86 82 0.018 95 

N-Glycans biosynthesis (g) 36 10 0.019 28 

Phenylalanine, tyrosine and tryptophan biosynthesis (e) 14 13 0.021 93 

Selenoamino acid metabolism (f) 6 6 0.021 100 

Glycerolipid metabolism (c) 68 5 0.022 7 

Porphyrin and chlorophyll metabolism (f) 37 31 0.026 84 

Fluorene degradation (j) 5 5 0.027 100 

Folate biosynthesis (h) 84 21 0.027 25 

Thiamine metabolism (h) 7 3 0.031 43 

Carbon fixation (b) 15 13 0.031 87 

Glycosaminoglycan degradation (g) 21 4 0.035 19 

Sterol biosynthesis (c) 23 18 0.036 78 

D-Arginine and D-ornithine metabolism (f) 17 14 0.037 82 



Transcriptome analysis of sulphur limitation in Emiliania huxleyi 1516               Chapter 5 

102 

 

Glycine, serine and threonine metabolism (e) 30 10 0.041 33 

Nitorobenzene degradation (j) 2 2 0.042 100 

Ethylbenzene degradation (j) 28 3 0.046 11 

gamma-Hexachlorocyclohexane degradation (j) 11 8 0.050 73 

Lipopolysaccharide biosynthesis (g) 22 21 0.051 95 

Alkaloid biosynthesis II (i) 6 3 0.053 50 

 

 

Table 5.5 An overview of metabolic responses to sulphur limitation in Emiliania huxleyi using 

enrichment in KOG functional classification identified by iGA. Only significantly regulated groups 

with Probability of Change (PC) value ≤ 0.002 are shown. The number of change versus total 

group members is given as a percentage. 

KOG terms Members 
Number 

changed 
PC % 

Up-regulated 

Ammonia permease 13 2 0.000 15 

Kinesin (KAR3 subfamily) 8 3 0.000 38 

DNA polymerase delta, catalytic subunit 2 2 0.000 100 

GABA receptor 5 5 0.000 100 

Putative zinc transporter 6 6 0.000 100 

Beta tubulin 6 3 0.001 50 

Alpha tubulin 9 4 0.001 44 

Sulfate/bicarbonate/oxalate exchanger SAT-1 and 

related transporters (SLC26 family) 10 4 0.001 40 

Myosin class II heavy chain 11 10 0.001 91 

Vacuolar sorting protein VPS1, dynamin, and related 

proteins 4 4 0.001 100 

Actin and related proteins 10 8 0.001 80 

Cyclin B and related kinase-activating proteins 3 3 0.001 100 

Cobalamin synthesis protein 20 2 0.001 10 

Integral membrane protein 3 2 0.001 67 

Phospholipase C 4 3 0.001 75 

Predicted FAD-dependent oxidoreductase 3 1 0.001 33 

Predicted signal transduction protein 4 4 0.001 100 

Glutamate synthase 3 3 0.001 100 

Dimethylglycine dehydrogenase precursor 4 4 0.001 100 

Voltage-gated Ca2+ channels, alpha1 subunits 10 9 0.001 90 

Kinesin-like protein 19 10 0.001 53 

NADP/FAD dependent oxidoreductase 8 3 0.001 38 

Helicase-like transcription factor HLTF/DNA 

helicase RAD5, DEAD-box superfamily 13 13 0.001 100 

F-box protein JEMMA and related proteins with 

JmjC, PHD, F-box and LRR domains 2 2 0.001 100 

Microtubule-binding protein involved in cell cycle 

control 2 2 0.001 100 

K+/Cl- cotransporter KCC1 and related transporters 3 3 0.001 100 

Ubiquitin-protein ligase 25 23 0.001 92 

Centromere-associated protein NUF2 2 2 0.001 100 

Structural maintenance of chromosome protein 1 

(sister chromatid cohesion complex Cohesin, subunit 

SMC1) 2 2 0.001 100 

Transcription factor TCF20 16 12 0.002 75 

Predicted acyl-CoA dehydrogenase 2 1 0.002 50 

Histone 2A 7 7 0.002 100 

Transcription factor, Myb superfamily 33 7 0.002 21 

Acetyl-CoA acetyltransferase 2 2 0.002 100 

60S ribosomal protein L22 34 23 0.002 68 
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Beta-spectrin 2 2 0.002 100 

WD40 repeat stress protein/actin interacting protein 3 3 0.002 100 

Cysteine proteinase Cathepsin L 6 6 0.002 100 

Rac1 GTPase effector FRL 21 1 0.002 5 

Nucleolar GTPase/ATPase p130 36 9 0.002 25 

Down-regulated 

Animal-type fatty acid synthase and related proteins 13 5 0.000 38 

Triglyceride lipase-cholesterol esterase 3 3 0.000 100 

Subtilisin-related protease/Vacuolar protease B 7 2 0.000 29 

Molecular chaperones HSP70/HSC70, HSP70 

superfamily 5 4 0.000 80 

CAATT-binding transcription factor/60S ribosomal 

subunit biogenesis protein 3 2 0.001 67 

Ribosome biogenesis protein - Nop58p/Nop5p 2 2 0.001 100 

Ubiquitin and ubiquitin-like proteins 9 6 0.001 67 

N-terminal acetyltransferase 6 5 0.001 83 

Dual specificity phosphatase 15 9 0.001 60 

rRNA processing protein 2 2 0.001 100 

Ribosome biogenesis protein NIP7 2 2 0.001 100 

Predicted panthothenate kinase/uridine kinase-related 

protein 2 2 0.001 100 

Translation initiation factor 5 (eIF-5) 2 2 0.001 100 

Trypsin 24 6 0.001 25 

Palmitoyl protein thioesterase 5 2 0.001 40 

tRNA-dihydrouridine synthase 10 6 0.002 60 

WD40 repeat protein 15 4 0.002 27 

FOG: TPR repeat 21 15 0.002 71 

Aspartate aminotransferase/Glutamic oxaloacetic 

transaminase AAT1/GOT2 4 3 0.002 75 

tRNA methyltransferase 2 2 0.002 100 

Non-ribosomal peptide synthetase/alpha-

aminoadipate reductase and related enzymes 7 7 0.002 100 

ATP-dependent RNA helicase A 12 11 0.002 92 

RNA polymerase I, second largest subunit 2 2 0.002 100 
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Table 5.6 An overview of metabolic responses to sulphur limitation in Emiliania huxleyi using 

enrichment in GO annotation identified by iGA. Only significantly regulated groups with 

Probability of Change (PC) value ≤ 0.011 are shown. The number of change versus total group 

members is given as a percentage. 

GO terms Members 
Number 

changed 
PC % 

Up-regulated 

microtubule-based movement  14 8 0.000 57 

protein polymerization  14 8 0.000 57 

microtubule-based movement  43 6 0.000 14 

chromosome organization and biogenesis  16 4 0.000 25 

nitrogen compound metabolism  7 6 0.002 86 

cell organization and biogenesis  9 6 0.002 67 

DNA replication  12 8 0.002 67 

deoxyribonucleoside diphosphate metabolism  3 3 0.002 100 

chromosome  7 2 0.003 29 

DNA recombination  15 8 0.003 53 

intracellular signaling cascade 11 5 0.004 45 

small GTPase mediated signal transduction  24 21 0.004 88 

signal transduction  15 9 0.004 60 

glutamine biosynthesis  5 4 0.004 80 

electron transport 27 20 0.004 74 

DNA replication  19 9 0.004 47 

immune response  5 2 0.005 40 

DNA repair  25 11 0.005 44 

'de novo' pyrimidine base biosynthesis  5 3 0.005 60 

intracellular  35 2 0.006 6 

response to antibiotic 10 8 0.006 80 

ubiquitin-dependent protein catabolism  41 32 0.006 78 

intracellular protein transport  27 22 0.007 81 

transport  32 25 0.007 78 

ubiquitin-protein ligase activity  6 4 0.008 67 

DNA metabolism  14 7 0.008 50 

calcium ion binding  3 2 0.008 67 

G-protein coupled receptor protein signaling 

pathway  5 2 0.008 40 

protein transport  29 23 0.008 79 

cellular protein metabolism  37 23 0.009 62 

ribonucleoside-diphosphate reductase complex  2 1 0.010 50 

Down-regulated 

fatty acid biosynthesis  18 2 0.000 11 

transcription  21 4 0.001 19 

chromatin silencing  8 7 0.001 88 

ribosome biogenesis and assembly  10 10 0.002 100 

cytoplasm  6 6 0.003 100 

 protein biosynthesis  19 13 0.003 68 

translational initiation  23 20 0.004 87 

RNA processing  21 19 0.006 90 

regulation of transcription  11 10 0.007 91 

tRNA processing 11 8 0.007 73 

heme biosynthesis  6 1 0.007 17 

 mismatch repair  3 1 0.007 33 

regulation of translational initiation  4 2 0.008 50 

tRNA aminoacylation for protein translation  36 26 0.008 72 

asparagine biosynthesis  2 1 0.010 50 

protein folding 27 26 0.010 96 

cell adhesion 4 1 0.011 25 
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Figure 5.5 Metabolic pathways that were up-regulated in E. huxleyi under S-limited conditions 

highlighted using Enzymatic Commission (EC) queries. 
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5.3.3. Cross species comparison of the transcriptional response to sulphur  

requirement in E. huxleyi, C. reinhardtii and A. thaliana  

 

 The distant evolutionary relationships and different habitats occupied by E. huxleyi, 

C. reinhardtii and A. thaliana make the comparison of their transcriptome particularly 

interesting. We wanted to know whether the transcriptome response to sulphur limitation is 

similar in these species. To compare the gene expression profile we pooled the top 100 up-

regulated genes from E. huxleyi (this study), C. reinhardtii (González-Ballester et al. 2010) 

and A. thaliana (Maruyama-Nakashita et al. 2006) and searched for their reciprocal 

homologues (Appendix Table A.1, A.2, A.3). For a more descriptive cross analysis of the 

most expressed genes from E. huxleyi, only proteins IDs with KEGG annotation were 

considered. Surprisingly, we got a different outcome according to the species analysed. For 

example, orthologs of E.huxleyi proteins were abidingly down-regulated in C. reinhardtii 

and not differentially expressed in A. thaliana. Only a few of the most up-regulated 

transcripts were found in all three organisms and these included some sulphur related 

genes (encoding S-transporters and serine acetyltransferase). This discrepancy might be 

due to differences in experimental setups dictated by the fact that all 3 species occur in 

distinct and different environments. Nevertheless, the different pattern in most induced 

genes may also reflect their evolutional and ecological distance. 

 

 

5.3.4. Sulphur metabolism 

 

 In plants and green algae, sulphur limitation has a great impact on sulphate uptake, 

assimilation and the metabolism of S-molecules. Figure 5.6 shows the regulation of genes 

encoding enzymes involved in the metabolic pathway from sulphate acquisition to cysteine 

synthesis and the link to glutathione metabolism. To allow a rapid comparison with the 

well characterised species, the homologous transcripts of C. reinhardtii (González-

Ballester et al. 2010) and A. thaliana (Maruyama-Nakashita et al. 2006) are included in  

the pathway. This analysis revealed significantly different regulation of the sulphate 

transport and cysteine formation steps. In E. huxleyi transcripts of three sulphate 

transporters: STR2, STR3 and STR4 responded to S-limitation by increasing their 

expression level 2, 10 and 15 fold, respectively. The same was observed in the other two 

model organisms. In E. huxleyi gene encoding STR4 was the most induced (~14 fold 

increase) by the S-limitation. This protein is most similar to the transporters up-regulated 
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by S-starvation in C. reinhardtii (SULTR2) and A. thaliana (SULTR 4.2). Similarly, the 

expression of genes involved in the last step of cysteine biosynthesis, encoding SAT1 and 

SAT2 isoforms of serine acetyltransferase and OASTL2 and OASTL3 for OAS thiollyase, 

increased under S-limited conditions (Figure 5.6). Expression analysis revealed the up-

regulation of two genes encoding SAT1 and SAT2 enzymes that synthesise O-acetylserine 

(OAS), as well as up-regulation of two genes encoding OASTL2 and OASTL3 proteins 

that incorporate reduced sulphur into OAS to produce cysteine (Cys). A similar increase 

appeared in C. reinhardtii and A. thaliana. In contrast to A. thaliana and C. reinhardtii, 

genes coding for enzymes that catalyse the reduction of sulphate, ATPS, APR and SiR, 

showed no significant change in transcription level in response to low S conditions in E. 

huxleyi. It is important to note that the overall expression of ATPS2 and APR was very 

high placing the latter in the top 30 most expressed genes in the E. huxleyi transcriptome. 

In the two sequential steps of glutathione (GSH) synthesis only an increase in GSH5 was 

observed in E. huxleyi. On the other hand, 2 out of 3 isoforms of γ-glutamyltranspepidase 

(GTP1 and GTP2) were up-regulated indicating a higher degree of GSH degradation. 

The biosynthesis of the DMSP-precursor, methionine (Met) is a 4 step, 3 intermediate 

process (cysteine →cystathionine→ homocysteine→ methionine). In this pathway, two 

genes annotated as cystathionine γ-synthases did not respond to S-limitation. Moreover, 

the expression of mRNA involved in the synthesis of the intermediate product-

homocysteine was not identified in the transcriptome. In the final step of methionine 

biosynthesis, transcripts encoding vitamin B12 dependent methionine synthase did not 

change significantly under S-deficiency. Also, the expression level of two transcripts 

encoding an enzyme that converts Met to S-adenosylmethionine (adenosylmethionine 

synthase; SAMS) did not change. 

 In Chapter 3 it was shown that S availability affects DMSP content in E.huxleyi cell 

However, as yet no genes associated with DMSP synthesis and degradation have been 

identified and this precludes a detailed analysis of DMSP metabolism. Interestingly, low S 

conditions triggered a significant up-regulation of two genes encoding proteins with JGI 

protein IDs 459683 and 470487 by 5 and 3 fold, respectively. These genes, predicted as 

Class III acyl CoA transferases, are homologues of the bacterial DddD (DMSP-dependent 

DMS production) gene which was proposed to convert DMSP into DMS and 3-OH-

propionate (Todd et al. 2007; 2010). However, a phylogenetic analysis of these Class III 

acyl CoA transferases revealed a substantial evolutionary distance between the alga and 

bacterial lineages (Figure 5.7). 
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The abundance of mRNA for biotin synthase significantly increased with S-limitation. This 

enzyme requires two SAM molecules to serve as cofactors and these are recycled to Met 

during biotin production. Biotin can serve as a cofactor of acetyl-CoA carboxylase enzyme 

that is involved in fatty acids biosynthesis. Indeed, the gene (JGI protein ID 428897) 

encoding this enzyme was up-regulated by 5 fold in S-depleted E. huxleyi cells. 

 

 

 

 

Figure 5.6 Sulphur metabolic pathway showing the genes that encode enzymes involved in the 

pathway. Gene expression was colour-coded according to their log2 value from the low S/control 

ratio. Asterisk, cross and double-cross indicate transcripts from E. huxleyi (this study); C. 

reinhardtii (González-Ballester et al. 2010) and A. thaliana (Maruyama-Nakashita et al. 2006), 

respectively. 
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Figure 5.7 A phylogenetic tree of DddD proteins. Bacterial amino acids sequences were retrieved 

from the strains considered as DMS producers (J.D. Todd, personal communication). The tree was 

constructed using the Phylogeny.fr website (Dereeper et al. 2008). E. huxleyi proteins and their IDs 

are highlighted in red. 
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5.4. Discussion 

 

5.4.1. Global transcriptome response to sulphur limitation 

 

 Transcriptome analysis of the sulphate starvation response has been undertaken in 

the model species for higher plants, Arabidopsis thaliana (Nikiforova et al. 2003; 

Maruyama-Nakashita et al. 2006) and fresh water green algae Chlamydomonas reinhardtii 

(Nguyen et al. 2008; González-Ballester et al. 2010). However, no such information exists, 

for marine organisms, and particularly phytoplankton. Our analysis of the marine 

microalga Emiliania huxleyi (CCMP 1516) fills this gap and provides the first insights into 

its response to S-limitation. Whilst sulphate has not been considered to limit the growth of 

marine phytoplankton (Giordano et al. 2005b) cultivating E. huxleyi in artificial seawater 

with 5 times less sulphate compare to ambient conditions, significantly decreased growth 

and intracellular DMSP biosynthesis (see Chapter 3). Therefore, even marine organisms 

are susceptible to sulphur deficiency and this opens a way to compare the response to this 

condition in organisms with a large evolutionary distance that are from very different 

environments. As transcriptomic data sets exist for A. thaliana and C. reinhardtii, we also 

analysed the effects of S-starvation on the E. huxleyi transcriptome. The method of choice 

was the Illumina RNA sequencing platform and this provided genome-wide transcript data. 

Here, it should be noted that E. huxleyi genome was made accessible as „draft‟ assemblies 

whose quality is uncertain and more complete assembly has to be done to encompass full 

genome and the individual genes. Nonetheless, the current E. huxleyi genome sequence can 

still facilitate molecular analysis of this species and help shed light on sulphur metabolism 

in marine phytoplankton.  

 Using a stringent criterion for detecting the gene expression differences, 2888 up-

regulated and only 236 down-regulated transcripts were identified. This indicates 

remarkable changes in gene transcription in E. huxleyi due to sulphur availability. The 

number of differentially regulated transcripts in E. huxleyi reached ~10% of detected 

transcripts. We used a range of annotations (KEGG, KOG and GO) available through the 

JGI E. huxleyi genome website to find which biological processes are affected by, and 

therefore probably important for, the response of E. huxleyi to low sulphate stress. The 

fundamental difference in the response to sulphate limitation in E. huxleyi compare to A. 

thaliana and C. reinhardtii is the ratio between up-regulated and down-regulated genes. 

The general response to prolonged sulphate limitation is a slowing down of metabolism 
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and shortening of life cycle (Hoefgen and Nikiforova 2008). Accordingly, in A. thaliana 

microarray experiments significantly more transcripts were repressed than induced by 

sulphate starvation (Hirai et al. 2003; Maruyama-Nakashita et al. 2003; Nikiforova et al. 

2003). The same was true for C. reinhardtii were more than 2-fold transcripts were down-

regulated than up-regulated by sulphate deficiency (González-Ballester et al. 2010) and for 

D. salina where sulphate deficiency resulted in decrease in Rubisco accumulation and PEP 

carboxylase and nitrate reductase activities (Giordano et al. 2000). In contrast, in E. huxleyi 

we found 2667 transcript were present only in sulphate deficient cells compared to 690 that 

were present only in the controls. Moreover, among transcripts detected in both conditions, 

greater than 10-fold more genes were up-regulated than down-regulated. 

 At the molecular level the responses to various stress conditions, such as sulphur 

limitation, are controlled through signal transduction pathways. Indeed, we observed 

induction of the genes involved in signal transduction and cytoskeleton reorganization in 

the cells exposed to the low sulphate condition (Table 5.5 and 5.6; Figure 5.4). The 

transcriptome profile also showed shifts in cell metabolism indicating an increase in fatty 

acid biosynthesis and metabolism under sulphur stress. Since the committing step in fatty 

acids biosynthesis involves carboxylation of acetyl-CoA to malonyl-CoA, one can 

speculate that there was an excess of acetyl-CoA which was converted to fatty acids for 

storage and thereby retained for the tricarboxylic acid cycle (TCA) in homeostasis. 

Interestingly we noticed a 5 fold up-regulation of a gene (JGI protein ID 471081) encoding 

acetyl-CoA carboxylase (ACCase) that catalyses this reaction. Under normal conditions, 

DMSP is an important sink for reduced carbon. Indeed, Matrai and Keller (1994) reported 

that more than 10% of the organic carbon can be allocated to DMSP in marine microalga 

such as E. huxleyi. Since one of the suggested functions of DMSP is a sink for excess 

carbon (Stefels 2000; Stefels et al. 2007), it is possible that a decrease in DMSP synthesis 

due to reduced availability of sulphate triggers an increase in fatty acid biosynthesis to 

store carbon from photosynthesis and tune the cell metabolic machinery. While in A. 

thaliana a decrease in S- supply significantly down-regulated the SQD2 gene that encodes 

a sulpholipid biosynthesis enzyme (Nikiforova et al. 2003), we found that its orthologues 

in E. huxleyi were unaffected. Furthermore, the microalga RNA-seq revealed high 

transcript abundance. Interestingly we observed a 2 fold up-regulation of the genes 

encoding the sulpholipid sulfoquinovosyl diacylglycerol (SQDG) synthase. This sulphur-

containing lipid is commonly present in photosynthetic organisms as it is an important 

structural and functional component of photosystem II (PS II) (Yu et al. 2002; Aoki et al. 
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2004; Zhang et al. 2004). Moreover, in marine algae it can contribute up to 50% of the 

total polar lipids (Dembitsky and Rozentsvet 1990; Dembitsky et al. 1990). Sugimoto et al. 

(2010) showed the increase of SQD1 mRNA with induction of SQDG degradation in the 

green alga C. reinhardtii under S-starvation conditions. This increase was confirmed by 

González-Ballester et al (2010) who showed the up-regulation of the SQDG synthesis 

genes LPB1, SQD1 and SQD2 in S-deprived C. reinhardtii cells. Radiolabel experiments 

implemented for this organism by Sugimoto and al. (2007) suggested SQDG as a 

significant S-source and thus its synthesis and degradation is precisely regulated under low 

S-conditions. Since in marine microalgae such as E. huxleyi, DMSP is considered as the 

main S-reservoir, a similar approach could shed further light on sulphur regulation in these 

species. 

 As with carbon, excess nitrogen needs to be channelled during unbalanced growth 

due to sulphur deficiency. The enrichment of genes associated with amino acid metabolism 

and transport (Figure 5.4) in E. huxleyi grown in low S could be explained by a reduction 

in protein synthesis and in, consequence, an accumulation of amino acids (Kopriva and 

Rennenberg 2004). Also, there are indications that sulphur deficiency in plants induces 

catabolism of pyrimidine and purine (Nikiforova et al. 2005b). Pyrimidine catabolism may 

be due to a general decrease in metabolism and RNA content, whereas purine catabolism 

can be linked to drain excess nitrogen (Katahira and Ashihara 2002; Nikiforova et al. 

2005b). In fact we also observed enrichment in transcripts involved in pyrimidine and 

purine metabolism (Table 5.4; Figure 5.4) that could reflect an analogous sulphur stress 

response in E. huxleyi. 

 Intriguingly, the elevated expression pattern in E. huxleyi under sulphate depletion 

have some similarity with this found recently in the haploid stage of E. huxleyi, strain RCC 

1217 by Rokitta et al. (2011). The authors assessed the difference between gene expression 

in haploid and diploid cells of E. huxleyi. After assigning transcripts to KOG annotation, 

they reported an increase in haplont-specyfic transcripts related to amino acid transport and 

metabolism, cell cycle control, cytoskeleton and cell motility, lipid transport and 

metabolism, protein turnover. The similar gene expression observed in diploid life stage of 

E.huxleyi, strain CCMP 1516 under sulphate depletion (this study) may be attributed to 

physiological responses to change in sulphate concentration. In fact, in the natural 

environment, the haploid stage of coccolithophores may occupy low-nutrient and stratified 

regimes whereas their diploid stage may dominate in the nutrient-reach and mixed regimes 

(Houdan et al. 2006).  
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5.4.2. Sulphur metabolism 

 

 Growth of E. huxleyi under low sulphate conditions led to several changes in the 

expression of genes involved in sulphate acquisition and assimilation. For example, there 

was an increase in sulphate transporter mRNAs (STR2, STR3, and STR4) in treated cells. 

Sulphate transporters were also found to be induced in C. reinhardtii and A. thaliana in 

many S-deprivation experiments (Maruyama-Nakashita et al. 2006; González-Ballester et 

al. 2010). Interestingly, STR3 and STR4 transporters are ion co-transporters of the SLC26 

family of proteins and this group was highlighted as being up-regulated in our iGA (Table 

5.5). A protein Blast revealed homology of STR3 and STR4 with the high affinity H
+
/SO4

2-
 

SULTR2 protein from C. reinhardtii, (Shibagaki and Grossman 2008; Pootakham et al. 

2010) which suggests a similar sulphate transport response in S-limited E. huxleyi.  

In contrast to the high up-regulation of sulphate transport genes we observed, we found no 

significant regulation of genes encoding enzymes involved in sulphate to sulphide 

reduction (Figure 5.6), indicating that they are not regulated by S availability in E. huxleyi. 

This difference in expression pattern compared to A. thaliana and C. reinhardtii could 

support the observation of Kopriva et al (2009) who suggested that plant/animal-like 

isoforms of ATP sulphurylase (ATPS), as are present in haptophytes and diatoms, contain 

a pyrophosphatase domain which can substantially increase the APS synthesis rate. Also, 

transcripts encoding APS reductase (APR) appear not to be regulated which is opposite to 

the situation in plants where APR is highly regulated by the demand for reduced sulphur 

(Takahashi et al. 1997; Leustek et al. 2000; Kopriva 2006). It is noteworthy that we found 

a high level of APR mRNA abundance that may also reflect an order of magnitude higher 

APS reductase activity compared to higher plants (see Chapter 3). While decreased 

sulphate did not stimulate SO4
2-

 reduction to S
2-

, we noticed a moderate induction of genes 

encoding serine acetyltransferase (SAT) and O-Acetylserine (thiol) lyase (OASTL); 

components required for cysteine formation. A similar response was also reported for both 

A. thaliana and C. reinhardtii (Maruyama-Nakashita et al. 2006; González-Ballester et al. 

2010). Furthermore, Ito et al. (2011) observed an increase in OASTL activity in the 

seaweed Ulva pertusa following transfer to S-deficient medium.  

Interestingly, Hopkins et al. (2005) argue that increases on OAS that occur under 

prolonged S-deficiency are the result of limited supply of sulphide and, thus disturbance in 

cysteine synthesis. Indeed in our experiment, cells were harvested after 5 days growth in a 

low sulphate medium when the cell growth already slowed. 
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 Cys is a final product of assimilatory sulphate reduction and the precursor of many 

organosulphur metabolites such as glutathione (GSH). This small thiol compound attracted 

our attention because it plays an important role in neutralising reactive oxygen species 

(ROS) (Rennenberg 1980; Polle and Rennenberg 1992; Dupont et al. 2004) and it has been 

suggested that DMSP is also involved in scavenging ROS (Sunda et al. 2002). With the 

exception of GSH5 which was up-regulated, there was no change in the expression of the 

genes involved in GSH synthesis in E. huxleyi (Figure 5.6). In contrast we observed up-

regulation in genes encoding enzymes that recycle GSH back to Cys. This is consistent 

with a decrease in intracellular GSH in E. huxleyi grown under S-limitation (see Chapter 

3). The increase in GSH catabolism may be linked to sulphur re-allocation in the cell 

triggered by the low S-condition, but a more detailed study is needed to verify this 

hypothesis. 

 One of the main motivations to characterise the transcriptional response in E. 

huxleyi to sulphur arose from previous experiments where we noticed a significant 

decrease in intracellular DMSP concentration induced by S-limitation (see Chapter 3). 

Despite the importance of DMSP and its high concentration in marine algae such as E. 

huxleyi (see Chapter 1), how DMSP synthesis and degradation is controlled at the 

biochemical and molecular level remains unclear. The observations we reported here shed 

some light on its regulation by sulphur availability. Although a DMSP synthesis pathway 

for algae was proposed by Gage at al. (1997) based on in vivo isotope labelling of the green 

macro-alga Enteromorpha intestinalis (since renamed Ulva intestinalis), the genes 

encoding the enzymes that catalyse DMSP synthesis are still unknown. Very recently, Ito 

at al. (2011) examined the effect of S-deficiency on DMSP production in U. pertusa and 

they speculate that the decline in DMSP synthesis may be due to Met being used for the 

synthesis of S-adenosyl-Met (SAM) and methionyl-tRNA rather than for DMSP. However, 

in our study on E. huxleyi this hypothesis was not confirmed by changes in the expression 

of transcripts encoding both S-adenosyl-Met synthetase and methionyl-tRNA synthetase. 

The regulation of DMSP precursor-Met synthesis, in E. huxleyi is more similar to that of 

plants rather than that of C. reinhardtii as the transcript levels for Met biosynthesis genes 

were not affected by sulphate deficiency, whereas they decreased in C. reinhardtii 

(González-Ballester et al. 2010). Interestingly, there was a significant increase in two 

genes (JGI protein ID 45983 and 470487) annotated to the type III acyl coenzyme A (CoA) 

transferase. These proteins are candidate orthologs of CoA transferase encoded by the 

DddD gene from the DMS-producing bacterium Halomonas HTNK1CoA (Todd et al. 
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2010). Todd et al (2007; 2010) predicted that the DddD enzyme would catalyse DMSP 

degradation by forming a DMSP-CoA thioester that can be cleaved to DMS and 3-

hydroxypropionate. This suggests that a downshift in DMSP concentration in E. huxleyi 

could be driven by induction its catabolism rather than turnover and repression of 

synthesis. On the other hand, a phylogenetic analysis comparing the DddD proteins of a 

number of bacterial species with the E. huxleyi type III (CoA) transferases, revealed that 

the latter compose a distant cluster (Figure 5.7). To assess the potential for the type III 

(CoA) transferase to act as a DMSP catabolic enzyme in algae, additional genetic and 

biochemical studies are needed.  

 Extensive studies focus on transcription regulation by nutrient availability in 

marine phytoplankton; however they are restricted to the compounds that typically limit 

the cell growth in the natural environment such as carbon, nitrogen, phosphate, ion, etc. 

Since carbon dioxide is necessary for photosynthesis, the carbon transport and CO2 

accumulation is well described in many algae. Marine algae use various types of CO2 

concentrating mechanisms (CMMs) strategies to provide CO2 on the active sites of 

RUBISCO-the enzyme incorporating CO2 into organic carbon. The algal genome 

sequencing significantly advanced our knowledge about different strategies of CCMs in 

phytoplankton groups, e.g., CCM similar to plant C4 carbon fixation pathway in diatoms 

(Giordano et al. 2005a). For detailed information concerning CCMs mechanisms in algae 

we refer the reader to two reviews written by Giordano et al (2005a) and Reinfelder 

(2011). Also, the access to the whole genome sequence of two diatoms: T. pseudonana and 

Phaeodactylum tricirnutum resulted in discovery multiple transcripts for nitrate uptake and 

assimilation as well as for the transport of nitrite, ammonium, urea and other forms of 

organic nitrogen (Armbrust et al. 2004; Parker et al. 2008). Another recent fascinating 

discovery is the presence of animal-like urea cycle in these diatom species (Allen et al. 

2011). The tight regulatory interactions between carbon, nitrogen and sulphur have been 

established in plants and these seem to be essential for normal growth (Kopriva et al. 

2002). It is a challenge to future to understand this coordination in marine phytoplankton, 

therefore first we need to decipher sulphur metabolism in these organisms. Our work shed 

a light on S-metabolism in marine microalgae and can constitute a basis for further detailed 

investigations. 
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5.5.  Conclusions  

 

 To the best of our knowledge this thesis contains the first transcriptome analysis of 

a marine microalga subjected to the sulphate limitation. The Illumina RNA-sequencing 

provided the transcriptome profile of both control and sulphur stressed E. huxleyi revealing 

numerous transcripts that responded to the S-limited condition. The KEGG, KOG and GO 

annotations enabled the identification of various changes in the E. huxleyi transcriptome 

and these changes suggest an orchestrated gene expression response to low sulphate 

concentrations. Special attention was paid to the expression of homologues of genes 

involved in sulphate uptake and the SO4
2-

 to DMSP pathway. The patterns in transcript 

expression under the low S-condition are in good agreement with the metabolic changes in 

E. huxleyi discussed in Chapter 3. Both similarities and differences in sulphate assimilatory 

pathways appear to exist between E. huxleyi, A. thaliana and C. reinhardtii that highlight 

their phylogenetic and ecophysiological distance. Another important aspect of this work 

was that it has shed more light on DMSP metabolism in a marine microalga; a process that 

is currently rather poorly understood especially at the molecular level. The discovery of the 

up-regulation of mRNAs encoding Class III acyl CoA transferases in S-limited E. huxleyi 

cultures points us in a good direction for the future discovery of the DMSP lyase gene in 

this species and other DMSP-producing marine microalgae. 
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6.1.  Summary 

 

 Since sulphur is an essential nutrient for growth and through studying responses to 

changes in environmental conditions many aspects of sulphur metabolism have been 

revealed especially in the vascular plant Arabidopsis thaliana and the green algae 

Chlamydomonas reinhardtii. Whilst these model organisms are very noticeably different 

from one another, they derived from the primary endosymbiosis and had a common 

ancestor ~1.1 billion years ago (Gutman and Niyogi 2004). They are both representatives 

of green lineage of the Archaeplastida (Plantae) group within the tree of life as shown in 

Figure 6.1. That is why they are an excellent pair for studying sulphur metabolism in 

terrestrial environment. By contrast, Emiliania huxleyi is evolutionary much more distant 

species, which similarly to other marine eukaryotic algae, originated from secondary 

endosymbiosis. Unfortunately, sulphate assimilation and metabolism in marine microalgae 

has not attracted very much attention at all. This is probably largely due to the fact that 

sulphate is a very abundant anion in the ocean and given its ~28 mM concentration is 

seawater it probably never limits the growth of marine phytoplankton. Interestingly, an 

increase of the sweater sulphate level coincided with the evolutionary success of 

coccolithophorids that rose in Mesozoic ocean, where sulphate concentration rose from 13 

and 27 mM (Ratti et al. 2011). This strongly suggests that sulphate was one of the major 

factors steering evolution of some marine microalgae. Despite its importance, to date 

studies of S-metabolites in marine eukaryotic algae have mostly related to DMSP and the 

products of its reactions and other aspects of sulphate metabolism have been largely 

ignored. 

 This PhD project aimed to address this gap in knowledge by better characterising 

the metabolism of S-compounds in marine microalgae. In order to do this, we chose to 

work on the haptophyte Emiliania huxleyi based on the following key characteristics: 

 

 Phylogenetically distant from A. thaliana and C. reinhardtii (Figure 6.1). 

 Cosmopolitan distribution in the ocean and ability to form conspicuous blooms 

mean that E. huxleyi is an important player in the global carbon cycle. 

 Considered as a model species for the coccolithophore group. 

 Biosynthesis of high intracellular concentrations of DMSP and thus a significant 

role in sulphur biogeochemical cycle. 

 The availability of the recently sequenced genome of E. huxleyi CCMP 1516. 
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Figure 6.1 The position of Emiliania huxleyi, Chlamydomonas reinhardtii and Arabidopsis. 

thaliana in the eukaryotic tree of life which is a consensus phylogeny of eukaryotes based on 

molecular phylogenetic and ultrastructural data. Adapted from Baldauf (2008). 
 

 

 To achieve our goal we examined the physiological and molecular responses in E. 

huxleyi under various sulphate concentrations. In Chapter 3 we described the physiological 

responses of E. huxleyi to sulphur limitation and sulphur replenishment. In initial 

experiments we showed that sulphate availability affected cell growth and intracellular 

DMSP concentration. This response appeared to be strain-dependent in that, contrary to 

results for CCMP 1516 and CCMP 370, the DMSP content of the high DMSP-lyase strain 

CCMP 373 (Steinke et al. 1998) was not altered by S-limitation. We suggested that this 

different response pattern could be linked to differences in DMSP lyase activity. In future 

work it would be interesting to test whether, and if so to what extent, DMSP lyase activity 

is regulated by sulphate in these strains of E. huxleyi. Our further investigations revealed 

that sulphate re-supply back to S-limited cultures increased DMSP concentration and that 

this induction is likely to be associated with light conditions (Chapter 3 and 4). 

 

Emiliania  
huxleyi

Arabidopsis thaliana

Chlamydomonas 
reinhardtii
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Another important aspect of this work was to examine the changes in S-metabolites 

in E. huxleyi that have been previously been shown to be important in the sulphate 

assimilation pathways of A. thaliana and C. reinhardtii. Several studies have shown that 

the induction of sulphate uptake in plants and green algae is triggered by S-limitation 

conditions (Yildiz et al. 1994; Yoshimoto et al. 2007; Pootakham et al. 2010). In our 

experiments we showed the same positive effect of S-limitation on sulphate uptake in E. 

huxleyi, however our results suggest that this microalga has a lower affinity sulphate 

uptake system than A. thaliana and C. reinhardtii. This is likely to be due to the high and 

constant sulphate abundance in today’s ocean. The same characteristic of seawater may, at 

least partly, explain the much higher level APS reductase activity we measured in E. 

huxleyi compared with activities seen in A. thaliana or C. reinhardtii. Furthermore from 

our observations it appears that, again contrary to plants and freshwater algae (Takahashi et 

al. 1997; Ravina et al. 2002), the APR activity in E. huxleyi is not regulated by sulphur 

demand. On the other hand, GSH and DMSP contents were regulated by sulphate 

availability in this microalga. Given that GSH is known to be a ROS scavenger , and this 

role has also been proposed for DMSP (Sunda et al. 2002), we examined the diurnal 

variation in these compounds and revealed that they are regulated in E. huxleyi by light 

(see Chapter 5). 

 Over recent years molecular biology and ‘–omics’ technologies have substantially 

advanced our understanding of the role sulphur plays in living organisms. Indeed, A. 

thaliana and C. reinhardtii have both been well characterised through expression profiling 

of S-limited plants and cultures (Maruyama-Nakashita et al. 2006; González-Ballester et 

al. 2010). To enable the molecular comparison between the responses to sulphate 

deficiency of E. huxleyi, plant and green alga model systems, in Chapter 5 we used the 

RNA-seq Illumina platform approach. We analyse the whole transcriptome of E. huxleyi 

grown under sulphate limited conditions. We discovered that ~10% of the transcripts 

detected changed their expression level in low S-conditions. Consequently our results 

suggest that, as in plants and green algae, the expression of many E. huxleyi genes is 

modulated by sulphate availability. We showed that S-limitation triggered general 

responses to the stress condition through the up-regulation of genes involved in signalling 

transduction, cell structure organisation and fatty acid metabolism. We also gained insight 

into the expression of genes responsible for sulphur uptake and assimilation and compared 

this with the expression observed previously in A. thaliana (Maruyama-Nakashita et al. 

2006) and C. reinhardtii (González-Ballester et al. 2010). Some transcripts such showed 
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the same expression pattern under S-limitation condition in all 3 species e.g. the induction 

of the genes encoding sulphur transporters and enzymes involved in Cys synthesis. On the 

other hand many other mRNAs from the sulphur metabolic pathway exhibited different 

expression pattern in E. huxleyi. For example, contrary to vascular plants, mRNA encoding 

APS reductase was very abundant but not differently regulated in S-limited E. huxleyi. 

High APR activity and high expression of APR gene, both may suggest that in sulphur rich 

marine environment some phytoplankton species evolved higher capacity for sulphate 

reduction than plants and freshwater green algae. This might also be attributed at least in 

part to high production of DMSP as reduced sulphur is required for DMSP synthesis. 

 

 In conclusion, we have shown that, despite being adapted to high sulphate 

concentrations in sea water, the marine microalga E. huxleyi still retains the genetic 

program to respond to artificial sulfate deficiency. Whereas the up-regulation of sulphate 

uptake and cysteine synthesis in E. huxleyi is in common with plants and freshwater algae, 

the global response significantly differs. Instead of slowing down photosynthesis and 

primary metabolism E. huxleyi responds to sulphate deficiency by up-regulation of genes 

involved in carbohydrate and fatty acid synthesis and appears to re-direct sulphur and 

carbon from DMSP into these alternative metabolite pools. Our findings could reflect the 

ecophysiological and phylogenetic distance between this coccolithophore and A. thaliana 

and C. reinhardtii. 

 

6.2.  Future perspectives 

 

 To get more novel insights into sulphur acquisition and metabolism in marine 

phytoplankton, further study is still needed. When taken as whole, this thesis put the 

foundation on general understanding of physiological, biochemical and molecular 

responses of E. huxleyi to sulphur availability. However the next steps should be a detailed 

measurement of sulphate uptake and sulphur distribution in E. huxleyi cells under both S-

sufficient and S-deficient conditions. 

In our experiment we demonstrated that similarly to plans and fresh water algae, sulphate 

uptake in E. huxleyi was enhanced by lowering external sulphate concentration. The next 

challenge is to determine kinetic parameters (KM and Vmax) of SO4
2-

 uptake under different 

sulphate concentration in E. huxleyi grown at 25 and 5 mM SO4
2-

. Additionally, 

deciphering sulphur allocation in E. huxleyi should be experimentally determined. 
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[
35

S]sulphate fluxes through the metabolic pathways and its incorporation into proteins, 

thiols and methionine has been successfully established in A. thaliana (Kopriva et al. 1999; 

Mugford et al. 2010). Similar approach could be potentially applied to reveal sulphur 

distribution in E. huxleyi S-sufficient, S-deficient and S-resupplied conditions. Using 

radioactive [
35

S]sulphate labelling to study E. huxleyi S-metabolism in sulphate reach 

marine system,  is technically challenging as high concentrations of  this isotope is 

required. However, the use of the tracer technique with the 
34

S stable isotope would be an 

alternative for evaluations of sulphur dynamics in the seawater environment. Applying 
34

S 

tracer allows avoiding exposure to radioactivity. Moreover, since 
34

S does not decay long 

time course experiments can be conducted and samples analysis delayed. 

 It is suggested that success o chlorophyll a+c algae such as E. huxleyi is related to 

high cellular sulphur content and the ability to produce DMSP (Giordano et al. 2005; 

Takahashi et al. 2011). Surprisingly, despite its importance, still little is known about algal 

DMSP metabolism. A current major challenge in DMSP research is to advance our 

understanding control of DMSP synthesis and cleavage especially on the molecular level. 

The bacterial genes involved in DMSP metabolism have only recently been identified 

(Todd et al. 2010; Vila-Costa et al. 2010) however, algal DMSP synthesis and cleavage 

genes still remain to be found and characterised. E. huxleyi is a good model phytoplankton 

for finding DMSP synthesis and cleavage genes given its high intracellular DMSP 

concentration. Altering the sulphate concentration in the medium provides an approach 

whereby a dramatic increase in intracellular DMSP concentration can be observed after 

sulphate replenishment, the logical next step would be the transcriptome profiling of S-

limited E. huxleyi subjected to sulphate re-supply. In our RNA-seq dataset generated for S-

limited cells, we have found two significantly up-regulated homologues of the bacterial 

DddD (DMSP dependent DMS production) genes involved in DMSP degradation to DMS 

and 3-hydroxypropionate. Detailed, functional characteristic of these two candidates could 

verify if they are genes encoding for DMSP lyase in E. huxleyi. Furthermore, analyses 

carried out on other E. huxleyi isolates suggested they were differently affected by low 

sulphate availability and expanding the study to additional strains should shed more light 

on DMSP metabolism. However, to better determine molecular mechanisms of sulphate-

sensing and signalling and get more insights into E. huxleyi sulphur metabolism, it would 

be extremely advantageous to find the approach for knocking out genes in this microalga 

and thus allowing the genetic mutant screening. 
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 Overall the physiological and molecular data for E. huxleyi in response to S-

limitation presented in this thesis support each other and provide a foundation for further 

work on sulphur metabolism in the marine microalgae. Since sulphur metabolism is fairly 

well understood in plants and green algae, additional phenotypic data from marine algae 

should provide better insights into evolution and adaptation of plants and algae to their 

different environments. 

 Marine algal genomes are still in their relative infancy compared to those for higher 

plants and some green algae, but in the near future many more genomes should be 

available and they will lead us to a much improved understanding of the evolution of 

photosynthetic organisms. 

Annotation of the whole genome sequence for E. huxleyi is currently processing. In 

addition to the information on gene expression, our E. huxleyi RNA-seq data for cells 

grown in control and S-limited conditions is promising for refining the E. huxleyi strain 

CCMP 1516 genome annotation and should help to decrease the number of genes assigned 

as ‘hypothetical’ or ‘unknown’ in the genome. 
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Table 1A. Summary of the top 100 most up-regulated transcripts in S-limited Emiliania huxleyi with the best BLASTP hits (E-value cutoff of 1E-5) in Chlamydomonas 

reinhardtii and Arabidopsis thaliana. E. huxleyi genes descriptionws were retrieved from the Enzyme Commission (EC). E-value (expectation value) reflecting the number 

of hits expected to be found by chance  

Emiliania huxleyi
a
 Chlamydomonas reinhardtiib Arabidopsis thaliana

c
 

Protein 

ID
d
 

Description EC number 

Fold 

Change 

(log2) 

Homolog 

ID
d
 

E-value 

Fold 

Change 

(log2) 
Homolog 

ID 
E-value 

Fold 

Change 

(log2) 

238059 Glycerol-3-phosphate dehydrogenase. 1.1.99.5 6.0 No   AT3G56840 1E-17 0.2 

426799 Glutamate decarboxylase. 4.1.1.15 5.8 185104 2E-101 -0.7 AT5G43900 8E-129 0.3 

455971 Sarcosine dehydrogenase. 1.5.99.1 5.8 205744 8E-07 0.1 AT5G67290 4E-11 0.4 

458972 DNA-directed DNA polymerase. 2.7.7.7 5.6 No   No   

196679 Exo-alpha-sialidase. 3.2.1.18 5.5 No   No   

106050 Adenosinetriphosphatase. 3.6.1.3 5.2 171623 1E-23 -1.4 AT2G07690 1E-39 0.0 

114117 Exo-alpha-sialidase. 3.2.1.18 5.1 No   No   

464628 Adenosinetriphosphatase. 3.6.1.3 5.1 152683 2E-45 -2.3 AT2G14050 1E-103 0.5 

222150 Protein kinase. 2.7.1.37 5.1 113407 9E-20 -1.1 AT4G04740 9E-21 0.6 

455696 DNA-directed DNA polymerase. 2.7.7.7 5.0 189721 6E-132 -1.3 AT5G63960 8E-146 0.2 

42969 Ferredoxin--NADP(+) reductase. 1.18.1.2 4.9 195553 9E-92 -1.6 AT1G30510 1E-96 -0.3 

198992 Acid--D-amino-acid ligases (peptide synthases). 6.3.2.- 4.7 194222 4E-51 -0.7 AT1G19880 7E-70 0.2 

194351 
Protein-methionine-S-oxide reductase. 

Peptide methionine sulfoxide reductase. Peptide Met(O) reductase. 
1.8.4.6 4.6 187796 3E-09 0.4 AT5G61640 3E-15 0.4 

441547 Acyl-CoA dehydrogenase. 1.3.99.3 4.6 118751 1E-92 0.2 AT3G06810 6E-179 0.3 

457170 DNA-directed DNA polymerase. 2.7.7.7 4.6 177262 3E-69 -1.9 AT5G67100 6E-45 0.0 

229721 DNA-directed RNA polymerase. 2.7.7.6 4.5 No   No   

417368 In phosphorous-containing anhydrides. 3.6.1.- 4.4 No   AT1G79890 3E-110 0.2 

438851 6-phosphofructokinase. 2.7.1.11 4.4 196430 3E-12 -0.1 AT5G56630 8E-19 0.3 

450278 Lanosterol synthase. 5.4.99.7 4.3 112249 5E-85 -2.2 AT5G25150 5E-28 0.4 

450487 Acyl-CoA oxidase. 1.3.3.6 4.2 No   No   

426418 Palmitoyl-protein hydrolase. 3.1.2.22 4.2 131913 2E-24 0.0 AT3G60340 1E-28 0.2 

236798 DNA-(apurinic or apyrimidinic site) lyase. 4.2.99.18 4.2 No   No   
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452085 Adenosinetriphosphatase. 3.6.1.3 4.2 122561 7E-76 -1.6 AT3G09660 3E-140 0.3 

456826 DNA-directed DNA polymerase. 2.7.7.7 4.1 140580 2E-75 -1.6 AT2G29570 2E-84 0.4 

427020 Aldehyde dehydrogenase (NAD+). 1.2.1.3 4.1 135609 2E-81 0.3 AT3G24503 4E-92 0.4 

433820 3-oxoacyl-[acyl-carrier protein] reductase. 1.1.1.100 4.1 127051 7E-27 0.7 AT1G24360 4E-32 0.3 

233634 Adenosinetriphosphatase. 3.6.1.3 4.0 127671 5E-160 -2.0 AT4G02060 3E-80 -0.1 

450336 Aldehyde dehydrogenase (NAD+). 1.2.1.3 4.0 135609 4E-108 0.3 AT3G48000 7E-112 0.3 

233187 UDP-glucuronate decarboxylase. 4.1.1.35 4.0 135101 5E-08 -0.8 AT3G53520 7E-08 0.3 

100060 DNA-directed DNA polymerase. 2.7.7.7 3.9 No   No   

52859 Adenosinetriphosphatase. 3.6.1.3 3.9 120667 3E-64 -1.8 AT1G72250 8E-66 0.5 

101628 Hydrolases. 3.-.-.- 3.9 130834 7E-90 -1.1 AT5G26680  0.3 

466973 Acid--D-amino-acid ligases (peptide synthases). 6.3.2.- 3.8 No   No   

212824 Ribonucleoside-diphosphate reductase. 1.17.4.1 3.8 185583 0 2.2 AT2G21790 0E+00 0.1 

68124 DNA-directed DNA polymerase. 2.7.7.7 3.8 No   No   

468249 Peptidylprolyl isomerase. 5.2.1.8 3.8 205889 2E-45 -0.4 AT1G26940 8E-50 0.3 

457592 Homogentisate 1,2-dioxygenase. 1.13.11.5 3.8 76437 1E-107 1.4 AT5G54080 1E-125 0.2 

62542 Adenosinetriphosphatase. 3.6.1.3 3.7 152683 0E+00 -0.2 AT1G44900 0 0.3 

416107 Hydroxymethylglutaryl-CoA lyase. 4.1.3.4 3.7 195057 5E-81 0.7 AT2G26800 1E-86 0.3 

440231 Cyclopropane-fatty-acyl-phospholipid synthase. 2.1.1.79 3.7 191650 5E-26 -0.5 AT3G23530 2E-26 0.1 

470226 Adenosinetriphosphatase. 3.6.1.3 3.7 120667 9E-31 -1.8 AT5G54670 1E-29 0.5 

359119 Acid--D-amino-acid ligases (peptide synthases). 6.3.2.- 3.7 152270 1E-25 -1.5 AT5G65740   

415026 Mercury (II) reductase. 1.16.1.1 3.7 57890 3E-39 -0.3 AT1G48030 2E-40 0.4 

451516 Acting on the CH-OH group of donors. 1.1.-.- 3.6 145585 2E-17 -1.3 AT4G09750 2E-17 0.3 

96456 Acid--D-amino-acid ligases (peptide synthases). 6.3.2.- 3.6 No   No   

434807 Acetyl-CoA C-acyltransferase. 2.3.1.16 3.6 138637 4E-40 -1.3 AT1G04710 5E-39 0.5 

205415 Alpha-N-acetylgalactosaminidase. 3.2.1.49 3.6 116873 2E-50 -0.7 AT3G56310 2E-56 0.5 

249760 Plus-end-directed kinesin ATPase. 3.6.4.4 3.6 137882 3E-55 -1.4 AT2G37420 3E-59 0. 

434017 Ubiquitin--protein ligase. 6.3.2.19 3.6 183594 8E-64 1.1 AT1G63800 5E-61 0.4 

470988 Ribonucleoside-diphosphate reductase. 1.17.4.1 3.6 188785 5E-80 -1.3 AT3G23580 7E-94 0.2 

95181 Glucan 1,4-alpha-glucosidase. 3.2.1.3 3.5 No   AT2G35630 2E-39 0.1 

434961 Acting on the CH-OH group of donors. 1.1.-.- 3.4 56542 2E-13 0.0 AT1G24360 3E-17 0.3 

457507 NAD(+) ADP-ribosyltransferase. 2.4.2.30 3.4 No   No   

52323 Glutamate--ammonia ligase. 6.3.1.2 3.4 No   No   
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459854 NAD(+) ADP-ribosyltransferase. 2.4.2.30 3.4 No   AT4G02390 1E-86 0.8 

413815 Dimethylaniline monooxygenase (N-oxide forming). 1.14.13.8 3.4 206143 3E-88 0.6 AT1G19250 4E-46 0.6 

104811 Acrosin. 3.4.21.10 3.4 No   No   

454120 Aspartate-semialdehyde dehydrogenase. 1.2.1.11 3.4 148810 2E-63 -0.4 AT1G14810 9E-67 0.0 

431876 Phosphotransferases with an alcohol group as acceptor. 2.7.1.- 3.3 113331 9E-31 -0.2 AT4G18700 1E-44 0.2 

246026 Serine/threonine specific protein phosphatase. 3.1.3.16 3.3 95558 1E-14 0.1 AT5G53140 1E-13 0.3 

225583 Phosphodiesterase I. 3.1.4.1 3.3 No   AT5G15170 1E-21 0.2 

52656 Nucleotidyltransferases. 2.7.7.- 3.3 No   AT1G67320 1E-78 0.3 

451556 Exo-alpha-sialidase. 3.2.1.18 3.3 No   No   

445028 Ceramidase. 3.5.1.23 3.3 No   No   

452428 Protein kinase. 2.7.1.37 3.2 178318 3E-17 0.2 AT4G35780 3E-14 0.1 

113634 1-phosphatidylinositol 3-kinase. 2.7.1.137 3.2 196943 7E-28 0.3 AT1G60490 1E-28 0.2 

437926 With other acceptors. 1.3.99.- 3.2 128289 1E-57 0.7 AT3G45300 2E-57 0.0 

460965 Metalloendopeptidases. 3.4.24.- 3.2 152585 6E-41 -1.5 AT5G06680 1E-101 0.3 

308857 Fructose-bisphosphate aldolase. 4.1.2.13 3.2 24459 1E-79 -0.3 AT2G21330 3E-17 -0.1 

241574 Glucan 1,3-beta-glucosidase. 3.2.1.58 3.2 No   No   

349549 Tryptase. 3.4.21.59 3.2 No   No   

467665 DNA ligase (NAD+). 6.5.1.2 3.2 No   No   

220923 Beta-glucosidase. 3.2.1.21 3.2 No   AT1G02640 3E-52 0.4 

225637 Plus-end-directed kinesin ATPase. 3.6.4.4 3.2 No   AT1G72250 7E-23 0.5 

99551 DNA-directed DNA polymerase. 2.7.7.7 3.2 103391 1E-26 -1.5 AT2G42120 2E-37 0.3 

198024 Pyruvate carboxylase. 6.4.1.1 3.2 112730 0 -1.5 No   

221716 DNA-directed DNA polymerase. 2.7.7.7 3.1 No   AT1G67630 5E-12 0.1 

112261 Type I site-specific deoxyribonuclease. 3.1.21.3 3.1 No   No   

461771 Adenosinetriphosphatase. 3.6.1.3 3.1 38371 1E-55 -0.6 AT3G01610 1E-44 0.1 

469045 Acid--D-amino-acid ligases (peptide synthases). 6.3.2.- 3.1 No   No   

65943 Methionyl aminopeptidase. 3.4.11.18 3.1 139416 6E-86 -2.0 AT3G51800 2E-88 0.1 

443869 Succinate-semialdehyde dehydrogenase (NAD(P)+). 1.2.1.16 3.1 118012 2E-105 -0.1 AT1G79440 1E-128 0.1 

216734 Serine endopeptidases. 3.4.21.- 3.0 No   No   

466584 DNA-directed RNA polymerase. 2.7.7.6 3.0 No   No   

110761 Metalloendopeptidases. 3.4.24.- 3.0 No   No   

369783 Orotate phosphoribosyltransferase. 2.4.2.10 3.0 116267 5E-14 -1.8 AT3G54470 2E-12  
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212574 Tropine dehydrogenase. 1.1.1.206 3.0 128624 4E-52 -1.6 AT5G06060 3E-60 0.2 

204876 Adenosine kinase. 2.7.1.20 3.0 No   No   

444614 Ubiquitinyl hydrolase 1. 3.4.19.12 3.0 182375 7E-62 -0.5 AT1G65650 2E-88 0.3 

465841 In phosphorous-containing anhydrides. 3.6.1.- 2.9 145450 8E-93 -1.3 AT3G19210 4E-88 0.8 

433512 Adenosine deaminase. 3.5.4.4 2.9 No   AT4G04880 2E-20 0.3 

452782 DNA-directed RNA polymerase. 2.7.7.6 2.9 No   No   

68578 Phosphotransferases with an alcohol group as acceptor. 2.7.1.- 2.9 112765 4E-36 -0.2 AT5G01810 4E-34 0.4 

450514 Succinate dehydrogenase (ubiquinone). 1.3.5.1 2.9 195972 0 -0.7 AT5G66760 0 0.2 

100734 Metalloendopeptidases. 3.4.24.- 2.9 No   No   

467327 Protein kinase. 2.7.1.37 2.9 No   No   

223806 In phosphorous-containing anhydrides. 3.6.1.- 2.9 No   AT1G08600 6E-44 0.2 

72956 Glutamate--ammonia ligase. 6.3.1.2 2.9 No   AT3G53180 2E-26 0.3 

456336 
Adenosylmethionine--8-amino-7-oxononanoate 

aminotransferase. 
2.6.1.62 2.8 108892 1E-21 -1.2 AT5G57590 2E-23 0.4 

468825 Acid--D-amino-acid ligases (peptide synthases). 6.3.2.- 2.8 No   No   

 
a
 this work 

b
 González-Ballester et al. (2010) 

c
 Maruyama-Nakashita et al. (2006) 

d
 JGI protein accession number 
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Table 1B. Summary of the top 100 most up-regulated transcripts in S-limited Chlamydomonas reinhardtii with the best BLASTP hits (E-value cutoff of 1E-5) in Emiliania 

huxleyi and Arabidopsis thaliana. E-value (expectation value) reflecting the number of hits expected to be found by chance. Transcripts induced in all three species are 

highlighted in bold font 

Chlamydomonas reinhardtii
a 

Emiliania huxleyi
b
 Arabidopsis thaliana

c
 

Protein 

ID
d Description 

Fold 

Change 

(log2) 

Homolog 

ID
d E-value 

Fold 

Change 

(log2) 

Homolog 

ID 
E-value 

Fold 

Change 

(log2) 

137329 ECP88, extracellular protein 13.4 No   No   

171504 Unknown 11.7 No   No   

130684 ECP76, extracellular protein 10.7 No   No   

205496 ARS1, arylsulfatase 10.5 No   No   

184479 LHCBM9, PSII light harvesting protein 10.0 No   AT2G05100 1E-96 0.8 

      AT3G27690 3E-96 1.2 

      AT1G29910 8E-92 0.8 

109352  9.8 No   AT3G06380 4E-12 1.0 

      AT5G18680 9E-12 1.2 

      AT2G47900 1E-11 1.1 

184282 Unknown 9.8 No   No   

175629 Unknown 9.3 No   No   

194201 ECP 56, extracellular protein 8.6 No   No   

119420 ECP 61, extracellular protein 8.5 No   No   

143696 HAP2, vanadium haloperoxidase 8.4 No   No   

192634  8.2 No   No   

55757 ARS2, arylsulfatase 8.2 No   No   

174935  8.2 No   No   

100022  Snf1 like Ser/Thr protein kinase 8.2 No   AT4G33950 3E-52 1.6 

      AT1G60940 1E-51 1.1 

      AT5G63650 7E-51 1.2 

185846  8.1 No   No   
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168785 HAP1, vanadium haloperoxidase 7.9 No   No   

205841 U6i,U6 snRNA 7.8 No   No   

156670  7.5 No   No   

205690 Unknown 7.4 No   No   

192633 Unknown, small RNA like 7.4 No   No   

196724 YEE3, membrane protein 7.3 No   No   

181230  7.3 No   No   

153934 Aldehyde dehydrogenase 7.3 No   No   

143415 Unknown 7.2 No   No   

182794 HAP3, vanadium haloperoxidase 7.1 No   No   

127464 TAUD1, taurine dioxygenase 7.1 No   No   

96408  7.0 No   No   

122211  6.9 No   No   

181679  6.9 No   No   

205502 SLT1, animal type sulfate transporter 6.9 No   No   

184415 Unknown, small RNA like 6.7 No   No   

167940 Unknown 6.6 No   No   

149078  Serine/threonine protein kinase 6.5 No   AT4G32830 3E-31 1.2 

183469 Unknown, small RNA like 6.3 No   No   

205501 SLT2, animal type sulfate transporter 6.3 No   No   

170694  6.3 No   No   

190325 Unknown, small RNA like 6.3 No   No   

180502  6.2 No   No   

205514 PWR1 domain 6.2 No   No   

112775 HTB10,Histone H2B 6.2 No   AT5G59910 3E-41 1.2 

      AT3G45980 3E-41 1.2 

      AT3G46030 3E-41 1.2 

180839 CLR2,predicted protein of CLR family 6.2 No   No   

141881  6.2 No   No   

181051  6.1 No   No   

189761  6.1 No   No   

174551  6.1 No   No   
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205818 U5d,U5 snRNA 6.0 No   No   

181739 MOT29,predicted protein 5.9 No   No   

169360  5.9 No   No   

187819 Oxygenase like protein 5.7 No   AT1G35190 2E-69 1.4 

      AT3G46490 2E-61 1.1 

      AT3G46480 2E-46 2.3 

192462 Unknown 5.6 No   No   

151478  5.6 No   No   

116259  5.6 No   AT3G02850 2E-05 0.5 

150931 Unknown 5.5 No   No   

171929  5.4 No   No   

196871 UBL3,ubiquitin like protein 5.4 No   No   

184802  5.4 No   No   

182845 SBD1,selenium binding protein 5.4 No   AT4G14030 3E-156 2.0 

      AT3G23800 1E-148 0.8 

150514 SULTR2, plant type sulfate transporter 5.3 453061 4E-48 3.9 AT5G13550 5E-133 1.9 

      AT3G12520 2E-131 6.2 

      AT1G22150 2E-107 0.8 

162607 CGL41 domain 5.2 No   AT4G04330 2E-17 8.5 

143723  5.2 204049 1E-11 n/a No   

77600 TAUD2, taurine dioxygenase 5.2 No   No   

115518 GDPD2,glycerophosphoryl diester phosphodiesterase family protein 5.2 No   AT1G74210 5E-66 1.3 

      AT5G08030 7E-66 2.2 

      AT5G58050 9E-15 1.2 

179525  5.2 No   No   

171151  5.2 No   No   

153947 RDP1,Rhodanese domain phosphatase 5.2 No   AT5G03455 9E-05 1.2 

196813 YEE1, membrane protein 5.2 No   No   

180559  5.2 No   No   

114955 HTR17,Histone H3 5.1 461181 6E-74 -0.4 AT4G40030 3E-59 1.1 

   78924 5E-75 -0.6 AT3G27360 3E-59 1.2 

   359333 5E-75 1.3 AT1G75600 2E-56 7.4 
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      AT1G13370 3E-55 4.3 

205985 SAT1a, serine acetyltransferase, (i. a) 5.1 248485 4E-41 1.5 AT5G56760 1E-60 1.2 

   234967 3E-41 1.9 AT2G17640 8E-59 2.6 

   55024 1E-38 0.3 AT1G55920 2E-52 1.3 

143258  5.1 No   No   

205806 U2f,U2 snRNA 5.1 No   No   

151243  5.1 No   No   

187821 SAT1b, serine acetyltransferase, (i. b) 5.1 No   as shown in SAT 1a   

144820 Unknown 5.1 No   No   

153054 Cysteine type endopeptidase 5.0 114918 3E-08 1.1 No   

196145 SelW2,Selenoprotein W2 5.0 No   No   

196834 CAH9, carbonic anhydrase, cyt. 5.0 No   No   

168671  5.0 No   No   

166553  4.9 No   No   

139591 Unknown 4.9 No   No   

185664  4.9 No   No   

196750 THB2,truncated hemoglobin 4.8 No   No   

184728 Major facilitate superfamily transporter 4.7 No   No   

151255  4.7 No   No   

143892 CDO1, cysteine dioxygenase 4.7 433165 9E-16 3.8 No   

166895  4.7 No   No   

162043  4.6 No   No   

154596  4.6 No   No   

147414  4.6 No   No   

112129  4.6 452712 1E-48 0.1 AT3G48750 5E-45 1.2 

   433442 4E-45 3.7 AT3G14720 5E-43 1.2 

   354761 7E-41 -0.3 AT3G18040 9E-43 1.3 

169460  4.6 No   No   

161581  4.6 No   No   

186295 CLR21 4.6 No   No   

153996  4.5 No   No   
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116001  4.5 459364 7E-21 1.5 AT5G16750 1E-14 0.9 

   427427 1E-15 -0.5 AT1G11160 4E-14 1.2 

   44132 9E-20 0.3 AT1G73720 1E-13 1.2 

   99690 6E-12 -0.6    

121177  4.5 No   No   

166922  4.5 No   No   

96117  4.5 No   AT1G53270 2E-12 1.8 

      AT2G36380 2E-11 1.3 

98733 Serine/threonine protein kinase 4.5 56016 2E-17 0.6 AT4G32830 3E-16 1.2 

   453419 1E-17 -0.6 AT2G25880 8E-16 1.1 

   62403 2E-18 0.4 AT5G57630 1E-15 1.3 
a
 González-Ballester et al. (2010) 

b
 this work 

c
 Maruyama-Nakashita et al. (2006) 

d
 JGI protein accession number 
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Table 1C. Summary of the top 100 most up-regulated transcripts in S-limited Arabidopsis thaliana with the best BLASTP hits (E-value cutoff of 1E-5) in Emiliania 

huxleyi and Chlamydomonas reinhardtii E-value (expectation value) reflecting the number of hits expected to be found by chance. Transcripts induced in all three species 

are highlighted in bold font 

Arabidopsis thaliana
a
 Emiliania huxleyi

b
 

Chlamydomonas 

reinhardtii
c
 

Protein 

ID 
Description 

Fold 

Change 

(log2) 

Homolog 

ID
d
 

E-value 

Fold 

Change 

(log2) 

Homolog 

ID
d
 

E-value 

Fold 

Change 

(log2) 

AT2G44460 putative beta-glucosidase 8.0 68714 9E-102 -0.2 169029 2E-33 -0.8 

   103655 2E-92 0.0 167861 2E-31 1.2 

   74482 1E-75 0.9 No   

   107040 3E-31 0.7 No   

AT1G12030 hypothetical protein predicted by genefinder 7.6 No   No   

AT3G49580 putative protein  ;supported by full-length cDNA: Ceres:26235. 6.5 No   No   

AT4G08620 
putative sulfate transporter; supported by cDNA: 

gi_14196242_dbj_AB018695.2_AB018695 
6.5 453061 1E-37 3.9 150514 3E-115 5.3 

AT5G48850 putative protein similar to unknown protein (gb|AAC72543.1) 6.5 441761 5E-12 3.3 No   

AT5G26220 putative protein cation transport protein chaC, Escherichia coli, PIR:G64868 6.4 47921 8E-16 -0.4 142997 4E-41 0.3 

   57918 8E-16 -0.6 No   

AT3G60140 
beta-glucosidase-like protein several beta-glucosidases - different species; supported by 

cDNA: gi_10834547_gb_AF159376.1_AF159376 
6.3 68714 1E-101 0.5 167861 5E-32 1.2 

   103655 2E-91 0.0 169029 9E-30 -0.8 

   439489 3E-22 0.6    

AT5G49590 putative protein similar to unknown protein (pir||T02348) 5.6 No   No   

AT3G05400 
sugar transporter, putative similar to integral membrane protein 

GB:U43629 from [Beta vulgaris] (Plant Physiol.(1996) 110 (2), 511-520) 
5.4 470505 9E-29 1.3 196325 2E-23 0.4 

   432500 1E-27 1.2    
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   41648 2E-26 -1.0    

AT1G23730 putative carbonic anhydrase 5.2 No   196245 5E-15 0.9 

      133249 3E-10 0.5 

      24552 5E-09 -2.2 

AT3G29510 
transposon related protein similar to retroviral-like transposon Tnt GI:20044 from 

[Arabidopsis thaliana] 
4.7 No   No   

AT1G39430 putative replication protein A1 4.5 No   No   

--- hypothetical protein predicted by genscan and genefinder 4.5 No   No   

AT1G33960 

AIG1 identical to AIG1 (exhibits RPS2- and avrRpt2-dependent induction early after 

infection with Pseudomonas) GB:U40856 [Arabidopsis thaliana] 

(Plant Cell 8 (2), 241-249 (1996)); supported by cDNA: 

gi_1127803_gb_U40856.1_ATU40856 

4.5 249415 5E-17 1.6 No   

AT3G21830 
SKP1/ASK1 (At8), putative similar to Skp1 homolog Skp1b GI:3068809, UIP2 GI:3719211 

from [Arabidopsis thaliana] 
4.5 434598 7E-32 0.3 128004 4E-31 -0.4 

AT2G14300 putative helicase 4.5 No   No   

AT3G08860 

putative aminotransferase similar to beta-alanine-pyruvate aminotransferase GB:BAA19549 

[Rattus norvegicus], alanine-glyoxylate aminotransferase GB:Q64565 [Rattus norvegicus]; 

Pfam HMM hit: Aminotransferases class-III pyridoxal-phosphate 

4.4 416568 2E-75 0.6 133057 1E-167 0.3 

      205967 7E-52 2.2 

      139007 1E-38 -0.4 

AT1G72580 hypothetical protein predicted by genscan 4.3 No   No   

AT3G50160 putative protein some putative proteins - Arabidopsis thaliana and Oryza sativa 4.1 No   No   

AT3G52770 hypothetical protein emm32, Streptococcus pyogenes, EMBL:SPEMM32G 4.1 No   No   

AT5G24660 
putative protein similar to unknown protein (emb CAB62461.1);supported by full-length 

cDNA: Ceres:268701. 
4.0 No   No   

AT4G31330 predicted protein  ; supported by cDNA: gi_15293232_gb_AY051050.1_ 4.0 No   No   

AT4G18330 
translation initiation factor eIF-2 gamma chain-like protein translation initiation factor eIF-2 

gamma chain, Homo sapiens, PIR2:A53048;supported by full-length cDNA: Ceres:34867. 
4.0 62317 2E-118 -0.3 126673 0 -1.3 

AT4G03156 hypothetical protein 3.9 No   No   

AT3G42080 putative protein hypothetical proteins - Arabidopsis thaliana 3.9 No   No   

--- hypothetical protein 3.8 No   No   

AT1G75290 
NADPH oxidoreductase, putative similar to GI:1708420 from [Arabidopsis thaliana] (J. 

Biol. Chem. 270 (44), 26224-26231 (1995)) 
3.8 No   132437 2E-06 -0.6 
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AT3G03410 
calmodulin-like protein similar to calmodulin GB:P02599 [Dictyostelium discoideum], 

HMM hit: efhand 
3.8 442625 2E-21 3.0 188144 1E-16 0.0 

   443126 2E-21 2.2 9509 7E-10 0.2 

AT5G26700 
nectarin - like protein nectarin I precursor, Nicotiana plumbaginifolia, EMBL:AF132671; 

supported by full-length cDNA: Ceres: 14379. 
3.8 No   No   

AT1G36120 putative reverse transcriptase 3.8 No   No   

AT5G27580 
putative protein hypothetical proteins - Arabidopsis thaliana, weak similarity to MADS-box 

proteins 
3.8 No   No   

AT2G23060 similar to hookless1 (HLS1) 3.7 No   No   

AT2G30220 putative GDSL-motif lipase/hydrolase similar to APG proteins; pFAM domain PF00657 3.7 No   No   

AT1G59850 hypothetical protein predicted by genemark.hmm 3.7 No   No   

AT5G37610 porin -like protein porin, Prunus armeniaca, EMBL:AF139498 3.7 No   No   

AT5G57730 unknown protein 3.6 No   No   

AT1G36035 putative gag-protease polyprotein 3.6 No   No   

AT1G30030 putative protein various reverse transcriptases and transposons 3.5 No   No   

AT5G28340 putative protein hypothetical protein T27I15_50 - Arabidopsis thaliana, PIR:T50517 3.5 No   114572 6E-07 0.1 

AT3G21970 hypothetical protein contains Pfam profile: PF01657 Domain of unknown function 3.5 No   No   

AT2G19320 hypothetical protein predicted by genefinder 3.5 No   No   

AT1G45090 hypothetical protein predicted by genemark.hmm 3.5 No   No   

AT2G34800 hypothetical protein predicted by genscan 3.5 No   No   

AT1G21530 
amp-binding protein, putative similar to amp-binding protein GB:X94625 GI:1903033 from 

[Brassica napus] 
3.4 No   No   

AT2G44540 putative cellulase 3.4 No   142120 1E-49 1.0 

      194521 2E-45 0.5 

      194523 7E-45 0.3 

AT5G44570 unknown protein 3.4 No   No   

AT5G53820 ABA-inducible protein-like  ;supported by full-length cDNA: Ceres:24640. 3.4 No   No   

AT5G57240 oxysterol-binding protein-like 3.4 No   152242 6E-14 -1.0 

      131777 2E-12 0.5 

AT1G20530 hypothetical protein 3.4 No   No   

AT3G45250 hypothetical protein 3.4 No   No   

AT5G32590 putative protein various predicted proteins, Arabidopsis thaliana 3.4 No   No   

AT1G23600 putative OBP32pep protein 3.4 No   No   
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AT2G14350 hypothetical protein predicted by genscan and genefinder 3.4 No   No   

AT1G26420 
hypothetical protein similar to reticuline oxidase-like protein GB:CAB45850 GI:5262224 

from [Arabidopsis thaliana] 
3.4 No   No   

AT5G05840 putative protein strong similarity to unknown protein (emb|CAB81597.1) 3.4 No   No   

AT5G09340 ubiquitin-like protein ubiquitins - different species 3.3 354368 4E-12 -0.7 140045 4E-08 0.4 

   358059 3E-12 1.2 196845 4E-08 -0.1 

      195594 1E-07 -0.2 

AT2G04310 Mutator-like transposase similar to  MURA transposase of maize Mutator transposon 3.3 No   No   

AT3G47170 hypersensitivity-related protein-like protein hypersensitivity-related gene 3.3 No   No   

AT1G37063 hypothetical protein predicted by genemark.hmm 3.3 No   No   

AT4G28420 tyrosine transaminase-like protein tyrosine transaminase (EC 2.6.1.5)-rat, PIR1:XNRTY 3.3 424157 2E-64 0.4 206184 2E-19 -0.5 

      118364 2E-17 -1.6 

      136460 7E-16 -0.4 

AT3G28560 hypothetical protein predicted by genemark.hmm 3.3 No   No   

AT5G28110 putative protein predicted resistance protein, Arabidopsis thaliana 3.3 No   No   

AT5G18430 putative protein proline-rich protein APG, Arabidopsis thaliana, PIR:S21961 3.3 No   No   

AT2G39820 putative translation initiation factor 3.3 62423 1E-83 0.0 188065 3E-85 -0.8 

   114121 1E-83 0.6    

AT1G20290 hypothetical protein predicted by genemark.hmm 3.3 No   No   

AT3G26270 cytochrome P450, putative contains Pfam profile: PF00067 cytochrome P450 3.3 447375 2E-32 -0.3 196742 2E-24 -1.7 

   72799 2E-22 2.0 196713 6E-18 1.3 

AT2G19840 copia-like retroelement pol polyprotein 3.3 No   13035 3E-73 0.4 

AT3G29030 
expansin At-EXP5 identical to expansin At-EXP5 GB:AAB38071 from [Arabidopsis 

thaliana]; supported by cDNA: gi_1041703_gb_U30478.1_ATU30478 
3.3    141251 2E-10 0.6 

AT1G69100 
aspartic protease, putative similar to aspartic protease precursor GI:951448 from 

[Lycopersicon esculentum] 
3.3 356350 4E-45 0.8 128744 5E-36 2.5 

   358471 1E-21 2.0    

AT2G18080 unknown protein possibly related to thymus-specific serine peptidase from Homo sapiens 3.3 62528 9E-21 0.3 No   

AT2G02670 hypothetical protein predicted by grail 3.2 No   No   

AT1G28135 unknown protein 3.2 No   No   

AT5G20340 beta-1,3-glucanase bg5 3.2 No   No   

AT1G34600 
unknown protein similar to putative retroelement pol polyprotein GB:AAD20653 

GI:4432801 from [Arabidopsis thaliana] 
3.2 No   No   
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AT1G37060 Athila retroelment ORF 1, putative similar to GB:CAA57397 from (Arabidopsis thaliana) 3.2 No   No   

AT3G46170 
dehydrogenase -like protein alcohol dehydrogenase homolog, ripening-related, tomato, 

PIR:S39508 
3.2 76705 1E-23 -0.5 128624 1E-20 -1.6 

   64955 3E-25 -0.3 127051 6E-20 0.7 

   433820 3E-20 4.1 114298 9E-20 -2.9 

AT3G25200 hypothetical protein predicted by genemark.hmm 3.2 No   No   

AT3G30510 hypothetical protein predicted by genemark.hmm 3.2 No   No   

AT5G46260 disease resistance protein-like  ; supported by cDNA: gi_16323098_gb_AY057653.1_ 3.2 No   No   

AT3G19270 
cytochrome P450, putative similar to cytochrome P450 GB:BAA37167 

from [Arabidopsis thaliana];supported by full-length cDNA: Ceres:126144. 
3.2 467235 4E-19 2.0 196674 2E-40 0.1 

   454070 4E-19 1.6 196411 7E-28 -1.1 

   458776 2E-15 2.3 196683 1E-27 -0.2 

AT4G39610 
putative protein predicted proteins, Arabidopsis thaliana;supported by full-length cDNA: 

Ceres:97747. 
3.2 No   No   

AT3G32220 
Athila ORF 1, putative similar to Athila ORF 1 GB:CAA57397 GI:806535 from 

[Arabidopsis thaliana] 
3.2       

AT1G71420 hypothetical protein predicted by genscan 3.1 51716 3E-21 1.2 169792 3E-20 -0.2 

AT1G63950 hypothetical protein predicted by genefinder 3.1 No   No   

AT3G42400 putative replication protein various predicted proteins, Arabadopsis thaliana 3.1 No   No   

AT2G11220 putative retroelement pol polyprotein 3.1 No   No   

AT2G06020 hypothetical protein predicted by genscan and genefinder 3.1 No   No   

AT5G37980 
quinone oxidoreductase -like protein probable quinone oxidoreductase P1, Arabidopsis 

thaliana;supported by full-length cDNA: Ceres:116237. 
3.1 75462 3E-26 0.2 174569 1E-18 -0.2 

   115039 3E-27 0.6    

   462772 1E-28 1.9    

AT3G42930 

AT5G30545 
putative protein various predicted proteins, Arabidopsis thaliana 3.1 No   No   

AT2G12520 hypothetical protein similar to myosin-like protein GB:AAC28203 3.1 No   No   

AT1G17745 Expressed protein ; supported by cDNA: gi_15028272_gb_AY046051.1_ 3.1 415674 3E-77 0.3 78757 2E-149 -1.4 

   465676 2E-82 -0.5    

   440369 2E-38 0.2    

AT4G04330 hypothetical protein  ; supported by cDNA: gi_15027850_gb_AY045782.1_ 3.1 No   162607 3E-19 5.2 
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AT1G53690 
RNA polymerase II, putative similar to GI:717186 from [Homo sapiens] (Mol. Cell. Biol. 

15 (9), 4702-4710 (1995)) 
3.1 No   78868 7E-09 -1.0 

AT5G36080 putative protein similar to unknown protein (emb|CAB88131.1) 3.1 No   No   

AT4G23310 serine/threonine kinase - like protein KI domain interacting kinase 1, Zea mays 3.1 No   No   

AT1G38340 retroelement pol polyprotein, putative 3.0 No   No   

AT1G58210 hypothetical protein predicted by genemark.hmm 3.0 No   No   

AT2G45130 hypothetical protein predicted by genscan 3.0 No   205638 2E-08 0.9 

AT5G29090 putative protein 3.0 No   No   

AT4G36510 hypothetical protein 3.0 No   No   

 
a
Maruyama-Nakashita et al. (2006) 

b
 this work 

c
 González-Ballester et al. (2010) 

d
 JGI protein accession number 
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Abbreviations, Acronyms and Definitions 

  

  

APR APS reductase 

APS Adenosine 5’ phosphosulphate 

CCMP Center for culture of marine phytoplankton, Boothbay Harbor USA 

cDNA complementary DNA 

Cys Cysteine 

DLA DMSP lyase activity 

DMS Dimethylsulphide 

DMSHB 4-dimethylsulphonio-2-hydroxybutyrate 

DMSO Dimethylsulphoxide 

DMSP Dimethylsulphoniopropionate 

GC Gas chromatography 

GSH glutathione 

HPLC high performance liquid chromatography 

Met Methionine 

mRNA messenger RNA 

OAS O-acetyl-serine 

OASTL O-acetyl-serine(thiol)-lyase, OAS(thiol)-lyase 

RNA ribonucleic acid 

RNA-seq transcriptome profiling using deep-sequencing technologies 

ROS Reactive oxygen species 

SD standard deviation 
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