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ABSTRACT

The possibility of influencing resonance energysfar through the input of off-resonant pulsesaskl radiation is the
subject of recent research. Attention is now fedusn systems in which resonance energy transfdesggnedly
precluded by geometric configuration. Here, thioag optically nonlinear mechanism — optically coléd resonance
energy transfer — the throughput of non-resonalsiegucan facilitate energy transfer that is, inrthbsence, completely
forbidden. The system thus functions as an opticdder, with excitation throughput switched on the secondary
beam. For applications, a system based on twdl@anano-arrays is envisaged. This paper wilabksh and discuss
the principles — those that can be exploited tcaanbd switching characteristics and efficiency, atiéers (such as off-
axis excitation transfer) that may represent ctaislimitations. Principles to be explored in @étare the interplay
between geometric features, including the arrafiisecture and repeat distance (lattice constam) atray spacing and
translational symmetry, the orientations of thensiaion dipoles, and the magnitude of the relexawhponents of the
nonlinear response tensors. The aim is, throudétermination of key parameters, to inform a progcd optimization
that can deliver specific criteria for realizingetmost efficient systems for implementation.

Keywords. Nanophotonics, energy transfer, quantum electrattjc® near-field, optical transistor, optical swittg,
nano-array

1. INTRODUCTION

As the speed of ultrafast communications, sensima@mputer processing maintains an apparentlyaiedlrise, the
need to achieve ever faster switching capabilitgob®es increasingly pressing. Although electrordapabilities
generally continue to improve according to Mootegsv, all-optical systems have a clear potential farch greater
bandwidths and speeds — circumventing the bottlentat can often result from opto-electronic casia. For many
years it has been known that all-optical switchihgsed on various forms of photonic interactionammich light is
controlled by light, is not only technically reallale but has the potential to revolutionize telesamications and
computing. Not surprisingly, numerous implemeitatstrategies have been entertained, and manyharsubject of
vigorous ongoing research. This paper presentmalysis of a novel optical control mechanism tialy outlined by
one of the present authdf3.

Resonance energy transfer is the principal proémsdhe intermolecular redistribution of electrornénergy
following initial (usually optical) excitatiofi. In its simplest form known as Férster transférinvolves a simple
relocation of energy from an electronically excitghorA to an acceptoB in its ground state. By input of an auxiliary
laser field this energy transfer may be enhanced bgser-assisted resonance energy transfer (LARESChanism,
whose efficiency scales linearly with the laseeitsity’> Calculations have shown that LARET can offer eesal-fold
increase in the rate of energy transfer, even fodest pulsed laser intensities of around®M cm® Optically
controlled resonance energy transfer (OCRET) islated process, differing from LARET in that an ongant
configurable condition is applied. This conditigguires the transition dipole moments of the damat acceptor, and
their mutual displacemenvector, to be mutually perpendicular- thusexcludinga Férsterprocesshatwould otherwise
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Figure 1. Graphic depiction of a parallel pair of two-dinseanal hexagonal-lattice arrays

be possible on symmetry and energetic grodn8s. application of the off-resonant laser beamtthasfer of energy is
activated, effecting all-optical switching action.

In the following we develop the fundamental eledymamic theory for the OCRET mechanism, identiyin
detail the geometric, optical and molecular strradtwonditions for it to occur between a single aleacceptor pair
(Section 2). The analysis is then extended tors¢@erangements — one of which is figurativelystrated by Fig. 1 —
that could be useful for realistic all-optical seties, taking into account the requirement for atiplidity of such donor-
acceptor partners to operate independently, witsartificant cross-talk. The specific geometriafigurations to be
examined are one-dimensional linear arrays (Sec8yxntwo-dimensional square-lattice arrays (Sectin and
hexagonal-lattice arrays (Section 5). Further enpgntation issues are addressed in the concludictip$s 6.

2. COUPLING PAIR

To specifically determine the rate of energy trangbr the OCRET mechanism, a time-dependent geation theory
method is required. Details of the calculationjohilis used to establish the quantum amplitudebetystem, are fully
described in refs 5 and 6 and they are not repdasel The OCRET mechanism is distinguished byfabethat the
quantum amplitude for Forster transfer has a nedlult — a consequence of the orthogonal triad tiondii.e.

R O pa O e, whereR is the donor-acceptor displacement vector, janqis are the salient transition dipole moments of
the two molecule. In the near-field, the quantum amplitude arigiogn the input auxiliary beam is given by:;

i1 = g Jow (2, ~3RR)(51 (95 () + 52 (95 (-0) w

wheren is the numberof photons(proportionalto intensity)in the quantizatiorwvolumeV, andthe implied summation
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Figure2. Feynman diagrams for OCRET

convention for repeated Cartesian tensor indicesngloyed. Furthermore,and7ck denote the polarization vector (an
overbar denoting complex conjugation) and energghefinput photon, respectively. Each of the tesns of equation
(1), illustrated by the Feynman diagrams of Figréhresents a fourth order photonic interactionngveecessitating
deployment of a fourth-order perturbation treatmestndicated by the superscriptMf. Also in (1) is the generalized
polarizability, S (£k), explicitly given by;
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where the transition dipole moments are designbtethe shorthand notatiop™ =<x|p| y), energy differences are
expressed in the forrk,, = E, —E,, and tildes denote the necessary inclusion of degrierms if the theory were to be
applied under near-resonance conditidfis- though the present analysis focuses solely dmresbnant photon
absorption, and as such the tildes will hencefbetomitted. Furthef,signifies the final electronic state of molecdle

is the initial state, and s are intermediates. To a good approximationt leéiassumed that the sums of equation (2) are
limited to the three states that determine the pashinent optical features. These are denf®®d|o) , |a) for donor
A, and|0), |7), | B) for acceptoB — where|a) and|p) are the levels between which energy transfer sccliris also
expedient to select a frequency for the input ftémtiathat has a resonance offset with respectaqtisitioning of these
levels, a condition expressible &s, = ick + AE,, where AE, is a non-zero energy with magnitude significaihyer
than a typical transition energy. An expressiorsiaiilar form, E ; =ick +AE; , is assumed foB. The outcome of
applying these conditions is that one summandggifétantly larger in magnitude than the rest. Eksnequation (1)
becomes;

M =[nhck(emoa)(§ mﬂr)
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Next, to proceed to the geometric conditions, wioduce a Cartesian basis in which the donor-aocep
displacement vectdR is identified with thez-direction. The vectorgi, =[1* and i, =[1*° are chosen unambiguously
as being directed in thie andi directions respectively and, by a judicious chaoitgch is fully justifiable on symmetry
grounds, g% =k and pe :i. Due to the mutually orthogonal triad of vectdinat determines the conditions for
OCRET, the dipole orientations of the acceptoremsily determined by taking these vectors andingtatach by 90°
around thez-axis, so thati™ =k and per = —-i. For convenienc& andB are chosen to belong to identical symmetry
groups, although the same calculational methodwallfor systems where this is not necessarily ttse.calherefore,
employing this configuration, equation (3) becomes;
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where the orientation factor g’ =(R2 —3r2)/R2 =-2 given thatR = rk,r being the displacement & from A.

Furthermore, the given angles denote the oriemtatfoe in spherical coordinates (with the input photorapi@ation

taken as linear). In addition, all transition dgpaoments will have similar magnitude — thus,donplicity, assumed to

be equal. Equation (4) clearly delivers a non-zesult, unlike the now precluded Forster transfEne time-dependent

probability, P(t), that the energy transfer process can proceesedsred from the Fermi's Golden Rifehere

expressible in the form;

t
P(1)= 2P (M@ M@+ L 5)
0

with higher-order quantum amplitudes rapidly dirshihg in magnitude. Here, the second-order camich M’

corresponds to RET — a null quantity in this casand 0; is the density of states. Inserting (4) into ¢b)es the
expression;

27
P(t) = 4KCé I sin? pcod o sifo (6)

where the variables are defined a¢=|u|* p, /872, C=|W/2ce,AE,AE, and J'=[j1(t)dt, in which
I(t) =nnc’k/V is the irradiance. It is noteworthy that with=0°, §=0° or #=90°, no energy transfer to the
acceptor occurs.

3. ONE-DIMENSIONAL LINEAR ARRAYS

To extend and develop the pair model of the lastiae into that of a potentially workable all-oplcswitch, we shall
initially investigate the case of coupling betwdam one-dimensional linear arrays — each of whiltamposed of
equally spaced, identical molecules. These arestnasted such that each constituent molecule ofdin@or array
directly corresponds to a counterpart within thee@d:or array; these pairs are given the coordindtn integer value)
and are dlsplaced one from each other, rky Furthermore, all molecules in the donor and pumearrays are
orientated in thel andj directions, respectively,e. the principal condition of OCRET is satisfied. igfinear array
system is equivalent to a single row of Fig. 3.islexpedient to focus on processes by means afthabmergy can
transfer from any one specific excited donor (fonwenience located at= 0) to any other molecule. First we consider
energy relocation to any single, arbitrary molecnlthin the acceptor array. To find the relevanaigtum amplitude,
the same mathematical process is utilized as theepging section up to equation (4) when,Rs uli +rk in this
instance (wheréis the lattice constant), we find;

@ _ —nick |u|*
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since k' = (u2 —2r’2)/(u2+r’2), in which r' =r/I is the aspectratio. As anticipatedit is clearthat equation(7) is
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Figure 3. Structure of the parallel arrays, viewed fromwahdoth lie in théj-plane, with all donor transition moments (black}hie
upper array parallel to theaxis, and all acceptor transition moments (graythe lower array parallel to thexis.
The open arrows represent one excited donor amdutsterpart acceptor.
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Figure4. Plot of logP(t), the time-dependent probability, against the etsgio,r’, for optical transfer from an excited molecule in
the donor linear array to the required destinaitioiiie acceptor linear array (0-0); also depictexdthe ‘cross-talk’ probabilities for

transfer to another molecule in either the accefuta) or the donor (d-d) array, and the sum oftaibe transfer possibilities (Total).
Insert: difference between 0-0 and the sum forousi’, where on the ordinate axis each 0.01 differelmceesponds to 2.3% loss.



identical to (4) withu set as null. Inserting (7) into (5) gives the mxgsion;

~ KCzJ'(u2 —2r’2)2

sin® pcog 8 sifég . (8)
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P(t)

Next to be considered is the case of energy trafisfm the initially excited molecule to anothertkn the donor array.
Here the corresponding expression is analogousjtaten (8), but withr’ equal to zero. The subsequent aim is to
compare and contrast the probability of energycagion to the excited donor’s partner in the acmeptray, against the
sum of probabilities for transfer to all other mmlées within both arrays. This is achieved by apgical depiction of
P(t), with arbitrary units, for different transfer diestions as shown in Fig. 4. In this represeatatienergy transfer
outside the range = +10 is negligible. Calculations are performeithwAE = 3.3 x 10°°J, [u| = 1 x 10?°C m, p= 90°
and 8 = 45°. As the different curves within Fig. 4 8lwate, the transfer of energy from the excitedodaio the
corresponding molecule in the acceptor arraypiigration between the pair at= 0, greatly dominates all other transfer
possibilities combined for an aspect ratio up & 0n fact no less than 98.9% of the total eximtats transported to the
required destination. Conversely, on changingasgect ratio to’ = 1, the amount of cross-talk to other molecules
becomes very significant, with 35.4% of the desinethsfer lost (see Fig. 4, insert). Notably (kalihe following
two-dimensional systems) the destination of th&ahexcitation is not dependent on the laser isitgn Results from
this section clearly show that, with favorablesalues, linear arrays are tenable as componeraa &il-optical switch.
Nonetheless, a practically more useful solutiorl i based on two-dimensional arrays, the subjéthe next two
sections.

4. TWO-DIMENSIONAL SQUARE-LATTICE ARRAYS

A system more feasible as an all-optical switcholmgs a pair of two-dimensional square-lattice ysréFig. 3). To
develop theory for this system, the linear arrdyfhe previous section are expanded into two dinegiss— so that each
molecule within an array is now labelad ¥), whereu andv are integers, and alsR = uli + W] +rk . In this case RET
is no longer always null, and may occur betweerdteor and off-axis moleculés,e. whereu# 0 andv#0 . To find
an expression fdP(t) for this system the following equation, as deieed in earlier RET work! is required;

M(z)m(z): |"lA|2|l'lB|2K2 (9)
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where k =cosf- 3cog cog (with & the angle betweetn,| and ||, and @, y the angles betweeR and |u,|,
|uB| respectively). In application to this system dgra(9) becomes;

: (10)
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sincek = —C%uv/(u2 +V2 4+ r'2) . The transfer contribution due to OCRET is detaen analogously, to give;

8721V AE, AE, 5
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Figure5. Graph illustrating lodP(t) against’ for pair of two-dimensional square arrays. Héme,intensityl of the input laser is
1x10 W cni? and the key is that of Fig. 4.
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Figure6. Graph as Fig. 5, but for= 1x13° W cni2



ask' = (u2 +Vv2 —2r'2)/(u2+v2+ r' 2) . Employing equations (10) and (11) with (5), fbowing is determined,;

P(t =m[9u2vzt+6c‘]uv(u2+v2—2r'z) sin’g co® si@

+C2)' (u2 +v2- 2r'2)2 sin“pcosd sirfé?} , (12)

where the fluenceJ =ng (t)dt. As earlier for linear arrays, a graphical dapittof P(t) for various transfer
destinations (see Figs 5 and 6) is used to andhg@robability of energy transfer to the excitemhadr's partner in the
acceptor array against the summed probabilitiesrémsportation of the energy to all other molesul€alculations are
performed with the same parameter values as prelyi@mployed. The laser intensity, which for simipy is assumed
time-independent, takes the value of 1¥1% cm? and 1x16° W cm® for Figs 5 and 6 respectively. From a
comparison of these graphical representations, étaar that intensity is a major contributing éadn determining the
destination of the donor excitation. To achiewnsfer losses less than 5% the aspect ndtioan be little over 0.3 for

| = 1x10? W cnm? or 0.06 for 1x18 W cm?. Theser’ values are both practicable, but in the latteeaagy be most
readily implemented through an expansion of thiécktconstant, compromising the miniature dimensioha device.
The next section will determine whether these valwan be improved upon, by examining two-dimengiona
hexagonal-lattice arrays as alternative comporfent®alization as an all-optical switch.

5. TWO-DIMENSIONAL HEXAGONAL-LATTICE ARRAYS

In the investigation of an array of two-dimensiohalxagonal-lattices, it is convenient to chooseardinate system
where R =ula, +vla, +rk , which is converted into Cartesian coordinatethag,

N

R=7(u—v)f+|—2(u+v)i+rl2 . (13)

For a pair of hexagonal-lattices, RET is possibberf the donor to all other molecules, except wherev oru = -v, as
is determined from the following expression;

M@ z[loﬂulj (u-v)"(u+v)’ w

(3(u —v)* + (u+v)’ + 4;'2)5 ’

and /(=—T-S\/?’:(u—v)(u+v)/‘w u-v)"+(u+v)*+ 4’2). The transfer contribution due to OCRET is resdhby
replicating the previous method, and hence;
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Figure7. Graph illustrating lodP(t) against’ for pair of two-dimensional hexagonal arrays. éié¢ne intensity of the input laser is
1x102 W cni? and key is given by Fig. 4.
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Figure 8. Graph as Fig. 7, but for= 1x13° W cni,



since k' =(3(u-v)* +(u+v)* +r'2)/(3(u—v)2+(u +v)°+ 4r’2) . Through use of (14) and (15), with (5), thedaling
result is found;

K

P(t)= |6[1728(u—v)2(u+v)2t+ 384/ 8J (u—v)(u+v)( 3u—v)2+(u+v)2+r'2) sihp co® st

-5

+64C2J'(3(u—v)2+(u+v)2+r'2)2 sirf ¢ cod8 siﬁﬁ}( @-v) +(u+v)*+ r42) : (16)

In the same manner as previously, various ploB(dfare constructed (Figs 7 and 8). On comparingetlgaphs it
again transpires that the laser intensity playsagonmrole, as earlier for the square-lattice arsggtem. To achieve
transfer losses less than 5% in this caseannot be much greater than 0.11Ifer 1x13* W cm?, or 0.025 for 1x18

W cn? — values that areot favorable in comparison to the previous two-diniemal arrays system. This is explained
by the fact that RET does not contribute to thedpmrtation of excitation to the desired locatioe, withu = 0 and

v =0 the first two terms of equation (16) are nulhile all other potential destinations containstRET contribution
except wherel =v oru = -v.

6. CONCLUSION

This paper has investigated an all-optical nonlimgacess that has potential for a variety of devioplementations.
The distinct features of several potentially fadtéd nano-array structures have been analyzed tail,dand their
relative efficiencies and practicality criticallgsessed. One-dimensional linear-lattice arraygeptite most efficient for
controlling the throughput of excitation from iy excited donor species to counterpart acceptdmso-dimensional
arrays are more practically useful, in terms of trede-off with nanoscale compactness, and sqadtied arrays
represent a particularly favorable structure. Hexmlly close-packed arrays, despite their moréciefft planar
packing, prove less efficient through admittingraager degree of information loss through crods-tidde result is a
convenient vindication of the square-lattice aremgnt, which also has the advantage of simplertemi®n. In
practice the layered fabrication of any such stmectould be expedited by inclusion of a dieleatn&terial between the
arrays, which can be expected to further improgseadfer efficiency. Ongoing research will involve examination of
the effects on transfer efficiency due to; the inpfidual incident laser beams of different frequies, the initial
excitation of various molecules within the donaiagy and a detailed analysis of other losses (lergugh fluorescence).
There are obvious switching, logic gate and traosittributes to be explored, but the aspectright hold the greatest
promise for optical communications and data trassion is the capacity of such a system to act aptcal buffer.
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