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Abstract

Tn this thesis we study incidence structures arising from unordered partitions of a set
Q = {1,2,...,ab}. We denote by P(a,b) the set of unordered partitions of {2 into
a parts of cardinality b. A partition a in P(a,b) will be incident with 8 in P(b,a)
if each part of a contains exactly one element from each part of 8. The symmetric
group G = Sym(ab) acts transitively on P(a,b). We form the permutation module
FP(a,b) over the field F of complex numbers and consider some of the irreducible
modules in its decomposition using representation theory of the symimetric groups.
We construct some of the eigenspaces of MM T where M is the incidence matrix
of the structure. For the case when a = 2 and b is arbitrary, we decompose the
module FP(2,b) completely and use this decomposition to obtain the complete set
of eigenvalues of MMT. Moreover, we show for b > 2 that all eigenvalues of MM T
are non-zero, hence showing that all irreducible modules in the decomposition of
FP(2,b) are in the decomposition of FP(b,2). Thus we have a simple proof for a
special case of a conjecture of Foulkes. When a = 3 and b is arbitrary we give a
complete decomposition of FP(3,b) and show that FP(3,b) is isomorphic to an FG-
submodule of FP(b,3). This gives a combinatorial proof of the next case of Foulkes’
conjecture. We finish by giving some of the cigenvectors and eigenvalues of MMT
for the case when ¢ = 3 and b is arbitrary. When a = 3 and 1 < b < 8 we give the
complete set of eigenvalues of M M7T which we show to satisfy a surprising partial

ordering property.
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Chapter 1
Introduction

1.1 Preliminaries

We consider incidence structures arising from certain unordered partitions of a finite
set. We study permutation modules induced by the natural action of symmetric
groups on such partitions. Thus we shall begin by introducing some basic definitions
and results which we will use throughout.

Let @ = {1,2,...,n} be a finite set. The symrmetric group Sym(n) is the set of all
permutations of (1. If G is any group then G acls on a set Xifal=zcforallee X
(where 1 is the identity element of G} and (zg)h = z(gh) for all g, h € G and v € X.
We will always write actions by group elements on the right. If G acts on X then
we say that (G, X) is a G-space. The G-space 1s transitive if for all z,y € X there
exists a g € G such that zg = y. The G-orbil containing = € X is 2% = {zg|g € G}
and the stabilizer of ¢ in G is the group Gy = {g € Glzg = z}. The well known
orbit-stabilizer theorem says that if (G, X) is a transitive G-space then for @ € X
the space (G, X) is G-equivalent to the G-space cos(( : G}, where cos(Ci, () is the
coset space of the stabilizer (7, in X. Let F be a field then an F{-module is a vector
space on which the group G acts such that v =+ vg is a linear transformation from
V into itself. By an irreducible FG-module we mean a non-zero F@-module which
contains no FG-submodule apart from itself and the zero module. Let lg]E denote the

matrix of the linear transformation v -+ vg relative to the basis E. A representation




of degree n of G over F is a homomorphism p from G to G'L(n, F') {where GL(n, I)
denotes the General Linear group, that is the group of invertible n X n matrices
over a field F). To each FG-module V we associate a representation of & over I
given by g + [g]g and a function x : G — C, called the character of V', given by
x(g) = tr{{g]e) where tr{{g]p) is the trace of the matrix [g]lg. The vector space FG
with the natural multiplication vg (for v € FG and g € G) is called the regular FG-
module. We will denote the reqular representation associated to this module by Hg.
The simplest type of representation is the trivial representation given by lg which
maps each element of G to the identity of the field. We will mainly be concerned

with permutation modules, that is FG-modules which permute the basis elements of

where Fiz(g) is the set of elements fixed by ¢. If (G, X)) is a G-space we can construct
the permutation module F.X given by

FX:{Zax:ﬁlaxEF},

e X

with ¢ : ‘}:amcz; — S azzg for g € G. If p is a representation of a subgroup H of &
we obtain the induced representation p 1€ of G in the following way. Consider the

decomposition of & into right cosets of H

IG/H|
G= ) Hg.

i=1
Then we form the blocked matrix (p 7%)(g) with the i5th block equal to plgiggi ™) if
giggjl € H and the zero matrix otherwise. Since Hg;g = Hyg; if and only if gigg;'i €
H |, the representation ly 4G of G induced by the identity representation Ly of H
is equivalent to the representation of ¢ which corresponds to the action of ( on the
right cosets of H in G. If (G, X) is a transitive G-space then from the orbit-stabilizer
theorem the action of G on the right cosets of G; in G is equivalent to the action
of G on X. Thus the permutation representation of the module F.X is equivalent
to the induced representation lg, 1%. We will always be working over a field of
characteristic zero. In this case Maschke’s Theoremn (see for example [15]) tells us that

FX can be decormnposed {in a unique way up to isomorphism) into a direct sum of
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irreducible FG-modules. In the same way, the permutation character or permutation
representation can be decomposed into a sum of irreducible characters or irreducibie
representations respectively. We call a decomposition of F.X (or equivalently of the
character or representation) into irreducibles a complete decomposition. We will use
the phrase “U appears in FX” to mean that U is isomorphic to a module in the
complete decomposition of FX. We will say that “U appears in F.X with multiplicity

m” to mean that there are m irreducible FG-modules in the decomposition of F.X

which are isomorphic to U. In a similar way, we will say that x; {or p:) is a constituent

of a character x (or a representation p) if the coefficient of x; (or p;} in the complete

decomposition of x (or p) is non-zero. Moreover, we say that a character is multiplicity

“free if every constituent has multiplicity one-If-Vo=-crXy+-coXo+-t Epe-and.

W = d; Xy + dpXo + -+ +d. X, (with ¢;, d; > 0} are the complete decompositions
of the FG-modules V and W then the multiplicities d; are greater than or equal
to the multiplicities ¢; for all i € {1,2...,7} if and only if there exists an injective
G-homnomorphism from V to W. Over a field F of characteristic zero and in the case
when G is the symmetric group Sym(n) much is known about the F (G-tnodules which
appear in FX. We will give a result in Section 2.2 which shows that all irreducible
F(G-submodules of F.X are isomorphic to certain cyclic FG-modules S#, known as
Specht modules (see definition 2.2.2), each one being indexed by a partition g ofn, If V
and W are FG-modules then denote by Hompq(V, W) the set of FG-homomorphisms
from V to W. When W = M#", the permutation module of Sym(n} acting on the
set of p*-tabloids defined in Section 2.2.2, a basis for Hompa(5*, MH) is known and

given in Theorem 2.32 in terms of certain semistandard homomorphisms.

1.2 Overview

Chapter 2 states some well known definitions and general results of incidence struc-
fures and the representation theory of the symmetric groups (see for example {1] and
[13] respectively). We also give some basic properties of matrices which can be found
for example in [11], {17] or [19].

In Chapter 3 we consider unordered partitions of @ = {1,2,... ,ab} into « parts




of cardinality & which we denote by P(a,b). We define an incidence relation between
partitions in P(a,b) and P(b,a) by a € P(a,b) being incident with 8 € P(b,a) if
and only if each part of o has exactly one element in common with each part of .
We denote this incidence structure by P,5. The permutation module FP(a,b) of
Sym(ab) on P(a,b) {where F' is the field of complex numbers) is isomorphic to an
FSym{ab)-submodule of M) We use the known basis of Hompsym(a) (5%, M
to construct a set of F'Sym(ab)-homomorphisms from S* to FP(«,b) and using these
- homomorphisms we construct some of the irreducible FSym(ab}-modules in the de-
composition of FP{a,b) for general a and b. Denoting the incidence matrix of the

structure P, 5 by M*®, we use the F Sym(ab)-modules which appear in F P{a,b) with

In Chapter 4 we study the structure Pz and the module FP(2, k) in more detail.
Using the representation theory of the symmetzic groups we give a complete decorm-
position of FP(2,k) and show that all ' Sym(2k)-modules which appear in F'P(2, k)
have multiplicity one. We use this decomposition to find the complete set of eigen-

vectors and eigenvalues of MZF(M>*)T,

Apart from determining these eigenvalues
explicitly we give also a simple proof to show that all eigenvalues of M>*(M**)T
are non-zero. We express the eigenvalues firstly in summation form and show then
how they can be reduced to a neat closed form. These eigenvalues have also heen
constructed in [8] using association schemes. However, our method is probably more
appropriate as it does extend at least partially to the case of general a and b. Finally,
we give a short combinatorial argument, using semistandard homomorphisms, to show
that all FSym(2k)-modules which appear in F'P(2, k) also appear in F'P(k, 2}

In Chapter 5 we mimic the ideas of Chapter 4 to decompose the module F'P(3.%)
into irreducibles. Again using semistandard homomorphisms and results from the
representation theory of the symmetric groups, we decompose the module FP(3, k)
completely.

In Chapter 6 we show that if $* is a F Sym(3k}-module which appears in FP(3. k)
with multiplicity m then §* appears in FP(k,3) with multiplicity at least m. This
settles the next case of a conjecture of H.O. Foulkes from 1950 [9] which states that
FP(a,b) is isomorphic to an FG-submodule of F(b,a) if a < b.




Using the complete decomposition of FP(3,k) and a computer program we are
able to find the complete set of eigenvalues of M>*(M>F)T for 1 < k < 8. These
examples unveil a surprising partial ordering property which such eigenvalues seem
to satisfy. In the final section we give some of the eigenvalues of M>*(M>*)T explic-

itly for general k. We also give an inductive proof for bounding below some of the
eigenvalues of M3 (M>#)T,

1.3 Motivation

The ideas behind this thesis stem from a private communication between my supervi-
sor Johannes Siemons and Otto Wagner in 1987 [27] and the paper of S.C. Black and
R.J. List “A Note on Plethysm” {3]. In Black and List’s paper the incidence matrices
Mt were considered and the question of these matrices having full rank is related
to the conjecture due to H.O. Foulkes [9]. This conjecture was originally stated in
terms of certain representations of Sym(ab) known as plethysms (or the “new mul-
tiplication” as it was called at the time) but the equivalent form of the conjecture
is to show that FP(a,b) is isomorphic to an FSym{ab}-submodule of FP{b,a) for
all integers b > a. Black and List showed that if the rank of M** can be shown to
be |P(a,b)| for all integers 1 < @ < b then Foulkes’ conjecture holds for the pair of
integers r, b with 1 < r < a. In Section 2.2.6 we look at Foulkes’ conjecture in more
detail showing how the original statement of the conjecture can be interpreted in the
way we have described above. In Section 3.1.3 we explain the link between Foulkes’
conjecture and the rank of M*®.

We conclude this chapter with a brief description of the known results relating
to Foulkes’ conjecture. Only a few papers have been published on this question and
only few references are made to it in books on representation theory. These include
3], 4], (8], (9], [12], [14], [16], {18}, [20], [22] and [26]. Let & be an unordered par-
tition in P(a,b). Then &' = Sym(ab) acts transitively on the elements of P{a,b}
and we will show in Section 3.1.3 that the stabilizer in G of « is isomorphic to
Sym{b) | Sym(a) where ! denotes the wreath product. Thus the permutation repre-

sentation of G on Pla,b) is equivalent to lsym(s)1symla) 19, The results in Thrall’s




paper [26] (1942} give the complete decompositions of the permutation representa-
tions Lsym(s) 1 Sym(2) 1@ and Lsym(2)1 Sym(®) 1Y, Thrall also decormnposed the permuta-
tion representation Lsym (b)) sym(3) 19 into irreducibles. In [18] (1944) Littlewood went
on to give the complete decompositions of the representations 1 Sym(3)1 Sym (b) 1 for
b < 6 and lsym(aysym@ey T for b < 5. In [9] (1950) Foulkes decomposes completely
Lsym(s)1sym(ey T for b < 4 and Lsym(e)1symey T for b < 4. Using Littlewood’s known
decomposition of Lgymia)isym(s) T, Foulkes noticed that every term in the decom-
_ position of Lsym(s)5ym(4) 1€ is included in 1symia) t Symis) 1€, Foulkes then made his
conjecture that every term in the complete decomposition of 1gym(s)1 Sym(a) 19 is in-
cluded in the complete decomposition of Lsym(a)symy T€ for a < b. In [14] (1981)
(and also in [16] (1991)} the result given by Theorem 5.4.34 on page 227 covers the
case when a = 2 and b is a,rbitra,ry; It says that if p is a partition of ab with at most
two rows then every irreducible representation which can be indexed by p and is in
the decomposition of 1syms)1sym(a) +@ is included in the complete decomposition of
1 sym(a) 1 Sym (b) 1¢. 1t is known that all irreducible representations which are included
in Lsym(s)1 Sym(2) 19 can be indexed by partitions g with at most two rows (see Theo-
rem 2.22), thus Foulkes’ conjecture for the case when @ = 2 and b is arbitrary follows
straight from the result in [14]. Foulkes’ conjecture for the case when a = 2 and b is
arbitrary can also be confirmed using Thrall’s results. In {3] (1989) Black and List
came up with the alternative method of proving Foulkes’ conjecture by showing that
the incidence matrix M®® of P, has full rank. In [8] (1993) Coker considered the
eigenvalues of M?*(M?>®)T and by showing that these eigenvalues are all non-zero
for 2 < b this gave an alternative proof that all constituents of Lsym)1sym(2) 1+ are
included in Lsym(2)1 Sym(b) 1% for b > 2. Coker also showed that all constituents of
L sym(b) 1 Sym(3) 10 are included in Lsym(3) 1 Sym(®) 1@ for 2 < b < 6. These results can be
confirmed by Littlewood’s paper. In [4] (1993) Brion shows that Foulkes’ conjecture
holds for integers a and b with b ‘large enough’ with respect to a. !

Our results in Chapter 4 give an alternative proof that every constituent of
Lsym(e)15um(z) T 1s included in lsym(z) symipy TC for all integers b > 2. Further, the
work we have done in Chapters 5 and 6 give an original proof of Foulkes’ conjecture

for the case when a = 3 and b is arbitrary.

'R.J. List (unpublished) has shown that Foulkes’ conjecture holds for ¢ = 4 with & = 6 and a = 3
with b = & (pers. comm. R.T. Curtis).




Chapter 2

Incidence Structures and

Representation Theory

In this chapter we introduce some basic definitions and properties of incidence struc-
tures and matrices. Following this we give some definitions and important results
from the representation theory of the symmetric groups. We introduce the defini-
tion of a plethysm in order to state Foulkes’ conjecture in its original form. In the
final section we look at centralizer algebras and the link between the multiplicities
of the irreducible components of the permutation character and the dimension of the

algebra.

2.1 Incidence Structures

A (ﬁﬁita} incidence structure consists of two finite sets P, B and a subset T of 77 x .
We will denote the incidence structure by & = (P,B,7I). The members of P are
called points and the members of B are called blocks. If the ordered pair (p, B) is in
T we say that p is incident with B. We will call the pair (p, B) € T a flag. Let &
= (P, B,I) with {P| = s and |B| = b. Label the points {ps, p2,...,ps} and the blocks

{By, Ba,..., By}. An incidence matriz for S is the s x b monomial matrix M = (my)




where
i
0 otherwise.

Without loss of generality let s < b (if not relabel the points and blocks) and
consider the matrix MM7T which is a square, symmetric matrix, indexed by points.
The set of eigenvalues of this matrix forms the spectrum of S denoted by spec(S) =
spec(MMT). Since MMT is a symmetric matrix, all of its eigenvalues are non-
- negative real numbers (to see this consider T MMTz for an eigenvector z, where Z is
the vector with all of the entries of = changed to their complex conjugate}. As they
are eigenvalues of an integer matrix they are algebraic integers and so the spectrum
consists of integers or groups of conjugate algebraic integers. If the spectrum of &
does not contain zero, then M has full rank. This fact follows from the following well

known result.

Lemma 2.1 The rank of the product of two matrices A and B cannot exceed the rank

of either matriz:

rank(AB) < min{rank(A), rank(B)}.

Lemma 2.2 For s < b the spectrum of MTM is the spectrum of MMT with b— 3

zeros appended.

Proof: Let zy, 22,...,%s be a set of orthonormal eigenvectors associated to the
eigenvalues Ay, Ag, ... As of MMT. Then

@?MMT;CZ' = /\i.'f?ﬂ'}i - /\iéij.

However, 27 MM z; = (MTz;)T(MTz;) and so (MTz:)T(MTx;) = A;. Therefore,

M7z, is zero if and only if A; is zero. Since
MTM(MTz)) = MT(MMTz;) = (M z),

we see that for A # 0, the vector M7 z; is an eigenvector of M T M with eigenvalue

;. Thus, the non-zero eigenvalues of M M7 are eigenvalues of M TM. Interchanging

8




the roles of M and M7 shows that the non-zero eigenvalues of MT M are eigenvalues
of MM7T. This completes the proof. [

An incidence structure & is called regular with parameters r and t if each point is
incident with r blocks and if each block is incident with ¢ points. A point p is point
connected to a point p if there is a sequence p = po, B1,p1, B2, + -, Pe-1, B.,p. = p'
‘n which consecutive elements are incident with each other. We call such a sequence
a trail. The length of the trail between p and p' is ¢, the number of blocks in the
sequence. In'assimilar way we can:define a block B being block conmected to a block
B'. If a structure is point and block connected then we will say that 1t is connected.
Further we will call the length of the shortest path between two points {or blocks) the
distance between these points. The diameter of S is the maximum distance hetween
points (or blocks). The following is a standard result which comes from the theorem
of Perron and Frobenius (see Section 2 in volume 2 of [10] or page 40 of [6]). Tt says
that a non-negative matrix has an eigenvector with positive components. If A is the
eigenvalue associated with this eigenvector, then |A*] < A for all eigenvalues A". If
S is regular, then M M7 has constant row and column sum. This sum ig r¢ which

follows since
MMT(,1,. . 0T = MMT(LL L, D) = tM(1, 1, DT =11, D

Thus 7t is an eigenvalue of M M7 and, by the Perron-Frobenius theorem, this is the
maximal eigenvalue, Arrange the remaining values of spec(S) in descending order,
s0 7t = A > A > ... > An 2 0 and denote by m; the multiplicity of A;. Thus
ogicm Miki =718 = bl s the trace of MMT and MTM. From the Perron-Frobenius

theorem it is easy to show that:

Theorem 2.3 The number of connected components of a regular incidence structure

is the multiplicity of the mazimal value in 1ls spectrum.

Corollary 2.4 Let S be a connecled, regular incidence structure with parameters v
and t. Then Mo = rt is the mazimal value in spec(S) and has multiplicity 1. The
eigenspace of MMT for Ao is spanned by {1,1,..., nr.




Let S = (P, B,T) be an incidence structure and let Aut(8) denote the automor-
phism group of S, defined as follows:

Aut(S) = {(g, h) € Sym(P) x Sym(B)|(p,B) € T & (pg,Bhy € IVp & P.B e B}

Thus Aut(S) is the group of permutations of P and B which preserve incidence. If
Aut(8) acts transitively on flags (p, B) € T then the structure is called flag transitive.
Let {glp and [h]s be the permutation matrices relative $o the point and block sets

respectively then the condition of being an automorphism is precisely |
lglpM = M[h]s.

From this we have that
MM (gl = [glpMMT. (1)

Proposition 2.5 Let S be an incidence structure and let H be a subgroup of Aut(S).
Then the entries of M M7 are constant on the H-orbits on P x P.

Proof: For p and p* in P, the (p,p*)-entry of MMT is the number of blocks B
incident with both p and p*. This is equal to the pumnber of blocks B such that
(phl,Bhg} €L and (p*hl,Bhg) € 7 for (h;,hz) e H. O

2.2 Representation Theory of Symmetric Groups

2.2.1 Partitions, Tableaux and Tabloids

The definitions given in this section will closely follow the book [13] by G.D. James.
Let n be a positive integer and denote by .5 ym(n) the symmetric group on the set

{1,2,...,n} of n elements.

Definition 2.6 u = {1, 2, . - -, 1) is a partition of n, written p b n, 1f pa, oy -5 fl

are non-negative integers with py 2 pio > ... > wand T ps =1

10
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We will use power notation to abbreviate partitions in which two or more of the p;

are the same and remove any zeros at the end.

Example 2.7 We will write the partition p = (5,3,2,2,2,1,1,0) of 16 as p =
(5,3,23,12).

The set of partitions can be partially ordered by the dominance relation:

Definition 2.8 If y* and p are partitions of n, we say that u* dominates p and write

p* >, provided that for all )

If p* By and p* # p then we write p* & p.

Definition 2.9 If u = (gy, g2, -, 1) is a partition of n, then the diagram [g) is
{6 7eN, 1<i<[1<) <} (7)€ [u] then (,7) is called a node of {u].

We will draw diagrams in the following way. The diagram for p = (4,3, 2%) is:
P

u] = .

® KA X
KK KX

Definition 2.10 If {4] is a diagram for u, then the conjugate diagram [1'] is obtained

by interchanging the rows and columns in [p]. We call i the conjugate pariilion.

Definition 2.11 A p-tableau is a diagram with each node replaced by one of the

integers 1,2, ...,n with no repeats.
So for each diagram [u] with n nodes there are n! different u-tableaux.

Example 2.12 Two ezamples of (4,3,2%)-tablequx are:

1 234 3946
5 67 g 872
8 9 ant 511

10 11 110

il




The symmetric group Sym(n) acts in the natural way on a tableau ¢ by acting on its

entries.

Definition 2.13 Let ¢ be a tableau. Then the row-stabilizer R, of t is the subgroup

of Sym(n) fixing all rows set-wise, 1.e.
Ry = {g € Sym(n)| ¥4, the elements ¢ and g belong to the same row of ¢}.

Similarly, the column-stabilizer C; of the tableau t is the subgroup of Sym(n) fixing

all columns set-wise, so

C, = {g € Sym(n)| V14, the elements ¢ and ig belong to the same column of ¢}.

Definition 2.14 Define an equivalence relation on the set of g -tableaux by #; ~ 5 if
and only if t;g = {5 for some g € Ry,. The tabloid {t} containing ¢ is the equivalence

class of ¢ under this equivalence relation.

The tabloid {t} can therefore be thought of as a tableau with unordered row entries.
When writing down tabloids, to distinguish them from tableaux, we will draw lines

between the rows.

Example 2.15 Ift is the following (4,3,2)-tableau

1234
t= 567
89
then
1234 2143
{t}= 567 = 576 = -+
89 98

2.2.2 The Module M¥ and the Specht Module

We continue now with some more definitions and results which can be found in [13].

To each partition i of n we associate a Young subgroup S, of Sym(n) by taking

Goo= Sym({1,2, o ) x Sym{{pa-+1, . e ) X < Sym{{n—w+1,...,n}}

12
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Definition 2.16 Let F be an arbitrary field and let M* be the vector space over F

whose basis elements are the p-tabloids.

The symmetric group Sym(n) acts transitively on the set of y-tabloids in the natural
way by {t}g = {tg}. This action can be extended linearly on M* to turn M*¥ into an
FSym(n)-module. The stabilizer of a tabloid is 5. Thus M* can be thought of as the
permutation module of Sym(n) on the cosets of S,. It is a cyclic FSym(n)-module,

generated by any one tabloid.

Definition 2.17 Let  be a tableau. The signed column sum &, is the element of the
group algebra FSym(n} obtained by summing the elements in the column stabilizer
of ¢, attaching the signature to each permutation. Denoting the sign of a permutation
g by sgn(g) which has value 1 if g is an even permutation and —1 otherwise, we can

write x; as follows:

ke =y sgn(g)g.

g€l

Definition 2:18 The polytabloid e, associated with the tableau ¢ is given by
€y = {t}h’.t.

A polytabloid therefore depends on the tableau ¢ and not just the tabloid {¢t}. If
» € M* then v can be written as a linear combination of tabloids. We will say that

the tabloid {t} is involved in v if its coefficient 1n v is non-zero.

Definition 2.19 The Specht module S* for the partition p of n is the FSym(n)-
submodule of M# spanned by the polytabloids e;, where t is a p-tableau.

We have that &g = gk, SO €1 = ey. This shows that 5% is a cyclic module,
generated by any one polytabloid.

The following are very important and useful results which can be found in {13].

Theorem 2.20 For a group G, let S be an irreducible CG-module and U be any
CCl-module. Then S appears in U with multiplicity equal fo dim(Homea{ S, U)}.

13




Theorem 2.21 Quer Q@ the Specht modules are irreducible and give all the irreducible

representations of Sym(n).

Theorem 2.22 If char F = 0, then the irreducible FSym(n)-submodules of M* are
S# (once) and modules isomorphic to S with yu* &y (possibly with repeats).

2.2.3 Semistandard Homomorphisms

The results in this section and their proofs can again be found in [13]. We wiil start
by defining tableaux with repeated entries. To distinguish these from tableaux with

distinct entries, we will denote them by capital letters.

Definition 2.23 A tableau T' of type p = (u1, piz, ..., pr) is a diagram with each

node replaced by an integer ¢ between 1 and r such that ¢ occurs ; times in 7'

Remark: The tableaux defined in Definition 2.11 are tableaux of type (1™). To be
consistent with this definition we will always denote tableaux of type (17) using lower

case letters.

Example 2.24 The following 1s a (6,3,2)-tableau of type (6,5):
21212

1

1

121
Te=2172
1

Let p and p* be partitions of n. Denote by T(p*, ) the set of p*-tableaux of
type g If T is in T{u*, 1), then we can define an action of Sym(n) on 7 (u", ). We
label the place numbers of T according to positions of the numbers 1,2,...,n in ¢
For ¢ == 1,...,n we let T'(¢) be the entry in T which occurs in the same position as ¢
occurs in . Then Tg(i) = T(ig™*). We will say that T, and Ty are row equivalent if

T, = Tyg for some permutation ¢ in the row stabilizer of the given tableau t.

Example 2.25 If T and ¢ are given respectively by

22121
T=112 and =
11

[N
Ty U
O -3

14




then for g = (14 10) the tableau Tg is row equivalent to T' and is given by:
12
i1

Definition 2.26 f T €T (p*, u), define the map O7 by

Or : {t} = > {T|T} is row equivalent to T'}.

We can extend the above definition to general elements of M*# which will be of
the form {t}s for s € FSytr'n(n'). We do this in the natural way by mapping {t} by
Or and letting s act on the result in a linear way. Given a pair T and t such that
# is a p*-tableau and T is a p*-tableau of type u, we can write down a p-tabloid
in the following way. We label the rows of the tabloid to be constructed 1,2,...r
where = is the number of distinct entries in 7. Put the entries of ¢ into the rows of
the tabloid according to the entries of T, that is put the ij-entry of ¢ into the row
number given by the ¢j-entry of T It is easy to see that given a p*-tableau ¢ there
is a one-to-one correspondence between w*-tableaux T' of type g and p-tabloids. The
action of S'yﬂz(n) on tableaux is well defined, meaning that if T' is in correspondence

with {t*} then T'g is in correspondence with {t*g} for g € Sym(n).

Example 2.27 If T and t are the following (5,3,2)-tableauz

22121 147910
T=112 and t= 2958 )
il 36

then the corresponding tabloid is

The way in which we have defined the map ©r means that it is an FSym(n)-
homomorphism, in other words (O7{t})g = Or{tg}. Thus, Or is an FSym(n)-
homormorphism from M*" into M#*. When we write down the image of a tabloid
under O, for a fixed tableau ¢, we will sometimes choose to express it in terms of
the tableaux of type p and other times it will be easier to express it in terms of the

-tabloids.
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Example 2.28 If T and t are (4,1)-tableauz given by

o 2112y L 1348

then we have

@{ﬂ__2112+2121-+2211+2212-+1221+1122
= 1 1 1 1 1 '

As an element of M®?) this can be written as

533 . 935 . 745 . 191 195 193
15 t1a tizg t3y tig tys

Define the restriction of O to S¥* by 1. We can express the image of a polytabloid

¢, under (:)T in the form

Z Z 39’”(92)T9192-

g2€C: g1 € R

Remark: It is easy to see that T¢1xy = 0 (with ¢ € R:) if and only if some column of .
T'¢y contains two 1dentical numbers. Thus we only need to consider those T'g; which

have distinct entries in each column.

Definition 2.29 A tableau T is semistandard if the numbers are non-decreasing
along the rows of T' and strictly increasing down the columns of T'. Let T,(u*, y¢) be

the set of semistandard tableaux in 7T (u*, ).

Example 2.30 If p* = (4,2,1) and u = (3,3,1), then T,(u*, p) consists only of the

tableau
12

1
2

L2 D =

Definition 2.31 The homomorphisms O with T in T.(x*, p) are called semistan-

dard homomorphisms.

When we are working over a field of characteristic zero the semistandard homo-
morphisms actually give all F'Sym(n)-homomorphisms from S* to M* and we have

the following results which can be found in [13].
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Theorem 2.32 Over a field of characteristic zero, {O7|T €T ,(u*, 1)} is a basis for
Hompgym(n) (S'u*, M‘u)

Corollary 2.33 Over a field of characteristic zero, dém(Hompgym(n)(S“‘,M“)) is

the number of semistandard p*-tableaux of type u.

2.2.4 Hooks and Dimension of the Specht Module

Definition 2.34 Let p = (uy, g2,..., it ) be a partition of n. Then the (1, 7)-hook of
the diagram [p] consists of the (2, j)-node along with the y; — j nodes to the right of it
and the g} — i nodes below it. The length of the (4, 7)-hook is hyj = ps +pi+1—1—7.

So, the (7, 7)-hook is the intersection of a I'-shape (with (4, 7)-node at its corner) with
the diagram and the length of the hook is simply the number of nodes in the hook.
A very powerful result which can be found in [13] is the following due to Frame,
Robinson and Thrall. It gives us the dimension of a given Specht module S% simply

by taking the product of all of the hook lengths of .

Theorem 2.35 {Frame, Robinson, Thrall) The dimension of the Specht module S*

s given by |
n!

[1(hook lengths in {u])’

dim{S#) =

Example 2.36 The diagram for p = (4,3,2%) s

x X X X
X X X
ru’_‘ b4 % H
X X
80
dim(S*) = g
7.6.3.5.4.3.2.2
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2.2.5 Plethysms

In this section we look at the permutation representations induced from Young sub-
groups. We then go on to define the plethysm of two representations. The results of
this section can be found in Chapters 1 and 5 of [16] or Chapters 2, 4 and 5 of [14].

For a field ' and a partition p of n, we consider two one-dimensional representa-
tions of Young subgroups S,. The first one is the identity representation lg, : S, —
GIL(1,F) and the second is the alternating representation Ag, S, — GL{L, F),

- where o is ma,ppéd‘to sign of o times the identity in
As, 1o+ sgnfo) - 1.

We can induce these representations up to the symmetric group Sym(n) obtaining

the representations
1s T.S’ym(n) and Ag'u Tsym(n) .

The following result can be found on page 35 of [14] or on page 173 of [16].

Theorem 2.37 For each partition p of n the induced representations ls, 4Smin)
and As,, 1Svm(n) (phere ' denotes the conjugate partition) have exactly one wrre-
ducible representation as a common constituent. They both contain this irreducible

constituent with multiplicity one.

We denote this constituent by 1] and extending the use of the intersection symbol

we write:
(1] = Ls, 19 N A, povmin)

When g is the partition (n) it is clear that 1g,, 4307 = 1 gy m(ny, the identity repre-
sentation. Since u' is the partition (1"} we have Ag, ., 5910 = Rgymny, the regular

representation. Thus
(1] = Lsg T 0 Aginy 157V = Lsyminy 0 Rymin) = Lsym(n)-

The next result follows from Theorem 2.1.11 and Lemma 7.1.4 of [14].




Theorem 2.38 The set {{u]|p F n} is a complete set of irreducible representations
of Sym(n) over a field of characteristic zero. Moreover, the Specht module 5* affords
the irreducible representation (p] of Sym{n).

Denote by Y the set of all mappings from X into Y
YX = {f|f: X =Y}

Definition 2.39 Let H and G be groups such that G acts on the set X. Let 1 G
be the group given by

H1G:=H xG={(fig)|f: X — Hand g € G}.
H 1 G is the wreath product of H and G-

The following lemma (see page 133 of [14] or Lemma 1.2.12 of [16]) gives us a normal
subgroup of the wreath product H1G.

Lemma 2.40 Let H and G be groups such that G acts on the set X. Then the wreath
product H 1 G has the following subgroups:

1. The normal subgroup
H* = {(¢,1) |y € H*} <1 H1 G,

is called the base group and for x € X it is isomorphic to a direct product of

| X copies of

He = {(, ) |9 € HY and ¥z' # = we have Pp(z’) = 1} = H.

2. The subgroup G = {(z,9) | g € G} = G, where 1 denotes the identity element of
HX is a complement of H*. Since H* is a normal subgroup of H1G and the
intersection of H* and @ is just the identity element (2,1} of H 1 G, the wreath
product of H and G is the semidirect product of H* and G so

H1G=H" G
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We consider the case when H is Sym(m) and G is Sym(n). Then Sym(m)1 Sym(n)
embeds naturally into Sym(mn): The map § : Sym{m)1 Sym(n) «> Sym(mn) takes

an element of Sym(m)1 Syrn(n) to the permutation given by
(7 —1)m 41 )
(g = Dm +i($(ig)) )}

where 7 and j run through elements of {1,2,...,m} and {1,2,...,n} respectively.

§:(,9) ( (2)

It is easy to see that as J§ runs through {1,,n} and ¢ runs through {i,...,m}
then (j — )m + ¢ and (Jg —Dm+ i(¥(jg)) run through {1,2,... ,ﬁm}.. The base
group Sym(m)* of Sym(m)1Sym(n} is isomorphic to the direct product of Sym(m)
for j € {1,2,...,n}. The image 6[Sym(m) is the set of permutations which take
(G—m+ito(j—1ma+iforj# 1 and (j~1)m + i(zpg) for 7 = 1 where
e HX, je{l,...,ntand 1 € {1,...,m} . Therefore the image §[Sym(m)] acts
on the set {(j — m +1,...,5m} as Sym(m) does on {1,2,...,m}. The image of
the complement Sym(n)’ of the base group is the set of permutations which take
(G — 1)ym +1 to {(jg — 1)m +¢. Thus §[Sym(n)] acts on the set of the n subsections
{(j — Dym +1,...,5m} of length m of the set {1,2,...,mn} as Sym(n) does on
{1,2,...,n}. The image of Sym(m)1 Sym(n) under 5

Sym(m) © Sym(n) = §[Sym(m)1 Sym{n)| (3)

is called the plethysm of Sym(m) and Sym(n). We extend the use of plethysms to
representations (see page 272 of [16]) and define a plethysm of [m] and [n] to be the

representation of Sym(mn) as follows:

[m] © [TL] = é(Sym{m)G}Sym(n}) TSym(mn) . (4)

2.2.6 Foulkes’ Conjecture

We dedicate this section to a conjecture of Foulkes originally proposed in [9]. Using
the same notation as in the previous section, Foulkes conjectured the following (see
page 277 of [16] or page 227 of {14]):

If m < n then
([m] @ [n], (1]} 2 ({n] © ], [u]) (!

[N 4
P
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for all i - mn. Here ([m]®[r], [1]) is the multiplicity of the irreducible representation
(u] in [m] © [n].

The conjecture has been proved for the case when y is a two-row partition and we
have the following result (see page 227 of [14] or page 277 of [16] for the proof):

Theorem 2.41 For two-rowed diagrams (], where p = mn, we have:

(In] @ [m], [p]) = ([m] © [n], [u]).

The conjecture of Foulkes in general is still open. We can rewrite Foulkes' con-
jecture using more standard notation of representation theory in the following way.
Denote by s : Sym(mn) — C the permutation character of Sym(mn) acting on
the cosets of Sym(n)1 Sym{m) in Sym(mn). Then the permutation character Tmn

can be written as a linear combination of the irreducible characters of Sym(mn):

Tmm = 9 0" Xus
where the o™ are non-negative integers, x, runs over the irreducible characters of
Sym(mn) which can be indexed by partitions 4 of mn. From equations (3) and (4)
of Section 2.2.5 we see that the representation [n] ® [m] corresponds to the action of
Sym{mn) on the cosets of Sym(n}1 Sym(m)in Sym{mn). Thus, using Theorem 2.38

Foulkes’ Conjecture can be interpreted in the following way:

Foulkes’ Conjecture: If we write the permutation characters 7, » and 7, m as linear

combinations of the irreducible characters of Sym{mn),

Tomm = Z ay "X and Tng = Zaﬁ‘mxm
then we have ai™ < a™ for n > m and for all partitions u of mn.
Thus Theorem 2.41 can be written in the following way:

Theorem 2.42 If we write the permutation characters Tmy and Tom @ linear com-

binations of the irreducible characters of Sym(mn),

— myt.,, — T,
T = 9 G0 "Xy nd Ty = > A ™ X

then we have at™ < a™ forn 2 m where o is any two-rowed partition of mn.

21
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2.3 Centralizer Algebras of Permutation Repre-

sentations

In this section we introduce the definition of a centralizer algebra and give some
results on these algebras (see Chapter 2 of [2] or Chapter 2 of [5]). Let G be a
transitive permutation group on a set X of n elements, where as before we will write
actions on the right. G acts naturally on X »x X, the orbits of which are called
“orbitals and we will denote them by Ag, Ay,...,Aq, where Ay = {{z,z)]z ¢ X}. If
AT = {(z,9)|(y,2) € A;}, then AT is also an orbit of G and so there exists some j
such that AY = A;. Denote this index j by 7. Let Ai(z) = {y € X | (z,y) € A;} and
k; = |As(z)|- This is independent of the choice of @ and so k; = ki, To each orbital A,

we associate an adjacency matriz A; indexed by the elements of X with (z,y)-entry

1oif (z,y) € A,
(Ai)wy = { ( )

given by

(0 otherwise.

So, in particular, Ao is the identity matrix I. It is easy to check that the adjacency
matrices satisfy the following properties. The sum of the d + 1 adjacency matrices
equals the matrix, J, of all 1’s. This shows that the A; are linearly independent over
C. For any ¢ satisfying ¢ < i < d the adjacency matrix for Ay is the transpose of
the adiacency matrix for A;. Every column or row of A; contains exactly k; ones and
for 4, 5 € {0,1,...,d} we have tr(AjA;) = nk;d; (where 6;; is the Kronecker delta
function).

To each g € G there corresponds a permutation matrix [¢]x where

I ify = zg,

0 otherwise.

({Q]X):cy = {

The centralizer algebra of this permutation representation over C is the algebra A of

all complex matrices 4 commuting with [¢]x for all ¢ € (7. Since

({g]XA[g]m\:'l )'“J - Zu.'u 51’9 “—Atr‘-uévﬂml Y

- Aﬁ-‘g Y
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A commutes with all [g]x (¢ € G) if and only if A,y = Agyy, for all ¢ € G and
z,y € X. In particular, each matrix A; commutes with all [¢]x, for ¢ € G. Since
>.: A; = J, every matrix which commutes with all [g]x is a C-linear combination of
Ag, A1, ..., Ag. So in particular the A; are a basis for A and dimeA =d + 1.

Let w : ¢ — C be the permutation character of G on X. For 1 <z < r let y;
be the irreducible characters of G over C so that 7 = 1g + e;y1 + -+ + €., is the
decomposition of the permutation character. The following result follows from the

- well known Schur’s lemma and its proof can be found on page 49 of [2]. .

Theorem 2.43 Let G be a transitive permutation group on X and let v be the per-
mutation character. Let eg = 1,e1,..., e, be the multiplicities of the irreducible com-

ponents of # and A the centralizer algebra of the permutation represeniation. Then

1. dimgA = 0o e = d+ 1 where d+ 1 is the number of orbits of Gy on X for
r€X.

2. A is commutative if and only if e; = 1 for all 1 € {0,1,...,7}.

Lemma 2.44 Ifi! =1 for alli = 0,1,...,d then A is commutative. The condition

i =1 holds if and only of for any (x,y) € A; there exists g € G such that zg =y and
Yy = .

Proof: If 1 = ¢/ then each element of A4 is a symmetric matrix since A7 = A, = A;
holds for the basis Ag, Ay,..., A4 of A. In particular A;A; is symmetric for all 2, ;.
So

‘ AjA; = A?A? = (A A7 = A A;.

Therefore A is commutative. The rest of the lemma is trivial by the definition of A,.
3

When the matrices A; of the centralizer algebra are symmetric, the above lemma tells
us that these matrices commute pairwise. It is well known that symmetric, pairwise
commutative matrices can be simultaneously diagonalized, i.e. there is a matrix S

such that for all A € A there is a diagonal matrix D4 such that:

STPAS = Dy,
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Chapter 3

An Incidence Structure of

Partitions

Certain unordered partitions of the set {1,2,...,ab} are the main topic of this thesis.
We start by introducing these partitions and define an incidence relation between
two particular kinds of partition. Some results are given about the regularity and
connectedness of this structure. We describe a way of working out the number of
Sym{ab)-orbits on P x P, where P is the set of points of the structure. We consider
the permutation module of Sym(ab) acting on the points of the structure over the
field of complex numbers, so unless otherwise stated let F' = C. Using the representa-
tion theory of symmetric groups and in particular semistandard homomorphisins, we
determine some of the irreducible modules in the decomposition of this permutation
module. Denoting the incidence matrix of the structure by M, we use our knowl-
edge of the irreducible modules in the decomposition of the permutation module to

construct some eigenvectors of MM,
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3.1 Preliminaries and Notation

3.1.1 Ordered and Unordered Partitions

Let a and b be positive integers, n = aband @ = {1,2,...,n}. Let the set of unordered
(a, b)-partitions of §) into a subsets of cardinality b be given by

Pla,b) = {{A1, 00, A} 1 A S0 A Ay =01 # §, |Ad] = b
The"set of ordered (a,b) -parfitio'ns of € into a subsets of cardinality b m
Pola,b) = (8,80, ) | A EQ, AN Ay =0 i 5 LA = b}

So for example, when n = 6 the partitions ({1,2, 3}, {4,5,6}) and ({4,5,6}, {1,2,3})
are the same in P(2,3) but different in P°(2,8). It is easy to see that there is a one-
to-one correspondence between ordered (g, b)-partitions P°{a,b) and the (6%)-tabloids
introduced in Section 2.2.1, so we will not distinguish between them. Moreover, it is
straightforward to check that

pani= ()3 ()5 -

|P°(a,b)| = al |P(a, b)].

and

In most of the following we will be concerned with unordered (a,b)-partitions, which
we will simply refer to as (a, b)-partitions. We will refer to the subsets in a partition
as parts and in general we will use lower case Greek letters to denote unordered (a, b)-
partitions and tabloid notation or Greek letters with superscript ‘o’ to denote ordered
{a,b)-partitions. Let-d(a;b) = [P{e,b)|. Ifa and bsatisly 1 S a = b then

(et = [b(b—1)... (a+ 1) al)*?
(5 (b -1 (a+ 1) @)
> (a)*(a))* (since (d)*"' 2 a!Vd 2 a)

= (a?)b"l.
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Thus

nl n

)t = (ol

and so

d{a,b) < d(b,a).

We will abuse notation slightly and write & = {Jo 04 and 8 = i, 5 for (a,b)-
partition and (b,a)-partitions respectively. So the o; are disjoint subsets of 0 of

cardinality b and the B; are disjoint subsets of (! of cardinality a.

3.1.2 An Incidence Structure

We will define an incidence structure between (a, b)-partitions and (b, a)-partitions,
denoting the incidence matrix of the structure by M. We will show that the structure
is regular and connected which, using results of Section 2.1, gives us the maximum
eigenvalue of MM?. Throughout the rest of this chapter, G will always denote the
symmetric group Sym(ab) on the set {1,2,...,ab}.

We say that « and $3, as defined above, intersect nicely if each part of 2 has exactly
one element in common with each part of a, that is |, N 8] = 1 for all r, s satistying
1 <r<a,1l<s<b Fora <b, we visualize elements of P(a,b) as ‘row vectors’ and

elements of P{b,«) as ‘column vectors’ so

(*3 o *)
(%, #, -+, *
o= . . arews & P(a,b),
(%, *, -+, *)
* * *
* * *
B= . .1 |.]| erea.
s "
b columns

Writing the elements in this way means that if @ € P(a,d) and § € P(b,a) intersect
nicely then we can write {2 as an a x b array such that its rows are the parts of o and
its columns are the parts of 8. We call this the array form of @ wilh respect to « and

3 and denote it by Q.
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Example 3.1 Leta=3,b=4, (son =12) and
(1, 2, 3, 4
a= {5 6, 7, 8 € P(3,4).
(9, 10, 11, 12)

Two examples of {4, 3)-partitions which intersect nicely with o are

(BEIE) = (2)ENE)
HEHE

does not intersect nicely with o.

while

Consider the incidence structure Py, = (Pla,b), P(b,a); T), where (o, ) € T if
and only if « intersects nicely with 3. Let M** denote the d(a,b) x d{b, a} incidence
matrix of P, p..When the context is clear we will omit the superscripts and just write
M. .

(3 acts transitively on the point and block sets of this structure by acting on the
elements in each part of the partition in the natural way. Given an (a,b)-partition «
and a (b, a)-partition 2 and any g € G, it is easy to see that o intersects nicely with
8 if and only if ag intersects nicely with S¢g. The structure is flag transitive. This is
seen by letting a be an (a, b)-partition which intersects nicely with the (b, «)-partition
f3 and considering the array form {15 g of Q! with respect to o and §. Doing the same
thing for any other pair of partitions v and v in P(a,b) and P(, a) respectivelfy which
intersect nicely and mapping the éj-entry of Qg5 to the ij-entry of {1, by an element

g of G shows that ¢ maps o fo v and at the same time 3 to v.

Proposition 3.2 The incidence structure Pap 18 regular with r = (b1t blocks per

point and { = (a!)*~! points per block.

Proof: Let o be an {a,b)-partition. Then the number of (b, a)-partitions B which

intersect nicely with o is the number of ways we can choose b disjoint sets which
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contain exactly one element from each part of . Since our partitions are unordered,
we first assign each element in one of the parts of « to the different parts of 7 and
then fill the parts of B in all possible ways so that any one part of « has its elements
in different parts of 8. Thus a ‘point’ is incident with (b!)>! ‘blocks’. Similarly a

‘block’ is incident with {al)*"! ‘points’. O

Thus the row sum and column sum of M are constant and equal (61)*? and (al)*~?
respectively. Therefore the trace of the square symmetric matrix M M7 (which is the
“same as the trace of MT.M) equals n’!/'(bl al) (see Section 2.1). By Proposition 2.5
the entries of the square symmetric matrix M M7 are constant on the G-orbits on

P(a,b) x P(a,b).
Proposition 3.3 The incidence structure Py is connected.

Proof: Let o and v be any two (a, b)-partitions. Fix the parts of o and v in some
arbitrary way. Consider the array form 2, 5 of £ with respect to o and # where J is
any (b, a)-partition which intersects nicely with «. Similarly consider the array form
Q... of Q with respect to  and v where ¥ is any (b, «}-partition which intersects nicely
with . The (a,b)-partitions which intersect nicely with # are the rows of {(Ds2)d,
where g is an element of Sym{n) which set-wise fixes the columns of {0, 5. The
(b, a)-partitions which intersect nicely with ag are the columns of (2, 5)gh, where A
is an element of Sym(n) which set-wise fixes the rows of ({0.5)g. Thus to show the
structure is point connected, we need to show that we can alternately permute the
elements in the rows and columns of {2, 5 until we get to £2,,. An easy construction is
to locate the digits in 24,5 which make up the top row of Q2. Permute the elements
in the rows of Qa4 in an arbitrary way so that the ‘located digits’ are all in different
columns. Next, permute the elements in the columns so that all the ‘located digits’
are in the top row. Denote the resulting array by (1, . Repeat the above steps for
the second row of {1, leaving the top row unchanged. Continuing in this way meauns
that we will eventually arrive at €., ,. We repeat this method after interchanging the

roles of points and blocks to show that the structure is block connected. £

Remark: The method used in the proof of the above proposition gives a path between

any two points or blocks, but it may not be the shortest path. To find the shortest
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path or diameter of the structure is not such an easy task. We show that the diameters

of Py and P are both one in Chapters 4 and 5 respectively.

Example 3.4 Let o,y € P(a,b) be given by

(L, 2, 3, 4) (4, 8 10, 11)
a= (5 6, 7, 8 and vy= (1, 5, 1, 9).
(9, 10, 11, 12) (2, 3, 6, 12)
Then Qq"ﬁ and 3., can be written, for ezample, as
1 2 3 4 4 8 10 11
Qop=56 6 7T 8 and Qyp =15 7 ¢
23 6 12

9 10 11 12

where of course f§ is the (4,3)-partition with its parts equal to the columns of Qup
and v is the {4, 3)-partition with its parts equal to the columns of Q.. Then we have

a path from o to vy given by

1 2 3 4 1 2 3 4 11 10 & 4
5 6 7 8 ~ 5 6 8 7 ~ B 6 3 T -~
g 10 11 12 11 10 9 12 1 2 9 12
4 8 10 11 4 & 10 11 4 8 10 11
56 3 %9 ~-» 51 9 7T ~ 15 7 9.
2 1 9 12 2 6 3 12 23 6 12

Thus we have (cf. Corollary 2.4},

Corollary 3.5 The mazimum value of spec(MM™) is (a!)*~2(b1)*~1. This eigenvalue

has multiplicity one and the eigenspace is spanned by (1,1,...,1)T.

The eigenvalues of M** (M) are not known in general. In Theorem 4.14 we

will give the complete set of eigenvalues for M2F(M2*)T and in Theorem 6.12 we will

give some of the eigenvalues of M**{M®*)T  where k is arbitrary.
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3.1.3 Foulkes’ Conjecture: An Alternative Approach

In the following we will explain how computing the eigenvalues of our matrix MM z
can be used to prove the conjecture due to Foulkes which we discussed in Section 2.2.6.

We have seell that P, is a regular, transitive incidence structure. The stabilizer
of an (a,b)-partition « is the set of elements in G (where as usual G = Sym{ab))
which stabilize set-wise the elements in the parts of ¢ and at the same time may

permute the parts of e. Thus the stabilizer in G of a can be written in the form
G = {(fs0)lf : (1,2, a} = Sym(B), o € Sym(a)} = Sym(8)1 Sym(a).

By the orbit-stabilizer theorem, the G-sets (G, P(a,b)) and (G, P(b,a)) are G-
equivalent to cos(G : Go) and cos(G : Gp) respectively, where o € P(a,b) and
8 € P(b,a). Let FP(a,b) and FP(b,a) be the permutation modules of GG acting on
the sets P(a,b) and P(b,a) respectively. Thus to prove Foulkes’ conjecture we need
to show that in the complete decompositions FP(a,b) = 1 Xy + Xz + -+ + e X
and FP(ba) = X1 + dpXo + - + & X, of FP(a,b) and FP(b,a) respectively,
we have d; > ¢ for all 7. In [3] Black and List describe the following approach to
solve Foulkes’ conjecture which was also suggested in [27] Let M** = (mqap) be the
incidence matrix of Pap and let {vy | & € P(a,b)} and {wg | B € P(b,a)} be the
natural bases for F'P(a,b) and FP(b,a) respectively. Then the map ¢ from FP(a,b}
to FP(b,a) given by

$lva) = D Magws

fePiba)

is an F'G-homomorphism since

$(vag) = Hvag) = Z Mag plig = Z Mg pg—1 W3

pePb.a) BeP(b.e)
= 3 mapwgg = D, Mapwey = ($va)ly
BeP(ba) BeP(ba)
for all ¢ € G. If we show that M®® has full rank (that is, rank(M*®) = d(a, b))
then we have an injective FG-homomorphism from FP(a,b) to F P(b,a), or in other
words d; > ¢; for all . Thus showing that M ab 1 as full rank for all integers b 2 « 2> 1

proves Foulkes’ conjecture.
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Remark: 1f we show for some particular values of a and b satisfying a < b that the

matrix M*® does not have full rank then this does not disprove Foulkes’ conjecture.

When a = 2 and b is arbitrary we will use this alternative way of proving Foulkes’
conjecture (see Section 4.4). When a = 3 with b arbitrary we show how it is no longer
a straightforward process to compute the complete set of eigenvalues of M3 (MM

but instead we give a direct proof of the conjecture (see Section’s 6.1 and 6.2).

3.2 The Modules F'P°(a,b) and FP(a,b)

We study in more details the permutation modules FP°{a,b) and FP(a,b). Weshow
that FP{a,b) is isomorphic to a FG-submodule of FP°(a,b). Since we know what

irreducible FG-modules in the decomposition of FP°(a,b) look like, we can use them
to find some of the irreducible FG-modules in the decomposition of F'P(a, b).

3.2.1 Modules in the Decomposition of FFP°(q, b)

The module FP°(a,b) is clearly isomorphic to the module M%) defined in Sec-
tion 2.2.2. From Theorems 2.21 and 2.22 we know that over a field of characteristic
zero the Specht modules §* form a complete set of irreducible modules of M*", where
¢ and p* are partitions of n satisfying u > p*. By Theorem 2.32 we know that the
sernistandard homomorphisms O, where T is a semistandard p-tableau of type p”,
form a basis for Hompa{S*, M*"}. Moreover, by Theorem 2.20 the multiplicity of S
in the decomposition of M " equals the number of semistandard g-tableaux of type
*. In particular, the partition (b%) is dominated by all partitions of n with not more
than b parts. Thus if 4 has no more than b parts then S* appears in FP%(«q, b) with
multiplicity equal to the number of semistandard p-tableaux of type (b%). There-
fore, the irreducible modules in the decomposition of FP°(a,b) are images of certain
Specht modules under linear combinations of these semistandard homormorphisms.
Define an equivalence relation on tabloids in MO by {#*} ~ {t'} if and only

if {t'} can be obtained from {t*} by permuting its rows. For example, the tabloids
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given by

I 2. b b+1 ...... 26
b+1 ...... 2b 2.0 b
2b+% ..., 3b  and 2041 ...... 3b
(a—1)b+1...ab (a~1)b+1...ab

are ~-equivalent. Thus if o € P(a,b) and {#} is a tabloid which has the parts of «
as its rows, then « can be thought of as a representative of the ~-equivalence class
which contains {¢*}. We will denote by {t;*} a representative of the ~-equivalence
class which contains {#*}. It is clear that each ~-equivalence class will contain a!
clements. Since (@ acts transitively on (a, b)-partitions, for any fixed (5%)-tableau
# the F'G-module FP{a,b) is isomorphic to the cyclic FG-submodule of FP(a,b)
spanned by the element

> )
{tr3~{e'}
We showed in Section 2.2.3 that given a partition p of n and a u-tableau t, there is a

one-to-one correspondence between a (b%)-tabloid {t*} and a tableau T of type {0%).

Definition 3.6 Let 7 and T™ be ,u—tabléaux of type (b°) and let t be a p-tableau.
For i = 1,...,a let AT be the set which contains the entries of ¢ that occur in the
same position as 1 does in T'. We will say that 7' and T* have the same pattern if for
all 7 satisfying 1 < i < a there exists j € {1,2,...,a} such that AT = A?*‘

For example, T and T™ given by

23

11 2213
T=223 and T*=113

I Do
QI DD

have the same pattern. It is easy to see that if T is a tableau of type (b*) then there

are a! tableaux with the same pattern as T

Remark: 1 T and T* have the same pattern then they will always have the same
pattern regardless of the choice of the tableau ¢ which just acts as a labelling set for

the positions of the digits in 7.
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Therefore this equivalence relation induces a relation on tableaux of type (5*) in the
following way. If u is a partition of n and ¢ is a g-tableau then the p-tableaux T and
T* of type (b°) are ~-equivalent if and only if 7 and T have the same pattern. We

will denote by T a representative for the ~-equivalence class containing T

3.2.2 Modules in the Decomposition of FP(a,b)

We have shown that F P(a, b) is isomorphic to a F'G-submodule of FP®(a,b). Since we
know what the irreducible F'G-modules in the decbmpositi‘on‘of FP°(a,b) Jook like,
we can use them o find some of the irreducible FG-modules in the decomposition of
FP(a,b). In particular, FG-modules which appear in F'P(a, b) will be isornorphic to
certain Specht modules. We use the semistandard homomorphisms to construct £ G-
homomorphisms from S* to FP(a,b). Using an inductive proof we will show that
for every FSym{a(b — 2))-module which appears in FP(a,b~ 2) with multiplicity
m, we can construct an FG-module which appears in FP(a,b) which will also have
multiplicity m. In a similar way we will show that some of the FSym(a{b — 1}))-
modules which a,p?ear in FP(a,b— 1) can be used to construct irreducible FG-
modules in the decomposition of F P(a, b) again with the same multiplicity. In general,
the results we obtain only partially decompose the module FP(a,d). However when
o = 2 and @ = 3 with b arbitrary we can decompose the modules F P{2, ) and F P(3,0)
completely (see Chapters 4 and 5 respectively). In the remainder of this work, when
we talk about modules, submodules and homomorphisms we will always mean FG-
modules, F(-submodules and FG-homomorphisms where throughout G = Sym(ab).

Défine a linear map™: F'P°(a,b) — FP(a,b) which maps {t*} to a representative
{#*} of its ~-equivalence class. Or equivalently, for a fixed p-tableau t the map
which takes the semistandard p-tableau T of type (b*) to a representative T of its
~-equivalence class. We will denote by Or the compositions of the maps™ and O
from S* to FP(a,b). It is easy to verify that ~ is invariant under G or in other words
({t}rg) = ({i})g for g € G. Thus O is a homomorphism and an element involved in
O4 {1}k, can be written in the form T'g1g0 for g1 € Ry and gz € C; (see Section 2.2.3).
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We are interested in the Specht modules which appear in FP(a,b). Therefore
for the different semistandard g-tableaux T of type (b*) we consider the image of 5
under ©r. As §* is a cyclic module generated by any one polytabloid and Oris a
homomorphism, we only need to consider the image of a fixed polytabloid. Unless
otherwise stated we will always choose ¢ to be the p-tableau with the digits 1,2,...,n
placed in increasing order down the columns of ¢. For example, when y = (3,2,1) we

chooge t to be the tableau 6

4
3

Qi DN b

In the remainder of this work 7' will always denote a semistandard tableau of type
(%), that is a tableau in which each of the integers 1,2,...,a occur b times. It
is st1a1ghtf01ward to write down the image of a tabloid {f} under Hr in terms of
tableaux of type (b*). Moreover, there is an easy way to write down the image of
a tabloid {t} under O directly in terms of tabloids. We do this by mapping {t}
to the sum of all tabloids {t*} such that the number of digits from the ith row of ¢
which are in the jth row of {t*} equals the number of j’s in the tth row of T'. Since
Op({t}re) = (1 {t]}) ks, we apply k¢ to the result, Taking ~ of this gives us the image
of the polytabloid {t}; under 7. To help understand this construction we give an

example.

Example 3.7 Let T and t be given by

1112 1356

Then X

. 1112 11921 1211 . 21
Or{t} = 599 "+ 99"ty T 29

T35 7136 156 356
546 T 945 T 343 T 741
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and so

. T35 , 136 , 156,356 235 236 1256 350
Or{tyii = 594 T 575 T 973 V921 ~ T4 ~ 145 143 142

745 246 956, 756 145 146 150 450
136 " 135 " I34 7 132 236 235 234 231

_ 135 136 235 236 245 246 145 140
= 57 " 245 146 145 ' 136 I35 236 235

Writing this as an element of FP(a,b) we gel

] 135 136 23
@T“P““2%245 +2E24£ "2E142 ~2(145)

The remark following Example 2.28 tells us that if some column of T contains two
identical numbers (where T is a tableau row equivalent to T) then T*k¢ = 0. Thus, we
can cut out some unnecessary work by only looking at those tableaux row equivalent
to T which have distinct entries in each column.

We need to introduce some notation which will be useful when writing down gen-
eral elements of FP°(a,b) and FP(a,b). We will say that o is involvedin 2 € F'FP(a,b)
(or FP°(a,b)) if & has non-zero coefficient in z. It will often not be convenient to
write down every element explicitly (for example, when writing down the elements

involved in @7 {t}x;), but instead we will use “union’ notation to help abbreviate. If

123 4 5
{t}= 67 8 and {t'}= 9.10
111213 1415
then -
123465
{Hlu{t'y}=6728 910.
1112131415

We use similar notation for tableaws so by T'U T™ (where the rows of T are of equal

length) we simply mean join the ith row of T' to the ith row of T™. If we write

éfﬂ {tl}f{t] U (:)Tz{t?}"ﬁiz

we mean “take each tabloid involved in O, {1}k, and ‘union’ them with all tabloids

involved in @Tg{tg}f-ﬁh, multiplying together the appropriate coefficients”. We can
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take = of this result to find the corresponding element in FP(a,b). Moreover, if
O, {t1}6e, (or Op, {t2}ky,) has the property that if {¢*} is involved in Or, {t:} s, with
coefficient ¢, then all tabloids {¢'} which are ~-equivalent to {t*} are also involved
in Og, {t1}5e, with coefficient ¢ then in O, {t;}x,, U O {ty b4y, we join each part of

{t*} to each part of those tabloids involved in O, {ta}ks,. In this case we will write
m(@TJ{tl}&h U (:)Te{i?}miz) = @Ta{ti}ﬁ’h U éTz{tz}K’tm

“where by o U~y (with o and «y involved in Oz, {t1 }x:, and Op, {#;} ., respectively) we
mean “join each part of a to each part of 4 and multiplying together the appropriate
coefficients”.

We extend the use of union a bit further. If # and ( are given by

- (35 e YN

then £ U ¢ will be the partition in P(5,3) formed by simply amalgamating the parts
of B with the parts of (.

Theorem 3.8 Let g = (5 i5, 5 piy) b oalb —2) and suppose that SH" appears
FP(a,b—2) with multiplicity m > 0. Let p = {p} +2,p5+2,..., 45 +2) b ab. Then
S¥ appears in FP(a,b) with multiplicity m.

Proof: Let T3, T%,...,T" be the semistandard p*-tableaux of type ((b — 2)*). Let
t* be the usual p*-tablean with the digits 1,2,...,a(b— 2) placed in increasing order
down its columns. For 1 < i < v consider the semistandard p-tableaux T; and the

p-tableau t given by T, = T"U T and £ =t U " where

11 alb—~2)+1 ab—a+1
2 2 alb—2)+2 ab—a+2

"= . . and t' = ) . -
;CL a ab.—wa db

In @Ti{f}f\?z, since we only need to consider those tableaux row equivalent to 75 which

have distinct entries in each column {see Section 3.2.2), we can write
(:)Ti{t}"‘t = (:DT’{t,}fﬂs’ U éTi‘{t*}f'{»g*.
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Thus to compute O, {t}s:, we take every (a,b)-partition « involved in O {t*} e
and we adjoin (in all possible ways) a pair of elements, one from each of the sets
{alb—-2)+ 1La(b—2)+2,...,ab—a} and {ab—a + 1,ab—a+2,...,06b} to each

part of ¢, attaching the appropriate sign. Therefore we can write
Or {1350 = Or{¥ by U Oy {1}

From the above expression for O, {t}x, it is clear that for 1 <4 < r the aumber of
linearly independent homomorphisms (:)T; is equal to the number of linearly indepen-
dent homomorphisms Or. Since 71, T, ..., T, give all semistandard p-tableaux, we
have from Theorem 2.20 and Theorem 2.32 that the multiplicity of $** in F P{a,b—2)
is the same as the multiplicity of $* in FP(a,b). O

Corollary 3.9 The Specht module Glab=ola~1)®™M) for 0 < ¢ < b) appears in
FP(a,b) if and only if ¢ 15 even. When c is even Glab=ela~1)e*" D} ypnears in F'P(a, b)

with multiplicity one.

Proof: Let u be the partition {ab— c(a — 1), ¢l of ab. So the top row of p is of
length ab — c(a ~ 1) and the other parts are all of length c.

Assume that ¢ is even then we can write g = ((ab— 2s(a—1),(2s)("H) where ¢ =
9s. Let u* = (ab—ac). Applying Theorem 3.8 s fimes we see that the multiplicity of
Glalb=e)) in F P(a, b—e¢) equals the multiplicity of Glab=c(@=1).4") i1y the decomposition
of FP(a,b). The only semistandard (a(b - ¢))-tableau T of type ((b—c)*) 13

T=11...122...2...... aa...a.

Let ¢ be given by

Then clearly s, is the identity element and 1t is easy to see that Or{t}x, equals a! times
the sum of all («,b — ¢)-partitions. Since there is only one semistandard (ab — ac)-
tableau (namely T given above) and ©r(S (eb-ac)y i non-zero, the multiplicity of
Slal=e}) in FP(a,b~— c) is one.

Now assume that c is odd then we can write ¢ = (ab~(2s+ D{a—1),(2s + 1 e 1h
where ¢ = 25+ 1. Let p* = (ab—ac+1,1¢"V). Again applying Theorem 3.8 s times

37




tells us that the multiplicity of $CE-HLI) iy Fp(g b — ¢+ 1) equals the multi-
plicity of Slab-c{e=13e*") ip the decomposition of F'P(a,b). The only semistandard
(ab— ac+ 1,10~} -tableau of type (b~ c+ 1) is

1i...1...a...a

2
T =
a
Let ¢ be given by ‘
, ' la41 ... ... a(b—c+1)
2
=,
a

It is easy to see that all tabloids involved in (:)T{t}mt have coefficient 4=1. Moreover,
if {¢*} is a tabloid involved in Or{t}k, then half of the tabloids ~-equivalent to {¢*}
will have coefficient 41 and half will have coefficient —1. Therefore O7{t}x, = 0.
This completes the proof. ©

Remark: It is easy to see from the way in which we have constructed the homomor-
phism from & (abc(a=1).l*™D) ¢ FP(a, b) that when ¢ is even, every partition involved
in @1 {t}x; (where T is the (only) semistandard (ab— c{a — 1), cleD)-tableau of type

(b*) and £ is the usual tableau) has coefficient dal.

In a similar way, we can relate Specht modules in the decomposition of F"FP(a,b—1)

to Specht modules in the decomposition of F'P(a,b).

Theorem 8.10 Let p* = (pf, 465, ..., p5) I a(b—1) be such that p3 < b1 and sup-
pose S&° appears in F P(a, b—1) with multiplicitym > 0. Let p = (p5+a, p3, .- pig} F
ab. Then S§* appears in FP(a,b) with multiplicity m.

Proof: Let T7,T%, ..., T* be the semistandard p*-tableaux of type ((b—1)*). Let t”
be the usual semistandard p*-tableau with the digits 1,2,...,a(b~ 1) filled in down
its columns in increasing order. For 1 < ¢ < r consider the semistandard w-tableaux

T: and the p-tableau ¢ given by

Ti=T'U12 - caandt=1"Ua(db-1)+1 alb—-1)+2 - ab.

38




Clearly we need to reshuffle the elements in the top row of T; so that it really is
semistandard and the digits increase along the rows. As we chose uj to be less than
or equal to b— 1, this ‘reshufBling’ will only affect the columns of T with one element.
The signed column sums & and &; will be the same as they only affect the first p3
columns of #* and t respectively. For all tableaux T/ row equivalent to 17 we can
write 77 = T/ U T/ where T/ is the tableau consisting of the first pj columns of T}
and 7! is a tableau with one row. Thus we can write

Otk =Y TeeUuT. (6)

T/ TI=TI T

For each T! = T{' U T!" row equivalent to T;* we can write down a set of tableaux row

equivalent to T; which are of the form 77" U Ty where T} runs over all tableaux row

equivalent to T/ U1 2 ... a. Thus for the same possibilities for T} as in (6) we can
write
éT‘ {t}h’,t = Z Tiﬂfﬁg* LJ Z I;** (7)
T

T} row equivalent

to TMU12. e
Let A* be the set consisting of the elements from {1,2,...,a(b— 1)} which are not in
the first g} columns of t*. Then (a, b— 1)-partitions involved in Oz {t*}rse will be of
the form (3w T/ ) and we fill up the remaining ‘space’ in each (a, b~ 1)-partition
involved in the expression with digits from A*. Similazly, (¢, b)-partitions involved m
Or{t}r, will be of the form ™ (Trv T{'s:-) and we £ll up the remaining ‘space’ with
digits from A = A* U {a(b~1) +1,a(b—1) +2,...,ab}. Thus we can wiite

1;+

= 1 - L) 4+

Or{ttes = v Ops{t" i U . g.

At ISym(A*ngs%(A) el ( :b )
1A

Thus it is clear that for 1 < ¢ < r the number of linearly independent homomorphisms
(:)T; is equal to the number of linearly independent homomorphisms Or. AsTy,.... Ty
give all semistandard u tableaux then by Theorem 2.20 and Corollary 2.32 5% appears
in P(3, k) with multiplicity m. O
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3.2.3 Intersection Types

Let FFP{a,b) = ¢y X1+ X2+ -+ ¢ X, be the complete decomposition of the module
FP(a,b). Then 377_, ¢? equals the number of G-orbits on P{a,b) x P(a,b). We show
that the G-orbits on P(a,b) x P{a,b) can be viewed as equivalence classes of certain
intersection arrays between pairs of ordered (a, b)-partitions. If the equivalence class
of the arrays all contain a symmetric array then we show that ¢; = 1 for all 7. It is
possible to count the number of G-orbits on P(a by x P(a,b) when a = 2 ora=3
“and b is atbitrary which we will do in Cha,pters 4 and 5 respectively.

‘Let d + 1 be the number of G-orbits on P(a,b) x P{ae,b} and let A; (for ¢ =
0,1,...,d) be the adjacency matrices of & on P(a,b) x P(a,b). Consider the cen-
tralizer algebra PS(a,b) spanned by Ao, Ai,..., Ag (see Section 2.3). PS{a,b) can
be viewed as {non-commutative} association scheme. Although we will not formally
define association schemes or use any properties of them, we will choose to adopt the
name partition scheme for our algebra. G acts transitively on P(a,b) so by Theo-
rem 2.43 the sum of the squares of the multiplicities of the irreducible modules in the
decomposition of FP(a,b) equals d+ 1. We introduce some notation to help calculate
the number of G-orbits on P(a,b) x P(a,b). |

For a, v € P(a,b) let o° = UL, of and v° = Uiy} be elements in P?(a, b) which
are contained in the ~-equivalence classes represented by « and -y respectively. Form

the a x a intersection array I(c®,+°) such that the (7, 7)-cell of the array is given by

I(0, 7)oy = b5 = lad N 7]

and so ) j
t11 tiz ot g
to1 %32 g
o &
e ") =
gl a2 ' faa

It is clear that the row and column sum of I{a®,v°) is equal to b as each part of o® and
~° are of cardinality b and each digit in each part of o (respectively 7°) is in exactly
one of the parts of v° (respectively a®). As o and +* run through the elements in the

~-equivalence classes represented by « and vy respectively, we can write down {al)?
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arrays, some of which may be the same. This amounts to writing down {I(a®,7°)h}
for h = (hy, hy) € Sym(a) x Sym(a) where hy permutes the rows of the array and hg
permutes the columns of the array. Define an equivalence relation on these arrays by
I{a®,~°) is equivalent to I(§°,7°) (with a®,v%,8%n° € P°(a, b)) if and only if 1(8°,7°)
can be obtained from I(e®,7°) by permuting its rows and columns independently.
Thus, in particular, I{a®,~°) is equivalent to [ (e/°,4") for all &' ~-equivalent to
a® and 4" ~-equivalent to 4°. Denote by T(e, %) the equivalence class containing
. I{a®,~°), where of course o and ° are in the ~-equivalence. classes represented by

o and «y respectively.

Example 3.11 Let o and v be (3,3)-partitions given by

(1, 2, 3) (1, 2, 6)
a= (4 5 6) andy= (4, 8, 9).
(7, 8 9) (3, 5 7

Then two ezamples of intersection arrays in (o, ) are

o /= D

2 1 ’ 0
1 1 and | 1
] i 2

— = e
<= D

In a natural way the equivalence relation on the intersection arrays induces an
equivalence relation on P{a, b} X P(a,b). So we will write (o, ) = (6,) if and only
if I{e,y) = I(6,7). We show now that the ms-equivalence classes of P(a,b) x Pla,b)
are just the G-orbits on P(a,b) x P(a,b). If we permute the digits in o and v° by
the same element of G this will not change how the ordered (a, b)-partitions intersect
with each other so I{a?,7°) = I{a®g,7°g) for any ¢ € G. Thus, if (ag,vg) = (6,71}
then I{a,~v) = I(8.7) and so (e, ) =~ (6,m). Conversely, if (cr,y) =2 (6,n) then we can
find a°, 77, 6° and 7° in the respective classes so that I(ef,~7%) = I(6%,77). Now ‘split
up’ each part of 7° into a sets according to which part of & they intersect with. Do
the same thing with 7° according to which part of §° they intersect with. Now map
the ‘sets’ in v° to the corresponding sets in 7° by an element of G. This element of

G maps « to § and at the same time 7 to 7.
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Thus we will make the following definition.

Definition 3.12 Let o, v, § and 5 be (a, b)-partitions. Then we will say that {a,}
is in the same intersection class as (6,7) if (a,v) is in the same G-orbit as {§,7).
Moreover, we will call the intersection class I{c,y) symmetric if («,v) is in the same
intersection class as {v, a). We will index each intersection class by one of the arrays

in the class.

Remark: It is éasy to verify that if the intersection class contains a symmetric array

then the intersection class will be symmetric.

Example 3.13 Let o and v be the (3,6)-partitions given by

(l) 2! 37 4:7 57 6) (}" 25 37 4:5 7) 13)
a=(7, 8 9, 10,11,12) andy = (8,9, 10, 14, 15, 16).
(13, 14, 15, 16, 17, 18) (5, 6,11, 12, 17, 18)

Then the arm}&s gruen by

4 0 2 4 11
1 3 2 and 0 3 3
1 3 2 22 2

will be in I(a,7) and I(v,«) respectively. It is clear that I{ce,v) # I(7y, ) since the
rows and columns of the first array cannot be permuted to give the second array. Thus

the intersection class is not symmetric,

The following definition can be found in Chapter 1 of [25].

Definition 3.14 The square matrix N with entries in the patural numbers is called
integer stochastic if its row sum and column sumn are constant. Denote by H,(r) the
namber of m x m matrices with entries in the natural numbers and row and column

sum equal to r.
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The expressions for the numbers H,,{r) when m = 1,2 and 3 can be found on page
30 of [25] and are given by:
[Z[l (T’) = 1,

Hy(r) =r+1,

Halr) = (Tf) + (TZS) + (TZZ). (8)

For general values of m > 3, little appears to be known about H,,(r}). Since any a X
“integer stochastic matrix with row and column sum b coxres’ponc’ié to an intersection
array, we can define the same equivalence relation on the set of integer stochastic
matrices by saying that Ny and N, are eguivalent if and only if N, can be obtained
from Ny by permuting its rows and columns independently. The number of different
intersection classes of P(a,b) X P(a,b) will therefore equal the number of H-orbits
on the set of a x a integer stochastic matrices with row and column sum b, where
H = Sym{a) x Sym(a). Trivially when a = 1 the number of intersection classes is
H,(b) = 1. In Lemma 4.4 and Theorem 5.4 respectively we will give the number of
intersection classes of P{2,k) x P(2,k) and P(3,k) x P(3,k), where k is an arbitrary
positive integer. In general the number of intersection classes is extremely difficult to
calculate.
When the intersection classes are symmetric it is clear that the adjacency matrices
A; are symmetric. Thus, when the intersection classes are symmetric, by Lemma 2.44,
PS(a, b} is commutative and moreover by Theorem 2.43 each irreducible module in the
decomposition of F'P(a,b) has multiplicity one. In general PS5(a, b) is not symmetric
although trivially when a = 1 the partition scheme is symmetric and we wiil show in
Chapter 4 that PS(2,b) is symmetric.

3.3 Eigenvectors of MM”: General Results

We will use irreducible modules which appear in FFP(a,b} with multiplicity one to

construct some of the eigenvectors of MM7T,
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Under the symmetric matrix MM? the FG-module FP(a,b) decomposes into

eigenspaces

FP(a,b)=Ey & E\, & & E,.

From {1) of Section 2.1 we have
MMT (vg) = (MM v)g = (Jv)g = g forallge G
Cand sor

Lemma 3.15 The eigenspaces of MM7 are FG-submodules of FP{a,b).

Maschke’s theorem tells us that the decomposition of FP(e,b) into irreducibles is
unique up to isomorphism. Thus each eigenspace is isomorphic to a direct sum of
certain Specht modules. It is clear that if 5% appears in precisely one eigenspace of
MM? and T is a semistandard p-tableau of type (%) then either O7(5%) is zero or
it is contained in an eigenspace of MM7. In general we can not expect such nice
properties of eigenspaces. However, whén ¢ =1or 2 and when ¢ = 3 with &6 <5
we will show that every irreducible module in the decomposition of F P(«,b) appears
with multiplicity one. We can use this fact to find eigenvectors and eigenvalues of
MMT. The case « = 1 is trivial as M is the 1 x 1 identity matrix with eigenvalue
equal to 1. The cases when ¢ = 2 or @ = 3 with b small are studied in Chapters 4
and 6 respectively.

We will say that the partition g is directly associated to the eigenvalue A or the
eigenspace Ey (or we say u is in direct association with A or E)) if there exists a
semistandard p-tablean T such that @7(S*) C Ey. If we require linear combinations
of the maps O (for different semistandard p-tableaux T) to map the Specht module
5* into an eigenspace E), we will say that w is indirectly associated to A or £y, When
the eigenspace decomposes into two or more non-isomorphic irreducible subspaces,
more than one partition may be associated to an eigenvalue. If S# appears in F'P(«, b)
with multiplicity one and so for some semistandard tableau 7' we have O7(5#) C Ej,
we will say that u is simply associated to A {or p is in simple association with A).

In this case it is not necessary to use the word ‘directly’ as a simple association
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must be direct. When g is directly associated to A we will sometimes associate
the semistandard p-tableau 7' to the eigenvalue rather than s itself. Since every
eigenspace of M M7 decornposes completely into a direct sum of modules isomorphic
to Specht modules, once we know the decomposition we can calculate the dimensions
of the eigenspace by summing the dimensions of the appropriate Specht modules
(these can be calculated using by hook lengths, see Theorem 2.35).

We consider here some of the semistandard tableaux which are simply associated
to eigenvalues of MM7. The most straightforward case is the partition (ab — c(a -
1}, ¢®=1), When ¢ is even we know from Corollary 3.9 that §(eb-=c(a=12") 4ppears
in £ P(a,b) with multiplicity one and so must be simply associated to an eigenvalue
of MM7T. Thus we have the following result.

Theorem 3.16 If u = (ab—2s(a—1},(25) V) and f T and t are p-tableauz given
by

11...1...12...2 ...b...b
99 9 le+l...2as—a+12as+1.. . ab
. T 2a4+2 ... 2as—a+2
T= : t:: . .
L ¢ % ... Zas
23

then Op{t}r; is an eigenvector of MMT,

Remark: The result above gives an alternative method of finding the maxirnum eigen-

value of M M7 which is given in Corollary 3.5 and can be stated as follows.
Propr;sition 3.17 The eigenvalue of MM7 associated to the semistandard tableau
T=11...122...2...... aa...a

is (a1(B1)2~), This eigenvalue is the largest eigenvalue of MMT and has multi-

plicity 1.

In general it is not very easy to write down the eigenvalue associated to {(ab — 2s(a —

1), (28311 explicitly in a neat closed form. When « = 2 and b is arbitrary we
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can write down these eigenvalues explicitly for all values of s which we will do in
Section 4.3.3. When ¢ = 3 and b is arbitrary we can write down these eigenvalues
explicitly for the case when 3 = 0 or 1 (see Theorem 6.12).

As a direct corollaries of Theorems 3.8 and 3.10 we have.

Proposition 3.18 Let M* be the incidence matriz of P, 2 and M be the incidence
matriz of Pay. For p* = (5, ., p8), let = (pi +2,p5 +2,.., 05 +2). If S
has multiplicity one in the decomposition of FP(a,b—2) then S* has multiplicity one
in the'dec'ompositioﬁ‘of FP(a,b). Moreover, there exists a semistandard p-tablean T
and o p-tableau t such that ©¢{t}x, is non-zero and hence Op{t}r, is an eigenvector
of MMT.

Proposition 3.19 Let M* be the incidence matriz of Pap-1 and M be the incidence
matriz of Pap. For uw* = {p}, .., k) with py <b -1, let p = (p} +a,p5, ..., ps) If
S has multiplicity one in the decomposition of FP(a,b~1) then 5% has multiplicity
one in the decomposition of F'P(a,b). Moreover, there exists a semistandard p-tableaw
T and a p-tableau t such that Op{t}r, is non-zero and hence O7{t} s, is an eigenvector
of MMT,

In general, constructing eigenvectors of MM7 is not such an easy task. This is il-
lustrated in Section 6.2 when we construct some of the eigenvectors of M3F(M>*)T,
When we know the eigenvectors of MM7T we can calculate the corresponding eigen-
values in the following way. Let v be an eigenvector of MM7T with corresponding
cigenvalue ). Let o be an (a, b)-partition involved in » and denote by e, the standard

hasis {fector then we can write
I MM = (eIM)(MTv) = Aelv

and so
(e M)(MT)
A= T .
elv
Therefore we multiply the S-entry of el M by the f-entry of MTv and sum over
B € P(b,a). To find A we divide this result by the coeflicient of o in w. The -

entry of eX M 1s one if 5 intersects nicely with o and zero otherwise. Thus, we only
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need to consider those A which intersect nicely with «. To show that the eigenvalue
corresponding to an eigenvector v is non-zero is an even easier process. We write

(MTo)" (M)

N =
Ty

Since v is a non-zero vector we know that vTv is non-zero so there is no problem
dividing by this factor. Moreover, A is non-zero if and only if MTv has a least one
non-zero entry. Thus to show that X is non-zero we just need to exhibit an element
B of P(b,a) such that the S-entry of MTv is non-zero. We will use these methods in
Chapters 4 and 6 when calculating eigenvalues of MM”, where M is the incidence

matrix of Py and Ps respectively.
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Chapter 4
(2, k)-Partitions

In this chapter we study the permutation module F P(2,k) of Sym(2k) acting on
P(2,k) using the same notation as in the previous chapter. We begin with some
basic properties of the incidence structure Py and give examples of the incidence
matrix M of this structure. For o and v in FP(2,k) we give an expression for the
(o, v)-entry of. MM Using representation theory of symmetric groups we deter-
mine the complete decomposition of FP(2,k) and show that all irreducible modules
in this decomposition have multiplicity one. We use this decomposition to find the
eigenvectors of the matrix MM T, Using these eigenvectors we show thab all eigen-
values of MMT are non-zero which gives a simple proof of Foulkes’ conjecture {see
Section 2.2.6) for m = 2 and n arbitrary. We then determine the eigenvalues explic-
itly first in a summation form and then in reduced form. In the final section of this
chapter we show that all modules which appear in FP(2,k) appear in F P(k,2), this

gives a direct proof of Foulkes’ conjecture for the case when m =2 and n is arbitrary.

4.1 The Incidence Structure P

In the following example we give the sizes of the matrix M?* for small values of &
which gives an indication of just how quickly they grow in size. When k = 1 the
incidence matrix M is trivially the 1 x 1 identity matrix so we will just give M>*

explicitly for k = 2 and 3.
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Example 4.1 The following table gives the size of M** fork =1,2,3,...,10.

The incidence matrices of M** and M*® are given by

koLIP2, B | Pk, 2))
11 1
2 13 3
3 |10 15
4 |35 105
5 | 126 945
I 16 a2 | 10395
: 7 | 1716 | 135135
; 8 | 6435 2027025
1 9 | 24310 | 34459425
+ 10 | 92378 | 654720075

011
ﬂﬁﬁza(lol),

110
000000011011011
000011000101101
000101101000110
000110110110000

M = 0110060000110110
=11061000110000101
110000101101000
110110000000011
101101000011000
011011011000000

Definition 4.2 Let o and be two (2, k)-partitions with o = cal/as and v = MUy
Define a function, called the mazimum intersection of o and v, from P(2, k) x P(2,k)
to N by

mle, ) := maz{ jor v} |1, 5 € {1,2}}.

Thus the maximum intersection of o and =y is the biggest ‘overlap’ between the parts

of o and -y respectively.
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Remark: The maximum intersection of two (2, k)-partitions is an integer k — v for
some v € {0,1,...,[k/2]} (where the square brackets mean we take the integer part of
k/2). This restriction on v is quite clear: Let |ay Ny} = s for some s € {0,1,..., k},
then |a; Nye] = k — 5. The largest of these two values is the maximum intersection
of o and +. Therefore v = min{s, k — s} cannot exceed {k/2]. Thus we could define

the maximum intersection as
m(e, ) = maz{jos N7l s € {1,2}}.

Example 4.3 Let o and « be (2,5)-pariitions given by

9)

(1,2,3,4,5 ) 7,
7,80, 8,10) -

o= and = 3
= (6,7,8,9,10) TE (2,4

Then o and v have mazimum intersection 3, that is m{e,v) = 3.
For o and « in P(2,k) the intersection class I(e,7) can be indexed by an array of

E—1 2
i k-2

with i € {0,1,...,[k/2]}. Thus we have the following resuli.

the form

Lemma 4.4 The number of intersection classes of P(2,k) x P(2,k) s [k/2] + 1.

Proposition 4.5 Let o and v be any (2,k)-partitions. Then the (cr,v)-entry of MM™

is (b — v)lv! where v =k —m(a,v).

Proof: The (a,7)-entry of MM is the number of 1’s in the same positions of row
o« and row v of M. Row a of M has 1’s in the positions corresponding to those
(k,2)-partitions which intersect nicely with c. So in other words, the (¢, v)-entry of
MMT is the number of (k,2)-partitions which intersect nicely with both o and 7.
Since Sym(2k) acts transitively on the elements of P(2, k), without loss of generality
we can choose « and v to be:

(1, ke, kvt L B
= k41, 2%k, 2k v+ 1, .., 2k)
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1, o, k=, 2b—v41, .., 2k)
=kt 2=y, k—v+1, o, k)

so that m{a, ) = k—v for some v € {0,1,.. ., [k/2]}. Consider those (k,2)-partitions
which intersect nicely with both « and . Let 8 be one such {k,2}-partition. So f
has k parts of size 2, where each part has one element from each part of o and 7.
Thus elements in {1,...,k — v} can only be ‘paired off’ with elements of the set
{k+1,...,2k — v} and elements of {k—v+1,...,k} can only be paired off with
elements of {21:: —p41,...,2k}. Any other type of pairing prevents a nice intersection
between o and 3 or v and 8 or both. There are (k - v)tw! such pairings, so (k — v}lv!

different (k,2)-partitions which intersect nicely with both o and v. O
Corollary 4.6 The diameter of Pax equals one.

Proof: The diameter of Py is one if for all o and v in P(2, k) there exists a /7 in
P(k,2) which intersects nicely with both o and 7. The {«,~)-entry of MM T counts
the number of (k, 2)-partitions which intersect nicely with both o and +. Since this

entry is always non-zero the proof is complete. O

Thus M MT can be written as a linear combination of [+1 (where ! = [k/2]) adjacency

mairices:
MMT = B0 Ag + (k= 1A+ (k= 2)120 A + o o (k= DHEA, (9)

where

(Ai)a’r -

Vit mle,y) =k 1,
{ ¢ otherwise.

Since each intersection class can be indexed by a symmetric array we know that
the partition scheme PS(2,k) is commutative or in other words, AjA; = AjA; for
all 4,7 € {0,1,....l}. This means that the permutation character of Sym(2k} on
P(2,k) is multiplicity free and so the permutation module FP(2, k) decomposes into
a direct sum of [+ 1 irreducible modules all with multiplicity one. Before we study
the permutation module F° P(2,k) in more detail we will give a couple of examples of

the matrix MM7T and the corresponding eigenvalues.
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Example 4.7 The two simplest (non-trivial) ezamples are when k=2 and k =3.

211
M2 (MM = (1 21
_ 119
6222222222
4 9622222222
9962222222
22262229222
v ey 2222622222
MSAM™) =199999269222
99992226222
999292222622
999222922262
9999922226

Example 4.8 The eigenvalues of the mairices MY (M) for 1 <k <3 can be cal-

culated using, for ezample, the mathematical package Pari. The results are tabulated

below.
Eigenvalue | Multiplicity
k=1 1 1
k=2 4 1
1 2
k=3 24 1
4 9

4.2 Decomposition of FP(2,k) and Eigenvectors
of M?""}‘T(M‘Z’k)T

We can use results of the previous chapter to construct the complete decomposition
of FP(2,k). We use the methods introduced in Section 3.3 to construct a generating
set for the eigenvectors of MM7T. Before doing this, we briefly mention the irreducible
modules in the decomposition of FP°{2, k). We know from Section 3.2.1 that if g 1s a
partition of 2k with at most two parts then the multiplicity of 5% in the decomposition

of FP°(2, k) is the number of semistandard p-tableaux of type (k%) 1t is easy to see
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that for any given partition p of 2k with at most two parts (which we can write in
the form p = (2k — 1,7) for some ¢ € {0,1,...,k}) we can construct exactly one

semistandard p-tableau of type (k*). This semistandard tableau will be of the form
Pl.o..... 122...2

Thus, the modules in the coraplete decomposition of FP°(2,k) will be § (2k-4%) with
1 e 4{0,1,..., k} and each of these will appear in FP°(2,k) ‘with multiplicity equal to
one. Since FP(2, k) is isomorphic to a submodule of FP?(2, k), we already know quite
a lot about the modules in the complete decomposition of FP(2,k) and in particular
that each module which appears in FP(2,k) will have multiplicity equal to one.

By Corollary 3.9 we know that for 0 < ¢ < k the Specht module G2k} appears
in FP(2,k) precisely when c is even. This gives us [+ 1 (where [ = [k/2]) irreducible
modules in the decomposition of F'P(2,k), each one being isomorphic to G{2k-28,25)
for s € {0,1,...,1}. We already know that FP(2,k) decomposes into exactly 1 -1

irreducible modules so these modules must form the complete set. That is
FP2,E) =S @5 @ &5

where p® = (2k — 2s,2s) for s =0, 1,...,L
Thus, the eigenvectors given i1 Theorem 3.16 are a generating set for the eigen-

vectors of MMT. This gives us the following result.

Proposition 4.9 Let M be the incidence matriz of Pai. For0 < s < 1 let tg be the
{2k — 2s,2s)-tablea with the digits 1,2,...,2k placed in increasing order down its
columns and T, be the semistandard (2k — 25, 2s)-tableau of type (k) given by

11...... 122...2
T = 22...2
2s
If s runs over the elements of 10,1,...,1} then O, {ts}re, Tuns over a genervating set

for the eigenvectors of MMT.
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It is easy to see from the definition of Or {t,}5s, that we can write

Or{t:}re, = 3, {t}gsgn(g)u > {ti}h

gec&s hESym(A}

where A = {4s + 1,45 +2,...,2k},

()= gy
‘and {*} is any {(k — 2s)?)-tabloid with entries from A with no repeats. To find
the coefficients of a (2, k)-partition a involved in Or {t.}k,, we add together the
coefficients in Or, {t;}rs, of tabloids ~-equivalent to {t;*}, where {#:*} is a tabloid
with the parts of @ making up its rows. Ii is easy to see that any (2, k)-partition
involved in @Ts{ts}rsu has coefficient +2 if it contains an even number of elements

from {1,2,...,4s} in each part and —2 otherwise.

Remark: Tt can be shown that the eigenvectors O, {t,}«:, simultaneously diagonalize
the adjacency matrices A;, for ¢ = 0,1,..., [k/2], given in equation (9). Thus, the
eigenvalues of MMT could be calculated by first finding the eigenvalues of the matrices

A; and taking the appropriate linear combination.

4.3 Figenvalues of M>*(M>F)T

4.3.1 Lower Bounds for the Eigenvalues of MR8,

Now that we have the linearly independent eigenvectors of the matrix MM7 it is
a straightforward process to show that all eigenvalues are non-zero. We have two
different methods of proof to show that the eigenvalues are non-zero. The first proof

i direct and the second is inductive on k.

Theorem 4.10 Let M be the incidence matriz of Pa - Then all eigenvalues of AT MT

are non-zZero.

Proof 1: For a fixed value s satisfying 0 < 2s < L let T be the semistandard

(2k — 23, 2s)-tablean of type (k*) with 2 occurring 2s times in the second row and {
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the (2k — 2s,2s)-tableau with the digits 1,2,..., 2k placed in increasing order down
its columns. Let v denote the eigenvector O¢{t}x; corresponding to the eigenvalue A.
From the results at the end of Section 3.3 to show that A is non-zero we need to find
a (k,2)-partition 8 indexing a non-zero entry of M7v. Let § be the (k, 2)-partition
given by

o= (DXEN2) - (U2 )G) - (G2 (B 5) - (%),

- Consider all (2, k)'—pa,rﬁit‘ions which intersect nicely with 8 and are “tavolved in v.
Recall that the coefficient of a (2, k)-partition involved in v is +2 if each part of
the (2, k)-partition has an even number of even numbers from {1,2,...,4s} and -2
otherwise (see the explanation following Proposition 4.9). Any (2, k)-partition which
intersects nicely with 4 must have s even numbers from {1,2,...,4s} in each of its
parts. As s is fixed, all (2, k)-partitions involved in » which intersect nicely with 8
must have the same coeflicient in v as each other. For example, the (2, k}-partition

o given by
8,...,45 =3, d4s ,4s+1,...,2k—1)
T,...,45 — 2,45~ 1,45 +2,..., 2k )

intersects nicely with 8 and is involved in v. Thus M T4 has at least one non-zero

entry and so A must be non-zero. O

Proof 2: Let M* be the incidence matrix of Pyr_» and let M be the incidence
matrix of Py By Proposition 4.9 we know that for s satisfying 1 < s = [k/2]
the partitions (2k — 2s — 2,25 — 2) and (2k — 25,2s) are associated to eigenvalues
of M*M*T and MMT respectively. We will use induction on & to show that if the
eigenvalue of M*M*T associated to (2k—2s~2,2s—2) is non-zero then the eigenvalue
of MMT associated to (2k — 2s,2s) is larger and so also non-zero. There are two
base steps for this inductive proof as we go up in steps of two. We have already
completed these base steps in Example 4.8 where we showed that ail eigenvalues of
Mz”“(M2>k)T for 1 < k < 3 are non-zero. So for k—2 > 1 assume that the eigenvalues
of M*M*T are all non-zero. Let s be an integer satisfying 1 £ s < [k/2], let t* be
the (2k — 25 — 2,25 — 2)-tableau with the digits placed in increasing order down its
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columns and let T* be the semistandard (2k — 2s — 2,25 — 2)-tableau given by

11...... 122...2
T™ = 22 ...2
25 —

Form the (2k — 2s,2s)-tableau ¢ and the semistandard (2k — 2s,2s)-tablean T by
setting ¢t = ¢’ Ut* and T = T"UT* where

, 2k -32k-1 11
t'=5p_5 9 and T'= 99

Thus from the proof of Theorem 3.8 we can write ‘
@T{f}lﬁt.ﬁ @)T!{t’}fitf U @r*{t*}ﬁly. (10}

Let A\* be the eigenvalue of M*M*T associated to (2k—2s —2, 25— 2) with eigenvector
v* = Op{t*} x5 and let A be the eigenvalue of MMT associated to (2k — 2s,2s}, with

eigenvector v = O¢{t}x,;. Since v* and A* are non-zero, we can write

, (M*T’U*)T(M*TU*)
AP g # 0.

Therefore M*Tv* must have at least one non-zero entry. Let 8* be the (k — 2,2)-

partition which indexes this non-zero entry. Now let 8 be given by
G

We claim that the B-entry of MTv is non-zero which, by the results at the end of
Section 3.3, shows that ) is non-zero. We know that if o* is involved in v* then the
{2, k)-partition o formed by joining one element from each of the sets {2k —3,2k 2}
and {2k — 1,2k} to each part of o is involved in v. Moreover, ail (2, k)-partitions
involved in v can be constructed in this way. Let a* = oft o be a (2, k—2)-partition
involved in v* which intersects nicely with #*. Denote by o the (2, k)-partition formed
by adjoining {2k — 3,2k — 1} to o} and {2k — 2,2k} to of. Denote by o? the (2, k)-
partition formed by adjoining {2k — 2,2k} to of and {2k — 3,2k — 1} to af. Then
it is easy to see that o intersects nicely with 8* and is involved in v* if and only if

o) and of intersect nicely with 8 and are involved in v. Moreover, the coefficients of
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o! and of in v are the same as the coefficient of o™ in v™, Thus, the S-entry of M Ty
is twice the #*-entry of M*Tv" and so is non-zero as claimed. We have shown that
the eigenvalues associated to (2k — 2s,2s) are non-zero for 1 <5 < [k/2]. Thus, the
only partition we haven’t considered is (2k). We have shown In Proposition 3.17 that
(2k) is associated to the largest cigenvalue of M M7 and this eigenvalue is non-zero.
Therefore we have shown that all eigenvalues of MM T are non-zero. This completes
the proof. O

Remark: In our opinion the first ioroof is probably the shortest known proof of Foulkes’

conjecture for the case when m = 2 and n is arbitrary.

4.3.2 The Eigenvalues of M (M4 in Summation Form

In the previous section we constructed a set of linearly independent eigenvectors of
MMT which yield the complete set of eigenvalues, We can use these eigenvectors o

determine the eigenvalues explicitly.

Proposition 4.11 Let M be the incidence matriz of Pax. Fors € {0,1,... NLTR);
the eigenvalues of MMT are given by

s g3

= b==0

Proof: Let s be an element of {0,1,...,[k/2]} and as usual 7, and i, be given by

1h...... 122...2 13...... 4s—14ds+14s+2...2k
T, = 22 ...2 and t, = 24...4s
23 28

Let v = O {t;}r;, be the eigenvector of MMT associated to (2k — 2s,2s) and let
o be the (2, k)-partition with the odd numbers {1,3,...,2k — 1} in one part (which
we will label o) and the even numbers {2,4,...,2k} in the other part. o has 2s
even numnbers from {1,2,...,4s} in « and none in @y. Thus the coefficient of in

vis 42, Fori e {0,1,...,[k/2} let v =Y 72 be a (2, k)-partition involved in v
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such that oy N 41| = k —¢. For some b satisfying 0 < b < 2s then -y will contain
9s — b elements from {1,3,...,4s — 1} and the remaining b elements from this set
will be in ;. As v has non-zero entry in v, this determines the b elements from
{2,4,...,4s} which must be in 7 and the remaining 2s — b elements from this set
must be in 5. To ensure that |y N onl =k — ¢, we must fll 4, with B —2s —¢+b
elements from the set {4s + 1,4s +3,...,2k ~ 1} and ¢ — b elements from the set
{4s +2,45+4,... ,2k}. The remaining elements will fill ~,. The coefficient of v in v
. will be +2 if b is even and ~2 otherwise. If b runs over 0,1,... .23 then « runs over
all (2, k)-partitions such that lvy N oa} = k — 1. Thus we are able to calculate the
number of v = 11 U 72 such that I Neoy| =k—14 M= k]2 we have counted 7y
twice so we need to take half of the result. We have shown in Proposition 4.5 that
the (o,v)-entry of MMT is (k — i)li! where maz{k — i,i} = m{a,v). To find the
a-entry of MM%v we multiply the (o, )-entry M MT by the y-entry of v for all v
with |y; N ay| = k — i and sum over all values of i between 0 and [k/2]. Equivalently
(and using the fact that lay Nyl =k — ¢ implies |y Nz == ¢) we can sum over i from
0 to k and take half of the result. Thus, we can write down the a-entry of MM Ty as

follows: \ ' .
1 ; 2s k— 2 k- 2s
ot ) igl -1
2%“ 7‘)'2'(;2( b (zy_b) (k—23+b-i)(i~b>
k z . ) 2
= Sk = S (-1) (2‘5> (k’ “3> .
pard b 1~ b

1==0
To find the eigenvalue corresponding to v we need to divide this entry by 2 which is

the coefficient of v in v. This gives the required result. O

Remark: Since we have constructed the eigenvalues given in the proposition using
a generating set of all eigenvectors of MMT, as s runs over 0,1,...,[k/2] we have
the complete set of eigenvalues of MM T In the next section we will show that the

eigenvalues A;, for s € {0,.. ., [k/2]}, are actually distinct.

We give here a slight variation on the expression for the eigenvalues given in the
proposition which will be useful in the next section. We do this by first writing
out the binomial coefficient explicitly and 1‘eal'ralngiﬂg. the terms, then we make the

substitution j = 1 — b. Next we interchange the sums and finally make a substitution
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for ¢ — 71

e

R v ey
_ Egk 25)! 23)!;0 ( )(%:is)(zswb)
(

]

(k — 28)!( 23123; ()(k 23) 2313—%)
= 5k-2) 25'%?‘2( 2 ()(%28)(231;*—')
)

- k 23)!23¥}i§ (HJ (k"_gs)(k;_?). (11)

J

r—* L\'}IW

7=0 t=0

4.3.3 The Bigenvalues of M>*(M**)7 in Product Form

The eigenvalues of MM T given in the previous section can be written in a closed

form. In order to do this, we first state and prove a more general equality.

Theorem 4.12 If s and k are integers satisfying 0 < s < [k/2) and k > 1, then
L2 fom— B .
g kE—2s\[t+) (kwi——j) . b (k——s ‘
. —1)t =277 : 12
?-:o tya( )( J ) 25—t )17V s 1)

To prove this we need the following:

Lemma 4.13 The function f(k,s) = (k;S)Qk“Zs satisfies the following recurrence for

k—s,8>0 with s and k — s not both zero:
f(k,s)m2f(k—1,s)+_f'(£:w2,5w1), (13)
where as wsual we will take (‘;) to be zero if b< O or b > a.

Proof: We will use a basic equality which can be found on page 1 of {23] and that

holds provided that n and & are not hoth zero:

@m( Zl)%—(?;ii)- (14)
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Thus we can write

s = (7= () (0]

— 2_2/9—1——23 (k -1- S) " 2k—2—2{s~1) (k -2 (S - }“)\)

S
2f (k= 1,8) + f(k—2,5— 1)

as required. O

Proof of Theorem 4.12: We need to show that
k2s B3 (95 (L4 (k——t—j)
X = . —~1} 15
Zog‘;( )(3) 25—t )7 (15)

satisfies the recurrence (13) for a general k and s satisfying 0 < s < k/2 and that
the theorem holds for k = 2s. We also need to show that the thecrem holds for
small values of k and s so that we are able to apply an inductive proof. We begin by

verifying the theorem for k = 2s. Here we have

%2(—1)* 1= (g)

t=0

and so the theorem holds when k = 2s. When s = 0 and k is arbitrary we have

SR () - 0-2- 0

as required. When k = 1 we have s = { = 0 and the statement of the theorem

Ly

il

is trivial. We can also verify that the theorem holds when &k = 2 or k& = 3 and s
is arbitrary. We do this using Example 4.8 and the equation for the eigenvalues of
MMT given in {11). Thus all there is left to do is to show thaf, X satisfies (13) for
2s < k. To do this we need to show that:

—1- 1—j k_lq__zs tti\(k—1~1—7 N

SR () e
k—2-2(s—1) k—2—j w2——2(3w1) t+j)(k——2wtmj) ot
’ 7=0 a;o( J )(J 20s —1) = Y

60




or equivalently,

() e

R e
EE )

To show tha,t Lhe recurrence reiatzon. holds we will repeatedly use {14). Denote the

right-hand side of (16) by ¥ and let
Sl G [ [ Qe )
J=0 =0 J J 2s —t .
So, we would like to show that ¥ = 2Z. We can write

R ) - (E5)

Z’“-;;hzs hojor (B 1 1
+Z;3( e Je=nms)
ik 0
A () o))
Using (14) on (’:) and (k 1) we can write
n n-2y [n-—1 n -2
B-G2)- 062

We can apply this result to the first sum (since t # k& — j or k—g— 1) to give:

EE) ) ()

=

=0
k —2s k—1 0% k—2s\[ k-1 31
+(k~23w1>(k——2@w )( b (km‘ZS)(kw‘zs)( )

M
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CEE

3=0 t=0
ho2sh i ? szﬂ (pyq k—2—t—3j
+ D ( )
; ; ( 7 (=1) 7 25—t —1
k—1 E—1 k
ko —
+ 28)(16 - 28 1) (k ——23) + (kw—Qs)'
Usmg (14) on the ﬁrst surm (a,s k 7—4 28): :
ki2 k—92s 1\ [t +] (;—E)t k-t—j—1
3 7 2s — 1
i? kw%—i)c+d) memjwl)
+ . =1y
§=0 tzz;}( g1 J ( ) 25 — 1
k2sk =2 (] .. 9g t+i\[k—2—t—J
; ()5
=0 tz"*(:}( ) ) J 2‘9_?#}
k-1 k—1
+“"2$(k~%—w)+(k_zswﬂ'

sum into the form we want it for the right hand side:

k~2s
j=0  i=0
k28 E—3

Turning the first

EECT)

F=0 t==0

k=251 [l __9¢ . ] k-1 0 k—j—1
. ( j >( j )(ZS—MJ'H)(_”
BT k- 25— 1\ (t+] ff—t=7-1
( j-1 )(j )“J)( 25—t )

+k§s i

g=0 =0

(e 05E)

7=0

-1 k-1
k= %%k 2—4)+(k*m~¢)

Using {14) on the fourth sum (since k# 28):

ko2ekd7? (25— 1\ [t+] kw«t—j—"l
/ . _‘-t
- )

t==0
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() EE e
’“j’”)+ J':{)zsi—{}l Jt+j) klmzjt}j o 1)
2 ( -1 )H)t( j )( 2s—t—-1)

®‘03+U(kk£i¢)

Using the substitution ¢* == ¢ + 1 in the third sum:

. Z+k§:sk§2 (k i 1) (i+;>( W(k m;:mjt—. 1) :

j=1 i=0 J

SR (T e () (RR)

b2k Tl (25— 1 R R A T AR |
gyl -

S (e (s
Combining the first and last sums gives:

keek=izl (p_9g 1) E—t—37—1 t+7 t4+7—1
{2 - 057)

Z_; g ( j—1 (-1) 25 =1 7 7
2 (k-2s -1 k=1 0
= VA .
Z( jml )( ) (j )(23—k+j~%—1)

J=3i

e

7= [

4(kf¥t1yk“%)

Using (14) on first sum (since j # 0) and then substituting j* =7 — 1:
*%1kf"2k—2$mq (kwtwﬁ—2>C+jj
/ - Z+ . _18 -
PR S (i Y G [
—2 . .
k—2s—1 th N [(h=2~1~7]
+ . w1{ .)(, )
?;:5 {=0 ( J )( ) J 2s —t— 1

k-1 E—1 Y\,
(A_%Mi)w-zww(km%_ﬂ)m—zﬁmn
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Combining the first and second sums:

Y = z+k§§“§5%+W(hm%md)f%j){(kméiif2)+

=0 t=0 J J

ey} B NN [EC RS

Using (14) on the remaining sum (since t # &~ j — 1):

7=0 =0 .? J

+ k-1
k—2s5~1
_ QZ N .la-vis:’“"}- (k — 28 jnd 1)(__1);&2»‘3“—1 (k e 1) ( 0 )
e ; i J\2s—E+j+1
N k-1
k—2s—1
= 27
This proves the required result for 25 < k and the proof is now complete. O

We can now write down the eigenvalues of M M7 in a much simpler way. We remark
that the eigenvalues of MMT have already been written in this form in [8] although
the method used by Coker io find these eigenvalues was different from the method

we used.

Theorem 4.14 Let M be the incidence matriz for Pay. Then the complete set of

distinct eigenvalues of the mairiz MMT are given by

ks " 23
A = 3 I S 2 i ke-2s—1 (T — ! ]. 23’\.*‘25-—1
# (2 ) (}" S) (k‘ __25)2 (.’T\/ 3) S s
for s =0,1,...,[k/2]. Moreover, the multiplicity of each eigenvalue As 18

()= (")
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Proof: The formula for the eigenvalues follows immediately from (11) and Theo-
rem 4.12. It is easy to see that the eigenvalues are distinct as s runs over the integers
between 0 and [k/2). Thus the eigenvalue A, is associated to precisely one partition
of 2k, namely u° = (2k— 2s,2s) and so Ej, is isomorphic to §#°. We can use this fact
to find the multiplicity of A, as an eigenvalue of M M7 which will be the dimension of
the the Specht module 5#°. The dimension of Specht modules are known over fields
of characteristic zero and can be calculated using hook lengths (see Theorem 2.35).
-So the multiplicity of A; as an eigenvalue of MM T is

(2E)(2k —ds +1) (2k)! 1 1 |
(2k — 25+ 1)1(28)! (25 — 1)I(2k — 2s)! {"‘”‘ }

2 (2k— 25+ 1)
(%) ( 2% )
2s 95 — 1

Remark: After completing this proof Professor Paule [21] suggested the following

This completes the proof. O

alternative way of reducing the eigenvalues given by equation (11} to the form given
in Theorem 4.14. This was done by his diploma. student Kurt Wegschaider who
has implemented algorithms in MATHEMATICA which deliver recurrences for given
multi-sums (the underlying theory of which is described in the paper [28]). Calling
the summand term F(k, ¢, ) of equation (11) (including the terms outside the sum),

we get the following recurrence for it.

(ko $) (k= 28) Flk—1 81, 5]+ (k—25) Flk - 1,5] =

A {{k—25) (#+k~25~1) Fik—1,t—1 7]+ (t— 3 F k1~ 1,5] = Flkt~1,+1]) +Aj(—F[;c,su1.j]+(1+t-j)F{k,t,.f])

(where A is the (forward) difference operator £ f(2, 7, ...) := FlE+1,4, 00— flt 5,
or A f(t, g, ) = ft, 5+ 1,...) = f(£,7,...)). It easily seen that the double sum is a
standard sum, .e. we can sum ¢ and j over all integer values. Then the sum fulfills

the recurrence

2k — $)SUMIk — 1]+ SUMIE] = 0 (17)

which too is satisfied by the expression for the eigenvalues given in Theorem 4.14. So
after checking the initial value k = 2s the identity is proved. To prove the equality

in this requires a similar amount of work and rearranging of the terms in the sum.
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Example 4.15 We list the eigenvalues X; of MM® for k = 1,2,...,10 and i =
0,...,[k/2]. Underneath we list the corresponding multiplicities m; of X; (for i =
0,...,[k/2]) in the same fashion.

Ao Ay A X Ay As
k=1
k=2 4
k=3 24 4
k=4 192 24 12
k=5 1920 192 79
k=6 23040 1920 576 360
k=1 322560 23040 5760 2880
k=8 5160060 322560 69120 28800 20160

k=29 02897280 5160960 967680 345600 201600
k=10 1857945600 92897280 15482880 4838400 2419200 1814400

‘ me ™ ™o M3 M4 ms
k=1 1

k=2 1

k=23 1

k=4 1 20 14

k=5 i 35 90

k=6 1 54 275 132

E=T 1 77 637 1001

k=28 1 104 1260 36440 1430

k=29 1 135 2244 9996 11934

k=10 1 170 3705 23256 48450 16796

Remark: It is easy to see that the eigenvalues of MM7 fall into natural order of
magnitude with Ao > Ay > --+ > Apsg. Moreover this ordering is the same as the
ordering for the partitions associated to these eigenvalues, that is A; > A; if and only
if (28— 24,24) & (2k — 25,27).
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4.4 Modules in the Decomposition of FP(k,2)

In this section we show that each module which appears in F'P(2,k) appears in
FP(k,2). We use two different methods to do this, the first is just a direct consequence
of the results given in the previous section and the second is a direct approach. These
results verify Foulkes’ conjecture (see Section 2.2.6) for the case when m = 2 and n
is arbitrary.

In the previous section we showed that all eigenvalues of MMT are non-zero
which means that M has full rank. Since FP(2 By~ S @ S* @ b gl & where
@ = (2k — 2s,2s) it follows then that FP(k,2) = S S e B se gy
for some module V. This is what Foulkes’ conjectured for the case when m = 2
and n = k. An alternative way to show that FP(F«:,Q) can be written in the form
FP(k,2) = 5 ®S* @ @54 @V is to show that for each s € {0,1,...,[k/2]}
there is a semistandard u°-tableau T of type (2F) such that Op{t}x, is non-zero for
some p*-tableau ¢. If this is the case then $*° must appear in FP(k,2).

Proposition 4.16 Fors=0,1,...,[k/2] the module 5(2k-2525) gumeqars in FP(k,2).

Proof: Let T be the semistandard (2k — 23, 2s)-tableau and ¢ the (2k 2s) tablean

given by
3...25~125~125+12s+1...kk
4 ... 2s 2s

and
;= 1357...45—34s—14s+14s+2...2k
T 2468... 45— 24s '
It is easy to see that the coefficients in (:)T{i}m of all tableaux ~-equivalent to 1" are
positive. Thus the coeficient of T in O7{t}, is non-zero and so from Theorem 2.20

G(2k=25.25) appears in FP{k,2). U

Remark: f F'is a field of characteristic p where p does not divide any of the eigenvalues
of MMT given in Theorem 4.14 then M will have full rank over F. In the expression
for the eigenvalues of MMT we see that each term is less than or eq ual to kl. Since
Do = ki 21 is always an eigenvalue of MM7T, it is clear that the elgenva,}ues of MMT

are non-zero over F precisely when p > k. Thus, for any field of characteristic p
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where p > k the module F'P(2,k) is isomorphic to a submodule of FP(k,2). This

shows that the modular version of Foulkes’ conjecture holds for all but a few primes.

Remark: The complete decomposition of FP(k,2) with k arbitrary can be found in

[26]. This decomposition can be written as follows

pp(;g,g) o E (203,202, 20r)

‘where the sum runs over all partitions p of k. For each Specht module S# which
appears in the decomposition it is easy to construct a semistandard p-tableaw T' of
type (2F) (for example the tableau with the pairs of integers between 1 and k placed
in increasing order along the rows of the tableau) such that Or{t}x, is non-zero for

some p-tableau ¢ and hence showing that S* appears in F'P(k,2).
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Chapter 5
(3,k)-Partitions

We will use the same notation as in Chapter 3. Recall that if p is a partition of 3k
then T will always denote a semistandard p-tableau of type (k*) and unless other-
wise stated ¢ will be the p-tableau with the digits 1,2,...,3k placed in increasing
order down its columns. In the first section we will consider the incidence structure
Py, and show that this has diameter equal to one. We then compute the number of
intersection classes of P(3,k) » P{3,k). It is this result that we use in calculating
the number of irreducible modules in the decomposition of FP(3,k). We study the
different semistandard tableaux of type (k°) and use them to construct semistan-
dard homomorphisms from S* to FP°(3,k). The modules which appear in FP(3,k)
comprise of a subset of the modules which appear in F P°(3,k) and we show pre-
cisely which ones they are. We use our knowledge of the modules which appear in
FP(3,k) to construct some of the eigenvectors and cigenvalues of MM, where M is

the incidence matrix for Pa g, which we will do in Sections 5.4.3 and 6.3 respectively.

5.1 The Diameter of P;;

We begin by giving an indication of the size of the incidence matrix of Ps for some

small values of k before showing that this structure has diameter equal to one.

Example 5.1 For1 <k <5 the number of elements in P(3,k) and P(k,3) are given
in the table.
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BIPG RN | 1P(R3)]
111 1

215 10

3 | 280 280

4 | 5775 15400

5 | 126126 1401400

6 | 2858856 | 190590400

71 66512160 | 36212176000
8 | 1577585205 | 9161680527750

Proposition 5.2 The incidence structure Pa i has diameter equal to one.

Proof: We need to show that for any pair of (3, k}-partitions « and -~ there exists
a {k,3)-partition which intersects nicely with both o and . It is easy io see that
. there exists o° = Wl of and v° = Wi0] in P°(3, k) which are contained in the ~-

equivalence classes represented by o and v respectively and such that the intersection

s i
oW
y z

with r > maz{s,t,1,v,w,2,y,2}, 8 2 ¢ and u > 7. Since the row and column sum

array I(a®,v°) is of the form

I(aoa v°) = {

B2 3

of the array is k we havet =k —r — 3, w=k-u—v, z=k-r—u, y=k-s—10
and 7 = r -+ s + u 4 v — k. Without loss of generality assume that s < u (otherwise
change the roles of @ and 7). It is clear that a (k,3)-partition 3 intersects nicely with
o if and only if each part of 3 contains one elemnent from each part of «®. Thus it will
be sufficient to find a (k, 3)-partition whose parts have one element in common with
each part of ¢® and one element in common with each part of v°. We can arrange the
digits in each part of o into three sets according to which part of ° they intersect
with. On a ‘diagram’ for o we illustrate, using three different fonts, which part of
+° the elements in each part of o are in. That is we will use italic font to represent

the size of the sets in the parts of o which are contained in ¢, Similarly, we use
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bold face font to represent the size of the sets in the parts of a® which are contained
in v5 and typewriter font to represent the size of the sets in the parts of «® which are
contained in 42. Thus to find a (k,3)-partition # which intersects nicely with « and
v we need to afrange the sets in each part of a® so that ‘looking’ down the columns
of a° we see each font exactly once. We illustrate such a ‘solution’ diagrammatically,
drawing vertical lines between the sets in each part of o® {note that the sets are not

drawn to scale):

rois ] ot

w r-w| u t—u+s.

wir—wt+slu—sft—u+s

All we need to check is that the size of each set is non-negative and for all ¢ and j with
1 < 1,7 < 3 that afN~{ is the correct size. It is clear by our original assumptions that
all the set sizes are non-negative. Sincer —w -+t —u+s=v,t—u ts=k—r—u=uz,
‘whtu—s=k—v~s=yandr—w+s =z this shows that of intersects 77 in a set

of the correct size. The proof is now complete. U

Remark: There is not necessarily a unique element which intersects nicely with both

o and -, the above proof merely proves existence of at least one such element.

Gince the diameter of the siructure equals one and the (o, 7)-entry of MM T counts
the number of elements which intersect nicely with a and ~, we know that all entries

of MM7T are non-zero.

£ 9 Number of Intersection Classes of P(3,k) X
P(3,k)

In the following example we list the different arrays indexing the intersection classes
of P{3,k) x P(3,k) with 1 <k <4
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Example 5.8 The intersection classes of P(3,1) % P{3,1) and P(3,2) x P(3,2) can
be indexed respectively by

1 00 200 200 1190
0 10 and 0 2 0], {0 14, 1011,
0 01 00 2 011 0 11
For P(3,3) x P(3,3) the classes can be indezed by:
3 00 3 00 2 01 2 01 111
Jos ol loz1], loe12], jo2i], |11}
00 3 01 2 12 0 111 111

For P(3,4) x P(3,4) the classes can be indexed by:

4007 [4007 [400] [301 30 1
{040,031],022,013,{031,
004| o133} loz22] [130 112
3017 211 002 27 [20 2
0221 li21], l21 1), 1022,
12 1) |11 2 2 1 1] [220

Remark: When o = 3 and 1 < b <5 it is easy to check that the intersection classes
can all be indexed by symmetric arrays. However, for a = 3 and b = 6 the intersection

classes are not all symmetric. In particular there is not an intersection class which

4 0 2 4 1 1
1 3 2 and 03 3.
1 3 2 2 2 2

Theorem 5.4 The number of intersection classes of P(3,k) x P{3,k) is

contains both

288

L (14 4 6k -+ 64k + 192k + 160 + 128¢} of & is even
sko{k* + 6% + 64k% + 138k + 79 + 128¢}  if k is odd.

where

{ 1 if 3 divides k

0 otherwise.




Proof: The number of intersection classes of P(3,k) x P(3,k) is the number of
orbits of Sym(3) x Sym(3) on the set of 3 x 3 integer stochastic matrices with row
and column sum k (see Section 3.2.3). Let H = Sym(3) x Sym(3}. Then H acts
on the set X of 3 x 3 integer stochastic matrices with row and column sum k, by
respectively permuting the rows and colurmns of the matrix. That is if (h1,he) € H
then h; permutes the rows of the matrix and hs permutes the columns of the matrix.
Since H is a finite group and X is a finite set, the number of orbits of H on X is
. given by the orbit counting theorem (Caucliy and Frobenius):

Tf%fl % IFia(h)

where of course Fiz(h) is the set of all elements of X fxed by h. We note that by
equation (8) of Section 3.2.3 the cardinality of X is

wor= (1) (1))

We begin by listing the different types of elements in H and the number of each type.

Element Type No.
hy =idxid 1
ho = id x 2-cycle 3
ha = 1d X 3-cycle 2
hy = 2-cycle x ud 3
hy = 2-cycle x 2-cycle | 9
he = 2-cycle x 3-cycle | 6
hy = 3-cycle x 1d 2
hg = 3-cycle x 2-cycle | 6
g = 3-cycle x 3-cycle | 4

For a given integer stochastic matrix z in X, all matrices which can be ohtained from
x by permuting its rows and columns are also in X. Hence it is enough to consider
one element of each type from H, that is without loss of generality we can choose
which rows and columns an element from each type permutes. We study each case

separately below.
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Case 1: The identity element fixes all integer stochastic matrices, so fixes Ha(k)
matrices. ‘

Case 2: An element hy = id x (12) fixes matrices of the form:

T r k—2r
u U ko 2u

k—r—u k—r—u 2r+4+2u—=%k

Tach of the entries of the matrix must be greater than or equal to zero. Therefore
the number of matrices which hs fixes is the number of non-negative integers r,u,
such that r,u,z < % and r +u + 2z = k. When k is odd, the possibilities for r,u and

z are given in the table below.

r u T {r u T [T ou X
k=1 k=1 | A2 A=l 1 A=t Azl
72 z 2 7 3

Thus when k is odd, the number of matrices fixed by hy is

k—1 k=3 k-5 L k4+1\ (k-1
s Tt +"'+1"’""2“( 2 )( 2

) - é(m (k- 1).

Similarly when k is even, the number of matrices fixed by ks 1s

k+2  k 1 (k+4) (k+2) 1
e o e - = | K - v 2
sttt 2(2)(9) S (k+4)(k+2)

)

Case 3: The element ks = id x (123) fixes matrices which have all entries the same
and equal to k/3. The entries of the matrix must be integer so if & Is not divisible
by 3 then there are no elements fixed by hs. If k is divisible by 3 then there is one
matrix fixed by hs.

Case 4: The element hy = (12) x id fixes the same number of matrices as hy does.
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Case 5: The element hs = (12) x (12) fixes matrices of the form

r s k—r—s
8 r E—7—3
k—r—s k—r—35 2r+2s—k

The number of matrices of this type is the number of non-negative integers r, 5,1 such
that t < k/2 and r+ s+t = k.

T s r 8 N IR N B ¢
0 ko0l 0 k-1 1 0 k-5 1]
1 k=1 0] 1 k-2 1 1 k=[] -1 (4
2 k-2 0 2 k-3 1 5

5] 5

b—1 1 0lk-1 o0 1
k 0 0

Therefore the number of matrices fixed by hs is

e ton s ([E] 1) = ([ 1) ([E82] +2)

sk +2)(3k +4) if ks even
Lk +1)(3k +5) if & is odd.
Case 6: The element hs = {12) x (123) fixes matrices of the form

T ™ T
T T r

E—2r k—92r k—2r

Thus we must have r = k — 2r = k/3 so the number of matrices fixed by he is the
same as the number of matrices fixed by hs.

Case 7: The element hr = (123) x id fixes the same number of matrices as ha.
Case 8: The clement hg = (123) x (12) fxes the same number of matrices as fig

does.
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Case 9: The element kg = {123) x {123) fixes matrices of the form

r s k—7—3
kwr—35 T 3
8 k—1r—s r

The number of matrices of this type is the number of non-negative integers r,s,1 such
that r + s +1 = k. By drawing up a table of possible values for r, 5 and ¢, it is easy

" to check that the sumber of matrices fixed by hg is

k4 2)(k+1
1+2+3+---+k+(k+1)ﬂgw“t_l2(__inl_

Therefore, by the orbit counting theorem, the number of orbits of H on X when
kis odd is

L (k+4y  [k+3)  (E+2) 3 0 3k +5
(" )+( ! )+( ! )+Z(k+1)(k”1)+-8—(k+1)(31«+0)

+2(k + 2)(k + 1) + 16¢c}
1
T 288
When k is even the number of orbits is

Pofk+4 k43 k42 3 9
L —(k 3 —(k+2)(3k+ 4
7 ( A )+( A )+( A )+4(A+é)(k+2)+8(ﬁ+ )(3k +4)

{k“ + 6k% 4 64k% + 138k + 79 + 128c} .

ok + 2)(k + 1) + 16¢}
1

* 5% {k‘* + 6E3 & B4E2 + 192k + 160 + zzsc}

where

1 if 3 divides k
0 otherwise.

This completes the proof. O

Example 5.5 The number of inferseciion classes of P(3,k)x P{3,k) for small values

of k are listed in the following table:
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no. of classes

i
3
5
9
13
22
30
45
61
85

> G o~ Sy W B Lo W

T
<

Remark: The sequence of numbers given in the above table is a known sequence (see

sequence 973 of [24]) given by an expansion of a generating function.

5.3 Semistandard Tabieaux of Type (/4:3)

As semistandard tableaux of type (k) play an important part in finding irreducibie
modules in the decomposition of FP°(3,k) and FP(3,k), for a partition p of 3k we
will consider the different kinds of semistandard y-tableaux of type (k%).

A partition p of 3k can be written in the form p = (3k — s —2r, s+ r,7) for some
non-negative integers r and s satisfying 2s + 3r < 3k. Thus, in general, if 7 + s < k
a semistandard tablean of type (£?) is of the form

11 .111...111...111...122...233...3

99 999...233...3  3k—2s -~ 3r
L e Sl e

33...3 s —w w

\..._..v...—.—/

7

[+ s>k a semistandard tableau of type (k°) is of the form
11...111...111...122...222...233...3
92...292...233...333...3 3k—2s=3r -

i et e i .
33...3s—w w
Lol

T
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fr+s<kthenO<w<sandifr+s> kthen 2(s +r— k) S w < E— .
Thus, in general w is a non-negative integer satisfying maz{0,2(s +r—k); Sw <
min{s,k — r}. For a fixed w in the appropriate range we will denote by Ty, the
semistandard (3k — s — 2r, s -+ r,7)-tableau with 3 appearing w times in its second

TOW.

Example 5.6 The semistandard tableaus of type (3%} are as follows:
111922333 11122333 11122233 1112333, 1112233

2 3 22 23
1112223 111333 111233 111223 111222
33 222 223 233 333
11123 11122 1112233 111233 111223
2233 2333 2 22 2

3 3 3

11133 11123 11122 1112 11123
222 223 233 2233 22
3 . 3 3 3 33
1113 1112 111
222 223 222
33 33 333

Lemma 5.7 For fized non-negative integers r and s satisfying 2s + 3r < 3k, let
= (3k —s—2r,s+r,r). Then the number of semistandard p-tableauz of type (E*)
iss+1ifk>r+sand3k—2s—3r+1 if k<74 s.

Proof: All semistandard (3k — s — 2r, s + r,7)-tableaux of type {(k?) are of the form
T., for some w in the appropriate range. Moreover, for each value of w we have a
distinct semistandard tableau. Hence the result follows straight from the restrictions

on w. O
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5.4 The Decomposition of FP°(3,k) and FP(3,k)

5.4.1 Modules in the Decomposition of FP°(3,k)

From Section 3.2.1 we know that all irreducible modules in the decomposition of
FP°(3, k) are isomorphic to Specht modules 5* where y = (pi1, pi2, p3) is a partition
of 3k with at most three parts. Since the semistandard homomorphisms Or form a
basis for Aqup‘Sym@k)(S“, FPo(3,k)) and dim(Hompgym(n(S*, FP°(3, k))) equals
"the number of semistandard s-tableaux of type (k%) we can calculate precisely how
many irreducible modules are in'the decomposition of Peo(3, k). We state the result

here but remark that it may already be a known result.

Lemma 5.8 The number of irreducible modules in the decomposition of FP°(3,k) is

(A2 09k 4 5k + 4} if k is even
{ B9k 4 Th+ T} if k ds odd.
Proof: Let = (3k —s ~2r,5+ r,7). Then from Lemma 5.7 the multiplicity of 5%
in FP°(3,k) is s+ 1 =y pz+1ifk>r+sand 3k —2s —3r+1= pr— pa+ 1=
3k ~2us —pa+ 11k <r+s To calculate the number of irreducible modules in the
decomposition of F/P°(3,k) we sum over the possibilities for u. Thus the number of
irreducible modules in the decomposition of FP?(3, k) is:

[25]
H2

k k—2 Z
S S (et 1)+ Y Y (Bk—2pp — s+ 1)

=20 =0 pa=8 po=k+1

The first sum is

1+(1+2)+(1+2+3)+--~+(1+2+3+~--+(k+1))
1
= ;5{1-2+2-3+3-é+4-5+-'-+(la+1)(.’s+2)}‘

= S+ Dk + 2k +3)

The second sum is

1%«(1—}-2+3)—i~(1+‘3+3+4+5)+-'-+(1+---+(k—w'l))ii'késeven
(1~1~2)+(1—i~2+3+¢i)+----}~(1+2~i—3+'--+(iﬂ~1}) if k1s odd
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_{%{1-2+3-4+5-6+---+(k_1)k}ifkiseven
S\ M2 344546 T4+ (k— 1)k} if kis odd
B ﬂ%’ﬂ{%—l} if k is even

a { RN 0k — 1) + 5} if k is odd.

Adding the two sums together we get that the number of irreducible modules in the
decomposition of FP?(3,k) is

Q‘—gﬁ{ZW + 5k 44} if kis even
B 982 4 Tk 47} i kb is odd

as required. OJ

The dimension of each of these modules can be calculated using hook lengths (as
defined in Section 2.2.4).

Lemma 5.9 If p = (py, po, 3) is a partition oka then the dimension of S* is given

bi
’ (3)! (s — 122+ 2) (31 = o+ 1) (s — s 4 1)

(g1 + 2)1 (pg + 1) !

5.4.2 The Complete Decomposition of FP(3, k)

In this section we will completely decompose the module FP(3,k). From Corollary 3.9
we know that for ¢ € {0,1,..., k} the module S®*~%49) appears in F P(3, k) precisely
when ¢ is even and in this case the multiplicity of this module in FP(3,k) is one.
Thus we have already found [k/2] + 1 irreducible modules in the decomposition of
FP(3,k). Theorem 3.8 also provides a source of modules in the decomposition of
FPE, k) IE u* = (uf,p5,43) b 3(k —2) and S*° appears in FP(3,k — 2) with
multiplicity m > 0 then S* appears in FP(3,k) with multiplicity m > 0, where i =
(11 +2, p5 + 2, p3 +2) F 3k. To use this inductive way of finding irreducible modules
in the decomposition of F'P(3,k) we need to find the complete decompositions of
FP(3,1) and FP(3,2). Trivially, FP(3,1) is isomorphic to S® so we only need

to consider F'P(3,2). We know from Corollary 3.9 that S® and 5(222) appear in
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FP(3,2). Moreover, the results of Section 4.4 show that 5™ appears in FP(3,2). A
simple calculation summing the dimension of these modules shows that they all have

multiplicity one and form a complete set of irreducible modules in the decomposition
of FP(3,2).

Remark: The fact that every irreducible module in the decomposition of FFP(3,1)
and FP(3,2) has multiplicity one is not a surprise to us. By the remark following
Example 5.3 we know that when a = 3 and 1 < k < 5, the partition scheme P.S’(S, k)
is commutative and so all irreducible modules in the decompos"iti'on of the permutation
module FP{3, k) will have multiplicity one {see the end of Section 3.2.3).

Next we consider the partitions with two rows, that is partitions of the form (3k—s, s)
for s =0,1,...,k+[k/2]. In the following we give a lower bound for the multiplicity
of §%~5) in the decomposition of F'P(3,k).

Proposition 5.10 For s € {0,1,...,k + [k/2]} let d be the non-negative integer
satisfying 0 < d < 2 so that 3 divides 25 — d when s is even and 3 divides 25 —~ d — 2
when s is odd. “Then the Specht module S©®=%%) appears in F P(3, k) with multiplicity

greater than or equal to my , which is given by:
1. If s < k then

Zmd 2] if 5 is even

Mik,s = Zi%ﬁ—z—wﬁs—l—i-l if s is odd and d # 0

2s—§£—2 _ 3_5_1_ if 5 15 odd and d = 0.

2. If s > k with k even then

zfélimzfg—&+l if s 1s even

My, = g-s—:ét:w%wz%fﬁ—%-l if 5 is odd and d # 0
Bdnl L mmk if 5 is odd and d = 0.
8 If s >k with k odd then |
35—;—4“—25:%'—1—}—5 if s is even
Mis = 23_;‘2 — 2l 4] if s s odd and d £ 0
2ecdz? . Backol if s 15 odd and d = 0.
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Before we prove this result we will introduce some notation to enable us to write
down the coefficients of certain elemnents involved in ©¢{t}x; for given semistandard
tableau T and tableau t. Let T, be the semistandard (3k ~ s,s)-tableau with 3
appearing w times in the second row. So if s < k for some w satisfying 0 < w < s
then the tableau Ty, will be of the form

1.11---11---12---23...3
‘ .S-‘-*’LU w . ‘ o

If s > k for some w satisfying 2(s — k) < w < k then the tableau T, will be of the
form
1 1101242200233

23 :33---3
\._.\,_/\_.........V........_-.-J

w

& — w

As usual ¢ will be the semistandard {3k — s, s)-tableau given by

18..-25—12s+1--- 3k

24 - 23 '
The image of {t}x, under Or, can be written in terms of (3k — s,s)-tableaux of
type (k®) (see Section 3.2.2). The effect of applying the map™to O, {t}re 15 to add
together the coefficients of those fableaux which are ~equivalent (i.e. those with the

same pattern). Below we calculate the coefficient of T* in O, {t}r; where

zr
,--w——--'\—-m—\
" 11 13...31...12...23.‘.3 :
T* = . (18)
3 .32...22...2
Y

Iet = be the number of 3's in the first s columns of T7, so & +y + z = = 2s. Denote
the coefficient of T* in O, {t}r, by b, ,. It 1s easy to see from the definition of O,
that if 7' is a (3k ~ s, s)-tableau of type (k*) with 1 appearing @ times in the top
row of the first s columns, 2 appearing y times in the first s columns of the second
row, 3 appearing z times in the first s columns (such that each column contains
distinct entries) and the remaining columns the same as T* then the coefficient of T
in O, {t}x: will be the same as the coefficient of T* in O, {t}x:. Thus the coefficient
of T* in Oy, {t}r: will be the same as the coefficient of T' in @, {t}x: Hence. to
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calculate the coefficient of T in @Tm{t}m we can calculate the sum of the coefficients
of each of the T' in O, {t}x, and divide by the number of different T". The tableaux

~-equivalent to 1™ are

1...11...13...31...12...23...3 2...22...23...32...21...13...3

3...32...22...2 » 0 3...31...11 .01 ’

1...11...12...21...13...32...2 3...33...32...23...31...12...2

2...23...33...3 »2...21.0..11 .01 ’
9 99 ...21...12...28...31...1 3:...33...31... 13...32...21...1

1...13...33...3 1 ...12...22...2 '
Thus (z) (y+i~ )bg’w is equal to

b mer L n e

%(; - ?;) (5" ”’"t+ y)(—l)y—w * (ii:ﬁ) (y ——f+ a:)(mz)ww
+(m"-?:+ w) (;:z> (—1)" + (y W“‘:’_t_ w) (:; ":’:;) (_1)10} |

By multiplying out the terms of the binomial coefficients this expression can be rear-

ranged into the form

TR [ e (AT PR R [ N S
+( )(;ii) (Sfy)( 1y ()(S*z)) (S_Iﬂ)(_l)wﬂ-x
(m+y~5)($+u{~5)(‘25~$”?f') Joms

L Y

Now on noting that

RN I T R AN g
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we have that

COE R | (O [STATY M [ VRS (R (o
+(;:i)("1)3” + (m ;E;s)(-—l)s + (‘T :f;s)}
S o LS o e GRS G [T
e on ()

It is easy to see that 8%, , = £b7 = kby = £by, = 5, = £b7, . so without
loss of generality we can restrict z, y and z so that 0 < z <y < 2. We use this way
of finding the coefficients of certain elements in O, {t}xs in the following proof of the

proposition.

Proof: Let T,, be the semistandard (3k — s, 5)-tableau of type (k*) defined above and
let ¢ be the usual (3k — 5, s)-tableau with the digits increasing down its columns. We
will construct a subset [ of the even integers between 0 and s such that {Bg, |1 € I}
are linearly independent. To show linearly independence we will show for ¢ € 1 that
there is a (3, k)-partition involved in Oz, {t}; which is not involved in O, {t}#, for
all 7 € T with 3 <.

Suppose s is even and let I'* be the tableau with 1 appearing @ times in the first s
colurnns of the first row and 2 appearing & times in the first s columns of the second
row such that z = 2s — 2z > z and the entries in the columns of T are distinct.
The coefficient of T* in O, {t}xs is b, , which is given in equation (19). We look
at the possible values that @ can take. It is easy to see that z must be less than or
equal to the minimum of k and s. Let d be the integer satisfying 0 < d < 2 such
that 3 divides 2s — d. Using (18) we see that when k > s, the smallest value that
can take is s/2 and the largest value is (25 — d)/3. When k < s with 3k # 2s -+ 1.
the smallest value that @ can take is [(2s — k + 1)/2] and the largest value that »
can take is (25 — d)/3. When k < s with 3k = 25 +1 then 3 divides 2s ++ 1 and so
d = 2. In this case (2s — k +1)/2 = k and s0 25 — 2z = k — | which contradicts
s>z Also (25 = d)f3 =k —1andso 25— 2z =k-+1 which contradicts = < k.
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Therefore when 3k = 2s + 1 the number of different values z can take is zero. Thus
in general, the number of values z can take is (25 ~ d)/3 — s/2 + 1 when s < k and
(25 — d)/3 — (25 ~ k +1)/2] + 1 when k < s (note that this is consistent with the
case 3k = 2s + 1). As z runs over the values in the appropriate range, let I be the
set of integers of the form 2z —s. Then || is the value my , given in the proposition.

From equation {19)

o 2020 = 2(=1)" { (2-5 S w) (~1)7 + (i B f;) (—17 + (i(”juf) } (20)
s {10 e S )

Since z = 28 — 2z > z we have s — z > 2z — 5. Fix & in the appropriate range and

let w = 22 — s € I. Therefore w is less than s —  unless 3z = 2s. So for 3z # 2s

: bzm,%w?x == 2(M1)$ :fé 0.

If 32 = 25 and-s0 22 — 5 = s — ¢ then
by oo =6#0

When i < w theni < s~ and 50 b, , 5.5, = 0. Thus T* is involved in O, {t} 5, but is
not, involved in @, {t}x, for i < w. Since = was arbitrary we have constructed a set of
mp., linearly independent homomorphisms {87, {w € I} from GBk-s9) 4o FP(3, k).
By Theorem 2.20 the multiplicity of S® %) in the decomposition of F P(3,k) is
greater than or equal to myg,.

Now suppose s is odd. We use a similar method to construct a set of my s lnearly
independent homomorphisms from S®#=*%) to FP(3,k). Let T* be a tableau with |
occurring z times in the first s columns of the first row and 2 occurring « + 1 times in
the first s columns of the second row with the property that z =2s =22 —~1 2 v +1
and the columns of T* contain distinct entries. The coefficient of 7" in Or, {t}, is
Y y41.20-20—1 Which is given in equation (19). We look at the possible values that
can take. Again it is easy to see that z must be less than or equal to the minimum

of s and k. Let d be the integer satisfying 0 < d < 2 such that 3 divides 25 —d — 2.
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Using (18) we see that when k > s, the smallest value that z can take is (s —1)/2
and the largest value is (2s —d — 2)/3. When k < s with 3k # 25 or 3k # 28+ 2, the
smallest value that z can take is [(25 — k)/2] and the largest value that = can take s
(28 —d —2)/3. When k < s with 3k = 2s or 3k = 25 42 then 2 cannot be (2s — k) /2
for otherwise we have 25 — 22 — 1 < z -+ 1 which contradicts z > z + 1 and z cannot
be (25 — d — 2)/3 for otherwise 2s — 2z — 1 > k. Therefore z cannot take any values
when 3k = 2s or 3k = 2s + 2. Thus in general, the number of values = can take is
(28 —d—2)/3 ~(5-1)/2+1 when s < k and (25 —d —2)/3 ~[(25 - k)/2] 4 1 when
k < s (again this is consistent with the cases 3k = 2s and 3k =25 + 2). When d =0
one of the values that z can takeis (25 —2)/3. Inthiscase z = 2s -2z ~1=2a+1 =y
and it is easy to see from equation (19) (using the fact that = is even and s is odd)
that b2, , = 0 for any value of w. When d # 0 it is clear that (25 — 2)/3 is not an
integer and so z cannot take this value. As z runs over the values in the appropriate
range with = # (25 — 2)/3, let I be the set of even integers of the form 2z — s + 1.
From equation (19)

b o gemem = (1) {(25 N w)(ml)w 4 (m i: w) (1)
T Pt (R G [
(e (0]
- e {(w - (i:j? - 1)) =1 (w - (;W—xs + 1)) (=1
o i S Gt [

241 —s 2041 —3
+(w“(8~m))(_1)+ (w"“(s—ﬂ:ml))} 2

As2s—2z—1 > z+1 we have 2z —s5+1 < s~z —1. Fix z in the appropriate range

and let w = 2z — s+ 1 I. Thus w is less than s —z — 1 and so

b;‘;‘.r*}'l,%—dxml = ‘2(,,__1)&‘-%—1 75 0.

When i € T with i < w we have i < s —x — 1 and 50 b}, 41195003 = 0. Thus T is
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involved in O, {t}#, but is not involved in Or{tyr, for i € I with i < w. Since z
was arbitrary we have constructed a set of my, linearly independent homomorphisms
{Or, lw & I} from §(3k=s3) 1o FP(3,k). Again using Theorem 2.20, the multiplicity
of §®~55) in the decomposition of FP(3,k) is greater than or equal to mg,s. This
completes the proof. O

For s € {0,1,...,k+ [k/2]} the expression for the multiplicities my, given in Propo-

sition 5.10 can be simplified in the following way.

Lemma 5.11 Let s € {0,1,...,k + {k/2]}. When s # 1 write s = Gc+ 7 with
r e {0,2,3,4,5,7}. Then the multiplicity mg, of Proposition 5.10 can be written as
0 ifs=1
mps =4 c+1 ifs#1and s <k
c-—»{ﬁ—“—};ﬂ]+l ifs# 1 and s > k.
Proof: There are twelve cases in Proposition 5.10 to consider which we will work
through in turn but first we look at what happens when s = 1. When s = 1 we have

d = 0 and it is clear from Proposition 5.10 that my; = 0.

Assume s is even. Then
3|2s — d & 6]4s —2d < 6]s — 2d

and so s = 6¢ + 2d for some non-negafive integer c. Thus r = 2d. When s < k then

25 —d s 85—
—— ] = 1l = 1.
3 2+ 5 + c+
Wheﬁ s> k and k is even we have
9s —d 25—k 3k — 25— 2d s —k
3 5 + 1 5 -+ ¢ 5 +
When s > k and k is odd we have
26 —d 28~ k-+1 3k — 28 —2d — 3 g—hk+1
- - 1= e L
3 5 +1 5 4 C 5 +

Now assume s is odd in which case -
325 —d -2« 6ld(s ~ 1) —2d & 6ls — 1~ 2d
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and o s = 6¢+ 2d + 1 for some non-negative integer ¢. Thus r = 2d + 1 when d # 0
andr:6+2d+1whendm0.Forsgkifd#ﬂthen '

96 —d—2 s-—1

3 I +1=c+1
andifd=10
23—«:%—2_5»»—1_ L1
3 g T
When s > k and & is even with d # 0 we have | ‘
9 —d—2 25—k 3k — 2 —2d — 4 k41
3 i 41 = : +1=c-— 5 + 1
and when d = 0 then
25~dw2__23—k~3kw23——2d—~4~_ m3wk+i+l
3 2 6 = 9 ‘
When s > k and k is odd with d # 0 we have
25——dw—2_23—~kw—1+1_3k-23m2d~—1+1_~ —~S~k+1
3 2 - 6 “fT Ty
and when d == 0 then
9 —d—2 2s—k—1 3k—2s—2d—1 s—k
— = = 4 1.
3 2 f 2

This completes the proof. O

For small values of k we constructed the modules in the complete decompositions of
F P(3, k) using semistandard homormorphisms. We've shown that if 5 (i wiz b2 appears
in FP(3,k — 2) with multiplicity m then Glm+2m+2u+2) gppears in FP(3, k) also
with multiplicity m. The examples that we consty ucted suggested that the only other
modules which appear in FP(3,k) are Glak=s:8) gpd GEBk=s-8s+4L) with multiplicities
my.s and M.z, respectively (with mp given in Lemma 5.11). We will prove that

ihese are in fact all the modules which appear in I P(3, k) for general k.

Proposition 5.12 For k > 3 and 0 = s < (k—3)+ [(k —3)/2] the Specht mod-
wle GBk=s=5st41) gypears in FP(3, kY with multiplicity al least miy_a, {given in
Lemma 5.11).
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Proof: For & > 3 and 0 < s < (k — 3) + [(k — 3)/2] let T\, be the semistandard
(3k — s — 5,5 + 4, 1)-tableaux with 3 appearing w + 2 times in the middle row and
2 appearing at least twice in the middle row. So for some w satisfying maz{0,2(s —
k+3)} < w < min{s, k— 3} the tablean T, will be of the form

11t1d...11...011...12...23...3 1111t...11...12...22...23...3
22222...23 3 or 22222...23...33...3
3 swti w+2 3 s—u-1 w+2

Let ¢ = ¢; U1y where

_10...28+8...3k
. 25+ 9 )

We will use a method similar to the proof of Proposition 5.10 and construct a set [
with the property that if w € I then there is a (3, k)-partition involved in Oy, {t}e:
which is not involved in O {1}« for ¢ € I with ¢ < w.

Consider the tableaux in Oy {t}x: which are ~-equivalent to the tableau T° =
T** U T* given by

1112
T —=29233 and TF =)
3 P

Let the coefficient of T° in Oz {t}r: be diys 15,4 Where z = 28 — o — . Any
tableau ~-equivalent to T° which is involved in O, {t}x; can be written in the form
T"gy U T'gy for g1 € Cyy, g2 € Cyy and T U T' row equivalent o T, (where clearly
T"g; is ~-equivalent to T** and T"gs is ~-equivalent to 7). The tableau T must
contain three of each of the digits 1,2,3 and hence will be of the form

1112 1113
2233¢g5 or 2232¢, forgs,gsa € Ry
3 3

Thus 7" must contain w or w - 1 {respectively) 3’s in its second row. We consider

the possibilities for T"g;. These will be

3 221 22

2 133, 33
1

SRR
— e
—

112 11
233, 32

[T S
t\')wr—'
e [ND T

2
1
3
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It is easy to check that the sign of g1 in Oy, 1s +1 if T” has two 2’s and two 3’s in its
middle row and —1 if T has three 2’s and one 3 in its middle row. Moreover, there
is only one way of constructing each of these formulations for the first four columns

of a tableau involved in (:)fl"*w{t}"“i' Therefore

w o BW w1
dm-§-3,y+3,z+3 - b'rry!z o bm!ylz

where the 0¥ are coefficients of the (3(k — 3) — s, s)-tableaux given in (19).
Assume s is even and let d be the integer satisfying 0 <d <2 such that 3 divides
9s — d. For 3(k — 3) # 2s + 1 let I be the set of integers of the form 2z — s with
s/2 <z < (2s—d)/3ifk—32=s and (2s —(k—3)+1)/2] sz < (28 — d)/3 if
k — 3 < s (note that we have already shown in the proof of Proposition 5.10 that z
can run over these values). We will now show for w € 1 that d¥, s .13.43 15 210 if

and only if the coefficient 52, , of the (3(k — 3) ~ s, §)-tableaux given in (20) is zero.

T E

From equation (20) we have L

T,%,25—2

> {(w‘l‘)x ((w + 13:(2 - :v))+(w + 15:(;9: - s))>+(w + ?m—"ﬂ(j* "’)>} |

Fix z in the appropriate range and let w = 22 — s € J. 2z —s < 3 — x then

equals

B pss = 2(—1)7 When 2z — s + 1 < s — & we have from the above

bw-irl — 2(_1)x+1 (8 - :C)

5,25 23
and thus
U esgenanrs = 2—1)7(s — @+ 1) #0 (since s 2 ).
[f22 - s-+1=s—x then 3z = 2s — 1 (so z is odd) and we have
Bt e =21 {(=1) + (s = @)(=1) + 1} = 2(s ~ %)
and thus
02y s prazsmaers = —2 208 = z) = ~2s —z+1) #0

When 2z — s = s — x (so 3¢ = 28) then b¥, 5., = 6 and

bf.i.i‘h—h = -1 {(s—2)+ (s — z) + (22 — )}
,W_“- 2(—1)8,
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g0 we have

g,:r,f&s—?x =6 + 2s ?é 0.

7 € I is less than w then ¢ -+ 1 must also be less than w (as ¢ and w are even)
and since 2z — s < s — x we have that b, s, Bifls, s, and di s piaas—tuta BTE
all zero. Therefore when w = 2z — s we have shown that d¥,5 50,2048 1§ ROR-ZETO
and di g 152s-0043 is 2er0 for i € I with ¢ < w. In other words, T is involved in
@T {f}fﬂt but is not involved in @T {t}r, for 7 € I with ¢ < w. Hence we have a
set of mi.. 35 imea,rly mdepenéent FSym{3k)- homomorphlsms from Sk~s=8sthl) o
FP(3,k), one for each value of w in I.

Now assume that s is odd and let d be the integer satisfying 0 < d < 2 such that
3 divides 2s — d — 2. When 3(k —3) # 25 or 2s+2 let z be such that (s~1)/2<a <
(25 —d~2)/3if k—3 > s and 25— (k—3)/2] <z < (25 —d—2)/3ifk—3 <s (note
that we have already shown in the proof of Proposition 5.10 that z can run over these
values). For z in the appropriate range discluding « = (25 — 2)/3 let I be the set of
integers of the form 2z — s + 1. We will now show when s is odd and w € [ that
¥\ 3 ppars 15 zeto if and only if the coefficient bY 41, Of the (3(k — 3) — s, 8)-tablean

given in (21) is zero. From equaftion (21) putl 125201 equals

(s S0 T ) (o e )b

R A | @ s—x—1 x4+
w%v(uw—l-—(:.:——rc))(_l) + (w+1m(2$*5+1))(W1)

20 + 1 — 8 241 —s o
+(w—l—lm—(s—:r))(wj')+ (w-%“l"“(S“”f’f*l))}' (2,2)

Fix 2 in the appropriate range and let w =2z —s+1¢€ I.fw+1<s—a—1then

2w — 41
bx‘:z:-}-i.?s"HZ:c—l - 2(“1) and

b;g,i-l}-‘i,‘ls—wal = (~1) {(ml)x“(s — )+ (=) s — o~ 1)}
(—1)(2s — 2z — 1).

Thus

dpyazia2s—ot2 = (=¥ (28 = 22 + 1) # 0 (since s = w}.
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2 —s-+2==s—gz~—1 (so 3z =25—3) then b 1 9520-1 = 2 and
bt 2smzer = (1) {-D+(s—a)+(s—z-1)+1} = (—1)(2s — 2z — 1).

Therefore we have that

dz‘u+3,x+é,25m'2x+2 =25 —2z -+ 1 #3 0.

If i € I is less than w then ¢+ 1 must also be less than w (as w and 7 are even} and as
952z —1> a+1(s02z—s+1 < s—x—1) wehave that bl 44y 262017 B gsmammt
and di s s05-2042 2TC all zero. Therefore we have shown that T° is involved in
Oy, {t}r; but is not involved in O3 {t}s; for 1 € [ with i < w. Hence, we have a
set of my_3 , linearly independent F Sym(3k)-homomorphisms from S (3k-s=5,s+41) to
FP(3,k), one for each value of w in I. This completes the proof. O

The following theorem gives us an inductive way of finding the complete decom-
position of FP(3,k). Using the known decompositions of FP(3,1} and FP(3,2) we
give, as a corollary to this theoremn, a simple and direct way of writing down the

modules in the complete decomposition of FP(3,k).

Theorem 5.183 The complete decomposition of FP(3,k) into irreducibles is given a3

follows:

7. Fork > 1 with 0 < s < k+ [k/2] the modules GBk=33) gppear in FP(3, k) with

maltiplicity my , (given in Lemma 5.11).

9 Fork >3 with0 <s < k- 3+{(k—3)/2] the modules GBk=s=Botdl) gppeqar in
FP(3,k) with multiplicity my—ss (given in Lemma 5.11).

9. For k > 8, if Stww2s) appears in FP(3,k — 92) with multiplicity m then the
module SUn+nmt2et2) gppears in FP(3, k) with multiplicity m.

Proof: We have already shown in Theorem 3.8 that if g = (1, iz, pa) is a partition
of 3(k — 2) then the multiplicity of Gl +zuat2ast?) in FP(3,k) is the same as the
multiplicity of Glenmzwa) iy FP(3.k — 2). We have also shown that SE¢~*) and

G(3k=s-55+41) appear in FP(3,k) with multiplicity greater than or equal to my,s and
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Mi—ss respectively. Thus we need to show that these give all of the irreducible
modules in the decomposition of FP(3,k) and so the multiplicity of SEk=53) and
§@k-s=55+41) are precisely my s and my_z, respectively.

Let the sum of the squares of the multiplicities of all modules which appear in
FP(3,k) be ny and let dy be the sum of the squares of the multiplicities my s for
s€{0,1,...,k+[k/2]}. A fundamental result of Section 3.2.3 is that ny is equal to

the number of intersection classes of P(3,k) x P(3,k). We will use this to show that
N = Ngg + di + dp_s. | {23)

We will write
dp = Zaiiz

where a; equals the number of s € {0,1,...,k + [k/2]} with my, = 1. There are
twelve cases to consider, one for each value of 1 in {0,1,...,11} such that 12[k — 2.
We will work through the first case in detail, the other cases can be constructed in an
analogous way. For each's in {0,1,...,k + [k/2]} we work out the multiplicity my,
given by Lemma 5.11 and tabulate the results. When k£ > s we have

Mg, s 8
0 1
0,2,3,4,5,7

2 6,8,9,10,11, 13

B6—1 k=12 k=10, k=9, k=8 k=T, k=5
k/6 k6 k—d k=3 k—2k—1
R/6+1 |k

and when k < s we have
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Mk, s s

k/6 k+2

k6 -1 k+1,k+3 k+4,k+6
/621 k45, k+8

1 k4 k/2—5, k+k/2—3, k+k/2—2 k+k/2
0 Bt k/2—1

Therefﬁre, when 12|k we have

. , , k' 2 B\ 2 k 2
dy=10-1*4+8-2°+10-3"+--- + 10 gwl +6 g +1 ~6—+1 .

More generally, for i = 0,1,...,11 (listed in this order) with 12|k — 7 we can write dp.

as:
1. 10-12+8-2?+10-32+---+zo(gm,z)2+6(-g-)2+1(g—u)z.
2 9.1249° 241934 +9 (k1) 48(5) w1 (k1)
3, l8'-12+10-22+8-32+---+8(Mw1)2+9 k2) yg (k22 4 1))
4 9124924934 +9(52 1) 4o 13 (52 +1)
5. 10-1248-22410-3 +---+10 (52 —1) 48 (54) 45 (5t 4 1)
6. 9124924934 +0 (k5 —1)" 4o (k) 6 (541
8 12410-2 48 824+ 10(528) 46 (50 1) + 1 (B0 +2)
. 912492498+ - +9(50) 48 (kT 1) 11 (5T +2)

]
0. 101248 2410+ +8(58) o (s 1) 2 (B2 e2)

10, 9-1249-2249-3 4. 49 (42 2+9(&gﬁ+1)2+3(k59+2) .
1 812410 248 3+ +10(520) 8 (52 4 1) 45 (B0 4 2)”
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12, 9124922495 449 (k) po (bt 1) 46 (kR 4 2)

We can reduce the above to six cases:

1T 6]k then dy = dys +1 (5= 1) +4(E) #1 (k4 1)
2. Tt 6lk — 1 then di = diy +5 (552) +1 (552 + 1)
3. 16 6}k — 2 then dy = dig + 4 (52)" +2 (522 4 1)’
0 T 6k = 3 then ds = s + 3.(£52) 43 (552 41)"
5. 15 6k — 4 then dy = de—s +2 (552)" +4 (5 +1)"
6. 16 6]k — 5 then di = de_s +1(552)" +5 (52 +1)"

Let % = dp + dg_z — dg_s — dr—7. Then we have:
1. 16 6k (= 6|(k — 3) — 3) then w =4 (£ —1) 4+ 7(&) + 1 (& + 1))
_+_

2. 16 6 — 1 (= 6l(k — 3) —4) then % =2 (52 — 1) 49 (551) 41 (322 +1)’
3 T 6l —2 (= 6](k - 3) - 5) then = = 1 (522 — 1) +0 (52) 42 (82 +1)
4 T 61— 3 (= 6]k —3) —0) thenx =1 (552 = 1)" 47 (52) 4 a (52 +1)°
5. T 6 — 4 (= 6](k — 3) — 1) then %, = 7 {54)" 45 (52 1),
6. 1 6]k — 5 (= 6](k — 3) —2) then % = 5 (52) " + 7 (&2 + 1) .

It 1s ea,s’y to check by multiplying out terms that
Lj? wk+5—4(w——1) +7(§)2+ (§~!«1)2
= (&2 -~ 1) +7(i“mg~§)2+4(ﬁngm§+1)2

and

%fchk%‘mz(’“?"1)2"*”9(’"”"“5*1“)2*(%”1)2
= (2 -1) bo(s2) 42 (R + 1)
=7(554) 5 (k5 +1)]
=5 () 47 (50 0)
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Therefore, if 3 divides k then %, = %kz — k+5 and if 3 does not divide k then
*p = 3k* — k + 4. We can now prove (23) by induction. For 1 < k < 8 we
have constructed the modules which appear in FP(3, k) using Propositions 5.10 and
5.12 and Theorem 3.8. Using Theorem 5.4 and as an extra verification calculating
and adding together the dimensions of the modules, we have shown that these give
all modules which appear in FP(3,k). The results of this exercise can be seen in
Section 6.2 and in the Appendix. From these results it is easy to see that (23) holds
for siall values of k. Assurne that (23) holds for all k* < k. When 3 divides k we

can write
di + dps = dres + dpr -i-%kz k45
— s B k45 (by (29)
Similarly, when 3 does not divide & then

1 il
dp + dis = Ngeg — Nkes T -'3-k2 — k- 3

Therefore we need to prove that

Mg = Mgy + Mg~ Nims T K- (24)
By Theorem 5.4 we have

(k" + 6k + 64K + 138k + 79 + 128} if ks odd
L ==
* fgg{kq + 6k 4 64k 4+ 192k + 160 + 128c} i k is even.

where
_ { 1 if 3 divides k

{0 otherwise.

To complete the inductive step we need to show that ny satisfies equation (24). So
let k be odd and such that 3 divides k (so 3 does not divide k —2 or k —4 but 3
divides k — 6) then

1 -
M2 T k-t = k-8 T ooz {(k — )+ (k- 4)* ~ (k—6)" +6(k— 2% 4 6(k — 4)?

Bk — 6)° + 64(k — 2)? + 64(k — 4)” — 64(k — 6)?
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+138(k 2) + 138(k — 4) — 138(k — 6) + 79 — 128}

= 28 5 {k-‘* + 6k° — 32k 4 426k — 1233}

— 4 ‘[“3 2
288{k + 6% + 64Kk% + 138k -+ 79 + 128
~96k” + 288k — 1440}

g
- nkw(gk?‘mkmi—S).

When & is-odd and 3 does not divide k then either 3 divides k~2 or 3 divides k —
Therefore

1
Mgy 4+ Tped ~ N = 5@ Bt 6kS — 32k% 4+ 426k — 977}

= ﬁg [# 4 6K 4 64K" + 138k + 79 — 96k” + 288k — 1056}

11
e )
" (3 T3

Similarly, when k is even and 3 divides k we have

Ty ¥ s — Nhg = 288 {k‘* + 6% — 32k% + 480k — 1132}

= 5% {k‘* + 6k% 4 64K% + 199k + 160 + 128

—96k2 + 288k — 1440}
= Ny — (_;_k-?w fc—|—5>

and when k is even and 3 does not divide & then

ooy T Mg ~ Mg = 288 {f;* + 6k3 39k% 4+ 480k — 896}
. 4 3 2 2
- {4 6E° 647 + 192 + 160 — 96k + 288k — 1056}
1
= - (Bkz—wk—i— 13)

Hence nj = Mgy + g_q — Ni—s + %% and 80 np = Ng.z -+ dy + dia as required. O

Corollary 5.14 The modules which appear FP(3, k) are G(3(k=2u) =gt 2u,2ub s 20)
with multiplicity My—gu,s and G(B{k—2u)-s=5+2us 2k b 20t} it multiplicily Mi—gu-3.-

These form a complete set of ireducible modules in the decomposition of FP{3.k).
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Proof: By construction and using the known complete decompositions of FFP(3,1}
and FP(3,2), all partitions p such that S* appears in F'P(3, k) have diagrams of the

form
NI S I T W O S KX

KX L KK X oo X B(k2u)~2s
\.....—-—-\,-—u-——/

X X... X s
NN
Zu
or
XX L. X XXX M XL, XX X e, x X

KX, XXX KX XL, X 3(k—2u)~25—9
LR

XX oKX K §
s e
2u

The multiplicity of the modules are given by my_ou,s and mi_ou-a;s respectively. &

5.4.3 Modules in the Decomposition of FP(3,k) with Mul-
tiplicity One

Using the results of Section 3.3, for any ‘module $# which appears in F'P(3, k) with
multiplicity one there exists a semistandard p-tablean T of type (k*) such that Or(5*)
is contained in an eigenspace of MM?. Therefore we can use our knowledge of the
complete decomposition of F'P(3, k) to find some of the eigenvectors of MMT. The
semistandard tableaux which we require to construct these eigenvectors are given in
the proofs of Propositions 5.10, 5.12 and Theorem 3.8. We start by constructing
the set of modules which appear in FP(3, k) with multiplicity one or in other words
we look at the partitions which are simply associated to eigenvectors of MMT. By
Lemma 5.11 and Corollary 5.14 the modules which appear in FP(3, k) with multi-

plicity one are given below.

1. Fors € {0,1,...,k—2u-+{(k—2u}/2]} let c and r be non-negasive integers with
r e {0,2,3,4,5,7} such that s = 6c+r. Then the module §Bk-2u)=st2ustinda)
appears in FP(3, k) with multiplicity one if s € {0,2,3,4,5,7} and s < b — 2w
This module also appears with multiplicity one if 3{k—2u} = 2541 or 3 h—-2u) =

95 +7 + 3 and s > k — 2u.
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9. Fors € {0,1,...,k—2u—3+[(k—2u—3)/2]} let c and r be the non-negative
integers with r € {0,2,3,4,5, 7} such that s = 6¢+r. Then the module
GB(k~2u—3)—s42uta,st2u+4.2u41) appears in FP(3,k) with multiplicity one if s &
{0,2,3,4,5,7} and 3 < k—2u ~ 3. This module also appears with multiplicity
one if 3(k—2u—3)=2s+ror 3k —2u~-3)=2s+r+3 with s > k —2u — 3.

We will use these modules in Section 6.2 and Section 6.3 to construct some of
the e1genvalues of MMT. The modules which appear in FP(B k) with multlpilmty
greater than one do not give rise so readily to elgenvectors ‘of MMT. We can use the
linearly independent homomorphisms from 5* to F'P (3, k) which we constructed in
the proofs of Propositions 5.10, 5.12 and Theorem 3.8. Taking an appropriate linear
combination of these homomorphisms we can map S* into an eigenspace of MM Toit
is not clear how to do this in general, but in Section 6.2 we work out all eigenvectors

and eigenvalues of M>*(M*¥)T for small values of .
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Chapter 6

TFoulkes’ Conjecture for

(3,k)-Partitions

We will use the results of Chapter 5 to prove Foulkes’ conjecture for the case when
m = 3 and n = k is arbitrary. As we discussed in Sections 2.2.6 and 3.1.3, there are
two diferent methods which can be used to prove the conjecture. The first method
is a ‘direct approach’ where we show for k > 3 that if $* appears in FP(3,k) with
multiplicity m then S* appears in F° P(k,3) with multiplicity greater than or equal to
m. The other approach is to show that all eigenvalues of the matrix MM T where M is
the incidence matrix of Pz, are non-zero. We consider the ‘direct approach’ first and
show how we can in fact prove Foulkes’ conjecture using this method. Next we study
the eigenvalues of MM T The eigenvalue approach was relatively straight‘ forward
when we were considering (2, k)-partitions but this method begins to fail for the (3, k)-
partitions with & > 6. For 1 <k < 8 we give the complete set of eigenvalues of MM7T
with the aid of a MAGMA {7] computer program but as k increases the computing
time increases rapidly making it infeasible to construct many more examples. From
the examples we constructed we noticed a surprising partial ordering property of
the eigenvalues: The eigenvalues safisfy the same partial ordering as the partitions
associated to these eigenvalues do. If this ‘nice’ ordering property could be shown to
hold in general we would have an alternative and simple proof of Foulkes’ conjecture.

We prove in an inductive way that some of the eigenvalues associated to partitions of
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9% can be bounded below by eigenvalues associated to partitions of 3(k — 2). In the

final section we give some explicit eigenvalues of M MT in neat closed form.

6.1 Modules in the Decomposition of FP(k,3)

We use the decomposition of FP(3,k) in Chapter 5 to show for & > 3 that if S¥
appears in F P(3, k) with multiplicity m then §# appears in F'P(k,3) with multiplicity
-greater than or equal to m. ” ' ‘

Firstly we recall the decomposition of FP(3,k). From Corollary 5.14 the modules
which appear in F P(3, k) are $* where p is the partition {3(k—2u)—s+2u, s+2u, 2u)
with u and s non-negative integers satisfying 3k =2 bu + 25 or p is the partition
(3(k ~2u —3) = s+ 2u + 45+ 2u+ 4,9y + 1) with u and s non-negative integers
satisfying 3k > 6u + 2s + 9. Moreover, G(8(k-2u)~s+2us+2u2u) anpears in FP(3,k)
with multiplicity mg-gu,s and S (8(k—2u—3)—s+2ut st 2utd,2utl} gppears in FP(3, k) with
ultiplicity me-gu-3,s- The (3(k — %) — s + 2u, 5 + 2u, 2u}-tableaux of type (3%) are

of the following shape:

The (3(k — 2u — 3) — s + 2u, s + Qu, 2u)-tableaux of type (3%) are of the following

shape:

k ok oL, kKK ]
TN g -

2u
For each of the cases we will use the same method to prove for k > 3 that S¥
appears in the decomposition of FP(k,3) with multiplicity greater than or equal to

the raultiplicity of $* in FP(3,k). So we begin by explaining this method.

Step 1: We construct y-tableaux T of type (8%) and for each T™ we form a semis-

tandard p-tableau T'. We construct T* out of unions of ‘blocks’ of tableaux T T+,
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.., 79 which have the same pattern respectively as

111229 1112 111923 1112
(1) 433344 (2) 2233 (3) 22 (4) 2233
665556 3444 33 3
112314 11122235
1122921 112122
(5) %344 (6) 22444 (7) 3335244 B 333
9) ;;¥2 and (10) 111.

Each block that we use in the construction we label with a unique set of consecutive
numbers with the property that in T* 3 T% the labelling set for 7%/ will be the next
set of (increasing) consecutive nurnbers after the labelling set for T** (the first tableau

in the unjon will always be labelled from 1). We will write

10 _
T* — U CHTM
i=1
where a; is the ;mmber of tableaux T in the construction. Similarly we write t in

‘block form’ as L0
t= U a;ti
e

where the £ are the same shape as the 7% and we fill in the numbers 1,2,...,3k
consecutively down the columns of the #. It might be necessary to reorder the columns
of the tableaux T* and ¢ so that columns of the same length are together. For example

if we have

Ty T

where the labeling set for 7% is 1,2,3,4 and for T+ it is 5,6,7,8,9 then we write

112314 55566679
THSUTC=2244 ) 7T7883
33 99
as
11552356614679
227744888
3399
102




Similarly we write

147 9 1112 131619 21 23 25 26 27
S U t=25810 Uo14 17 20 22 24
36 1518

as

79 192123 11 12 25 26 27
8 10 20 22 24

From T* we form the sermistandard tableau 7' by permuting the elements in the
Lows of T* until the numbers increase along the rows (we will automatically have the

property that the digits strictly increase down the columns).

Step 2: For each T™ constructed in Step 1 we show that the coefficient of T* in
O1{t}#: is non-zero. To do this we consider all tableaux which are involved in Or{t}ir
and are ~-equivalent to T*. For some g € C} and T' row equivalent to 7', these can

be written in the form 0

T'g = a:iT"g:
=1
where g; € Cy and T"g; is ~-equivalent to T* . We consider the possibilities for T,
Fach digit which is in T" must occur three times in T". So in other words, the same
digit can not occur in more than one ‘block’. We will use the terminology ‘triplet’,
‘pair’ and ‘singleton’ to indicate how many of a particular digit (out of a maximum
of three) appear in a certain row of a tableau. The 7™ have the property that the
third row (if there is one) contains triplets or it contains pairs with the remalining
digit in the first row or it contains singletons with the remaining pairs in the second
cow. The second row of the T are made up only of triplets and pairs and the first
row contains only triplets and singletons. Since T and 7" are the only tableaux
which have more than three elements in their third row, the third rows of 7' and
T2 must contain triplets. Hence there must also be a singleton in the third row of
T2 1t is clear that 7"* must have a singleton in its third row. Thus all triplets and
singletons from the third row of T' have been accounted for. Hence the third rows of
T2 T and T° must contain the pairs. It is clear that the second rows of 7%, T,
T 7% and 7" must contain only pairs and the second row of T"° must contain &

pair and a triplet. Therefore the second rows of T, T and T"® must contain only
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triplets. The singletons in the first row of the T* have been determined by the digits
used in the lower rows hence we fill the remaining ‘space’ in the top row of T" with
the appropriate number of triplets. Thus we have shown that T must have the same
pattern as a tableau row equivalent to T* . Let T% be the semistandard tableau row
equivalent to 7". So to find the coefficient of T* in Op{t}x; we take the product of
the coefBicients of T* in O7:{t'}xy and we multiply by the number of possible choices
for the entries of the T° such that U a;T% is row equivalent to T'. Hence to show

that the coefficient of T* in @r{t}x, is non-zero we show for any labelling set for the
T and for all i that the coefficient of T* in O7:{t'}xy is non-zero.

Step 3: The final step is to construct the appropriate number of non-zero linearly
independent homomorphisms from S# to FP(k,3) so that as a direct consequence
of Theorermn 2.20 the multiplicity of S* in FP(k,3) is greater than or equal to the
required value. We construct a seb {Te, Ty, ..., Ty} of p-tableaux which are made up
of unions of the ‘blocks’ T4, 7%, ..., T*'° and we show that T is involved in O {t}x:
but not in O, {t}xs for j € {0,1,...,qt with 7 < 2. This shows that ©1,,07,,...,0z,

are linearly independent.

The following result shows that the coeflicient of T* in Opi{t'}sy 1s non-zero. This
shows that for every T* constructed in Step 1 above, the coefficient of T* in Op{t}:
is non-zero and hence does Step 2 of the above method.

Lemma 6.1 Fori = 1,2,...,10 the coefficient of T in Op:i{ti kg (where T T
and t are defined as above} is non-zero.

Proof: Without loss of generality we can choose the labelling set for each of the
tableaux T* to be {1,2,...} and £ to be the usual tableau with the digits 1,2,3,...
placed in increasing order down its columns. For each value of ¢ between 1 and
10 we write down all tableaux ~-equivalent to T+ which are involved in ©p {t'}x,i.
Calculating the coefficient of each of these tableaux in ©:{t*}x; and adding together

these coefficients gives us the coefficient of T*iin Ope{t bry.

1. Let T*! be the tableau given by

111222

T =433344.
665656
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The rows of the tableaux ~-equivalent to T*! which are involved in @)Ta{ii}m: will
always have the same pair of triplets in each row as T*! does. Thus the tableaux

~-equivalent to T** which are involved in O {t' kg are

111222 111222 222111 222111 444333 333444
433344, 344433, 433344, 433344, 211122, 212211
665556 665556 665556 665556 665556 665856
Tt is clear that all tableaux ~-equivalent to 7" have coefficient +1 in Ori {tTkp. So
* the coefficient of T* in O {t'}ry is 3! 2% = 48 # 0.
2. Let T*2 be the tableau given by
1112
2233
3444
then the tableaux ~-equivalent to T™* are
11172 1112 1113 1113 1114 1114
5233, 2244, 3322, 3344, 4433, 4422,
3444 4333 2444 42272 3222 2333
29291 2221 2223 2223 2224 2224
7133, 17144, 3311, 3344, 4433, 4411,
3444 4333 1444 4111 311t 1333
3332 3332 3331 3331 3334 3334
59211, 2244, 1122, 1144, 4411, 4422,
1444 4111 2444 42272 1222 2111
4441 4441 4443 4443 4442 4 4 4 2
1138, 1122, 3311, 3322, 2233, 2211
3222 2333 1222 2111 3111 1333
All of -these tableaux are involved in Op2{t*}ke and have coeflicient +1. So the
coefficient of T*2 in O {t?} ke is 24 # 0.
3. Let T*% be the tableau given by
11123
T3 =22
33
then the tableaux ~-equivalent to T are
11123 11132 22213 22231 33312 33321
29 33 11 33 11 )
33 22 33 11 272 11




Again, all of these tableaux are all involved in ©7:{t®}kp and have coefficient +1.
So the coefficient of T*% in Oge{t*}rs is 6 # 0.

4. Let T** be the tableau given by

1112
T*=2233
3

then the tableaux ~-equivalent to T** which are involved in @r{t*}r, are
J112 1113 2221 2223 3331 3332
2233, 3322 1133, 3311, 1122, 2211
3 2 3 1 2 1

Once again all of these tableaux have coefficient 41 in O 74 {14} k1. Thus the coefficient
of T** in éTé{i4}ﬂt4 15 6 % 0.

5. Let 7" be the tableau given by

then the tableaux ~-equivalent to T*° which are involved in Ors {t° ke ate

112314 113214 114312 113412 221324
5544 . 3344 , 4422 , 3322 , lld44
33 22 33 44 33
5931924 441342 443142 331432 334132
3344 . 1122 , 3322 , 1l22 , 4422 .,
11 33 11 44 11

9319234 332134 332431 334231

1144 , 2244 -, 2211 , 441l

29 11 44 29

The first twelve tableaux are involved in Ops{t5 e with coefficient +1 and the last
two are involved in Ops{t5}rs with coeflicient _9. Therefore the coefficient of T*°

in Ops {t°}rys 1s 8 # 0.

6. Let T*¢ be the tableau given by




then the tableaux ~-equivalent to T*® which are involved in Ore {1}k are

11122235 11122253 22211135 22211153
33444 . 55444 . 33444 . 55444 ,
55 33 55 33
23311125 33311152 33322215 33322251
22444 . 55444 . 11444 . 55444 ,
55 22 55 11
55511124 55511132 55522214 55522231
992444 33444 . 11444 -, 33444

33 292 33 11
444333925 44433352 44433315 44433351
22111 . 55111 11222 . 55222 ,
55 55 55 11
A4411125 44411152 44422215 44422251
292333 . 55333 . 11333 . 55333

55 22 55 11

The first twelve tableaux are involved in Ops {t5} e with coefficient +1 and the last
eight are involved in Ope{t} sy with coefficient 1. Therefore the coefficient of T"¢
n @Ts{iﬁ}h’,ts is 4 £ 0.
7. Let T*7 be the tableau given by

T 333444
By a similar argument to that for T*! it is easy to show that the coefficient of T*7 in
(:)T'f{i?}m? is 2122 =8 % 0.

8. Let T7® be the tableau given by

s 112122
T =333

then the only tableaux ~-equivalent to T8 which are involved in Ope{t¥} ey aze
112122 221211
333 333 '
These tableaux both have coefficient +1 in Oqs{t3} . Hence the coefficient of T
1 @Ts{ts}ftta is 2 # 0.
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9. Let T*° be the tableau given by

*9 1 1 1 2
T =99
then
1112 4 2221
29 an 11

are the only tableaux which are ~-equivalent to 7* and are involved in Ope {1} k.
They both have coefficient +1 in O7s {t?}k,e. Thus the coeflicient of T* in Ope {1 e
is 2 # 0,

10. Trivially, when
7%= 111

then the coefficient of 7% in Opo{t'}rpo is 1 # 0.

Thus the proof is complete. O

Remark: As a direct consequence of the lemma, we have that 5(6:65) éppears in
FP(6,3); the niodule S®*?) appears in FP(5,3); the modules S¢44), 5642} and
§(68) appear in FP(4,3); the modules §(6:22) g4 and 53 appear in FP(3.3);
the module S appears in FP(2,3) and the module 53 appears in FP(1,3).

Proposition 8.2 For s = 0,1,...,k + (k/2) the multiplicity of G(Bk=s:8) in the de-
composition of FP(k,3) is greater than or equal to the multiplicity of G(3ks9) in the
decomposition of FP(3,k).

Proof: We know that the multiplicity of S®k==9) in FP(3,k) 1s my,s which is given
‘1 Lemma 5.11. Thus we will show that the multiplicity of GBE=98) in FP(k,3) is
greater than or equal to mys. We will construct a set, of my s linearly independent
F Sym(8k)-homomorphisms from 5 (3k—s5) 4o F P(k,3) using the method described at
the beginning of this section. We consider the case when s = | separately. In this
case my,, = 0 0 we have nothing to prove. S0 assume that s is a non-negative integer
with s # 1 then this can be written in the form s = 6c-+r for a non-negative integer ¢
and r € {0,2,3.4,5,7}. When k < s—2¢ then my,, = c—[(s—k+1)/2]+1 < 0 (where

denotes the integer part) so we only need fo consider the case when k > s —2¢c. In
g ¥
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this case let ¢ = e+ f for some non-negative integers e, f satisfying 0 < e, f < cand
let r = 2r; + 3rp with r; € {0,1,2} and s € {0,13} (note that there is a unique way
of writing r in this form}.

Step 1: Denote by T} the (3k — s, 5)-tableau of type (3%) given by

Ti =07y - yT7u 9y UT? U2y Oy Ty ey YT

e 3f T 1 E—s+2e

_where the T are the tableaux with paftern given at the beginning of this section. As’
k> s—2 and e < ¢ we can always construct a tableau of this sort by taking e large
enough so that k > s —2e. Let ¢ be the (3k — s, s)-tableau constructed from blocks 7,
£8 ¢9 and t1° in the way described af the beginning of this section and let T be the
semistandard tableau row equivalent to T%. The number of blocks 7™ which we can
use in T depends on the size of k. 1f k > s then f can take any value between 0 and ¢
as k — s +2e will always be non-negative. If & <s then for k—s+2e = k—s+2c—2f

. to be non-negative we require 0 < f<ec—{s—k)/2 Thus f can take ¢+ 1 different

values if s < k and ¢ — [(s — k +1)/2] + 1 different values if s > k.

Step 2: By Lemma 6.1 we know that the coefficient of T7 in O, {t}«: is non-zero.

Step 3: To show linearly independence of the é;pf we show, for a fixed f in the

appropriate range, that T is not involved in Op{t}r, for i < f. To do this we

only need to look at the number of pairs in the second row of T;. There will be less
pairs (and more triplets) in the second row of T; than there is in the second row of

T. Therefore there are not enough pairs in the second row of T: to make all of the

tableaux ~-equivalent to the 79 This means that the coefficient of TJ}* in O {t}x

is zero. Hence we have constructed a set of ¢+ 1 or c— [(s—k+1)/2]+1(for k23

and k < s respectively) linearly independent homomorphisms (:)Tf from S35~ {0

FP(k,3), one for each value of f in the appropriate range. From Theorem 2.20 and

Lemma 5.11 the proof is complete. U

Proposition 6.3 For u and s non-negative integers satisfying k — 2u > (25)/3 the
maultiplicity of G3k—2u)—ot2us+2u2) iy the decomposition of FP(k,3) is greater than
or equal to the multiplicity of G(3(k=2u)~s+2u5+2u20) in the decomposition of FP(3, k).
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Proof: We have done the case when u =  above so we only need to consider the case
when u > 0. We know that the multiplicity of G3(k=2u)~s+2ustiunu) in FP(3, k} is
Mk—2u,s Which is given in Lemma 5.11. Using the method described at the beginning of
this section we construct a set of my_2q¢ linearly independent homomorphisms from
SB(k—20)-s+2ust2u.2u} {o FP(k,3). When s = 1 or k — 2u < 8 — 2¢ again Me-2u,s = 0
for any value of u so there is nothing to prove, thus we assume that s % 1 and
k— 9u > s~ 2¢. As before we write s in the form s = 6(e + f) + 2ry + 3ra, where
c=c+ fand v =2r +3r €{0,2,3,4,5,7} with r; € {0,1,2} and ro. € {0,1}.

Step 1: We split this step into four cases.

Case 1: Consider u # 1 then we can write 2u (in a unique way) in the form 2u =
6u; + duy where uy and ug are non-negative integers with u; € {0,1}. Denote by T}~
the ((3k — 2u) — s + 2u,s + 2u, 2u)-tableau of type {3*) given by

W * YA *2 ®

U1 Ug

where T} is gived in the proof of the previous proposition but with the appropriate
labelling set and clearly we can only use k— s~ 2u+ 2e of the blocks 7" in T}. Let
t be the (3(k — 2u) — s + 2u, s + 2u, 2u)-tableau constructed in the way described at
the beginning of the section and let Ty be the semistandard tableau row equivalent to
T s < L~ 2u then k — s — 2u + 2e will always be non-negative and so f can take
any value between 0 and ¢. When s > k90 then k—s—2u+2e = k—s—2u-+2(c—f)
will be non-negative for 0 < f <e—(s— k4 2u)/2. Thus f can take ¢+ 1 different
values if s < k — 2u and ¢ — [(s — k + 2u 4+ 1}/2] + 1 different values if s > k — 2u.

Case 2: fu =1 and k — 2 > s then let T* be given by

TRy Ty U U T U U TR U TOuTE Uy uT
e 3f 3 e} s —23+2 '

Let t be the (3(k — 2u) — s+ 2u, s -+ 2u, 2u)-tableau constructed in the way described
at the beginning of the section and let Ty be the semistandard tableau row equivalent
to T7*. It is clear that f can take any value between 0 and cas h— 5~ 3+ 2¢ =

h— s —3+42c— f)is always non-negative for any value of f in this range.
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Case 9 Wu=1and k—2 < s with ¢ > 1 then if f # ¢ (that is, e # 0) instead of
using the block 7% U T*" in () we use T** U T*, so T}* is given by

TMUTMU T*7U"'UT*7UI*QU"'UT*QU@U T*QUT*QUI*10U“'UT*1G

.

e~—1 3f Ty T k—s—2+42e

and if f = ¢ {so e = 0) we use the block T** UT* UT* in (+) instead of T=UuT U
T U T, so T is given by

T*MT*%T*QU'T*QU---UT*Qu@u TOUTE U TG T
3(c~1) o 1 k—s—2

Let t be the (3(k — 2u} — s+ 2u, s + 2u, ou)-tableau constructed in the way described
at the beginning of the section and let Ty be the semistandard tableau row equivalent
to Tf". k—s—~2+2e= k—s—2+2{c— f)is non-zero when 0 < f < e—(s—k+2)/2.
Case 4: lfu =1 and k — 2 < s with ¢'= 0 then r # 0 {since k > 3). If rp =1 then
we replace T*3 U T*® in (+} with 7" and let

Toe = T U T°uUT Uy .y T
1 k""f‘""*z .

Otherwise, if 7, = 0 then we replace T3 3T in (*) with T and let

sk, (TS *9 10 *10
Ty =150 L% U™y uT™
7"1—1 k——rw2

Let ¢ be the (3(k —2u) — s + 2u, 5 + 2u, 2u)-tableau constructed in the way described
at the beginning of the section and let Ty be the semistandard tableau row equivalent
to T'7*. We can always construct the above tableaux since k —r — 2=k — s — 2 (as
¢ = 0) and this is non-zero by assumption. As ¢ is zero then the only value that f
can take is 0.

Step 2: By Lemma 6.1 we know that the coefficient of T}‘* n @Tf {t}&, is non-zero
for each of the above T7".

Step 3: For each T7* we need to show that as f runs over the values in the appropriate

range then the @T, are linearly independent. The first two cases follow in the same
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way as in the proof of Proposition 6.2, that is for ¢ < f we just need to count the
number of pairs in the second row of T; and we see that TJ}“* is not involved in O, {t}x:.
In case 3 again it is easy to see by counting pairs in the middle row of T; that Ty (for
f < c) is not involved in &7, {t}«;. Thus Og, Og,, .. -, Or, are linearly independent,
where ¢ = c—[(s ~k+3)/2]if k #s+2and g=c—~1if k= s+2 Asecan
only be zero when k = s + 2 we will consider this case separately. Since T, has a
pair in its bottom row, this pair will always be in the first two columns of an element
involved in Or {t}«,. However, the first two columns of Tr* with 7 < ¢ have distinct
entries. Thus it can be seen that T, Ty*, ..., T** are not involved in Or {t}x:.
As O7.{t}r; # 0 then On, O, ..., O, are linearly independent homomorphisms
from SE(k-2)-s+2ust2u2e) to FP(k, 3). Thus in Case 3 we will always have a set of
¢—[(s+2u—k-+1)/2] +1 linearly independent homomorphisms. The final case that
we look at is when u = 1 with ¥ — 2 < s and ¢ == 0. We know from Lemma 5.11
that mi-, < 1 and since we have have constructed one non-zero homomorphism
from §@k-2)=r+2,5422) ¢4 F P(k, 3) there is nothing more to prove. Comparing the
number of values that f can take with thie multiplicities mg_2q,s given in Lemma 5.11

completes the proof. 0

Proposition 6.4 The multiplicity of the module G(3k=2u=3)-st2utd st2utd 2utl) jp the
decomposition of FP(k,3) is greater than or equal to the multiplicity of the module

G(B(k=2u=3)=st+Butdstutd2utl) 4 the decomposition of FP(3,k).

Proof: The proof follows in a completely analogous way to the proof of Proposi-
tion 6.3. For each T}* which we constructed in the last proof, we ‘replace’ three of
the 710 by T*4. Therefore f can take ¢ + 1 different values if k —2u —3 > s and
¢~ [(s = (k = 2u+ 3) + 1)/2] + 1 different values if & —3 —2u < s. This is the
number of linearly independent homomorphisms from 5 (3(k-2u=3)—s+2utd ot Zutd Jutl)

to FP(k,3). O
Theorem 6.5 Foulkes’ conjecture holds when a = 3 and b is arbitrary.

Proof: From Corollary 5.14 and Propositions 6.2, 6.3 and 6.4 we have that all mod-
ules §% which appear in FP(3, k) with multiplicity m appear in FP(k,3) with mul-

tiplicity greater than or equal to m. This proves the conjecture. O
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6.2 FEigenvalues and Eigenvectors of M**(M*H)T

We use the decomposition of FP(3,k) given in Section 5.4.2 to calculate the eigen-
values of M3*(M3**)T for small values of k. The proofs of Propositions 5.10, 5.12
and Theorem 3.8 give us a set of linearly independent homeomorphisms from 5* to
FP(3,k) for each module $* which appears in F'P(3, k). When this set of linearly in-
dependent homomorphisms contains more than one element, we will use the notation
for the semistandard tableaux which we introduced in Section 5.4.2. We will begin
by considering the modules 5% in the decomposition of FP(3,k) which appear with
multiplicity one. These are the easiest cases to consider since there is a semistan-
dard p-tableaux T and a p-tablean ¢ (given in the proofs of Propositions 5.10, 5.12
or Theorern 3.8) such that Or{t}x; is an eigenvector of M M?. Using the method
described at the end of Section 3.3, to find the eigenvalue corresponding to O {t};
we calculate the c-entry of MM7Tv for a (3, k)-partition & involved in v and divide
by the coefficient of e in v. We can write a MAGMA program to calculate these
eigenvalues for particular values of k. When S# appears in F P(3, k) with multiplicity
greater than one, it may be necessary to take a linear combination of our linearly
independent homomorphisms in order to construct an eigenvector of MM7T. There
doesn’t appear to be an obvious way to construct such eigenvectors, the best we can
do is to construct them case by case for small values of k.

We consider the eigenvalues of MM Tiorl <k<8 When! <k <5 weknow
that all modules in the complete decomposition of F P(3,k) appear with multiplic-
ity one so we can use our program to calculate the complete set of eigenvalues of
MMT. For 6 < k < 8 the module S®F~®9) appears in FP(3,k) with multiplicity
two. The homomorphisms @, and ©p, given in the proof of Proposition 5.10 are
linearly independent. It is easy to see from looking al the results of our original
program that neither g, {t}x: or O, {t}x, are eigenvectors of MM T Thus for some
¢ € F the vector v = Op{tte, + cOr,{t}s, will be an eigenvector of MMT. We
adapt our original program slightly so that we can construct the e and + entries of
both MMTOz, {t}x: and MMT O, {t}x; where o and 7 are distinct (3, k)-partitions
involved in both O1, {t}r; and Or,{t}x.. Using these results we calculate the o and
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~-entries of
MMT(éTO {i’}n‘ﬁt -+ C(:)T2 {t}n‘{‘t)
and

@To{t}fﬁt + CéT2 {t}s.

These give us a pair of simultaneous equations to solve for ¢ and the eigenvalue A.

Solving for ¢ first gives

Ae2t1a3s5.09  Lp g
Mtaen k=6

e = A—21%3%5%13 - —
214365211 fh=T1
A_2173655 . -
217375%23 f =38

We then solve for A which gives

21033(13 . 17 & /5641) if k=6
A= 919355(3211 £ /1401) i k=T
9163652(191. + 79) if k= 8.

For k = 6 and 7 these complete the set of eigenvalues of MM T, When k& = 8
the Specht modules S(#8) and S1452) appear in the decomposition of FP(3, 8) also
- with multiplicity two. Using our ‘improved’ program. and the linearly independent
homomorphisms given in the proofs of Proposition 5.10 and Theorem 3.8 we can
calculate the eigenvalues associated to these partitions. When p = (16,8) the vector
v = Op {t}h, + O, {t}r; where
' A—2213% . 717
21934537 - 11

o=
is an eigenvector of MM7T with eigenvalue
A= 2173%5(3%17 4+ /(13 - 293)).

When p = (14,8,2) the vectors O, {t}x; and O, {t}r; are linearly independent and

are already eigenvectors of MMT. They both correspond to the eigenvalue
A = 4777574400 = 2*%3°5%.
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fn the Appendix we give the complete set of eigenvalues of M**(M>*)T for4 < k <8
and below we list the eigenvalues of M BE(MA)T for 1 < k < 3. Alongside the
eigenvalue we list the dimension of the corresponding Specht module, the sum of

which confirms that we do indeed have the complete set of eigenvalues of MM T

Example 6.6 The eigenvalues of M3F(MEOT with 1 < k < 3 are given in the
following tables.

k=1

Tablean

Partition

Fhrgenvalue

Dimension

123

(3)

1

1

Sum of dimensions |

L

Tableaw

Partition

Eigenvalue

Dimension

112233

(6)

24 = 2° .3

1

1133
22

(4,2)

4 = 2%

9

Tl

22
33

(2,2,2)

Sum of dimensions |

15

Tableau

Partition

Figenvalue

Dimension

111222333

(9)

1296 = 2* - 3

1

1112333
22

(7,2)

144 = 2% . 3%

27

111222
222

(6,3)

64 = 2°

48

1112
2233
3

(4,4,1)

16 = 2¢

11123
22
33

(5,2,2)

4 = 2°

Sum of dimensions |
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Proposition 6.7 For 3 < k < 8, the matriz M** has full rank.

Proof: Using the tables in the Appendix and the table above for k = 3, we see that
all eigenvalues of MM7T are non-zero. Using Lemma 2.1, this means that the matrix
M must have full rank. [

The results we have obtained for small values of k indicate the following surprising

‘property: Eigenvalues which are directly associated to partitions can be partially

ordered (in terms of size) in the same way as the natural partial ordering on the
partitions (see Definition 2.8). Moreover, the eigenvalues which are ‘indirectly associ-
ated’ with partitions join in this partial ordering if we sum the eigenvalues assoclated
to a particular pa,rtitidn. If we could prove this partial ordering property in general
then to prove Foulkes’ conjecture it would be sufficient to show for k& = 3 that the
eigenvalues associated to the ‘smallest’ partitions are non-zero. We will show that
the eigenvalues associated to the ‘smallest’ partitions are non-zero in Theorem 6.11.
The partial ordering information can be expressed more clearly in the form of partial
ordering diagrams. When k = 1 the diagram will just be a single dot so we will
not illustrate it. The diagrams for k = 2 and k = 3 can be found overleaf and the

diagrams for 4 < k < 8 can be found in the Appendix (see figures 5 to 14).

6.3 Construction of Non-Zero Eigenvalues

We look more generally at eigenvalues of M Sk M*F)T which are simply associated
to partitions of 3k. We show that certain partitions of 3k are associated to non-zero
eigenvalues of M3*(M®*)T. Using an inductive proof similar to that of Theorem 4.10
we show that certain non-zero eigenvalues of M**~2(M>#-)T correspond to non-zero
eigenvalues of M3*(M>*)T. At the end of the section we give some of the eigenvalues
of M3*(M>*)T explicitly in a closed form.
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(6)
(4.2)

(2,2.2)

Figure 1: Partial Ordering of the Partitions of 6
283
22

9

Figﬁre 9. Partial Ordering of the Eigenvalues of M**(M a2

T ©
T (7.2

® 6D

T (52.2) ~ 44

Figure 3: Partial Ordering of the Partitions of 9

Figure 4: Partial Ordering of the Eigenvalues of MB3(MEHT
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Proposition 6.8 For s € {0,2,3,4,5,7} with k = s the eigenvalue assoctated to
(3k — s, 8) is strictly positive.

Proof: We have already proved the proposition for the case when s = 0 so assume
that s is an element of {2,3,4,5,7} with k > s. Let g = (3k — s,5). We know from
the result of Section 5.4.3 that S* appears in FP(3,k) with multiplicity one {or in
other words, p is simply associated fo an eigen{’aiue ) of MMT). Thus, we only
need to show that A is non-zero. Let T be the semistandard p-tableau and t be the

p-tableau given by
11...11...12...283...3

T= 22...2 nd = éz::.%zwlszri‘..Bk.
S

We know from the proof of Proposition 5.10 that O {1k, is an eigenvector of M M*
corresponding to A. Let v = O1{t}r,. We will construct a (, 3)-partition # indexing
a non-zero entry of MTv. From the results at the end of Section 3.3 this is enough
to show that A is non-zero. Let B8 = WL, B be the (k,3)-partition constructed as
follows. Begin by placing 1 and 3 11 B, and 2 and 4 in fBo. Fill up the parts of 8 by
putting the even numbers 2 7 with 6 < 27 < 2s into B; and the odd numbers between
5 and 25 — 1 info the first part which has ‘available space’. Fill the rest of the space
in the 8; with the digits {2s+1,..., 3k} in some arbitrary way. Thus A looks like

IEEEICE ()

The f-entry of M T, is the sum of the coefficients in v of those (3, k)-partitions which
are involved in v and intersect nicely with 5. As T has 2 occurring s times in 1its
second row, any tableaux involved in O7{t}x, must have 2 appearing & times in its
frst s columns. Thus any (3, k)-partition e involved in Or{t}x, will have s of the
digits {1,2,...,2s} in one of its parts (call this part ) with the property that exactly
one of the pairs {1,2}, {3.4},...,{2s - 1,25} is in ;. We consider the possibilities
for arg. Either cy will contain the digits {1,4,6,3, ... 25} or it will contain the digits
2,3,6,8,...,2s}. As each part of g contains at most two odd numbers we put one

of each of these odd numbers into the rernaining parts of a. It is easy to see that
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there will always be a (3, k)-partition « which intersects nicely with § and moreover
this partition will always have coefficient —2 in v. Therefore the B-entry of M Ty is

non-zero, Hence
(MTo)TMTv
vty

X # 0.

[

Remark: The proof of the above proposition also gives us the following result that
" for any s with s < kif ' | '
1...12...23...3

1...1
2...2

T

{

T =

is directly associated to an eigenvalue of MMT then this eigenvalue is non-zero.

We use an inductive proof to show that if we have a non-zero eigenvalue of
M2 (MF-)T which is simply associated to a partition of 3(k 2) then we can
construct a non-zero eigenvalue of M3*(M**T which is simply associated to a par-
tition of 3k. Moreover we give a lower bound for the size of the eigenvalue which we
construct for M>F(M>*)T. '

Theorem 6.9 Let M* be the incidence matriz of Pa .z and M be the incidence ma-
triz of Pag. Let 1 = (413, 113, 13) be a partition of 3(k 2) which is simply assoctated
to a non-zero eigenvalue of M*M*T then p = (pi + 2,15+ 2,05 + 2) is associaled to
a non-zero eigenvalue of MMT . Moreover, the eigenvalue associated to p s greeler

than or equal to 4(k — 2) times the eigenvalue associated to u*.

Proof: We know from Proposition 3.18 that if ¢ = (pt, g3, 43) is in simple asso-
ciation with an eigenvalue of M*M*T then p = (g} 4 2,45 2,03 +2) 1sin simple
association with an eigenvalue of MM T et T* be the semistandard p*-tableau and
* be the u-tableau such that »™ = Op+{t*} k4 is an eigenvector of M*M*T. Let
T = T'UT* and t = t' Ut* where

11 3k — 53k —2
T = 22 and = 3k—~43k—1
33 3k -3 3k
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then we know from Proposition 3.8 that v = Or{t}k, is an eigenvector of MMT. Since
the eigenvalue associated to p* is non-zero, we know that there exists a {k — 2,3)-
partition #* which indexes a non-zero entry of M*Tv*. Let #q,%2,%3 make up one
part of 8* and denote by 5’ the result after removing this part from 8*. Form the
(k,3)-partition 8 given by

3k —5\ [(3k—4\ [3k—3
B=1{3k-1 3k 3k -2 | ug.
o %y o, Y ,

We claim that the F-entry of MTv is non-zero. We know that if a* is involved in
v* then the (3, k)-partition o formed by joining one clement from each of the sets
{3k —5,3k — 4,3k — 3} and {3k — 2,3k — 1, 3k} to each part of a” 18 involved in v.
Moreover, all (3, k)-partitions involved in v can be constructed in this way. Thus, any
(3, k)-partition which intersects nicely with 4 and is involved in v must have %, %o, *3
in distinct parts. Let o be a (3,k~— 2)-partition involved in v which intersects nicely
with 8% Denote by o the (3, k)-partition formed by adjoining {3k — 5,3k} to the
part of o containing *3, adjoining {3k — 4,3k — 2} to the part of o containing #i
and adjoining {3k — 3,3k — 1} to the part of o* containing %,. Denote by o the
(3, k)-partition formed by adjoining {3k — 5,3k — 2} to the part of o containing *;,
adjoining {3k — 4,3k — 1} fo the part of o containing %3 and adjoining {3k ~ 3, 3k}
to the part of o containing *i. Then it is easy to see that o” intersects nicely with 3
and is involved in v* if and only if &' and o? intersect nicely with 8 and are involved
in v. Moreover, the coefficients of ot and o? in v are the same as the coefficient of a*
in v*. Thus, the S-entry of M7y is twice the B*-entry of M*Tp* and so is non-zero.
Thus, the eigenvalue associated to p is non-zero. To give a lower bound on the size of
this eigenvalue, for each " indexing a non-zero entry of M*Tv* we construct a fanily
of (k,3)-partitions indexing a non-zero entry of MTv. There are (k — 2) different
choices for #;, %9, %3 and 36 arrangements of the integers 3k — 5,3k — 4,3k — 3 and
3k — 2.3k — 1,3k in the parts of f. So, for every §* indexing a non-zero entry of
M*To* we construct 36(k — 2) different (k,3)-partitions 3. We chose 3 arbitrarily so

for each of these (k,3)-partitions, the corresponding entry of M Ty will be £2 times
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the ,B*mentry of M*Tv*. Therefore,
(MT0)T(MTv) > 4(k — 2) - 36(M*Tv*)T (M Fv*).

We can see that v*7v* = 36v7v and so

(MTo)T(M*)

vl

(M*T’U*)T(M*TU*)
'U*T'U*

A= > 4(k —2) = 4(k — 2)A"

as requiged.— |

Remark: The lower bound which we gave for the size of the eigenvalue ) is largely
an under estimate and can probably be improved by considering different types of

(k,3)-partitions indexing non-zero entries of M Ty.

Using the results from Section 5.4.3 and Proposition 6.8 which tell us that for k> s
with s € {0,2,3,4,5,7} the partition (3k — s,8) of 3k is simply associated to a

non-zero eigenvalue of M**{M>*)T we have the following result.

Corollary 6.10" For non-negative z’ntegers u and s satisfying 2u + s < k with s €
{0,2,3,4,5,7} the partition p = (3k — du — 8, 2u -+ s,2ﬁ) is associated to o non-zeroe
eigenvalue of ME*(M®H)T,

We are now in a position to prove for k > 3 that if S* appears in FP(3,k) with
the property that all other modules § #* which appear in FP(3, k) satisfy p* > p"then
the eigenvalue associated to g is non-zero. We prove this result helow and remark
that, as discussed earlier, if we could show that the eigenvalues of M SE(MINT can
be partially ordered in terms of size in the same way that the partitions agsociated
to these eigenvalues are partially ordered then we would have an alternative method

for proving Foulkes’ conjecture for this case.

Theorem 6.11 Let k > 3. If we partially order the partitions p (see Definition £2.8)
such that S* appears in FP(3,k) then the eigenvalues associated to the ‘smallest’

partitions (in this partial ordering) are non-zero.
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Proof: When k is even we have shown that GkE) appears in FP(3, k) with multiplic-
ity one. It is easy to see using Theorem 2.22 that any other module $*° which appears
in FP(3, k) satisfies p* 1> p. We know that S appears in FP(3,4) and the eigen-
value associated to (4, 4,4) is non-zero. Hence by applying Theorem 6.9 the appropri-
ate number of times, the eigenvalue of M3F(MPF)T associated to (&, k, k) is non-zero
when k is even. When k is odd S*#**) does not appear in F'P(3, k). It is easy to verify
from the result at the beginning of Section 5.4.3 that Glt2k-1k=1) gnd GlEHLE+FLE=2)
" appear in FP(3,k) both with multiplicity one. Moreover, (k + 2,k — 1,k ~ 1) and
(k+1,k+1,k-2) both dominate (k,k, k) and are incomparable. Any other partition
which dominates (k, k, k) must dominate one of (k+2, k—1,k—1) or (k+1,k+1,k~2)
(except for (k+ 1,k k ~ 1} but glk+1kk-1) does not appear in FP{3,k) by Corol-
lary 5.14). Thus, when k is odd we have two ‘smallest’ partitions in this partial
ordering. We can write (k-+ 2,k — 1,k — Nas (k—1+3,k—1,k— 1) and since the
partition (3} appears in F P(3,1) such that the eigenvalue associated to this partition
is non-zero, we can apply Theorem 6.9 the appropriate number of times to show that
the eigenvalue dssociated to (k+ 2,k — 1,k ~ 1) is non-zero. Similarly we can write
(k+1,k+1,k—2)as (k—-3+4,k—-3+4,k—-3+ 1) and since {4,4,1) appears in
FP(3,3) and the eigenvalue associated to (4,4,1) is non-zero then by Theorem 6.9

the eigenvalue associated to (k+1,k+1, k — 2) is non-zero. Y

For certain types of partitions we can calculate the eigenvalues associated to these
partitions explicitly in neat closed form. The following theorem gives us these eigen-

values. We prove each case separately in the same long-winded fashion.

Theorem 6.12 The following table lisls some of the eigenvalues of the matriz MMT
(where M is the incidence matriz of Pax) for k =3 and the partitions assoctated to

them.

Partition Eigenvalue
(3k) (kP31
(3k —2,2) | 2k(k ~ 1)I(31)"

(3k—3,8) | 2((k—1)}) (3‘)‘" -
(3k —4,2,2) | 2(k = 1)!(k ~ 2}k — 2)BEY"
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Proof: From Lemma5.11 it is easy to see that for k > 3 the partitions (3%}, (3k—2,2),
(3% — 3,3) and (3k — 4,2,2) are all simply associated to eigenvalues of M3 (M>*)T.
For each of these partitions y we can find a sernistandard p-tableau T' of type (k%)
and a p-tableau t (which is given in the proof of Proposition 5.10 or Theorem 3.8)
such that @r{t}s, is an eigenvector of MM™. Letting v = Op{t}r; we can find the
eigenvalue A corresponding to v using the method described af the end of Section 3.3.
For a (3, k)-partition o involved in v, let e, be the is the standard basis vector then
(EM) (M)

T
€,V

A=

To find (eZ M)(MTv) we multiply the B-entry of eZ M by the B-entry of M7y and sum
over all B in P(k,3). Since the S-entry of eI M is one if o and 3 intersect nicely and
zero obherwise, we only need consider those 8 which intersect nicely with o. Thus to
find the eigenvalue A we divide (eI M)(MTv) by the coeflicient of ¢r in v. We consider
each of the partitions (3k), (3k —2,2), (3k —3,3) and (3k — 4,2,2) in turn.

1. The proof of the first type of partition has been done in Propesition 3.17.
2. Let T' and ¢ be given by

1...12...23...3 135...3k

11 ~
T = 99 and t = 9 4
Then ©7{t}s, can be written in the form

(13%.. % (1d*...%) (L. . %) (2% % ... %) (2 4., %

24(24*..:*%—-4(‘23*...*)—%2(24*...*)m2(14*‘..*)+2(13*...*gw2(23*:'_‘.*%

where the asterisks run over all possible values between 5 and 3k. Let v = Or{t}r:

Then to make it easier for reference, we will write

v = dv; — dvy + 2vz — 2v4 -+ Qug — g,

where
(13%...%) (1dx...%)
@1:_2%24*...*%, ‘{)-2‘:"_'“2%23*...*% etc.
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Let o be the (3, k)-partition given by
137...

a=(248...3k-1).
569...

It is easy to see that o is involved in v with coefficient +4. If 8 has 1 and 2 or 3
and 4 together in one of its parts then the (-entry of M%v will be zero due to the

alternating signs of (3, k)-partitions involved in v. Similarly if 1, 2, 3 and 4 are all

- in different parts of B then the B-entry of MTv will be zero. Thus we only need to

consider the (k, 3)-partitions of the following kinds:

-EE)E)-C

where %, and *; are fixed elements of {5,6,...,3k} and the remaining *’s are fixed

(a) Let 3 be of the form

with the property that each part of 8 has one element in common with each part of
o. Then B intersects nicely with o and with (3, k)-partitions involved in vy, vs and
vs. There are (31)* different (3, k)-partitions involved in each of vy, vs and vs which
intersect nicely with 8. Thus the S-entry of M7 is 8(31)*~%.

(b) Let 8 be of the form

1 2 3 #
f=14 *q g oo %]
*y *i g *
Then 5 intersects nicely with 22(31Y*=% of those (3, k)-partitions involved in vy, vs, vs

and vg. Thus the S-entry of MTv is 8- 923Nk - 2. 22(3D)F 0 = 22(31)2.

(¢} Similarly, when # is of the form

2 i 4 e
ﬁ B ( 3 ) (*2) (*4 - ' |
*q *g kg e
The B-entry of MTv will be 2%(31)¢~2,

To compute {eZ M)(M7Tv) we need to count the number of A of each kind there are

which intersect nicely with c. When J is of the first kind, there are k choices for
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+1, there are k — 1 choices for *; and there are ((k — 2)1)? choices for the remaining
s, When f is of the second or third kinds there are k choices for *;, (k — 1) choices
for #, (k — 2) choices for *3, *4 and #; and ((k — 3)1)? choices for the remaining #'S.

Therefore

(EM)(MTv) = 8(3NFk(k — 1)((k —~ 2)!))
+28(30F 2k (k — 1)(k — 2)°((k — 3)1)?
= 83N 2ki(k — 1)

Dividing by the coefficient of o in v gives us the required eigenvalue of

2k!(k — 1)1(3)F?

3. Let T and t be given by

T“é%,‘lzl .12...23...3 andtméig?”'gk.
Let v = Op{ttxe A (3, k)-partition o iivolved in v will have one element from each
of the sets {1,2}, {3,4} and {5,6} in one of its parts (call this part ag) and of the
remaining three digits two of them will be together in another part of o (call this as)
and the last digit will be in ay. The coefficient of o in v will be +2 if oy contains an
odd number of the digits {2,4,6} and —2 if it contains an even number of the digits
{2,4,6}. Let o be the (3, k)-partition

(178...3k—2)
o= (246...3k—-1).
(359. 3k )
Then a has coefficient +2 in v. The (k,3)-partitions which have non-zero entry in

MTv and intersect nicely with o must have three digits from {1,2,3,4,5,6} together
in one of its parts where exactly two of them are from {1,3,5}. Thus, of these

(k,3)-paztitions the ones which intersect nicely with a will be of the following kinds.

=) )
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(a) Let 8 be of the form




In this case B intersects nicely with 4 - 2(31)F2 different (3, k)-partitions involved in
v, all of which have coefficient +2 in v. If fis as above but with 2 and 6 interchanged
then the B-entry of M7 v will also be 8- 2(3!)¥-3. We have the same result when f is
the (k,3)-partition with 1,3 and 6 together in one part and either 2 and 5 or 4 and

5 together in another part.

(b) Let 3 be the (k, 3)-partition of the form

=[O

Then 3 intersects nicely with 6 - 23(3N%~% of the (3, k)-partitions involved in v these
all have coefficient +2 in v. In a similar way when 5 has 1,6 and 3 in one part and
9.5 and 4 in distinct parts, the B-entry of M7Tv is also 12 - 23(31)%*

%

There are (k — 1){k — 2)*((k — 8)!)? different (k,3)-partitions of the first kind which
intersect nicely with o« and (k — 1)(k — 2%k — 3)3((k — 4)1)* of the second kind.

Therefore

(MY MTv) = 4-8-2(3)F°(k = 1)(k - 2)*((k - 3)1)?
146 - 22(30F(k — 1)(k - 2)°(k = 8((k = 1)1
(35925 (k — 1)1k — 2)H2 + (k - 3)}
(3 — 1)

Since & has coeﬁiczent +2 in v, the eigenvalue associated to v 1s (31yF-324(k — 1)1
4. Let T and t be given by

1...12...23...3
T =

oo IND e
G B

14
and £ = 25
36
Let v = Op{t}x;. Using the proof of Theorem 3.8 we can write

(14 = ...
v=3" Y Bsgnly) (2 3 * .. ) ¢
g 5ym{{4,5,6)) (3 6 * ...

126




where the *'s run over the elements of {7,8,...,3k}. Let o be the (3, k)-partition

given by
(1 4 7 ... 3k—-2)
o= EQ 5 8 ... 3k-—1}.
3 6 9 ... 3k )

Again we locate those (k, 3)-partitions 8 which intersect nicely with o and have non-
gero entry in MTv. It is easy to check that these {k,3)-partitions can not have any
two of {1,2,3} or any two of {4,5,6} together in one part or any two of them on
“their own (where by “on their own” we mean not with any other elements from
{1,2,3,4,5,6}) in distinct parts, for otherwise the S-entry of MTv will be zero. Thus

the (k,3)-partitions which we need to consider can be described in the following way.

(a) The first kind are those 3 which have the digits 1,2 and 3 in distinct parts and
we pair them off with the digits 4,5 and 6 so that no two of the pairs {1,4}, {2,5}
and {3,6} are together in one part (otherwise we don’t have a nice intersection with

a). So, for example J may be of the form

1 2 3 s
3 6 4 |- x].
Each 8 of this kind intersects nicely with 2(31%2 of the (3, k)-partitions involved in

v and these (3, k)-partitions always have coefficient +6 in v.

(b) The other case is when f3 has 1,2,3 in distinct parts and we just pair off two
of them with digits from {4,5,6}. The two digits which we haven’t ‘paired off’ may

either be from the same part of « or from distinct parts. So for example 8 may be of

SHHOE -
HHEE-0 -

There are two other {k, 3)-partitions similar to (7), one with 5 and 6 interchanged and

the form

ar

also 2 and 3 interchanged, the the other with 1 and 3 interchanged and also 4 and 6

interchanged. There are five other (£, 3)-partitions similar to (11), one for each choice
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of digits in the third and fourth parts (discluding the ones that we constructed in the
first case). The (k,3)-partition given in (i) intersects nicely with the following kinds

of (3, k)-partition involved in v:

(L4 % ... %) (1 4 % ... =) (1 6 # *)
(2 5 % ... *g, (2 6 * ... %), (25 = k)
(3 6 = ... % (3 5 % ... % (3 4 = #)

The first kind has coefficient +6 in v and the last two kinds have coefficient -6 in v,
8 intersects with 22(31)6—* different (3, k)-partitions of each kind. Thus, the B-entty
of MTv is —6 - 22(31)F~4. Similarly, when f is the (k,3)-partition given in (it} the
B-entry of MTv can be shown to be +6- 22(31)k1.

Therefore
(IM)(MTv) = 6-22(3D)F°(k — 2)°((k = 3))’
+6(6 — 3)22(30F (k — 2)°(k — 3)*((k — 4)1)*
= 320330 ((k = DDk - 22+ (k= 3)}
= 2030k — 1)k — 2)i(k ~ 2).
Since o has coefficient -+6 in v, the eigenvalue associated to v is 2(3NF3(k — 1)!(Ak —
2k - 2).

This completes the proof. O




Appendix A

Eigenvalues of M3E(a3RT for

Small %

fn this section, we give the complete set of eigenvalues of the matrix M3F(M>F)T for
3 < k < 8. We list the eigenvalues in decreasing order of magnitude and for each
eigenvalue A we give the partition g of 3k associated to it. We also give the dimension
of the Specht module S, from which we can work out the multiplicity of X as an
eigenvalue of M**(M**)T. The last column of the table gives the multiplicity of 5
in the complete decomposition of FP(3, k). After each table we give the diagrams
for the partial ordering of the partitions of 3k and using the same diagram we show
that when we replace the partition of 3k with the eigenvalue associated to it, the

eigenvalues also satisfy the same partial ordering.
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Partition Eigenvalue Dimension | Mult.
(12) 124416 = 2° - 3° 1 1
(16,2) 10368 = 27 - 51 54 1
(9,3) 3456 = 27 - 3° 154 I
(8, 4) 5304 = 2 - 3 775 i
(62) 768 = 2°-3 132 1
(T, 4,1) 576 = 20 - 3 1408 1
1(8,2%) 288.= 2° - 37 616 1
(6,4,2) 128 = 27 2673 1
(4°) 96 = 2°-3 462 1
[ | Sum of dimensions R |
Table 1: Eigenvalues of M**(M BT
Partition Eigenvalue Dimension | Mult.
(15) 18662400 = 210 - 3° - 5° 1 1
(13,2) 1244160 = 20 - 3% - 5 90 I
(12,3) 331776 = 2'*. 3¢ 350 1
(11,4) 207360 =2° - 3*. 5 910 1
(10,5) 170592 = 27 - 3° 1638 1
(9,6) iiaTe =20 -3 2002 i
(10,4,1) 41472 = 2° - 3 7007 1
(11,2,2) 31104 =27 - 3° 1925 1
(8,6,1) 18432 = 2'% . 3% 115683 1
(9,4,2) 8332 = 07 -3 23 32113 I
(3,5,2) 6912 = 28 - 3° 32032 I
(7,4,4) 3456 = 27 - 3° 25025 1
(62,3) 2304 = 28 - 3° 21450 1
L [ Sum of dimensions | 126126 | B

Table 2: Eigenvalues of M 35 ( M3>%)T
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Figure 5: Partial Ordering of the Partitions of 12
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Figure 6: Partial Ordering of the Eigenvalues of MPH(M3HT
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¥ (744 ¥ (6.6.3)
) Figure 7: Partial Ordering of the Partitions of 15

| 2103%5%
2193%!

b 2123»‘{

23451

21233

2q34

2733 = .28.32

Figure 8: Partial Ordering of the Eigenvalues of MES(MPT
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Partition Figenvalue Dimension | Muls.
(18) 4031078400 == 2% .37 . 5% 1 1
(16,3] | 273948800 = 2237 - 5° 35 | 1
(15,3) 49766400 = 2% .3° . 57 663 1
(14,4) 20859840 = 21%.3°-5 2244 1
(13,5) 13271040 = 2% . 3.5 5508 1
(13,5) |20 39(13 - 17+ /5641) " | 9996 7
(14,2,3) | 4976640 = 21 -3° 5 1641 1
(13,4,1) 4976640 = 217 - 3° .5 29848 i
(10,8} 1990656 = 2™ . 3° 11934 1
(11,6,1) 1658880 = 2*%.3%*-5 88128 1
(10,7,1) | 1105920 = 2'°.3%.5 102102 1
(12,4,2) 1022976 = 219.3% .37 99144 1
(11,5,3) | 601200 =20 . 3°. 57 519912 ]
(10,6,2) 442368 = 214 . 3¢ 331500 1
(8,8,2) 331776 = 2. 3* 136136 1
(10,4,4) 262656 = 2% - 3° - 19 259896 1
{9,6,3) 172800 = 2% - 3% - 5° 678912 1
(8,6,4) 124416 = 29 3° 787644 1
(6,6,6) 46080 = 2'9-3%.5 87516 1
{ | Sum of dimensions | 2858856 |

* Sum of eigenvalues associated to (12,6) is 12220416 = M. 381317,

Table 3: Eigenvalues of M3®(M3¢)T
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Figure 10: Partial Ordering of the Eigenvalues of M*®(M 36y
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Partition Eigenvalue Dimension | Mauit.
(21) 1185137049600 = 217319 . 5% . 7° 1 1
(19,2) 56435007600 = 2™ - 3% . 5% .7 189 1
(18,3) 10749542400 = 2'° . 3° - 5° 1120 1
(17,4) - .| - 6270566400 = 2™ - 3" 5.7 4655 1
(16,5) 238R]TRT200 = 217 . 3% . B 14364 ]
(15,6) o35 5(3% - 11+ ,/1401) ~ 33915 2
17,2,2) 1119744000 = 21 .37 . 5° 9520 1
(16,4,1) 895795200 = 2™ .37 . 5° 58786 1
(14,7) 796262400 = 27 - 3° - b* 62016 1
(13,8) 938878720 = 2'°-3%.5 87210 1
(14,6,1) 938878720 = 2'°.3°. 5 392445 1
(15,4,2) 179159040 =2 -3" .5 323190 1
(12,9) 150252480 = 27 -3° . 5 90440 1
(13,7,1) 132710400 = 21 . 3% . 5 664734 1
(14,5,2) 106168320 = 2°- 3" -5 949620 1
(12,8,1) 99532800 = 2% - 3° - b* 839800 L
(10,10, 1) 59719680 = 2™ .3°-5 293930 1
(13,6,2) 53890240 = 2'1-3-5- 71 2015520 1
{12,7,2) 40697856 = 21°.3° . 23 3139560 1
(13,4, 4) 33592320 = 2'0-3° -5 1492260 1
(11,8,2) 31850496 = 2'" . 3° 3481940 1
(12,6,3) 91067776 = 211 - 3% . 127 5969040 1
(11,6,4) 12358656 = 27 3. 149 10988460 1
(10,8,3) 11643936 = 2'* . 3° 7936110 ]
(10,7,4) 8626176 = 2 -3*-13 14108640 1
(8,8,9) 4976640 = 2™ -3 5 6466460 1
(9,6,6) 3030840 — 27.3*-5.19 7054320 i
[ l Sum of dimensions [ 66512160 |

* Sum of eigenvalues associated to (15,6) is 1970749440 = 2. 37511

Table 4: Eigenvalues of M>7(M>7)T
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Partition Figenvalue Dimension | Mult.
(24) 155009627046400 = 2T - 311 .52 . 7° 1 1
(22,2) 18062102793600 = 2 - 310. 5% . 7* 252 1
(21,3) 3160365465600 = 277 - 3% - 5* . 1° 1748 i
(20,4) 1805923123200 = 219 - 3° . 5° - 7 8602 1
(19,5) 601074374400 =2%9-3°.5°.7 31878 1
(18,6) 916 385 5%(191 4+ 79) ~ 92092 2
(20,2,2) 388610585600 = 27 - 30 . 5% . 7 17480 1
(19,4,1) 995740300400 = 21° - 3°-5° - 7 128536 1
(17,7) 167915104000 = 21°- 3% B 7 | 211508 1
(16,8) oI B B(3 - 17 £ /(13-293)) 389367 2
(17,6,1) 50164531200 = 217 -37- 5% - 7 1311552 1
(18,4,2) 44109563200 = 21°- 3% - 5° - 37 360706 1
(15,9) 93887872000 = 25 . 3% . 5° 4 572033 1
(16,7,1) 23887872000 = 2% - 3° . 5° 2860165 1
(17,5,2) 93200675200 = 2° - 3" -5* - 13 3131128 1
{14, 10) 10110297600 = 2% - 3° - 5° 653752 1
(15,8,1) 16721510400 = 217 - 3%. 5% .7 4922368 1
(16,6,2} 11585617020 = 2™ -3°-5-97 8460320 1
(12,12) 11466178560 = 2°°-37-5 208012 1
(14,9,1) 11147673600 = 2°° - 3° - 5% -7 6619239 1
(15,7,2) 7184056320 = 2*%-3°.5-7-29 17521515 i
(13,10,1) 7166361600 = 277 - 37 - 5° 6656384 1
(16,4,4) 6440725440 = 2*% . 3° . & 6124118 1
(14,38,2} 4777574400 = 27 - 3° - 5° 23029617 2
(15,6,3) 3822059520 = 2°°-3° - 5 32303040 1
(12,10,2) 5853273600 = 27 - 3* - 57 - 43 28883952 1
(14.6,4) 1024300800 = 27 - 3* - 5 - 29 79430368 1
(13,8,3) 1672151040 =2°-3°-5-7 94140288 1
12,9,3) 1313832060 = 2'°.3°.5-11 100677808 1
(13,7,4) 1174487040 = 2 - 3° -5 - 59 151016712 1
(12,8,4) 883851264 = 21° - 3° . 37 204297500 1
(10,10,4) 597106800 = 27 - 3° - 5° 75716368 i
(12,6,6} E10105600 = 21F - 35 .52 .41 | 109830336 1
(11,8,5) 507617280 = 2 .3%.5 17 202880896 1
(10,8,6) 908508400 = 2°* - 3° - 57 267711444 1
(8,8,8) 900018880 = 21°-3°.5.7 23371634 1
l l Sum of dimenstons | 1520190267 |

* Sum of eigenvalues associated to (18,6) is 456258355200 = 1738 . 5%. 191,
“ Sum of eigenvalues associated to (16,8) 1s 146193776640 = 2'%-3°%- 5 17.

Table 5: Bigenvalues of M>8(M>#)T
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