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Abstract 
Different organs of plants and animals grow to characteristic sizes and shaped that depend 

on their identity. We still know surprisingly little about how organ identity modified patterns of 

growth within the primordium to achieve the correct final size. 

Here, I report on a novel mutant in Arabidopsis thaliana that forms smaller leaves, but 

bigger flowers. Intriguingly, the effect of the mutation strictly depends on the identity of the 

organ, marking out this mutation as a promising entry point to studying the relation between 

organ identity and growth. The phenotypes are due to a partial loss of function of one of 

three canonical nuclear poly(A) polymerases (PAP) in A. thaliana, PAPS1. By contrast, even 

complete loss of function of the other two gene-family members only causes subtle 

phenotypes, indicating functional specialization amongst the different genes. Using 

promoter-swap and chimaeric-protein constructs, this functional specificity is shown to be 

largely encoded in the C-terminal non-catalytic domains of the different proteins. Using a 

mRNA fractionation coupled with microarray, I have defined a set of mRNAs whose poly(A)-

tails and stability are changed in the mutant compared to wild type. The microarray analysis 

suggests that the reduced leaf-growth results from an ectopic upregulation of pathogen-

reponse genes. Analysis of plants that are chimaeric for the paps1-1 mutation shows that 

PAPS1 acts cell autonomously to control petal size and paps1-1 chimerism in the internal 

layer of the meristem invariably causes the meristem to split into two or more meristems. I 

propose that different pre-mRNAs are preferentially processed by different canonical PAPs 

with distinct outcomes in terms of their poly(A) tail lengths. This would open up an additional 

level of gene expression whereby cells could co-regulate large numbers of transcripts in 

response to developmental or environmental changes by modulating the balance of 

canonical PAP isoform activities. I also discuss possible reasons for the identity-

dependence of the paps1-1 mutant phenotypes. 
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1.1 Organ size control in plants: 

Plant organ size is under strong genetic control. Studies over the last 20-30 years in 

Arabidopsis have identified a number of genes that play a role in organ size control. In this 

section, I first introduce the organ grow process in plants. Secondly, I introduce the 

definition of a size regulator. I thirdly suggest a characterization pipeline that, in my opinion, 

is useful in understanding how the size regulator acts molecularly. Using these bullet points, 

I fourthly summarize the studies about the genes involved in size control in Arabidopsis. 

Fifthly, I pinpoint the general deduction from these studies that contributes to our current 

knowledge about how plant organ size is regulated. Finally, for the interest of this project, I 

emphasized what is known about how different organs can reach different sizes.  

1.1.1 The organ growth process: 

An organ is first inniated in the peripheral zone of the meristem (see further introduction in 

Chapter 5). After initiation, two basic cellular processes are tightly associated with the organ 

growth: cell proliferation and cell expansion, the patterns of which change spatially within an 

organ and also change temporally during the course of growth. Cell proliferation here 

implies the process of cell division (the forming of a new cell wall) and the growth of two 

daughter cells to reach the size of their mother cell. Cell division alone (e.g. the first few 

divisions in the early embryonic development after fertilization) does not cause growth. Our 

understanding of this pattern in leaves comes from a very thorough study by Donnelly and 

colleagues, (Donnelly et al., 1999) and reference therein, who used a cyclin promoter and a 

modified GUS (beta-glucuronidase) reporter gene (pCYC1At::CDBGUS, the CDBGUS is a 

GUS gene fused to a Cyclin Destruction Box) to specifically mark the dividing cells (Figure 
1.1). 

Initially, cell proliferation occurs evenly throughout the entire primordium (Figure 1.1A). 

Gradually, cell proliferations become restricted in a basipetal pattern. Proliferation is 

arrested first at the distal tip of the organ, and is then progressively arrested at the more 

basal parts, until all cells have stopped dividing. Cell expansion (the enlargement of cell size 

due to water uptake to vacuole) happens when a cell exits from the proliferating/cycling 

state. At high cycling rate, cells remain at a constant size of approximately 75 µm2. At exit 

from proliferating, i.e. day 12 in leaf 8, mesophyll cells are about 200 µm2 in area and 

continue to expand 4- to 5- fold. Since cell expansion starts right after the exit from the 

proliferating state, cell expansion also shows a basipetal pattern starting first at the tip and 

reaching the base of the leaf last. However, this basipetal pattern is very weak; instead, it 

seems that after day 12, there is a burst in cell expansion rate across all regions in leaves 

(Donnelly et al., 1999).  
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Figure 1.1. The patterns of cell division and cell expansion in Arabidopsis wild-type 
leaf 8.  

Figure is modified from Donnelly et al., 1998. 

A. Time/developmental series of cell division in the 8th leaf. The 8th Leaf is sampled at 

idicated days after emergence and stained with GUS to visualize dividing cells (blue 

staining). Numbers below the image indicate the length of the leaf blade at the 

corresponding time point. Note that the magnification of the image at day 0 is 10x 

higher than the magnification of images of later dates. The small squares indicate 

the positions where cell size is examined in panel C.  

B. Time/developmetal series of blade length (black columns) and petiole length (white 

columns) of leaf 8. Arrows point at the time when samples were taken for GUS stain 

in panel A.  

C. Palisade mesophyll cells start cell expansion after day 12.   
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To sum up, leaves grow mainly by cell proliferation at early stages of growth; later, cell 

divisions ceases locally accompanied by a gradual increase in cell size. Cell divisions stop 

completely when a leaf reaches about half of its final size (Day 16 Figure 1.1A and B), after 

that the organ grows solely by cell expansion. Cell expansion is normally coupled with 

endoreduplication, the process in which cells undergo several rounds of DNA replication 

without entering mitosis.  

For the interest of this project, it is of note that there is a difference between leaves and 

petals in the endoreduplication during cell expansion. Cells in floral organs and especially in 

petals seldom endoreduplicate, while leaf cells undergo several rounds of 

endoreduplication. 

1.1.2 A definition: What is a size regulator? 

To be a size regulator, reduction and enhancement of the activity of the gene should show 

opposite effects on final organ size.  Changes in shapes, which are caused by local growth 

regulations that do not results in overall size change is not considered here. The enhanced 

or reduced activity of the gene can be classified into four classes (See Box 1.1).This 

criterion is denoted as the ‘size change in both directions’ criterion.  

Box 1.1. Kinds of perturbations to a gene in Arabidopsis thaliana: 

Loss-of-function mutants: mostly point mutations, T-DNA insertions, deletion mutants or 

transgenic RNAi knockdown.Gain-of-function mutants: This kind of perturbation can have 

very diverse causes e.g. point mutations that make the protein constitutively active. Over-

expressors: can be achieved by three ways: 

iiia) Constitutively expressed:  highly expressed, constitutive and spatially non-restricted 

expressors using 35S promoter (even though 35S promoter is not fully/constitutively active 

in the centre of the meristem). 

iiib)  Endogenous overexpressor: increase the mRNA level although still under control of the 

endogenous promoter such that the temporal and spatial expression patterns of the gene 

are largely unchanged. This can be achieved by supplementing the plant with extra copies 

of the genomic version of the gene or by using a two component system, e.g. LhG4/pOp, 

with the gene’s own promoter.  

Mis-expression using a different promoter than the gene’s own promoter, yet not 35S 

promoter. Mis-expression, may but does not necessarily result in an increased in mRNA 

level compared to WT.  

Care should be taken when applying this definition. Firstly, false negatives: what if the gene 

can only regulate organ size in one direction no matter how it is manipulated genetically? 
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This could be for several reasons, which are related to structure of the pathway in which the 

gene acts. Firstly, plant genes often have homologs, so if overexpression shows a 

phenotype in one direction (e.g. smaller organs), disruption of the gene, however, may not 

cause a phenotype in a reverse direction (e.g. larger organs) unless the activity from 

redundant homologs is also disrupted. Secondly, genes often act in pathways, if plants lose 

the activity of one gene, they might display a phenotype in one direction (e.g. smaller 

organs), but in order to elicit the opposite phenotype (e.g. bigger organs), the whole 

pathway needs to be upregulated. So clearly, single gene overexpression might not be 

sufficient. Even if in theory, single gene mis-regulation can create a ‘bigger size’ phenotype; 

in practice it may prove to be difficult to up-regulate the gene activity in a well co-ordinated 

way to give a well developed and bigger organ. For example, mutation in jag leads to a 

smaller organ, but over-expressing JAG by either 35S promoter or AP3 promoter failed to 

create bigger organs; rather, some strong expression lines disrupted with the organ 

development and caused an outgrowth of snake-like stumps in the place of flowers 

(Dinneny et al., 2004, Ohno et al., 2004). 

Secondly, false positives: this is because there is a strong correlation between late flowering 

phenotype and larger flowers. Also mutants that are infertile tend to have larger 

petals/flowers (SV, ML personal observation). It is questionable; whether the increased 

growth in floral organs is the indirect effect of having more photo-synthetic organs (late 

flowering mutants produced more leaves at bolting).  

Additionally, mis-regulations that increase size are much more likely to identify genes with a 

rather direct role in growth than are mis-regulations that give small organs. This is because 

growth/organ-size phenotypes have a very strong one-directional correlation with gene-

misregulation, i.e. it is very likely that a perturbation to the activity of genes results in 

unhealthy, small plants. We found a lot of ‘smaller size’ mutants in any mutagenesis 

screens. In contrast, the other consequence of gene misregulation(s), which is the creation 

of normally developed and larger plants, happens rarely.  

Taken together, it will be a clear case for a size regulator if one can show the size change 

can happen in both directions by different means of genetic mis-regulation of the gene. In 

other cases, especially, for genes whose mutants are smaller and whose over-expressors 

are not larger, other evidence needs to be gathered to demonstrate the direct role of the 

gene in organ size control. 

1.1.3 Properties to be examined for organ size mutants: 

For easier browsing through the literature of organ size regulators, I list which information I 

consider interesting for understanding the mechanism of organ size regulation (Box 1.2).  
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Box 1.2. Characterization pipelines for a size regulators: 

i. Cell number and cell size: Is the change in the final organ size due to cell number of cell 

size?  

ii. Growth patterns: Are there changes in the temporal and spatial patterns of cell 

proliferation and/or cell expansion?  

iii. Growth rate or growth period:  Is the rate of growth or the period of growth is changed? 

iv. Directions of the regulation: Do disruption and over-expression have opposite effects on 

organ size? 

v. Pathway: Is there a genetic interaction of the gene with other known pathway(s) involved 

in size regulation? 

vi. Organ type:  Does the gene affect the size of more than one organ type? If yes, how do 

the degree of change in different organs compare? 

vii. Expression domain: Where is the gene expressed? 

1.1.4 The players: Genes involved in organ size control in 
Arabiodopsis thaliana: 

Using the seven points above, I summarized the genes that are described as organ size 

regulators in Figure 1.2, Figure 1.4 and Table 1.1.  

1.1.5 General conclusions about the mechanism of organ size 
control in Arabiodopsis thaliana: 

First conclusion: Size control pathways are mostly genetically independent with several 

master regulators that do not converge (Figure 1.2 (Breuninger and Lenhard, 2010)) 

suggesting size control is a complex trait.  

Second conclusion: To make large organs, plants must positively regulate cell proliferation 

and cell expansion in a well co-ordinated way. Ectopically overexpressing components of 

the cell cycle alone (e.g. 35S::CYCD3;1 (Dewitte et al., 2003)) increases the cell division but 

fails to give bigger organs. In fact, 35S::CYCD3;1 transgenic plants are smaller because 

cells fail to expand properly. Similarly, ectopic upregulation of the endoreduplication 

pathway, which is necessary for cell expansion, (35S::FZR2 (Larson-Rabin et al., 2009)) 

increases the size of individual cells, but fails to give bigger organs, because cells fail to 

proliferate properly.  
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Figure 1.2. Genetic pathways that regulate organ growth in Arabidopsis. 

(from (Breuninger and Lenhard, 2010)). 

The petals are GUS (beta-glucuronidase)-stained to visualize the cell division pattern. See 

text for details on the size regulators. 
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Third conclusion: The interaction between cell division and cell expansion is very complex. 

Illustrated in Figure 1.3 are all the theorically possible combinations between changes in 

cell division and cell expansion and their outcome to final organ size. In practice, if one 

project the known size regulators to this figure, almost all the theoretical possibilities are 

backed up with experimental phenotypes (Figure 1.4). The only one theoretical possibility 

that has not yet been backed up by experimental evidence is ‘bigger’ triangle 1 possibility 

(Figure 1.4), in which bigger organs result from an increase in cell divisions surpassing a 

decrease in cell expansion.  Many size regulators change final organ size by affecting only 

cell division or by affecting only cell expansion (the genotypes that lie on line 3, 4 (cell 

expansion only) and line 5, 6 (cell division only) in Figure 1.4). This suggests that cell 

number and cell size can be regulated indendently. So co-ordination between cell division 

and cell expansion is necessary for organ size regulation, a misregulation of a gene may 

affect cell division alone or cell expansion alone or affecting both (the two squares and four 

triangles and line 1,2 in Figure 1.3). 

Fourth conclusion: Mis-regulating the timing of the transition from cell proliferation to cell 

expansion seems to be a common defect for many size-regulating mutants (klu, bb, da1, 

tcps, miR319, grf, an3, ppd1/2, argos, and arf2) see Table 1.1 for reference and more 

details.  

Fifth conclusion: changes in final organ size is mostly observed as the result of a prolong 

duration of growth rather than a change in the growth rate. This property is not well 

documented for most of the genes. However for the cases where it has been analyzed, it 

seems that most of the factors regulate the period of growth (e.g. KLUH, BB, DA1,ANT) 

rather than rate of growth (e.g. proteasomal proteins).  

Sixth conclusion: as mentioned above (in section 1.1.2. A definition: what is a size 

regulator?), a size regulator can act in one direction (size regulators that are in Blue colour 

in Figure 1.4) or in both directions (size regulators that are in Orange, Pink and Red colour 

in Figure 1.4. If in the other direction of genetic manipulation, the phenotype is 

indistinguishable from wild-type (for example ail5 single mutant) the gene might be still 

accept to be a size regulator because one can argue that phenotype in one direction was 

masked by genetic redundancy. However, for genes that showed an unexpected phenotype 

in the other direction of genetic manipulation, it is not trivial to explain and draw conclusions 

about the specific function of this gene in organ size control. For example, the jag mutant 

has smaller organs, but overexpressing JAG under the control of the 35S promoter or the 

petal specific AP3 promoter interfered with organ development and failed to give bigger 

organs. It is subjective to say how specific is the role of JAG is in controlling organ size 

compared to its role in organ development. Additionally, for genes that act in both directions, 
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Figure 1.3. All theorically possible combinations between changes in cell number and 
in the cell size and their outcomes in terms of final organ size.  

The six lines (number 1-6) divide the morphological space, generated by the combination of 

changes in cell size and cell number, into six region (number 1-6). 
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Region 3 : Smaller organs by  a decrease in cell division surpassing an increase in cell expansion



22 
 

 

Figure 1.4. The effects of known size regulators on cell number and cell size and the 
outcomes in terms of final organ size. 

The lines and triangle annotations are adapted as for figure 1.3. OE means overexpressor. 

Font/Colour codes of the text of the name of the size regulators:  

Red and Bold  = genes that can act in both directions (increase or decrease the final organ 

size) and display  mirrored changes in cell number and cell size in opposite directions. 

Pink                  = genes that can act in both directions (increase or decrease the final organ 

size) but cell number and cell size were not determined for one direction. 
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Figure 1.4. The effects of known size regulators on cell number and cell size and the 
outcomes in terms of final organ size. 

Orange          =  genes that can act in both directions (promote or repress the final organ 

size), but exhibit partial compensation.  

Black                 = genes that were found to act in one direction but have not been examined 

in the other direction. 

Blue               = genes that change organ size in one direction but in the other direction 

affect organ development or do not have an effect on organ size 

In the black background box with white text : genes whose mis-regulation causes 

unexpected effects on organ development. 
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Table 1.1. Arabidopsis genes involved in organ size control:  

Genes are sorted using three orders: the first order is cell division vs. cell expansion: genes affecting mainly cell divisions are listed first; the second order is 

positive vs. negative regulation: the positive regulators comes first; the third order is  alphabetical order of the gene name. The phenotype of mutant and other 

kinds of mis-regulations are described (when possible) including the constructs for transgenic plants or types of mutations. The effects on cell division (+/- : 

more cells/less cells), effects on cell expansion (+/-: bigger cells/smaller cells) are shown. The known genetic/physical interactions are described. The spatial 

expression domains are described with a focus on leaves and flowers. The organs in which the effects are observed are mentioned. ND means not determined 

or no data available, EdOX: endogenous overexpressor.  

1 ant ail6 (ANTERGUMENTA LIKE 6-At5g10510) double mutant display floral organ identity defect. 2 gain of function construct: rGRF2 resistant to miR396. 3 

AP1::JAG causes malformed flowers, 35S::JAG causes bract like structure that subtend flowers and fusion cotyledons. 4 The double mutant bop1 bop2 also 

produced bract-like organs which subtended flowers. The phenotype that resembles the weakly expressed 35S::JAG plants. 5 jaw1-D mutants cause larger 

leaves with an excessive out growth of the leaf margins. 6 ppd1ppd2 double mutants mainly affect the dispersed meristematic cells like meristemoid, 

precursors of guard cells. 7 resistant form of TCP4 to miR319. 8 AP3::mTCP4 causes malformed flowers. 9 Mutants have decreased polyploidy level in leaf 

cells. 10  s6k1 s6k2/++ hemizygous mutants or the RNAiS6K plants showed high degree of phenotypic instability and size variation. All mutants however have 

smaller leaves with smaller cells and larger flowers, in which cell size were not measured. The larger flowers have almost double the DNA content, suggesting 

the defect in S6K causes chromosomal instability. 11 It is suggested that JA post-transcriptionally regulate the expression of the BPEp mRNA as pBPE::GUS 

do not response to JA, but BPEp mRNA appears to be more abundant when inducing plants with JA. 12 opr3 mutants also affect the vein patterning in petals. 
13 rot3 mutants have wider leaf blades but shorter petioles and shorter pistils and stamens. 14 rpn12a-1 and rpn10-1 mutants have larger flowers with reduced 

cell number but larger cells without changes in polyploidy. The rosette of the mutant grows more slowly and the leaves are pointed. a Cell size changes without 

change in ploidy level; b Cell size changes with changes in polidy level. pnd the ploidy was not determined. 
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Table 1.1A. Arabidopsis genes involved in organ size control: Genes that affect mainly cell division:  

 Gene name 

(Abbreviation) 

Protein 

type 

Mutant phenotype Over-expression phenotype Interaction/pa

thway 

Expression domain Organ 

affected 

Reference  

Type of 

mutant 

Cell 

divis

ion 

Cell 

expansi

on 

Final 

organ 

size 

Con

struc

t 

Cell 

divisi

on 

Cell 

expansi

on 

Final 

organ 

size 

1 AINTEGUMENTA 

LIKE 5 (AIL5)- 

At5g57390 

AP2-

domain 

TF 

single 0 0 0 35S:

:AIL

5 

+ 0 + Homologous 

to ANT 

Strong in 

developing floral 

primordia 

Leaves 

and 

flowers 

similarly 

(Nole-Wilson 

et al., 2005) 

2 AINTEGUMENTA 

(ANT)- At4g37750 

AP2-

domain 

TF 

single - + - 35S:

:ANT 

+ 0 + Up regulates 

CYCD3;1 

Synergistic 

interaction 

with AIL61 

growing domain of 

developing organs 

Petals 

(stronger 

effect) 

and 

leaves 

(Krizek, 2009, 

Mizukami and 

Fischer, 2000) 

(Nole-Wilson 

et al., 2005) 

3 AUXIN RESPONSE 

FACTOR 2 (ARF2)-

At5g62000 

ARF 

TF 

Single 

mutant 

+ + + ND ND ND ND Upregulate 

ANT, 

CYCD3;1 

expression 

in mature 

leaves 

Leaves, young  

floral organs, 

siliques, funiculus 

of ovule, embryo.  

Seeds, 

leaves, 

sepals, 

gynoeci

a, but 

not 

petals.  

 

(Schruff et 

al., 2006) 
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Table 1.1A. Arabidopsis genes involved in organ size control: Genes that affect mainly cell division (continued): 

  Gene name 

(Abbreviation) 

Protein 

type 

Mutant phenotype Over-expression phenotype Interaction/pa

thway 

Expression domain Organ 

affected 

Reference  

Type of 

mutant 

Cell 

divis

ion 

Cell 

expansi

on 

Final 

organ 

size 

Con

struc

t 

Cell 

divisi

on 

Cell 

expansi

on 

Final 

organ 

size 

4 AUXIN-

REGULATED 

GENE INVLOVED 

IN ORGAN SIZE 

(ARGOS)- 

At3g59900 

Novel-

plant 

specifi

c 

35S::a

ntisens

e 

ARGO

S 

- 0 - 35S:

:sen

se 

AR

GO

S 

+ 0 + Upregulates 

ANT and 

induced by 

auxin 

Young leaves and 

flowers.  

Leaves,  

 

ND in 

flowers  

(Hu et al., 

2003)  

5 ANGUSTIFOLIA3 

(AN3)/GRF 

INTERACTING 

FACTOR 1 (GIF1)- 

At5g28640 

SYT 

TF 

single 

mutant 

- + - ND + 0 + In teract 

with GRF5 

in Y2H 

Strong in basal 

region of young 

leaf primodia and 

floral buds 

Leaves 

and 

flowers 

similarly

. 

(Horiguchi et 

al., 2005, Kim 

and Kende, 

2004, 

Rodriguez et 

al., 2010) 

6 GROWTH 

REGULATING 

FACTOR 2(GRF2)-

At4g37740 

QLQ/

WRC 

TF 

ND ND ND ND 35S:

:rG

RF2
2 

+ 0 + Is a target 

of miR396b 

Young tissues, 

and in leaf has a 

basipetal 

expression. 

Leaves, 

ND in 

flowers 

(Kim et al., 

2003, 

Horiguchi et 

al., 2005) 
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Table 1.1A. Arabidopsis genes involved in organ size control: Genes that affect mainly cell division (continued): 
 Gene name 

(Abbreviation) 

Protein 

type 

Mutant phenotype Over-expression phenotype Interaction/pa

thway 

Expression domain Organ 

affected 

Reference  

Type of 

mutant 

Cell 

divis

ion 

Cell 

expansi

on 

Final 

orga

n 

size 

Con

struc

t 

Cell 

divisi

on 

Cell 

expansi

on 

Final 

organ 

size 

7 GROWTH 

REGULATING 

FACTOR 5(GRF5)-

At3g13960 

QLQ/

WRC 

TF 

Single 

mutant 

- 0 - Not 

men

tion

ed 

+ 0 + In teract 

with 

GIF1/AN3  

in Y2H 

Leaf primordial, 

NA in flowers.  

Leaf, 

ND in 

flowers 

(Kim et al., 

2003) 

8 JAGGED (JAG)- 

At1g68480 

Zn 

finger 

TF 

Single 

mutant 

- + - AP1

::JA

G 

and 

35S:

:JA

G 

causes bract-like  

structure that subtend 

flowers. Fusion 

cotyledon and 

Malformed floral 

organs 

NUB young primodia of 

lateral organs 

Leaf 

and 

flowers 3 

(Dinneny et 

al., 2006) 

9 KLUH/CYP78A5 

(KLU)-At1g13710 

Cytoch

rom 

P450 

Single 

mutant 

- 0 - EdO

X 

+ 0 + CYP78A7 Young organs 

primodia and 

restricted to the 

peripheral area at 

later stage of 

growth. 

Leaves 

and 

flowers 

similarly

. 

(Adamski et 

al., 2009, 

Anastasiou 

et al., 2007, 

Eriksson et 

al., 2010) 
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Table 1.1A. Arabidopsis genes involved in organ size control: Genes that affect mainly cell division (continued): 

 Gene name 

(Abbreviation) 

Protein 

type 

Mutant phenotype Over-expression phenotype Interaction/pa

thway 

Expression 

domain 

Organ 

affected 

Reference  

Type 

of 

mutant 

Cell 

divi

sio

n 

Cell 

expans

ion 

Fin

al 

org

an 

size 

Cons

truct 

Cell 

divisi

on 

Cell 

expans

ion 

Final 

orga

n 

size 

10 miR396b- 

At5g35407 

miRNA ND ND ND ND 35S::

mir3

96b 

- + - Targets 

GRF2.  

Act together 

with AN3 in 

meristem 

development,  

Is up-

regulated by 

TCP4 

Leaves, the 

mRNA level 

increases as 

leaves get older. 

Expressed more 

strongly at the 

tip compared to 

the base of the 

leaf . ND in 

flowers 

Leaves, 

ND in 

flowers.  

(Rodriguez et 

al., 2010) 

11 BIGBROTHER 

(BB)- 

At3g63530 

E3-

ubiquitin 

ligase 

Single 

mutant 

+ 0 + EdO

E 

- 0 - ND Young organs, 

expression 

decreases 

during growth. 

Flowers 

only, 

leaves 

not 

affected  

(Disch et al., 

2006) 
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Table 1.1A. Arabidopsis genes involved in organ size control: Genes that affect mainly cell division (continued): 

 Gene name 

(Abbreviation) 

Protein 

type 

Mutant phenotype Over-expression phenotype Interaction/pa

thway 

Expression 

domain 

Organ 

affected 

Reference  

Type 

of 

mutant 

Cell 

divi

sio

n 

Cell 

expans

ion 

Fin

al 

org

an 

size 

Cons

truct 

Cell 

divisi

on 

Cell 

expans

ion 

Final 

orga

n 

size 

12 BLADE ON 

PETIOLE 1 

(BOP1)-

At3g57130)  

and  

BLADE ON 

PETIOLE 2 

(BOP2-

At2g41370) 

TF bop1/b

op2 

  

double 

mutant 

ND ND +  35S::

BOP

1 

 

35S::

BOP

2 

ND ND - Upregulates 

JAG/NUB 

incipient of 

young 

leaf/flower 

primordia 

Leaves 

and 

flowers 4 

(Norberg et 

al., 2005) 

 

13 DA1 (DA1)-

At1g19270 

Ubiquitin 

interactio

n domain 

protein 

Single 

, gain 

of 

functio

n allele 

+ 0 + 35S::

DA1 

0 0 0 ND Young organs Leaves 

and 

flowers 

similarly 

(Li et al., 

2008) 
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Table 1.1A. Arabidopsis genes involved in organ size control: Genes that affect mainly cell division (continued):  

 Gene name 

(Abbreviation) 

Protein 

type 

Mutant phenotype Over-expression phenotype Interactio

n/pathway 

Expression 

domain 

Organ 

affected 

Reference  

Type 

of 

mutant 

Cell 

divi

sio

n 

Cell 

expa

nsion 

Final 

orga

n 

size 

Constr

uct 

Cell 

divis

ion 

Cell 

expans

ion 

Final 

organ 

size 

14 miRNA319a/ 

(JAW)- 

At4g23713 

 

miRNA 

Single  

miR31

9a129 

ND ND - EdOE 

: jaw1-

D  

and  

35S::m

iR319a  

+ 0 +  Targets 

TCP2,3,4,

10,24 

lowly 

expressed in 

both leaves 

and flowers  

Leaves5, ND 

on flowers. 

(Palatnik et 

al., 2003, 

Nag et al., 

2009) 

15 NGATHA 1 

(NGA1) 

(At2g46870) 

 

 B3 TF Single 

mutant 

+ ND + AP3>>

NGA1 

Weak  line caused 

reduced petal growth. 

Strong line caused 

transformation of floral 

organs in to carpeloid 

organs. 

ND At the distal 

region of 

lateral organs 

(peripherals of 

leaves and tips 

of developing 

gynoecium) 

Floral 

organs, ND 

on leaves 

(Alvarez et 

al., 2009, 

Trigueros et 

al., 2009) 



31 
 

Table 1.1A. Arabidopsis genes involved in organ size control: Genes that affect mainly cell division (continued):  
 Gene name 

(Abbreviation) 

Protein 

type 

Mutant phenotype Over-expression phenotype Interactio

n/pathway 

Expression 

domain 

Organ 

affected 

Reference  

Type 

of 

mutant 

Cell 

divi

sio

n 

Cell 

expa

nsion 

Final 

orga

n 

size 

Constr

uct 

Cell 

divis

ion 

Cell 

expans

ion 

Final 

organ 

size 

16 NGATHA2 

(NGA2)-

AT3g61970); 

NGATHA3 

(NGA3)-

AT1g01030 

NGATHA4 

(NGA4)-

At4g01500 

B3 TF Triple 

and 

quadru

ple 

mutant 

with 

NGA1 

+ ND + AP3>>

NGA3  

 

AP3>>

NGA4 

Both transgenic lines 

caused reduced petal and 

sepal growth. 

ND NGA4 

expressed 

similarly to 

NGA1 

Floral 

organs, ND 

on leaves 

(Alvarez et 

al., 2009, 

Trigueros et 

al., 2009) 

17 NUB-At1g13400 TF double 

mutant 

jag 

nub 

- NA - FIL::N

UB 

Increase number of cell 

layers in floral organs, 

however size were not 

examined. 

JAG Young 

primodia of 

Lateral organs 

Leaves and 

flowers 

similarly 

(Dinneny et 

al., 2006) 
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Table 1.1A. Arabidopsis genes involved in organ size control: Genes that affect mainly cell division (continued):  
 Gene name 

(Abbreviation) 

Protei

n type 

Mutant phenotype Over-expression phenotype Interactio

n/pathway 

Expression 

domain 

Organ 

affected 

Reference  

Type 

of 

mutant 

Cell 

divi

sio

n 

Cell 

expa

nsio

n 

Final 

orga

n 

size 

Constr

uct 

Cell 

divis

ion 

Cell 

expans

ion 

Final 

organ 

size 

18 PEAPOD1 

(PPD1)-

At4g14713 and  

PEAPOD2 

(PPD2)-

At4g14720 

Plant 

specifi

c 

putativ

e DNA 

bindin

g 

protein 

double 

mutant  

ppd1 

ppd2 

+ 0 + EdOx ND ND - ND Basipetal 

pattern in 

leaves. 

Strong in 

vascular 

tissues 

Leaves6, ND 

in flowers 

(White, 

2006) 

19 TCP4-At3g15030 TF NA NA NA NA AP3::

mTCP

4 7 

Ectopic expression 

causes malformed 

flowers 

Is a target 

of 

miR319. 

Positively 

regulates 

miR396 

expressio

n 

ND Leaves, 

flowers8. 

(Nag et al., 

2009) 
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Table 1.1A. Arabidopsis genes involved in organ size control: Genes that affect mainly cell division (continued):  

 Gene name 

(Abbreviation) 

Protein 

type 

Mutant phenotype Over-expression phenotype Interactio

n/pathway 

Expression 

domain 

Organ 

affected 

Reference  

Type 

of 

mutant 

Cell 

divi

sio

n 

Cell 

expa

nsion 

Final 

orga

n 

size 

Constr

uct 

Cell 

divis

ion 

Cell 

expans

ion 

Final 

organ 

size 

20 Other TCP 

proteins 

TCP2-At4g18390, 

TCP3-At1g53230, 

TCP10-

At2g31070 

TCP24-

At1g30210 

TF Evidence that these proteins negatively regulate growth are: they 

are all targets of miR319, and they are homology to the 

CINCINNATA (Crawford et al., 2004) protein in Anthirinum. No mis-

regulation studies have yet been reported. 

Targets of 

miR396 

ND Leaves, 

flowers 

(Palatnik et 

al., 2003, 

Nag et al., 

2009) 
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Table 1.1B. Arabidopsis genes involved in organ size control: Genes that affect mainly cell expansion :  

 Gene name 

(Abbreviation

) 

Protein 

type 

Mutant phenotype Over-expression phenotype Interaction/path

way 

Expression 

domain 

Organ 

affected 

Reference  

Type 

of 

mutant 

Cell 

divisi

on 

Cell 

expa

nsion 

Final 

orga

n 

size 

Constr

uct 

Cell 

divis

ion 

Cell 

exp

ansi

on 

Final 

orga

n 

size 

1 ARGOS-

LIKE 

ARL-

At2g44080 

Novel 

plant 

specific 

Single 

RNAi 

line 

0 - a - 35S::A

RL 

0 +a + Induced by 

Brassinosteroid 

(BR),  

rescue partially  

br1-119 mutant 

Strongly 

expressed in 

mature region 

of 

leaves/cotyled

ons, not 

observed in 

leaf primodia, 

strong in 

sepals and 

stamen.  

Leaves, ND 

in flowers.  

(Hu et al., 

2006) 

2 AtTOP6B-

At3g20780;A

tSPO11-

At3g13160;BI

N4 -

At5g24630  

Topoisom

erase VI 

compone

nts  

Single 

mutant 

in 

each 

gene.  

ND -b - ND ND ND ND All three 

mutants are BR 

insensitive 

ND Leaves9, ND 

in flowers 

(Sugimoto-

Shirasu et al., 

2005, 

Sugimoto-

Shirasu et al., 

2002) 
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Table 1.1B. Arabidopsis genes involved in organ size control: Genes that affect mainly  cell expansion (continued) :  

 Gene name 

(Abbreviation

) 

Protein 

type 

Mutant phenotype Over-expression phenotype Interaction/path

way 

Expression 

domain 

Organ 

affected 

Reference  

Type 

of 

mutant 

Cell 

divisi

on 

Cell 

expa

nsion 

Final 

orga

n 

size 

Constr

uct 

Cell 

divis

ion 

Cell 

exp

ansi

on 

Final 

orga

n 

size 

3 S6 kinases1 

 (S6K1)-

At3g08730 

and S6 

kinases2 

(S6K2)- 

 At3g08720 

Protein 

kinase 

s6k1 

s6k2/+

+  

hemizy

gous 

and 

RNAi 

line 

0 -/+b 

,10 

-/+10 ND ND ND ND TOR 

E2F/RBR, 

 

Controlling 

chromosomal 

instability 

ND Smaller 

leaves but 

larger 

flowers10.  

(Henriques et 

al., 2010) 

4 BIGPETAL 

(BPE)-

At1g59640 

TF RNAi 

and 

TDNA 

single 

0 - a - 35S::B

PEp in 

opr3 

backgr

ound 

0 + a + Upregulated by 

35S::PI and 

35S::AP3 and 

35S::SEP3 but 

downregulated 

in 

35S::AGAMOU

S, Upregulated 

by Jasmonate11 

Two forms of 

transcript:BPE

ub express 

everywhere. 

BPEp 

expresses 

specifically in 

floral organs 

Only petals 

no effect on 

leaves 

(Szecsi et al., 

2006, 

Brioudes et 

al., 2009) 
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 Table 1.1B. Arabidopsis genes involved in organ size control: Genes that affect mainly cell expansion (continued):  

 Gene name 

(Abbreviation

) 

Protein 

type 

Mutant phenotype Over-expression phenotype Interaction/path

way 

Expression 

domain 

Organ 

affected 

Reference  

Type 

of 

mutant 

Cell 

divi

sio

n 

Cell 

expan

sion 

Final 

organ 

size 

Cons

truct 

Cell 

divis

ion 

Cell 

exp

ansi

on 

Final 

orga

n 

size 

5 ORP3-

At2g06050 

12-

oxophyto

dienoate 

reductase 

Single 

mutant 

0 + a + 35S::

OPR

3 

0 0 0 JA biosynthesis 

enzyme,positivel

y regulate BPEp 

ND Petals12, ND 

in leaves 

(Brioudes et 

al., 2009)  

6 RPT2A-

At4g29040 

Proteoso

mal 

subunits 

Single 

mutant 

0 + a +  ND ND ND ND Proteosomal 

subunits 

Expressed in 

both leaves 

and flowers. 

Affect leaves 

cotyledons 

and petals. 

(Sonoda et 

al., 2009, 

Kurepa et al., 

2009) 

7 ROTUNDIFO

LIA (ROT3)-

At4g36370 

 

oxygen 

binding / 

steroid 

hydroxyla

se  

Single 

mutant 

ND + pnd +/- 13 

 

ND ND ND ND BR biosynthesis ND Leaves and 

floral 

organs11  

(Tsuge et al., 

1996, 

Ohnishi et 

al., 2006) 

 

http://www.arabidopsis.org/servlets/TairObject?name=AT2G06050&type=locus�
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Table 1.1C. Arabidopsis genes involved in organ size control: Genes that affect  both cell division and the cell expansion: 

 Gene name 

(Abbreviation

) 

Protein 

type 

Mutant phenotype Over-expression phenotype Interaction/path

way 

Expression 

domain 

Organ 

affected 

Reference  

Type 

of 

mutant 

Cell 

divisi

on 

Cell 

expa

nsion 

Final 

orga

n 

size 

Constr

uct 

Cell 

divis

ion 

Cell 

exp

ansi

on 

Final 

orga

n 

size 

1 ErbB-3 

epidermal 

growth factor 

receptor 

binding 

protein1  

(EBP1-

At3g51800) 

nucleolus 

dsRNA 

binding 

protein  

RNAi 

line 

- - nd - 35S::E

BP1 

+ + nd + Affect RBR 

protein level; 

positively 

regulates cyclins 

level in an auxin 

dependent 

manner 

ND Leaves. 

Flowers ND 

(Horvath et 

al., 2006) 

2 FIZZY-

RELATED 2 

(FRZ2)-

At4g22910 

 

WD40 

gene 

Single 

mutant 

+ - b 0 35S::FR

Z2 

- + b - Affect 

endoreduplicatio

n 

ND Leaves, ND on 

flowers. 

(Larson-Rabin 

et al., 2009) 
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Table 1.1C. Arabidopsis genes involved in organ size control: Genes that affect  both cell division and cell expansion (continued): 

 Gene name 

(Abbreviation

) 

Protein 

type 

Mutant phenotype Over-expression phenotype Interaction/path

way 

Expression 

domain 

Organ 

affected 

Reference  

Type 

of 

mutant 

Cell 

divisi

on 

Cell 

expa

nsion 

Final 

orga

n 

size 

Constr

uct 

Cell 

divis

ion 

Cell 

exp

ansi

on 

Final 

orga

n 

size 

3 RPN12A- 

At1g64520 

Proteaso

mal 

subunits 

Single 

mutant 

- + a + ND ND ND ND Proteasomal 

subunits 

ND Flowers and 

rosettes in 

opposite 

direction14 

(Kurepa et 

al., 2009) 

4 RPN10-

At4g38630 

Proteaso

mal 

subunits 

Single 

mutant 

- + a + ND ND ND ND Proteasomal 

subunits 

ND Flowers and 

rosettes in 

opposite 

direction14 

(Kurepa et 

al., 2009) 

5 Target of 

rapamycin 

(TOR)-

At1g50030 

 

Protein 

kinase 

RNAi - + pnd - EdOx + + + Phosphporylate 

S6 kinase 

ND Leaves, 

flowers ND 

(Menand et 

al., 2002, 

Deprost et 

al., 2007) 
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i.e. the final organ size mirrors each other in different mis-regulations, the underlying 

molecular changes to the cell number and the cell size does not always mirrors each other. 

If a gene displayed mirrored changes in the cell number and the cell size in opposite 

directions of genetic manipulations, it gets red colour in figure 1.4. Otherwise, it gets Orange 

colour: despite the final size change mirrors each other, the cell number and cell size 

changes do not. If the other direction is not yet investigated it gets the pink colour. This 

conclusion may be related to the third conclusion in part: The ability of genes to act in both 

directions in controlling size, which depends on the structure of the genetic pathways (as 

explained in section 1.1.2.), also depends on on its ability to overcome the compensation 

mechanism between cell number and cell size. Therefore, it may be hard to tell in some 

cases whether a gene is a size regulator or not. 

Seventh conclusion: The size effect on different organs, e.g., leaves vs petals, is similar in 

most of the mutants. I will further discuss this conclusion in more detail in the section below.  

1.1.6 How can different organs reach different size? What is the 
relationship between organ identity and size regulation? 

Final size of different organs within one plant is often very different. Understanding the 

mechanism of this is an important aspect in organ size regulation, yet at the moment, it is 

largely unknown what makes different organs grow to different sizes. In Arabidopsis 

thaliana, the effects of a size regulator on different organs were not always examined. Many 

studies analyzed only one type of organ (most often leaves (L)) without information about  

the effect on other organs such as petals (P), for example in the studies AIL5 (L), ARGOS 

(L), GRF5 (L), GRF2 (L), PPD1/2 (L), miR396b (L), EBP1 (L), ARL (L), TOR (L), 

Topoisomerase VI components (L), FRZ2 (L), NGA (P). I tried to extract this information and 

summarized it in Table 1.1. In many other studies, in which this aspect was examined, the 

effect of the size regulators on leaves and flowers was found to be mostly similar (KLUH, 

DA1, ANT, ARF2, AN3, JAG, JAW/miR319a, TCP4, BOP1/2, ROT3). If a mutant has 

smaller leaves, it is often found to have smaller flowers. The exceptions are i) bpep and bb 

mutants where the effect seemed to be only specific to floral organs; ii) S6 kinase mutants 

(s6k1 s6k2/++ heterozygous), proteasomal mutants (rpt2, rpn10, rpn12a) where leaves are 

smaller, but flowers are larger than WT and iii) cincinnata mutants in Anthirinum where 

leaves are bigger but flowers are smaller than WT. BPEp is expressed only in floral organs, 

so it is a floral specific size regulators (Szecsi et al., 2006). For most other cases, it seems 

that largely, the same size regulation pathways operate in different organs resulting in 

similar effect to the final organ growth. Organs like petals/sepals and leaves are 

homologous. The transformation of identity from one organ to the other requires as few 

genes as one, e.g. ap2-1 mutant (Bowman et al., 1989) and 35S::UFO::SRDX (Chae et al., 
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2008). It is therefore formally possible that organ patterning genes interact with the organ-

non-specific size regulators to fine tune the growth of the organ. 

In animals, there is one piece of evidence from a study in fly wings that supports the above 

hypothesis. In wings and halteres (similar structures, but much smaller organs than wings), 

a Decapentalegic (Dpp)-dependent growth pathway is differentially modified to achieve 

different final organ sizes. The Ultrabithorax (Ubx) identity gene is specifically expressed in 

haltere and controls both its size and identity. Ubx controls haltere size by restricting both 

the transcription and the mobility of the morphogen Decapentaplegic (Dpp), which mediates 

size control. Ubx also restricts Dpp's distribution in the haltere by increasing the amounts of 

the Dpp receptor, thickveins (Crickmore and Mann, 2006). 

Here I study a novel mutant that has bigger flowers but smaller leaves than WT. These 

reverse phenotypes in the two organs mark this mutant as a promising entry to study the 

relationship between the organ identity and size regulation. The causal gene encodes for a 

Poly(A) Polymerase, an enzyme that adds poly(A) tail to pre-mRNAs. Polyadenylation is 

part of the 3’ end formation process of pre-mRNAs. Hence, below I give introduction about 

the 3’ end processing of eukaryotic mRNAs with focus on polyadenylation.  

1.2 Pre-mRNA 3’ end formation in plants with comparison to 
yeast and human: 

1.2.1 3’ end formation in general: 

In the nucleus of all eukaryotic cells, all newly synthesized pre-mRNAs, with the exception 

of histone mRNAs, are cleaved at their 3’ end and then polyadenylated (Figure 1.5). This 

process, so called 3’ end formation happens co-transcriptionally (Proudfoot, 2004) and can 

affect all aspects of mRNA metabolism: stability, translational efficiency, export, and 

generation of mRNA variants. Because of its universal importance in basic gene regulations, 

this process has been extensively studied in yeast, animals (reviewed in (Colgan and 

Manley, 1997, Millevoi and Vagner, 2010, Wahle and Ruegsegger, 1999, Zhao et al., 1999)) 

and plants (Rothnie, 1996, Hunt, 2008). Directly involved in this process are the cis-

elements surrounding the cleavage site of the mRNAs and the trans-factors (Figure 1.6). 

1.2.2  Roles of 3’ end formation: 

3’ end formation can affect all aspects of mRNA metabolism: stability, translational 

efficiency, export, and generation of mRNA variants (see above reviews). 
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Figure 1.5. 3’ end processing of eukaryotic mRNAs.  

This figure is taken from (Zhao et al., 1999). 

PABPN1
NabII
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Figure 1.6. Schematic drawing of the eukaryotic 3′ end processing machineries. 

This figure is taken from (Millevoi and Vagner, 2010). 
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1.2.1 Components of the 3’ end formation:  

1.2.1.1 cis-elements :  
There are cis-elements at the 3’ end of a pre-mRNA to signal where the cleavage site, 

which is also the polyadenylation site, is. The function of these elements is to recruit the 3’ 

end formation complex to the pre-mRNA and to specify the polyadenylation site. Animals, 

yeast and plants possess different cis-elements. These elements are conserved to a 

different degree in each kingdom.  

cis-elements in human: 
In mammalian cells, three elements define the core polyadenylation signal:  the upstream 

AAUAAA element, the downstream sequence elements (DSE) and the cleavage site itself 

(Figure 1.6). The highly conserved AAUAAA element is found 10 to 30 nucleotides 

upstream of the cleavage site. 

Any single point mutation in this hexanucleotide (apart from A to U at the second position) 

strongly inhibits polyadenylation in vitro using HeLa nuclear extract and synthetic mRNA 

precursors (Sheets et al., 1990). The DSE is U-rich or GU-rich and is found within 30 

nucleotides downstream of the cleavage site. DSE is poorly conserved, however small 

internal deletion (10bp) and  and linker replacement mutation study on some mRNAs 

(simian virus 40 late (SV40) and adenovirus L3 pre-mRNAs, beta globin mRNAs) revealed 

that the proximity of the DSE to the poly (A) site can affect the effiency and/or the position of 

cleavage ((Mason et al., 1986), (MacDonald et al., 1994). The cleavage site, which is also 

the poly (A) addition site, is determined mainly by the distance between the USE and DSE 

(Chen et al., 1995) based on in vitro studies on SV40 pre RNA. The local sequence 

surrounding the cleavage site is not conserved.  However, the two last nucleotides at the 3’ 

end of the 5’ half of cleaved product are very often 5’-CA-3’ with C found in the penultimate 

position of 59% of 63 vertebrate mRNAs analyzed, the value for A at the last position 

(denoted position +1) is 70% (Sheets et al., 1990). Converting this A to U or C shifted the 

terminus of the 5’ half-molecule to the adjacent adenosine downstream.  

These early studies which only analyzed a small number of mRNA substrates, gave the 

conclusion that the AAUAAA elements is absolutely conserved. However, this view has 

been challenged by recent large scale studies revealing that the AAUAAA element is not so 

conserved; only 50%-70% of the analyzed mRNAs carry this elements in their 3’ end 

(Beaudoing and Gautheret, 2001, MacDonald and Redondo, 2002, Tian et al., 2005).  

In addition to the three core pA signals, other sequence elements have been found in the 

mammalian system to enhance or repress 3’ end processing efficiency. Some 

enhancer/suppressor elements have been found, mostly in virus genes, although some 

were also found in cellular genes as summarized in (Zhao et al., 1999).  
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There are also examples of cis-elements that limit the poly(A)-tail length (discussed further 

in section 1.4.1.1 

cis-elements in yeast:  

Yeast polyadenylation signals are less highly conserved compared to mammalian 

cells(Graber et al., 1999).  However, synthetic minimal yeast 3’ end signals exist (Guo and 

Sherman, 1996). The minimal yeast mRNA 3’ end region requires at least three elements: 

The efficiency element, which ensures the efficiency of the positioning elements; the 

positioning element which positions the cleavage site; and the actual cleavage site.  

cis-elements in plants: 

Plants polyadenylation signals are more complex and less well-conserved compared to 

mammalian or yeast cells. Both functional studies on a handful of cis-elements from some 

plant mRNAs (reviewed in (Rothnie, 1996)) and large scale sequence analysis of 3’ end of 

cDNAs have been carried out (see below).  

Firstly, based on functional studies some transcripts (including the Cauliflower mosaic virus 

(CaMV) 35S transcript (Rothnie et al., 1994, Sanfacon and Hohn, 1990), the pea small 

subunit of Rubisco (rbcS) gene (Mogen et al., 1992), the maize 27kDa protein gene(Wu et 

al., 1993), the rice tungro bacilliform virus (Rothnie et al., 2001),  the Agrobacterium T-DNA 

encoded octopine synthase gene (ocs)(MacDonald et al., 1991), and the nopaline synthase 

(nos) genes (Rothnie et al., 1994)), the general conclusion is that cis-elements in plants are 

not well conserved; the spacing and base composition are more important than the actual 

sequences. These studies agreed on a polyadenylation motif consisting of three 

components:  i) the near upstream element (NUE) which is located 13 to 30 nt upstream of 

the cleavage site (CS). This NUE sequence is 6-10 nt in length, its composition is A rich and 

in some cases it resembles the highly conserved hexa-sequences AAUAAA in the human 

polyadenylation signal. ii) The far upstream element (FUE) is located at least 29 nucleotides 

upstream of the CS and is 60-100 nucleotides in length. The FUE sequence is rather 

diffuse. Apart from the general property of being U rich, no conserved motifs can be 

defined.iii) the cleavage site itself is commonly after 5’-YA-3’ residues (Y is pyrimidine), 

similar to the 5’CA3’ motif in mammals.  

Mutational studies on those three elements of different genes gave different and sometimes 

contradictory conclusions about the importance/the conservatory of these cis-element 

sequences.  For example, only deletion, but  none of 18 possible base mutations in the 

AAUAAA motif, had a dramatic effect on 3’-end processing effiency of the CaMV/35S 

transcription unit (Rothnie et al., 1994). (Wu et al., 1993)reported a somewhat contrasting 

conclusion with maize 27kDa protein mRNA, where an AAUGAA motif is used as NUE. One 

kind of mutated NUE, AAUAAA, reduced the amount of mRNA polyadenylated at the normal 

pA site by half whereas other kinds, like AAUCAA or AAUUAA, decreased polyadenylation 

effiency to a very low level.   
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There is also evidence that cis-elements are also not conserved between 

monocotyledonous (monocots) and dicotyledonous (dicots) plants. When a wheat gene is 

expressed in tobacco plants, it is not well polyadenylated (Keith and Chua, 1986), and the 

poly A site was mislocated. Supporting this non-conservation in mRNA processing between 

monocots and dicots, (Keith and Chua, 1986) reported that an intron included in wheat 

rbcSgene was found to be inefficiently spliced in tobacco plants. The FUE cis-elements are 

sometimes interchangeable: CaMV FUE could partially activate an otherwise silent 

AAUAAA signal in nos mRNA (Rothnie et al., 1994). Another noteworthy result arising from 

this study is that the distance between USE and DSE is important. A 17-18 nucleotide 

increase in the distance is sufficient to alter the pre-mRNA poly adenylation profile (Rothnie 

et al., 1994). The authors suggested that the distances reflect the physical sizes of the 

trans-factors.  

In summary, based on only 5 gene annotation units, the general conclusion is that cis-

elements in plants are not well conserved; the spacing and base composition is more 

important than the actual sequences.  

Since the release of the Arabidopsis thaliana genome (2000), the poly(A) signals have been 

studied on a large scale by aligning the sequences in the 3’ end of cDNAs to the genomic 

sequences.  Based on a data set of approximately 8000 Expressed Sequence Tags (EST) 

with authenticated poly(A) sites, a new model of the poly(A) signal has been compiled 

(Figure 1.7) (Loke et al., 2005). In this study, the most highly conserved motif found in the 

examined 3’UTRs was identical to the mammalian hexanucleotide AAUAAA. Yet, this 

hexamer was found in only 10% of the 8000 3’UTRs analyzed while the figure is 

approximately 53% for a human database of 13,000 authenticated poly(A) sites (Tian et al., 

2005). The author also found some motifs in NUE and FUE (Loke et al., 2005) but with very 

low occurrences. For example, the most common motif in FUE is present in only less than 

1% of 8000 3’UTR analyzed. To summarize, a large scale sequence alignment of 8000 

3’UTRsidentified the conserved enrichment of base compositions (mainly U rich or A rich) at 

some locations in the 3’UTRs, yet no sequence motif was found to occur more than 10% of 

the transcripts analyzed. These results agree with the previous functional studies (above) 

and together they suggest that the cis-elements in plants are not very well-conserved 

compared to human and yeast.  

Another noteworthy result from this paper (Loke et al., 2005),is that the authors also 

suggested  the importance of secondary structure of 3’UTR for the choice of CS. The 

authors predicted the secondary structure of the 3’UTRs of rbcS and CaMV. They then 

mapped the published mutations in cis-elements from previous functional studies of rbcS 

and CaMV to the structures. These mutations not only change the sequence, but also 

disrupt the secondary structure. Interestingly, the resulting new choices of CS discovered in 

the previous studies (Rothnie et al., 1994, Sanfacon and Hohn, 1990, Mogen et al., 1992) 

are in agreement with their newly proposed hypothesis, that the secondary structure of 
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Figure 1.7. Proposed models of the cis-elements for 3’ end processing in plants. 

The figure and figure legend is modified from Loke et al., 2005. 

Single-nucleotide profile of 3'-UTR and a current model of plant poly(A) signals. Distinct 

profiles flanking the CS are now named CEs. A, Sequence logo generated from the actual 

percentage of each of the four nucleotide's occurrence in the 8-K dataset, indicating 

preferred nucleotides flanking the CS (–5 to +3 nt). B, A current model for Arabidopsis 

mRNA poly(A) signals. URE, U-rich regions, which are found flanking both up and 

downstream of the CS.  

  

A

B
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3’UTRs can direct CS choice. However, there is currently no evidence that this secondary 

structure alone without the actual sequences is sufficient to determine CS.  

To sum up, plant polyadenylation signals, which consist of near upstream elements (NUE), 

far upstream elements (FUE) and the cleavage site (CS), are much less well-conserved 

than mammalian polyadenylation signals. It is remains to be answer whether the less well 

conserved cis-elements have any biological functions, but it is formally possible that this 

diversity can allow 3’ end processing of pre-mRNAs in plants to be more finely regulated, 

and the regulation pathway may be very different from animals and yeast.  

1.2.1.2 Trans-factors:  

The players: 
 So far, our understanding about trans-factors in 3’ end complexes comes mostly from the in 

vitro biochemical studies on purified or recombinant individual factors or sub-complexes and 

yeast two-hybrid studies. These studies defined a polyadenylation complex as a large 

structure containing four main sub-complexes: the Cleavage Polyadenylation Specificity 

Factor complex (CPSF), the Cleavage Stimulating Factor complex (CstF), the Cleavage 

Factor (CF), and the Poly(A) Polymerase enzyme (PAP) (Figure 1.6) (Millevoi and Vagner, 

2010)). Evidence from in vitro studies in mammalian systems indicates that proteins CPSF 

is the first subunit that forms the complex; CSPF160 binds AAUAAA elements, and CPSF73 

has endonuclease activity (Mandel et al., 2006) and supposedly cleaves the RNA. CstF 

binds to the DSE and aids CPSF to bind strongly to the RNA substrates (Millevoi and 

Vagner, 2010). CFs bind to auxillary elements and increase the effiency of 3’ end 

processing. A fully processive polyadenylation complex in vitro additionally requires poly(A) 

binding proteins (PABP) (Bienroth et al., 1993). 

The assembly and interactions in the 3’ end formation complex:  
How do these individual trans-factors assemble?  (Shi et al., 2009) used 3xMS2hairpin-tag-

SV40RNA and 3xMS2hairpin–tag-adenovirus L3 pre-mRNAs as substrates to isolate the 

complexes. SV40 and adenovirus L3 pre-mRNAs are the two commonly used RNA 

substrates for in vitro 3’ end processing studies; MS2 hairpin is an RNA sequence that 

forms a hairpin secondary structure and is bound specifically by coat proteins of MS2 

bacteriophages. The authors isolated 85 proteins that are shared when using both 

substrates as bait and are not isolated using the mutated versions of substrates. The 

authors found the four main sub-complexes CPSF, CstF, CFI, CFII (though Clp1 was 

lacking), PAP, RNA polymerase II (RNA pol II) subunits, PAF (transcription enlongation 

complexes), components of splicesosomes, intergrators (that is involved in the 3’ end 

processing of small RNAs), translational enlongation factors, DNA–damage repair proteins, 

and some novel components that had not been known to be associated with 3’ end 

complexes before. The biological function of this interaction remains to be investigated, but 
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the data suggest that the interactions between 3’ end process and other cellular processes 

are more complicated than anticipated.  

Trans-factors in plants:  
Factors: Homologs of yeast and human trans-factors exist in plants (summarized in Table 
1.2). Some of the factors have been studied biochemically; mutations have been isolated for 

some factors, and most of them are essential genes. However there are a handful of 

weak/hypomorphic mutations in some factors, for which strong mutants are lethal. These 

weak mutants surprisingly displayed specific phenotypes: late flowering and defects gene 

silencing or oxidative stress repsonse. The cpsf100/esp5 mutation suppresses gene 

silencing (Herr et al., 2006); cstf64-1 and esp1 are two mutation alleles in CstF64 gene, 

both of which results in late flowering and also suppress gene  silencing (Liu et al., 2010), 

Symplekin/esp4 is also a suppressor of gene silencing(Herr et al., 2006);pfs2/fy-2 is late 

flowering (Simpson et al., 2003); cstf77-1 is late  flowering.  

Assembly:  

Using cell suspension cultures, CPSF components in Arabidopsis were identified by a 

proteomic approach (Zhao et al., 2009) using TAP-tagged version of CPSF100, CPSF73-I 

and II, CPSF30, AtFY and AtCLPS3. Note that antibodies against AtCPSF30, 73-I, -100, -

160 (Xu et al., 2006); AtFY (Simpsons et al., 2003) and AtCLPS3 (Xing et al., 2008a) exists. 

In a different studies,(Herr et al., 2006) reported that FLAG-tagged AtCPSF100 co-purified 

with AtCPSF160, AtCPSF73-I, AtFY. (Delaney et al., 2006). Hunt et al., 2008 used yeast 

two-hybrid assays to investigate all possible pairwise interactions among trans-factors (Hunt 

et al., 2008), summarized in Figure 1.8. Using TAP-AtFY constructs, Manzano et al., 2009 

pulled down FY complexes (using FY-C terminal TAP tag construct) and reported two 

distinct complexes at different sizes (Manzano et al., 2009). Over-expressing FCA promotes 

the formation of the high molecular weight complex. AtCPSF160 is more abundantly found 

in the low molecular weight complex. However, the composition of these two complexes 

was not analyzed by mass-spectrometry. FY interacts physically with AtCPSF100 and 

AtCPSF160. The authors showed that in the late flowering fy-2 hypomorphic mutant, the 

complex where AtCPSF160 resides changes, but the complex where FCA resides does not 

change. The fact that Arabidopsis thaliana has several homologs for some singular trans-

factors in human  and yeast, and the results from in vivo pull down and yeast two hybrids 

experiments, suggest that Arabidopsis thaliana may have several distinct 3’ end processing 

complexes.   

It is concluded that plants have a more diverse trans-factors and cis-elements involved in 3’ 

end processing and there are different 3’ end processing complexes with perhaps different 

functions.  
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Table 1.2. The Arabdiopsis homologs/orthorlogs of yeast/human core 3’ end processing factors: 

The blank cells in the table indicates the information is not available.  

Factors Human/yeast 

counterpart  

At code Overexpression Mutants phenotype Available 

material 

Enzymatic 

activity 

Reference 

CPSF160 CPSF160/Yhh1 At5g51660 NA NA Peptide 

antibody 

 (Xu et al., 

2006) 

CPSF100 CPSF100/Ydh1 At5g23880  + some alleles are 

lethal 

+ esp5 enhances 

silencing and affects 

flowering time.    

Peptide 

antibody 

 (Elliott et al., 

2003, Tzafrir 

et al., 2004, 

Herr et al., 

2006, Xu et 

al., 2006) 

CPSF73 CPSF73/Ysh1 At1g61010  

(CPSF73-I) 

+ 35S::cDNA all 

transformations failed to 

give transformants 

+pCPSF73::cDNA 

transgenic plants  are 

male sterile and have 

big flowers 

+ Plants carrying 

inducible RNAi 

constructs  are dead 

after induction,   

  

Peptide 

antibody 

 (Xu et al., 

2006) 

At2g01730 

(CPSF73-II) 

 Embryonic lethal,  Peptide 

antibody 

 (Xu et al., 

2006, Xu et 

al., 2004) 

Table 1.2.  The Arabdiopsis homologs of yeast/human core 3’ end processing factors (continued): 
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Factors Human/yeast 

counterpart  

At code Overexpression Mutants phenotype Available 

material 

Enzymatic 

activity 

Reference 

CPSF30 CPSF30/Yth1 At1g30460  oxt6 mutants show 

enhanced sensitive to 

oxidative stress (a T-

DNA allele) 

 Endonuclease, 

interacts with 

calmodulin 

(Addepalli and 

Hunt, 2007, Xu 

et al., 2006, 

Delaney et al., 

2006) 

FY hPfs2/Pfs2 At5g13480  fy-1 and fy-2  are late 

flowering. 

  (Simpson et 

al., 2003) 

CstF77 CstF77/Rna14 At1g17760  hypomorphic cstf77-1 is 

late flowering; 

cstf77-2 causes female 

gametophytic lethality.  

 Bind RNA (Yao et al., 

2002, Bell and 

Hunt, 2010, 

Liu et al., 

2010) 

CstF64 CstF64/Rna15 At1g71800  cstf64-1 reduced fertility, 

flowering time delayed; 

cstf64-2  small, sterile; 

esp1  enhances gene 

silencing  

  (Liu et al., 

2010) 
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Table 1.2.  The Arabdiopsis homologs of yeast/human core 3’ end processing factors (continued): 
Factors Human/yeast 

counterpart  

At code Overexpression Mutants phenotype Available 

material 

Enzymatic 

activity 

Reference 

CstF50 CstF50 At5g60940  ?   No study 

Fip1 hFip1/Fip1 At3g66652(FIPS3)      

At5g58040(FIPS5)  a T-DNA insertion allele 

is  lethal 

  (Forbes et al., 

2006) 

CFIm25 hCFIm25 At4g25550 (CFIS2)     No study 

At4g29820 (CFIS1)     No study 

CFIIm hClp1/Clp1 At3g04680 (CLPS3) CLPS3::TAP Small 

deformed flowers, 

other morphological 

changes, 

a T-DNA insertion allele  

is lethal 

CLPS3-

TAP 
RNA kinase (Xing et al., 

2008a) 

  At5g39930 (CLPS5)  T-DNA no phenotype   (Xing et al., 

2008a) 

Symplekin Symplekin/Pta1 At1g27590 (SYM1)      

At1g27595 (SYM2)      

At5g01400 ( SYM5)  esp4  enhances gene 

silencing 

  (Herr et al., 

2006) 
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Table 1.2.  The Arabdiopsis homologs of yeast/human core 3’ end processing factors (continued): 
Factors Human/yeast 

counterpart  

At code Overexpression Mutants phenotype Available 

material 

Enzymatic 

activity 

Reference 

CFIIm hPcf11p/Pcf11 At1g66500 (PCFS1)     (Xing et al., 

2008b) 

 

At4g04885 (PCFS4)  pcfs4 is late flowering   

At5g43620 (PCFS5)     

Cytoplasmic 

Poly(A) 

Binding 

protein 

(PAB) 

Pab1(yeast) At1g34140 (PAB1)     (Belostotsky, 

2003, 

Belostotsky 

and Meagher, 

1993, Bravo et 

al., 2005, 

Chekanova 

and 

Belostotsky, 

2003, 

Belostotsky 

and Meagher, 

1996, 

Chekanova et 

al., 2001, 

Palanivelu et 

al., 2000) 

At4g34110 (PAB2)*   

At1g22760 (PAB3)*   

At2g23350 (PAB4)   

At1g71770 (PAB5)*   

At3g16380 (PAB6)   

At2g36660 (PAB7)   

At1g49760 (PAB8)   

 



53 
 

Table 1.2.  The Arabdiopsis homologs of yeast/human core 3’ end processing factors (continued): 
Factors Human/yeast 

counterpart  

At code Overexpression Mutants phenotype Available 

material 

Enzymatic 

activity 

Reference 

Nuclear  

Poly(A) 

Binding 

protein (PAB) 

Nab2/PABPN1 At5g65260 (PABN1)     No study 

At5g51120 (PABN2) 

At5g10350 (PABN3) 

* The PAB that can rescue pab1 yeast mutant.   
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Figure 1.8. Interactions between 3’ end processing factors  identified by yeast two 
hybrid. 

This figure is taken from (Hunt, 2008). 
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1.3  Poly (A) polymerase: 

1.3.1 General properties of canonical PAPs in yeast and animals:  

A PAP is classified as canonical PAP (cPAP) if it shares a high amino acid sequence 

identity 30-40% with, and are the most similar proteins in that organism genome to, the 

human PAP alpha or the yeast PAP1. cPAPs have a steady-state localization in the 

nucleus. cPAPs add adenosine to the 3’ end of cleaved mRNAs to form poly(A) tails of 

mRNAs.  

The number of cPAPs varies with species: human has three, Drosophila melanogaster(fruit 

fly) has one, Saccharomyces cerevisiae (budding yeast) has one, chicken has one, 

mammals has three, Caenorhabditis elegans(worm) has three, Daniorerio (fish) has two, 

Amoeba has one. Plants have more: Physcomitrella patens (moss) has two, 

Chlamydomonas (algae) has one, Selaginella moellendorffii has two, Oryza sativa (rice) has 

six, Sorghum has six, Populus has three, grapevine has four, and Arabidopsis thaliana has 

four. Canonical PAPs that have been studied includes bovine, human, mouse, yeast, fly, 

and Arabidopsis. In species whose genome has not been fully sequenced, there could be 

more canonical PAPs. The phylogenetic tree of 45 cPAPs, the alignment file of amino acid 

sequence and the % ID table are attached as an electronic version. A canonical PAP has 

two domains, the N-terminal catalytic domain and the C-terminal domain. A phylogenetic 

trees of cPAPs was published Meeks et al., 2009 (Figure 1.9). The N-terminal catalytic 

domain is highly conserved in eukaryotes but the C-terminal domain is not conserved 

between plants and animals. Yeast PAP does not have a C-terminal domain.  

In vitro biochemical studies on mammalian cPAPs revealed that cPAP on its own does not 

have any preference to RNA substrates in vitro (Bienroth et al., 1993). The cPAP itself is a 

distributive enzyme in vitro, that is it only adds one or very few adenosines at one binding 

event (the Km is quite high). Also on its own, in vitro, the cPAP does not give a specific 

poly(A)-tail length, i.e. the tail length in the final product depends on the amount of the 

enzyme and the time of the reaction (Wahle, 1995). With the help of the other components 

of the 3’ end processing complex including CPSF and PABP, cPAP becomes a processive 

enzyme, and this three-component complex also regulates poly(A) tail length, such that 

inone binding event of the fully assembled complex to a pre-mRNA can lead to the 

formation of the final product of a default 200 to 250 A’s (in mammalian systems) (Wahle, 

1995).  
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Figure 1.9. Phylogenetic tree of plant and mammalian cPAP proteins based on the 
proteins’ enzymatic core. 

Arrows indicate position of Arabidopsis proteins. This figure is from (Meeks et al., 2009) 
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1.3.2 Detailed properties of canonical PAPs in yeast and animals: 

1.3.2.1 X-ray crystal structure: 

Several structures of PAP have been solved, yet for only the N-terminal domain and not for 

the C-terminal domain. The Bohm group published the structure of the yeast PAP with 3’ 

dATP, 3’ deoxy adenosine ribonucleotide (also called cordycepin, which is an analog of 

ATP, and it is also a chain terminator) (Bard et al., 2000). In 2007, a structure of yeast PAP 

was published also by this group with the other three components that are required and 

sufficient for in vitro non-specific polyadenylation: RNA substrates, ATP and Mg2+ (Balbo 

and Bohm, 2007). Additionally, using other structures and steady state fluorescence studies 

(Balbo et al., 2007) revealed the protein domain movements during catalytic cycles. The 

structure of bovine PAP was published in 2000 by a different group (Martin et al., 2000) 

showing similar structure to yeast PAP. (Meinke et al., 2008) revealed the structure of yeast 

PAP in the complex with a peptide of Fip1.  

These structures shed light on the molecular mechanism of how PAP acts, providing an 

explanation of specificity towards ATP but not other nucleotides and the reason why PAP is 

distributive Balbo et al., 2007. The N-terminal and C-terminal domains of the yeast PAP 

move independently as rigid bodies along two well defined axes of rotation during the 

catalytic cycle. This C-terminal domain of yeast PAP is not to be mistaken with the C-

terminal domain of bovine canonical PAP, as yeast PAP lacks the similar domain to the 

bovine C-terminal domain; the whole yeast PAP, which is equivalent to the N-terminal 

catalytic domain of bovine PAP, can be subdivided into three parts the N-terminal, middle 

and C-terminal domains).  (Balbo et al., 2007) proposed a model of the catalytic cycle of 

PAP (Figure 1.10). 

In this model, a cycle begins with an open conformation allowing sampling of nucleotide 

substrates; only a correct nucleotide (ATP) can induce the closed enzyme conformation, 

thereby enabling efficient catalysis. After catalysis, i.e. addition of one AMP, the enzyme 

opens again to release the product which then must bind again for the next round of 

adenylyl transfer. The fact that the product (the poly(A) tail)  is released after every cycle 

explains why the enzyme on its own is distributive.  

1.3.2.2 Biochemical properties as revealed by site-directed mutagenesis: 

By site-directed mutagenesis, many single amino acid (aa) substitutions have been made to 

the PAP protein to study the contribution of these aa to the kinetic of the enzyme (Km, 

substrate specificity, Vmax). (Martin et al., 1999, Balbo and Bohm, 2007, Martin et al., 2004, 

Zhelkovsky et al., 2004). These studies identified the three critical catalytic Asp residues 

(D113A, D115A, D157A in bovine PAP), mutations in any of which inactivate the enzyme. 

Also, residues affecting the substrate binding of: pre-mRNA, ATP Mg, were identified.   
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Figure 1.10. A Model for the catalytic cycle of a poly(A) polymerase. 

The free enzyme exists in an open form. Upon binding both substrates (in random order), 

the enzyme undergoes a conformational change to the closed form, where catalysis occurs. 

After catalysis, the enzyme returns to the open form to release the products. The two metal 

ions (Mg2+ or Mn2+) in the active site are shown as gray spheres. 

The figure and figure legend are taken from (Mandel and Tong, 2007). 
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Finally there are residues that when changed can drive the specificity of the enzyme 

towards GTP/CTP rather than ATP.  

1.3.2.3 Known physical and genetic interactions 
A mutant that can partially suppress yeast pap1-1 defect is the RNA polymerase III pds1 

mutant (Briggs and Butler, 1996). Other mutants in the RNA processing machinery also 

showed genetic interaction with pap1-1, e.g. the exosome mutants rrp6 (van Hoof et al., 

2000). Synthetic lethal mutants with pap1-1 at permissive temperature are lcp5 mutants, 

affecting a protein that is involved in maturation of 18S rRNA (Wiederkehr et al., 1998). 

1.3.2.4 Post-translational modification at the C-terminal domain (CTD): 

The mammalian cPAP protein can be inactivated by phosphorylation in the C-terminal 

domain during the M-phase of the cell cycle (Colgan et al., 1998). Mammalian Poly(A) 

polymerase alpha (PAPOLA) is also subject to other protein modifications at its C-terminal 

domain such as sumoylation (Vethantham et al., 2008) (Figure 1.11). PAPOLA protein was 

also shown to be acetylated at the nuclear localization signal (Shimazu et al., 2007). This 

modification promotes the cytoplasmic localization of PAPOLA and reduces the interaction 

between PAPOLA and CF.Im. 

1.3.3 The genes encoding cPAPs and their mutant phenotypes in 
yeast and mammalians cPAPs:  

1.3.3.1 Human cPAPs: 

In human, three canonical PAPs that are encoded by three different genes have been 

discovered. They are named: PAPOLA (also called PAP alpha or hsPAPII), PAPOLB (also 

called PAP beta or testis PAP) and PAPOLG (also called PAP gama or neo-PAP).  

PAPOLA (Swissprot P51003) and PAPOLG (Swissprot Q9BWT3) 

Identification of PAPOLA and PAPOLG were identified in the early experiment by using 

antibodies and Western blot. In HeLa cell nuclear extracts, a monoclonal antibody NN2 

(raised against a purified recombinant PAP protein from E.coli expressing a human cDNA of 

PAP (Thuresson et al., 1994)) detected three proteins of 90kDa, 100 kDa and 106kDa. 

There is a different antibody, anti-PAPIIex22 (Kyriakopoulou et al., 2001) that only 

recognizes only two larger forms.  
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Figure 1.11. Modification of mamalian PAP C-terminal domain.  

Figure is taken from (Vethantham et al., 2008) 
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PAPOLA The 100kDa and 106kDa forms are proteins encoded by human PAPOLA (or also 

called humanPAPII) (Thuresson et al., 1994, Kyriakopoulou et al., 2001). The protein 

PAPOLA (Swissprot P51003)has 745 amino acids. The 106kDa is most likely to be the 

phosphorylated form of PAPOLA (Thuresson et al., 1994). Both the 100kDa and 106kDa 

proteins are present in both nuclear and cytoplasmic fractions of HeLa cells. The gene 

encoding PAPOLA in mouse has been demonstrated to produce five different alternative 

spliced/alternative polyadenylated transcripts falling into two classes, the long forms and the 

short forms, which lack the C-terminal half of the gene (Zhao and Manley, 1996). Only the 

long transcripts seem to be translated as deducted from the western blot experiment using 

yet another antibody that is raised against purified bovine PAP I. The relative abundance of 

these spliced forms is tissue specific (Hela cells, mouse brain tissues, intestine tissues and 

liver tissues were examined). One of the long forms, PAPII, is expressed most strongly 

amongst PAPOLA transcript isoforms and is found in all tissues tested. In in vitro assay 

using purified recombinant proteins, the short forms were found to be inactive. It seems that 

the spliced form II (PAPII) of PAPOLA is the main PAP in human.  

PAPOLG The 90kDa protein is the product of a different gene, called PAPOLG or also neo-

PAP (Kyriakopoulou et al., 2001, Topalian et al., 2001).PAPOLG shared 76% identity in 

amino acid sequence with PAPOLA. PAPOLG seemed to be exclusively localized in the 

nucleus as demonstrated by transfection experiment (Topalian et al., 2001) and by western 

blot comparing the nuclear vs. cytoplasmic fractionations of HeLa cells (Thuresson et al., 

1994).The protein is 736 amino acid long, has a calculated molecular weight of 82.8kDa. 

PAPOLG is an authentic canonical PAP (Topalian et al., 2001). PAPOLG has non-specific 

polyadenylation activitiy in vitro (when assayed on pre-cleaved synthetic RNA substrates 

and without CPSF addition), and this activity is comparable to bovine PAPI. PAPOLG also 

has specific polyadenylation and cleavage activity in vitro (assayed with pre-cleaved 

synthetic RNA substrates with added purified CPSF). In contrast to PAPOLA, PAPOLG 

seems not to be phosphorylated, as it is not sensitive to phosphatase treatment. The 

expression of PAPOLG varies in different tissues.  

PAPOLB or testis PAP, is specifically expressed in mouse testis (Kashiwabara et al., 

2002)..PAPOLB is shared 86% identity in amino acid sequence with PAPOLA. It is the 

shortest of the three cPAPs with a molecular weight of 70kDa. PAPOLB only contains 636 

aa, it lacks the 100 aa at the C-terminal domain. The other unique properties of PAPOLB 

compared to the PAPOLA and PAPOLG is that it is cytoplasmic. Mice deficient in PAPOLB 

are male sterile, but otherwise have normal growth and behaviour. Female mice deficient for 

PAPOLB are fertile. Specific substrates of PAPOLB are RNAs from that are the haploid-

specific genes that are important for the morphogenesis of the sperm cells. Poly(A)-tail tests 

showed that disruption of PAPOLB shortens the poly(A) tails of these mRNAs. Interestingly, 

poly(A)-tail shortening did not destabilize these mRNAs or repress translation of many of 

these genes as judged from Western blot results. The only one transcript that the authors 
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found to have shortened poly(A) tails and reduced protein levels in the nuclear, but not the 

cytoplasmic fraction in tpap mutant compared to WT is the TAF10 transcript. The author 

argued that as TAF10 is a component of the TFIID complex, which is dispensable for 

general RNA polymerase II–mediated transcription yet essential for selective expression of 

specific genes, disruption of TAF10 protein level in the nucleus is likely to contribute in part 

to the mutant phenotype.  

1.3.3.2 Yeast cPAP and fly cPAP: 
Yeast has only one canonical PAP, PAP1.Yeast PAP1 is nuclear. Yeast PAP1 protein is 

lacks C-terminal domain. pap1-1 yeast mutant is temperature sensitive, and growth is 

inhibited at high temperatures(Patel and Butler, 1992). 

Drosophila has only one canonical PAP, it is 659 amino acids long, has both N and C 

terminal domains, and is 56% identical in amino acid sequence to bovine PAP. The null 

mutant is lethal. A weak mutant allele, hiiragi, causes a very specific phenotype of defects in 

morphology of the wing margins (Murata et al., 2001). The molecular mechanism of this 

defect is unknown. Interestingly, HIIRAGI protein resides in both the nucleus and the 

cytoplasm and is essential for the polyadenylation of certain mRNAs in both compartments 

(Juge et al., 2002). Overexpression of hiiragi protein in female germ line causes 

hyperadenylation of mRNAs that are (bicoid mRNAs) and are not (sop mRNAs) normally 

regulated by cytoplasmic polyadenylation, and causes embryonic lethality. Yet, 

overexpressing HIIRAGI in somatic tissues did not cause any changes to the poly(A) tail 

length of the ubiquitously expressed sop mRNAs. The authors suggested that 

overexpressing HIIRAGI protein in germlines causes increased levels of cytoplasmic protein 

hence can cause non-specific hyperadenylation via increasing the interaction between PAP 

and mRNAs in the cytoplasm.  

1.3.4 Plant canonical poly(A) polymerases: 

1.3.4.1 Phylogenetics of cPAPs across kingdoms: 
(Meeks et al., 2009) shows the phylogenetics of PAPs across kingdoms (Figure 1.9) (a 

more complete comparision with more species is attached as an electronic version). Plant 

species other than Arabidopsis possess several canonical PAPs, functional studies of which 

have not yet been reported. 

1.3.4.2 Arabidopsis thaliana cPAPs: 
The studies on canonical and non canonical PAPs in Arabidopsis are (Addepalli et al., 2004, 

Lange et al., 2009, Meeks et al., 2009) and reference therein.  

Identity. Arabidopsis has four genes that encode highly similar proteins to human/yeast 

canonical PAPs (The % of identity and the alignment of the protein sequences are included 
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as electronic version). They are on four different chromosomes hence are named PAPS1 

(At1g17980), PAPS2 (At2g25850), PAPS3 (At3g06560) and PAPS4 (At4g32850).  

Domain structure. The exon and intron patterns of the four genes are similar (Figure 
1.12A) (Addepalli et al., 2004). Amongst the four, PAPS3 is the most divergent because it 

encodes a smaller protein of 506 amino acid (aa). PAPS3 protein lacks the C-terminal 

domain and lacks the nuclear localization signal. This property of PAPS3 resembles human 

PAPOLB(Kashiwabara et al., 2002). The other three proteins PAPS1, PAPS2 and PAPS4 

are larger in size (713, 800 and 738 amino acids, respectively) and contain both the highly 

conserved N-terminal domain and the variable C-terminal domain. The C-terminal domains 

of PAPS1, PAPS2 and PAPS4 do not align to each other and neither do they align to any 

known proteins either within or outside of the plant kingdom. The C-terminal domain of 

human PAP has been proposed to be the regulatory domain of PAP, and is subjected to 

extensive post translational modification (Colgan et al., 1998, Vethantham et al., 2008), yet 

whether this is also true for Arabidopsis cPAPS is not known.  

Mutants. Meeks et al., 2009 reported the failure to obtain homozygous single mutants for all 

four cPAPS from the heterozygous plants carrying T-DNAs inserted in each locus. The 

authors suggested that a disruption to any single cPAPS causes lethality and hence every 

cPAPS is essential.  

In vitro activity. All four recombinant cPAPS proteins have been shown to possess non-

specific polyadenylation in vitro (Hunt et al., 2000, Addepalli et al., 2004). The activity of 

three proteins in vitro are not equal with PAPS1 = PAPS3 > PAPS4 (Addepalli et al., 2004). 

However, the differences in activity among them are not large, less than two fold. The 

activity of PAPS2 has been demonstrated in a different study (Hunt et al., 2000) and 

therefore is not suitable for comparisons with those of PAPS1, PAPS3 and PAPS4.  

Protein localization. By bombardment of onion cells with construct over-expressing a 

translational fusion of AtPAPS and GFP (C-terminal fusion: 35S::PAPS-CGFP), (Meeks et 

al., 2009) showed that PAPS1, PAPS2 and PAPS4 are exclusively localized in the nuclei 

while PAPS3 is exclusively localized in the cytoplasm (Figure 1.12B). 

Expression domain. Using promoter: GUS constructs (Meeks et al., 2009) and Northern 

blots (Addepalli et al., 2004), three cPAPSs were shown to be widely expressed in largely 

overlapping domains (Figure 1.13). PAPS3 is highly expressed in pollen. Again this 

resembles PAPOLB in mammals (Kashiwabara et al., 2002).  

Alternative splicing pattern. It has been known in animals that PAPOLA produce at least 

six different spliced forms (Zhao and Manley, 1996). (Addepalli et al., 2004) reported that 

Arabidopsis cPAPSs also share this property with human PAPOLA. For PAPS1, there are 

two spliced forms published (Addepalli et al., 2004). Spliced form ‘b’ is caused by an 
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Figure 1.12. Gene structure and intracellular localization of PAPSs in Arabidopsis.  

Figures were modified from the reference  indicated underneath the figures.  

A. The organization of the four cPAP genomic loci.  

B. The cellular localization of cPAPs. Onion cells were bombarded with  constructs  

encoding GFP fused to the C-terminal domains of cPAPs. 

  

Addepalli et al., 2004

A

B

Meeks et al., 2009
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Figure 1.13. Expresssion patterns of PAPSs  

A. Expression domains visualized by pPAPS::GUS  constructs. From (Meeks et al., 2009) 

B.  Absolute expression levels of PAPS1, PAPS2, PAPS3 and PAPS4 in different 

Arabidopsis tissues. Data are from AtGenExpress . 

(http://jsp.weigelworld.org/expviz/expviz.jsp). Arrow indicates stamen and pollen samples 

(Sample 56). The 63 sample types are as follow: 

Sample  
Tissue 
cluster Tissue Age 

AtGenexpress 
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2 root roots 17 days ATGE_9 
3 root root 15 days ATGE_93 
4 root root 8 days ATGE_94 
5 root root 8 days ATGE_95 
6 root root 21 days ATGE_98 
7 root root 21 days ATGE_99 
8 stem hypocotyl 7 days ATGE_2 
9 stem 1st node 21+ days ATGE_28 
10 stem stem, 2nd internode 21+ days ATGE_27 
11 leaf cotyledons 7 days ATGE_1 
12 leaf leaves 1 + 2 7 days ATGE_5 
13 leaf rosette leaf #4, 1 cm long 10 days ATGE_10 
14 leaf rosette leaf # 2 17 days ATGE_12 
15 leaf rosette leaf # 4 17 days ATGE_13 
16 leaf rosette leaf # 6 17 days ATGE_14 
17 leaf rosette leaf # 8 17 days ATGE_15 
18 leaf rosette leaf # 10 17 days ATGE_16 
19 leaf rosette leaf # 12 17 days ATGE_17 
20 leaf leaf 7, petiole 17 days ATGE_19 
21 leaf leaf 7, proximal half 17 days ATGE_20 
22 leaf leaf 7, distal half 17 days ATGE_21 
23 leaf leaf 15 days ATGE_91 
24 leaf senescing leaves 35 days ATGE_25 
25 leaf cauline leaves 21+ days ATGE_26 
26 whole plant seedling, green parts 7 days ATGE_7 
27 whole plant seedling, green parts 8 days ATGE_96 
28 whole plant seedling, green parts 8 days ATGE_97 
29 whole plant seedling, green parts 21 days ATGE_100 
30 whole plant seedling, green parts 21 days ATGE_101 

31 whole plant 

developmental drift, entire rosette after 
transition to flowering, but before 
bolting 21 days ATGE_22 

32 whole plant as above 22 days ATGE_23 
33 whole plant as above 23 days ATGE_24 
34 whole plant vegetative rosette 7 days ATGE_87 
35 whole plant vegetative rosette 14 days ATGE_89 
36 whole plant vegetative rosette 21 days ATGE_90 
37 apex shoot apex, vegetative + young leaves 7 days ATGE_4 
38 apex shoot apex, vegetative 7 days ATGE_6 
39 apex shoot apex, transition (before bolting) 14 days ATGE_8 

40 apex 
shoot apex, inflorescence (after 
bolting) 21 days ATGE_29 

41 flowers flowers stage 9 21+ days ATGE_31 
42 flowers flowers stage 10/11 21+ days ATGE_32 
43 flowers flowers stage 12 21+ days ATGE_33 
44 flowers flowers stage 15 21+ days ATGE_39 
45 flowers flower 28 days ATGE_92 
46 floral organs flowers stage 15, pedicels 21+ days ATGE_40 
47 floral organs flowers stage 12, sepals 21+ days ATGE_34 
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48 floral organs flowers stage 15, sepals 21+ days ATGE_41 
49 floral organs flowers stage 12, petals 21+ days ATGE_35 
50 floral organs flowers stage 15, petals 21+ days ATGE_42 
51 floral organs flowers stage 12, stamens 21+ days ATGE_36 
52 floral organs flowers stage 15, stamen 21+ days ATGE_43 
53 floral organs mature pollen 6 wk ATGE_73 
54 floral organs flowers stage 12, carpels 21+ days ATGE_37 
55 floral organs flowers stage 15, carpels 21+ days ATGE_45 

56 seeds 
siliques, w/ seeds stage 3; mid globular 
to early heart embryos 8 wk ATGE_76 

57 seeds 
siliques, w/ seeds stage 4; early to late 
heart embryos 8 wk ATGE_77 

58 seeds 
siliques, w/ seeds stage 5; late heart to 
mid torpedo embryos 8 wk ATGE_78 

59 seeds 
seeds, stage 6, w/o siliques; mid to late 
torpedo embryos 8 wk ATGE_79 

60 seeds 
seeds, stage 7, w/o siliques; late 
torpedo to early walking-stick embryos 8 wk ATGE_81 

61 seeds 

seeds, stage 8, w/o siliques; walking-
stick to early curled cotyledons 
embryos 8 wk ATGE_82 

62 seeds 

seeds, stage 9, w/o siliques; curled 
cotyledons to early green cotyledons 
embryos 8 wk ATGE_83 

63 seeds 
seeds, stage 10, w/o siliques; green 
cotyledons embryos 8 wk ATGE_84 
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inclusion of intron 6 which is predicted to result in truncated non-functional protein (Figure 
1.14). In flowers, this spliced form ‘b’ is predominantly detected. The longer spliced form ‘a’ 

should produce a functional protein. This spliced form is predominantly detected in leaves. 

Based on the prediction that ‘b’ produces a non-functional protein, flowers may not require 

as much catalytically functional PAPS1 (protein produced from spliced form ‘a’) compared to 

PAPS2/PAPS4 proteins. PAPS2, PAPS4 and PAPS3 genes also produce alternative 

spliced forms (Figure 1.14). 

1.4 Regulation of canonical polyadenylation: 

In this section, I summarize what is known about the regulation of polyadenylation with two 

main aspects: the poly(A)-tail length and the poly(A) site. 

1.4.1 Poly(A)-tail length regulation 

It is apparent that at the steady state level, cellular mRNAs have very different tail lengths 

that range from a few adenosines (A’s) to ca. 90 A’s in yeast (Brown and Sachs, 1998), ca. 

250 A’s in mammals (Sawicki et al., 1977, Wahle, 1995), ca. 150-200 A’s in fly (Benoit et al., 

2005) and ca. 150 A’s in plants (this study). Measurement of the steady-state tail lengths on 

a genome-wide scale (Meijer et al., 2007, Beilharz and Preiss, 2007) showed that mRNAs 

can have very different averaged poly(A)-tail length. Theoretically, tail lengths can be 

controlled by three processes: i) the synthesis in the nuclei (de novo polyadenylation); ii) the 

shortening of poly(A) tail (deadenylation) in the cytoplasm or nuclei and iii) the extension of 

poly(A) tail, that is distinct from i) as this is not a de novo synthesis of the entire poly(A) tail, 

it is only addition of adenosines to a pre-existing poly(A) tail.  

In practice, it is widely believed that the deadenylation generates most of the heterogeneity 

of the steady-state tail lengths. Deadenylation is mostly a cytoplasmic event.  It is also 

widely believed that during de novo polyadenylation, most of mRNAs are synthesized with 

the same default tail length, which depends on species. Cytoplasmic extension of the 

poly(A) tail only applies to certain mRNAs, whose tails are deadenylated in the unfertilized 

oocytes but then re-adenylated in the cytoplasm after fertilization (Huarte et al., 1992). 

Below, I summarize the key experimental evidence that this generally accepted view is 

based on. As will be seen, much of the important evidence is based mainly on in vitro 

systems using a few mRNA substrates, and even in vivo, only a few cell types were tested. 

These experimental set up must be taken into account when extrapolating this generally 

accepted view to all cellular mRNAs and to mRNAs from different tissues.  
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Figure 1.14. The alternative spliced patterns of PAPSs. 

Figures were modified from the reference indicated.  

A. The alternative spliced patterns, two forms of transcripts a and b were shown. 

B. The expression level differences between the two forms of transcripts a and b analyzed 

by RT-PCR. L: leaves, L—leaf, S—stem, R—root, F—flower.  
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1.4.1.1 de novo poly(A)-tail length control: 

Mammals de novo poly(A)-tail length control 
PABP1N ensures that polyadenylation reaches but does not exceed 250 A’s (with few 
exceptions):  

In mammals, it has been widely accepted that most mRNAs, after de novo synthesis, are 

homogeneous in poly(A)-tail length, which is approximately 250 adenosines. This 

conclusion is based on in vitro and in vivo evidence.  

In vivo, (Sawicki et al., 1977) performed pulse chase experiments in HeLa cells using 

radioactively labeled adenosine. They analyzed the tail length of newly synthesized mRNAs 

in the nuclei and in the cytoplasm separately, examining the A tail length after various 

labeling times (from 1 minute to several hours and up to 3 days). The results indicated that 

in the nuclei, within one minute of labeling, most of the newly synthesized poly(A) tails have 

a homogenous length of 200 to 280 nucleotides. This pattern did not change over time even 

after 3 days of labeling, especially no incomplete “nascent” poly(A) could be detected. In 

contrast, in the cytoplasm the pattern changes over time such that the poly(A)-tail length 

rapidly becomes homogeneous at 200 to 280 nucleotides in length during the initial 40 

minutes but these became heterogeneous in size after labeling periods of longer than two 

hours. The data strongly suggested that both newly synthesized and steady state mRNAs 

from the nucleus reach a tail of approximately 230 A’s. The results however do not exclude 

the possibility that some pre-mRNAs with a shorter or longer than 230 A’ could have 

escaped the detection due to their low abundance. In fact, poly(A) tails of such pre-mRNAs 

with less than 20 nucleotides have been discovered ((Rao et al., 1996) and see below). 

Also, the results do not exclude that in a different cell type, the nascent poly(A) tail can be 

different.  

In vitro, using proteins from mammals, (Wahle, 1995) could faithfully reconstituted the same 

de novo A tail regulation using purified Cleavage Polyadenylation Specificity Factor (CPSF), 

and Poly(A) binding proteins (PAB II) and Poly(A) Polymerase (PAP). Precleaved L3-

preRNA substrates, which carried poly(A) tails of different length, was used. In the presence 

of all the three proteins, a homogeneous poly(A) tails of 200-250 A’s were found in the final 

products regardless of how many A’s the substrates had before the reaction. PAP alone 

was not sufficient for this tail-length regulation and PABII and CPSF were necessary for the 

regulation. Bovine/yeast PAP alone, or yeast PAP combined with the non-compatible bovine 

CPSF and PABII, failed to synthesize a fixed tail length of 250 nucleotides in vitro. In latter 

in vitro study by the same research group using a modified substrate (Kuhn et al., 2009), the 

authors showed that only As residues were counted as part of the tail. The authors 

suggested a model for the role of PABII  in controlling the poly(A) tail length. In this model, 

PABII, (or renamed as PABPN1 for poly(A) binding protein nuclear 1) binds poly(A) and 

forms a folded back structure within the 3’ end complex. Once the poly(A) tails goes beyond 
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250 nucleotides, the poly(A)-PABPN1 structure no longer supports the interaction between 

PAP and  CPSF. So it seems that during de novo synthesis of the poly(A) tail, the PABPN1, 

by binding directly to adenosine residues (one PABPN1 per 15 A’s), served as a ruler to 

measure the poly (A) tail length. 

Disruption of the nuclear PABPN1 in mammals and flies causes reduced level of the very 

long poly(A) species (Apponi et al., 2010, Benoit et al., 2005). However, the effect is quite 

subtle in the bulk poly(A)-tail analysis. Probably this is because of the mild disruption to the 

PABPN1 gene. The homolog of mammalian PABPN1 in fly is PABP2. Homozygous null 

pabp2 mutants are lethal (Benoit et al., 2005). It is intriguing that PABP2 acts to promote 

polyadenylation of ubiquitously expressed genes including sop and rp49 mRNA, but 

contrastingly PABP2 acts to restrict the polyadenylation of cycB and osk mRNA, which 

undergo cytoplasmic polyadenylation (Benoit et al., 2005). 

Exceptions to the “250 A’s” rule have been reported. (Rao et al., 1996) discovered that 

albumin mRNA in liver has a very short poly(A) tail ranging from 12 to 17 residues. The 

author showed that both intron-containing pre-mRNA and mature steady-state mRNA of 

albumin have the same short poly (A) tail. Later, a cis element, namely Poly(A) limiting 

element (PLE), was identified as being responsible for this regulation(Das Gupta et al., 

1998). PLEs have been mapped to the terminal exons (Das Gupta et al., 1998, Gupta et al., 

2001). Splicing factor U2FA binds to this element (Gu and Schoenberg, 2003). Surprisingly, 

the presence of this PLE in the 3’ end of reporter genes stimulates faster 3’ end processing, 

resulting in increased accumulation of mRNA compared to controls without PLE elements 

(Peng et al., 2005). These PLE-containing short-tail reporter mRNAs are efficiently recruited 

to polyribosome, and the final protein levels are comparable to those translated from the 

control PLE-lacking, long-tail mRNAs (Peng and Schoenberg, 2005).  The group also found 

conserved motifs of PLEs in many mRNAs that have short (<20 A) tails suggesting that 

nuclear regulation of poly (A) tail length is a feature of many mRNAs (Gu et al., 1999). 

In sum, the in vitro and in vivo evidence here strongly support the default de novo poly (A) 

tail length of 250 nucleotides for most pre-mRNAs in mammals. However, the discoveries of 

extremely short oligo(A) tail, PLE containing pre-mRNAs suggest that, in different cell types 

or with different pre-mRNA substrates, the de novo poly(A) tail can deviate from this rule. 

Apart from PLE, there is little evidence for regulation of the length of poly(A) tail added 

during pre-mRNA processing.  

Yeast de novo poly(A)-tail length control 
In yeast, in vivo evidence using conditional lethal mutants that disrupt core components of 3’ 

end processing machinery  such as pap (Proweller and Butler, 1994), hrp1(Kessler et al., 

1997), rna15 (Kessler et al., 1997), fip1 (Preker et al., 1995), supported the roles of these 

factor in poly(A) tail length control. However, in my opinion, it is questionable whether the 

reduction in poly(A)-tail length reflects the direct effect of de novo polyadenylation or the 
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indirect effects of inhibiting transcription and other cellular processes. In all of the studies, 

the authors did not uncouple the detrimental effect of disrupting these components to 

general transcription and cell growth. Apart from fip1 and pap in which the effect on bulk 

poly(A) was found shortly after switching to the non-permissive temperature (after 5 minutes 

and 30 minutes, respectively), for other mutants, the poly(A) tail was already found to be 

different before the temperature switch and was examined again 3 or 6 hour after the 

switch. During this long period of time, transcription could have been inhibited hence the 

general reduction in poly(A) tail could reflect the reduction in newly synthesized nascent 

poly(A) tails  and compared to the steady-state of deadenylated poly(A) tails.  

Yeast lacks a homolog of human nuclear PABPN1, so the PABPN1-dependent poly(A)-tail 

regulation is not present in yeast. Instead, two other poly(A) binding proteins were shown to 

regulate poly(A) tail length. Both proteins function to suppress polyadenylation rather than to 

promote polyadenylation like in mammals. They are the cytoplasmic poly A binding protein 

Pab1p (Sachs and Davis, 1989)and the nuclear poly(A) binding protein Nab2p (Hector et al., 

2002). 

pab1 deletion is lethal. Pab1p was found to interact with cleavage factor IA (CFIA) and 

suppress polyadenylation in vitro (Minvielle-Sebastia et al., 1997). Despite the steady-state 

cytoplasmic location, Pab1p can also be present in the nucleus. Later experiments 

confirmed that Pab1p can shuffle between nucleus and cytoplasm and suggest that the N 

terminal domain carries the nuclear targeting signal (Dunn et al., 2005, Brune et al., 2005). 

Based on bulk poly(A)-tail analysis of mutants and studies on physical and genetic 

interactions of Pab1p, the following model was proposed. In the nucleus, Pab1p binds to 

poly(A) tails and recruits PAN (Poly(A) ribonuclease) complexes to trim off the poly(A) tail of 

newly synthesize mRNAs, which are 70-90 A’s by default, to messenger specific poly(A) 

tails ranging from 55-70 nucleotides (Brown and Sachs, 1998). The model is based on in 

vivo poly(A)-tail length measurements, however, only three pre-mRNAs were analyzed 

(RPL46, PGK1 and MFA2). By using a GAL-inducible promoter to analyze only newly 

synthesize mRNAs, the authors also showed that the poly(A) tails were trimmed very rapidly 

(4 to 12 minute after induction) and the trimming could not be uncoupled from the de novo 3’ 

end processing of the pre-mRNAs. Later experiments identified other positive and negative 

regulators of the Pab1p-PAN pathway in controlling poly (A) tail length (Mangus et al., 

2004). I summarized these findings in Figure 1.15. The exosome mutant rrp6 can suppress 

pab1 lethality ( Dunn et al., 2005, Brune et al., 2005).  

PAN is one of the two deadenylation complexes in S.cerevisae (reviewed in (Parker and 

Song, 2004)). Its activity is stimulated by Pab1p. PAN contains 2 subunits, PAN2 and PAN3. 

PAN2 is a member of the RNaseD family and therefore is the catalytic subunit of PAN 

complex (Boeck et al., 1996). PAN3 interacts with and is thought to enhance and regulate 

PAN2 (Brown et al., 1996).  
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Figure 1.15. The model of poly(A)-tail length regulation in yeast. 

Figure is modified from Brown and Sachs,1998 and Mangus et al., 2004. Proteins that 

interact physically with each other are connected with dash line.  
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PAN3 also interacts with Pab1p and with Mex67p(Ito et al., 2001), a shuttling protein 

involved in mRNA export. pan2 and pan3 single mutants and pan2 pan3 double mutant 

show hyperpolyadenylation but in contrast to pab1, these mutants survive and display no 

growth defects (Brown et al., 1996, Boeck et al., 1996).  

Nab2p is another poly(A) binding protein in yeast. Unlike Pab1p, Nab2p is constitutively 

nuclear. Nab2p is an essential nuclear poly(A) binding protein that plays a role in both 

poly(A) tail length control and nuclear export (Hector et al., 2002). Disruption of NAB2 

causes hyperadenylation of poly(A) tail and accumulation of poly(A)+ mRNA in the nucleus. 

The effect on mRNA export could cause synthesis-independent hyperadenylation, because 

the export defect keeps mRNAs in the nucleus hence protects them from the deadenylase 

enzyme in the cytoplasm, potentially increasing the average length ofpoly(A) tails.To rule 

out this possibility, the authors grew a cold sensitive mutant nab2-21 at 30⁰C to uncouple 

export defects and the poly(A)-tail length regulation. The experiments confirmed the direct 

role of Nab2p in the poly(A)-tail length regulation. The authors suggested that Nab2p 

functions to terminate polyadenylation. Also in this study, overexpressing Pab1p or targeting 

Pab1p to the nucleus rescued the lethality of nab2 mutant, suggesting their function is 

interchangeable. Yet intriguingly, at the molecular level, the PAB1 overexpression strain 

actually enhances the hyperadenylation defect in nab2 mutants. However, the export defect 

in the nab2 mutant was partially rescued in the transgenic yeast, suggesting this is the 

explanation for the rescue of the lethal phenotype. In my interpretation, alternative 

explanations, for example, Pab1p can alleviate the hyperadenylation defects on only a few 

mRNAs that is essential for growth, can not be ruled out. 

To sum up, in yeast de novo poly(A) tail of 70-90 nucleotides is subjected to two pathways 

for controlling tail length in the nucleus during synthesis. They are the Pab1p-PAN pathway, 

which trims off the A-tail to 55-70 nucleotides depending on transcripts, and the Nab2p, 

which terminates polyadenylation.  

Finally, more mutants affect poly(A) tail length in yeast, but their molecular basis is not clear 

as reveal in a study on cordycepin sensitive mutants(Holbein et al., 2009). 

Plants de novo poly(A)-tail length control 

It is not known how plants regulate poly(A) tail length during synthesis. It is not known 

whether newly synthesized poly(A) tails have a fixed tail length. As shown in Table 1.2, 
homologs of human and yeast core 3’ end processing factors exist in Arabiodopsis. 

Arabidopsis also has eight cytoplasmic poly(A) binding proteins and three nuclear poly(A) 

binding proteins (Table 1.2) expressed in an organ-specific manner (Belostotsky and 

Meagher, 1993). One of them, PAB3 can rescue the lethality of both pab1, and nab2 mutant 

when expressed in yeast. However, similar to yeast Pab1p overexpression, overexpressing 

PAB3 did not rescue the hyperadenylation in yeast nab2 mutants (Chekanova and 
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Belostotsky, 2003). It is formally possible that plants use similar de novo poly(A)-tail length 

regulation as mammals.  

1.4.1.2 Deadenylation: 

Once the mRNAs are exported from the nucleus to the cytoplasm, the homogenously long 

poly(A) tails are subjected to deadenylation. Deadenylation is the first step in the 3’ to 5’ 

degradation of eukaryotic mRNA (Figure 1.16 reviewed in (Parker and Song, 2004, 

Goldstrohm and Wickens, 2008) and reference here on. A factor that can influence the 

steady-state average poly(A)-tail length is the variation in deadenylation rate during  a 

mRNA life span and how short the poly(A) tails need to get in order to trigger rapid 

degradation. For example, mRNA X, which is rapidly degraded when its poly(A) tail reaches 

10-15 nucleotide in length, will have shorter steady-state poly(A) tail length compared to 

mRNA Y, which is rapidly degraded when its poly(A) tail reaches 40-50 nucleotide in length. 

The transcript-specific poly(A)-tail-length threshold that primes the degradation of the mRNA 

is not well explored in the literature.  

There are three deadenylation complexes: CCR4/POP2/NOT, PAN and PARN. PAN has 

been introduced above and its activity is dependent on PAB1P and it deadenylates pre-

mRNA in the nucleus in yeast. PAN also acts in mammals (Yamashita et al., 2005). In the 

cytoplasm, CCR4 is the predominant deadenylase complex. 

Again, it is not clear how important the role of cytoplasmic/nuclear deadenylation is to 

poly(A)-tail length control in plants. Plants have homologs to proteins of all three 

deadenylation complexes. Functional studies exist for only AtPARN and AtCCR4. 

AtCCR4 is transiently upregulated by three plant hormones (jasmonic acid JA, salicyclic 

acid SA and abscisic acid ABA) and pathogen (Liang et al., 2009). Mutants and 

overexpression of AtCCR4 reduced and enhance PR1/2 (PATHOGEN RELATED 1/2)-

mediated pathogen responses respectively, resulting more or less susceptible to 

Pseudomonas syringae. 

The strong AtPARN mutant allele is embryo lethal (Reverdatto et al., 2004), the weaker 

allele ahg2-1 (acid abscisic (ABA) hypersensitive germination 2) displays a specific 

phenotype: ABA hypersensitive (Nishimura et al., 2009, Nishimura et al., 2005). However, 

poly(A)-tail lengths were not analyzed, and no PARN-sensitive targets were identified.  

1.4.2 Regulation of cleavage and the site of polyadenylation 
(Alternative polyadenylation) 

For some genes, there can be more than one poly(A) sites, which are also the cleavage 

sites of pre-mRNAs. Alternative polyadenylation (APA), and the preference of which poly(A) 

site(s) to use are under regulation and have diverse roles in gene regulation (reviewed  
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Figure 1.16. Deadenylation and mRNA degradation pathways in eukaryotes. 

A. From Goldstrohm and Wickens, 2008 

B. From Parker and Song, 2004. 
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extensively in (Lutz and Moreira, 2011, Lutz, 2008, Xing et al., 2010, Wang et al., 2008). I 

summarize the kinds of APA and highlight the functions of APA from recent studies. 

Kinds of alternative polyadenylations: 
For coding genes, alternative polyadenylation can be classified into three types depending 

on where the poly(A) sites are (Figure 1.17). If the gene has only one poly (A) site, no 

alternative polyadenylation happens.  

In type I, the different poly(A) sites lie in the 3’UTRs, hence the coding sequences amongst 

the alternatively polyadenylated mRNAs are not changed, but the 3’UTR sequences are 

changed. Many RNA cis-acting elements that are present in 3’ UTRs can regulate mRNA 

polyadenylation (via cytoplasmic polyadenylation elements), mRNA stability and 

translational effiency (via binding sites for miRNAs, translation factor etc…). In type II, the 

different poly(A) sites lie within exons. If the exon is the last exon, the pre-mRNA is not 

differently spliced; but if the exon is the middle exon, alternative polyadenylation can be 

coupled to alternative splicing. In type III, the different poly(A) sites lie within introns. In this 

type, the splicing patterns of pre-mRNAs change.  

In plants, studies on a dataset of 55,000 rice authentic poly(A) sites revealed 50% of the 

genes have more than one poly(A) site, excluding microheterogeneity of 30 nucleotides 

(Shen et al., 2008). A recent study using a method for sequencing only the poly(A) site 

suggested that  alternative polyadenylation is even more wide-spread and occurs  not only 

in sense mRNAs but also in antisense RNA and intergenic cryptic transcripts (Wu et al., 

2011). The authors identified 57,000 poly(A)-site clusters (PAC) (sites that are within 30 

nucleotides away from each other are clustered as one PAC) that mapped to the sense 

strand of annotated transcripts, 24,000 PAC that mapped to the antisense strand of the 

annotated transcripts and 14,000 PAC that mapped to intergenic regions. The 57,000 PACs 

in sense orientation mapped to 18,000 genes, over 70% of which possess more than one 

poly(A) sites.  

Recent discoveries give a hint about the biological role of alternative polyadenylations of 

antisense transcripts. For example, it was suggested that two proteins in the autonomous 

pathway that control flowering time in Arabidopsis, FCA, an RNA binding proteins and FPA, 

a Spen family protein, promote the selection of the proximal poly(A) site in the antisense 

transcript  of the FLOWERING LOCUS C (FLC) gene, which is a key repressor of flowering 

(Liu et al., 2010, Hornyik et al., 2010). FCA does that by targeting three components of 3’ 

end processing, FY, CstF64 and CstF77, to the distal poly(A) site of FLC antisense mRNAs. 

Interestingly, this regulation of the 3’ end processing of antisense transcripts helps down 

regulate the FLC sense transcript, hence promoting flowering (Liu et al., 2010).  
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Figure 1.17. Types of alternative polyadenylation. 

Figure is modified from Lutz and Moreira, 2011.  

Type I. The alternative poly(A) sites lie within the 3’UTR. 

Type II. The alternative poly(A) sites lie within exons. 

 Type III. The alternative poly(A) sites lie within introns. 
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1.5 Non-canonical PAPs: 

Eukaryotes possess several other PAP-like proteins but with very low identity to the human 

PAPOLA, or yeast PAP1. These proteins are non-canonical PAPs (extensive reviewed in 

Schmidt and Norbury, 2010). Their roles are diverse. The most well studied is the TRAMP 

complex that adds short poly(A)tails (adenylation activity is suppressed after 3-4 adenosine 

(Jia et al., 2011)) to mRNAs, which mark them for degradation. ncPAPs often only target 

specific mRNAs like mis-folded and other short-lived nuclear RNAs, centromeric siRNAs 

and their precursors, rRNAs, miRNAs, U6 snRNAs, histone mRNAs, , miRNAs, HO-1 

mRNAs (reviewed in Schmidt and Norbury, 2010). Some ncPAPs (star-PAP) can even add 

oligo(U) tail to mRNAs.  

Non canonical PAPS (ncPAP): Arabidopsis possesses nine non-canonical PAPs (Figure 
1.18 (Lange et al., 2009)). These non-canonical PAPs are indentified insilico by the 

sequence similarity to the charaterized ncPAPs in yeast. The function of these geneshave 

not yet been reported, apart from one, which is At4g00060 (or MEE44) whose disruption 

causes embryonic lethality (Pagnussat et al., 2005). In addition, Arabidopsis also 

prossesses five bacterial-type PAPs that are targeted to organelles like mitochondria and 

chloroplasts (Zimmer et al., 2009). 
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Figure 1.18. Canonical and non-canonical PAPs in Arabidopsis.  

This figure is taken from (Lange et al., 2009) 

Domain architecture of PAPs in Arabidopsis thaliana. Boxes represent conserved structural 

domains identified using the structural classification of proteins (SCOP) according to the 

superfamily database. Non-conserved regions are drawn as lines. AGI (Arabidopsis 

Genome Initiative) gene numbers are also given. The number of predicted gene models is 

indicated in parentheses. Protein length is indicated by the number of amino acids on the 

right.(a) cPAPs contain a characteristic combination of three well-conserved domains and 

are involved in mRNA 3′ end formation in the nucleus.(b) Nine ncPAPs are encoded in the 

Arabidopsis genome. Compared with cPAPs, the domains of the ncPAPs are more 

heterogeneous and do not belong to a corporate domain family. Members of the ncPAP 

family, such as the protein encoded by At2g45620, probably function as PUPs rather than 

PAPs.(c) Bacterial-type PAPs and tRNA-nucleotidyltransferases are characterized by the 

poly(A) polymerase C terminal region-like fold (yellow boxes), which is distinct from the 

PAP/OAS domain (poly(A) polymerase and/or oligo adenylate synthase substrate binding 

domain, red boxes) found in eukaryotic cPAPs and ncPAPs. Bacterial-type PAPs and tRNA-

nucleotidyltransferases have the same basic structure but can be distinguished by a 10-

amino acid motif (white boxes) that is present in the nucleotidyltransferase domain of 

bacterial PAPs, but absent in bacterial tRNA-nucleotidyltransferases. In fact, only one tRNA-

nucleotidyltransferase is annotated in A. thaliana and, whereas the other four members of 

the family are putative PAPs.       
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1.6 Project Aims and Objectives: 

1.6.1 Preliminary results: 

From an Ethyl Methane Sulfonate (EMS)–mutagenized population, D.S noticed a mutant 

which has reduced leaf size but enlarged flower size. Because of the Lenhard group’s 

interest in size control, the mutant was given to us, initially called ds39. The opposite size 

effects of this mutation on leaves and flowers are particularly exciting. As explained in 

section 1.1.6 most size regulators affect the size of leaves and flowers in similar ways. 

There are a few mutants (proteasomal mutants, cincinnata mutants and s6 kinase mutants) 

that regulates size of leaves and flowers in opposite directions. The basis of these reverse 

effects is not yet known. ds39 therefore provides opportunities to tackle this elusive and 

important problem: how organ identity modifies the general growth patterns. 

In this project, I identified the causal gene by map-based cloning and found that the gene is 

At1g17980, which encodes for one of the four canonical Poly(A) Polymerases in 

Arabidopsis. 

1.6.2 Aims and objectives: 

The project has three aims and several objectives are drawn for each aim: 

For the first aim, to understand molecularly how ds39 affects organ size in general, the 

objectives are:  

 To identify the causal gene underlying the ds39 phenotype.  

 To characterize the growth phenotype in detail, including measuring growth 

parameters: organ size, cell number, cell size of both leaves and petals in a final 

stage of the organ and also during organ development 

 To determine when the gene is required for growth control. 

 To determine whether the gene acts autonomously or non-autonomously.  

 To study the genetic interactions between the gene and other genetic pathways that 

control organ size. 

 To identify targets of PAPS1 that cause the growth phenotype in leaves and flowers 

(also for the second aim and third aim).  

 
For the second aim, to clarify why the sizes of leaves and flowers are regulated in the 

reverse directions in this mutant, the objectives are: 

 To clarify whether the reverse growth defect is dependent on organ identity or organ 

position. 
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 To identify direct mRNA targets of PAPS1 that cause the growth phenotype in 

leaves and also the mRNAs that causes the phenotype in flowers (this is also an 

objectives in the third aim).  

For the third aim, to understand why a mutation in such a house keeping gene like canonical 

Poly(A) Polymerases can have such a specific phenotype, the objectives are:   

 To analyze different mutant alleles of PAPS1. 

 To analyze mutants in other canonical PAPs and also mutant combinations with 

PAPS1. 

 To identify the specificity in the protein factors (i.e. domains of PAPS) that is 

responsible for the functional specification amongst PAPS. 

 To identify the cis-elements (i.e. RNA motifs) that make mRNAs sensitive to PAPS1 

defects.  
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2 .Chapter 2. ds39 is a peculiar 
mutant with smaller leaves and 
larger flowers than wild-type. 
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In this chapter, I show the detailed phenotypic characterization of ds39 looking at final organ 

size, final cell size, growth rate, growth period, cell division vs. time were compared between 

ds39 and wild-type (WT) Ler.  

2.1 ds39 mutant plants have larger floral organs, but smaller 
leaves: 

ds39 mutants make larger flowers and smaller leaves than WT (Figure 2.1 and Figure 2.2). 

Not only petals are larger (89% increase) but also the other floral organs: sepals (62% 

increase) anthers (27% increase) and gynoecium (20% increase) are larger, though to a 

lesser extent. In contrast, leaves of ds39 are only a third of the size of WT leaves. The 

height of ds39 mutant plants is also reduced (Figure 2.1A).  

To compare, the increase of 89% in petal size is a large effect compared to the effect of the 

other known negative regulators of size: the petal increase in bpe-1 is 24%, (Szecsi et al., 

2006); in the da1-1 mutant it is 60% (Li et al., 2008) , and in the bb-1 mutant it is 60% (Disch 

et al., 2006).  

2.2 Final cell size is increased in petals, but decreased in leaves 
of ds39 mutants: 

I next compared the cell size of petals and leaves of the mutant with wild-type plants. 

Epidermal cells on the adaxial face of mature petals at a position a third of the petal towards 

the tip were measured using the low melt agarose method (see section 9.2.4.8 for 

description). Using this experimental setting, the cells size in mutant petals are 21% larger 

than wild-type petals Figure 2.2A Compared to the overall increase of 86% in area of 

mutant petals, it is likely that the mutant petals are larger because of both more cells and 

larger cells. Although no difference in the spatial pattern of the change in cell-size between 

mutant and WT petals was observed, in the future, more measurements at various positions 

in the petals should be examined to statistically confirm this. 

Mesophyll cells in the mature forth and fifth leaves were measured by using the chloral 

hydrate method (see section 9.2.4.8 for description). Cells were sampled at three positions: 

one third of the leaf towards the tip, the middle of the leaf and one third of the leaf towards 

the base; all of the positions are the middle point between the midvein and the outer border 

of the leaf. These measurements at the three positions were averaged for each genotype 

and the data is presented in Figure 2.2A. Using this experimental setting, in leaves of ds39 

mutants, the cell size reduces more than 2 fold compared to WT leaves. Representative 
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images of the cells at position a third of the leaf towards the tip, away from the midvein are 

shown in Figure 2.2C.  

In sum, petals of the mutant are larger because of more cells and larger cells, while the 

leaves of the mutant are smaller mainly because of smaller cells, with little change in cell 

number. This suggests that DS39 wild-type gene function restricts both cell division and cell 

expansion in petals, and promotes cell expansion in leaves.  

Compared to other negative size regulator mutants, the effects of the ds39 mutation in 

promoting both cell size and cell number in petals is unique. da1-1 and bb-1 mutations only 

increase cell number; cell size remains unchanged (Disch et al., 2006, Li et al., 2008). The 

bpe-1 mutation increases cell size and reduces cell division in petals (Szecsi et al., 2006). 

This suggests that the DS39 size regulator is probably a novel regulator.  

2.3 ds39 petals grow at the same rate but for longer period: 

The enhanced petal growth in the mutant can be caused by either an increased growth rate 

or an extended growth period or both. To answer this question, a developmental series on 

growing petals was analyzed. Petals were dissected from the flowers/buds in the 

inflorescences and areas were measured then plotted against their growth periods. The 

growth period of the youngest bud, which contained the smallest dissectible petals 

(approximately 50.000 µm2 in area) was set to be 0. The growth period of the next bud was 

calculated by adding the plastochron to the growth period of the previous bud. The 

plastochron (the time difference between two sequential buds) was estimated by counting 

how many flowers that were made in six days. The plastochron of the wild-type flower is 

9.86 hours (SEM= 0.37 hours, n=18 plants); of the ds39 mutant flower is 19.80 hours 

(SEM=0.75 hours, n=19 plants). The resulting growth curve is shown in Figure 2.3A. In the 

petals of the mutant, growth rate is the same as WT but the growth period is extended 

resulting in an overall increase in final petal size. This growth curve is better analyzed when 

the petal area is transformed to log2 value Figure 2.3B. Using log2 petal area vs time data, 

a straight line can be fitted with a high correlation (r2>=0.9 for all six lines from six 

inflorescences analyzed) suggesing that the petal growth is exponential for both mutant and 

wild-type. The average slope caculated from three WT inflorescences is 0.034 (SEM=0.002, 

n=3)) and from three ds39 inflorescences is 0.031 (SEM=0.001, n=3). ttest showed the 

difference between these two average slopes from mutant and WT is not significant. It is 

therefore concluded that the mutant and WT petals grow at the same rate but the mutant 

petals grow for a longer period of time resulting in a final increase in size compared to WT 

petals. This characteristic, i.e. having the same growth rate, but an extended growth period 

in ds39 is shared with da1-1 and bb petals.  
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Figure 2.1. ds39 mutant plants have smaller leaves but bigger flowers than wild-type. 

Plants were grown at 21⁰C.  

A.  Plants at 40 days after germination.  

B.  Mature flowers.  

C.  Inflorescences.  

D.  Plants at 30 days after germination.  
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Figure 2.2. Final organ size and organ cell size of ds39 mutants and WT.  

Plants were grown at 21⁰C.  

A.  Organs from mature flowers (petals, sepals, anthers, gynoecium) and mature leaves (the 

4th and 5th leaves) of plants when they have produced 5 to 10 flowers (approximately 5 

week old) were used for measurements. Numbers above the red bar showed the ratio (in %) 

of mutant/wt for that measurement. Value is mean ± s.e.m; for measurement on petals, 

sepals and anthers n ≥ 20; for gynoecium  n = 7; for leaves n≥5; for seeds n ≥ 55; for petal 

cell size, at least 20 petals were examined (n ≥ 20); for leaf cell size, at least four leaves 

were measured (n≥4). All measurements are significantly different between WT and mutant 

(unpaired t-test  p-value <0.01), except the seed size (not significantly different).   

B.  Cells from petals. They are images of conical epidermal cells on the adaxial face of 

mature petals at a position a third of the petal towards the tip.Scale bar 100 µm. 

C.  Mesophyll cells in leaves. Mature fourth and fifth leaves were cleared by chloral hydrate 

for 2 days, and then images were taken at a position a third of the leaf towards the tip, away 

from the midvein. Scale bar 50 µm 
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Figure 2.3. The DS39 gene regulates the duration and not the rate of petal growth.  
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Figure 2.3. The DS39 gene regulates the duration and not the rate of petal growth. 

(continued): 

Developmental series of petal growth : Petals were dissected from the flowers/buds in the 

inflorescences and areas were measured then plotted against their growth periods. The 

growth period of the youngest bud, which contained the smallest dissectible petals 

(approximately 50.000 µm2 in area) was set to be 0. The growth period of the next bud was 

calculated by adding the plastochron to the growth period of the previous bud.  The 

plastochron (the time difference between two sequential buds) was estimated by counting 

how many flowers that were made in six days. Two to four petals per bud and three 

inflorescences per genotype were measured.  

 

A. Petal area vs time.  

B. Log2(Petal area) vs time. The petal area data in A. was transformed in to log2 scale. 
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2.4 Cell division is enhanced in ds39: 

The increase in cell number in mature petals of the mutant suggests that cell division is 

enhanced. To understand how this enhancement occurs temporally and spatially, we 

directly visualized and traced the dividing cell using the mitotic reporter construct 

pAtCycB1;1::CDBGUS. This construct when transformed into plants allows only dividing 

cells to be stained blue after GUS staining. GUS only accumulates during the G2/M phases 

of the cell cycle because of the combined transcriptional restriction due to the  pAtCycB1;1 

promoter, which is only active around the G2/M transition, and protein degradation at the 

end of mitosis that results from translationally fusing GUS to the Cyclin Destruction Box of 

CycB1;1(de Almeida Engler et al., 1999).  

As shown in Figure 2.4A, cell division in petals is enhanced in the mutant compared to WT. 

Cell division is also arrested later in mutant compared to wild-type (arrest happens when 

ds39 petals reach a size of 0.4 mm2, while the number for Ler is 0.25 mm2). This result 

suggests that the cell division arrest in ds39 petals is delayed, then resulting in a longer 

period of growth which contributes to the increase in final size. Additionally, this 60% 

difference in the area, at which cell division is arrested (0.4 mm2 for WT vs 0.25 mm2 for 

mutant), combined with a 20% increase in cell size predict the total difference in final petal 

area of 92% (i.e.160% x 120% = 192%). This number is very close to the measured 

difference in final petal size i.e. 89%.  

Spatially, the cell division pattern is not affect in the ds39 mutant petals (Figure 2.5). Similar 

to wild-type, cell division is arrested first at the very tip and base of the petals and last at the 

central of the petals.  

In leaves, the cell division activity is arrested later in the mutant, similar to what happened in 

petals of the mutant (Figure 2.4B) but to a lesser degree. This increased cell division is not 

able to compensate for the defect in cell expansion. However, quantitatively, the data does 

not fully match, cell size of mutant is 43% of cell size of WT, given the same number of 

cells, the over all size of mutant should be 43% of WT. In fact, the overall leaf size of the 

mutant is 30% of the WT, meaning that the cell number must also decrease in the mutant. 

This contradicts with the CDBGUS results. The resolution of GUS staining in this experiment 

is not at single cell level. So perhaps, in the ‘blue’ area marked by CDBGUS of the ds39 

mutant, a fewer number of cells divide.  
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Figure 2.4. Cell division is enhanced in ds39 mutants compared to WT. 

Cell division area was visualized by GUS staining the organs from plants harbouring the 

mitotic marker construct pAtCycB1;1::CDBGUS. Dividing area is the area that showed blue 

GUS staining. 

A.  Developmental series of cell division in petals.  

B.  Developmental series of cell division in leaves.  
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Figure 2.5. Cell division pattern does not change spatially between ds39 mutants and 
WT 

The positions of red square (ds39) and blue dots (WT) represent the petal size. The dashed 

lines connect the corresponding GUS stained images of the petals to their areas. All images 

are at the same magnification. 
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2.5 Other phenotype of ds39:  

ds39 plants grow more slowly, form fewer leaves, fewer flowers and fewer side shoots ( 

Figure 2.1C and D). Siliques of ds39 mutants are shorter. Seed size is not changed (Figure 
2.2A). Total seed number is much reduced. The seeds also have a reduced germination 

rate. 

2.6 The opposite phenotypes of ds39 on flower size and leaf size 
are dependent on the organ identity rather than organ 
position: 

I ask whether the opposite phenotype of ds39 on flower size and leaf size are dependent on 

the organ identity rather than organ position. The organ position scenario can happen for 

example: there could be a mobile growth inhibitor that travels from roots to leaves and 

flowers to control size; in ds39 mutant, the mobility may be blocked so that the inhibitors 

may not be able to reach the flowers. In such case, leaves accumulate the inhibitors and 

grow less well but flowers are free of the inhibitors and enlarge.  

To test this possibility, I combine ds39 with a mutant background that changes an organ 

identity but keeping its position intact. ap2-1 (Bowman et al., 1989) mutant transform sepals 

in to leaf-like organs. Sepals of ds39 mutants are larger than Ler WT but ‘leaf-like’ organs in 

the second whorles of the flower s of ds39 ap2-1 double mutants are smaller than the ‘leaf-

like’ organs in the second whorles of the flowers of single ap2-1 single mutants (Figure 2.6). 

Therefore, the effect of ds39 on petal enlargement is identity dependent rather than position 

dependent. 

 

The conclusions in this chapter are: i) in petals, the ds39 mutation enhances growth by 

delaying cell division arrest and also by increase cell expansion; ii) By contrast, in leaves, 

the ds39 mutation represses growth by inhibiting cell expansion. iii) the opposite size effects 

of paps1-1 mutations on leaves and sepals are dependent on organ identity. 
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Figure 2.6. The opposite effect of ds39 on sepals and leaves is dependent on the 
organ identity rather than the position.  

A. Floral organs of different genotypes were shown. Note that ap2-1 mutant transforms the 

sepals (second whorl) in to leaf-like organs.  

B. Size of the organs at the second whorl were measured for different genotype, error bars 

are S.E.M, n≥10.  
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3 .Chapter 3.The identification of 
the ds39 mutation as paps1-1 
and the phenotypes and 
interactions among four paps1 
mutant alleles. 
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3.1 Mapping of the ds39 mutation: 

The gene causing the ds39 phenotype was identified by map-based cloning (Lukowitz et al., 

2000). The mutation is fully recessive as the petal size of F1 plant from a cross between WT 

and ds39 is indistinguishable from WT (Figure 2.2). In the F2 population from the selfed F1 

plants, the phenotypic segregation ratio is 33 mutant:232 wild-type (i.e. mutant ratio is 0.14).  

This ratio is much higher and statistically different from a ratio of one in 16 (the p-value is 

less than 0.001 in a χ2 –test), so it rules out the possibility that the phenotype is caused by 

two mutations. This ratio is also lower and statistically different from a 1:3 ratio (pvalue is 

less than 0.001 in χ2 –test). However, homozygous mutant seeds showed a low germination 

rate, so the simplest explanation is that the phenotype is caused by one mutation, with the 

distortion due to reduced germination of the homozygous mutant class. 

After PCR-genotyping about 1000 phenotypically mutant individuals from F2 mapping 

population, the mutation is found to be tightly linked to two markers flanking an interval of 

80kb (Figure 3.1A). 19 candidate genes (Figure 3.1B) in this interval were sequenced. T-

DNA insertion lines which disrupt genes in this region were ordered. In the end, sequencing 

identified a C to A point mutation in At1g17980 (Figure 3.1C). Additionally, plants that are 

homozyogous for a T-DNA insertion that disrupts this gene were found to have smaller and 

pointed leaves. This suggests At1g17980 is the causal gene.  

3.2 3.2. The causal gene is At1g17980, which encodes a 
canonical poly(A) polymerase 1 (PAPS1): 

We have three lines of evidence to support that the ds39 mutant is in At1g17980, which 

encodes for PAPS1. First evidence is from the mapping of ds39 and the identification of a 

point mutation in At1g17980 gene in ds39 mutant. Secondly, transforming ds39 mutant with 

a genomic version of wild-type PAPS1 fully rescued the ds39 phenotype in both leaves and 

flowers (Figure 3.2A). Thirdly, two independent T-DNA insertion lines which have the T-

DNA inserted in PAPS1 locus are allelic to ds39 (Figure 3.2B and C).F1 of a cross between 

ds39 and these TDNA lines did not show a rescued phenotype as judged from their petal 

sizes (Figure 3.2A). One of them called pap1-4 also showed similar phenotype to ds39, i.e. 

smaller leaves but larger flowers (Figure 3.2B and Figure 3.3A). Taken together, these 

three lines of evidence confirm that the mutation in PAPS1 is responsible for the ds39 

phenotype. From now on the ds39 mutant allele is called paps1-1.  
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Figure 3.1. Fine mapping of the ds39 mutation. 

A.  The ds39 mutation was mapped to the interval of 60 kb between two markers indicated. 

Dashed lines represent the chromosome, horizontal thick arrows represent the two Bacterial 

Artificial Chromosome s (BACs) spanning the chromosomal region, vertical arrows 

represent the marker position.  

B.  Genes within the mapping interval (the annotation is from TAIR website). Arrow head 

points at the gene from which a mutation is found in ds39 plants.  

C.  Part of the wild-type nucleotide sequence in exon 8 of At1g17980, where a C to T 

mutation is found in the ds39 mutant. Above is the coding strand, below is the 

complementary strand. The translation of the coding strand is shown on top of the 

nucleotide sequence. One letter amino-acid code is used.  
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Figure 3.2. The causal mutation in ds39 affects PAPS1 locus. 

Plants are grown at 21⁰ C.  

A.  Full length wild-type PAPS1 genomic fragment (gPAPS1) rescues ds39 mutant. From 

here, ds39 is called paps1-1. Plants are 5 week-old. 

B.  Whole plants and flower pictures of WT and mutants carrying different paps1 alleles. 

Note that paps1-1 is in Ler background; paps1-2, paps1-3 and paps1-4 are in Col-0 

background.  

C.  Genomic PAPS1 locus showing gene structure, protein domains and positions of the 

paps1 allele polymorphisms.  
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Figure 3.3 Allelic interactions between paps1 alleles. 

Petal size of plants with different genotype, which is shown below the bar, e.g., paps1-1 x 

paps1-2 means F1 plants between paps1-1 and paps1-2 homozyogous mutant. Note that 

here paps1-1 is in Ler background and other alleles paps1-2 and paps1-4 is in Col-0 

background hence control crosses (Col-0 x Ler ) were also measured.  paps1-2 petals were 

deformed and much smaller than WT so were not measured (ND).  

All plants in A were grown and measured together; all plants in B were grown and measured 

together in a different experiment from A.  
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3.3 The different paps1 alleles show a range of different 
phenotypes:  

Because of the peculiar phenotype of paps1-1 mutant, more paps1 mutant alleles were 

isolated. In addition to paps1-1, more alleles were isolated, all of which are T-DNA insertion 

alleles (Figure 3.2B and C). In the next sections, the phenotypes of these four mutant 

alleles and the defects in their PAPS1 transcripts were examined in detail.  

3.3.1 The paps1-1 mutation probably changes the conformation of 
the protein. 

The point mutation in paps1-1 causes an amino acid change from proline at the amino acid 

(aa) number 313 to Serine (P313S). This point mutation lies in the N-terminal catalytic 

domain of PAPS1, which is highly conserved across kingdoms (Figure 3.4).The only PAPS-

like protein that does not have proline at this position is Arabidopsis PAPS3 and 

Sorghum_Sb02g043400. PAPS3 is quite divergent amongst plants (see Figure 1.9 and 

Figure 1.12). By alignment, Sorghum_Sb02g043400 was found to to have a large deletion 

at this region of the protein (Figure 3.4). 

To know where exactly the amino acid is in the protein, the structure of the N-terminal 

catalytic domain of bovine PAP (Martin et al., 2000), which shares 43% identity with PAPS1 

N-terminal catalytic domain, was examined (Figure 3.5). This structure only contains the 

first 513 aa of bovine PAP, which is the N-terminal catalytic part of the protein and lacks the 

C-terminal domain (residues 514 to 739). The N-terminal catalytic part is further subdivided 

in to three domains: the catalytic domain (residues 60-173), the middle domain (residues 

20-59 and 174 to 352) and the C-terminal RNA binding domain (residues 353-498) (Martin 

et al., 2000). By sequence alignment, the position of the Arabiodopsis PAPS1-P313 is 

equivalent to bovine PAP-P321. As seen in Figure 3.4, P321 is at the loop between helix K 

and helix L in the middle domain. So P321 is neither in the catalytic nor RNA binding 

domain. It is very far away from the active site, i.e. the position of the 3’ATP, the analog of 

the substrate used in this crystallization. Therefore, the P321S mutated amin oacid should 

not make any direct contact with either the ATP substrate or pre-mRNA substrate. A closer 

look at position P321 reveals its potential structural role. In bovine PAP, P321 together with 

the other close by and highly conserved P318 form a bend in the linking peptide (Figure 
3.5B). P321S mutation perhaps affects the movement of N-terminal and C-terminal domain 

during the catalytic cycle of PAP as suggested by (Balbo et al., 2007). This is also likely to 

be the reason why the paps1-1 mutation is temperature-sensitive while the other paps1 

mutant alleles are not (see below). Probably, high temperature further enhanced the 

incorrect folding/conformation of the mutant protein. 
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Figure 3.4. Position of the mutated proline residue (P313) in paps1-1 mutant. 

Apart from Arabidopsis PAPS3 (At3g06560) and Sorghum_Sb02g043400, this proline is 

conserved in all examined model organisms. The FASTA sequences used for the alignment  

and the full alignment are supplemented in electronic version. Alignment was carried out 

using alignX-vector NTI. The colour code of amino acid: Weakly similar: Dark green text on 

a white background ; Block of Similar:   Black on a light green background; Conservative: 

Dark blue on a light blue background; Non-similar : Black on a white background .  
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Figure 3.5 Position of the proline 321 (P321) in bovine PAPs 

A.  The whole structure of the N terminal catalytic domain of bovinPAP (structure 1F5A-

protein data bank). Helices are in magenta ribbon, short helices are in purple ribbons, beta 

strands are in yellow ribbon, linker peptides are in white threads, P321 are in yellow ball and 

stick, d3’ATP, the substrate analog has its sugar and base colored in blue and gray, its 

phosphate group in red ball and sticks. 

B.  Simplified structure where parts of the protein, notably of the middle domain, are 

removed. Note the curve where P321 lies in the linker peptide of the middle domain. 

Distance from P321 to the base of d3’ ATP is measured to be 14.04 Å.  
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To sum up, the position of the mutated proline in the protein structure suggests that the 

PAPS1-P313S mutated protein probably has a reduced function because of impaired 

conformation. 

3.3.2 paps1-1 mutants are temperature sensitive and this is not due 
to the higher requirement for PAPS1 at higher temperature.  

Another property of paps1-1 is that the mutation is temperature sensitive. While WT plants 

grow faster at 28⁰ C than at 23⁰ C (Figure 3.6A), the paps1-1 seedlings did not grow at 

28⁰C as well as they grows at 23⁰ C. paps1-1 seeds did germinated at 28⁰ C; however, the 

seedlings produced very tiny leaves.  

This growth depression behavior at high temperature is only found in paps1-1 but not found 

in either of the other paps1 alleles paps1-2 or paps1-4 (Figure 3.6A and B). This 

observation weakens the possibility that the growth deteriorates at high temperature 

because plants require more PAPS1 activity to cope with increasing temperature.  

Strikingly, while the growth inhibition is exaggerated in paps1-1 leaves by high temperature, 

the growth promotion in petals is not. Instead, at 25⁰C, the paps1-1 petals become 

narrower. They deform mildly (Figure 3.7A- compare paps1-1 flowers at 23⁰C and 25⁰C). 

Moreover, when plants are moved from 23⁰C , at the stage when they already produce 

some normal-large flowers,  to even higher temperature (28⁰C), the newly made flowers 

(examined one week after the switch) becomes severely deformed and infertile like pap1-2 

flowers (Figure 3.7B). 

Taken together, the data suggests that the paps1-1 mutation interferes with the normal 

conformation of the protein, and this structural defect is further enhanced by high 

temperature.  

3.3.3 paps1-4 mutants share the phenotype, but showed weaker 
phenotype compared to  paps1-1 

paps1-4 is a T-DNA insertion allele. The T-DNA inserted at an exon that ecodes for part of 

the C terminal domain of PAPS1 protein (Figure 3.8). 

Similar to paps1-1 phenotype, paps1-4 also has smaller and pointed leaves, and bigger 

flowers, although both the petal size increase and leaf size decrease is to a lesser degree 

compared to paps1-1 (Figure 3.2B and Figure 3.3A) 
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Figure 3.6. paps1-1 is temperature sensitive but the requirement for PAPS1 activity is 
not higher at higher temperature 

A.  15 day-old seedlings of paps1-1 (in Ler background) and paps1-2 (in Col-0 background) 

grown at 23⁰C and 28⁰C.  

B.  25 day-old seedlings of paps1-1, WT Ler, WT Col-0, paps1-2 and paps1-4 grown at 

28⁰C.   
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Figure 3.7. Petals of paps1-1 plants grown at high temperature (25-28⁰C) but not at 
23⁰C resemble paps1-2 petals. 

A.  Flowers of plants grown at different temperature: paps1-1 at 23⁰C and 25⁰C; paps1-2 at 

23⁰C; WT (Col-0) at 25⁰C; paps1-4 at 25⁰C. Compare paps1-1 flowers at 23⁰C  and 25 ⁰C 

and paps1-2 at 23⁰C.  

B.  Inflorescenes of paps1-1 and WT (Ler) plants one week after being switched from 23⁰C 

to 28⁰C. Note that flowers become deformed and sterile.  
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Figure 3.8 Defects of PAPS1 transcripts in paps1-2 and paps1-4 mutant alleles 

A.  Schematic diagram of PAPS1 locus showing position of the point mutation or T-DNA 

insertions for each alleles. The annotation is similar to Figure 3.2. The positions of primers 

for qPCR and RT-PCR in B are shown as blue arrows. 
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Figure 3.8 Defects of PAPS1 transcripts in paps1-2 and paps1-4 mutant alleles 
(continued) 

B. qPCR comparing abundance of PAPS1 mRNAs (using primers oSV187 and oSV188) in 

Wt (Col-0), paps1-2 and paps1-4 with two house keeping genes PDF2 and UBC. 

Comparisions are based on the Ct values.  

C.  RT-PCR with different primers, positions of which relate to the insertion site of the T-

DNA in indicated the mutant alleles. 
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RT-PCR analysis using primers flanking the paps1-4 insertion site gave no PCR products, 

suggesting there is no intact PAPS1 transcript in paps1-4 (Figure 3.8C). RT-PCR analysis 

with primers downstream of the paps1-4 insertion site showed a slight reduction in the 

abundance of transcript from this region of the gene (Figure 3.8C). However, both qPCR 

and RT-PCR analysis using primers upstream of the paps1-4 insertion site suggest equal 

abundance of transcripts transcribed in this region of the gene in paps1-4 compared to WT 

(Figure 3.8B and C). In the best scenario, this truncated transcript is able to give rise to a 

truncated protein. Since the insertion is after the catalytic domain, the hypothetical truncated 

protein is expected to retain some activity.  

Based on these analysis of PAPS1 mRNA, in paps1-4, the PAPS1 protein is probably 

truncated hence activity of PAPS1 is probably reduced slightly resulting in a phenotype that 

resembles but is less strong than in paps1-1.  

3.3.4 paps1-2 mutants are allelic to paps1-1 and paps1-4 but cause 
petals to be deformed:  

paps1-2 mutant plants has a T-DNA inserted in the 5’ UTR of the PAPS1 locus. Similar to 

paps1-1 and paps1-4, the paps1-2 mutant plants also have smaller leaves (Figure 3.2B); 

however in contrast with the other alleles, the petals of the paps1-2 mutant are not bigger 

(Figure 3.2B and Figure 3.7A). By contrast, the petals are all smaller and narrower than 

WT. There are usually only one or two petals per flowers in the paps1-2 flowers instead of 

four petals per flowers in WT plants. The paps1-2 flowers are female sterile, which is 

caused by the deformed gynecium. Pollen of paps1-2 mutants has very reduced fertility but 

some were viable because F1 plant between homozygous paps1-4  (female) plants and  

homozygous paps1-2 (male) plants were obtainable. Contrastingly, the reciprocal crosses to 

this cross yeilded no seeds.  

PAPS1 transcript was checked in paps1-2 mutants. qPCR and RT-PCR analysis using 

primers upstream and downstream of the T-DNA insertion site showed that these two 

regions of the transcript is as abundant as WT (Figure 3.8B and C). However, RT-PCR 

analysis using the primers flanking the insertion site suggests a served reduction of the 

transcript in the mutant compared to WT. It is unexpected to have a PCR product, length of 

which is approximately the same WT (Figure 3.8C), using the primers flanking the T-DNA 

insertion site in paps1-2 mutants. The presence of this PCR product are either due to PCR 

contamination, which I consider unlikely because the PCR experiments have been repeated 

twice with similar results, using two independent RNA samples. A second explanation for 

the presence of this PCR product is that somehow a small fraction of the transcript manages 

to splice out perfectly the T-DNA. The PCR product thefore should be sequenced in future 

experiment. Nevertheless, the important deduction from this RT-PCR analysis is that the full 

length coding region of the mRNA of PAPS1 is likely to be intact and equally abundant in 
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paps1-2 compared to WT (based on the qPCR and RT-PCR with primers downstream of the 

insertion site). Because of the insertion in 5’UTR, this potentially intact coding region of 

PAPS1 can still be mis-translated for example: T-DNA insertion can results in a chimeric 

fusion of ‘T-DNA-PAPS1’ transcripts that is translated in to a protein with a different reading 

frame. Therefore, it is not exactly clear about what could go wrong to the PAPS1 protein in 

paps1-2 mutants. We are now generating antibody against PAPS1 in order to check the 

PAPS1 protein in paps1-2.  

To sum up, paps1-2 has T-DNA inserted in the 5’ UTR, which causes the petal to deform, a 

unique phenotype that is not shared by paps1-1 and paps1-4. RT-PCR and qPCR suggest 

that the coding of region of PAPS1 mRNA is likely to be intact and the transcript is as 

abundant as wild-type, however as the insertion is in 5’UTR, the protein may not be 

translated normally. Notably, because of the phenotypic similarity between paps1-2 flowers 

and paps1-1 flowers at high temperature (28⁰C), it is likely that the remaining PAPS1 activity 

in paps1-2 plants is lowest amongst paps1-1 (at 23⁰C), paps1-2 and paps1-4 plants.  

3.3.5 paps1-3 mutants are probably embryonic lethal or 
gametophytic lethal. 

paps1-3 mutants has a T-DNA inserted in the intron 5 of the PAPS1 gene (Figure 3.2). 

Genotyping 90 F2 plants from a heterozygous paps1-3/+ plant found 51 wild-type plants and 

39 heterozygous plants and no homozygous plant. The segregation ratio (close to 1:1) 

suggests paps1-3 is probably gametophytic lethal. Reciprocal crosses with Col-0 will have 

to be carried out to prove this. 

3.3.6  The allelic relationship between paps1 mutant alleles: 

Figure 3.3 shows the petal size of homozygous paps1 mutants and trans-heterozygous 

plants (i.e. F1 plants between two different paps1 homozygous mutants, alleles of which are 

different). Both paps1-2 and paps1-4 are allelic to paps1-1 because their trans-

heterozyogous with paps1-1 plants still have large petals (Figure 3.3A). The different in 

background (F1 of Ler x Col-0) did cause hybrid vigor, i.e. bigger petals than either of 

parent, however this effect is very small compared to the increase (over the wild-type) in the 

petal size of the paps1-1/paps1-4 and paps1-1/paps1-2 trans-heterozygous. 

In the same ecotype Col-0, the combination of paps1-2 allele, which causes smaller petals 

than WT and paps1-4 allele, which causes bigger petal than WT, resulted in trans-

heterozygous plants with even larger petals than paps1-4 homozygous mutant plants 

(Figure 3.3A). Using normal dominant/recessive relationship can not explain this further 

increase in petal size. I explain this in the general discussion in chapter 8.  
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In conclusion, the ds39 mutation is in At1g17980, which encodes for poly(A) polymerase 1 

(PAPS1), ds39 is renamed paps1-1. In total, four paps1 mutant alleles were isolated. paps1-

1 and paps1-4 similarly have smaller leaves and bigger flowers than WT whereas paps1-2 

have smaller leaves but deformed and smaller petals than WT. One other allele, paps1-3, is 

embryonic or gametophytic lethal. 
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4 .Chapter 4. Properties of 
PAPS1 and the functional 
specialization among four 
PAPSs in Arabidopsis. 
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In this chapter, I show that in vitro PAPS1 WT protein possesses polyadenylation activity but 

the mutated protein in paps1-1 (the PAPS1P313S) is almost completely inactive. I showed 

however, in vivo; the bulk poly(A) tails of all the mRNAs in cells does not change 

dramatically in the paps1-1 mutant. Later, I looked at the properties of all canonical PAPS in 

Arabidopsis with respect to: their knock out mutant phenotypes, the expression domains by 

using promoter:GUS constructs, their alternative splicing patterns and finally, the conditions 

where the balance amongst PAPSs changes. Lastly, I show evidence from transgenic plants 

to support that the functional specificity of different PAPSs lies with the C-terminal domains.  

Together, these results suggest a novel layer of gene regulation whereby cell controls large 

group of genes in response to stimulus by adjusting the balance of different canonical PAPs. 

4.1 In vitro poly(A) polymerase activity: 

To explore the biochemical properties of PAPS1, the His-tag PAPS1 and His-tag 

PAPS1P313S protein were expressed in E.coli, purified and assayed for activity in vitro. This 

experiment is done in collaboration with NishtaRao in James Manley’s lab. My contribution 

is generating the two constructs ready for expression in E.coli.  

The activity was determined in a non-specific polyadenylation assay, which measure the 

ability of the enzyme to add adenosines to radioactively-labelled precleaved mRNAs from 

SV40 virus. As shown in Figure 4.1A, the WT PAPS1 protein has activity, while the mutated 

PAPS1P313S has almost no activity at 26°C, but may retain a very low level of activity at 

16°C. This suggests that the mutated protein is not functional and the activity decreases at 

26°C compared to 16°C.  

To conclude, based on in vitro activity paps1-1 seems to be a hypoactive/loss of function 

mutation rather than a hyperactive mutation. 

4.2 In vivo bulk poly(A)-tail analysis: 

To assess the effect of paps1-1 in vivo, the bulk poly(A) tail length was measured in mutant 

and in WT plants. Knowing the mutation is temperature sensitive, I analyzed RNA from 

seedlings grown at 28°C. Figure 4.1B shows that despite the dramatic effect on growth of 

seedlings at high temperature, the overall poly(A)-tail composition and patterns are almost 

unchanged in paps1-1 compared to WT (Figure 4.1B). There could be a subtle reduction in 

the proportion of the longest (A) tails, but the results were not reproducible in other 

replicates in flowers (not shown).  
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Figure 4.1.PAPS1P313S protein is not functional in vitro but its effect in vivo on bulk 
mRNAs tail-length is subtle.  
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Figure 4.1. PAPS1P313S protein is not functional in vitro but its effect in vivo on  overall  
mRNAs tail-length is subtle (continued).  

A.  In vitro non-specific PAP assay Left: SDS-PAGE  showing purified wt and mutated 

PAPS1 (PAPS1-P313S)  protein from E.coli, Right: Radiograph of RNA products resolved on 

agarose gel after mixing different concentration of purified PAPS1 proteins with the 

precleaved substrate.  

B.  In vivo bulk poly(A)-tail analysis. Total cellular RNAs were end-labelled with 32P 

cordycepin then treated with  RNaseT1 and RNaseA to degrade all RNAs but the poly(A) 

tails, which are then resolved in 8M urea 10% polyacrylamide gel.  

The righter most picture is a magnified picture of  the upper part of  the gel (i.e., the square 

marked on the gel). 
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A yeast temperature sensitive pap mutant (pap1-1) showed a very strong reduction in 

poly(A) tail length after being shifted from permissive to non-permissive temperature 

(Proweller and Butler, 1994) . Compared to this result, clearly the effect in the Arabidopsis 

paps1-1 mutant is very subtle.  

Bulk poly(A)-tail analysis using RNA from inflorescences of Col-0, paps1-2 and paps1-4 

showed similar results, i.e. the difference between mutant and WT was not detected (not 

shown).  

4.3 Phenotypes of other paps single and double mutants: 

To answer whether the phenotype of paps1-1 is specific to PAPS1 compared to other 

PAPSs, the knock out mutants, which are all T-DNA insertion lines, for the other three 

PAPSs were ordered from the seed stock centre and analyzed. There are several T-DNA 

insertion lines (shown in Figure 4.2) for PAPS2 and PAPS4 and PAPS3. The plan was first 

try to find null mutants for each PAPS. If this is not possible because some are essential, I 

would look for T-DNA insertions that inserted in the C-terminal domain or UTRs etc., 

hopefully to be able to obtain weak but surviving homozygous mutant plants.  

Therefore, initially, for each PAPS, one line, T-DNA in which inserted in the exon of the 

gene and preferably in the N-terminal catalytic domain, was chosen for genotyping and 

phenotyping. With these criteria, three T-DNA insertion lines were chosen paps2-3, paps4-3 

and paps3-1, the insertions sites of which are shown in Figure 4.2.  In the end, I was able to 

get plants that are homozygous for the T-DNA insertion in all three lines.  

4.3.1 paps3 single mutants: 

Three paps3 mutant alleles were isolated (Figure 4.2). paps3-1 homozygous plants 

(confirmed by genomic DNA genotyping) did not show a phenotype. However, paps3-3 and 

paps3-4 homozygous mutant (confirmed by genomic DNA genotyping) clearly showed a 

phenotype. The overall stature, the leaves and flowers of paps3-3 and paps3-4 

homozyogous mutant plants are smaller (Figure 4.3). The homozygous plants are also 

sterile.  

The linkage of the phenotype to the homozygous state the T-DNA insertion was confirmed 

by analyzing approximately twenty T2 plants that were seggregating for the T-DNA. 

Because paps3-3 and paps3-4 are two independent T-DNA lines which share similar 

phenotype, it is unlikely that the phenotype is caused by an additional T-DNA that is 

unlinked to the PAPS3 locus. In the future, allelic test and transformation with PAPS3 

genomic rescue construct can be carried out to further confirm this linkage.  
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Figure 4.2. Mutant alleles and positions of T-DNA insertion in four PAPS genes. 

The numbers in brackets indicate the nucleotide position from the 5’ A (in the first ATG 

codon) of the gene genomic sequence. 
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Figure 4.3. paps3-3 and paps3-4 mutant showed deleterious phenotype. 

Pictures of plants three weeks after germination that are segregating for the indicated paps3 

T-DNA insertion alleles. The homozygous mutants, which were confirmed by PCR-

genotyping, are marked with red arrows. Other plants are either WT or heterozygous for the 

T-DNA insertion.  
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paps3-1 has T-DNA inserted in exon while paps3-3 and paps3-4 has T-DNA inserted in the 

intron (Figure 4.2), paps3-1 did not show a phenotype while paps3-3 and paps3-4 did. This 

is quite unexpected. The insertion position is based on the published sequence of the 

insertion positions in these lines, may be paps3-1 mutant has a T-DNA inserted in an intron 

instead of an exon. RT-PCR needs to be done to check for mRNA of PAPS3 in these three 

homozygous mutant alleles.  

4.3.2 paps2 and paps4 single mutants: 

The more interesting PAPS to us are PAPS2 and especially PAPS4 because they are more 

similar to PAPS1. I focused on paps2-3 and paps4-3 alleles. Molecularly, there is no full 

length/intact mRNA of the PAPS in its corresponding mutant (Figure 4.4A). Because the 

insertion is in the middle exon of the gene, it is very unlikely that the hypothetical fusion 

protein(s), which is created by translational fusion of T-DNA sequence to PAPS sequence 

upstream or downstream of the insertion site, are active. Therefore, paps4-3 and paps2-3 

are probably null mutants. 

Surprisingly, homozygous paps2-3 and paps4-3 plants are indistinguishable from wild-type 

in our standard growing condition. Their petals are not larger. A closer examination showed 

that paps4-3 is late flowering (Figure 4.4C and D). I also checked the phenotype of the 

segregating families for other alleles of PAPS2 and PAPS4 (Figure 4.2). At least twenty 

plants were sown out per family, 25% of which should be homozyogous for the T-DNA 

insertion. However, all of these plants were, morphologically indistinguishable from WT.   

4.3.1 paps2 paps4 double mutants:  

Since PAPS2 and PAPS4 are probably redundant, the double mutants were generated to 

reveal the phenotype. Double mutants were found but apart from being late flowering (even 

later than paps4-3), they showed no additional phenotype at our standard growing condition 

(Figure 4.4C and D). This data indicates indeed PAPS2 and PAPS4 are partially redundant 

at least to the flowering time phenotype. However, the petal size and leave size and overall 

growth of the double mutant are normal.  

This suggests the role among PAPS2, PAPS4 and PAPS1 such that at our standard growth 

condition, PAPS1 appears to be the only essential PAPS. When PAPS1 is wild-type, PAPS2 

and PAPS4 are both dispensable.  
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Figure 4.4. Phenotype of paps2-3 and paps4-3 single mutants and paps2-3 paps4-3 
double mutant 

A.  RT-PCR on cDNA made from WT (Col-0), paps2-3 and paps4-3  single mutant. Primers 

are indicated. PDF2 is a house keeping gene used for control.  

B.  Petal size of WT (Col-0), paps1-1 and paps2-3/paps4-3 double mutants . paps1-1 in Col-

0 is the paps1-1 mutant, originally in Ler background, which was backcrossed three times to 

Col-0.  

C.  Flowering time (the number of leaves the plants have made at the time the 

inflorescences stem is 5cm long) of WT and mutants. These measurements were done by 

H.C.  

D.  Picture of WT and the paps2-3/paps4-3 double  mutant. Both genotypes were sown out 

on at the same time, and picture was taken 43 days after sowing.  
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4.4 Spatial expression pattern of PAPSs: 

To visualize PAPS expression domains, the promoters of the four PAPSs were fused 

upstream of the GUS reporter gene. At least 10 independent transgenic lines for each 

constructs were analyzed to account for the variation in the insertion positions of the 

transgene. Figure 4.5 showed the representing GUS-stained image of transgenic plants 

carrying the reporter constructs in WT background. In inflorescences, pPAPS2::GUS  and 

PAPS4::GUS express strongly and overlappingly, pPAPS1::GUS did not show any 

detectable GUS staining, pPAPS3::GUS showed a weak staining. pPAPS3::GUS showed 

strong expression in in the trichome. In seedlings, the expressions are being analyzed on T2 

plants as this thesis is being written so the results are not yet available. 

4.5 Functional specializations of PAPSs: 

4.5.1 Promoter is not likely to account for the functional differences 
between PAPS1 and PAPS4 gene.  

As in section 4.4, the spatial PAPS1 expression is different from PAPS4, but the temporal 

and dynamic of this regulation is difficult to determine by the promoter::GUS analysis. To 

directly test the role of promoters, we ask if PAPS4 can rescue paps1-1 if expressed by 

PAPS1 promoter. Figure 4.7 and Figure 4.8 shows that phenotype of neither leaves nor 

flower of paps1-1 mutant was rescued in any of the T2 transgenic lines carrying the 

pPAPS1::genomicPAPS4 transgene (the construct is illustrated in Figure 4.6) . This result 

suggests promoter is not likely to account for the functional differences between PAPS1 and 

PAPS4 gene.  

4.5.2 The C-terminal domains are likely to be the specificity 
determinants between PAPS1 and PAPS4: 

As pPAP1::genomicPAPS4 did not rescue, the protein sequence and especially the very 

divergent C terminal domains sequence may encodes specificity amongst PAPS. To test 

this possibility, I modified the pPAP1::genomicPAPS4 construct, replacing PAPS4 C 

terminal domain with PAPS1 C-terminal domain (pPAP1::gNPAPS4::gCPAPS1_construct 

shown in Figure 4.6 and transformed this construct to paps1-1 mutants. Interestingly, in 

contrast to pPAP1::genomicPAPS4, some of the T2 transgenic lines carrying 

pPAP1::gNPAPS4::gCPAPS1 did rescue, though partially, the petal size phenotype (Figure 
4.5). More over, all of the lines have bigger leaves than paps1-1 (Figure 4.6). These results 
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Figure 4.5. PAPS expression domain overlaps each other. 

GUS stain pictures of transgenic plants expressing different PAPS promoter driving GUS. 

Each row are from one transgenic line indicated in the outer left pannel. From left to right of 

each row are pictures showing inflorescences with siliques, younger buds and zoomed in 

floral structures respectively.  
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Figure 4.6. Constructs used to transform paps1-1 to check for rescued phenotype.  

35S is a constitutive promoter from Cauliflower mosaic virus 35S gene.  
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Figure 4.7. Petal size of different transgenic plants compared to paps1-1 and WT. 

In case of transgenic plants, bars that are grouped by a underneath bracket represent 

measurements from plants carrying the same construct indicated. Each bar represent an 

independent T2 transgenic family. At least 4 plants, which contain the transgene, were 

measured per family. This gives an average value for that family. Descriptions of the 

constructs are shown in Figure 4.6. 
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Figure 4.8 Leaf phenotype of WT, paps1-1 and different transgenic lines. 

A.  Ler (WT) 

B.  paps1-1 

From C-G: Basta selected T2 family plants, which are paps1-1 mutant carrying one of the 

following transgene: (Details information about the constructs are described in Figure 4.6) 

C.  pPAP1::PAPS1cDNA 

D.  35S::PAPS1cDNA 

E.  pPAPS1::genomic PAPS4 

F.  pPAP1::gNPAPS4::gCPAPS1 

G.  genomic rescue PAPS1 
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showed that swaping the both the C-terminal domain and the promoter can largely (but not 

completely) make PAPS4 equivalent to PAPS1. 

4.6 Conditions that change the balance among PAPS transcripts.  

We hypothesize that mRNAs has different preference for different PAPSs, which perhaps 

give different A-tail length to its substrate. If this is used as an active mechanism to adjust 

the poly(A) tails of some transcripts, cell must actively control these preferences. The 

mechanism of this fine tune can be at multiple levels. 

For example, control the abundance of a PAPS through transcription and translation control 

or through controlling its activity (e.g. phosphorylation inhibits the yeast PAP during the cell 

cycle (Colgan et al., 1998) or through controlling its recruitment to mRNA substrates. 

One possibility, which we can easily check, is whether cells can change the balance in the 

mRNA abundance of different PAPSs. We therefore used bio-informatics to find which 

physiology conditions/genotypes/treatments change the balance of the mRNA abundance 

among PAPS1, PAPS2 and PAPS4. Using GeneInvestigator, a public database of 

microarray experiments in many different conditions, we discovered that PAPS1, but not 

other two PAPS, is up-regulated when treating plants with FLG22 peptide (Figure 4.9). 

FLG22 is a 22 aa synthetic peptide derived from flagellin; the FLG22 treamentmimics a 

bacterial attack to plants. On the opposite direction of regulation, PAPS1, but not other two 

PAPSs, is down-regulated in plants that are treated with cold.  

4.7 Overexpressing PAPS1 did not results in any morphological 
changes: 

paps1-1 mutants carrying the overexpression 35S::PAPS1cDNA construct are 

indistinguishable from wild-type with respects to plant statures, leaf size and petal size 

(Figure 4.7 and Figure 4.8). The transgenic plants showed no other visible morphological 

changes.  

4.8 Discussion: 

The bulk poly(A) tail analysis results indicate that in paps1-1 mutants and other paps1 

mutants carrying paps1-4 and paps1-2 alleles, only a small number of transcripts were 

affected. This result again lends credit to the hypothesis that there is only a small proportion 

of the transcriptome that appears to be sensitive to the paps1-1 defect. 
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Figure 4.9 Conditions where PAPS1 is up/down regulated while other PAPSs remains 
largely unchanged, or change in the reverse direction. 

Interesting conditions are highlighted with arrow. 

blue dot is PAPS1,  

gray dot is PAPS2,  

red dot is PAPS4  
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The fact that PAPS3 is pollen specific explains the fertility problem in homozygous paps3-3 

and paps3-4. Mammals also have a canonical PAP that lacks C-terminal domain, which is 

testis specific (PAPLOB). Arabidopsis PAPS3 may be the PAPLOB equivalent in plants. 

Because the petals of paps3-3 and paps3-4 are not bigger, this mutant is of little immediate 

interest to us. Nevertheless, the important conclusion from this results is that  it suggests 

that PAPS3 and PAPS1 are functionally non-redundant. 

Judged by the expression domains, which are based on the pPAPS::GUS experiements, 

PAPS1 is not the mainly expressed PAPS in inflorescences. However, some consideration 

must be taken in to account when analyzing the expression domains using promoter::GUS 

reporter gene. For examples, in contrast to the results from promoter::GUS experiments, 

microarray data from AtGenExpress, and previous study (Addepalli et al., 2004) using 

Northern blot indicates that PAPS1, PAPS2 and PAPS4 expression levels are similar in 

floral organs (Figure 1.13). This indicates that the staining patterns may not truly reflect the 

expression dynamic of PAPSs (including spatial, temporal and mRNA stability).It is also 

possible that there are other transcriptional regulatory elements outside of the promoter 

fragments that was used in driving GUS expression in these constructs. Did I capture the full 

upstream regulatory sequence of PAPS1? Probably, yes because: The pPAPS1 promoter 

sequence used in pPAPS1::GUS construct is as long as the fragment that is present 

upstream of the ATG in the genomic rescue construct, which fully rescued the paps1-1 

phenotype. This suggests that the missing elements lie downstream of the ATG in PAPS1 

genomic locus. One can test this by either making translational fusion of PAPS1 genomic to 

a reporter protein or directly carry out in situ hybridization probing for PAPS1 mRNA.  

Nevertheless, results on Northern blot (Addepalli et al., 2004) and AtGeneExpress clearly 

indicates that PAPS1/2/4 transcripts are equally abundant in inflorescences. This suggests 

that expression patterns alone can not be the reason for the differences in phenotypes in 

flowers of different paps mutants.  

Knowing about the complication with pPAPS1 promoter explained above, I reconsider the 

interpretation of the promoter swap pPAPS1::genomicPAPS4 result. The question is: did 

pPAPS1::genomicPAPS4 not rescue because of the PAPS4 protein could not replace 

PAPS1 protein or because I failed to reconstitute PAPS1 expression dynamic in this 

construct. I believe the later is unlikely because of the results of the followed construct 

pPAP1::gNPAPS4::gCPAPS1. The very same promoter in pPAPS1:: genomicPAPS4 was 

used in the  pPAP1::gNPAPS4::gCPAPS1 construct, which did show rescued phenotype, 

meaning that the promoter combined with genomic construct did work well. In the future 

experiments, one should check the expression of the PAPS4 transgene in 

pPAP1::genomicPAPS4. 

One thing, though unlikely, that I reserve for the interpretation of the 

pPAP1::gNPAPS4::gCPAPS1 construct is whether the protein sequence of C-terminal 

domain (CTD) of PAPS1 protein or the 3’UTR of the PAPS1 gene, or both are responsible 
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for the rescue? Both CTD and 3’ UTR were changed in creating 

pPAP1::gNPAPS4::gCPAPS1 derived from pPAP1::genomicPAPS4 (Figure 4.6). 

Nevertheless, what I can be sure from this experiment is the promoter plus the sequence 

starting from C terminal domain to the end of the gene are sufficient to rescue the paps1-1 

phenotype in petals.  

For future experiments, a way to avoid the complications about pPAPS1 promoters and 

PAPS1-3’ UTR and focusing only on protein domain is to use 35S promoter and 35S 

terminator. This is because 35S::cDNAPAPS1::35S terminator fully rescued the paps1-1 

without any additional morphological phenotype (Figure 4.7, Figure 4.8). Next step would 

be to create 35S::genomicPAPS4 or 35S::cDNAPAP4 and transform paps1-1 to check for 

rescued petal size.This construct will also answer whether supplying paps1-1 with ample 

polyadenylation activity from a different PAPS, PAPS4 is able to rescue the phenotype of 

the mutants. This experiment will clarify whether the total activity of PAPS in general or the 

specific activity of individual PAPS underlies paps1-1 phenotype.  

The identified conditions, where the balance of PAPSs expression changes, are fascinating 

because it shows that each PAPS is under active gene regulations. Hence, I speculate that 

there will be more conditions that cells can finetune PAPS expression to regulate poly(A) tail 

length of specific pools of transcripts in order to response to those conditions. It will even be 

more interesting if we can find some target genes that are changed in paps1-1 and are also 

changed in WT which is treated with these conditions. Additionally, we can check whether 

subjecting WT plants to these conditions can induce the change in poly(A) tail lengths of the 

target genes. Several PAPS1 regulated genes were identified and described in chapter 7.  

Taken together, the data suggests the functional specializations of canonical PAPSs and 

the C-terminal domain of the protein is likely to be the specificity determinant. 
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5 Chapter 5. Analysis of the cell 
autonomy of PAPS1 
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5.1  The idea:  

5.1.1 The concept of non-autonomous/autonomous effect:  

An important question to be clarified in studying the function of a developmental regulatory 

gene is whether the gene acts autonomously or non-autonomously. This basic question can 

be answered by studying chimeric plants with genetically mutant and wild-type parts. If the 

cellular or organ-wide phenotype solely depends on the genotype of the cells or the organ, 

the effect is autonomous. Conversely, if the wild-type parts can rescue the phenotype of the 

neighboring mutant parts, or the mutant parts influence the phenotype of the wild-type parts, 

the effect is non-autonomous.  

There are several examples of non-autonomous effects in developmental processes such 

as: florigen FT (Corbesier et al., 2007) in flowering time regulation, WUS/CLV3 in stem-cell 

maintenance. (Schoof et al., 2000). 

In the case of growth, this question is highly pertinent because growth must be co-ordinated 

amongst different parts of the organ and different organs in the organism in order to form 

the correct shape and size. Growth co-ordination can happen  over  a range of distance: for 

example between ‘source’ organs (photosynthetically active leaves) and ‘sink ‘organs 

(flowers), amongst petals in a flower to ensure species-specific floral symmetry or between 

anthers and gynoecium to ensure the physical architecture that allows self-pollination.  

Several studies have shown that growth is under the control of both autonomously or non-

autonomously acting factors (Galloni and Edgar, 1999). In plants, a growth promoting factor 

KLUH acts non-autonomously to co-ordinate growth of different organs in one flower, or 

different flowers within an individual inflorescence (Eriksson et al., 2010).  

Another question involving growth co-ordination regards the  contribution of the epidermal 

layer and internal layer in driving/restricting organ growth in plants (Savaldi-Goldstein et al., 

2007). What happens if the growth of two layers is uncoupled: Can the growth of one layer 

drive the growth of the other layer (a cell non-autonomous effect)?  

The specific question: non-autonomous/autonomous effect across a range of 
distance. 

Here, I want to address the question of a possible non-autonomous aspect of PAPS1 

function across several scales. There are six levels that I will consider (Figure 5.1):  
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Figure 5.1 Sectored plants allow the analysis of growth co-ordination across different 
distances 

Level 1: Two different organs in individual plants: leaves and flowers.                                                                                     

Level 2: Petals from different side inflorescences in individual plants.                                                                                       

Level 3: Petals from different flowers in one individual inflorescence.                                                                                     

Level 4: Petals within individual flowers.                                                                                                                                        

Level 5: Two halves of individual petals or of leaves.                                                                                         

Level 6: Layers of individual petals: epidermis (L1), illustrated as the border of the circle, 

and internal (L2) layers.  

Yellow color represents wild-type tissues. Blue color represents mutant tissues. 
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In each case, the specific question when examining the levels 2-6 is: In case of petals, is the 

size of the genotypically paps1-1 mutant part increased compared to its wild-type 

counterpart? The logic would be reversed for leaves. 

5.2 The method 

5.2.1 A system for generating predictable chimeras:  

The investigation of non-autonomous effects requires the generation of chimeric plants. To 

make sure that any non-autonomous effects on growth will be captured, one needs to 

consider at least two issues. The first issue is temporal. In my case, the phenotype of 

interest is growth, which is a continuous process starting from organ initiation until the fully 

mature organ reaches its final size. The non-autonomous effect may influence growth at any 

moment during this process. Therefore, if the chimeric situation is not established during the 

particular time window of gene action, the non-autonomous effect can be missed. The 

second issue is spatial, i.e. the range of communication that determines how close the two 

sectors of different genotype need to be in order for the non-autonomous effect to take 

place. These two issues combined require a temporal and spatial control over the induction 

of chimeras.  

A method has been developed in the Lenhard lab to generate predictable chimeras 

(Adamski et al., 2009, Eriksson et al., 2010). The method has four components (illustrated in 

Figure 5.2). The first is a Cre/loxP system that ensures a non-reversible switch in genotype. 

Cre is an enzyme that specifically recognizes and recombines two directly repeated loxP 

sequences in such a way that after recombination, the sequence between the two loxP sites 

is circularized and excised from the original DNA molecule. This is used to excise a loxP-

flanked genomic rescue fragment for the gene of interest from the genome of a 

corresponding homozygous mutant, thus uncovering the mutation. As the circularized 

fragment is not replicated or regularly distributed during mitosis anymore, essentially all 

daughters of a recombined cell will have the homozygous mutant genotype. The second 

component of the system is the ethanol inducible AlcR-AlcA system that allows the temporal 

induction of Cre, and hence allows the timing of induction of the chimera to be controlled 

(Roslan et al., 2001). In the set-up outlined above, plants will form wild-type organs in the 

absence of ethanol-induction, and only after induction will recombination occur and mutant 

organs will be formed. In the AlcR-AlcA system, the fungal transcription factor AlcR is 

activated only in the presence of ethanol; it then binds to the cis-element AlcA and 

transcribes the gene downstream of AlcA, in my case Cre. Another advantageous property 

of the ethanol inducible system is that it can be induced incompletely. Hence, after a mild 

induction some cells will express Cre, some others will not. The third component is a 

promoter of choice to control the expression of AlcR. These promoters add additional layers   
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Figure 5.2 The system to generate predictable chimeras. See text for description.   

term stands  for  terminator. 

  

pCLV3 AlcR AlcA Cre

35S term

nos termp35S YFPer

PAPS1 genomic rescue fragment

CFPer

loxP

loxP

35S term

nos term

p35S

YFPer

PAPS1 genomic rescue fragment

CFPer

loxP

loxP

lost after 
one cell 
division

pCLV3 AlcR AlcA Cre

paps1-1 homozygous background

paps1-1 homozygous background

Before ethanol induction

After ethanol induction



134 
 

of control over the recombination including spatial and developmental control (see below). 

Fourthly, a dual-colour fluorescence system is used: Cyan Fluorescent Protein (CFP) and 

Yellow Fluorescent Protein (YFP) label the cells of the opposite genotypes as specified by 

the design of the loxP construct (Figure 5.2). The recombined/mutant sectors will be 

marked with CFP (blue) and the non-recombined/wild-type sectors will be marked with YFP 

(yellow). The net result of these four components is a temporally and spatially controllable 

induction of chimeras, the genotypes of which are tractable using a fluorescent microscope. 

The third component of the system provides flexible controls over recombination. By using a 

different promoter driving AlcR, we can choose when and where chimerism is induced. For 

example, to produce chimerism long before organs initiate, pCLV3::AlcR-AlcA::Cre (from 

now on abbreviated as CLV3>>Cre), which restricts the Cre expression domain to stem 

cells, can be used. CLV3 is specifically expressed in the stem cells and immediate 

daughters of stem cells (Fletcher et al., 1999). To produce chimerism at or after organ 

initiation of petals and sepals, a petal/sepal-specific promoter AP3 or AP1 (Weigel and 

Meyerowitz, 1994).can be used (abbreviated as AP1>>Cre or AP3>>Cre) For the specific 

purposes of this project, two other promoter sources can be used to spatially regulate Cre 

expression. The first is pKLU>>Cre, in which Cre should be expressed only in the peripheral 

cells and not the meristem (Zondlo and Irish, 1999) (pKLU>>Cre), therefore, should give 

rise to mutant rosettes and wild-type inflorescences, which is the reverse effect of 

pCLV3>>Cre. The other promoter is pAtML1, in which Cre should only be expressed in the 

epidermis L1 layer (Sessions et al., 1999). 

5.2.2 How to analyze of growth of different sectors:  

One of the aims I set out to investigate was to analyzethe co-ordination between different 

parts of petals or of leaves (level 5), and for this one needs to compare the size of different 

sectors of an organ. Chimeric organs can have sectors of different sizes, depending on the 

number of precursor cells that had one or the other genotype. This is true even when the 

sectors do not differ in their growth behaviour. How then do we know which sectors to 

compare with one another to be able to learn about the effect of the paps1-1 mutation? To 

answer this, we need to understand how the sectors within individual organs are formed. To 

understand how sectors are formed, we need to consider the process of organ initiation in 

the Arabidopsis shoot meristem, and the concept of organ anlagen and of clonal analysis.  

5.2.2.1 Arabidopsis shoot meristem structure 
An Arabidopsis shoot meristem has three clonally distinct layers, L1, L2 and L3 (Figure 
5.3A). In the L1, cells divide anticlinally to make the entire epidermis.The L2 layer, in which 

cells also divide anticlinally, and L3, in which cells divide in both anti- and periclinally, 

together form internal tissues, including the vasculature. Because of the strictly anticlinal 

divisions, cells in the L1 layer and L2 layer do not mix with each other or mix with cells from 

L3 layers. Therefore, three sets of stem cells are required.     
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Figure 5.3 Arabidopsis meristem structure and the formation of chimeric organs 

A.  Structure of the Arabidopsis shoot meristem. CZ: central zone, PZ: peripheral zone. The 

image is modified from raweb.inria.fr/  

B.  Two ways to form chimeric organs (see text for more details).  

Shoot apical meristem view from the top. Only the L1 layer is illustrated. There are three 

stem cells in the L1. Organ anlagen containing two founder cells in the L1 are illustrated. 

The two possible scenarios to form chimeric organs, stream A and stream B, are shown.  

Stream A: chimeric organs are formed at the boundary of the two sectors that are derived 

from two stem cells; stream B: chimeric organs are formed when the boundary between 

recent stem-cell daughter cells formed after recombination and the older daughters formed 

before recombination is displaced into the organ formation zone. When the meristem grows 

further, only stream A can create chimeric organs.   
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It is estimated that there are about three stem cells in each layer (Steward and Dermen, 

1970). Each stem cell divides slowly and asymmetrically to give rise to two immediate 

daughters of stem cells. Depending on their position within the meristem, the daughters will 

either retain the stem-cell fate and take the mother cell’s place, or they will enter 

differentiation. Ongoing cell division by the centrally located stem cells will push earlier 

stem-cell daughters towards the peripheral zone, where they will be incorporated into organ 

anlagen to make up organs. 

5.2.2.2 Organ anlagen 

The very early organ primordium at the time of its specification is called the organ anlage. 

The cells that make up the organ anlage are referred to as founder cells. Different organs 

have different number of founder cells. Each founder cell in one layer forms a sector in the 

mature organ. Thus, by determining how many “fractions” an organ can be subdivided by 

sectors, one can estimate the number of founder cells as the inverse of this fraction. If for 

example marked sectors can make up either ¼, ½, or ¾ of an organ’s epidermis, the most 

likely number of epidermal founder cells for the organ is four. For this to be valid, however, 

the sectors must originate outside of the organ, so that one can be sure that one captured 

the founder cells at the earliest point when they are committing their fate. 

5.2.2.3 Clonal sectors 

If some of these founder cells are mutant, the resulting sectors in the mature organs will 

also be mutant. Depending on the number and the arrangement of the mutant founder cells 

in the organ anlage, the sector sizes and patterns can vary. The more mutant founder cells 

there are, the larger will be the mutant sector. 

Now, we can answer the question of which sectors need to be compared to assess the 

effect of the paps1-1 mutation. We must compare sectors that are derived from the same 

number of founder cells. Generally, it is not possible to trace back the number of founder 

cells that gave rise to a sector, when its size can be affected by the number of founder cells 

and a potential difference in the growth of cells of the two genotypes (wild-type or paps1-1). 

There are fortunately two exceptions. One case is when the organ anlage has only two 

founder cells in one layer. There can then be only one kind of chimeric organ: it consists of 

only two sectors, each derived from one founder cell. In the other case, the organ anlage 

has more than two founder cells, but there are also two sectors, the boundary of which 

coincides with the midvein. The midvein is assumed to always divide an organ into two 

halves with equal number of founder cells. From the studies (Bossinger and Smyth, 1996), 

the number of founder cells in one layer is estimated to be eight for leaves, eight for sepals, 

eight for gynoecium, four for anthers and two for petals.  

Therefore, to analyze the growth co-ordination between sectors within one organ, I aimed to 

analyze chimeric petals and leaves with the sector boundary running along the midvein. 
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5.2.2.4 How to generate chimeric petals and leaves with a sector boundary along 
the midvein?  

Having considered the structure and the dynamics of the stem cell population and the 

formation of the organ in the meristem, it is inferred that there are two ways to form chimeric 

organs using theCLV3>>Cre system. Firstly, if one uses a mild ethanol treatment, 

sometimes only one of the stem cells recombines. As the stem cells divide, they eventually 

give rise to two distinct clonal populations, one of which contains all mutant cells and the 

other contains all wild-type cells. If at the border of these two populations an organ is 

formed, it will be chimeric. This is the main stream from which chimeric organs arise 

(denoted as stream A in Figure 5.3B). However this is not the only possibility. Another 

way(denoted as stream B) to create a chimeric organ is when the boundary between the 

stem cells daughters that were formed after the focal stem cell underwent recombination 

and the daughters that were formed before comes to lie within the region of organ initiation 

in the meristem periphery, giving rise to a chimeric organ (Figure 5.3.B). Unlike the stream 

A type, which can operate during the life time of the chimeric meristem, the stream B-type 

formation of chimeric organs happens in a very restricted time window. This is because after 

recombination, the organ initiation zone will soon be filled with only the newly made 

descendants of stem cells. In contrast to stream A, stream B can also happen even if all 

three stem cells are recombined i.e. a homogenous stem cell population.  

In the approach presented here I  therefore applied only mild ethanol induction on the 

paps1-1 mutants carrying the CLV3>>Cre and one copy of the loxP::genomic rescue 

PAPS1::loxP (termed floxPAPS1)construct in order to obtain sectored meristems, and as a 

result sectored petals. 

5.3 The results 

In total, 13 F1 plants from a cross of a paps1-1 mutant that is homozygous for the 

CLV3>>Cre transgene and a paps1-1 that is homozygous for the floxPAPS1 transgene 

were induced with ethanol at 7 days after sowing and then analyzed. Figure 5.4 shows a 

typical sectored rosette. Most of the rosette is wild-type, though some younger leaves have 

recombined sectors. These chimeric rosettes later produced several kinds of inflorescences. 

These inflorescences can be classified by two criteria: firstly, whether they are sectored or 

non-sectored and secondly, whether the recombination happens in the epidermis, in the 

internal layers or in all layers. All possible classes of inflorescences are listed in Box 5.1. 
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Figure 5.4 A sectored rosette 

paps1-1 homozygous mutant carrying one copy each of the CLV3>>Cre and the floxPAPS1 

transgenes were induced with ethanol vapour 7 days after germination and imaged 13 days 

later.  Scale bar 0.5 cm.  

A.  Overlay of CFP and YFP fluorescence micrographs. YFP (yellow) signal indicates non-

recombined, i.e. rescued wild-type tissues, CFP (blue) signal indicates recombined, i.e. 

paps1-1 mutant tissues. This is true for all following fluorescence images in this chapter.   

B.  YFP fluorescence micrograph of the marked square in A.  

C.  CFP fluorescence micrograph of the marked square in A 

  

B. YFP C. CFP

A. overlay
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Box 5.1 The nine possible classes of inflorescences that can be observed when using 
the CLV3>>Cre system. 

The border of the square represents the L1 layer, the inside of the square represent the L2 

and L3 layers. Note that for the split inflorescences, the proportion of the two sectors can 

varies from a third to two third of the inflorescences. Chimeras that have the L1 and L2 of 

one genotype, but the L3 of the opposite genotype are possible, but difficult to detect using 

a fluorescence stereomicroscope (see text), so are not considered here. 

  

Class 1. Whole inflorescences are recombined in all layers

Class 2. Whole inflorescences  are non-recombined in all layers

Class 3. Whole inflorescences  are recombined in L1 layer only 

Class 4. Whole inflorescences  are recombined in L2 and L3 layers only

Class 5. Split/Sectored inflorescences in both layers

Class 6. Split/Sectored inflorescences in L1 layer plus the internal layer L2 is wholly non-recombined.

Class 7. Split/Sectored inflorescences in L1 layer plus the internal layer L2 is wholly recombined.

Class 8. Split/Sectored inflorescences in internal layer L2. The L1 layer is wholly non-recombined. 

Class 9. Split/Sectored inflorescences in internal layer L2. The L1 layer is wholly recombined. 
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5.3.1 Level 1 and Level 2: The interaction between two different 
organs in individual plants: leaves and flowers and the 
interaction between petals from different side inflorescences in 
individual plants.  

The analysis of growth co-ordination at the first two levels (level 1: leaves versus flowers, 

and level 2: between flowers from different inflorescences) requires only analysis of non-

sectored inflorescences. Petals were compared from two different kinds of inflorescences, 

as shown in Figure 5.5 (inflorescence 1: fully mutant and inflorescence 2: fully wild-type). 

Most rosette leaves of these plants are wild-type (Figure 5.4). The fully recombined, i.e. 

mutant, petals are 50% larger than the fully non-recombined, i.e. wild-type petals (Figure 
5.6-Level 1 and 2-Whole flower-Both). These results indicate that the petal enlargement 

caused by the paps1-1 mutation does not require the whole rosette to be mutant and is 

neither influenced by, nor does it influence the growth of wild-type organs from a different 

side shoot. Hence, over different inflorescences PAPS1 acts autonomously.  

With regards to the contribution of cell layers, the results indicate that the genotype of the 

epidermis largely determines the growth behaviour of the organ; petals with a mutant 

epidermis were 44% larger than wild-type petals (Figure 5.6-Level 1 and 2-Whole flower-

Epi), while loss of PAPS1 function in the internal tissue did not lead to a significant size 

increase (Figure 5.6-Level 1 and 2-Whole flower-Int). Therefore, across cell layers, the 

paps1-1 effect seems to be non cell-autonomous.  

Levels 3 to 5 require the analysis of sectored inflorescences. 

5.3.2 Level 3: the interaction between petals from different flowers in 
individual inflorescences.  

Only one epidermally sectored inflorescence was obtained in this experiment (Figure 5.7). 

The flowers with a mutant epidermis had 37% bigger petals than the wild-type flowers that 

are derived from this very same sectored inflorescence (Figure 5.6-Level 3-Whole flower-

Epi). The results again support a cell-autonomous effect of the paps1-1 mutation at the level 

of different flowers in one inflorescence; however I did not have data to conclude about the 

effect of a chimera in the internal layer at this level.  
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Figure 5.5 Chimeric inflorescences generated by CLV3>>Cre. 

paps1-1 homozygous mutant carrying one copy each of the CLV3>>Cre and the floxPAPS1 

transgenes were induced with ethanol vapour 7 days after germination and imaged 30 days 

later. Scale bar 5 mm. 

Inflorescence 1:  a non-sectored inflorescence that was recombined in all cell layers. 

Inflorescence 2:  part of the  sectored and fasciated inflorescence that was non-recombined 

in all cell layers.  

Inflorescence 3 : part of the  sectored and fasciated inflorescence that was internally 

recombined, but non-recombined in the L1.  
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Figure 5.6 The paps1-1 mutation act autonomously to promote the growth of petals. 

paps1-1 homozygous mutant carrying one copy each of the CLV3>>Cre and the floxPAPS1 

transgenes were induced with ethanol vapour 7 days after germination and analysed 30 

days later.  Refer to Figure 5.1. for a definition of the five levels. Level 1 to level 4, each data 

point represents the mean ratio ± s.e.m, and the number of petals (n) that were used to 

calculate the mean is indicated by the number beneath. For level 5, each data point 

represents the measurement for one petal; in total only 5 split petals were obtained in this 

experiment.  

Level 1 and 2. Petals were dissected from flowers from different inflorescences. These 

inflorescences were non-sectored and recombined in both layers (Whole flower - Both), in 

the epidermal layer only (Whole flower - Epi) or in internal layers only (Whole flower - Int). 

The size of the petals in each category was normalized to non-recombined petals from other 

inflorescences on the same plants. 

Level 3. Petals were dissected from different flowers from within one inflorescence. This 

inflorescence was sectored. Only epidermal recombination was obtained for this level. Petal 

size was normalized to the non-recombined petals from flowers within that inflorescence.  

Level 4. Petals were dissected from split flowers and normalized to the other petals in the 

same flower. The petals with least mutated tissue were set to be 100%. Refer to Figure 5.8 
and Figure 5.9 (below) and text for the definitions of the split-flower classes.  
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Figure 5.6 The paps1-1 mutation act autonomously to promote the growth of petals 
(continued). 

Level 5. Split petals. Both halves of split petals were measured, and the size of the half with 

least mutant tissue was set to 100%. Refer to Figure 5.10 and Figure 5.11 (below) and text 

for the definitions of the split-petal classes.   
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Figure 5.7 The inflorescence with a sector boundary in the epidermis overlying wild-
type internal tissue. 

paps1-1 homozygous mutant carrying one copy each of the CLV3>>Cre and the floxPAPS1 

transgenes were induced with ethanol vapour 7 days after germination and and imaged 30 

days later. Scale bar 1mm.  
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5.3.3 Level 4: the interaction between petals within individual 
flowers.                                                                                                                                         

At level 4 of this analysis, split or sectored flowers can be classified to five classes using two 

criteria. The first criterion is which layer(s) was recombined: L1, L2 or both (the genotype of 

the L3 layer in flowers is difficult to ascertain using only a stereomicroscope, as the L3 only 

contributes a relatively small amount of the final tissue to floral organs; for example, it only 

contributes to the internal tissue in a small region at the base of sepals, and not at all to 

petals). The second criterion is the genotype of the remaining parts of the flowers (wild type 

or mutant). Using these two criteria, all five theoretically possible split flowers are illustrated 

in Figure 5.8 and Figure 5.9. In Class E, no flower was found in this experiment. The size 

comparisons of petals from each class of split flowers are shown in Figure 5.6-Level 4. The 

percentages were calculated as the ratio of the petals with more mutant tissues over the 

petals with the least mutant tissues from the same sectored flower. Clearly, in all classes, 

there is an increase in the size of the petals with more mutant tissue relative to the control 

petals, albeit only a moderate one of about 20% in some of the cases. This is again 

consistent with an autonomous effect of the mutation on growth. Regarding the contribution 

of each layer, loss of PAPS1 function in either the epidermis or the internal tissue of the 

petal led to a comparable increase in petal size (Figure 5.6) 

5.3.4 Level 5: the interaction between different parts of individual 
petals. 

Split petals can also be classified into five classes using the two criteria similar to split 

flowers (i.e., recombination happened in which layer (L1 or L2) and the genotype of the 

remaining parts of the petals) as illustrated in Figure 5.10. Petals have four founder cells, 

two of which form the epidermis and the other two form the internal tissue including the 

vasculature. The size comparisons of these five classes of petals are shown in Figure 5.6-

level 5 and Figure 5.11. Note that for two classes (split in both layers [class A] and split 

internally, but fully mutant in the epidermis [class E] no petals were found in this experiment. 

In total, five split petals were found, all of which, regardless of the particular combination of 

mutant and wild-type tissue, showed increased growth of the petal half with more mutant 

tissue relative to the other half, again supporting a cell-autonomous effect of the paps1-1 

mutation. 
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Figure 5.8 Five different theorically possible classes of split flowers and the four 
classes found in this experiment.   

Class A. Fully split flowers in both layers. Two petals are fully WT and two petals are fully 

mutant. 

Class B. Split in the epidermal layer. Two petals are fully WT and two petals are mutant in 

the epidermis, WT in the internal layer. 

Class C. Split in the internal layer. Two petals are fully WT and two petals are mutant in the 

internal layer, WT in the epidermis. 

Class D. Split in the epidermal layer. Two petals are fully mutant and two petals are mutant 

in the internal layer, WT in the epidermis. 
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Figure 5.8. Five different theorically possible classes of split flowers and the four 
classes found in this experiment (continued).  

Class E. Split in the internal layer. Two petals are  fully mutant and two petals are mutant in 

the epidermis, WT in the internal layer.  

Number in % indicates the increase in size of the petals with more mutated tissues over the 

other petals with less mutated tissued from the same flowers. Values are average ± s.e.m, 

and the number of petals (n) that were used to calculate the mean is indicated. 
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                                CFP            YFP          Overlay 

 

Figure 5.9 Petals from sectored flowers. 

Each panel shows the four petals from a split flower in Figure 5.8. Refer to Figure 5.8  for 

the class definitions. Scale bar 1mm. 

  

Class A

Class B

Class C

Class D



149 
 

 

Figure 5.10 paps1-1 mutation is autonomous within different parts of a petal.   

Eight classes of theoretically possible recombined petals generated by ethanol inducing 

paps1-1 homozygous mutants carrying one copy each of the CLV3>>Cre and the 

floxPAPS1 transgenes are shown. The four squares represent the organ anlage of a petal 

consisting of clonally distinct cells arranged in two rows of two cells each. The two upper 

cells form the epidermis (L1), while the two lower ones form inner tissue (L2). The genotype 

of the inner tissue is recognized in the chimeric petals by the presence of fluorescence 

signal from vasculature.  The number above the squares indicates the number of 

recombined petals found in this experiment for the corresponding class. 

 

Upper pannel : From left to right: WT petals and the three classes of non-split petals: Fully 

recombined in both layers, fully recombined in L1 only, fully recombined in L2  only.  

Below pannel: The five classes of split petals (Class A to E) were illustrated.  

Class A: split in both layers, Class B: split in L1; the other half is fully WT; Class C: split in 

L2, the other half is fully WT; Class D Split in L1, the other half is fully mutant; Class E: split 

in L2, the other half is fully mutant.  

  

vascular
epidermis

17 

1mm

39 12

Class B

22

Class C

1 0

Class D Class E

0

Class A

The non-split petals (the individual cell-layer is fully recombined)

The split petals (split within individual cell-layers) 



150 
 

 

Figure 5.11 Split petals show asymmetric growth. 

Magnified pictures of petals shown in Figure 5.10. The genotype of the inner tissue is 

recognized in the chimeric petals by the presence of fluorescence signal from vasculature.  

The percentage shown under the pictures is the size of the mutant half normalized to the 

size of the control half with less mutant tissue.  

Scale bar is 1mm.  
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5.3.1 The effect of having paps1-1 and wild-type tissues in the the 
internal layer: the internal chimera induces inflorescences 
meristem to split:  

From the analysis of chimeric plants, out of at least 20 inflorescences observed, no 

inflorescence was found to be split in both layers.  I found one inflorescence that contained 

sectors in the epidermal layer only, while the internal tissue was fully wild-type (Figure 5.7); 

one inflorescence that contained sectors in the epidermis only, while the internal tissue was 

mutant. However, I did not find inflorescences that were split in both layers or were split in 

the internal layer only. All plants analyzed contained internally-sectored stems, which in 

theory should give internally split inflorescences. However, invariably all of these internally 

split stems later fasciated and split into two or more stems (Figure 5.12, Figure 5.13, 

Figure 5.14, Figure 5.15). Some of these derived stems that still contained mutant and 

wild-type tissue internally, split again and again, until eventually the two split stems were 

homogeneous in the internal tissue (either mutant or wild-type).  Therefore, no 

inflorescences with a sector boundary running through the internal tissue or through both 

epidermis and internal tissue were obtained except one inflorescence shown in Figure 5.16. 

This inflorescence produced a flower with a sector boundary in both layers, but the flowers 

that are made later in the fully CFP/mutant sector were wild-type (Figure 5.16 B).This 

suggested that the sector was terminated, possibly because it arose not in the long-term 

stem cells themselves, but in the immediate daughters of stem cells fated to differentiate 

that also express the CLV3>>Cre construct. Taken together, these results suggest that the 

presence of paps1-1 mutant and wild-type tissues in the internal layer of a 

shoot/inflorescence meristem induces the meristem to split in to two or more meristems.  

5.4 Discussion: 

The growth effect of the paps1-1 mutation is cell-autonomous, and a mutant 
epidermis is sufficient to drive excess growth in petals. 

The results showed that the growth effect of the paps1-1 mutation is autonomous at the 

level of different organs within one plant and within one flower, and also at the level of the 

two halves of one petal. When mutant and wild-type tissues were juxt aposed within one 

petal, the mutant half grew larger than the wild-type half. However, within one half of the 

petal, the paps1-1 mutation seemed to act in a non cell-autonomous manner between the 

epidermis and the internal layer. The results here suggest that the epidermis plays a 

dominant role, as a mutant epidermis can promote growth of a wild-type L2 layer 

underneath. This non cell-autonomous effect on growth between layers is  
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Figure 5.12 The fasciated meristem phenotype was caused by chimerism in 
meristems, not by ethanol induction of CLV3>>Cre. 

All plants were treated with ethanol vapour for 1 hour at when 7 days old. Pictures were 

taken at 31 days after induction. Scale bar 1cm.  

Left: paps1-1 mutant carrying only the CLV3>>Cre transgene. Note that no fasciated 

meristems were observed. Right, upper: paps1-1 mutant carrying both CLV3>>Cre and 

floxPAPS1 transgenes. Note some strongly fasciated meristems (arrows). Right, lower: 

another paps1-1 mutant carrying CLV3>>Cre and floxPAPS1 transgenes. Note the mildly 

fasciated meristems (arrows).   
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Figure 5.13 Internal chimerism causes inflorescences to split. 

A.  Magnified fluorescence micrographs of the same plant shown in Figure 5.12 right, upper 

panel. paps1-1 homozygous mutant carrying one copy each of the CLV3>>Cre and the 

floxPAPS1 transgenes were induced with ethanol vapour 7 days after germination.  

Image of a plant taken 13 days after induction.  

B.  The same plant in A imaged at 37 days after induction showing fasciated shoot.  

C. YFP micrograph and YFP/CFP/brightfield overlay of the enlarged section in B showing 

that the internally sectored side shoot was split into two side shoots, one of which is fully 

recombined in both layer.  

D. YFP micrograph and YFP/CFP/brightfield overlay of another section in B showing the 

internal chimerism inducing a split of the inflorescence.   
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Figure 5.14 Another plant with paps1-1 and wild-type sectors showed fasciated 
meristem. 

Magnified image of plant on the right, lower half of Figure 5.12. Arrow points at three 

positions where a meristem was split into two or three new meristems. The numbers 

indicates the splitting positions that are examined with fluorescence microscope as shown in 

Figure 5.15. 
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Figure 5.15 paps1-1 and wild-type chimerism in the internal layers causes meristems 
to split. 

Magnified fluorescence images of plant shown in Figure 5.14. Arrows point at positions 

where a meristem was split into two new meristems. Numbers on the left correspond to 

sections numbered in Figure 5.14.  
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Figure 5.16 An internally sectored inflorescence. 

paps1-1 homozygous mutant carrying one copy each of the CLV3>>Cre and the floxPAPS1 

transgenes were induced with ethanol vapour 7 days after germination and imaged 30 days 

later. YFP, CFP and overlay micrograph of inflorescence (A) and of the flowers (B) 

dissected from the inflorescence in (A). Note the terminated CFP sectors in (A)-arrow. Scale 

bar 1mm. 
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likely to be a general rule in plants because chimera layers with a different growth regulator 

such as BRI1 (BRassinosteroid Insensitive 1) (Savaldi-Goldstein et al., 2007) also follow this 

rule that the epidermis can drive the growth of the whole organ. 

Do the internal layers have any role? The answer is less straightforward. One result 

suggests no contribution of internal tissue. There was no difference inthe size of petals from 

two flowers that were taken from two different inflorescences, with one inflorescence being 

internally recombined, the other inflorescence wild-type (Figure 5.6-Level 1 and 2- whole 

flower-Int). On the other hand, another result suggests a contribution of the internal tissue. 

The internally recombined petals were 20% larger than fully wild-type petals derived from 

the same flowers (Figure 5.6 Level 3-split flower class C). These two results contradict each 

other on the role of paps1-1 mutant internal tissues in promoting petal growth. Supporting a 

role also for the internal tissue, at level of individual split petals (level 5), the data suggest a 

20% increase when the epidermis is mutant, and a 20% increase also when the internal 

tissue is mutant (Figure 5.6 Level 5). At present, the reason for this discrepancy is unclear; 

potentially the analysis of a larger number of chimeric inflorescences could indicate which of 

the two scenarios is supported by the majority of observations and whether there are 

different trends at different levels of analysis.  

The results here also suggest that the presence of paps1-1 mutant and wild-type tissues in 

the internal layer of a shoot/inflorescence meristem induces the meristem to split in to two or 

more meristems. It is important to point out that this effect is unlikely to be the effect of the 

CLV3>>Cre transgene or the effect of ethanol induction. This is because the paps1-1 

mutant plants containing CLV3>>Cre, which were induced together with these chimeric 

plants, did not show this fasciation and split phenotype (Figure 5.12). 

The evidence presented here support the hypothesis that internal chimerism in meristems 

can induce meristems to split. This is a novel finding. The stem cell population must be 

under tight control to maintain a certain size, despite the fact that stem cells do divide. A 

potential cause for this split is an asynchronised cell division between wild-type stem cells 

and paps1-1 mutant stem cells. This would also suggest that the difference in growth 

caused by the paps1-1 mutation acts at a single-cell level and also in stem cells, long before 

organ initiation. It remains an open question why only internal chimerism seems to induce a 

split, while epidermal chimeras form nicely sectored inflorescences without splitting. 

Additional explanation for the meristem splitting can be the conflict of the two parts of the 

chimera.  
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6 Chapter 6. Other genetic 
analysis of PAPS1 
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6.1 Ethanol inducible PAPS1: 

In order to answer when PAPS1 activity is required for organ size regulation, I generated 

plants carrying an ethanol inducible PAPS1 construct (pPAPS1::AlcR-

AlcA::genomicPAPS1) and the negative control (pPAPS1::AlcR-AlcA::YFP) in the paps1-1 

background.  

After a continous ethanol induction (by vapour or irrigation every other day) starting from 

bolting for 20 days, petals were measured on the 12th to 16th flowers (Figure 6.1). The 

experiment results proved that the ethanol inducible system worked and some line of 

pPAPS1::AlcR-AlcA::PAPS1 is able to fully rescue the petal size defect in the paps1-1 while 

none of the negative control is.  

A future experiment is to induce only once and then measure the petals of all the flowers 

which are made after the induction to see which flowers show the most rescued phenotype. 

From that, one can deduce which stage of the flower development is most sensitive to 

PAPS1 activity.  

6.2 cstF64 mutants do not have bigger flowers like paps1-1 
mutants: 

To ask whether the organ size phenotype is caused by a general reduction in 3’ end 

processing activity or by specific reduction of the enzyme poly(A) polymerase 1 activity only, 

the phenotype of cstf64-1 mutants (Liu et al., 2010) is examined. Arabidopsis has only one 

homolog of CstF64, which is a component in the 3’ end processing machinery of 

Arabidopsis. As shown in Figure 6.2, the cstf64-1 mutants have the same petal size as wild-

type. 

These results suggest the petal size phenotype is specific to the polyadenylation defect and 

it is not caused by a defect in cleavage of pre-mRNA or a general reduction in 3’ end 

processing. 

6.3 Genetic interactions between PAPS1 and other known size 
regulators. 

To test whether PAPS1 has genetic interactions with other size regulators, double mutants 

of paps1-1 with other size regulators which affect cell division and/or cell expansion were  
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Figure 6.1 Ethanol inducible PAPS1 constructs rescue paps1-1 phenotype. 

9dT2.X are the independent T2 families of paps1-1 mutants carrying the pSV9d 

(pPAPS1::AlcR-AlcA::genomicPAPS1), the ethanol inducible rescue construct; with X is the 

number of the family. 10bT2.X are the independent T2 families of paps1-1 mutants carrying 

the pSV10b (pPAPS1::AlcR-AlcA::YFPer), the negative control construct; with X is the 

number of the family. All plants were treated with ethanol once every other day (by watering 

plants with 2% Ethanol) immediately after bolting and flowers were taken for measure 20 

days after induction (Flower number 12th-16th).  

 

A.  Inflorescences after 20 days of ethanol induction. Note pSV9dT2.1 inflorescences have 

more flower buds than pSV10bT2.4.  

B.  Petal sizes measured from plants. For 9dT2.X and 10bT2.X, size was averaged amongst 

at least four T2 plants per family. All plants were treated with Ethanol.  

  

9dT2.1 + EtOH

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

10bT2.4 + EtOH

+EtOH

Pe
ta

l s
ize

 ( 
pi

xe
ls)

A

B



161 
 

 
Figure 6.2 cstf64-1 do not have bigger petals than WT 

Petals of Ler and cstf64 mutant plants were measured. s.e.m, n=20  
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analyzed. Because of the ecotype/background problem, the paps1-1 mutation in Ler were 

crossed directly to klu-2, bb-1, ant7F5 ; and the paps1-1 mutants that had been backcrossed 

to Col-0 three times were crossed to 35S::ARGOS, bpep, an3, jag. More crosses are 

ongoing but at the end of my PhD, the double mutant of paps1-1 and klu, bb, and ant7F5 

were ready for analyzed. As shown in Figure 6.3, paps1-1 is partially additive of klu-2, bb-1 

and ant7F5. The effects of paps1-1 in these double mutant backgrounds are not as strong as 

the effect in the paps1-1 single mutant background. Shown in Figure 6.3, a closer look at 

the petal lengths and petal widths revealed that the effects on petal width of paps1-1 are 

comparable in the double mutants paps1-1 bb-1 (+ 21%) and paps1-1 ant7F5 (+25%)  as to 

in single paps1-1 mutant (+19%). The effects of paps1-1 on petal length however, are much 

reduced in double mutants paps1-1 bb-1 (+ 14%) and paps1-1 ant7F5 (+17%) compared to 

single paps1-1 mutant (+32%). In paps1-1 klu-2 mutant background, the enlargement effect 

of paps1-1 on both petal length (ca. +25%) and petal width (ca. +12%) is reduced compared 

to that effect in single paps1-1 mutant (ca. +32% and +19% respectively). 
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Figure 6.3 Genetic interactions between PAPS1 and other size regulators that affects 
cell divisions: KLUH, BB, ANT. 

s.e.m, n >= 20. 

A.  % Petal area compared to WT ( Ler) , numbers and arrows indicate the increase causes 

by paps1-1 mutation in different background ( i.e. equal to the ratio of value from double 

mutant divided by the value from single mutant klu or bb or ant respectively). 

B.  % Petal length and width compared to WT. The % numbers (above the bars) in Bold  

(red  colour is for changes in petal width, blue colour is for changes in petal length) indicate 

the increase caused by paps1-1 in different background (i.e. equal to the ratio of value from 

double mutant divided by the value from single mutant klu or bb or ant respectively).The %  
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Figure 6.3. Genetic interactions between PAPS1 and other size regulators that affects 
cell divisions: KLUH, BB, ANT (continued). 

numbers (below /in) the bars and in black  colour indicate changes caused by single mutant 

klu or bb or ant respectively i.e. ratio of single mutant divided by WT.  
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7 Chapter 7. Whole genome 
microarray analysis 
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7.1 The design of the microarray: 

To understand the molecular defect in leaves and flowers, I performed whole-genome 

microarray analysis. There are three layers in the design of the microarray (Figure 7.1) 

The first layer is the genotype: wild-type (WT) (Ler) vs. mutant (paps1-1).  

The second is the tissue specificity: inflorescences (FL) or seedlings (LE). As paps1-1 

causes opposite effects on the growth of leaves and petals, we would like to indentify and 

then compare the lists of affected genes in leaves and floral organs. For this purpose, RNA 

was extracted from inflorescences of Ler (WT) and paps1-1 and from whole seedlings 

(including roots) of Ler (WT) at 9 day-old and paps1-1 at 11 day-old. The two different ages 

were chosen because paps1-1 mutant seedlings grow more slowly than Ler. At these ages, 

both seedlings were at a comparable early growth stage as judged by the size and cell 

division patterns of the first two leaves (Figure 7.2A and C). Also, at this age, the meristem 

is still vegetative as judged by the 1600X fold less expression of the APETALA1(AP1) gene, 

a marker for flower identity, in the seedlings compared to inflorescences (Figure 7.2B). 

Plants were grown at 21⁰C so that the phenotype is strong in both leaves and flowers.  

The third layer is the type of RNA used in hybridization: total RNA or RNA that was 

fractionated based on poly(A)-tail length. Total RNA is the standard microarray design using 

poly(A)+ RNA. Array hybridized with total RNA will give us information about the changes in 

the abundance (or steady-state level) of mRNAs. For the fractionated RNA, the idea is to 

identify the direct targets of PAPS1 based on the assumption that direct targets of PAPS1 

should have a shorter poly(A) tail in the paps1-1 mutant compared to WT. RNA was 

fractionated using an adapted protocol from mammalian system (Meijer et al., 2007) which 

results in the separation of total mRNA into two pools: the short poly(A)-tail pool which is 

enriched in mRNAs having a poly(A) tail of less than 50 nucleotides, and the long poly(A)-

tail pool which is enriched for mRNAs having poly(A) tail of longer than 50 nucleotides.  

Figure 7.3 showed that the fractionation was successful. After the fractionation, the long 

fraction and short fraction which comes from the same input RNA were differentially labeled 

(four biological replicates with dye swap) and hybridized to the same array (Figure 7.1). 

With this hybridization, each mRNA will have a ratio, referred to as the long/short ratio, 

which reflects how much of the mRNA is in the long poly(A)-tail form (over 50 A’s) and how 

much is in the short poly(A)-tail form (less than 50 A’s). If this long/short ratio changes 

between WT and mutant, the mRNA changes the poly(A)-tail length and therefore very likely 

to be the direct mRNA target of PAPS1.  

To sum up, the microarray were designed combining three factors: mutant vs. wt, 

inflorescences vs. seedlings and total mRNA vs. fractionated mRNAs in order to determine 
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Figure 7.1 The design of the microarray . 

WT: wild-type; MT: paps1-1 mutant. 

fl: inflorescences; le: 9-11 day-old seedlings. 

21: plant grown at 21⁰C; 16: plant grown at 16⁰C. 

t: total RNA; l: a long fraction (mRNAs with a poly(A) tail longer than 50 nucleotides; s: a 

short fraction ( mRNAs with poly(A) tail shorter than 50 nucleotides) 

The number of horizontal arrows indicates the number of biological replicates.  
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Figure 7.2 The seedlings used for microarray analysis. 

dag is days after germination.  

A.  Pictures of seedlings at the stages used for microarray analysis.  

B.  qPCR showing the expresssion of AP1, a floral-meristem marker, in WT seedlings at 8 

dag (WT8d) and mutant seedlings at 10,12 and 15 dag (mt10d, mt12d, mt15d) , i.e. before 

and after the stages where the samples were harvested for microarray. Expression was 

normalized to PDF2 gene. Inflorescence RNA was used as a positive control for AP1 

expression in the qPCR. 

C.  Cell division patterns revealed by pCycB1;1::CDBGUS reporter constructs at one  or two 

day before and one day after the stages of the seedlings used for microarray.  
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Figure 7.3 Poly(A)-tail length dependent fractionation of mRNA. 

A.  Radiograph showing the poly(A)-tail length patterns of different fractions. 

RNA fractions were end-labelled with 32P cordycepin then  treated with  RNaseT1 and 

RNaseA to degrade all RNAs but the poly(A) tails which are then resolved in 8M urea 10% 

polyacrylamide gel.  Amount used for labelling: I1: 1 μg total RNA; I2:  2 μg total RNA; I3: 

3μg total RNA; S and L: a fifth of the short and long fractions that were precipitated from the 

fractionation of 80μg of total RNA . U: one thirty fifth of the unbound from the fractionation of 

80μg of total RNA . The three biological replicates are:  Sample 1: paps1-1 inflorescences; 

sample 2: paps1-1 seedlings; sample 3: paps1-1 inflorescences. Plants were grown at 

21⁰C. 

B.  Quantitation of the graph in A.  
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 the changes in both steady-state abundance and poly(A)-tail length between WT and 

mutant, and to compare these changes between seedlings and inflorescences.  

At the first attempt for the microarray hybridization, I used inflorescence samples of plants 

grown at 16⁰C. At this temperature, the flowers were still 80% bigger in the mutant 

compared to wild-type plants but the reduction in leaf size is mild. So supposedly there are 

fewer targets affected at this temperature in flowers yet the size regulator ‘X’ is still strongly 

affected. Using 16⁰C therefore increase chances of identifying ‘X’ by reducing the other 

unrelated changes. Since initially we did not use dye swaps and the array results may 

contain many false positives, I do not present the analysis of this array here. Therefore all 

the analysis below is based on plants grown at 21⁰C.  

Regarding the idea to capture the direct PAPS1-sensitive targets that have altered 

polyadenylation by using RNA fractionation method, there are some false negatives that is 

noteworthy. These false negatives are mRNAs that do not change the steady state poly(A) 

tail length but can still be the direct PAPS1-sensitive target. If for these transcripts, the 

altered polyadenylation may result in immediate degradation of the pre-mRNA that have 

shorter poly(A) tails. In such case, although the transcript is a direct target but its steady 

state poly(A) tail length do not change but the abundance of the mRNA may change.  

7.2 Raw microarray results- the lists of genes that change 
abundance and/or tail length in seedlings and/or 
inflorescences:   

7.2.1 Total RNAs.  

Using the cut-off criteria of a corrected p-value <0.05 and a magnitude of the log2-fold 

change (mutant/WT)2 >= 1, 616 differentially expressed genes (413 up-regulated, 203 

down-regulated) between WT inflorescences and mutant inflorescences were identified. In 

seedling samples, more genes were differentially expressed (995 in total: 655 up-regulated 

and 340 down-regulated). After analyzing the overlap between differentially expressed 

genes in the two tissues, the genes similarly mis-regulated in both seedlings and 

inflorescences, the genes mis-regulated in seedlings only and in inflorescences only were 

summarized in Figure 7.4A and listed in supplemented excel files. 

7.2.2 Fractionated RNAs. 

As cut-off criteria, we used a corrected p-value<0.05 and a magnitude of ( log2(Mutant 
long/short ratio ) – log2(WT long/short ratio ) )2>=1, we identified in the seedling samples four genes   
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Figure 7.4 Overlap analysis between mis-regulated genes in seedlings (seedl.) vs. 
inflorescences (inflo.). 

A.  Tail-affected: transcripts that change poly(A)-tail length in paps1-1 compared to wild-

type. The number of genes whose mRNAs have a shorter poly(A) tail is shown in blue, a 

longer poly(A) tail length shown in red.  

B.  Abundance-affected: transcripts whose total abundance changes in paps1-1 compared 

to wild-type. The number of down-regulated genes is shown in blue, of up-regulated genes 

is shown in red.  

C. and D. inverse overlap analysis of A and B respectively, to reveal inversely regulated 

genes in inflorescences vs. seedlings. Note the colour code is reversed in seedling samples 

compared to inflorescence samples.  
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whose mRNAs have longer poly(A) tail and 701 genes whose mRNAs have a shorter 

poly(A)tail in mutant compared to WT tissue. The value for inflorescence samples were 12 

(longer tail) and 256 (shorter tail). After analyzing the overlap between the poly(A)-tail 

affected genes in the two tissues, the genes whose poly(A) tail was similarly changed in 

both seedlings and inflorescences, the genes whose poly(A) tail was changed in seedlings 

only and in inflorescences only were summarized in Figure 7.4B and listed supplemented 

excel files. The abbreviation and nomenclatures of different pools of mis-regulated 

transcripts are summarized in Box 7.1   

 

 

 

Box 7.1. Nomenclatures/Abbreviations for the mis-regulated transcript pools because 
of paps1-1 mutation. 

For simplicity, the mRNAs, identified by the total-RNA arrays, that change abundance 

between paps1-1 and WT, were referred to as abundance-affected mRNAs. The mRNAs, 

identified by fractionated-RNA arrays, that change poly(A)-tail length between paps1-1 

mutant and WT were referred to as tail-affected mRNAs. The seedling sample is 

abbreviated with LE and the inflorescences sample is abbreviated with FL. 

The affected genes that were only mis-regulated in one organ but were unchanged in the 

other organ will be referred to as organ-specific tail-affected gene (OSTAG) and organ-

specific abundance-affected gene (OSAAG). The affected transcript pool that was shared 

between both tissue types, i.e. inflorescences and seedlings, were abbreviated as BOTAG 

(both-organ tail-affected genes) and BOAAG (both-organ abundance-affected gene).  

To show the organ-specific information, the organ name (LE or FL) will be added as prefix of 

these abbreviations. To show the direction of regulation (Up or Down with OSAAG and 

BOAAG; Longer and Shorter with OSTAG and BOTAG), a corresponding suffix will be 

added.  

For example, a full name for a pool FL-OSTAG-shorter indicates the transcripts that have a 

shorter poly(A) tail in the paps1-1 mutant inflorescences compared to WT inflorescences, 

but are unaffected in paps1-1 mutant seedlings.  
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7.2.3 Verifications of the microarray by qPCR and LM-PAT: 

To verify the total RNA microarray, I performed quantitative PCR (qPCR) to check the 

expression of the abundance-affected genes identified by the array. The results are shown 

in Figure 7.5. Eight out of eight genes showed similar behavior in qPCR compared to array. 

For two of them (Figure 7.5B), the fold change determined by qPCR is quite different from 

the one determined by array, however the directions of regulation are similar between qPCR 

and array experiments. The result suggests that the total RNA microarray results are quite 

robust and accurate. 

To verify the fractionated microarray, LM-PAT (Ligation-Mediated Poly(A) tail Test) (Salles 

et al., 1999) should be used but I encountered problems with LM-PAT. Many of the tail-

affected genes that were chosen to be verified were too lowly expressed hence LM-PAT 

failed to amplify the ends of the mRNAs. In some other cases, the PCR gave many products 

with different sizes. The LM-PAT is now being optimized by another PhD student in the 

Lenhard’s lab. Therefore, it must be kept in mind that all the analysis on tail-affected 

transcripts needs further verification independently by PCR based poly(A) tail test.  

7.3  Detail-analysis of the gene lists and discussion 

We want to answer two main questions with these microarray experiments:  

1. How do the mis-regulated genes (with respect to both abundance and tail length 

changes) compare between seedlings and inflorescences taking into account the organ-

specific expression factor (i.e. whether the expression of a gene is organ-specific)? Can this 

explain the opposite phenotypes in leaves and flowers? 

2. Are there any prominent pathways that are changed by the paps1-1 mutation? Can these 

pathways explain the growth phenotypes in leaves and flowers? 

To answer question 1, overlap analysis and 2D-contour map analysis were performed.  

7.3.1 Inflorescences and seedlings have distinct PAPS1-dependent 
transcripts 

First to compare the affected genes in LE vs. FL, overlapping analysis was performed on 

affected genes (both tail and abundance-affected genes) between the two tissues. The 

results revealed that the mis-regulated genes were largely non-overlapping between the two 

tissues (Figure 7.4A and B). Moreover, despite the opposite growth effects on seedlings  



174 
 

 
Figure 7.5 qPCR validations of several abundance-affected genes identified from total 
RNA microarray. 

A.  qPCR were performed using RNA from inflorescences of plants grown at 16⁰C. 

Expression levels are normalized to PDF2 gene.  

B.  Table comparing the qPCR results and the microarray results. * qPCR/array difference is 

calculated by log2(the value in column 2 divided by the value in column 3). Genes for which 

this difference is more than one is bold.  
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and flowers, there were only five abundance-affected mRNAs and no tail-affected mRNAs 

were regulated in opposite directions between seedlings and inflorescences (e.g. lower 

abundance in seedlings but higher abundance in inflorescences due to paps1-1 mutation) 

(Figure 7.4C and D). This suggests that the opposite phenotypes are caused by different 

genetic pathways and not by the inverse regulation of one genetic pathway.  

This overlapping analysis defined the pools of transcripts based on firstly the kind of mis-

regulated (abundance/tail), secondly the tissues affected (LE, FL or both tissues) and thirdly 

direction of regulation (up/down and shorter/longer). For nomenclatures of transcript pools, 

see explanations in Box 7.1 

7.3.2 Distinct PAPS1-dependent transcripts in inflorescences and 
seedlings are not due to the issue of organ specific expression. 

I asked whether a gene only being affected in one organ was due to that gene only being 

expressed in this organ but not the other one. To answer this question, I employed a 2D-

contour map with the total mRNA abundance, i.e. expression level, in FL (horizontal axis) 

and the total mRNA abundance in LE (vertical axis) as the two dimensions (Figure 7.6). The 

map has the resolution of 22x22=484 squares, each of which represents a specific 

combination of the two values in two dimensions. The number of genes falling into each 

square was calculated and then plotted (spectrum heat map) to produce what is called a 

2D-contour map shown in Figure 7.6. If genes are expressed comparably in LE and FL, 

they will lie around the diagonal line of the 2D-contour map, while organ-specific genes will 

lie on either sides of the diagonal line. I use this 2D-contour map to analyze distribution in 

different transcript pools: the entire trancriptome (Bulk); OSAAG and BOAAG (Figure 7.6), 

OSTAG and BOTAG (Figure 7.7). There were some spots that were shifted away from the 

diagonal line (Marked with red arrow in Figure 7.6 and Figure 7.7). Nevertheless, for most 

of transcript pools, the overall distribution of the spots was more or less centered along the 

diagonal line, arguing against organ-specific expression as the main reason for OSAAG and 

OSTAG.  

7.3.3 The reason behind OSTAG?  

The existence of distinct sets of OSTAG in LE and FL attracted my attention, because if one 

assumes that OSTAG are direct targets of PAPS1, this result suggests that organ identity 

changes the specificity PAPS1 to its mRNA substrates. I was therefore interested in what 

makes the LE-OSTAG and FL-OSTAG different from each other in terms of the mRNAs 

properties: tail length and abundance in FL and LE. 

One pattern concerning the mRNA abundance stands out from the 2D-contour analysis. In 

the FL-OSTAG-shorter pools and BOTAG-shorter pools (refer to box 6.1 for nomenclature),   
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Figure 7.6 2D-contour: WT total mRNA abundance in inflorescences (inflo.) vs total 
mRNA abundance in seedlings (seedl.) analyzing abundance-affected transcripts. 

See Box 7.1 for explanation of the different transcript pools used in the analysis. In brief, 

different pools of transcripts (bulk: all mRNAs, abundance-affected transcripts (up/down in 

both tissues, in seedlings only and in inflorescences only) were separated in two 

dimensions: WT total mRNA abundance in inflorescences vs WT total mRNA abundance in 

seedlings. 

WT total mRNA abundance is log2 of WT expression value extracted from microarray data. 

The number of genes that occupy an area in the 2D-map  were spectrum-colour coded. The 

number on the right of each colour in the spectrum indicates a threshold, e.g. (black circle in 

the top left panel: if the area is occupied by more than 12 genes (the threshold), it will be  
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Figure 7.6 2D-contour: WT total mRNA abundance in inflorescences (inflo.) vs total 
mRNA abundance in seedlings (seedl.) analyzing abundance-affected transcripts 
(continued). 

shown in red. The red arrow highlight gene clusters that is potentially interesting (see text 

for details) 
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Figure 7.7 2D-contour: WT total mRNA abundance in inflorescences (inflo.) vs. 
seedlings (seedl.) analysing tail-affected transcripts 

See Box 7.1 for detailed explanation of the different transcript pools used in the analysis. In 

brief, different pools of transcripts ( bulk: all mRNAs and tail-affected transcripts (shorter in 

both tissues, in seedlings only and in inflorescences only) were separated in two 

dimensions: WT total mRNA abundance in inflorescences  vs WT total mRNA abundance 

seedlings. 

 

WT total mRNA abundance is log2 of WT expression values extracted from microarray data. 

The number of genes that occupy an area in the 2D-map  were spectrum-colour coded. The 

number on the right of each colour in the spectrum indicate a threshold, e.g. if the area is 

occupied by more than 12 genes (the threshold), it will be shown in red. The red arrows 

highlight a gene cluster that is potentially interesting (see text for details) 
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there were very few genes which are highly expressed (Figure 7.7) but in the LE-OSTAG-

shorter, there seemed to be an enrichment of genes that are highly expressed in both 

organs. Therefore, it seems that the FL-OSTAG-shorter and the BOTAG-shorter tend to be 

lowly expressed but many of the LE-OSTAG-shorter do not. Therefore, I speculate that in 

the inflorescences, PAPS1 function is more important for the proper polyadenylation of lowly 

abundant transcripts than the highly abundant transcripts.  

Additionally, I employed more 2D-contour mapping to compare the patterns in the OSTAG 

set of FL and LE in different two-dimension spaces: tail-length in FL vs. tail length in LE and 

tail-length vs. abundance in FL or LE. Firstly, comparing the poly(A)-tail length in FL vs. tail 

length in LE, Figure 7.8 showed that there is a subpopulation of FL-OSTAG-shorter that 

have longer poly(A) tails in FL than in LE. This pattern is not observed for LE-OSTAG-

shorter of BOTAG-shorter, yet it is observed, though to a lesser degree, in bulk RNA (arrow 

Figure 7.8-bulk RNA) suggesting the property of having longer poly(A) tail in FL than in LE 

is specific to FL-OSTAG.  

Finally, 2D-separation by tail length vs. abundance in one tissue type probably discriminate 

FL-OSTAG and LE-OSTAG the best (Figure 7.9 Figure 7.10 Figure 7.11). FL-OSTAG-

shorter set are enriched with lowly-expressed and long tail transcripts, which were also 

enriched in the bulk transcript pools but not in LE-OSTAG. By contrast, the LE-OSTAG set 

is enriched in both lowly-expressed, long-tail transcripts and highly-expressed normal-tail 

transcripts, with the later being more enriched.  

To sum up, tail-affected and abundance-affected transcripts in inflorescences and seedlings 

do not overlap; suggesting that PAPS1-dependent regulation is modified in an organ-

specific manner, despite the organ-nonspecific expression of the affected genes. FL-

OSTAG-shorter tends to have a long tail and be lowly expressed while the LE-OSTAG-

shorten pool is more enriched with mRNAs that are highly expressed and have a medium 

tail length.  

7.3.4 Gene categories analysis linking differential expressed genes 
to cellular pathways:  

Are there any prominent pathways changed by the paps1-1 mutation? Can these pathways 

explain the growth phenotype in leaves and flowers?  This analysis is not completed. But 

here I present the ideas and some preliminary results.  

To find biological pathways that may be enriched in the misregulated genes, I employed 

MASTA (Reina-Pinto et al., 2010), and MAPMAN (Thimm et al., 2004). MASTA is a 

bioinformatic tool to compare a differential-expressed gene (DEG) list of interest with 600 

other DEG lists that are identified from published microarray experiments analyzing various 

conditions/mutants. MAPMAN is another bioinformatic program, where genes that are   
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Figure 7.8 2D-contour: WT poly(A)-tail length in inflorescences (inflo.) vs WT poly(A)-
tail length in seedlings (seedl.) analysing tail-affected transcripts.   

See Box 7.1 for detailed explanation of the different transcript pools used in the analysis. In 

brief, different pools of transcripts ( bulk: all mRNAs and tail-affected transcripts (shorter in 

both tissues, in seedlings only and in inflorescences only) were separated in two 

dimensions: the WT poly(A)-tail length in inflo. and seedl.  

 

WT poly(A)-tail length is log2 of the WT long tail/short tail ratio as determined from the 

fractionated microarray. Positive value indicate relatively long poly(A) tails.The number of 

genes that occupy an area in the 2D-map  were spectrum-colour coded. The number on the 

right of each colour in the spectrum indicate a threshold, e.g. if the area is occupied by more 

than 6 genes (the threshold), it will be shown in red. 

The red arrow highlights gene clusters that are potentially interesting (see text for details) 

 

FL-OSTAG-shorter BOTAG-shorter LE-OSTAG-shorter
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Figure 7.9 2D-contour: WT tail length in inflorescences (inflo.) vs WT total mRNA 
abundance in inflo. analysing tail-affected transcripts.   

See Box 7.1 for detailed explanation of the different transcript pools used in the analysis. In 

brief, different pools of transcripts ( bulk: all mRNAs and tail-affected transcripts (shorter in 

inflorescences only and in both tissues) were separated in two dimensions: the WT poly(A)-

tail length in inflo. and the WT total mRNA abundance in inflorescences.  

 

WT poly(A)-tail length is log2 of the WT long tail/short tail ratio as determined from the 

fractionated microarray. Positive value indicate relatively long poly(A) tails. WT total mRNA 

abundance is log2 of WT expression values extracted from microarray data. The number of 

genes that occupy an area in the 2D-map was spectrum-colour coded. The number on the 

right of each colour in the spectrum indicate a threshold, e.g. if the area is occupied by more 

than 4 genes (the threshold), it will be shown in red. 
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Figure 7.10 2D-contour: WT tail length in seedlings (seedl.) vs WT total mRNA 
abundance in seedlings analysing tail-affected transcripts.   

See Box 7.1for detailed explanation of the different transcript pools used in the analysis. In 

brief, different pools of transcripts ( bulk: all mRNAs and tail-affected transcripts (shorter in 

seedlings only and in both tissues) were separated in two dimensions: the WT poly(A)-tail 

length in seedlings and the WT total mRNA abundance in seedlings. 

 

WT poly(A)-tail length is log2 of the WT long tail/short tail ratio as determined from the 

fractionated microarray. Positive value indicate relatively long poly(A) tails. WT total mRNA 

abundance is log2 of WT expression values extracted from microarray data. The number of 

genes that occupy an area in the 2D-map was spectrum-colour coded. The number on the 

right of each colour in the spectrum indicate a threshold, e.g. if the area is occupied by more 

than 4 genes (the threshold), it will be shown in red. 
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Figure 7.11 2D-map non-contour : separation of genes with tail length vs abundance 
in seedlings and inflorescences.  

Similar to Figure 7.9 and Figure 7.10 but here the density in each area is not considered, 

and the different pools of transcripts were overlappingly drawn on top of each other. Red 

crosses represent bulk mRNA. Black crosses represent tail-affected transcripts in 

inflorescences (left) or seedlings (right). See Box 7.1 for detailed explanation about pools of 

transcripts.  

WT poly(A)-tail length is log2 of the WT long tail/short tail ratio as determined from the 

fractionated microarray. Positive value indicate relatively long poly(A) tails. WT total mRNA 

abundance is log2 of WT expression values extracted from microarray data.  
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known/predicted to be involved in one biological pathway are grouped together, which helps 

answer whether a DEG is enriched for a particular biological pathway.  

Combining both of these programs, we found that the LE-OAASG is enriched with pathogen 

related genes while FL-OAASG is not (genes lists attached as an electronic 

supplementation file). In paps1-1 seedlings, a pathogen response seemed to be ectopically 

elicited. By contrast, in paps1-1 inflorescences, this is not the case. This suggests PAPS1 in 

seedlings resembles a negative regulator of pathogen response. 

7.3.5 Other interesting observations from microarray analysis 

There was strikingly not much correlation between tail length changes and 
abundance changes. 

Overlap analysis between tail-affected transcripts and abundance-affected transcripts 

showed that poly(A)-tail length changes seldom correlate with mRNA abundance changes 

(Figure 7.12) This is striking, because it was well believed that poly(A) tail length is 

important for mRNA stability. The result also suggests that the changes in poly(A)-tail length 

by paps1-1 mutants could leads to the instability of some mRNAs but not the others. 

Furthermore, looking at the extent of tail changes revealed that the distributions of the LFC 

tail changes (Figure 7.13) are similar between the two pools: (the tail-affected but 

abundance-unaffected mRNAs) vs. (the tail-affected but abundance-downregulated 

mRNAs). This suggests the degree of tail change cannot be the reason for whether a tail-

affected mRNAs is unstable or not. It remains to be answered how the poly(A)-tail length 

changes in paps1-1 plants result in different effects on the mRNA stability.  

It is also an open question what the consequences of the tail-affected, but abundance-

unaffected type of misregulation are for the target mRNAs? Does this type of mis-regulation 

affect translational effiency or whether does it not have any consequences to the regulation 

of the mRNAs? 
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Figure 7.12 Overlap analysis between tail-affected and abundance-affected gene lists 
in each tissue type. 

A and C: inflorescences; B and D: seedlings. A and B normal overlap analysis; C and D 

inverse overlap-analysis (note that the colour label is reversed compared to A and B for the 

tail-affected genes).   
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Figure 7.13 The degree of poly(A)-tail shortening in shorter-tail transcripts that were 
down regulated and transcripts that were unchanged in expression level because of 
the paps1-1 mutation. 

The degree of poly(A)-tail shortening is represented by ( log2(Mutant long/short ratio ) – log2(WT 
long/short ratio ) ).  Left: transcripts that have shortened poly(A) tails and are down regulated in 

mutant seedlings (LE.) compared to WT seedlings (correspond to the 53 genes in Figure 
7.12.) Right: transcripts that have shortened poly(A) tails but have the expression level 

unchanged in the mutant seedlings compared to WT seedlings (correspond to 648 genes in 

Figure 7.12B excluding the 85 genes in Figure 7.12D )  .  

-2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0
0

2

4

6

8

10

12

14

16

18

20

( log2(Mutant long/short ratio ) – log2(WT long/short ratio ) )
-2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0

0

20

40

60

80

100

120

140

C
ou

nt

( log2(Mutant long/short ratio ) – log2(WT long/short ratio ) )

C
ou

nt

LE. Shorter and down regulated LE. Shorter but unchanged



187 
 

8 Chapter 8. General discussion 
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8.1 Summary 

Here I have characterized a mutant that affects sizes of flowers and leaves in opposite 

directions: i.e., smaller leaves but bigger flowers than wild-type. 

Phenotypically, I showed that the opposite phenotypes are dependent on organ identity 

rather than organ position. I measured and compared the growth parameters of leaves and 

petals between mutants and wild-type showing that: i) Mutant leaves are smaller mainly due 

to reduced cell expansion ii) Mutant petals are larger due to both increased cell proliferation, 

whose spatial patterns remain unchanged, and increased cell expansion. iii) Mutant petals 

are larger because the growth period is prolonged while the growth rate is unchanged.   

Molecularly, I identified the causal gene that is At1g17980, a gene encodes for PAPS1 

protein , one of the four canonical poly(A) polymerases (PAPSs) in Arabidopsis thaliana. I 

isolated and characterized the mutants in the other three PAPS1-orthologs in Arabidopsis 

showing that i) The single null mutants of the other PAPS orthologs: PAPS2 and PAPS4 do 

not have a phenotype. ii) The paps2 paps4 double mutants are late flowering, but otherwise 

morphologically normal; especially, the sizes of paps2 paps4 petals and leaves are 

comparable to wild-type (WT). ii) Mutants in the third ortholog of PAPS1, i.e., paps3 

mutants,  displayed a pleiotropic phenotype, i.e paps3 plants are very small and sterile. 

Different paps1 alleles, which differ in the abundance and integrity of the PAPS1 transcripts 

have different phenotypes: paps1-1 and paps1-4 similarly have smaller leaves and bigger 

flowers than WT, whereas paps1-2 have smaller leaves, but deformed and smaller petals 

than WT. One other allele, paps1-3, is most likely gametophytic lethal.  

By transgenic experiments, I showed that a chimeric PAPS created by replacing the N-

terminal domain of PAPS1 with the N-terminal domain of PAPS4 (the 

pPAPS1::gNPAPS4::gCPAPS1) can fully rescue the size phenotypes in both leaves and 

flowers of the paps1-1 mutant. By contrast, promoter swapping alone (pPAPS1::gPAPS4) 

does not rescue paps1-1 mutant, suggesting that the differences in the C-terminal domain 

makes different PAPSs functional non-redundant. 

In vitro, the mutated protein PAPS1P313S (encoded by the paps1-1 allele) has almost no 

activity while the wild-type protein has polyadenylation activity. In vivo, however, the bulk 

poly(A) tail change is very subtle between paps1-1 mutant and WT.  

Using an mRNA fractionation coupled with microarray, I have defined a set of mRNAs 

whose poly(A)‐tails and stability are changed in the mutant compared to wild type. 

Independently by qPCR analysis, I could verified the abundance-affected transcripts 

identified in microarray experiments. Subsequent bioinformatic analysis suggests compared 

to WT,  in paps1-1 mutant seedlings but not paps1-1 mutant inflorescences, ectopic 
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pathogen responses are elicited. The tail-affected transcripts identified by fractionation 

microarray, however, remains to be verified by LM-PAT test.  

Based on the results suggested by the microarray, it seems that the affected transcripts 

composed of only small proportions of the transcriptome; and there is probably not much 

correlation between tail-length changes and abundance changes. Furthermore, seedlings 

and inflorescences seemed to have distinct pools of abundance-affected transcripts and 

perhaps also of tail-affected transcripts.  

By genetic analysis, I showed that mutants in the CstF64, a component of the 3’ end 

processing complex, do not share phenotype with paps1-1. PAPS1 seems to be additive, 

albeit not completely, to other size regulators bb, klu and ant mutants.   

Using a system to generate predictable paps1-1 chimerism, I showed that the effect of 

paps1-1 in petal growth is cell-autonomous within individual petals, but non cell-autonomous 

across the epidermis and internal (L2) layer in petals. Additionally, I showed that the paps1-

1 chimerism in the internal layer of a meristem caused the meristem to split.  

Taken together, this study uncover an potentially additional layer of gene regulation: a 

transcript-specific synthesis-dependent regulation of poly(A) tail length by different canonical 

PAP isoforms. Some transcripts that are more sensitive to the defect in this regulation can 

serve as size regulators.  

8.2 Opposite size regulations in leaves and flowers are caused 
by different, potentially novel pathways. 

The opposite phenotypes in leaves and flowers of paps1-1 mutants can be caused by the 

opposite regulation of the same size regulator or by affecting two independent size 

regulators. The results here support the later scenario. The results of microarray analysis, 

performed using total RNA, revealed that very few genes were oppositely regulated in the 

two organs  (i.e. upregulated in seedlings but downregulated in inflorescences and vice 

versa). Moreover, microarray analysis also showed that all the known size regulators are not 

misregulated in the paps1-1 mutant. Genetic interactions showed that the petal enlargement 

is largely additive to BB, KLUH and ANT. Therefore, the affected size regulating pathways in 

leaves and flowers are probably distinct and potentially novel.  
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8.3 What could be the reason for the identity dependent effect of 
paps1-1 mutation?  

Organ identity (leaf vs. flowers) influence the the effects of paps1-1 mutation and causes 

several differences found in these two organs: i) phenotypically: size; ii) molecularly: 

mRNAs that are sensitive to polyadenylation defects.  

8.3.1 Organ identity dependent size regulation in paps1-1 mutants:  

paps1-1 mutation promotes petal growth but suppresses leaf growth. Upregulated genes in 

the mutant seedlings are enriched for defense-related genes, whose abundance remains 

largely unchanged in the mutant inflorescences. It is well known that when a pathogen 

response is elicited, growth is inhibited (Chinchilla et al., 2007).  

Therefore, the data suggest that paps1-1 leaves are smaller because of the upregulation of 

pathogen-defense related genes. By contrast, in petals, the defense pathway is not 

upregulated, probably allowing petals to respond to some yet unknown hypothetical size 

regulator  ‘X’, which might be misregulated in petals due to the paps1-1 mutation.  

A remaining question is whether wild-type inflorescences also innately do not response to 

pathogen attack or only paps1-1 inflorescences do not mount an ectopic pathogen attack 

like the leaves. The future experiments are : i) to suppress pathogen response in paps1-1 

seedlings by combining paps1-1 with some main pathogen-reponse mutants (e.g., pr1, 

npr1, sid2-1, 35S::NahG etc. ) and see whether this rescues the leaf-size defect;  ii) to 

clarify how well the WT inflorescences and mutant inflorescences respond to pathogen 

attack.  

Recently, (Winter et al., 2011) showed that when the plants enter reproductive phase, 

LEAFY is expressed and down-regulate genes that are involved in pathogen-reponse. 

Hence it seems likely that inflorescences of WT innately have a low response to pathogen 

attack. 

8.3.2 Organ identity dependent regulation of the sensitivity of pre-
mRNAs to the paps1-1 defect: 

Microarray analysis clearly showed that the pools of abundance-affected (and potentially 

also tail-affected ) transcripts are largely non-overlapped between the two organs. More 

importantly this specificity is not the results of these genes being expressed in only one 

organ but not the other. It is also because PAPS1 is expressed restrictly in one organ, 

either. Hence, organ identity must influence the sensitivity of some transcripts to paps1-1 
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defect. One potential explanation is that organ identity determines the preference of some 

mRNAs to be processed by one PAPS complex or the other complexes, hence making 

some mRNAs more sensitive to PAPS1 defects than the other mRNAs. See further 

discussion on section 8.4 

8.4 Why are some transcripts more sensitive to paps1-1 defect  
than others?  

Microarray analysis on mRNAs fractionated according to their poly(A)-tail length suggested 

that there is a subclass of mRNAs (ca. 1000 transcripts) that are more sensitive to 

polyadenylation defect.  

 A plausible explanation for this sensitivity is that the different PAPSs that exist in plants 

may have different substrate specificity or different kinetics. In the first scenario, PAPS1-

sensitive transcripts would be preferentially polyadenylated by PAPS1. This is surprising 

because PAPS has no substrate specificity in vitro on its own. Additionally, polyadenylation 

happens after the cleavage of pre-mRNA so CPSF should be the one which interacts with 

pre-mRNA first and therefore is more likely to determine the substract specificity of the 

3’end formation reaction. So probably PAPS1 has substrate specificity by inheriting the 

substrate specificity of the protein complex it is in.  

By contrast, in the second scenario there need not be substrate specificity; instead, all 

mRNAs are processed by all PAPS complexes, yet sensitivity would apply only to a 

subclass of transcripts that somehow require a particularly high polyadenylation activity. 

Results in chapter 7 showed that tail-affected mRNAs in inflorescences are enriched for 

ones with long poly(A) tails but low expression levels. So, one possibility is that these 

mRNAs are unstable, they undergo rapid transcription and degradation, hence they requires 

more polyadenylation than the others; at the same time PAPS1 is perhaps the most active 

PAPS. This possibility is consistent with the result that paps2 and paps4 single and even 

paps2 paps4 double mutants showed only a very mild phenotype.  

The two scenarios have a fundamental difference: one strongly implies there is a substrate 

preference, the other does not. Experiments to distinguish these two hypotheses require 

changing PAPS enzyme kinetics without affecting substrate specificity. One experiment 

could be to overexpress PAPS1 in paps2 paps4 double mutants, and vice versa, to 

overexpress PAPS2 or PAPS4 in paps1-1 mutants to see if there is any rescue 

phenotypically (organ size in case of paps1-1 and flowering time in case of paps2 paps4) 

and molecularly (A-tail change). Other experiments to prove substrate preference can be to 

show that PAPS1-sensitive mRNAs associated more strongly with PAPS1 complexes than 

other PAPS complexes by RNA immunoprecipitation using PAPS antibody. A third 
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experiment is to identify transcripts that are PAPS2 and PAPS4 sensitive and check 

whether they overlap with PAPS1 sensitive transcripts. For example, if the most highly 

PAPS1-sensitive transcripts are also affected in paps2 paps4 double mutant, albeit to a 

lesser degree, this would suggest that the sensitivity depends on how high the overall 

requirement for polyadenylation (by all PAPS) is for that transcript rather than the substrate 

specificity.  

Future experiments to futher characterise PAPS1-sensitive transcripts are, for example,  to 

determine if there are any cis-elements, likely in the  3’ UTR of the tail-affected transcripts, 

that encodes for the sensitivity to PAPS1 using ethanol an inducible GUS/YFP-3’UTR  

reporter gene system.  

8.5 The functional specialization amongst PAPSs  

The fact that mutations in different PAPS genes have different phenotypes suggests that 

they have specific functions. At the protein level, I showed that the C-terminal domain is the 

specificity determinant between PAPS1 and PAPS4 proteins. A  possible explanation is that 

by modifications/protein interaction at the CTD, plants can change the activity of PAPS or 

the recruiment of PAPS to hypothetical different PAPS complexes in plants thereby making 

PAPSs functionally different.  

Literature have evidence to support this hypothesis. Manzano et al., 2009 pulled down FY, a 

componenent of the 3’end complex, complexes (using FY-C terminal TAP tag construct) 

and reported two distinct complexes at different sizes (Manzano et al., 2009).C-terminal 

domain of mammalian PAPOLA can be sumoylated or acetylated (Vethantham et al., 2008) 

(Shimazu et al., 2007). (see also section1.3.2.4)  

The next experiments are to find the interactors of the C-terminal domain by yeast two 

hybrid or in planta pull-down using antibody against C-terminal domain. 

8.6 An additional layer of gene regulations: PAPS-dependent 
transcript-specific de novo regulation of poly(A) tail length. 

It is a widely accepted view that canonical PAPs are non-specific and add a poly(A) tail of 

the same length to every pre-mRNA (see section 1.4.1.1). The results here suggest that 

different plant canonical PAPSs are functionally distinct and perhaps by using different 

PAPSs,  the de novo poly(A) tail synthesis are different for each transcript. 

Moreover, in silico results suggest that PAPS1 expression is specifically induced by 

pathogen attack; loss of PAPS1 function causes upregulation of pathogen-related genes in 
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seedlings. Together, these results strongly suggest that plants actively use PAPS1 as a 

break to prevent plants from overreacting to a pathogen, as an unchecked defense 

response  will result in serve growth retardation. The expression of PAPS2 and PAPS4, by 

contrast, are up-regulated during anoxia treatment. It is therefore tempting to hypothesize 

that for a certain stimulus, plants can respond not only by transcriptional changes, but also 

by altering the poly(A)-tail length patterns of specific transcripts, which consequently 

changes the post-transcriptional regulation of the mRNA. Given that different PAPSs are 

known to be also regulated post post-transcriptionally by alternative splicing and protein 

modifications at the C-terminal domain, the potential to modify PAPS activity in response to 

stimuli will be diverse.  

The findings here that different mRNAs respond differently to polyadenylation defects opens 

up  questions about how poly(A)-tail length patterns can be used for the regulation of genes, 

and why for some stimuli/some genes, the regulation at the poly(A)-tail level seems to  

employed. One scenario I imagine is that by choosing different poly(A) sites, plants can 

employ different PAPS complex which will give the pre-mRNA a different poly(A)-tail length. 

More than half of plant genes have more than one poly(A) sites, whose biological functions 

are largely unknown. Especially for those alternative poly(A) sites that are only 15-30 base 

pairs apart and do not have any binding sites for miRNAs in between, it is difficult to imagine 

what their functions could be. Much research on alternative polyadenylation (APA) using 

next-generation sequencing only focuses on the sequence of the APA, but none of the 

studies checked the poly(A)-tail length of these spliced forms. It is possible that in some 

cases, the sequences of the 3’ UTR are not important;  the important point may be that by 

choosing a different poly(A) site, the mRNA will have a different poly(A)-tail length pattern. 

Because the APA can be as small as 10 nucleotides apart, which can be very difficult to 

detect, this kind of regulation will be very likely missed out in conventional poly(A) tail tests, 

unless the 3’ ends are subcloned and sequenced. Finally, one question that  will be 

interesting to address is that how does this potential novel mode of gene regulation via 

poly(A)-tail intergrated with the promoter-driven transcriptional regulation. For example, for 

the PAPS1-dependent transcripts that change both their tail length and abundance, can we 

find any biological conditions where the abundance change is not coupled with the poly(A)-

tail change ?  

In sum, the most interesting questions to address in the future is why some transcripts are 

sensitive to polyadenylation defects and others not, and how different patterns of poly(A)-tail 

lengths can contribute to gene regulation.  
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8.7 Relationship between Poly(A) polymerases and Deadenylase 
CCR4. 

There are three enzyme complexes that specifically degrade/shortens poly(A) tails: PAN, 

CCR4 and PARN. Interestingly, the ccr4 mutant in Arabidopsis is also more sensitive to 

pathogen. PR1 expression is downregulated and its mRNA has a shorten poly(A) tail in ccr4 

compared to WT(Liang et al., 2009). PR1 is upregulated in paps1-1 mutant. These two 

results suggests that the PR1 pre-mRNA may have their poly(A) tail length tightly regulated 

by PAPS1 and CCR4.  

8.8 The cell-autonomous effect of paps1-1 mutation in petal 
enlargement 

So far the autonomy/non-autonomy has been studied with several size regulators: KLUH 

(non cell-autonomous)(Eriksson et al., 2010); AN3 (cell non-autonomous)(Kawade et al., 

2010); BRI1 (non cell-autonomous) (Savaldi-Goldstein et al., 2007);. The autonomous 

activity of PAPS1 suggests that the synchronised growth of different parts within an organ 

can be overridden. 

8.9 paps1-1 chimerism in the internal layer of a meristem 
induces the meristem to split.  

The results in chapter 5 suggest that the presence of paps1-1 mutant and wild-type tissues 

in the internal layer of a shoot/inflorescence meristem induces the meristem to split into two 

or more meristems. Two questions arise from these results. 

Firstly, why do only the meristems that are chimeric for the paps1-1 mutant, but not the fully 

paps1-1 mutant meristems, split? One potential cause is that the paps1-1 stem cells divide 

asynchronously compared with the neighbouring wild-type stem cells; this might cause the 

meristem to split.  

The stem cell population must be under tight control to maintain a certain size, despite the 

fact that stem cells do divide. To maintain a constant number of stem cells, when the stem 

cells divide in wild-type plants, on average one of the daughters of stem cells must lose its 

fate, supposedly because it is displaced out of the location where stem cells can receive the 

WUS-mediated stem-cell inducing signal. In the paps1-1 chimeric meristem, either both of 

the stem-cell daughters may maintain their stem-cell identity thus leading to fasciation,  or 

somehow the stem-cell neighbouring cells ectopically acquire a stem cell fate. This 
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possibility would also suggest that the difference in growth caused by the paps1-1 mutation 

acts at a single-cell level and also in stem cells, that is long before organ initiation. It is not 

yet known whether in WT all stem cells divide synchronously or not (live image can only 

track the stem cells in the epidermis (Reddy et al., 2004) but the study did not investigate 

this question). One other potential cause for the meristem split is that the paps1-1 mutation 

may cause a reduction CLV signalling (in fact, total RNA microarray indicates that CLV2 

expression is reduced mildly (1.5 fold) in paps1-1 mutant compared to wild-type). If all the 

stem cells have reduced activity of CLV, there may be no problem, but if stem cells have 

unequal CLV signaling amongst their population, the meristem might split. To test these two 

hypotheses, plants with chimeric meristem for CLV3/CLV2 and also chimeric for different 

size regulators like DA1 or ANT should be tested to see whether this can also cause 

meristem spliting. It will also be useful to do in situ hybridization with probes against CLV3 

and WUS in the split meristems.  

Secondly, why do only the internal paps1-1 chimeras but not the external paps1-1 chimera 

induce the meristem splitting? Does this internal-layer-chimerism inducing split suggest a 

more important/direct role of the internal tissue in stem cell homeostasis?  

8.10 Using the meristem splitting to increase crop yield 

This way of using chimerism in the meristem to induce a meristem to split may have a 

potential to change the architecture of the plant for agriculture purposes. Inflorescence 

meristem splitting increases the number of inflorescences without the need of making new 

axillary leaves.  Hence, one can increase the harvest index (ratio of harvestable material 

over total mass).  

8.11 The modifier screen on mutagenized paps1-4 mutant and the 
quest for the novel size regulator in flowers. 

The trans-heterozygous paps1-4/paps1-2 has bigger flowers than paps1-4 mutants 

suggesting that the misregulation of the flower size can be enhanced beyond the level seen 

in paps1-4. One hypothesis is that in paps1-4 flowers, there are size repressor(s) ‘X’ that 

are downregulated partially; if so ‘X’ null mutants would make even bigger flowers in a 

paps1-4 background. Therefore, I mutagenized paps1-4 by EMS and screen the M2 

population for modifiers of petal size. At the same time, this screen can also identify 

modifiers that act together with PAPS1 to regulate the polyadenylation of pre-mRNAs. We 

identified a number of mutants that have bigger flowers than paps1-4 and one mutant with 

deformed flowers, which resembles paps1-2. Future experiments involve crossing these 
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mutant out to WT to test whether the mutated genes have a genetic interaction with PAPS1, 

in which case they will be studied further. This will be recognized by comparing the novel 

single mutant to the double mutant with paps1-4 and looking for more or less than additive 

effects in the double mutant. 

8.12 Hypothesis to explain the opposite size-regulation in petals 
of different paps1 alleles and opposite phenotype between 
leaves and flowers: 

The hypothesis is based on four observations stemmed from the analysis of different paps1 

alleles and of paps1-1 at increasing temperature: i) paps1-1 phenotype changes from bigger 

flowers at 23⁰C to smaller/deformed petals at 28⁰C. ii) paps1-2, homozygous of which gives 

small/deformed petals but trans-heterozyogus of which with paps1-4 gives bigger petals 

(even bigger than paps1-4 homozygous mutant). iii) Leaves of paps1-1, in contrast to WT 

leaves’ behavior at high temperature, showed a dramatic reduction in size in response to 

high temperature. iv) paps1-3, the most likely null paps1 allele, is probably gametophytic 

lethal.  

These four observations allow us to make three assumptions: i) The remaining PAPS 

activity in different mutant alleles is ranked in this descending order: (Figure 8.1): WT 

(100%), paps1-4, paps1-1 at 23⁰C, paps1-1 at 28⁰C or paps1-2, paps1-3 (0%); ii) There are 

two classes of mRNAs with different sensitivities to PAPS1 defect. One class is highly 

sensitive to PAPS1 defect. A reduction in PAPS1 at paps1-1 level is able to cause them to 

be mis-polyadenylated or mis-regulated. The other class is less sensitive such that at the 

PAPS1 reduction level in paps1-1 mutants, they are not affected; they are only mis-

regulated after PAPS1 activity is further reduced. This assumption is supported by the 

microarray data showing that there are 1% of the transcriptome are highly sensitive to 

paps1-1 defect; iii) There are  negative size regulator(s) X, which belongs to the highly 

sensitive class, and gets down-regulated by the paps1-1 defect. There are positive 

regulator(s) Y (or genes that are essential for growth) which belongs to the less sensitive 

class and are not affected/or only mildly affected by paps1-1 defect.  

With these three assumptions, we can explain why some paps1 alleles cause big flowers 

and some cause small flowers. For example, in paps1-2, the remaining PAPS1 activity is 

below the limit for the less sensitive classes, hence many genes that are essential for 

growth (genes Y) are affected. This in turns causes growth depression and smaller/deforms 

petals. Although in paps1-2, target X is also mis-regulated but its growth-promoting effect is 

masked by the mis-regulations of Ys. This epitasis effect is lifted in the trans-heterozygous 

of paps1-2/paps1-4. In this genetic background, or in the paps1-1 mutants, the remaining 

PAPS1 activity is at the level such that Y mRNAs become un-affected while X mRNAs are 
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more mis-regulated than in paps1-4 mutants. The final out come is that paps1-2/paps1-4 

trans-heterozygous plants form normally-shaped petals which are larger than paps1-4 

homozygous petals.  

This hypothesis could also be used to explain why leaves are smaller in all paps1 alleles as 

a second hypothesis in parallele with, and not mutually exclusive with the hypothesis in 

section 8.3.1. Perhaps, the sensitivity of both classes of transcript increases in leaves 

compared to petals because somehow in leaves PAPS1 is the more important PAPS. This 

results in the growth depression in leaves of all paps1 alleles.  

The hypothesis predicts for many of the PAPS1-dependent transcripts, the degree of mis-

regulation is ranked such as the strongest mis-regulation is with paps1-2 and mildest effect 

is with paps1-4.  We have some preliminary qPCR data on expression level of several 

PAPS1-dependent transcripts in WT and different paps1 mutant alleles that supports this 

hypothesis. 
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Figure 8.1 Hypothesis to explain for the differences in flower phenotypes of paps1 alleles   

Poly A polymerase 1  activity remaining 100% 0%

Highly sensitive mRNA (including growth repressors) 

Less-sensitive mRNA (including factors essential for growth) 

WT paps1-4 paps1-1 (23⁰C) paps1-2 paps1-3

Highly sensitive mRNA (including growth repressors) 

Less-sensitive mRNA (including factors essential for growth) 

FLOWERS

LEAVES: 
PAPS1 is the 
main PAPS

Bigger leaves  and flowers are either: bigger if repressor X is still sensitive  or normal if X is not that sensitive 

paps1-4 paps1-1 (23⁰C) paps1-1 (28⁰C)

PAPS1 Other PAPS 

PAPS1 Other PAPS 
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9 Chapter 9. Materials and 
methods 
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9.1 Materials 

9.1.1 Plant materials 

The Landsberg erecta (Ler) background was used as wild-type background for experiments 

involving mutants that are also in Ler background including paps1-1, paps3-1 (T-DNA line 

GT_5_7040), klu-2, bb-1, ant7F5, cstF64-1. Ler is a derivative of the Landsberg (La-0) 

accession that is mutated at the ERECTA locus (Redei, 1962).  The bb-1 (bb) and klu-2 

background alleles used in this study are described in Disch et al. (2006) and Anastasiou et 

al. (2007). The ant72F5 mutant was kindly provided by Kai Schneitz (University of Zürich, 

Switzerland). This allele displays a very strong ovule phenotype similar to the putative null 

allele ant-1 (Klucher et al., 1996). 

T-DNA insertion lines or T-DNA lines were obtained from NASC. Other mutants including 

paps1-2 (T-DNA line SAIL_172_F11), paps1-3 (T-DNA insertion line WiscDsLox413-

416L14), paps1-4 (T-DNA line WiscDsLox441G5), paps2-3 (T-DNA line SALK_126395), 

paps4-3 (T-DNA line SALK_007979), paps3-3 (T-DNA line SALK_133557), paps3-4 (T-DNA 

line SALK_133558), are in the Columbia-0 (Col-0) background and therefore Col-0 was 

used as wild-type control for these plants. 35S::NahG (Col-0 background) is obtained from 

Cyril Zipfel lab. For other plants, the background is specified in the text or in the seed stock 

lists (attached as electronic version). 

cstf64-1 is kindly provided by Caroline Dean (Liu et al., 2010). 

9.1.2 Bacterial and yeast strains 

E. coli strain XL1-Blue (Stratagene, La Jolla, USA) was used for the cloning and 

propagation of plasmids. Agrobacterium tumefaciens (Agrobacterium) strain GV3101 ((Van 

Larebeke et al., 1974) was used for plant transformations.  

9.1.3 Growth media  

Compositions of bacteria, yeast and plant tissue culture media are described in Table 9.1. 

9.1.4 Selective antibiotics and herbicides 

The final concentrations of antibiotics and herbicides used in this study are listed in Table 
9.2 
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Media  Composition  

Bacterial growth media  

Lysogeny broth (LB) 

medium  

10 g/l Bacto-tryptone, 5 g/l bacto-yeast extract, 10 g/l NaCl, pH 

was adjusted to 7.0, for solid medium 1.5% (w/v) Bacto agar 

(Difco) was added.  

Super Optimal broth 

with Catabolite 

repression (SOC)  

20 g/l Bacto-tryptone, 5 g/l bacto-yeast extract, 0.5 g/l NaCl, 2.5 

mM KCl, pH was adjusted to 7.0, medium was autoclaved prior to 

addition of glucose to a final concentration of 20 mM and MgCl2 to 

a final concentration of 2 mM. This media is used for incubation of 

bacterial after transformation by electroporation. 

Plant growth medium  

½ MS medium 

2.15 g/l Murashige and Skoog (MS) plant salt mixture (ForMedium, 

Hunstanton, UK), for solid medium 0.8% (w/v) Bacto agar (Difco) 

was added. 

Table 9.1  Media used for bacteria and plant tissue cultures 
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Antibiotic/herbicide Dissolved in Final concentration  

Selection of Bacteria 

Carbenicillin (Carb) ddH2O 50 µg/ml 

Chloramphenicol (Cam) ethanol 30 µg/ml 

Gentamycin (Gent) ddH2O 25 µg/ml 

Kanamycin (Kan) ddH2O 50 µg/ml 

Spectinomycin (Spec) ddH2O 40 µg/ml 

Tetracycline (Tet) ethanol 10 µg/ml 

Selection of Arabidopsis thaliana  

Basta H2O 0.1% (v/v) 

Kanamycin (Kan) ddH2O 50 µg/ml 

Phosphinothricin (PPT) ddH2O 10 µg/ml 

 

Table 9.2 Concentrations of antibiotics and herbicides for selection of bacteria and 
Arabidopsis. 

Antibiotic were made as 1000x concentration then aliquots were stored at -20°C. 
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9.1.5 Chemicals 

Unless stated otherwise, chemicals were purchased from Sigma-Aldrich Ltd (Haverhill, UK), 

Melford Laboratories Ltd (Ipswich, UK) or Fisher Scientific (Loughborough, UK). 

9.1.6 Enzymes 

Restriction endonucleases were purchased from New England Biolabs Ltd (NEB, Ipswich, 

UK), Invitrogen Ltd (Paisley, UK) or Roche (Burgess Hill, UK). Modifying enzymes were 

purchased from Roche or NEB. Taq polymerase was purchased from Roche or Promega 

Ltd (Southampton, UK). 

9.1.7 Oligonucleotides  

Oligonucleotides used as primers for standard polymerase chain reaction (PCR) and 

sequencing reactions were ordered from Sigma-Aldrich Ltd (Haverhill, UK) and 

resuspended in sterile ddH2O to obtain a 100 µM stock solution which is then stored at -

20°C. Oligonucleotides used in this study are listed in APPENDIX A.  

For RT-PCR primers in Figure 3.8: qPCR primers for PAPS1 are oSV187 + oSV188. 

Primers upstream paps1-2 are oSV304 + oSV305, primers flanking paps1-2 are oSV304 + 

oSV100, primers downstream paps1-2 are oSV76 + oSV100. Primers upstream paps1-4 

are oSV187 + oSV188, primers flanking paps1-4 are oSV186 +oSV188, primers 

downstream paps1-4 are oSV186 + oSV197. Primers for RT-PCR PDF2 are ML 179 + 

ML180. Primers for qPCR of UBC are oSV167 + oSV168. Primers for qPCR of PDF2 are 

oHB86+oHB87. 

For RT-PCR primers in Figure 4.4A: Primers flanking paps2-3 are oSV198 + oSV121. 

Primers flanking paps4-3 are oSV110 + oSV112. Primers for RT-PCR of PDF2 are ML179 + 

ML180.  

Primers for qPCR validation in Figure 7.5: At1g54020 (oSV205 and oSV206); At4g03156 

(oSV242 and oSV243); At2g35640 (oSV232 and 233); At4g04580 (oSV211 and oSV212); 

At4g23160 (oSV213 and oSV214); At5g59680 (oSV215 and oSV216); At4g11890 (oSV234 

and oSV235); At4g25100 (oSV236 and oSV237). 
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9.1.8 Plasmids 

All plasmids used and generated in this study are listed in APPENDIX B. Detailed 

procedures on constructing these plasmids are listed in APPENDIX C. 

9.1.9 Stock solutions 

General stock solutions are lists below 

TE   10 mM Tris-HCl pH 8.0, 1 mM EDTA 

50x TAE  40 mM Tris base, 40 mM acetic acid, 1 mM EDTA 

1x PBS   137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, 2 mM KH2PO4 

10% (w/v) SDS  100 g sodium dodecyl sulphate per litre dH2O 

Other specific solutions for each protocol are listed within the protocol. 

9.2 Methods 

9.2.1 Molecular biology - DNA-related methods 

9.2.1.1 Preparation of electro-competent E. coli and Agrobacterium cells 

The protocol below is for E.coli. For Agrobacterium, the volumes and growing temperature 

are given in parentheses. 50 ml LB-broth containing the appropriated antibiotic were 

inoculated with a single colony of E. coli strain XL1-Blue (Agrobacterium strain GV1301) and 

incubated overnight at 37 (28)°C with shaking at 200 rpm. 4 ml of this overnight culture were 

used to inoculate 400 ml of prewarm LB-broth (the OD at this stage of the whole culture was 

about 0.1). The culture was then grown to an OD600 of 0.4-0.5 (about 2 h for E. coli and 3-4 

h for Agrobacterium) at 37 (28)°C with shaking and then placed on ice for 15 min. The 

following steps were carried out on ice or in the cold room and all centrifugation is at 4oC. 

The cells were harvested by centrifuging at 4.600 x g for 10 min The supernatant was 

discarded and the cells were gently resuspended in 200 ml of sterile ddH2O (prechilled to 

4oC) . The cells were centrifuged again at 4.600 x g for 10 min. The supernatant was 

discarded and the pellet was resuspended gently 200 ml of chilled sterile ddH2O. After 

centrifugation at 4.600 x g for 10 min, the supernatant was discarded and the cells were 

gently resuspended in 10 ml chilled sterile 10% (v/v) glycerol. The cell suspension was 

transferred to a sterile 50 ml tube and centrifuged at 4.000 rpm for 10 min. The supernatant 

was removed and the cells were resuspended in 1 ml chilled sterile 10% (v/v) glycerol. Cells 

were aliquots in 40 (20) µl, frozen immediately in liquid nitrogen and stored at -80°C. 
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9.2.1.2 Transformation of E. coli and Agrobacterium cells  
Growing temperature and times for Agrobacterium are given in parentheses. 

Aliquots of electro-competent cells were thawed on ice for about 5 min, 1-4 µl ligation or 0.5 

μl plasmid DNA were added and the cell suspension was transferred to a Bio-Rad 2 mm 

cuvette (prechilled on ice). The electroporation was carried out at 2.5 kV, 200 Ω resistance 

and 25 μF capacitance. Then 1 ml SOC medium was added to the cuvette and the cell 

suspension was transferred to a 1.5 ml tube. For transforming with a AmpR plasmid, 0.2ml 

SOC medium was used. The cells were incubated at 37 (28)ºC with shaking at 200 rpm for 

1 (2) h. This step is ommited if an AmpR plasmid was used for transformtion. The cells were 

centrifuged in a microcentrifuge briefly and most of the supernatant was discarded. The 

remaining supernatant (200µl) was used to resuspend the cells and then spread on LB-agar 

plates containing the appropriate antibiotics. The plates were incubated at 37 (28)ºC 

overnight (48h). 

9.2.1.3 Frozen bacterial stocks 
600 µl  of overnight culture was mixed with 400 µl of sterile 60% (v/v in water) Glycerol. The 

mixture was frozen immediately with liquid Nitrogen and stored at -80 ºC 

9.2.1.4 Alkaline lysis miniprep of plasmid DNA from E. coli 

Extraction buffer I  50 mM Tris-HCl pH 8.0, 10 mM EDTA 

Extraction buffer II  1% (w/v) SDS, 0.2 M NaOH 

Extraction buffer III  3.1 M KOAc pH 5.5  

A single colony of E. coli was used to inoculate 5 ml LB-broth containing the appropriate 

antibiotic overnight at 37oC with shaking (200 rpm). The following procedure was carried out 

at room temperature. 2 ml of the overnight culture were transferred to a 2 ml tube and 

centrifuged at 13.000 rpm for 1 min. The supernatant was discarded, 150 µl extraction 

buffer I were added and vortexed to resuspend the cells completely. After adding 150 µl 

extraction buffer II, the tube was gently mixed by inverting. 200 µl extraction buffer III was 

added and the tube was again gently inverted 2-4 times. The sample was centrifuged at 

13.000 rpm for 10 min. The supernatant was transferred to a fresh tube containing 500 μl 

isopropanol and mixed by inverting, then centrifuged at 13.000 rpm for 15 min. The pellet 

was washed with 70% (v/v) ethanol, air-dried and resuspended in 50 μl TE containing 0.1 

mg/ml RNase A. For sequencing, the plasmids were resuspended in ddH2O. 

For low-copy number plasmid (the pBarMAP derivatives), a modification of this miniprep 

was used. 6 ml overnight culture was used with twice the amount of the solutions and the 

plasmid was finally elute with 20 μl TE. 
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9.2.1.5 Alkaline lysis midiprep of plasmid DNA from E. coli 

Extraction buffer I  50 mM Tris-HCl pH 8.0, 10 mM EDTA 

Extraction buffer II  1% (w/v) SDS, 0.2 M NaOH 

Extraction buffer III 3.1 M KOAc pH 5.5  

50 ml LB-broth containing the appropriate antibiotic were inoculated with a single colony of 

E. coli and incubated overnight at 37oC with shaking (200 rpm). The next day the overnight 

culture was transferred to a sterile 50 ml tube and centrifuged at 7500 rpm for 3 min (Sigma 

4-15C, rotor: 12196-H). The supernatant was discarded, 5 ml extraction buffer I were added 

and vortexed thoroughly. After adding 5 ml extraction buffer II, the tube was gently mixed by 

inverting. 7 ml extraction buffer III were added and the tube was gently inverted 2-4 times. 

The sample was centrifuged at 10.000 rpm for 10 min. The supernatant was transferred to a 

fresh tube containing 17 ml isopropanol and inverted. The sample was centrifuged at 10.000 

rpm for 15 min. The pellet was washed with 70% (v/v) ethanol, centrifuged for 5 min at 

10.000 rpm and air-dried. The pellet was resuspended in 200 μl TE containing 0.1 mg/ml 

RNase A. 

9.2.1.6 QIAprep Spin Miniprep Kit 
For highquality DNA, plasmid DNA from bacterial cultures grown overnight was isolated 

using QIAprep Spin Miniprep Kit (QIAGEN Ltd #27104, Surrey, UK) according to the 

manufacturer’s instructions. 

9.2.1.7 Preparation of plasmid DNA from Agrobacterium 

10 ml LB-broth containing the appropriate antibiotics were inoculated with a single colony 

and the culture was grown for 16-24 h at 28°C. 2 ml culture were transferred to a 1.5 ml 

tube and centrifuged in a microcentrifuge for 1 min at 13.000 rpm. The following steps were 

performed according to the manufacturer’s instructions for the QIAprep Spin Miniprep Kit 

(QIAGEN) using 2x the volumes of buffer P1, P2 and N3. The plasmid DNA was eluted with 

20 μl EB. 17.5 μl eluate were used in a restriction digest and the restriction pattern was 

compared to respective E. coli plasmid DNA. 

For low copy number plasmid (pBarMAP derivatives) 10ml of overnight culture was used or 

the midiprep was used with a modification: A pinch lysozyme was added to the extraction 

buffer I, the mixture was incubated 5 min room temperature before extraction buffer II was 

added.  

9.2.1.8 High-throughput plant DNA preparation method, to use in PCR applications 
for fragments up to 1 kb 

Sucrose solution 50 mM Tris-HCl, pH 7.5, 300 mM NaCl, 300 mM sucrose 

The solution was newly prepared and used immediately for every experiment. 
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A piece of leaf (ca.0.5cm x 0.5cm) was collected into one of the collection microtubes 

(QIAGEN #19560) and one 3 mm tungsten carbide bead (QIAGEN #69997) was added to 

each tube. 300 µl sucrose solution were added to each tube and the tubes were sealed with 

collection microtube caps (QIAGEN #19566). The tissue was ground with 1200 strokes/min 

for 2 min using the SPEX SamplePrep Model 2000 Geno/Grinder (SPEX CertiPrep, 

Metuchen, USA). The samples were centrifuged briefly for 30s. The metal beads were 

removed using a magnet. The samples were incubated at 55°C to 60°C for 1h and 600 µl 

ddH2O were added. 1 µl sample was used per 20 µl PCR reaction. These DNA preparations 

can be stored in -20°C and used within two weeks with less than 2 thawn-freeze cycles. 

The metal beads were reused in the next experiments by cleaning with 1 M HCl for 

approximately 30 min then rinsing with water and 70% (v/v) EtOH and air-dried. 

9.2.1.9 Plant DNA miniprep 

Miniprep buffer 200 mM Tris-HCl, pH 7.5, 250 mM NaCl, 25 mM EDTA, 0.5% (w/v) SDS 

All steps were at room temperature. Up to 1cm x 0.5 cm leaf material was collected into 1.5 

ml tube and ground with a plastic pestle. 400 µl Miniprep buffer were added and grinding 

was continued. The samples can be stored on ice at these step until all the samples were 

ground. The samples were then centrifuged for 10 min at 13.000 rpm. The supernatant was 

transferred to a new tube containing 400 µl isopropanol. The samples were mixed by 

inverting and centrifuged for 15 min at 13.000 rpm. The supernatant was pour off and the 

pellet was washed with 500 µl 70% (v/v) EtOH. The pellet was air-dried for 20 min and 

dissolved in 150 µl ddH2O. 1 to 3 µl  of the sample were used in a PCR reaction. 

9.2.1.10 Restriction digestion of plasmid DNA 
To prepare restriction fragments for cloning, the restriction digests were performed in the 

buffer and at the temperature recommended by the manufacturer for 2h to overnight. To 

avoid star activity, the final volume of enzyme/glycerol was kept below 10% (v/v) of the final 

reaction volume (usually 20-50 μl). For preparing recipient vector in cloning, 2U of restriction 

endonuclease was added to 3 μg of plasmid (ca. 1μl to 2μl of the miniprep if the plasmid is 

high copy number e.g., ML939 derivatives), samples were incubated for one hour then 

another 2U of restriction endonuclease was added and incubated for another two hours.  

9.2.1.11 Agarose gel electrophoresis of DNA 

DNA loading dye 30% (w/v) sucrose, 0.2% (w/v) cresol red, 0.3% (w/v) tartrazine  

DNA fragments were separated by electrophoresis in horizontal agarose gels. Gels were 

prepared with 1x TAE buffer and 0.7-3% (w/v) agarose. 0.01% (v/v) ethidium bromide (EtBr) 

was added to the molten agarose before the gels were casted. Gels were run in 1x TAE at 

80C-110V. The DNA was visualised using a short-wavelength ultraviolet light 

transilluminator (610 nm) (UVP Inc., Cambridge, UK). For the isolation of DNA fragments 
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from gels, the DNA was visualised using long-wave ultraviolet light transilluminator to 

minimise DNA damage. 

9.2.1.12 Isolation of DNA fragments from agarose gel 
DNA fragments were isolated from agarose gel using the QIAquick Gel Extraction Kit 

(QIAGEN #28704) according to the manufacturer’s instructions. 

 

9.2.1.13 DNA dephosphorylation 

If the vectors can be self-ligated (e.g., by cloning using one restriction enzyme), the 5′ 

phosphates of the vector were removed with rAPid Alkaline Phosphatase (rAP) (Roche #04-

898-133-001). Up to 1 μg of the 5' ends of vector DNA were dephosphorylated using 1x rAP 

buffer and 1 μl of rAP in a total reaction volume of 20 μl. The sample was incubated for 30 

min at 37°C and the enzyme was heat-inactivated for 2 min at 75°C. 

9.2.1.14 DNA ligation 

Both the insert and vector DNA were run on a agarose gel to check their concentration 

before using in ligation. 10 μl ligations were performed using 1x ligation buffer and 0.5 μl-1μl 

T4 DNA ligase (NEB, M0202L). Insert and linearised vector DNA were added to give a 

molar ratio of DNA ends of 1:3 vector:insert. Ligations were incubated at room temperature 

for 2 h or at 16ºC overnight. Up to 4 μl of this ligation were used to transform E.coli 

electrocompetent cells.  

9.2.1.15 Quantification of nucleic acid concentration 

The optical density (OD260) of a nucleic acid sample was measured in an Ultrospec 1000E 

UV/visible light spectrophotometer (Pharmacia, Kent, UK) and the concentration of the 

nucleic acid was calculated by assuming that: 1 OD260 unit equals 50 μg/ml double-stranded 

DNA and 40 μg/ml single-stranded DNA or RNA. The NanoDrop ND-1000 

spectrophotometer (NanoDrop Technologies, Thermo Fisher Scientific Inc.) was used for 

accurate quantifications of very small sample volumes. For approximate estimates the DNA 

sample was run in an agarose gel supplemented with 0.01% (v/v) EtBr with DNA standards 

of a range of known concentrations. The DNA was visualised on a UV transilluminator and 

the DNA concentration of sample was estimated by comparing the intensity of the band with 

those of the known standards. 

9.2.1.16 Polymerase chain reaction (PCR)  
The GoTaq Flexi DNA Polymerase (Promega #M8301) was used for amplification of DNA 

fragments from DNA plasmids, colony-PCR and genotyping. The Phusion Taq from NEB 

(M0530S/L) was in PCR for cloning to reduce PCR errors. For amplifications of DNA 

fragments using primers that introduce mutations, the PCR was run at an annealing 

temperature 5oC below the actual annealing temperature for the first five cycles. To ensure 
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correct handling and mixing of the components, a negative and a positive control sample 

were run together with the samples.  

Final concentration Component  

1 pg-40 ng 

50-500 ng 

plasmid DNA or  

genomic DNA  

1x 

Or 5x 

GoTaq Flexi Buffer  

Or HF Phusion PCR buffer 

200 μM deoxyribonucleotides (dNTPs)  

0.25-0.5 μM oligonucleotide A  

0.25-0.5 μM oligonucleotide B  

0.5 U 

0.4 U 

GoTaq Flexi polymerase  

Phusion Taq polymerase 

20 μl Total volume 

PCR amplifications were performed in either a Tetrade Thermal Cycler PTC-225 (MJ 

Research, Waltham, USA) or in a G-Storm GS1 thermal cycler (Gene Technologies Ltd, 

Essex, UK) using the following program.  
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Step  Temperature  Time  

                  GoTaq PhusionTaq GoTaq Phusion Taq 

1  (Denaturation) 95°C  98°C  2 min  30 s  

2  (Denaturation) 95°C  98°C  30 s  10 s  

3  (Annealing) Tm-3°C  
Tm°C ( must be 

>60°C) 
30 s  30 s  

4  (Elongation) 72°C  1 min/1 kb  30 s/1 kb  

5  Repeat steps 2 to 4 for 24 to 39 times  

6  (Final elongation) 72°C  3 to 5 min  

7  25°C  1 min 

For overlap-PCR for cloning, Phusion Taq was used. In the first round of PCR, I used 25 

cycles using conditions above. The PCR products from the first round were electrophoresis 

and bands of expected size were gel-purified and used as template for the second round of 

PCR (also 25 cycles).  

9.2.1.17 Bacteria colony-PCR 

A single colony was picked and transferred to a 1.5 ml tube containing 50 µl ddH2O. As a 

negative control, an empty space in the petri agar plate was touched by the pipet tip and the 

tip was washed (by pipetting up and down) in 50 µl ddH2O. The tube was vortexed, kept on 

ice and 5 µl of the suspension was used as template in a 20 µl PCR reaction using GoTaq. 

The initial denaturation was increased to 5 minutes. 40 cycles of PCR was used.  

9.2.1.18 DNA sequencing 

Cycle sequencing reactions were performed using the Big Dye Terminator v3.1 Cycle 

Sequencing Kit (Applied Biosystems Inc., Foster City, USA) according to the manufacturer’s 

instructions. 100-200 ng template DNA were used in a 10 μl reaction containing 3.5 μl of 1 

μM sequencing primer, 1.5 μl Big Dye sequencing buffer and 1 μl ABI BigDye version 3.1 

sequencing mix. Analysis of the reaction products was performed on AbiPrism 3730XL and 

3730 capillary sequencers (Perkin and Elmer, Connecticut, USA) by the DNA Sequencing 

Service at the JIC. The data were downloaded and analysed using the Vector NTI Advance 

11 software package (Invitrogen). The cycle sequencing reactions were performed using the 

following program.   
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Step  Temperature  Time  

1  96°C  10 s  

2  55°C  5 s  

3  60°C  4 min  

4  Repeat steps 1 to 3 25 times  

5  Cool down to 10°C  

Some of the sequencing were carried out using a service provided by LGC Genomics 

GmbH, Germany according to the company protocols.  

9.2.1.19 DNA concentration 

Plasmid/genomic DNA was diluted to the total volume of larger than 50 µl with ddH2O. 0.1 

volume of 3M NaOAc pH 5.2, two volumes of ethanol (96-100%) were added. The tube was 

mix and incubated at -20oC for 30 min, then spun at 13.000 rpm for for 20 min at room 

temperature. The pellet was then washed with 70% ice cold ethanol, spun again for 5 min. 

The pellet was allowed to dry completely then elute in ddH2O. 

9.2.2 Molecular biology – RNA-related methods 

9.2.2.1 Mini Hot Phenol Arabidopsis RNA extraction procedure 

Homogenisation buffer  100 mM Tris pH 8.5, 5 mM EDTA pH 8.0, 100 mM NaCl, 0.5% 

(w/v) SDS 

Unless otherwise stated, the steps were carried out at room temperature. 

Hot phenol tubes were prepared by adding 250 µl phenol, 500 µl homogenisation buffer and 

5 µl β-mercaptoethanol to a 1.5 ml tube and heated in a 60oC water bath. Approximately 

300 mg frozen Arabidopsis tissue (maximum half the volume of a 1.5 ml tube) were ground 

to fine powder in liquid nitrogen with a pestle. A pinch of glass sand was added to aid the 

grinding process. After the liquid nitrogen was completely evaporated but the sample was 

not thawn, the hot phenol mixture was added. The tube was shaken for 15 min, 250 µl 

chloroform were added and the tube was shaken for additional 15 min. The sample was 

centrifuged in a microcentrifuge at 13.000 rpm for 10 min and 550 µl aqueous layer were 

transferred to new tube. After adding 550 µl phenol:chloroform:isoamylalcohol (25:24:1), the 

mixture was shaken for 10 min. The sample was centrifuged at 13.000 rpm for 10 min and 

500 µl aqueous layer were transferred to new tube. 50 µl 3 M sodium acetate and 400 µl 

isopropanol were added and the tube was incubated at -80oC for 15 min. After centrifugation 

at 13.000 rpm for 30 min (4oC), the supernatant was removed and the pellet was air-dried 
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for 10 minutes*. The pellet was then resuspended in 500 µl ddH2O**. After adding 4 M LiCl, 

the sample was mixed and incubated overnight at 4oC. The next day the sample was 

centrifuged at 13.000 rpm for 30 min (4oC), the pellet was washed in 1 ml 80% (v/v) ethanol 

and centrifuged at 13.000 rpm for 5 min. The supernatant was removed carefully to not 

disturb the delicate pellet and the pellet was air-dried. The pellet was resuspended in 20 µl 

ddH2O and the RNA was quantified using a spectrophotometer. 

* It is important not to dry the phellet for too long or it will be very difficult to dissolve in the 

next step. 

** It is important to dissolve the phellet fully to prevent carry over of genomic DNA. 

9.2.2.2 DNase digestion of RNA samples 

Traces of DNA that may be present following RNA isolation protocols were removed by 

digestion with Turbo-DNAse (Ambion Inc. #AM1907, Warrington, UK). A maximum of 10μg 

of RNA was used with 10U Turbo DNase in a 50 μl total reaction volume. 5 volume 10x 

Turbo DNase buffer and 1 μl Turbo DNase (10 U/μl) were added to the RNA and mixed 

gently. After incubation at 37oC for 30 min, 0.1 volume of DNase Inactivation Reagent was 

added, mixed and incubated for 5 min at room temperature. The sample was centrifuged for 

1.5 min at 10.000 x g and the supernatant was transferred to a fresh tube. 

For higher amount of RNA to be digested, it is important to adjust the reaction volume so 

that the concentration of RNA does not exceed 0.1 μg/μl.  

9.2.2.3 cDNA synthesis of polyadenylated transcripts 
For the synthesis of cDNA, the SuperScript III Reverse Transcriptase (RTase) kit (Invitrogen 

#18080-051) was used according to manufacturer’s instructions.  

2 μg of total plant RNA ( up to 12.2μl) was mixed with 0.8 μl of 100μM oligo(dT)17 primer, 1 

μl of 10mM dNTPs and water up to 14 μl. The tube was incubated for 5 min at 65oC and 

then briefly chilled on ice. The following reaction mixture was prepared and added to each 

sample.  

Volume (μl) Component 

4 5x First Strand Buffer 

1 DTT (100mM) 

1 SuperScript III RTase  

The samples were mixed by pipetting up and down, then incubated at 50oC for 60 min 

followed by heat inactivation of the RTase enzyme at 75oC for 10 min. The cDNA was 
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stored at -20oC. For qPCR and standard RT-PCR the cDNA was diluted one in 10 and 4 μl 

was used for a 20 μl PCR reaction. 

9.2.2.4 RNA concentration: 

For crude estimating the integrity and concentration of the extracted total RNA, RNA was 

electrophoresis in 1% Agarose gel in 1xTBE. To minizmize RNAse contamination, the gel 

apparatus was cleaned twice with soap and rise with ddH2O before electrophoresis, TBE 

was autoclaved and agarose was used from freshly open bottle, which is designated to use 

only for RNA.   

RNA was precipitated using 0.1 volume of 3M Sodium Acetate pH 5.2 and 1 volume of 

isopropanol. The mixture was incubated at -20⁰C for at least 30 minutes or overnight, then 

centrifuged at 13,000 rpm at 4⁰C for 45 minutes. The supernatant was removed and the 

pellet was washed with 200 µl of 80% ice-cold ethanol. The pellet was air dried and 

dissolved in 11 µl water, stored at -20⁰C.  

9.2.2.5 Poly(A) tail removal by RNase H/oligo dT treatment of total 
RNA:   

Chemical/reagents Amount added 

Total RNA (DNase treated) 20 µg 

10x RNase H buffer              10 µl 

RNase H (5U/µl) (NEB) 0.4 µl 

100 µM oligo dT* 3.2 µl 

Water  Adjust to total volume reaction 

volume of 100 µl 

* if poly(A) tail persists, can increase oligo dT amount up to 2 times.  

The above mixture was prepared, in the sample without oligo dT, water was added in 

replacement of oligo dT. The reaction was incubated at 37⁰C for one hour. Then 100µl 

phenol/chloroform/isoamyl alcohol (25:24:1) was added to inactivate the enzyme. The tube 

is mixed by inversing and then spin at 13,000rpm for 10 minutes at room temperature. The 

aqueous phase was transferred to a fresh tube and RNA was precipitated using 0.1 volume 

of 3M Sodium Acetate pH 5.2 and 1 volume of isopropanol. The mixture was incubated at -

20⁰C for at least 30 minutes or overnight, then centrifuged at 13,000 rpm at 4⁰C for 45 
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minutes. The supernatant was removed and the pellet was washed with 200 µl of 80% ice-

cold ethanol. The pellet was air dried and dissolved in 11 µl water, stored at -20⁰C.  

9.2.2.6 RNA Ligation Mediated Poly(A) test (LM-PAT).  
The protocol was done according to (Meijer et al., 2007).  

RNA ligation 

4 µg of total RNA was mixed with with 50 picomoles of the RL-PAT-anchor DNA primer 

(oSV220), water added to 8 µl. The mixture was incubated at 65⁰C for 5 minutes then place 

immediately on ice. 1 µl of RNA ligation buffer and 1 µl of RNA ligase (Promega M1051) 

were added and incubate at 37⁰C for 30 minutes, then inactivated at 65⁰C for 15 minutes 

then put on ice.  

cDNA synthesis 

50 picomoles of the RL-PAT-Rev primer (oSV219), 1 µl of 10 mM dNTPs was then added to 

the tube from the ligation step, water was then added to adjust the total volume to 25 µl.  

The tube was incubated at 65⁰C for 5 minutes then placed immediately on ice. The following 

master mix was then added to the tube: 10 µl of first strand buffer 5X, 2.5 µl of 0.1 M DTT, 

11.5 µl of water and 1 µl of the Superscript III reverse transcriptase (Invitrogen). The tube 

was then incubated at 55⁰C for one hour, heat inactivate at 70⁰C for 15 minutes. The 

resulting cDNA was stored at -20⁰C. 

PCR  

PCR was done using GoTaq (Promega) with the following mix:  

Chemical/reagents Amount added 

Water 33.75 µl 

5x GoTaq Flexi buffer 10 µl 

25 mM MgCl2 3 µl 

10 mM dNTPs 1 µl 

20 µM RL-PAT-Rev primer (oSV219) 1 µl 

20 µM Gene specific forward primer 1 µl 

GoTaq 0.25 µl 

cDNA template from the above step 1 µl 
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Cycle conditions 

The following condition was used: initial denaturation: 5 minutes at 95⁰C; 40 cycles of: 1 

minutes at 95⁰C, 1 minute at 58 ⁰C, 2 minutes at 72⁰C;  final extension: 10 minutes at 72⁰C.  

Nested PCR  

For transcripts that have low abundance, nested PCR was carried out using the same PCR 

conditions as above with modifications. In the first PCR: the first gene specific primer and 

oSV219 were used at half the concentration listed above (i.e. final concentration was 0.2 

µM). In the second round of PCR: a second gene specific primer (the nested primer) and 

oSV219 was used at full concentration (i.e. 0.4µM); the template was 2 µl of the 20x dilution 

of the first PCR product.   

9.2.2.7 Bulk poly(A) tail-length analysis: 

The protocol is modified from (Preker et al., 1995). In summary, RNA samples (2 ug) were 

3'- end labelled with 32P cordycepin and subjected to RNase A and RNase T1 digestion. The 

Rnase treatment was stopped and poly(A) tails were precipitated and separated by 

ectrophoresis on a gel of 10% polyacrylamide and 8.3 M urea. 

3’end label with cordycepin  

Chemicals/Reagents Concentration of 

stock 

Amount 

added 

Final 

concenctration

/amount 

PAP Buffer 5x 2µl 1x 

Rnase-free water  5 µl  

Yeast PAP enzyme 5U/ µl 1 µl 5U 

32P cordycepin 10 µCi/µl, 

5000Ci/mmol 

1 µl 10 µCi 

Total RNA 2 µg/ µl 1 µl 2 µg 

 

Total RNA was extracted using hot phenol method and dilute in water to 2µg/µl. 2µg of total 

RNA were 3'- end labelled with 32P cordycepin (From PerkinElmer, Product No. 

NEG026250UC) using yeast poly(A) polymerase (USB Affymetrix Product No. 74225Y). The 

reaction was incubated at 37⁰C for 20 minutes followed by heat inactivation at 70⁰C for 10 

minutes.  



216 
 

Rnase treatment 

Chemicals/Reagents Concentration of 

stock 

Amount added Final 

concenctration/a

mount 

Tris-HCl (pH 8) 100mM 8 µl 10mM 

NaCl   3M         8 µl 300mM 

Rnase T1 * 125U/ µl 1 µl 125U 

Rnase A* 10mg/ml 0.5 µl 5 µg 

Rnase-free water  51.5 µl  

* Rnase T1 was purchased from Ambion 1000U/µl then diluted in 10mM Tris-HCl (pH 8)-

300mM NaCl to make 125U/ µl. Rnase A was purchased from Sigma.  

The above master mix (70 µl) was added to the tube (10 µl) in the previous step and was 

incubated at 37⁰C for 60 minutes.  

Stopping RNase reaction 

Chemicals/Reagents Concentration of 

stock 

Amount added Final 

concenctration/a

mount 

proteinase K 20 mg/ml 5 µl 1 mg/ml 

SDS 10 %    10 µl 0.5 % 

EDTA   500 mM 2 µl 10 mM 

Water  3 µl  

The above master mix (20 µl) was added to the tube in the previous step (80 µl) and was 

incubated at 37⁰C for 30 minutes. 

Precipitation of poly(A) tails 

Chemicals/Reagents Concentration of 

stock 

Amount added Final 

concenctration/a

mount 

tRNA  10 mg/ml 5.2 µl 52 µg 



217 
 

Glycogen 23 mg/ml 5.4 µl 125 µg 

Ammonium acetate* 6M 83 µl 2.5 M 

MgCl2 1M 3 µl 15 mM 

Rnase-free water  3.4 µl  

Ammonium acetate* make fresh with autoclaved water, can store in the fridge for several 

weeks.  

The above master mix (100 µl) was added to the tube in the previous step (100 µl) and then 

500 µl absolute Ethanol was added. The tube was mixed by inversing several times then 

centrifuge for 1 hour at 13,000 x g at 4⁰C to 10⁰C. The pellet was washed with ice-cold 80% 

Ethanol and allowed to dry at room temperature.  

Resuspend in loading buffer 

Chemicals/Reagents Concentration of 

stock 

Amount added Final 

concentration 

Formamide 98% 960 µl 94% 

EDTA 0.5M 40 µl 20 mM 

Bromphenol blue  2 mg 0.2% 

Xylene cyanol  2 mg 0.2% 

Loading dye was prepared and stored in small aliquots in -20⁰C. 

The dried pellet in the previous step was resuspended in the 10 µl of the loading buffer 

(formula above). The RNA can be stored in - 20⁰C or immediately used for electrophoresis.  

Gel preparation and electrophoresis 

Sequencing gel apparatus were used. The glass plates were cleaned thoroughly with a final 

rinse with ethanol. The glass plates then siliconized with dimethyl dichlorosilane (Sigma) on 

one side. 0.4 mm comb were used. The gel mixture were prepared with the following recipe. 

Chemicals/Reagents Concentration of 

stock 

Amount added Final 

concentration/ 

amount 

TBE 5x 18 ml 1x 
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Water   10 ml  

Urea  45 g 8.3M 

Acrylamide 30% 33 ml 10% 

TMED 100% 60 µl  

APS 10% 330 µl  

This is the formula for a final volume of 90ml, enough for one gel.  APS 10% was made 

fresh or can be stored in -20⁰C for 2 months. TBE was autoclaved and keep free of Rnase.  

TBE, water and urea were mixed and heat until fully dissolved then acrylamide was added. 

The mixture was cooled with icy water to slow down polymerization. APS and TMED was 

added last and quickly pour in to the gel apparatus. The polymerized gel together with glass 

plates were then stored in the cold room overnight and used next morning. RNA samples (3-

5 µl) were heated at 70⁰C for 2 minutes then load on the gel together with RNA ladder (3 µl) 

which was heated at 95 C for 5 minutes. The gel was run at 1.5kV 43mA  at 55⁰C for about 

3 hours until the faster running dye (bromephenol blue, which co-migrates with 10bp RNA) 

is 7 cm above the bottom of the gene.  The gel was carefully peeled off from the glass 

plates on to blotting paper then exposed to the phosphoimage screen overnight.  

RNA ladder preparation  

The RNA ladder was the Decade Marker system (Ambion AM7778), it was prepared 

according to the manufacture protocol. 32P Gama ATP was ordered from PerkinElmer. Once 

produce the ladder can be stored in -20⁰C in small aliquots and used within 4 weeks.  

9.2.2.8 Poly(A) tail-length dependent RNA fractionation. 
The protocol is based on (Meijer and de Moor, 2011) with modifications: Total RNA was 

fractionated without the spiked in radioactive synthetic poly(A) probes. Instead, the poly(A) 

tail length of the final fractions were analyzed using the bulk poly(A) tail length analysis 

protocol (section 1.2.2.7). Below is the protocol for fractionation.  

Materials 

80 µg total RNA in RNase free water 

PolyA Tract System 1000, containing paramagnetic streptavidin beads, GTC extraction 

buffer, dilution buffer, biotinylated oligo (dT), β-mercaptoethanol (BME), 0.5x SSC and 

magnetic separation stand, Promega cat. no. Z5400 

Extra 50 pmole/µl biotinylated oligo(dT), Promega cat. no. Z5261 
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RNase free water 

3M Sodium acetate  pH 5.2 

100% isopropanol 

10 µg/µl yeast tRNA 

70% ethanol 

Important: non-stick tubes (2ml) (Ambion AM12475) were used in all steps to prevent 

sticking of RNA to the tubes which results in significant loss of RNA from the short fractions.  

Methods 

The GTC, BME, biotinylated oligo(dT), 0.5xSSC and H2O were allowed to reach room 

temperature. 41 µl BME was added to each 1 ml of GTC (GTC/BME). 20.5 µl BME was 

added to each 1 ml dilution buffer (DIL/BME). The DIL/BME was preheated to 70°C. The 

0.085x SSC was prepared from DEPC-treated water and 0.5x SSC provided in the poly(A) 

Tract kit. Note that this concentration was critical in order to obtain the 50 nucleotide 

threshold of separation i.e. the short fraction was depleted of of RNA having a longer tail 

than 50 nucleotides. The paramagnetic streptavidin beads were prepared as follow: The 

beads were completely resuspened by gently rocking the bottle. The resuspended beads 

(600 µl) were transferred to a 2 ml tube for each sample. The tube was placed on the 

magnetic stand and the stand was slowly moved to a horizontal position until the beads 

were collected at the tube side (takes 30 seconds to 1 minute). The storage buffer was 

carefully poured off by tilting the tube so that the solution run over the captured beads. The 

beads were resuspended in 600 µl 0.5xSSC and captured again using the stand. This wash 

step was repeated twice. The beads were resuspended in 600 µl 0.5xSSC. 80µg of total 

RNA (2 µg/µl) was mixed with 400 µl GTC/BME in a 2 ml non-stick tube. 15 µl biotinylated 

oligo(dT) and 816 µl DIL/BME were added and incubated at 70°C for 5 minutes. The tube 

was spun at 12,000 g for 10 minutes at room temperature. Note that the cooling centrifuge 

was used otherwise the temperature will go to 40⁰C. After the spin the supernatant was 

added to the beads. The biotinylated oligo(dT) was allowed to bind to the beads by rotation 

at room temperature for 15 min. The beads were then captured using the magnetic stand. 

The supernatant was transferred to a new tube and kept on ice (400 µl unbound fraction). 

The beads were washed three times with 0.5x SSC, supernatant was discarded. The tube 

was rotated for 5-15 minutes between each wash. The beads were resuspended in 400 µl 

0.085x SSC, then rotate for 15 minutes at room temperature. The beads were captured 

using the magnetic stand. The eluate (400 µl) was transferred to a new non-sticky tube. This 

eluation step using 0.085x SSC was repeated one more time in ordered to fully elute the 

short fractions. The resulting pooled 800 µl eluate (the short fraction) was kept in a tube ice. 

Note care was taken not to disturb the beads and also to remove the last drops of eluate 
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from the beads. After the short fraction was eluted, the beads was resuspended in 400 µl 

water and rotated for 15 minutes at room temperature.  The eluation with water was 

repeated one more time resulting in a combined 800 µl eluate (the long fraction). The short 

fraction, long fraction and unbound fraction were spun at 13,000 rpm for 5 minutes at 4⁰C to 

remove any transferred beads. To the supernatant from the unbound fraction (400 µl), 400 

µl of isopropanol was added, mixed and precipitated overnight. To the supernatants from 

the long (800 µl) and short fraction (800 µl), 20 µg of tRNA, 72 µl of Sodium acetate, and 

720 µl of isopropanol were added, mixed and precipitated overnight.  

Next day, all the samples were spun at 13,000 rpm for 30 minutes at 4⁰C to precipitate the 

RNA. The supernatant was removed carefully, and washed with 800 µl of 80% ethanol. The 

samples were spun again at 13,000 rpm for 20 minutes at 4⁰C and supernatant was 

carefully removed leaving 20 µl. Samples were spun again at 13,000 rpm for 5 minutes at 

4⁰C. Note that it is important that this extra spin was carried out to make sure that the pellet 

sticks to the tube wall. The pellet was allowed to dry and finally resuspended in 12 µl water. 

RNA concentration was measured and samples were stored in -20⁰C for no longer than 2 

weeks.  

All the fractions were analyzed by bulk poly(A) tail analysis as described in section 215, in 

which 2 µl (approximately 2 µg) of each fractions were used.  

9.2.2.9 Non-specific polyadenylation assay:  

(Adopted from ((Vethantham et al., 2008)), performed by Nishta Rao.  

32P-labeled SVL precleaved substrate (pre-SVL) was prepared as described (Ryner et al., 

1989). A nonspecific polyadenylation assay reaction mixture consisted of 2.5% PVA, 1 mM 

MnCl2, 100–125 ng of BSA, 1 mM ATP, 0.5 U of RNasin, 10 mM HEPES (pH 7.9), 25 mM 

NH4(SO4)2, 0.2 mM PMSF, 0.2 mMDTT, and the indicated amounts of PAP from both 

reaction mixtures. The nonspecific assays were incubated for 30 min at 30°C, and RNAs 

were resolved by denaturing PAGE and subjected to autoradiography. 

9.2.2.10 Quantitative PCR (qPCR): 

qPCR was carried out using SensiMix SYBR Low-ROX Kit (Bioline Cat No. QT625-05) and 

AB7500 Fast Real time PCR machine according to the standard manufacturer's instructions. 

The master mix is modified as follow: 

SensiMix SYBR Low-ROX 2x                 5 µl 

Primer forward (10 µM)                            0.25 µl 

Primer reverse (10 µM)   0.25ul 

Water                                    0.5 µl 
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cDNA (1 in 20 dilution*)    4 µl 

*cDNA was synthesized as in 9.2.2.3 and diluted 1 in 20 and store in small aliquots in -20°C 

C. 

The data is analyzed using LinRegPCR program (Ramakers et al., 2003). 

9.2.3 Molecular biology – protein-related work 

9.2.3.1 Expresssion and purification of recombinant Arabidopsis PAPS1 from 
E.coli: 

This procedure was provided and performed by Nishta Rao.   

 pET-PAPS1wt or pET-PAPS1P313S was transformed to Rosetta 3 cells. A single colony was 

picked and inoculated in 50 ml LB with 200µg/ml Kanamycin. Cells were grown for 4-5 hours 

at 37°C. 20 ml of this culture was added into 400 ml of LB+antibiotic and grown at 37°C for 

1-2 hours. The cultures were shifted to 16°C and let to cool for 15-20 min before IPTG to a 

final concentration of 1mM was added and these cultures were grown overnight in the 

shaker (16 hours). After 16 hours, the cultures were cool briefly on ice and harvested by 

centrifugation at 4°C at 5000 rpm for 10 min. The pellets from 1x400 ml flask were 

resuspended in 12 ml of cold  binding buffer (PMSF at final concentration of 0.5mM). Pellet 

can be frozen at this stage if needed at -80C. The frozen pellets were thawn in a 37°C water 

bath and placed on ice. 50µl of protease inhibitor cocktail was added. The mixtures were 

sonicated at an output between 2-4 , 20 times while on ice and made sure that there were 

no bubbles. The mixtures were transferred to clean tubes, spun at 9000 rpm in cold for 20 

min. While the spin was going, 1mL of Ni agarose per tube of lysate was spun down at 5000 

rpm. Supernatant was removed. This agarose beads were washed 2-3 times with binding 

buffer, then resuspended with 0.5 ml of binding buffer. The supernatants of cell lysates were 

transfered to new falcon tubes. 12ml of binding buffer was added and then the mixtures 

were filtered using 0.8µM filter. Ni-agarose slurry was added to these mixtures and the 

tubes were placed on rotator in a cold room for 2 hours. The tubes were spun 6 min in a 

cold room.  

The  protein column (BioRad) was set up in the cold room. The supernatant was decanted 

and the slurry was mixed with some binding buffer and poured into column It was made sure 

that there were no bubbles.  The column was washed with wash buffers 1, 2 (increasing 

Imidazole concentration). Upon finishing the second wash, an elution buffer (high Imidazole 

concentration) was added to the column and eluates was collected. 
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9.2.4 Plant-related methods 

9.2.4.1 Plant growth conditions on soil 
All plants were grown either in glasshouses, in controlled environment rooms (CER) or in 

Sanyo growth cabinet. All plants were grown under long day conditions consisting of a 

photoperiod of 10 hours lit with 400 W metal halide power star lamps supplemented with 

100 W tungsten halide lamps, providing a level of photosynthetically active radiation (PAR) 

of 113.7 μmol photons m-2s-1 and a red:far red (R:FR) ratio of 2.41 and a 6 hour extension 

of tungsten halide lamps alone giving PAR 14.27 μmol photons m-2s-1 and R:FR 0.66.  

Humidity was around 50-70%. The standard temperature is from 22°C to 25° C. For paps1-1 

mutant, various growth temperatures were used ranging from 16°C to 28°C. The exact 

temperature is mentioned in each specific experiment. Control plants were grown side by side with 

the plants to be tested.  

Plants were grown on a loam-based soil consisting of John Innes Potting Compost Number 

1, vermiculite and grit in the ratio 1.5:1:1 by volume or a mixture of Levingtons Potting 

Compost Number 3 and grit in the ratio 6:1 by volume. The seeds were sown on water-

saturated soil, and covered with transparent lids. To break seed dormancy, the trays were 

stratified in at 4°C for 2 to 3 days before transferring them to a glasshouse or CER. After 10-

14 days, the lids were removed. The plants were watered once or twice daily. To harvest 

seeds, the inflorescences were bagged when the mature siliques turn yellow. After the 

siliques had dried up, the seeds were harvested and dried at RT or in a closed nylon bag 

with silica gel for at least 2 weeks before sowing. 

9.2.4.2 Growing conditions on MS plates 
All sterile procedures involving plant material were performed in laminar flow hoods in a 

tissue culture room. Autoclaved media were cooled to ~50°C and the appropriate antibiotic 

or PPT was added prior to pouring the medium into 90 mm or 140 mm Petri dishes (Sterilin, 

Caerphilly, UK). After sowing the sterilised seeds onto the medium, the plates were sealed 

with micropore surgical tape (3M). The seeds were stratified at 4°C for 2 to 3 days and then 

transferred to a CER.  

For transferring of seedlings from MS plates to soil: Seedlings were normally tranfered to 

soil 10-14 days after germination. The seedlings were covered with a propagator lid for 

about 5 days only after transferering. 

9.2.4.3 Seed sterilisation 

Wet sterilization 

Sterilisation solution: 5% (v/v) sodium hypochlorite solution, 0.1% (v/v) Tween-20 
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Seeds were transferred to 1.5 ml tube and 1 ml 70% (v/v) EtOH was added. After the seeds 

had settled, the EtOH was decanted and 1 ml sterilisation solution was added. An 

incubation step for not more than 4 min followed. Brief centrifugation were occationally 

required to bring the seeds to the bottom of the tube in the following washing procedures. 

The sterilisation solution was removed and the seeds were washed five times with sterile 

ddH2O and rinsed with 1 ml 100% (v/v) EtOH. The seeds were then air-dried in a laminar 

flow hood. 

Gas sterilization 

Tubes or bags containing a small amount of seeds (less than 50μl) were fumed with chlorine 

gas. The tubes/bags of seeds were put in a rack next to an open container which contains 

3ml concentrated HCl mixed with 100ml bleach. The open container and tubes/bags of 

seeds were put into a bigger container and sealed for four hours. The tubes/bags containing 

seeds were then left under a sterile flow hood overnight to make sure all the chlorine gas 

has evaporated. 

9.2.4.4 Mapping of the ds39 (i.e. paps1-1) mutation 
ds39 homozygous mutants after being backcrossed to Ler twice were crossed to Col-0. The 

F1 plants were allowed to self and seeds were collected in pools. In the F2 population, the 

mutants were identified as seedlings which small and pointed leaves, which were later 

checked for the bigger-flower phenotype. Initially, bulk segregation analysis was carried out 

using a pool of 20 mutant plants using markers across the genome of Arabidopsis. This 

identified a location between marker nga64 and nga392 which is tightly linked to the 

mutation. Another 140 mutant plants identified in this F2 population were genotyped for left 

inner markers: CER474022, CER481865 and right inner markers: F19G10, CER470358. 

Fine mapping was carried out using about 1000 F2 mutant-looking individuals in pools of 

three. These approximately 335 pools of DNA were PCR-screened with the two flanking 

markers CER481865 and CER470358 to identify recombinants. New markers were 

designed to finally narrow down the mapping interval to 80kb between 2 markers: 

CER475120 (2 recombinants found) and CER475042 (1 recombinant found). There were 19 

genes in this inteval. T-DNA insertion lines that have T-DNAs predicted to have inserted in 

each of these 19 genes were looked up and ordered. At the same time, the cDNA of these 

19 genes from the mutant were sequenced. A T-DNA insertion lines (SAIL_172_F11) i.e., 

the later called paps1-2 allele, segregated for the pointed leaves and small leaves 

phenotype. Sequencing of cDNA for At1g17980 found a mutation C to A.  

9.2.4.5 Agrobacterium floral dip transformation of Arabidopsis 

Infiltration medium 5% (w/v) sucrose, 0.05% (v/v) Silwet L-77 (De Sangosse Ltd 

#45290, Cambridge, UK) 
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The floral dip transformation protocol was carried out (Clough and Bent, 1998). Arabidopsis 

plants were grown in the glasshouse until they have produced three inflorescences with 

young buds. To prepare the Agrobacterium, 10 ml LB-broth containing the appropriate 

antibiotic were inoculated with a single colony of Agrobacterium strain GV1301 transformed 

with the desired plasmid and grown to stationary phase at 28°C with shaking at 200 rpm. 

400 ml LB-broth were inoculated with 2 ml overnight culture and the culture was grown 

overnight at 28°C. The next day, the cells were harvested at 4.600 x g for 15 min at room 

temperature and the cell pellet was then resuspended in 10 ml infiltration medium. The cell 

suspension was transferred to beakers containing 1 l infiltration medium. The plants were 

inverted into the suspension (all aboveground tissues submerged) and left submerged for 

20 seconds, during which the pots were pulling up and down gently, still keeping the 

inflorescences in the suspension. Infiltrated plants were placed horizontally in trays, covered 

with propagator lids and left in low light or dark overnight. The following day the plants were 

placed into the glasshouse and left to set T1 seeds. 

9.2.4.6 Cross-pollination of Arabidopsis plants 

Young flower buds whose stigmas were still fully enclosed within the sepals were 

emasculated (removing all floral organs but the gynoecium). The emasculated bud was then 

left untouched for one day then pollinated with pollen from the respective donor plant. The 

pollinated buds were then allowed to set siliques and the matured siliques were harvested 

shortly before dehiscence.  

9.2.4.7 Measurement of organ size using ImageJ 

Petals were dissected from the 6th to 15th flowers and used for measurements. For leaves, 

the 4th and 5th leaf of plants at the bolting stage were taken for measurements. To measure 

organ size, the organs were placed with forceps onto Sellotape. Once all organs were 

collected, the tape was stuck onto a black Perspex sheet. The organs were scanned with a 

resolution of 3600 dpi in greyscale (8-bit) using the HP Scanjet 4370. The organ size was 

then measured using the Image Processing and Analysis in Java (ImageJ) software 

(http://rsbweb.nih.gov/ij/).  

9.2.4.8 Measurement of cell size: 

Two methods were used: For petals, low-melt agarose was used to analyse epidermal cells; 

for leaves Chloral hydrate method was used to analyse palisade cells in the subepidermal 

layer.  

a. Low-melt agarose method to analyze size of petal epidermal cell: 

The protocol is adapted from (Horiguchi et al., 2006). A drop of 2% low-melt agarose 

containing 0.01% bromophenol blue pre-warmed at 50°C was placed on a pre-warmed 

glass slide. The droplet was smeared by a pipet tip to get a thin layer of melting agarose. A 

petal was immediately gently placed on it. Once the gel solidified, the petal was carefully 
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peeled off, and the remaining gel cast was left to dry for about 10 min. The gel cast was 

then observed without a cover glass under a differential phase contrast microscope.  

b. Chloral hydrate method: 

FAA solution: Ethanol, 50ml; Glacial acetic acid, 5ml; Formaldehyde (37-40%), 10ml; 

distilled water, 35ml.  

Chloral hydrate solution: chloral hydrate, 200 g; glycerol 20 g; distilled water, 50 ml.  

Leaves are fixed in FAA solution (by immersing in FAA solution and vaccum infiltration). 

Then FAA solution was replaced with Chloral hydrate solution and the tube was incubated 

overnight. Samples were mount on a glass slide and observe under a differential phase 

contrast microscope.  

9.2.4.9 Ethanol induction of plants 
Induction by vapour 

Ten to twelve pots, each of which is 10 cm in diameter, 10cm high and contains 4-8 plants, 

were put into a tray and covered in a nylon bag. Ten to twelve 1.5 ml tubes, each of which 

contains 1ml of absolute ethanol, were open and distributed evenly in the nylon bag 

containing the pots and plants. The nylon bag was sealed during incubation time, which 

varies depending on the experiments. This is the standard for plants grown on soil. For 

seedlings that were grown on 10cm-diameter petri dishes, 5-10 μl of absolute ethanol was 

pipetted on to the cap of a PCR tube and put on to the agar surface, the dish was closed 

with a lid and sealed with parafilm. Two days after induction, plants can be pricked out on to 

soil. 

For induction of Cre, the incubation time was 20-30 minutes. This created chimeric 

meristems. An incubation of up to four hour has been tried, at which both fully recombined 

and chimeric meristems were obtained. Plants were induced at 7 days after germination 

(resulting in only a few leaves in the rosette were mutant, and most of the rosette are wild-

type). 

For induction of PAPS1 in  pPAPs1::AlcR-AlcA::genomicPAPS1, I used an incubation time 

of two hours in each time, and once every other day.  

Induction by irrigation 

This induction method was used for the induction of PAPS1 in pPAPs1::AlcR-

AlcA::genomicPAPS1 only. 15ml of 2% ethanol was used to irrigate a pot containing 

approximately 300ml of soil. 8 plants were grown per such pot. Induction was carried out 

once every other day. 
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9.2.4.10 GUS staining: 

Staining buffer (100ml) : 2 ml 10% Triton X-100; 10 ml 0.5 M NaPO4 pH 7.0; 500 µl 100 mM 

Potassium ferrocyanide; 500 µl 100 mM Potassium ferricyanide; 87 ml dH2O.  

Staining buffer was prepared and can be stored at 4°C for 2 weeks. Just before the 

experiment, 40 µl of X-Gluc Stock 50 mM ( store at -20°C) was added to 1ml staining buffer 

to make the GUS staining solution (1X). Tissues were immersed in this GUS staining 

solution and vaccum infiltrated 5 times until all tissues sunk to the bottom of the tube. The 

tube was incubated at 37°C for either 2 hours, 4 hours or overnight depending on the 

strength of the GUS expression in the plants. The reaction was stopped by exchanging the 

solution with 70% Ethanol. Several rinses with 70% Ethanol (20 minute incubation then 

exchanged with new 70% Ethanol solution) were carried out until the tissue was cleared of 

chlorophyll.  

9.2.4.11 Developmental series of petal growth:  
Petals were dissected from the flowers/buds in the inflorescences and areas were 

measured then plotted against their growth periods. The growth period of the youngest bud, 

which contained the smallest dissectible petals was set to be 0. The growth period of the 

next bud was calculated by adding the plastochron to the growth period of the previous bud.  

The plastochron (the time difference between two sequential buds) was estimated by 

counting how many flowers that were made in six days.  

9.2.5 Microscopy 

9.2.5.1 Clonal analysis using fluorescence microscopy 

The fluorescence expression in transgenic plants was analysed using a Zeiss SteREO 

Lumar stereomicroscope fitted with a Zeiss AxioCam MRm digital camera. Images taken 

were analysed using the Zeiss Axiovision Software 4.6. For fluorescence analysis the 

following filter sets for the respective chromophores were used. 

Chromophore Zeiss Filter set Excitation (nm) Emission (nm) 

CFP 47 HE BP 436/20 BP 480/40 

YFP 46 HE BP 500/20 BP 535/30 
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9.2.6 Microarray analysis: 

9.2.6.1 Plant materials for microarray:  

For inflorescences collection, main inflorescences excluding the open flowers/buds were 

collected from 30 day-old plants grown on soil. Plants at the stage of harvest, have around 

7-12 siliques (WT) or 2-5 siliques (mutant). Plants were grown in long day condition and 

materials were collected at 5 or 7 hours after the light period starts.  

For seedlings collection, the whole seedlings including roots were harvested from 11 days 

old (mutant) or 9 day old (WT) grown on MS plates. The mutants were sown out 2 days 

before so that they can be harvested at the same time as WT. Plants were grown in long 

day condition and materials were collected at 5 or 7 hours after the light period starts.  

9.2.6.2 RNA hybridization: 

Total RNA was prepared by hot phenol method and cleaned up with QIAGEN RNAeasy Kit, 

digested with TURBO Dnase (Ambion).  

Fractionated RNA was prepared as in section 9.2.2.8. From 80 μg of total RNA input for 

each RNA sample, 10 μl of short fraction and 10 μl of long fraction were obtained 

(concentration is around 1μg/μl). 

RNA were shipped on dryice to CRX Biosciences Ltd (James Lindsay Place DUNDEE DD1 

5JJ, UK) for subsequent labelling and array hybridization.  

Two colour array platform was used: Agilent Arabidopsis 4x44K oligo microarray (G2519F, 

AMADID 15059), and Agilent 4x44K gasket slides (G2534-60011). 1 µg of total RNA 

samples, and 2 µl the short fraction and 8 µl the long fraction were used for labelling with 

the Quick Amp Labelling Kit – Two Colour (Agilent# 5190-0444).  

9.2.6.3 Bioinformatic analysis: 

For array using total RNA: 

Analyses were done using the R/Bioconductor (Gentleman et al., 2004) package Limma 

Background corrections were done using the backgroundCorrect function with the minimum 

method : background intensities were subtracted from foreground intensities, resulting 

values of zero or below were replaced by half the minimum foreground intensity. 

Normalization was done using quantile normalization method. 

Differential gene expression were identified using ttest with Benjamini and Hochberg (BH) 

corrected p-value (Benjamini et al., 2001). The thresold was absolute log2-fold change 

(mutant/WT) of 1 and pBH <0.05.  

For array using fractionated RNA: 
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Analyses were done using the R/Bioconductor (Gentleman et al., 2004) package Limma. 

Background corrections were done using the backgroundCorrect function with the minimum 

method: background intensities were subtracted from foreground intensities, resulting 

values of zero or below were replaced by half the minimum foreground intensity.  

Normalization was done for each microarray using negative and positive control spots with 

known quantities of RNA. This was done using the normalizeWithinArrays function with the 

control method : a loess curve is fitted through a set of control spots and then applied to all 

other spots (Oshlack et al., 2007). 

A quantile normalization using the normalizeBetweenArrays function with the tquantile 

method was done for the following groups of all different samples:  MT long, MT short, WT 

long, WT short. Expression ratios between long- and short-tail RNA fractions (long/short 

ratio) were calculated using the Limma method. ttest with with Benjamini and Hochberg 

(BH) corrected p-value was used to identify genes that change the ratio long/short between 

mutant and wild-type. Genes with absolute log2 expression ratios (log2(Mutant long/short ratio ) – 

log2(WT long/short ratio ) ) above 1 and BH-corrected p-values below 0.05 were considered 

significant.  
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APPENDIX A: Oligonucleotide lists 
1. For genotyping of PAPS alleles: For TDNA specific amplification, use RP and BP primers 

(of the respective T-DNA) combinations. For locus specific amplification, use LP and RP 

primers combinations.  

Oligonucleotide 

name Sequence Description 

oSV166 

TAATGCCCATCATTACTCCTGCGA

AT  genotype paps1-1 

oSV126 GCTTTGTTTGATTCCATAGC genotype paps1-1 

oSV100 TCTCGTACAATCCAACATCTTG genotype paps1-2  LP primer 

oSV91 AGTGTCCAACTCTCCAAGTTTC genotype paps1-2  RP primer 

oSV126 GCTTTGTTTGATTCCATAGC genotype paps1-3  LP primer 

oSV78 TGGGACCTAGACATGCAACTAG genotype paps1-3 RP primer 

oSV77 TGTGAAGTAAACTCAACCCAGAC genotype paps1-4 LP primer 

oSV79 GGTCTTCTATCAATGGAATTG genotype paps1-4 RP primer 

oSV120 ACATGGAGATGTTGAACTGCC genotype paps2-3 LP primer 

oSV121 CCACTGTTCCACGTATATCAAAC genotype paps2-3 RP primer 

oSV110 TGCATCTGCTGCCACTATATC genotype paps4-3  LP primer 

oSV111 TTGCTGAAGCTGTAGGGTCTG genotype paps4-3  RP primer 

oSV116 TGGATACCAACCGAATGCAAC genotype paps3-4  LP primer 

oSV117 CTGCAAACAAACATCTCACAG genotype paps3-4  RP primer 

ML437 TGGTTCACGTAGTGGGCCATCG BP primer for SALK-TDNA 

oSV139 

AACGTCCGCAATGTGTTATTAAGT

TGTC BP primer for Ws-TDNA  

ML438 TTCATAACCAATCTCGATACAC BP primer for SAIL-TDNA 
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2. For RT-PCR  

Oligonucleotide 

name Sequence Description 

oSV187 GTTGCAGACCCATGAAGTAAGAG qPCR primer for PAPS1 

oSV188 GCTCACACTGAAGATCGAGAGAC qPCR primer for PAPS1 

oSV76 AACAAGCACGCGGCTGATTC RT-PCR PAPS1 

oSV100 TCTCGTACAATCCAACATCTTG RT-PCR PAPS1 

oSV186 GTGGGAAGAACCTCAAGTTC RT-PCR PAPS1 

oSV197 GGAAACCAAGTGATTGAGCAG RT-PCR PAPS1 

oSV304 CCAACATTCGTTGAGAATCTTAC RT-PCR PAPS1 

oSV305 ATCTCATTCTTTGCGACGGTG RT-PCR PAPS1 

ML179 CGTTACTGCCAGCCATTGTAGAA RT-PCR and qPCR for PDF2  

ML180 CCGCAGGTAAGAGTTTGGAACAT RT-PCR and qPCR for  PDF2 

oSV167 CTGCGACTCAGGGAATCTTCTAA qPCR primer for UBC 

oSV168 TTGTGCCATTGAATTGAACCC qPCR primer for UBC 

oSV198 CCTAGTATGTTGGTTTCTCGA RT-PCR PAPS2 

oSV121 CCACTGTTCCACGTATATCAAAC RT-PCR PAPS2 

oSV110 TGCATCTGCTGCCACTATATC RT-PCR PAPS4 

oSV112 

CAATCGTGCCATGGTGGTGGGTAC

TCAAAATTTAGG RT-PCR PAPS4 
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3. For qPCR validation: 

Oligonucleotide 

name Sequence Description 

oSV205  CGAAATGGCGGAAACTAAAC At1g54020 qPCR 

oSV206 CTTTGTGTCCTGCGAAGAATAAC At1g54020 qPCR 

oSV242  

CAAGCATCTGTGGTAGTAGTGAAG

AC At4g03156 qPCR 

oSV243 

GCTATCGTTCTTATTCTCTGTGTTG

TTC At4g03156 qPCR 

oSV232  GGACAAGAGAGGAGGCATAAG At2g35640 qPCR 

oSV233 CGTCTACCAAACCATTCATACC At2g35640 qPCR 

oSV211 

CAACAAAGGCTACAACTGGATAATA

C At4g04580 qPCR 

oSV212 GGACAATTCTTCTTCACCAGTTG At4g04580 qPCR 

oSV213  GCAAAGCGTCCGACAATATC At4g23160 qPCR 

oSV214 CGGGTCCTTTACGGGACTAC At4g23160 qPCR 

oSV215  AGACCACTTGGCCCTTATCTAC At5g59680 qPCR 

oSV216 GGTGTGCATCCAATGTGTAAG At5g59680 qPCR 

oSV234 TGGAACAGAGGAGAAGCCATAG At4g11890 qPCR 

oSV235 TCAGCATTCTCATCCACACATAG At4g11890 qPCR 

oSV236  CCAGAACCGAAGACCAGATTAC At4g25100 qPCR 

oSV237 GCCTCAAGTCTGGCACTTACAG At4g25100 qPCR 

oSV167 CTGCGACTCAGGGAATCTTCTAA UBC qPCR 

oSV168 TTGTGCCATTGAATTGAACCC UBC qPCR 

oHB86 TGGCTCCAGTCTTGGGTAAG PDF2 qPCR 

oHB87 GCCTGTCTTCAGCAAGTTCTAC PDF2 qPCR 
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2. For other genotyping: 

Oligonucleotide 

name Sequence Description 

ML822 

GGTGAAGTTGAAGTGAAAAAGATC

GTTC genotyping klu-2 

ML823 

CTTGGAAGTCAAACCAACGAAGGA

A genotping klu-2 

cstf64.f7 ATTCAGATTAGTTACGGATAGAGA genotyping of cstf64-1 

cstf64.R2 ACGGGTTTTGTCAGTGC genotyping of cstf64-1 

ML5 AACCCACTGCTAGATTCTCCT genotyping of bb-1 

ML6 TAAAGTATAGAAGTCCACCCAAG genotyping of bb-1 

ML7 GAGAAGGCTCTGAAGGCTT genotyping of bb-1 

 

Other oligos ( for cloning, sequencing) can be found in the oligo list (electronic excel file).  
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APPENDIX B. Plasmids 
pSV1 (ML939_XbaI_rescue_gPAPS1) 

pSV1b  (pSV1XbaI gPAPS1 inserted in  rev direction) 

pSV1c  (pSV1b_SDM_SalI_UTR5') 

pSV2 (ML1297_AscI_gPAPS1_AscI 

pSV3  (ML996_AscI_gPAPS1) 

pSV4a  (ML939_PstI_cPAPS1_KpnI) 

pSV4b (ML939_PstI-cPAPS1_KpnI_35SUTR3'_EcoRI) 

pSV4c (ML939_pPAPS1_cDNA_PAPS1) 

pSV4d (pBarMAP AscI/pPAPS1UTR5-PAPS1cDNA-UTR3-35Sterm) 

pSV5a (ML939-NcoI_gPAPS4_NcoI) 

pSV5a rev  (ML939-NcoI_gPAPS4_NcoI) gPAPS4 inverse 

pSV5b  (ML939_SDM_NcoIatATG_gPAPS4_NcoI) 

pSV5c (pSV1_SDM_NcoI at ATG_gPAPS1) 

pSV5d (ML939-pPAPS1::ATGgPAPS4-PAPS4UTR3') 

pSV5e (pBarMAP/AscI/pPAPS1UTR5::ATGgPAPS4-PAPS4UTR3') 

pSV6a (ML939-SEP3cDNA) 

pSV6b ( Op::SEP3 in PPpzp222)  

pSV7a (Op::PI-Op::AP3) 

pSV7b (Op::SEP3-Op::PI-Op::AP3) 

pSV9a (AlcA::UTR5’gPAPS1UTR3’::35Sterm in ML1004) 

pSV9b (pPAPS1::UTR5::EcoRI::AlcR) 

pSV9c (pBarMAP_AscI_AlcA::UTR5gPAPS1::UTR3-35Sterm) 
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pSV9d.1  (pBarMAP:pPAPS1::AlcR-AlcA-genomic rescue PAPS1) 

pSV9d.2 (pBarMAP:pPAPS1::AlcR-AlcA-genomic rescue PAPS1) 

pSV9x ( pPAPS1::UTR5 in ML939) 

pSV10a (pBarMAP AlcA::YFP) 

pSV10b.1  (pBarMAP:pPAPS1::AlcR-AlcA::YFP) 

pSV10b.2 (pBarMAP:pPAPS1::AlcR-AlcA::YFP) 

pSV11a  (ML939-SDM cDNA NdeI PAPS1) 

pSV11b (pET28a-PAPS1cDNAwt) 

pSV11c  (ML939-SDM cDNA NdeI PAPS1 SDM P313S - the ds39 mutated) 

pSV11d (pET28a_cDNAPAPS1-P313S-the ds39 mutated version) 

pSV12 (pSV5c SDM to have StuI site at Cterm ML939 genomic PAPS1 ) 

pSV14(pPAPS1::UTR5PAPS1::NPAPS4::CtermPAPS1 (genomic) 

pSV15 (pBarMAP/AscI/pPAPS1::UTR5PAPS1::ATGNPAPS4-CtermPAPS1 

(genomic)) 

pSV16 (pPAPS1::GUS) 

pSV17 (pPAPS2::NLSGUS) 

pSV18a (pPAPS3::NLSGUS) 

pSV18b (pPAPS3::NLSGUS) 

pSV19a (pPAPS4::NLSGUS) 

pSV19b (pPAPS4::NLSGUS) 

pSV20 (pBarMAP-pPAPS2::GUS) 

pSV21 (pBarMAP-pPAPS1::GUS) 

pSV22a (pBarMAP-pPAPS3::GUS) 

pSV22b (pBarMAP-pPAPS3::GUS) 
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pSV23a (pBarMAP-pPAPS4::GUS) 

pSV23b (pBarMAP-pPAPS4::GUS) 

pSV24(p35S::UTR5PAPS1-cDNAPAPS1-UTR3PAPS1::35Sterm in pML595) 
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APPENDIX C. Cloning procedures: 
Unless otherwise stated, most of  the plasmids are stored as vector NTI file. The Database 

of vector NTI is attached as an electronic folder.  

1. pSV1 (pSV1 (ML939_XbaI_rescue_gPAPS1).  

Genomic fragment of PAPS1 (5877bp)  was isolated from from a BAC clone JAtY72B09 by 

digesting the BAC with XbaI and gel purify the fragment around 5.8 kb. The fragment was 

cloned into ML939 using XbaI site.  

2. pSV1b  (pSV1 XbaI gPAPS1 inserted in  reverse direction)  

pSV1b is similar to pSV1 but the XbaI-genomic PAPS1-XbaI fragment was inserted in the 

reverse direction in ML939 digested XbaI vector. 

3. pSV1c  (pSV1b_SDM_SalI_UTR5') 

Introduce SalI site in front of the 5’ UTR of genomic PAPS1 (in pSV1b) by overlap PCR 

using primer oSV114 and oSV115. Introduce the modified fragment back in to pSV1 by 

BstEII and KpnI site.  

4. pSV2 (ML1297_AscI_gPAPS1_AscI) 

pSV1 digested AscI insert + ML1297 digested with AscI vector. 

5. pSV3  (ML996_AscI_gPAPS1) 

pSV1 digested AscI insert + ML996 digested with AscI vector.  

6. pSV4a  (ML939_PstI_cPAPS1_KpnI) 

cDNA of PAPS1 was amplified using primer oSV89 and oSV97 (introduce PstI site and KpnI 

sites to the PCR product). Clone this KpnI/PstI digested PCR product in ML939 digested 

KpnI/PstI vector.  

7. pSV4b (ML939_PstI-cPAPS1_KpnI_35SUTR3'_EcoRI)  

Insert the the 35S-3’UTR from ML1297 to pSV4a vector by EcoRI/KpnI site.  

8. pSV4c (ML939_pPAPS1_cDNA_PAPS1)  

Insert the promoter pPAPS1 from pSV1 (ScaI-BstEII) to vector pSV4b (ScaI-BstEII). 

9. pSV4d (pBarMAP AscI/pPAPS1UTR5-PAPS1cDNA-UTR3-35Sterm) 
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Combine the PAPS1 insert from pSV4c to pBarMAP by AscI site . 

10. pSV5a (ML939-NcoI_gPAPS4_NcoI) 

Isolate the genomic PAPS4 fragment from BAC clone: JAt49G10 and JAt59J22 by NcoI 

digestion and gel purifying the 9906bp NcoI-genomicPAPS4-NcoI fragment. Clone the 

fragment into ML939 using NcoI site. 

11. pSV5a rev (ML939-NcoI_gPAPS4_NcoI) gPAPS4 inverse 

pSV5a rev has the NcoI-genomicPAPS4-NcoI inserted in to ML939/NcoI in the reverse 

direction compared to pSV5a.  

12. pSV5b  (ML939_SDM_NcoIatATG_gPAPS4_NcoI) 

Introduce NcoI site at ATG of gPAPS4 by overlap PCR using primer  oSV112 and oSV113. 

Clone back in to pSV5a using PmeI/XhoI  site.  

13. pSV5c (pSV1_SDM_NcoI at ATG_gPAPS1) 

Introduce NcoI site at ATG of gPAPS1 in pSV1 by overlap PCR using primer oSV104 and 

oSV105. Clone back in to pSV1 using ClaI/BstEII sites. 

14. pSV5d (ML939-pPAPS1::ATGgPAPS4-PAPS4UTR3') 

Combine the insert genomic PAPS4 from pSV5b/NcoI and vector pSV5c/NcoI using NcoI 

site.  

15. pSV5e (pBarMAP/AscI/pPAPS1UTR5::ATGgPAPS4-PAPS4UTR3') 

Introduce the fragment in pSV5d in to pBarMAP by AscI site. 

16. pSV6a (ML939-SEP3cDNA) 

PCR amplify SEP3 cDNA using primer oSV122 and oSV123 introducing BamHI site at one 

end, the other end is blune. Clone in to ML939 using BamHI/SmaI site. 

17. pSV6b ( Op::SEP3 in PPpzp222) 

The vector PPpzp222 do not have a full sequence map. The putative map of OP::PI and 

Op::AP3 are obtained from Robert Sablowski’s lab:  

Op::PI vector : LB-ECORI-SACI-SACII-NOTI-XBAI-OPERATOR-SPACER-OPERATOR-

XBAI-SPEI CAMV TATA-NHEI-CLAI-SACI-XHOI-APOI-KPNI-NHEI-PI-NHEI-BAMHI-SPEI-

XBAI-NOS-PSTI-HINDIII-RB 
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The SEP3 cDNA was digested with BamHI and then partially with KpnI ( SEP3 has an 

internal KpnI site). Ligate this fragment in to Op::PI vector using KpnI and BamHI site.  

18. pSV7a (Op::PI-Op::AP3) 

Op::PI vector: LB-ECORI-SACI-SACII-NOTI-XBAI-OPERATOR-SPACER-OPERATOR-

XBAI-SPEI CAMV TATA-NHEI-CLAI-SACI-XHOI-APOI-KPNI-NHEI-PI-NHEI-BAMHI-SPEI-

XBAI-NOS-PSTI-HINDIII-RB 

Op::AP3 vector: LB-ECORI-SACI-SACII-NOTI-XBAI-OPERATOR-SPACER-OPERATOR-

XBAI-SPEI CAMV TATA-NHEI-CLAI-SACI-XHOI-APOI-KPNI-KPNI-AP3 MINIGENE-

BAMHI-BAMHI-SPEI-XBAI-NOS-PSTI-HINDIII-RB 

Cut Op:AP3 with NotI , blunt end, then cut with EcoRI, purify the backbone plasmid. Cut 

Op::PI with PstI, blunt the end, cut with EcoRI, purify fragment. Ligate.  

19. pSV7b (Op::SEP3-Op::PI-Op::AP3) 

Cut pSV7a with NotI, blunt end, then cut with EcoRI, purify the backbone plasmid. Cut 

pSV6b with PstI, blunt the end, cut with EcoRI, purify fragment. Ligate to give pSV7b.  

Putative map of pSV7b  

LB- ECORI SACI-SACII-NOTI-XBAI-OPERATOR-SPACER-OPERATOR-XBAI-SPEI CAMV 

TATA-NHEI-CLAI-SACI-XHOI-APOI- SEP3-BAMHI-SPEI-XBAI-NOS-PSTI blunt-bluntNOTI-

XBAI-OPERATOR-SPACER-OPERATOR-XBAI-SPEI CAMV TATA-NHEI-CLAI-SACI-

XHOI-APOI-KPNI-NHEI-PI-NHEI-BAMHI-SPEI-XBAI-NOS-PSTI-blunt-blunt-NOTI-XBAI-

OPERATOR-SPACER-OPERATOR-XBAI-SPEI CAMV TATA-NHEI-CLAI-SACI-XHOI-

APOI-KPNI-KPNI-AP3 MINIGENE-BAMHI-BAMHI-SPEI-XBAI-NOS-PSTI-HINDIII-RB 

20. pSV9a (AlcA::UTR5’gPAPS1UTR3’::35Sterm in ML1004) 

ML1004 digested with SalI/SmaI (vector) ligate to pSV1c digested with BsaAI/SalI (insert).  

21. pSV9x ( pPAPS1::UTR5 in ML939) 

PCR amplify the promoter PAPS1 from pSV1 using primer T7 and oSV141 , digest PCR 

product with NcoI. Clone this insert into ML939 (NcoI/EcoRIblunt)vector.  

22. pSV9b (pPAPS1::UTR5::EcoRI::AlcR) 

pSV9x digested with EcoRI (insert) + EA6 digested with EcoRI (vector) 

22. pSV9c (pBarMAP_AscI_AlcA::UTR5gPAPS1::UTR3-35Sterm) 
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pSV9a digested with AscI insert + pBarMAP digested with AscI vector. Remembered to 

select for reverse direction . 

23. pSV9d.1  (pBarMAP:pPAPS1::AlcR-AlcA-genomic rescue PAPS1) 

       pSV9d.2 (pBarMAP:pPAPS1::AlcR-AlcA-genomic rescue PAPS1) 

pSV9b digested with PacI insert + pSV9c digested with PacI vector. There are two 

directions of the pPAPS1::AlcR and AlcA::Genomic rescue PAPS1 (number 9d.1 and 9d.2) 

24. pSV10a (pBarMAP AlcA::YFP) 

ML1043 digested PacI/AscI insert + pBarMAP digested with PacI/AscI vector. 

25. pSV10b.1  (pBarMAP:pPAPS1::AlcR-AlcA::YFP) 

       pSV10b.2 (pBarMAP:pPAPS1::AlcR-AlcA::YFP) 

pSV9b digested with PacI insert + pSV10a digested with PacI vector; 10b.1 and 10b.2 refer 

to two directions of pPAPS1::AlcR and AlcA::YFP. 

26. pSV11a  (ML939-SDM cDNA NdeI PAPS1) 

Introduce NdeI site in front of the ATG site in PAPS1 by PCR using oSV128 and oSV101. 

Digest PCR product with EcoO109I then purify 333bp fragment (insert). Digest pSV4a with  

PstI, blunt then digest with EcoO109I (vector). Ligate. 

27. pSV11b (pET28a-PAPS1cDNAwt)  

pSV11a  digested with NdeI/EcoRI  insert  +  pET28a NdeI/EcoRI vector. 

28. pSV11c  (ML939-SDM cDNA NdeI PAPS1 SDM P313S - the ds39 mutated) 

Digest pSV11a with BglII/PmeI (vector). PCR using oSV78 and oSV80 using cDNA from 

PAPS1-1 mutant. Digest PCR product with BglII/PmeI, isolate the 875bp-fragment (insert). 

Ligate.  

29. pSV11d (pET28a_cDNAPAPS1-P313S-the ds39 mutated version) 

pET28a (EcoRI/NdeI) vector + pSV11c (EcoRI/NdeI) insert. 

30. pSV12 (pSV5c SDM to have StuI site at Cterm ML939 genomic PAPS1 ) 

Introduce StuI site by overlap PCR using primer oSV202 and oSV203. Clone the insert into 

pSV5c by PmeI/Bsp1407I sites. 

31. pSV14(pPAPS1::UTR5PAPS1::NPAPS4::CtermPAPS1 (genomic) 
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pV5d  digested with StuI/PstI vector 7380 bp + pSV12 StuI/PstI insert (1950bp fragment ). 

32. pSV15 (pBarMAP/AscI/pPAPS1::UTR5PAPS1::ATGNPAPS4-CtermPAPS1 (genomic)) 

 pSV14 digested with AscI insert + pBarMAP digested with AscI vector  

33. pSV16 (pPAPS1::GUS) 

pSV9x digested with  KpnI + pKJ1 digested with KpnI vector. 

34. pSV17 (pPAPS2::NLSGUS) 

PCR amplify promoter PAPS2 by primer oSV189 and oSV190; digest with KpnI (insert) + 

pKJ1 digested with KpnI vector. 

35. pSV18a (pPAPS3::NLSGUS); pSV18b (pPAPS3::NLSGUS) 

PCR amplify promoter pPAPS3 by primer oSV246 and oSV247; digest with KpnI (insert) + 

pKJ1 digested with KpnI vector. a and b are clones derived from the pPAPS3 from two 

independent PCR reactions. 

36. pSV19a (pPAPS4::NLSGUS) ; pSV19b (pPAPS4::NLSGUS) 

PCR amplify promoter pPAPS4 by primer oSV244 and oSV245,  digest with KpnI (insert) + 

pKJ1 digested with KpnI (vector). a and b are clones derived from the pPAPS3 from two 

independent PCR reactions. 

37. pSV20 (pBarMAP-pPAPS2::GUS) 

pSV17 digested with AscI insert + pBarMAP digested with AscI vector.   

38. pSV21 (pBarMAP-pPAPS1::GUS) 

pSV16 digested with AscI insert + pBarMAP digested with AscI vector. 

39. pSV22a (pBarMAP-pPAPS3::GUS) 

pSV18a digested with AscI insert + pBarMAP digested with AscI vector. 

40. pSV22b (pBarMAP-pPAPS3::GUS) 

pSV18b digested with AscI insert + pBarMAP digested with AscI vector. 

41. pSV23 (pBarMAP-pPAPS4::GUS) 

pSV19a digested with AscI insert + pBarMAP digested with AscI vector. 
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42. pSV23b (pBarMAP-pPAPS4::GUS) 

pSV19b digested with AscI insert + pBarMAP digested with AscI vector. 

43. pSV24(p35S::UTR5PAPS1-cDNAPAPS1-UTR3PAPS1::35Sterm in pML595) 

pSV4a digested with PacI insert + pML595 digested with Pac I vector.  
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Abbreviations 
35S  Promoter of the 35S gene from CaMV 
aa  Amino acid(s)  
ABA  Abscisic acid 
ABI ABSCISIC ACID-INSENSITIVE 
ADP Adenosine 5’ diphosphate 
Agrobacterium Agrobacterium tumefaciens  
AIL AINTEGUMENTA-LIKE 
Ala Alanine 
AMP Adenosine monophosphate 
Amp  Ampicillin 
AN3  ANGUSTIFOLIA3 
ANT  AINTEGUMENTA 
AP3 APETALA3 
APE  APETALA 
APS  Ammonium peroxide sulfate 
Arabidopsis Arabidopsis thaliana  
ARF  AUXIN RESPONSE FACTOR 

ARGOS  
AUXIN-REGULATED GENE INVOLVED IN 
ORGAN SIZE 

ARL ARGOS-LIKE 
At Arabidopsis thaliana 
ATP Adenosine 5’ triphosphate 
BB  BIG BROTHER 

BOAAG 
both organs (seedlings and inflorescences) 
abundance-affected genes 

BOP BLADE-ON-PETIOLE 

BOTAG 
both organs (seedlings and inflorescences) 
tail-affected genes 

bp  Base pairs 
BPE BIGPETAL 
BR  Brassinosteroid 
BSA  Bovine serum albumin 
Ca Calcium 
Cam  Chloramphenicol  
CaMV  Cauliflower Mosaic Virus 
Carb  Carbenicillin 
CDB Cyclin-destruction box 
CDK Cyclin-dependent kinase 
cDNA  Complementary deoxyribonucleic acid  
CDS  Coding sequence  
CER Controlled environment room 
CFP  Cyan fluorescent protein  
CIN CINCINNATA 
CLV  CLAVATA 
cm  Centimetre 
Col  Columbia, Arabidopsis thaliana accession 
cPAP canonical Poly(A) Polymerase 
CTD C-terminal domain 
CYC  CYCLIN 
CYP  Cytochrome P450 
CZ central zone 
d Deionised 
dCTP  2’-deoxycytosine 5’-triphosphate 
DELLAs DELLA proteins 
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DEG Differential expressed gene list 
DMCs Dispersed meristematic cells 
DMSO  Dimethylsulfoxide 
DNA  Deoxyribonucleic acid 
DNase  Deoxyribonuclease 
dNTPs  Deoxynucleoside triphosphates 
down downregulated 
ds Double-stranded 
DTT  Dithiothreitol 
E. coli  Escherichia coli 
e.g. Exempli gratia 
EDTA  Ethylendiaminetetraacetic acetate 
EIL1 EIN3-Like 
EIN ETHYLENE INSENSITIVE 
ER ERECTA 
er  Endoplasmatic reticulum 
ERL ERECTA-LIKE 
EtBr Ethidium bromide 
EtOH  Ethanol 
EYFP Enhanced yellow fluorescent protein 
F Faraday 
FAE FASCIATE 
FL flowers/inflorescence tissue 
FZR Fizzy-related 
g  Gramme  
GA Gibberellin 
Gent  Gentamycin 
GFP  Green fluorescent protein 
GIF GRF-INTERACTING FACTOR 
GRF GROWTH REGULATING FACTOR 
GUS  ß-glucuronidase 
h Hour(s) 
H2O Water 
HCl Hydrochloric acid 
His Histidine 
i.e. Id est 
IAA  Indole-3-acetic acid, auxin 

ICK 
Inhibitor/interactor with cyclin-dependent 
kinase 

IPTG Isopropyl β-D-1-thiogalactopyranoside 
JA Jasmonic acid 
JAG  JAGGED 
Kan  Kanamycin 
kb  Kilo base pairs 
kDa  Kilodalton 
KLU  KLUH / CYP78A5 
kV Kilo-volt 
l Liter 
L1 Layer 1 (epidermal layer)  
L2  Layer 2 (subepidermal layer)  

L3 
Layer 3 (layer forming vasculature and pith 
of plants)  

LB  Lysogeny broth or Left border of the T-DNA 
LE leaves/seedling tissue 

Ler  
Landsberg errecta, Arabidopsis thaliana 
accession 

LFY LEAFY 
M Molar 
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m Milli 
min  Minute(s) 
mm Millimeter 
mRNA  Messenger RNA 
MS-salts  Murashige and Skoog basal salt mixture 
N  Amino  
NaCl Sodium chloride 
NaOH Sodium hydroxide 
NASC Nottingham Arabidopsis stock centre 
NLS  Nuclear localisation sequence 
NUB NUBBIN 
OD  Optical density 
ORF  Open reading frame 
OSAAG organ specific abundance-affected genes 
OSTAG organ specific tail-affected genes 
PAP Poly(A) Polymerase 

PAPS 
canonical Poly(A) Polymerase like protein in 
Arabiodopsis 

PBS  Phosphate-buffered Saline 
PCR  Polymerase chain reaction 
PI PISTILLATA 
PMSF  Phenylmethylsufonyl fluoride 
PPD PEAPOD 
PPT  Phosphinothricin (BASTA) 
Pro Proline 
PZ  Peripheral zone 
RNA  Ribonucleic acid 
RNase  RNA nuclease 
rpm  Revolutions per minute 
rRNA Ribosomal RNA 
RT  Reverse transcriptase 
RT-PCR  Reverse transcriptase PCR 
s  Seconds 
S. cerevisiae Saccharomyces cerevisiae 
SAM  Shoot apical meristem 
SDS  Sodium dodecyl sulfate 
SDS-PAGE  SDS polyacrylamide gel electrophoresis 
SEM  Standard error of the mean 
SEP SEPALLATA 
Ser Serine 
SLY SLEEPY 

SOC 
Super optimal broth with catabolite 
repression 

Spec  Spectinomycin 
ss Single-stranded 
SSC  Standard saline citrate 
Str  Streptinomycin  
SV40 Simian virus 40 
TAE  Tris-acetate EDTA 
TAP Tandem affinity purification 
Taq  DNA polymerase from Thermus aquaticus 

TCP 
TEOSINTE BRANCHED1, CYCLOIDEA, 
PCF 

T-DNA  transferred DNA 
TE  Tris/EDTA 
TEMED  N,N,N’,N’-tetramethylethylenediamine 
Tet  Tetracycline  
Tm Melting temperature of primers 



245 
 

TOR TARGET OF RAPAMYCIN 
Tris  Tris(hydroxymethyl)aminomethane 
tRNA Transfer RNA 
Trp Tryptophan 
Tx  Generation x after transformation 
U  Unit(s) 
up upregulated 
UTR  Untranslated region 
UV  Ultraviolet  
V  Volt 
v/v  Volume by volume  
vol  Volume 
w/v Weight by volume  
wt  Wild-type  
WUS  WUSCHEL 
X-Gal  Bromo-chloro-indolyl-galactopyranoside 
YFP  Yellow fluorescent protein 
μ Micro 
Ω  Ohm 
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