Guessing Axioms, Invariance and
Suslin Trees

A thesis
submitted to the School of Mathematics
of the University of East Anglia
in partial fulfilment of the requirements
for the degree of

Doctor of Philosophy

By
Alexander Primavesi

November 2011

(© This copy of the thesis has been supplied on condition that anyone who consults it
is understood to recognise that its copyright rests with the author and that use of any
information derived there from must be in accordance with current UK Copyright Law.

In addition, any quotation or extract must include full attribution.



Abstract

In this thesis we investigate the properties of a group of axioms known as ‘Guessing
Axioms,” which can be used to extend the standard axiomatisation of set theory,
ZFC. In particular, we focus on the axioms called ‘diamond’ and ‘club,” and ask
to what extent properties of the former hold of the latter.

A question of I. Juhasz, of whether club implies the existence of a Suslin tree,
remains unanswered at the time of writing and motivates a large part of our in-
vestigation into diamond and club. We give a positive partial answer to Juhasz’s
question by defining the principle Superclub and proving that it implies the exis-
tence of a Suslin tree, and that it is weaker than diamond and stronger than club
(though these implications are not necessarily strict). Conversely, we specify some
conditions that a forcing would have to meet if it were to be used to provide a
negative answer, or partial answer, to Juhasz’s question, and prove several results
related to this.

We also investigate the extent to which club shares the invariance property
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of diamond: the property of being formally equivalent to many of its natural
strengthenings and weakenings. We show that when certain cardinal arithmetic
statements hold, we can always find different variations on club that will be prov-
ably equivalent. Some of these hold in ZFC. But, in the absence of the required
cardinal arithmetic, we develop a general method, using forcing, for proving that

most variants of club are pairwise inequivalent in ZFC.
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Chapter 1

Introduction: (Guessing Axioms

and Suslin Trees

In ordinary language the term ‘guessing’ means, roughly: ‘Anticipating properties
of something about which we do not have full knowledge.” This definition is our
own, and its accuracy is perhaps debatable, but it seems to at least describe a
phenomenon recognisable as an instance of guessing.

Combinatorial principles in set theory can sometimes be used in a manner
that resembles this everyday notion of guessing. In this case, the epistemological
emphasis of the above definition is replaced with a focus on cardinality: we wish
to find a set of small cardinality that somehow captures non-trivial properties of

the members of a larger set. This characterisation is entirely informal, of course,



but it captures the intuition behind the usage and naming of a group of axioms
known as ‘Guessing Axioms.’

Throughout this thesis, the axiomatisation of set theory that we will use is ZFC,
the Zermelo-Fraenkel axioms plus the Axiom of Choice. For a detailed account of
these axioms, see [19, I] or [15, Chapter One]. A formal statement in the language
of set theory, 6, is independent of ZFC if there is no formal derivation of 8 or —6
from these axioms; Cohen’s method of forcing (developed in [4] and [5]) can be
used to show that a large number of statements are independent of ZFC. In this
thesis we will mostly be interested in questions that ask whether ZFC + 6 — ¢,
where both 6 and ¢ will be statements independent of ZFC; we give a mixture of
combinatorial results (positive answers to questions of this kind) and consistency
results (negative answers to questions of this kind). We will frequently abuse
notation by suppressing any reference to ZFC and simply asking whether 6 — ¢?

Formally, such # and ¢ can be treated as azioms, without any issue, but because
‘axiom’ is something of a loaded term — often taken to imply that if 6 is an axiom
then we ought to have some intuitive reason to believe it to be true — we will more

commonly refer to them as statements or principles.



1.1 Guessing Principles

We are interested in a group of combinatorial principles known as Guessing Axioms
or Guessing Principles.

Throughout this thesis we will use these terms to describe several natural
relatives of the axiom <. We do not give a formal definition of the term ‘Guessing
Principle,” but that need not concern us — there are many well-known statements
to which it readily applies, including &, club guessing and ¥, and they are all
relatives of ) —a recap of the definition of ) will remind us why the name ‘Guessing
Principle’ is appropriate. In its simplest form, <) asserts the existence of a sequence,
(Ds: 0 < wy and § a is limit ordinal'), with Ds C § for all 6 € Lim(w,), such that

for any X C w; the following set is stationary:
{6 € Lim(wy) : Ds = X N§}.

Thus a sequence witnessing the truth of {, also called a <{)-sequence, manages to
capture non-trivial properties of any arbitrary subset X C w;, in the sense that
the range of the {-sequence contains stationary many initial sections of X. There
are (at least) No-many such X, while the witness to ¢ is a sequence of length just
wi. This fact makes < particularly useful for inductive constructions of objects
of size Wy, and hence < exemplifies the sense of ‘guessing’ that we attempted to

describe in the opening paragraphs.

In future we denote this by: § € Lim(wy).



1.1.1 Jensen’s ) and Ostaszewski’s &

The formulation of ¢ is due to the American logician R. B. Jensen (in [17]) and
grew out of his close analysis of the set theoretic universe under Godel’s Axiom of
Constructibility, V' = L. He first proved that Suslin trees exist assuming V = L
and then extracted the definition of {» from this proof as a weaker, but still suf-
ficient, assumption. Hence <) implies the existence of Suslin trees (we prove this
fact in Chapter 3) and has many further applications as well, in various branches
of mathematics. It has been used for example to establish the relative consistency
(with ZFC) of a counterexample to Naimark’s problem, a long-standing open ques-
tion in operator algebras [1] and has applications to topology, see [20].

The following two facts come from Jensen [17]:
Fact 1.1.1. V =L — {.
Fact 1.1.2. { — CH.

Proof For a proof of Fact 1.1.1, see [19, VI 5.2] or [15].

For 1.1.2, let (Ds : 6 € Lim(wy)) be a witness to < and suppose z is an
arbitrary subset of w. Then the set {6 € Lim(w,) : Ds = = N §} is stationary,
so in particular it is cofinal in w;. Let a be in this set and be greater than w,
then x = z Na = D,. Hence the sequence witnessing <> contains a subsequence

enumerating the continuum. This subsequence has length wy, so 2¥ = w;.



The above two facts combine to establish the independence of 5 from ZFC,
given that CH and V = L are themselves independent of ZFC. Jensen was able
to prove that CH is a strict weakening of <), using a complex forcing iteration to
obtain a model of CH without Suslin trees (see [7]). This is a celebrated early
result in the theory of forcing, which motivated many further developments in the
field; Shelah later gave a considerably shorter proof of the same result, see [28,
pp.228-236| for details. The extra power that <) has over CH is encapsulated in
the principle &, pronounced ‘club,” which forms the focus of much of this thesis.

In its simplest form, & asserts the following:

There is a sequence (As : 6 € Lim(w;)) such that A; C ¢ for all
d € Lim(wy), and sup(A4s) = 0, and if X C w; is uncountable then the

set {J € Lim(wy) : As C X} is stationary.

It is easy to see that & is a weakening of <): we need only note the fact
that for any uncountable X C wy, the set {§ < w; : sup(X Nd) = 0} is always
a closed unbounded subset of wy, so a witness to { can easily be modified to
produce a witness to &. If (D5 : § € Lim(w;)) is a witness to < then defining
(As : 0 € Lim(wy)) by setting As = D; if sup(Ds) = ¢ and to be an arbitrary
cofinal subset of § if sup(Ds) < 4, for all § € Lim(w;), will give us a witness to
&. (We will frequently employ this trick to create witnesses to & from sequences

that almost, but not quite, fulfil the definition of . We will not always describe it



explicitly, and will usually just say that a given sequence can be ‘easily modified’
to give a witness to é.)

In the presence of CH the two are in fact equivalent:
Theorem 1.1.3 (Devlin). (& + CH) < <.

The principle & was first formulated by Ostaszewski in [24], where it was used
to establish the relative consistency of the existence of a non-compact, hereditarily
separable, locally compact, perfectly normal, countably compact space. This came
several years after the formulation of ). Theorem 1.1.3 is cited in Ostaszewski’s
original paper (and is attributed there to Devlin) and the construction in that
paper uses CH as well as &, so in fact uses the full power of {»; a number of years
passed before it was established that & is indeed not equivalent to <.

For completeness, we will give the full proof of Theorem 1.1.3:

Proof of Theorem 1.1.3 In light of the discussion preceding the statement of
Theorem 1.1.3, it remains to prove that (& + CH) — <}. So choose an arbitrary
witness to &, (As : § € Lim(wy)). Let (¢, : @ < wy) be an enumeration of the
countable subsets of wy, such that each of these subsets appears uncountably often
in the enumeration. We can do this because CH implies that [wi]™ = {Z C w; :
|Z| < w} has cardinality w;. We define the sequence (Ds : 6 € Lim(w,)) as follows:

for all 6 € Lim(wy) let Ds = onNY Co- We claim that (Ds : 0 € Lim(wy)) gives

a€As



us a witness to <.

To see this, first let X C w; be a bounded subset. Then the set
Y={a<w : X =c}

will be unbounded in wy, and thus will contain stationary many Ajs as subsets.
For any such 4, greater than sup(X), Ds is equal to the set (J,c 4, ca = Uaen, X,
which is equal to X, and hence is also equal to X N . There are stationary many
d such that As C Y and ¢ > sup(X), so we obtain the stationary set required in
the definition of <{>.

If X C w; is unbounded, then let Y C w; be such that for all « € Y, ¢, is an
initial section of X, and if o, 8 € Y satisfy a < 3 then ¢, is an initial section of cg.
(In other words, Y indexes an increasing chain in the ordering of {c, : @ < wy} by
initial-sectionhood.) It is straightforward to define such a Y by induction, and to
see that Y will be unbounded in w;. It is also clear that for a closed unbounded

set, C, it will be the case that § € C' implies | J co = X NJ, by a standard

aedNy
argument. So there will be a stationary set, S, such that S C C' and for 6 € S
we get As C Y and sup(As) = d. For any ¢ in S we then have that Ds = X N 4,
which again gives us the stationary set required by the definition of <.

O

From Theorem 1.1.3 and Fact 1.1.2 above, we conclude that to establish that

& is a strict weakening of » it is both necessary and sufficient to prove the relative



consistency of & + —CH. This was first done by Shelah in [27], via a proof that
involved adding N3 many subsets of X; to a model of GCH, through a countably
closed forcing, and then collapsing N; to Ry. Shortly afterwards, Baumgartner
proved the same result using a forcing that does not collapse cardinals, by adding
No-many Sacks reals by side-by-side product and showing that & is preserved if {
holds in the ground model (this proof was not published by Baumgartner himself,
but see [14] for details). The simplest proof that Con(ZFC) — Con(ZFC + & +
—CH) known to the author is that of Fuchino, Shelah and Soukup in [11]; we give
a version of this proof in Chapter 5.

Thus it has been established that & is a strictly weaker axiom than <. The
following informal question suggests itself as the natural thing to ask next: how

much weaker is & than {7

1.1.2 How much weaker is & than {7

The relative consistency of ZFC + & + —CH, taken together with the fact that
(& + CH) < <, means that we can sensibly think of & as being ‘> without
the cardinal arithmetic assumptions.’”> Due to the manifold applications of <, in
many different areas of mathematics, we therefore consider the question ‘which

properties of { are shared by &?’ to be important as a restricted version of the

2Several other axioms would also satisfy this description, by the same reasoning. This de-
scription of & is therefore arbitrary and is to be taken purely as an aid to intuition.



broader question: how crucial are cardinal arithmetic assumptions in determining
the structure of the set-theoretic universe? The importance of this latter question
is self-evident.

However, as it stands this is not a formal question. The simplest way to
paraphrase it formally is to find statements ¢ such that { — ¢ and to ask whether
¢ follows from & alone. We have seen already that when ¢ is the Continuum
Hypothesis then the answer to this question is negative. This fact suggests a
wealth of natural questions concerning weakenings of CH and their relation to
&; for instance, those concerned with cardinal invariants of the continuum (see
[2]). When CH holds, all cardinal invariants are bounded by Xy, trivially, so it is
natural to ask: which cardinal invariants must necessarily have size N; in models
of &7 The answer to this question provides us with many non-trivial facts about
&. This thesis is not particularly concerned with cardinal invariants, except where
they have relevance to Juhasz’s question (see Chapter 3), but we mention two of

the more notable known facts here:

Theorem 1.1.4 (J. Brendle, [3]).

& — (b = wy), where b is the bounding number.

Theorem 1.1.5. Con(ZFC) — Con(ZFC + & + 0 = wsy), where 0 is the domi-

nating number.



Theorem 1.1.5 was first proved by I. Juhasz, though the proof was not pub-
lished. See [22] for a proof due to H. Mildenberger; the model constructed in [11]
also satisfies the conditions of the Theorem and was therefore the first published
proof of this result.

Arguably the most prominent open question of the form: ‘does & — ¢?’, where
¢ is a consequence of <, was asked by the Hungarian set-theoretic topologist
I. Juhasz ([23]). This is the question of whether & implies the existence of a
Suslin tree. Juhasz’s question forms the focus of Chapters 3 and 4 of this thesis;
the question remains open (at the time of writing) but we consider some partial
answers to it and prove some restrictions on potential techniques for forcing a
negative answer to it. Chapters 6 to 8 of this thesis concern another property of {
and its relation to &: following [9] we call this the invariance property. This is an
informally defined notion roughly expressing the fact that <) is formally equivalent
to many of its apparent weakenings and strengthenings. We look at the extent to
which the same is true of &. Both this and Juhasz’s question fall broadly under
the umbrella of the ubiquitous question: ‘How much weaker is & than {7’

We give the background to the invariance property in Chapter 6. The back-

ground to Juhasz’s question is given in the next section.
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1.2 Swuslin trees

Having introduced Guessing Axioms, and in particular &, we turn now to the
other combinatorial objects that dominate this thesis: Suslin trees.

We will see (Theorem 1.2.10) that <> implies the existence of a Suslin tree. It
is not known whether & implies the existence of a Suslin tree. This question was
asked in the 1980s® and has proved to be a remarkably persistent problem. We

review its history here:

1.2.1 Suslin’s Hypothesis

M. Y. Suslin (1894 — 1919) was a Russian mathematician, active in set theory at
the start of the previous century. He is remembered for several developments in
mathematics, and particularly for a paper that he contributed to the first issue
of the journal Fundamenta Mathematicae ([31]), which was published in 1920. A
question posed in that paper (on the properties needed to uniquely characterise
the real number line) became widely known as ‘Suslin’s Problem.” The question
persisted into the second half of the twentieth century, awaiting the arrival of Co-
hen’s method of forcing, and later iterated forcing, which were used to conclusively
attack it. By that time the problem was known in its modern formulation, con-

cerning the existence of a certain type of tree. But first we shall state Suslin’s

3Source: a personal conversation between 1. Juhasz and the author, and see also [23].
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Problem in its original form. Briefly put, Suslin asked whether the condition of

separability can be weakened in the following well-known theorem:

Definition 1.2.1. Let (L, <p) be a linearly ordered set (for convenience we will
usually just denote it by L). Then L is dense if for all a,b € L with a <;, b there
isace Lsuchthat a <pc<pb. AC Lisa dense subset if A is dense and for all
a,b € L with a <y, b there is a ¢ € A such that a <; ¢ < b. L is complete if for
every set A C L that has an upper bound in L, sup(A) exists in L. L is separable
if L has a countable dense subset. L is without end-points if there is no greatest

or least element in L.

Theorem 1.2.2 (Cantor, see [15]). Let (L, <y) be a linearly ordered set. If L is:

(i) dense,

(ii) complete,

(iii) separable,

(iv) without end-points,

Then (L, <) is isomorphic to the real numbers, R, with the usual ordering.

Proof This proof is well-known, so we only sketch it here. The result follows
from both Dedekind’s method of constructing the real numbers as sets of rationals

and Cantor’s back-and-forth argument establishing that any two countable dense

12



linear orders without endpoints are isomorphic. The latter gives us an isomorphism

between the countable dense subset of L (call it A) and Q; identifying each r € R

with the set of rationals less than it, and each [ € L with the set of a € A less
than [, induces an isomorphism between L and R. See [15] for details.

O

Suslin asked whether condition (iii) in Theorem 1.2.2 could be weakened to the

following;:

Definition 1.2.3. Let (L,<;) be a linearly ordered set. L has the countable
chain condition (c.c.c.) if every set of pairwise disjoint open intervals from L is

countable.

Suslin’s Hypothesis (SH) states that any linearly ordered set satisfying con-
ditions (i), (ii) and (iv) of Theorem 1.2.2, which also has the property of c.c.c.,
is isomorphic to the real numbers, R. A linearly ordered set that satisfies these
properties and which is not isomorphic to R is called a Suslin line. Thus, Suslin’s
Hypothesis states that there does not exist a Suslin line. This conjecture was
shown to be independent of the axioms of ZFC in the 1960s and early 1970s, by
the combined efforts of Jech, Solovay and Tennenbaum in [32], [16] and [30] (see
7).

The modern formulation of SH uses the idea of a Suslin tree, which is a certain

13



type of partially ordered set (that is, a set together with an ordering relation sat-

isfying transitivity, anti-symmetry and reflexivity), as defined in Definition 1.2.5.

Definition 1.2.4. For a partial order (P, <p):

e A chain is a set Y C P such that for all x,y € Y with = # y, either z <p y

ory <p .

e An antichain is a set Y C P such that there is no z € P with x <p z and

y<pzforany z,y €Y.

Definition 1.2.5. A tree, (T, <7), is a partial order such that for every = € T,
the set {y € T : y < z} is well-ordered by <r. A Suslin tree is a tree of size
|T'| = Ny, such that all chains and antichains in 7" are countable. (The fact that
all antichains are countable is what will henceforth be meant when we say that a

partial order is c.c.c.)

Definition 1.2.6. For a tree (T, <r) and = € T', ht(z) is the order type of the set

{z:2z<ra}.

We now cite a useful theorem that allows us to forget about Suslin lines in
favour of Suslin trees, which are easier to use in forcing arguments. For a mathe-
matical account of this shift in emphasis, see [19, II], or [7]; we simply note here
that this result was discovered independently by Kurepa, in 1935, and E. Miller
in 1943:

14



Theorem 1.2.7 (Kurepa, Miller). There exists a Suslin tree if and only if there

exists a Suslin line.

From here onwards Suslin’s Hypothesis (SH) is taken to be the assertion that
there do not exist any Suslin trees. It is worth pointing out that Suslin’s Hypothesis
is also widely known as ‘Souslin’s Hypothesis.” Both are valid transliterations from
the Cyrillic. We follow Kunen [19] and Jech [15] in using ‘Suslin’. We will require

some further notation:

Notation 1.2.8. Let (T, <) be a Suslin tree. Then Lev,(T) = {x € T : ht(z) =

at.

Lev, (T') will be referred to as the ath level of T'. It is trivial that for all a < wy,
Lev,(T') is an antichain. Often one includes in the definition of a Suslin tree the
fact that each level is countable, but the c.c.c. property makes this redundant.
When, however, we talk about Aronszajn trees, it is to be understood that we are
defining them by replacing the c.c.c. property in the definition of a Suslin tree

with the requirement that (|Lev,(T)| = w) for all o < wy.

Definition 1.2.9. An Aronszajn tree is a tree of size w; such that all levels are

countable and all chains are countable.

15



1.2.2 Juhasz’s question

The definition of ) was extrapolated from Jensen’s proof that Suslin trees exist

assuming V' = L. The following theorem is then immediate:

Theorem 1.2.10. < implies that there is a Suslin tree (i.e. ¢ — —SH).

Proof In Theorem 3.0.5 we prove a stronger statement. For a direct proof of

Theorem 1.2.10 see [19, II].

This leads us to the following natural question:

Question 1.2.11 (Juhasz). Does & — =SH?

Question 1.2.11 is commonly referred to as ‘Juhasz’s question’. Juhasz formu-
lated a weak relative of the & principle in [18] and asked whether it implied —=SH.
He then observed that it wasn’t known whether & itself implies =SH (though nei-
ther question actually appears in [18]); thirty years later both questions remain
unanswered. It is also unknown whether & is relatively consistent with the as-
sertion that all Suslin trees are isomorphic. <) implies that there are at least two
non-isomorphic Suslin trees.

We ought to note here that a purported answer to Juhasz’s question by Dzamonja
and Shelah was published in [8], but the authors later noticed a mistake in this

paper rendering the proof incorrect [10]. The result they appeared to obtain there

16



is stronger than Con(é + SH), as their proof would in fact establish Con(& + SH
+ cov(M) = ws), if correct. But this contradicts a known (though at the time
unpublished) theorem of Miyamoto (see Chapter 3).

We examine Juhasz’s question in Chapters 3 and 4, and give some pertinent

results there.

1.3 The structure of this thesis

The structure of this thesis is as follows:

e We begin in Chapter 2 by briefly reviewing some notation and preliminaries.

e Chapter 3 is concerned with partial answers to Juhasz’s question. We first
survey some of the existing partial answers, then we define the principle Su-
perclub and prove that it implies the existence of a Suslin tree. We conjecture
that it is strictly weaker than <) and give some related results to substantiate

this conjecture.

e In Chapter 4 we discuss the possibility of forcing to obtain a model of Suslin’s
Hypothesis, and we establish some conditions that such a forcing would have
to meet if it were to be used to give a negative answer to Juhasz’s question.
Specifically, we define several properties that a witness to & must not satisfy

if it is to be preserved (as a witness to &) over a forcing iteration giving us

17



a model of SH.

In Chapter 5 we review some basic facts about & and its relation to cardinal
arithmetic. We give a full proof that & is consistent with -CH and ask
under what conditions can we force & to hold without collapsing cardinals.
We show that there is a c.c.c. forcing that adds a &-sequence (which, in

particular, does not necessarily add a {)-sequence) whenever a weak version

of & holds.

In Chapter 6 we prove some equivalences between different versions of é.
We show that a greater number of &-like principles can be proved equivalent
as increasingly stronger cardinal arithmetic statements are assumed to hold,
though we also prove some equivalences in ZFC. Several known results on

and club guessing follow from our results in this chapter as specific instances.

Chapter 7 is a counterpart to Chapter 6. Here we extend work begun by
Dzamonja and Shelah in [9] and establish a general forcing technique to show
that many of the equivalences in the previous chapter are not provable in
ZFC alone. We show that several variants of &, as defined on w;, can be

proved to be pairwise inequivalent in ZFC.

Chapter 8 generalises the results of Chapter 7 to successor cardinals greater

than w;, and we discuss some limitations on the extent to which we can

18



further generalise these results.

e Finally, in Chapter 9, we list some open questions relating to our results in

the preceding chapters.

19



Chapter 2

Notation and Preliminaries

We assume the reader is familiar with the basics of set theory and logic. We
take this to include everything implicit in the previous chapter, and in particular:
the axioms of ZFC, the definitions of ordinals, cardinals, relations and functions,
stationary sets, sequences, products, models of set theory, elementary submodels,
Godel’s incompleteness theorems and the standard variations on the Lowenheim-
Skolem theorem, which we will make frequent use of in the later chapters, and
which we note in particular can be proved in ZFC.

We cite [15] as the standard reference for the basic facts and definitions listed
above. We will now specify some of the notational conventions that are not nec-

essarily universal but that are used frequently throughout this thesis:

e Let f: A— B be a function, and C' C A. Then we write f[C] to denote the
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set {b € B:3ce C(f(c)=0)}, and f~1(b) to denote {a € A : f(a) = b} if

be B, and f~Y(B') = J{f'(b): be B'} if B C B.

A partial function f : A — B is a function f : C' — B where C' C A. The

cardinality of a partial function refers to the cardinality of the set C.

We write (a,b) to denote an ordered pair, unless we are defining a partial
order (which, formally, is an ordered pair consisting of an underlying set
and a relation), in which case we use angular brackets: (A, <,). We write
(xo : a < A) to denote a sequence of length A and {z, : @ < A} to denote

the unordered set of elements in the range of this sequence.

When we refer to a cardinal, we allow for the possibility that the cardinal in
question is finite, unless otherwise specified, but the word countable will be

used exclusively to describe infinite sets of size N.

We introduced the principle & in the previous chapter. An uncountable
sequence is called a &-sequence if it witnesses the truth of &. A {-sequence
is defined analogously. We say that a forcing (that preserves wy) kills a &e-
sequence, (As : 0 € Lim(wy)), if it adds an uncountable subset X C w; such
that the set {0 € Lim(w;) : As C X} is empty. Likewise, we say that a
(cardinal preserving) forcing kills a Suslin tree, 7', if it adds an uncountable

set that is an antichain in 7.
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o A subtree of a given tree (T, <r) is a tree of the form (T" C T, <[ T'). We

say a Suslin tree is normal if the following hold:

(i) For every x € T, and any a < wy, there is a y € Lev,(T') such that

T <ry.
(ii) Levy(T') has cardinality 1.

(iii) For every x € Lev,(T), for any o < wy, there are y1,y2 € Levy1(T)

with z <7 y1, ys.

It is an easily provable fact that every Suslin tree has a normal Suslin subtree
(see [19, Chapter Twol); therefore we will usually work with normal Suslin

trees rather than with general Suslin trees.

Any other notation used in this thesis, where it is not in standard usage, will

be introduced as and when it is needed.

2.1 Forcing notation

We assume some familiarity with the theory of forcing, but due to the wide variety
of forcing notation that is used in the literature we will now briefly outline the
development of forcing that we have chosen to adopt.

A partial order, P = (P, <p), consists of a set together with a relation that is
transitive, reflexive and anti-symmetric. If P is infinite, has a maximal element
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(denoted 1p), and is such that for any p € P there exists p',p* € P such that
=3¢ € P(q <p p' and q <p p?) then we call it a forcing notion, or just a forcing.
In this case elements in the partial order will be called conditions. We will often
abuse notation by writing p € P rather than p € P, and by dropping the subscript
from <p where P is clear from context.

When a partial order, P, is a forcing, the definition of an antichain in P differs
slightly from that given in the previous chapter. In this case an antichain is a set
of conditions in P such that for any two of them, p and ¢, there is no condition r
with r <p p and r <p q.

A set D C P is dense if for all p € P there is a ¢ € D with ¢ <p p. A filter
G is a set such that if p € G and p <p ¢ then ¢ € G, and such that for any two
pl,p? € G there is a ¢ € P such that ¢ <p p! and q <p p*.

Let V be a model of ZFC. Then a filter GG is P-generic over V if G intersects
every dense subset D C P that is in V. If V is a countable model of ZFC and
P € V, then such a G can be shown to exist; we cannot, of course, prove in ZFC
that a model of ZFC exists, so all our forcing proofs are in fact relative consistency
proofs which begin by assuming the consistency of ZFC.

A set 7 € V is a P-name if and only if 7 is a set of ordered pairs and for
all (6,p) € 7, ¢ is a P-name and p € P. This is a recursive definition, trivially

satisfied by (). For a P-name 7 and a filter G, let 7¢ = {6¢ : Ip € G ((6,p) € 7)}.
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Again this is a recursive definition. We also set V|G| = {7¢ : 7 € V is a P-name}.

We make numerous uses of the following crucial theorem:

Theorem 2.1.1. Let V E ZFC and P be a notion of forcing. If G is a P-generic

filter over V, then V[G] E ZFC and G € V[G].
The forcing relation IF is defined as follows:

Definition 2.1.2. Let 71, ..., 7, be P-names and ¢(7, ...,7,) be a sentence in the
language of set theory. Then for a condition p € P, p IFp “¢(71, ..., 7,)” if and only
if for any generic filter G such that p € G, we have V[G] F ¢((71)a, -, (Tn)g). We

usually drop the subscript from IFp when P is clear from context.

We use dotted Greek letters to denote P-names, usually 7. If we are dealing
with a name for a function (or a name forced to be a function by a particular p
under consideration), then we will sometimes use f to denote it; the dot is intended
to make it clear that this is a name and not a function in V. When x € V there
is a canonical P-name for x, £ = {(g,1p) : y € z}, such that i¢ = = for any
filter G. Hence V C VI[G]. In practice we will normally use z instead of Z when
writing statements of the form p I “¢(&)”; the quotation marks surrounding the
¢(&) are for the purposes of clarity, as it is infeasible to write ¢(Z) as a fully formal
statement in the language of set theory. Note that we have developed our notation
for forcing so that for p,q € P, ¢ <p p means q is a stronger condition that p. That
is, if p IF “@” then ¢ IF “¢”.
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If V' is a transitive model of ZFC then V[G] is also transitive; it is to be
implicitly understood that this will always be the case. It is straightforward to
check that w is absolute for transitive models of ZFC. We say that wy” is collapsed
by G if wy is countable in V|[G]. Similarly, for AV, an arbitrary cardinal in V', we
say that \ is collapsed to & if there is a bijective map from \Y to £V in VI[G]. If
a forcing P has the A-c.c. (i.e. all antichains in P have size < \) then no cardinal
greater than or equal to A is collapsed by P.

When defining a forcing we will often use the phrase “let x be a sufficiently
large cardinal...” Specifically, we want y to be large enough such that (H(y), €)
encompasses enough of V' to reflect certain statements in which we are interested.
These will always be clear from context. In all cases where this phrase is used, the
forcing being defined will be formed from a set of partial functions f : kK — 2 for
some cardinal x, and we will use a chain of elementary submodels of (H(x), €) to
define this set. Hence, setting x to be strictly greater than 2" will be sufficient, so
e.g. letting y = 22" works for this. We won’t explicitly state this each time the

phrase is used, but it is always possible to find a relevant y.

25



Chapter 3

Partial Answers to Juhasz’s

Question

Informally, we can state that the expected answer to Juhasz’s question is negative
(this view was expressed to the author in conversation by M. Dzamonja, co-author
of [9] and [8], and by I. Juhasz himself), though the following principles are two
of the strongest weakenings of & that have been shown to be consistent with SH.
Both are much weaker than &, in the sense that even in the presence of CH they

do not imply <>, unlike those weakenings we consider later in this thesis:

(?) There is a set S with |S| = w; and |s| = w for all s € S, such that

if X € [wy]** then for some s € S we have s C X.

(doy2) There is a sequence (A5 : § € Lim(wy)), with As C 9 and
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sup(A4s) = 6 for all 6 € Lim(wy), such that if X C w; is unbounded

then the following set is stationary:

{6 € Lim(w,) : either As\ X or A5\ (w; \ X) is finite }.

Both of these principles are implied by &. The principle T is also implied by
CH; in this case the set of all countably infinite subsets of w; forms a suitable §. So
the relative consistency of (? 4 SH) follows from Jensen’s proof of Con(CH + SH)
assuming Con(ZFC). The principle &2 was shown to be consistent with SH by
H. Mildenberger (in [21]).

There is a notable lack of positive partial answers to Juhasz’s question. The

most prominent result that could be so described is due to Miyamoto:

Theorem 3.0.3 (Miyamoto). If cov(M) > w, and ? holds, then there is a Suslin

tree.

But there are no known' guessing principles ¢ such that ¢ — =SH and { —
@ — &, where these implications are not reversible.

In this chapter we present a candidate for such a ¢. We prove that it can be
used to construct a Suslin tree, and that it implies &. We conjecture that it is

strictly weaker than <.

Definition 3.0.4. The principle Superclub states that there is a sequence (B :

'Known to the author, at least. We are using here our informal characterisation of guessing
principles, as discussed in Chapter One.
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d € Lim(wy)) such that for any X € [w;]“?, thereis a Y € [w;]“* such that Y C X

and the set {J € Lim(w,) : Y N = By} is stationary.

So a witness to Superclub (a Superclub sequence) acts like <», but on a cofinal
subset of every unbounded X C w; rather than on X itself. It therefore follows
immediately that {» — Superclub. It is also easy to see that Superclub — &.

Superclub is notable mainly for the following theorem:
Theorem 3.0.5. Superclub — —SH.

Proof Let (Bs: § € Lim(w;)) be a witness to Superclub; we construct (wy, <r)
to be a Suslin tree, by inductively specifying the behaviour of < restricted to
initial sections of w;. Our induction will ensure that if x <7 y then z < y as
an ordinal and that Levg(T) = [w.f, w.f + w) for each 8 less than w;, except
where 5 = 0 or 1. Throughout the proof we frequently abuse notation by writing
Levg(T') as shorthand for [w.f,w.f + w) when 2 < § < wy, {0} when 8 = 0, and
[1,w +w) when = 1. We also write <r[ A to denote {(a,b) € A x A:a <r b},
and similarly for <7 A. The induction is on the levels Lev,(T), for o < wy, and

proceeds as follows:

1. We set <r[ {0} to be empty and <7[ [0,w + w) to be the set of all ordered
pairs (0,y) such that y is in the interval [1, w + w). Hence Levy(T) = {0}
and Levy(T) = [1, w 4+ w) as desired. Choose an enumeration (i,, : n < w) of
the set [1, w +w) and let <[ (w.2 4+ w) be the set <r| [0,w + w) together
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with all those ordered pairs of the form (i,, w.2 4+ 2n) or (i,, w.2 + 2n + 1)
for n < w, and then take the transitive closure of this. This ensures that

Levy(T) = [w.2, w.2 + w).

. If « is a successor ordinal greater than 2, assume a = § + 1. Then we
assume that Levs(T) = [w.f, w.f + w) and that <7 [ (w.f + w) is already
defined. We extend the ordering <7 to include [w.cr, w.a+w) as follows. Let
y € Levg(T), then y = w.f+n for some n < w. The ordering <r is extended
by setting y < x1 and y <7 x9 where 1 = w.a+2n and o = w.a+2n+1,
and also setting z <p x1,x9 for all z <7 y. Each element in Levg(T) has

exactly two successors at the level Lev,(T).

. If ais a countable limit ordinal then we assume that <r[ (J,_, Levs(T) is al-
ready defined. Let (x; : 1 < w) enumerate U,_,, Levg(T). If Uy, Levg(T) =

« and B, is an antichain in the tree:
(o, <rl | Levs(T))

Then for each i < w we choose a branch br,(x;) such that z; € br,(z;),
sup(br,(z;)) = a and if there is some v in B, with v <p z; or z; <p 7
then the least such v is in br,(z;), and we also insist that if j < i < w, then

br,(z;) # bry(x;).

If Ugq Levs(T) # o or B, is not an antichain, then we choose a branch for
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each i < w such that x; € br,(z;) and br,(z;) intersects [w.8,w.B + w) for

every < a. Again, we also insist that if j < i < w, then br,(z;) # br,(z;).

Having defined {br,(z;) : i < w}, let y € [w.c,w.c¢ + w). Then y = w.a +n
for some n < w. We then set z <7 y if and only if z € br,(z,). This extends

the ordering <7 to (Jz,[w.8,w.8 + w).

This is identical to Jensen’s construction of a Suslin tree from < (see [19, II])
except that at those limit stages o where B, is an antichain, when we choose a
branch that passes through a given x and goes cofinal in the initial section of the
tree already defined, we only insist that it intersects B, if it is possible for it to do
so (regardless of whether or not B, is maximal in that initial section of the tree).

T is clearly a tree. We show that 7" is Suslin. Since every element of T" has (at
least) two immediate successors, it is enough to show that 7" has no uncountable
antichains. So assume for a contradiction that X C w; is a maximal uncountable
antichain in 7. Then there is a cofinal subset Y C X such that § N Y = Bs for

stationary many J. Let
T'={zcw :FyeY(y<rzorx<ry)}

and <p» = <p[ T'. Clearly (T", <) is a tree of size w;, and Y is a maximal
antichain in 7”. So there will be stationary many § where Y N is a maximal

antichain in (3, <p[ U, s Leva(T")) and By = Y N§ and |J,_s Lev,(T") = 6.

a<d a<d

Take such a 6. We show that for every « € Levs(T") there is some y € Y N § with
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y <7 x, meaning Y N ¢ is already a maximal antichain in 7", a contradiction. So
assume that for some x € Levs(T") there is no such y. By the construction of the
level Levs(T") there is some 2/ <7v x such that x is an upper bound to all the
elements in brs(z’). But since 2’ € 7" and hence is clearly comparable with some
y € Bs, there must be a y € By such that y € brg(2’), giving y <r z. This is a
contradiction.
So d N'Y is a maximal antichain in 7", which is also contradictory. Hence T
cannot have an uncountable antichain. This means that T is a Suslin tree.
OJ
It is not known if Superclub is consistent with —~CH; it may in fact be equiva-
lent to <. But it is worth pointing out that the restriction of Superclub to closed
unbounded sets is demonstrably weaker than the restriction of < to closed un-
bounded sets, which is equivalent to ). We will briefly develop this argument

here:

Definition 3.0.6. The principle Superclub; ;5 asserts the existence of a sequence
(Bs : § € Lim(wy)) such that for any closed unbounded C' C wy, there is an
unbounded D C wy such that D C C and the set {o € Lim(wy) : DNa = By} is

stationary.

Equivalently, we can insist that the D C w; in the above definition is closed

unbounded (simply replace each Bs with the following set: By = Bs U {a < § :
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sup(Bs N «) = a} and then (B§ : 6 € Lim(w;)) will give us a witness to this

seemingly stronger statement). The following is well-known:

Lemma 3.0.7. If Pis a c.c.c. forcing in V' and G is a P-generic filter over V', then
if £ € V[G] is a closed unbounded subset of w; there exists a closed unbounded

set £/ C w; in V such that £’ C E.

This gives us the following result:

Theorem 3.0.8. Con(ZFC) — Con(ZFC + Superclubgyyg + ~CH).

Proof Start with a model of . Use the forcing consisting of finite partial functions
from wy to 2. This is a c.c.c. forcing and gives a generic extension in which 2% = ws,.
It is easy to see that any witness to <) in the ground model will be a witness to

Superclubcr,up in the generic extension, by Lemma 3.0.7.

We contrast this with the following theorem:

Definition 3.0.9. The principle {cpup states that there is a sequence (Dj : 6 €
Lim(wy)) with Ds C ¢ for all §, such that if C' C w; is a closed unbounded set

then the set {o € Lim(w;) : CNa = D,} is stationary in w;.

Theorem 3.0.10. $ous — <.

Proof Let (Ds: 0 € Lim(w;)) be a witness to {$crup. We use Devlin’s result (in
[24]) that (& + CH) — ¢ and thus split the proof into two stages.
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To see that $cryp — CH, observe that if + C w and C' C w; is a closed
unbounded set then €’ = (C'\ w) Uz U{w} is also closed unbounded. Hence there
is some § > w such that Ds = C"' N, giving Ds Nw = x.

So (wND;s : 0 € Lim(wy)) contains a subsequence enumerating P(w), implying
the continuum has size w;.

To see that $cpup — &, let X C w; be unbounded. So X' = X U{a <
wy @ sup(X Na) = a} is a closed unbounded set. And X" = X'\ {a < wy :
sup(X Na) = a} is unbounded and is a subset of X. Whenever Ds = § N X’ we
will get D = Ds\ {8 < d : sup(DsNP) =5} C X”"NJ C X, which will be cofinal
in ¢ if and only if X" is cofinal in §. So there will be stationary many  such that
D C X and sup(Dj§) = 9, hence (Dj : § € Lim(w;)) can be easily modified to

give a witness to .

Hence <>CLUB < <>

The following definition also seems to be pertinent:

Definition 3.0.11. Superstick asserts that there is a family S C [w]* with |S| =
wy such that for any X € [w;]** the set {x € S :  C X} when ordered by strict

inclusion contains a chain of length wy.

Superstick implies T and is a consequence of CH, so it does not imply & or

Superclub. It stands in a similar relation to Superclub as CH does to <}, so by
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analogy with the proof that (d + CH) — < we can prove:
Theorem 3.0.12. (& + Superstick) — Superclub.

Proof Let S witness Superstick and (s, : @ < wy) enumerate S. If X € [w;]“
then there is an uncountable set S’ C w; indexing the chain asserted to exist by
Superstick, with ¢, j € S’ and ¢ < j implying s; is a subset of s;. Let ¥ = (J{sq :
a€ S} then Y C X and |Y| = wy. Let (As : 6 € Lim(wy)) witness & and set
Bs = U, A, Sa, unless the latter is not a cofinal subset of § in which case we choose
it to be an arbitrary cofinal subset of §. There is a closed unbounded set C' C w,
for which § € C implies that sup ({J,csns Sa) = 0 and U, csng Sa = Y N6, hence
for § € C where A; C S’ also holds we will have Y N § = Bs and sup(Bs) = 6.
There is a stationary set of such § so (Bs : § € Lim(w;)) is a witness to Superclub.
0

It is not known whether Superstick — CH. However, based on the above results

(notably Theorems 3.0.8 and 3.0.10) we form the following conjecture:
Conjecture 3.0.13. We believe the following to be true:

(i) Con(ZFC) — Con(ZFC + Superstick + -CH),

(ii) Con(ZFC) — Con(ZFC + Superclub + =<).

It is not clear how we could prove either of these using existing forcing tech-
niques. But it is clear that if 3.0.13 (ii) is true then Superclub gives a strong
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positive partial answer to Juhasz’s question, as discussed at the start of this chap-

ter.
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Chapter 4

&, Forcing and Suslin Trees

We mentioned in the previous chapter that the expected answer to Juhasz’s ques-
tion is negative. If this is indeed the case, then giving a proof of this would require
us to find a model of (& + —CH) in which there are no Suslin trees. The usual
method for finding a model of (& + ~CH), that doesn’t involve collapsing cardi-
nals, is to preserve a witness to & from an initial model while using forcing to add
reals (see the discussion of this in Chapter 5), though it is also possible for such a
forcing to introduce a new witness to &, not present in the ground model (see for
example [11]). In this chapter we present several conditions that such a witness
to & would have to satisfy. In particular, we prove that any forcing that adds an
uncountable antichain to a single Suslin tree cannot preserve every ground model
witness to . We also show that Juhasz’s question could potentially be answered

(negatively) by preserving a certain kind of &-sequence while killing off another.
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Unfortunately, a method for carrying out this line of attack is not known to us;

we merely prove that it would be sufficient.

4.1 T-preserving &-sequences

It is of interest to us to examine different types of d-sequences that exist in the
ground model and consider their relation to Suslin trees. The following observation
highlights a link between &-sequences and Suslin trees that is otherwise hidden by

their seemingly unrelated definitions:

Observation 4.1.1. Let R C [w;]? be a set of unordered pairs of countable ordi-
nals. We will call this a pre-relation. We define the ordering < from R as follows:
x<pyiff z =yor {z,y} € R and x is less than y as an ordinal. Then (w;, <g) is
a Suslin tree if and only if (wy, <g) is an Aronszajn tree and for any uncountable

X C w; thereis a z € R such that z C X.

Proof We know that (w; <g) is a Suslin tree if and only if it is an Aronszajn
tree and does not cannot contain any uncountable antichains. The latter condition
is equivalent to saying that any uncountable subset of wy, X, must contain two
ordinals that are compatible with respect to the tree ordering, <g. Let x and y

be two such ordinals. Then {x,y} € R and {x,y} C X.
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This gives us another characterisation of a Suslin tree. And note that the
last line of this characterisation bears a strong resemblance to the definition of
?. Hence we can say that a Suslin tree has a certain (albeit very weak) guessing
property for unbounded subsets of w;. Furthermore, it is precisely this guessing
property that distinguishes it from an Aronszajn tree.

Observation 4.1.1 motivates the following definition:

Definition 4.1.2. Let A = (4; : § € Lim(w;)) be a witness to & and T be a
Suslin tree such that both are in V, a model of ZFC + & + —SH. If A is such that
for any forcing, P € V, and any filter G that is P-generic over V, if A remains a
witness to & in V[G] then T remains a Suslin tree in V[G], then we say that A is

T-preserving over V.

Normally we will just write that A is T-preserving, when V is clear from con-
text. The existence of T-preserving d-sequences for normal Suslin trees (see Chap-

ter 2 for the definition of normal) is easy to establish:

Theorem 4.1.3. Let A = (A; : 6 € Lim(w;)) be a &-sequence and T = (w;, <)
be a normal Suslin tree, both in V. Then we can define a further &-sequence

AT = (AT . § € Lim(w,)) in V, such that AT is T-preserving over V.

Proof We assume without loss of generality that for all 0 < a < wy, Lev,(T) =
[w.a, w.a + w), and we give the construction of AT. Choose (e, : € < w;) to be an
enumeration of [w;]?, and let Z C w; be such that {e. : ¢ € Z} = {{a, 8} : a <p
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B}. Let (z i < wp) be an enumeration of Z, and set Af = 6 N Uy, €z, for all
d € Lim(wy), unless this gives us a set that is bounded in § or is an antichain in 7T,
in which case set Al to be an arbitrary cofinal subset of § containing two ordinals
that are compatible in 7. Then because T is Suslin, if X C w; is unbounded we
can find an uncountable set Y C Z such that y € Y = e, C X, and for v,{ € Y
with v < € we have max(e,) < min(eg). The fact that we can find such a Y follows
from the fact that X cannot be (or contain) an uncountable antichain. We will

make use of the following standard definition:

Definition 4.1.4. For an unbounded set £ C wy, we write acc(E) to denote the

set: {¢ <wy:sup((NE)=C(}.

Continuation of the Proof of Theorem 4.1.3. Let ¢ be such that 6 € acc (Y)N
acc <U ey €7> and As C Y. This is possible because the set acc(FE) is always closed
and unbounded in w; for an unbounded set F, and by the definition of &. Then
dNU,e A, €2 is a subset of X and has supremum 6. Hence AT is also a d-sequence.

We finish the proof of the theorem by establishing that A” is T-preserving. So
observe that the set Al for any 6 € Lim(w;), contains a v and ¢ with v <p &.
Hence if X is an uncountable antichain for 7', in V|G|, then we cannot have
AT C X for any 6 € Lim(w;). So if AT remains a -sequence in the generic
extension then 7" must have no uncountable antichains in V[G], and since T is

normal this is sufficient to prove that 7" remains a Suslin tree.
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OJ
There are several ways we could have constructed such an A", but we will
retain the definition used in the proof of Theorem 4.1.3 (when we write AT we
take it to be assumed that 7" is normal). So henceforth, given A, we set:
A" = | e 1 0 € Lim(w)),
i€As
except where this gives us an Al that is not a cofinal subset of § or that is an

antichain in 7', in which case we choose such a set arbitrarily as in the above proof.

Corollary 4.1.5. If we preserve every witness to & in a given forcing extension,
then every ground model normal Suslin tree remains Suslin in the generic exten-

sion.
The contrapositive to this is as follows:

Corollary 4.1.6. If V E &+ —SH then any forcing P € V' that kills normal Suslin

trees must also kill some d-sequences.

Proofs: Both by Theorem 4.1.3.
OJ
We could easily alter the definition of a T-preserving d-sequence so as to apply
to Suslin trees T' that are not normal, but since every Suslin tree contains a normal

subtree (see Chapter 2), and the existence of Suslin trees is therefore equivalent to
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the existence of normal Suslin trees, we feel justified in restricting our attention
to trees that are normal as well as Suslin.
The next fact shows that Juhasz’s question can be reduced to a question about

separating d-sequences.

Fact 4.1.7. In V, let A be a &-sequence and T be a normal Suslin tree. Let IP be

a cardinal preserving forcing notion and G a P-generic filter over V. Then:

If V[G] | “A is a &-sequence” and V[G] = “AT is not a &-sequence,”

then V]G] = “T is not a Suslin tree”.

Proof Assume T is Suslin in the generic extension. Let X € [w]** N V[G]. Then
because X cannot be an uncountable antichain in 7" there must be some {z,y} C X
with © <7 y. By the uncountability of X there must be uncountably many such
pairs {z,y}. Let Z and Y C X be as in the proof of Theorem 4.1.3. Then AT

witnesses &, as before. This is a contradiction.

4.2 Directly T-preserving &-sequences

With the following definition we can isolate the property of A” that causes it to be
T-preserving. Any é&-sequence that we hope to preserve over an iteration killing

all ground model Suslin trees must not have this property.
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Definition 4.2.1. Let A be a witness to & and 7" be a normal Suslin tree. We
say that A is directly T-preserving if there exists a club set C' C wy such that for

d € C'N Lim(wy) there exist x,y € As with x <r y.

Clearly AT is directly T-preserving, so the existence of directly T-preserving
&-sequences (assuming & + —SH) is immediate. But the following question is

unresolved:

Question 4.2.2. Can there exist a &-sequence, A, such that A is T-preserving

but not directly T-preserving, for a normal Suslin tree 7'7

Assuming {» we can construct a d-sequence that is not directly T-preserving

for any normal Suslin tree T

Theorem 4.2.3. { implies the existence of a &-sequence, A, such that if T is a

normal Suslin tree then A is not directly T-preserving.

We prove this theorem by a series of lemmas. Let T" be a Suslin tree and x,y
be elements in the tree, then we write y L1 x to denote the following: (x L7 y A

y €1 ). In this case we say that x and y are incomparable.

Lemma 4.2.4. Let T = (wy, <7) be a Suslin tree. If A C w; is uncountable then

there is an « € A such that {y € A:y L 2} is uncountable.

Proof Assume not. So for every x € A there are only countably many elements of
A that are incomparable with x. We will inductively define an uncountable chain
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{Zo : @ < wi} in T, thus obtaining a contradiction. Let xy be min(A), which is
well-defined because A is a set of ordinals. Now, assume {z, : a < [} is already
defined and is a chain in 7. We will define xg. If f = o+ 1 for some «, then by
assumption there are only countably many members of A that are incomparable
with z,, so {y € A: x4, <r y} is uncountable. Let x5 = min{y € A : z, <r y}.
Then {z, : « < #} is a chain in T

Now assume that /3 is a limit ordinal. Let Y =, s{v € A:y Lr z.}. So Y
is a countable union of countable sets, and hence is countable, which implies that
A\'Y is uncountable. For all z € A\ Y and all a < 8 we have either z <r z, or
To <r 2. By the fact that A\ Y is uncountable we can find a z such that for all
a < B, x4 <r z. Let xg be the least ordinal such that x5 € A\ Y and z, <7 z3
for all o < 3, then {z, : o < 5} is a chain in T

So {z, : o« < wq} is an uncountable chain in 7', giving us a contradiction.

OJ

We henceforth assume without loss of generality that all Suslin trees with

underlying set w; that we consider are such that Levs(T) = [w.f,w.f + w), when

2§B<w1.

Lemma 4.2.5. Let T' = (w;, <r) be a Suslin tree. If A C w; is uncountable then
the set of < w; such that there is a countably infinite antichain X C AN J with

sup(X) = 4, is unbounded in w;.
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Proof Let v < w; be arbitrary. We define the antichain X = {z, : n < w}
by induction. First, observe that we can assume A C w; \ 7, without loss of
generality. Let zy be the least ordinal in A satisfying the claim of Lemma 4.2.4.

Given X,, = {x,, : m < n}, let us assume that X,, satisfies the following statement:

(A, ={z€ A:Vx € X,(z Lr x)} is uncountable) (%),

Clearly X, satisfies (), and our induction will be such that if X,, satisfies (x),,
then X, 1 satisfies (*),41. By the previous lemma there is a z € A/, such that
{y € A, .y L z} is uncountable. Let x,,1 be the least ordinal in A/ having this
property. Clearly the set X, 11 = {z,, : m < n + 1} satisfies (%),,1, and is an
antichain.

The set {x, : n < w} is therefore a countably infinite antichain, contained
within A = A\ 7. Let 6 = sup{z, : n < w}, which will be a limit ordinal because
(x, : n < w) is an increasing sequence under the usual ordering of ordinals, so
0 >~ and the lemma is proved.

O

The next lemma tells us that the set of such J is not only unbounded, it is

closed too.

Lemma 4.2.6. Let 7' = (wy, <7) be a Suslin tree, and {3, : n < w} be such that

for all n < w, B, is a limit ordinal and 3, < 3,411 < wy, and there is an antichain
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By, C [Bn, Bnr1) with sup(B,) = Bny1- Let v = sup{S, : n < w}. Then there is an

antichain B C |, _, By such that sup(B) = 7.

Proof First, we observe that for any n € w, and any infinite B/, C B, there is a
b € B! such that the set {m < w : [{y € B, : y L b}| = w} is infinite. In other
words, there is a b € B/, such that there is a cofinal subsequence {B,,, : i < w} of
sets that contain infinitely many elements incomparable with b. To see that this is
true, assume it is not. Given some n and B], C B, every x € B), fails to have such
a cofinal subsequence. Fix such an z € B),. Then for some finite m we have that
for all p € w \ m and all but finitely many y € B,, © <7 y. Then let 2’ € B/, be
distinct from z. Clearly 2’ 11 x, because B/, is an antichain, so for all p € w \ m
and all but finitely many y € B, we have © <7 y and consequently 2’ L1 y. This
contradicts our assumption that no such '’ € B, exists.

We will use this fact to define an antichain X = {z,, : n < w} by induction.
Let xg be the least ordinal in By that satisfies the claim in the previous paragraph.

Assume X, = {x,, : m < n} is defined and satisfies (x),:

({l<w:B \{y € B, : 3Im(m <n and z,, <r y)} is countable}| = w)

Clearly Xy = {xo} satisfies (x)o. Now let n’ be the least finite ordinal greater
than n such that B/, = B,y \ {y : 3Im(m <n and x,, <r y)} is countable, and let

Zn41 be the smallest ordinal b € B, that satisfies the claim in the first paragraph.
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Clearly, since b € B!,, X,,11 = {x;m : m < n+ 1} is an antichain satisfying (%),41,
and with sup(X,4+1) > B

So {z, : n <w} C U, Br is an antichain with supremum .

O

So combining the previous two lemmas we get: for any Suslin tree T and
unbounded A C wq, there is a closed unbounded set of < w; such that we can
find an infinite antichain X C A N § which (considered as a set of ordinals) is
unbounded in d. We now use this fact to prove our initial theorem.
Proof of Theorem 4.2.3: Let (Bs : 0 € Lim(w;)) be a witness to {. Choose
disjoint uncountable sets, A; and A,, such that w; = A; U Ay. Fix bijections
7 Al — [wi]? and T @ Ay — wi. We define (As : § € Lim(w,;)) as follows. If
71[BsN A4] is the pre-relation for a tree ordering on the ordinal §, and 75[Bs N As] is
an unbounded subset of § that is a superset of some B with order-type w such that
B is unbounded in § and also forms an antichain in the tree given by (6, <;,(5,n4,]),
then set As = B (choose such a B arbitrarily). Otherwise, let As be an arbitrary
sequence cofinal in §, of order-type w.

We will show that (A5 : § € Lim(w;)) is a d-sequence that is not directly
T-preserving for any Suslin tree 7. Assume that this is not the case, and that in
fact either there is such a T' (with underlying set w;) or there is an uncountable

set X C wy contradicting (As : 6 € Lim(w;)) being a witness to &. Thus we can
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either find a closed unbounded set £ C w; such that if 6 € F then Aj is not an
antichain in T or a closed unbounded set £ such that if § € E then A; € X. The

following set is also closed unbounded:

E ={d <w : (TNJ§<r]0d)isatree} N{d <w:sup(X Nd)=0}nN

{6 <wy:0NX contains an antichain in 7', cofinal in d}.

This follows from the previous two lemmas, as well as basic facts about closed
unbounded sets. Let Y = 77! [<7] U7y H[X], and S = {a € Lim(w;) : B, = YNa}.
The latter is stationary, so S N E’ is also stationary. If 6 € S N E’, then by our
definition of (A5 : § € Lim(w)), As must be an antichain in (4, <r| §) and we
must also have As; C X. This contradicts the fact that either F or F; is closed
unbounded. So the theorem is proved.

OJ

If Ais a witness to & in V' and if we hope to prove Con(ZFC) — Con(ZFC +
SH + &) by preserving A as a witness to & over a forcing iteration, then A must
not be directly T-preserving for any normal Suslin tree 7"in V. This is perhaps not
a sufficient condition for the existence of an appropriate forcing, but it is certainly
a necessary condition. We have shown that under <) there is a &-sequence, A,
satisfying this necessary condition.

The following is unknown:
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Question 4.2.7. Can there be a model of =CH 4+ —SH + & in which for any wit-

ness to &, A, there is a normal Suslin tree T such that A is directly T-preserving?
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Chapter 5

Cardinal Arithmetic and &

We have seen that (& + CH) — {, and that ¢ implies the Continuum Hypothesis
(see Chapter 1); intuitively, we think of & as being < with this cardinal arith-
metic assumption removed. In this chapter we give this intuition some further
justification, by proving that & is consistent with the negation of the Continuum
Hypothesis. This result is originally due to Shelah [27]. The proof we give is due
to Fuchino, Shelah and Soukup [11] and uses forcing; it proceeds by starting from
a model of ¢ + GCH and adding Cohen reals to it while simultaneously ensuring
that a witness to & in the ground model remains a witness to & in the generic
extension. Most of the known proofs of the relative consistency of & + -CH, that
do not involve collapsing cardinals, proceed in this manner. In Section 5.2 we ask
whether the same result can be established in a different manner: by starting with

a model of -CH (and possibly some other assumptions) and forcing & to hold
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without collapsing the continuum. It is not known whether this can be done in
general. If it were indeed possible to find such a forcing then it could potentially
be used to obtain results on Juhasz’s question and other related matters. We give
a partial result here, showing that & can always be forced when a weaker version

of & holds, without collapsing 2.

5.1 The consistency of & with -CH

There are many proofs of the following theorem (see Section 1.1.1). The one we
give here, which we believe to be the shortest, is due to Fuchino, Shelah and

Soukup [11]:
Theorem 5.1.1. Con(ZFC) — Con(ZFC + & + —CH).

We start with a model of ZFC satisfying ) + GCH. It is straightforward to
prove that the consistency of ZFC implies the existence of such a model (see for

example [19, VI]). The forcing we use is defined as follows:

Definition 5.1.2. We define a partial order P = (P, <p) as follows:

e Let P be the set of all countable partial functions, f, from ws to 2 such that

for any ordinal o € Lim(ws), dom(f) N [a, a 4+ w) is finite.

e Let p,g € P. Then q <p p (q is stronger than p) if and only if both of the
following hold:
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(i) ¢ extends p as a function, i.e. ¢ 2 p.

(ii) The set of a € Lim(ws), with dom(p) N[, a+w) # dom(q) N[, a+w)

and dom(p) N [, a + w) # (), is finite.

It is easy to check that P is a notion of forcing. We will henceforth abuse

notation by writing p € P rather than p € P when p is a condition in this forcing.

Theorem 5.1.3. Let V be a model of ZFC such that V' £ { + GCH, and let G be

a P-generic filter over V. Then the generic extension V[G] satisfies the following;:

VG

(i) wy = w I and wy = w;/[G]

(i) &
(iii) —CH.

For the rest of this section we fix G to be a specific P-generic filter over V', as

above; we split the proof of the theorem into a series of lemmas and a proposition:

Proposition 5.1.4. Let f be a P-name for a function and p € P be a condition
such that p - “f : w/ — wY”. Then there is an unbounded set AP/ C w; in V
and a function g7/ : AP/ — W, also in V such that for every ordinal § < wy there

exists a ¢° <p p in P for which ¢° IF “gpf I (Ap’f nd) = 1 (Ap’f ndy)”.

Proof We will make use of the following A-system Lemma: if <" = k, and W
is a collection of sets of cardinality less than , with |W| = k¥, then there is a
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U C W with |U| = k™ and a set v such that for any distinct x,y € U we have
x Ny =wv. (For a proof of this Lemma see [19, II].)

Now fix p and f to be as in the statement of the Proposition. We define two
sequences (p, @ @ < wy) and (g, : @ < wi) of conditions in P, and a sequence
(Uug : @ < wyq) of finite subsets of wy, by induction. Let py = p = qo and uy = 0.
When a = 8+ 1 and pg, gz and ug are defined, we choose g, to be a condition
such that ¢, <p pg and g, IF “ f (o) = v,” for some countable ordinal 7,. Let p,

be equal to:

ps U (qa LG ¢+ w) i ¢ € Lim(w,) and dom(pg) N [¢, ¢ +w) = @}) :

This gives us p, <p pg. Set u, to be:

{¢ e Lim(ws) : go [ [¢,C+w) #ps [ [(,¢+w)and ps [ [(,¢+w)#0}.

When « is a limit ordinal, let p, = s, ps, which will be a condition in P due
to the way we are constructing (p, : @ < wy), and choose a condition ¢, such that

4o <p P, and ¢, IF “f(a) = 74" for some v, < w;. Let p, be equal to:

P U (o TUHIC G +w) £ € € Lim(wn) and dom(pl) 1 [¢,¢ +w) = 0})
Set u, to be:

{¢ € Lim(ws) : qo T [, ¢ +w) # pg [ [¢, ¢+ w) and pf, [[(, ¢ +w) # 0}

The collection {u, : @ < wy} is an uncountable set of finite sets, so by the A-
system Lemma there is a cofinal subsequence (u,, : € < w) and a finite set u C wy
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such that for all 7,7 < wy, Ua, N us; = u and because there are only countably
many possibilities for qa, [ Use,[B, 8 +w) we can choose this cofinal subsequence
to have the further property that qo, [ Uze,[8,8 +w) = qa; [ Ugeul B, B+ w) for

all 7,7 < wy, and to be such that if + < j < w; then

{B € Lim(ws) : qa; [ [B,B+w) # qa; [ [B,8+w) and qo, | [B,8+w) # 0}

is a subset of w.

This latter requirement is possible because if we are given an ¢ < w; then
dom(q,,) is always countable and so, by the fact that these sets form a A-system,
we can find a countable ordinal o for which all o; with o/ < a; < w; are such
that g,; meets this requirement.

Once this is done, the sequence (q,, : € < w;) will be a decreasing sequence of
conditions such that any countable initial subsequence (g, : € < v < w;) has a
lower bound in PP. We define the lower bound to be: ¢** = J,_, ¢a.-

To see that this is the case, let i < j be less than . The only 5 € Lim(ws) for
which ¢, and q,, both differ from p,, on the interval [f3, 5 + w) are those § € u,
in which case we have chosen ¢,, and ¢,; to be identical on this interval, or those
where ¢,, [ [8, 8 + w) is empty. This means that ¢* =, < o 18 a condition in
P, and is a lower bound to all q,, for e < 7, and is also less than p.

So any countable initial subsequence (ga, : € < 7 < wy) has a lower bound, ¢*7.

Let AP/ = {a. : € < w}. Then the function g»f + AP 5 ), given by setting
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gp’f (@) = Ya., can be defined in V', by the definability of the forcing relation, and
is such that ¢®v IF “gP/ | (Ap’f'ﬂay) =f1 (Ap’fﬂa,y)”. The sequence (o : € < wy)

goes cofinal in wy, so for an arbitrary § < w; we can find a ¢° as required.

Lemma 5.1.5. Let V and G be as in Theorem 5.1.3, then w) = wY[G].

Proof Assume this is not the case. Let p be a condition and f be a P-name for
a function such that p IF “f : w! — w and f is injective”. Applying Proposition
5.1.4 gets us a function gp’f and an uncountable set AP C wy, both in V| such
that gp’f L APS wy and which witnesses the Proposition. But gp’f € V so cannot
both be injective and have ran(g”/) C w. Let § < w; be such that g7/ | (A N §)
is either not injective or its range is not a subset of w. Then we can find a ¢° <p p
as in the conclusion of Proposition 5.1.4, in which case we have ¢° IF “f is both
injective and not injective,” or ¢° I+ “ran(f) C w and ran(f) € w”, which either

way is a contradiction.

Lemma 5.1.6. Let V and G be as in Theorem 5.1.3, then wy = w;[G].

Proof The result follows from the fact that IP has the Ny-c.c. To see this, assume
otherwise and let (p, : @ < ws) be an antichain of size No. Then the set {{f €
Lim(wy) : dom(ps) N [B,8 + w) # 0} : o < we} is a collection of countable
sets. V E GCH, so applying the A-system Lemma (as stated in the proof of
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Proposition 5.1.4) gives us a subsequence (p,, : € < wg) such that for all 7,j < we
we have some fixed u for which {y € Lim(wy) : dom(p;) N [y,v +w) # 0} N
{~ € Lim(ws) : dom(p;) N [y,7+w) # 0} = u. If any two such p; and p; are equal
when restricted to Uy@u[% v + w) then they will be compatible elements, by the
definition of the forcing. Furthermore, u is a countable set. But this means there
can only be wy many functions f : {J,c,[v, v+w) — 2, because V' F 2% = w;. So by
the pigeonhole principle we can find a cofinal subsequence of our original antichain,
(Do, : € < wo), consisting of pairwise compatible conditions, which contradicts its

being an antichain.

Lemma 5.1.7. Let V and G be as in Theorem 5.1.3, then V|G| E —-CH.

Proof The generic function G’ = |JG is a total function from ws to 2 because
for each a < wy the set D, = {p € P : o € dom(p)} is a dense subset of P in V.
For each o € Lim(ws), the set N, = {n < w : G'(a +n) = 1} is a subset of w
in V[G]. Let o < /3 both be in Lim(ws), then D = {p € P: (pla+n):n <
w) # (p(B+n) :n <w)} is a dense subset of P, because p | [a, a + w) is finite for
any o € Lim(ws). So for any a < f in Lim(ws) we get N, # Npg, giving us a set

{N, 1 a < wq} of Ny distinct subsets of w in V[G], by Lemma 5.1.6.

Lemma 5.1.8. Let V and G be as in Theorem 5.1.3, then V[G] E &.
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Proof Let (A5 : § < w;) be a witness to & in V. Let f,7 be P-names and
p € P be such that p IF “f : w; — wy is injective and 7 = ran(f)”. Then apply
Proposition 5.1.4 to find in V' a gp’f and AP/ with the properties stated there. Let
B = ran(gp’f), which will be an uncountable set in V. Let § < w; be such that
As C B, then there is a ¢’ < w; such that As is contained in ran(gp’f I (Ap’f nd’)).
Then let ¢* be as defined in Proposition 5.1.4, giving ¢® < p and ¢* IF “As C 7.
Since p was arbitrary, except for the properties stated above, this establishes that
if 7 and 7 are such that r IF “7 € [w;]“'” then the set of conditions forcing A5 C 7
for some 0 < w; is dense below r. Hence (As : 0 < w;) remains a witness to & in
V[G]. (Strictly speaking we need to show there are stationary many such 4, but
in fact it is sufficient to just show that there is at least one. Here we are implicitly
using Theorem 6.1.2, which is proved in the next chapter. A direct proof without
using this theorem is possible, but involves a slightly longer argument.)
OJ
This completes the proof of Theorem 5.1.3 and consequently of Theorem 5.1.1.
We have in fact proved that every witness to & in the ground model remains a

witness to & in the generic extension. This fact gives us the following:

Remark 5.1.9. Let T be a normal Suslin tree in V. Then T is a normal Suslin

tree in V[G].
Proof By Corollary 4.1.5, see Chapter 4.
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O
In fact, every Suslin tree in V', whether normal or not, remains Suslin in V|G|,

as discussed in Chapter 4.

5.2 A different approach to Con(é + —CH)

Now we consider whether the same result can be obtained by starting with a model
of “CH and —é& (for example, a model of Martin’s Axiom, MA(w;)) and forcing
to get a d-sequence without also forcing CH to hold. Specifically, we ask: when
can there consistently exist a forcing Q in a model V' E ZFC + —-CH + —é such
that forcing with Q causes & to hold in the generic extension and doesn’t collapse
cardinals?

We will show here that such a Q exists when we assume that a weak version
of & holds in V' (one that in particular is not compatible with Martin’s Axiom),
but we would conjecture that in general such a Q need not exist. If such a forcing
could be constructed (in ZFC or from weaker assumptions than those in Theorem
5.2.2, such as T) then questions such as Juhasz’s question could potentially be
approached by, for example, starting from a model of =CH with no Suslin trees
and forcing & to hold via a forcing that doesn’t collapse cardinals or add Suslin

trees. We do not know if this is possible.

Definition 5.2.1. &“ denotes the following statement: there exists a sequence
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(As : 0 € Lim(wy)) such that for all 6 € Lim(w), |As] = w and for all A € A;
we have sup(A) = § and otp(A) = w, and if X C w; is uncountable then the set

{6 € Lim(wy) : 3A € As(A C X))} is stationary.

Theorem 5.2.2. Let V E ZFC + &“. Then there is a c.c.c. forcing Q in V' such

that if G is a Q-generic filter over V' then V|G| F &.

Proof Begin by fixing (As : § € Lim(w;)), a witness to &“ in V. We also fix x
to be a ‘sufficiently large’ cardinal (see the discussion of this term in Chapter 2);
taking y = 22° will suffice.

We will define Q = (Q, <g) by inductively defining two uncountable sequences
(No oo <wy)and (Qy 1 @ < wy). As we go along we will also define an uncountable
sequence of functions (f, : @ < w), though we ought to note that we do not in
general define f, at the o' stage of the induction.

We first choose Ny, a countable elementary submodel of (H(x), €) containing

wi, in V', and let (Qy be the set:
{f € Ny : f is a partial function from w; to 2 and otp(dom(f)) < w*”}.

Now let @« = 8 + 1 and assume that ()3 and Njg are already defined. If
is a limit ordinal then assume we have also defined a sequence (f, : v < ).

We describe the construction of @,. First we choose N,, a countable elementary

submodel of (H(x), €) such that N3 C N, 8 C N, and if /5 is a limit ordinal then
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(fy v < B) € Ny and for each A € Ag the set |J ., f, is in No. We can always
find a suitable N, by the Lowenheim-Skolem Theorem.

Then let (), be the set:

{f € N, : f is a partial function from w; to 2

and otp(dom(f)) <w* and if i < B then f [ i€ N;1}.

When « is a limit ordinal and ) is defined for all 3 less than «, then let
Na = Ugey N3, which is also an elementary submodel of (H(x),€). Let Q, =
U s<a @5 We may also need to extend our sequence of functions to be of length a:
specifically, if «v is not a limit of limits, so is of the form o’ 4w for some o/ < «, then
extend the existing sequence of functions, (f, : v < &'), to a sequence (f, : v < )
that enumerates all of (), without any repetitions. When « is a limit of limits
then (f, : v < ) will already be defined.

Finally, let Q = U, ., Qo and let ¢ <q p for p,q € Q if and only if ¢ 2 p. We

a<w

now prove the following:

Claim 5.2.3. Given W = {r, : @ < w}, an uncountable set of conditions in Q,
we can find an uncountable U C w; such that {r, : « € U} is a set of pairwise
compatible conditions and for stationary many 0 < w; there is a countable set
x C U with otp(z) = w, sup(z) = ¢ and such that {r, : @ € x} has a lower bound

(i.e. there is a condition ¢ € Q such that for any o € z, ¢ <g 4).
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Proof We will need to make use of the following result of Fodor: if S C w; is
stationary and h : S — w; is such that h(a) < a for all & € S (in this case we say
that h is regressive), then there is an € < w; such that the set {o € S : h(a) = €}
is stationary.

Now, let W be an uncountable set of conditions in @, as in the statement of
the claim. There is a closed unbounded set of limit ordinals C' C w; such that for
d € C there are uncountably many conditions p € W with sup(dom(p)Nnd) < d. To
see this, assume not and let 7" C w; be a stationary set of limit ordinals such that
for 6 € T there are at most countably many p € W with sup(dom(p) N¢) < 4. Let
v be such that otp(T'N~y) = w®. T'N~ is countable, so by assumption the following
set must be countable: W' = {p € W : sup(dom(p) N J) < ¢ for some 6 € T'N~}.
Let ¢ € W\ W'. Then sup(dom(q) Nd) = 0 for all 6 € T'N~, but this means
dom(gq) must have order type greater than or equal to w*, which contradicts the
definition of Q.

We will now define a sequence of conditions in W, (p, : a € C) where C
is as above, by induction. (Formally, this will be a cofinal subsequence of the
enumeration of W, (r, : @ < wy), but to avoid an excessive use of subscripts
we write e.g. pg rather than 7“%.) So let pmincy be an arbitrary member of
W. Now assume that a < w; and for all © < «, p; has been defined. Choose

Po t0 be any condition in W not already equal to p; for any i < «, such that
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sup(dom(p,) Na) < a. C was defined so as to make this possible. For each o € C'
we let h(a) = sup(dom(p,) N ), giving us h : C' — wy, a regressive function. By
Fodor’s Lemma we get a stationary set S and some € < w; such that o € S implies
sup(dom(p,) N a) = €, hence dom(p,) N [e+ 1, ) = 0.

Let S’ C S be given by:

S"={a €S : forall B < «a, sup(dom(pg)) < a}, which is a stationary set
because the conditions in Q have countable domains. Then for any «, 5 € 5,
dom(p,) N dom(ps) C e. But for any o € S’, p, | € € Neyq by the definition of Q,
and N, is countable, so there are only countably many possibilities for p, | e.
There are also only countably many possibilities for the order type of p,.

Thus, because S’ is uncountable, we can find a p < w* and a function f such
that there is an uncountable S” C S’ for which o € S” implies p, | € = f and the
order type of p, is p. We define a sequence enumerating a subset of {p, : @ € S”}
as follows:

Recall the sequence (f, : v < w;) we defined in the definition of Q. This
sequence enumerates all conditions in Q with no repetitions. Let ag = min(S”).
Now assume «; is defined for all i < j < wy. Let o; € 8"\ (sup{e; : i < j} +1) be
such that p,; is equal to f, for some y greater than sup{3 < w; : I < j(fs = pa,)}.
This sequence, (p,, : @ < wy), thins out the set {p, : @ € S”} so as to ensure

that an increasing subsequence of (p,, : i < wy) will correspond to an increasing
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subsequence of (f, : v < wi).

Let U = {«; : i < wy}, which is uncountable. Then the sequence (p,, : i < wy)
is not only a subsequence of the enumeration of W but also a cofinal increasing
subsequence of (f, : v < wy), which enumerates all of Q. For every i < wy, let
7; be the unique ordinal such that p,, = f,,. Then U’ = {v; : i < w;} is also
an uncountable set. So by the definition of &* there are stationary many § < w;
having an A € A; with otp(A) = w and A C U and sup(A) = 0. Fix such a
d. To prove the claim we need to show that the set |J e Pa; 1s a lower bound
to {pa, : 7 € A}. First, note that it is a function because p,,ps agree on their
common domain, for «, 8 € S”, and its domain has order type at most p.w, by
the construction of S”. This is less than w* because p is less than w“. Also
U%_ c4Pa; € Nsy1 by the definition of Q (our forcing was cooked up specifically for
this purpose; the fact that <U%€A pai> [ j € Njq for i < ¢ follows from the fact
that this is a union of only finitely many functions in N,44), so it is a condition
in Q. Setting z = {a; : 7 € A} gives us a countable set of the kind stated in
the Claim, and it is clearly the case that otp(z) = otp(A) = w and x C U. And
sup(z) is equal to § for at least stationary many of the 6 under consideration. So
the claim is proved.

OJ

Continuation of the proof of Theorem 5.2.2: Let G be a Q-generic filter
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over V and fg = |JG be the generic function. Let G’ = f;'(1), an unbounded
subset of wy. Fix a series of functions (h, : « € Lim(w;)) in V such that h, :
[a, a4+ w) = «a and h, is a bijection. Then we claim that (h, [([a, @ +w) NG)] :
a € Lim(w)) is a d-sequence in V[G].

To see this, let p, f and 7 be such that p IF “7 € [wi]“r and fiw = wis
its increasing enumeration”. Then let (g, : @ < w;) be a sequence of conditions
such that for each a < wy, ¢, I+ “f(a) = 7,  for some v, < w;. There is a
closed unbounded set E C wy such that for all § € E, sup{7y; : i < 0} = 4. So
by applying Claim 5.2.3 we can find stationary many 6 € E and for each one a
countable set 2° C w; such that ¢° = [J{q. : @ € 2°} is a condition in Q with
sup(dom(¢®)) = sup{y: ¢’ IF “y € 7"} =6. Let Y = hi'[{y: ¢’ IF “y € 77}], a
subset of [d, 6 + w). Then ¢} = ¢° Uk}, where h} is the function with domain
[0, 8 + w) such that A) [Y] = {1} and h}[[d, 6 +w) \ Y] = {0}, is a condition in Q
and clearly it is the case that ¢% I “ran(hs | ([6,0 + w) N G’)) € 77. So we have
shown that the set of § € Lim(w;) for which there exists a dense (below p) set
of conditions forcing “hs [([d,0 +w) N G')] C 77 is stationary. Hence the sequence
(ho [([a,a+w) NG| : a € Lim(wy)) is a de-sequence in V[G].

It remains to check that Q does not collapse cardinals. But this is an immediate
Corollary to Claim 5.2.3, which actually establishes that the forcing has a very

strong form of the countable chain condition (stronger even than the Knaster
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property).
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Chapter 6

Sometimes the Same: & and the

Invariance Property

In this chapter, and in Chapters 7 and 8, we define several variations on the
axiom & and ask whether they are formally equivalent (either in ZFC or with
the assumption of extra axioms); we present both positive and negative results.
Consistency results are dealt with in the latter two chapters, while the present
chapter is devoted to giving combinatorial results.

We begin by observing that <) is formally equivalent to many of its apparent
weakenings and strengthenings: this phenomenon is widely documented (see [19,
IT] or Section 6.1, below) and leads us to say, following [9], that { has an invariance

property. The extent to which & shares this invariance property is not as widely
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known, although the paper [9] has answered several key questions in this area.
Our purpose here and in the following two chapters is to extend the known results
on this and to refine the techniques that can be used to attain them.

In this chapter, for the first time, we will work with slightly different definitions
of both <) and &, which allow us to take a stationary set as a parameter and which
can be immediately generalised to uncountable regular cardinals other than w;. So
let S be a stationary subset of a regular cardinal A, consisting only of limit ordinals.

We generalise ) and & as follows:

($(S)) There exists a sequence (Bs : § € S) such that By C ¢ for all
d € S and if X C A, where A = sup(.S), then the set {0 € S: X Nd =

Bs} is a stationary subset of A.

(d(S)) There exists a sequence (As : § € S) such that A; C ¢ with
sup(4;) = 6, for all § € S, and if X € [A\]}, where A = sup(S), then

the set {d € S: As C X} is a stationary subset of \.

The specific axioms & and < that we have been working with up to now
are therefore &(Lim(w;)) and (Lim(w;)) respectively, though in future we will
denote them &(w;) and {(w;) for the sake of convenience. Our notation for &(S)
and <(.S) does not make explicit reference to A, but it will always be clear from

context.
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6.1 The invariance property of

Perhaps the most well-known result exemplifying the invariance property of < is

due to K. Kunen, who considered the following axiom:

(O7(S)) Let A = k™ and S C X be stationary. Then there exists a
sequence (Bs : § € S), for which B; = {B: : i < k} and B} C ¢ for each
d € S and i < k, such that if X C A then the set {§ € S: X N§ € Bs}

is a stationary subset of .

Kunen proved that this apparent weakening of <} is not in fact a weakening
at all. The proof generalises to any uncountable successor ordinal A\, and any

stationary S:
Theorem 6.1.1 (Kunen). $(S5) <> $(9).

Proof See [19, II].
O
Many other equivalent versions of {» have since been found, all of which seem at
first sight to be substantially different statements; see for example [6]. (We should
point out, however, that there are also many variants of {5 that are known to be
strictly weaker or stronger that {: for instance {* and {$+ are both stronger. See
(19, II].) Equivalences between different versions of & have not been explored to
the same extent. The equivalence of the following two statements is perhaps the
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most widely known positive result in this vein. Let S be a stationary subset of a

regular uncountable cardinal A:

(#!'(S)) There exists a sequence (As : 6 € S) such that As C § with
sup(4;) = 4, for all § € S, and if X € [A\]* then the set {0 € S : A5 C

X} is a stationary subset of .

(#2(S)) There exists a sequence (As : 6 € S) such that As C § with
sup(As) = 6, for all 6 € S, and if X € [A\]* then the set {6 € S : As C

X} is non-empty.

Theorem 6.1.2. &'(S) <> &*(5).

Proof &'!(S5) — &(9) is trivial, so we prove &*(S) — &'(S).

In fact, we show that a witness to &?(S) is also a witness to &'(S). Let
(A5 : § € S) witness &*(S), and X be in [\]}. Assume that C' C ) is a closed
unbounded set having empty intersection with {§ € S : As C X}. Choose an
increasing sequence of ordinals less than A, denoted (7, : @ < A) such that if « is
a successor ordinal then v, € C' and if « is a limit ordinal then 7, € X. Both C
and X are cofinal in A so this can be easily done. Then {v, : « € Lim(\)} C X
is unbounded so there is a 6 € S with A; C {7, : @« € Lim(\)} C X. From our
construction of (7, : @ < A) we can find a set of ordinals in C' with supremum 0,

hence § € C' because it is closed. This is a contradiction.
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OJ

There is a good explanation as to why Theorem 6.1.2 is perhaps the only well-
known example of an equivalence between two variants of &: it is one of only very
few such statements that are actually true. We give a further example in Corollary
6.2.4, but most of the variants of & that we consider in this thesis can be shown
to be pairwise inequivalent (see Chapters 7 and 8).

However, we have seen in Chapter 1 that (& + CH) is equivalent to {; in
fact, many weaker variants of & are also equivalent to {» in the presence of CH.
So if the Continuum Hypothesis holds, the equivalence of two different variations
on & can often be inferred from the fact that they are both equivalent to ). We
conclude from this that the invariance property of & is dependent on the cardinal
arithmetic statements that are assumed to hold in the set-theoretic universe. In
this chapter we show that, even with seemingly weak cardinal arithmetic assump-
tions (in particular, those that allow < to fail), we can find non-trivial variants of
& that are formally equivalent. Our technique derives from the proof of a recent

theorem of Shelah that improved on a classical result of Gregory:

Definition 6.1.3. Let A and x be infinite regular cardinals with x < A. Then
S2 denotes the set {a < A : cf(a) = &}, which will always be stationary. And

5%, = {a < X:cf(a) # k}, which will be stationary when A > w.
Theorem 6.1.4 (Gregory, [13]). If k is regular and A is such that \* = X and
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2% = \*, then (S2") holds.

Shelah’s result removes one of the conditions from this theorem, giving us full

equivalence between {(A*) and 2* = \*:

Theorem 6.1.5 (Shelah, [29]). Let A be uncountable and S C S;\;f()\) be a sta-

tionary subset of AT. If 2% = AT then there exists a sequence witnessing (5.
Notation 6.1.6. We will write CH, to denote the statement that 2* = A\ ™.

Shelah’s result established the equivalence between CHy and {(AT) for all un-
countable cardinals A, but there remain open questions concerning the stationary
sets S that can be taken as parameters. For example, when A\ is singular it is not
known whether Q(ng?/\)) follows from CH,. M. Zeman proved that the answer
is positive assuming the weak square, [J} (see [33]). A. Rinot isolated the use
of [} in this proof and was able to replace it with a weaker assumption called
the Stationary Approachability Property (SAP,), see [26]. The common methods
used in all of these proofs are foreshadowed in at least two classical results of
combinatorial set theory: Shelah’s theorems on club guessing and Kunen’s result
in Theorem 6.1.1. Both Theorem 6.1.5 and 6.1.1, as well as several club guessing

theorems, follow from our results in this chapter as specific instances.
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6.2 & with multiple guesses

We begin by defining a weakening of &(S) that generalises the axiom & we
encountered in the previous chapter. Again this axiom asserts the existence of a
sequence indexed by a stationary set of limit ordinals, but rather than presenting
us with a cofinal subset of §, for each ¢ in the indexing set, the sequence now
presents us with a set of cofinal subsets of 9. We signify this by writing Ajs instead
of As, and we specify some bound on the size of As to avoid trivialities. The axiom

&“ was first introduced by M. Rajagopalan in [25].

Definition 6.2.1. For A\ a regular cardinal, k < A\ a cardinal, and S C X a
stationary set, the axiom &"(S) is the statement that there exists a sequence
(As : 0 € S) such that |As] = & for all § € S, and for every unbounded subset

X C X there exists a § € S and an Aj € Aj;, such that A5 C X and sup(4f) = 4.
Notation 6.2.2. Let x and A\ be ordinals and X C x x A. Then for i < k, let
(X)={B <A:(i.B) € X}.

Theorem 6.2.3. Let k < A be cardinals, with A regular. If A* = A then &"(.5) «+»

&(5), for any stationary S C A.

Proof Let (A; : § € S) be a witness to &*(S) and let (A% : i < k) enumerate As
for each 6 € S. Let (D, : a < A) be an enumeration of [ x A]*", which is possible

because \* = X\ and |x x A] = A. Then for some i < x the sequence (B} : § € S),
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given by setting B = dN UaeAg (D,); for all § € S (unless this gives us a bounded
subset of d, in which case choose an appropriate Bj arbitrarily) is a witness to
&(9).

To prove this, assume it is not the case. Then for each i < x there is an
unbounded set X; C X\ and a closed unbounded set E; C X\ such that X, is not

a superset of B for any 6 € E; N S. Let E = (),_,. E;, and for each i < k, let

i<k
(z : € < ) be an increasing enumeration of X;. Then set Z, = U,_,, ({i} x {«1}).
Clearly each Z. has size k, and is a subset of £ x A.

We define two sequences of ordinals (o, : p < A) and (5, : p < A\) by induction.
Let o be the least ordinal such that Z, = D, and let 3y = 0. Assume «a,, and
B,, are defined for all ;1 < p. Let o, be the least ordinal greater than sup{xféﬂ 1<
K, b < p} so that if 3, is such that Zg, = D,, then min({:p%p 1 < K}) is greater
than sup({oy, : 1 < p}). Fix S, to be as specified. This completes the definitions
of (a, : p < A) and (B, : p < A).

The set {a, : p < A} is an unbounded subset of A, so there will be some j < &
and a stationary S’ C S such that for § € S' we have A% C {a, : ¢ < A\}. (The
existence of such a j follows from the fact that the union of x many non-stationary
subsets of A cannot be stationary, so assuming there is no such j gives an immediate

contradiction. Of course, j depends on the set {a, : p < A}, otherwise the theorem

would be trivial.)
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Let § € S'NE; there are stationary many such 6. We have set B} = UaeAg (Da);
and A7 is a subset of {a, : p < A}, so for all B € A} there is an e with Dg = Z, =
Ui ({i} x {21}). Hence B C X;. The fact that sup(B}) = d follows from the
construction of the sequence (o, : p < A). This contradicts our choice of X; and
the statement is proved. The reverse direction of the theorem is trivial.

O

It is worth noting that Kunen’s result in Theorem 6.1.1 is a specific instance of
the above theorem, telling us that d(w;) <> &“(w;) if CH holds (though to obtain
this fact from Kunen’s proof we would have to reason via the chain of equivalences:
(CH + (1)) © O(wn) < Olwn) < (CH + d(wn)).

We also obtain the following ZFC result:

Corollary 6.2.4. For n < w, A regular and S C X stationary, &"(S) is equivalent

to d(S).

This answers a question asked by Rajagopalan in [25].

6.3 Another weak & principle

We now prove a similar result for a variation on &(.S) where the guessing property
is weakened from subsethood to cofinal intersection. This holds trivially if we don’t

put some kind of bound on the size of each A% (otherwise we could set A% = 4).
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Even with such a bound, a version of this principle holds in ZFC for successor

cardinals greater than w;.

Definition 6.3.1. For A a regular cardinal, < A a cardinal, and S C X\ a
stationary set, the axiom &~""(S) is the statement that there exists a sequence
(A5 : 6 € S) with As = {A} i < k} and |A%| < nfor all § € S and i < k, such
that for any cofinal subset X C X\ the following set is stationary: {6 € S: Ji < K

(sup(A5 1 X) = 6)}.

When A7 = X this apparent weakening is equivalent to &"(S). We prove this
by using a sequence of possible counterexamples to filter out those = € A% that
prevent (A; : § € S) from having the required guessing property.

Assuming A7 = \, once we have fixed a &~""(S)-sequence (A : § € ) and an

enumeration (dy : o < \) of [ x A]=7 then we can make the following definition:

Definition 6.3.2. For a sequence of sets (X, : a < v < n) with X, € [A\] for
each a < 7, we define V%7 (for § € S and i < k) to be the sequence (V> : o < )

where V2 = {e € AL : for all 3 < «, (d.)s C X3}

Lemma 6.3.3. If (As:J € S) is a witness to &~"%(S) and (X, : a < 7) is such
that for each o <  there exists a club set E, with 0 € E,NS implying that either

V2 C VS or sup(V) < § for all i < &, then we must have v < 7.

Proof Assume not. Then let (X, : @ < n) be a sequence contradicting the lemma,
and (E, : a <n) the associated club sets. Let £’ =1, Eq, and let (£ : p < A)
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be the increasing enumeration of X,,. Then the family of sets {e, : p < A}, defined
by setting e, = (§ : a < n) for all u < A, is a subset of [n x A=, so there is a
sequence (e, : ¢ < A) of ordinals less than A such that d., = e, for each p < A.
Then if 3 < n we have (e,)s = {£7}, so (e,)s € Xp. Let 6 € S and i < & be such
that sup(AsNY) =6, where Y = {¢, : p < A\}. Hence ASNY C V2 for all a < 7,
so sup(V.9%) = § for all a < 7, and because § € E’ this means that we must have
Vjﬁl C V2% for all a < ), giving us a strictly decreasing chain under containment,

of length 7. But V' C A} and |A%| <, which is a contradiction.

Lemma 6.3.4. Having fixed a &™""(S)-sequence as above, let (X, : a < v <
n) be a mazimal sequence satisfying the conditions of Lemma 6.3.3. Then the
sequence (Bs = {d N Ueevg,i(ale)7 11 < K} :0 € S), suitably modified to exclude

bounded subsets of J, gives us a witness to &"*(5).

Proof Assume not. Then let X, € [A]* be a set contradicting this, so there is
a closed unbounded set E, for which 6 € E, implies that for all « < s either
Ueevj,i(ale)7 Z X, or Sup(Ueevj,i<de)’y> < 0. FEither way we can find a closed
unbounded set E,, so that X, continues the sequence, contradicting its maximality.

O

This gives us:

Theorem 6.3.5. If ) is a regular cardinal and n < A is a cardinal, such that
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AT =\, then &~"%(S) — &"(5).

Proof By Lemmas 6.3.3 and 6.3.4.

Writing &~7(S) for &~71(S), we also get:

Corollary 6.3.6. If )\ is a regular cardinal and n < A is a cardinal, such that

AT = )\, then &~"(S) — &(5).
It is also possible to prove:

Theorem 6.3.7. For \ regular, n and x cardinals < A, and S C X stationary, if

A" = X then &~"7"(S) — &™(S).

Proof The proof of Theorem 6.2.3 can be altered slightly to give this result.
O
Theorems 6.3.5 and 6.2.3 were used implicitly by Shelah to show that CH), <>
O(AT) for A an uncountable cardinal. This is because a guessing principle of the

kind given in Definition 6.3.1 holds in ZFC for successor cardinals above w.

Theorem 6.3.8. Let A be uncountable and S' C S;zf()\) stationary. Then &~ (9)

is true in ZFC.

Proof For each § < At let (¢} : k < cf()\)) be such that for j < k < cf()\) we have
¢ C e, || <A and U<t 2 = ¢ (this is possible because each § < A\* has
cardinality less than or equal to A). Let X C A* be unbounded and 6 € S be such
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that sup(X N¢) = §. Then because cf(0) # cf(\) there must be some ¢ < cf(\)

with sup(c? N X) = 0. Hence ((c} : k < cf())) : § € S) witnesses the theorem.

Applying Theorems 6.2.3 and 6.3.5, we can conclude the following:
Corollary 6.3.9. If 2* = AT holds, then &~ (S) — &(S).

Corollary 6.3.10. If S C S3"

Jer(n) 18 stationary, then 2% = A" — &(5).

Combining this with the fact that for S C A*, (CH, + &(S)) is equivalent to

&(S), gives us an alternative proof of Shelah’s main result in [29].

6.4 & restricted to filters

All of the variants of & that we have considered so far have been able to, in some
sense, ‘guess’ arbitrary unbounded subsets of a regular \. We can form weaker
variants of & by requiring them to guess only those subsets of a regular A that
are in some fixed uniform filter F on A (a filter is uniform if it only contains

unbounded sets). “Club guessing” is a widely known example of this, where F is

the club filter.

Definition 6.4.1. For a uniform filter F on a regular cardinal A, and a stationary

set S C A, the axiom dx(S) asserts the existence of a sequence (Cs : 0 € S) with
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sup(Cs) = ¢ for all § € S, such that for all FF € F theset {0 € S: Cs C F}is

stationary.

We can define variants of &z (.S) that are analogous to those variants of &(S)

that we have already considered in this chapter:

(&"(S)) For a uniform filter F on a regular cardinal A, and a stationary
set S C A, the axiom &'%(S) asserts the existence of a sequence ({C} :
i < k}:0€S) with sup(Cf) = ¢ for all § € S and i < k, such that for

all F € F the set {§ € S:3i < k(C} C F)} is stationary.

(&Z""(S)) For a uniform filter F on a regular cardinal A, and a station-
ary set S C A, the axiom &;""(S) asserts the existence of a sequence
({Ci:i<k}:0€S8) with sup(C%) =6 and |C}| < for all § € S and
i < K, such that for all F' € F theset {0 € S : Ji < k(sup(CiNF) =4)}

is stationary.

We can then obtain results analogous to Theorems 6.2.3 and 6.3.5 in ZFC
alone, using completeness properties of the filter rather than cardinal arithmetic.
(We say F is k-complete for a cardinal « if the intersection of < xk many sets in F

is also in F. This is sometimes called x-closed.)

Theorem 6.4.2. Let F be a x™-complete uniform filter on a regular A\, with x < X,
and S C X stationary. Then &%(S) — &x(.5).
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Proof Let ((C}:i < k) : 0 € S) be a witness to &'(S). Then for some j < ,
(C] : 6 € S) witnesses &#(S). To see this, assume not. Then for each i < &
there is an F; and a club set F; witnessing the failure of (C} : § € S) to provide
a stationary set of guesses for F;. Let E' = (\,_, E; and F' = (,_, F;, which
are in the club filter and F respectively, by the completeness properties of both.
Choose some ¢’ € E'N{d € S: Ik < k(CF C F")}, hence for some k < r we get
Cé“, C F' C Fj, and ¢’ € E}, which contradicts our choice of F}, and Fj,.

O

Theorem 6.4.3. Let F be an n*-complete uniform filter on a regular \, with

n < A, and S C X stationary. Then &Z""(S) — &%(S).

Proof The proof is similar to that of Theorem 6.3.5. Let ({C} :i < k} : 6 € 5)
be a witness to #7""(S). For a sequence of sets (Fy, : a < v) with F, € F for
each a < 7, we define W% to be the sequence (W% : a < 4 1) where W' = Ci
and for 5 > 0, Wg’i = C5 N Naep Far Then if (F, : @ < ) is such that for each
a < 7 there exists a club set E, with 6 € E, NS implying that for all + < x either
W D W2, or sup(Wo) < &, we must have 7 < 1.

To see this, assume that (F, : @ < n) contradicts the claim, and (E, : @ < 1)
are the associated club sets. Let £’ =[,_, E, and F' = (,_, Fi,, which are in

the club filter and F respectively.

Let S” C S be the set {§ : Ji < k (sup(Ci N F’) =4§)}. Take some &' € S'NE'.
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Clearly for some i < k, sup(Wg”i) = ¢ because 0’ € §’. So for all & < n we must
have ng’ 2 Wj;l, giving us a strictly decreasing chain under containment, of
length 1. As before, this is a contradiction.

So let (F, : a < 7 < A) be a maximal sequence of this type. Then the set
(WP i< k}:deS)is awitness to dx(S). If not, we can find an F € F such
that there exists a club set E = {5 : for all i < x, W2 € F or sup(W2") < 6}. In
which case we can continue our maximal sequence, contradicting its maximality.

O

As before, we can also use the proof of Theorem 6.4.2 to get the result:

Theorem 6.4.4. If F is a k"-complete uniform filter on a regular A\, and S C A

is stationary, then &7""(S) — &7'(5).
From the above theorems, and Theorem 6.3.8, we can conclude:

Theorem 6.4.5. If )\ is uncountable, 7 C P(A") is a AT-complete uniform filter

and S C S;\;f( N is stationary, then &x(S) holds in ZFC.

Proof By Lemmas 6.3.8 and 6.4.4.
O
Club guessing is an instance of this theorem. However, Theorem 6.4.5 does not
strictly extend the known results on club guessing, since it can be shown that there
is a club guessing sequence for A™, where ) is singular, indexed by S C S g\f&). Since
Theorem 6.3.8 fails for such an S the following question is of particular interest:
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Question 6.4.6. For F a \"-complete uniform filter on A*, where \ is singular,

is it the case that ZFC &;(Sg\fz\))?

When 05 holds (or SAP), see [26]) it is known that the answer is yes, but it is

not clear if this is the case in ZFC alone.
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Chapter 7

Consistency Results on & and

Invariance, I

In this chapter we obtain consistency results pertaining to the invariance property
of &(wy). Recall from Chapter 6 that we say <> has an invariance property because
many of its apparent weakenings and strengthenings are in fact formally equivalent
toit. We also saw in that chapter that when certain cardinal arithmetic statements
hold several variants of &()), for a regular cardinal A, will be formally equivalent.
Thus we can say that in general & will increasingly approximate the invariance
property of { as increasingly stronger cardinal arithmetic statements are assumed.
(Specifically, if we fix a regular A then a greater number of variations on &(\) can

be proved equivalent as p increases, where p is the supremum of {x : \* = A}.)
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We will see in the present chapter, and in Chapter 8, that these equivalences do
not in general hold in ZFC alone. The present chapter is concerned with variations
on &(wy); other uncountable cardinals are dealt with in Chapter 8.

We have defined several variants of d(w;) already in this thesis, and we define
several more below: for any two of them, call them &'(w;) and &?*(w;), we can
usually find a forcing that preserves &' (w;) while ensuring that &?(w; ) fails to hold
in the generic extension, or vice versa, except where the results in the previous
chapter set limitations to this. The forcing techniques we use to show this are
similar to those seen already in Chapter 5.

In addition to those already defined, we will consider the following variants of

&(wi), where S C w; is stationary:

(~ &(S)) There is a sequence (As : § € S) such that for all § € S,
As C 6, otp(As) = w and sup(As) = 6, and if X C w; is unbounded

then there is a 6 € S such that A; \ X is finite.

(=“(S)) There is a sequence (As : 6 € S) such that for all 6 € 5,
As € [P(0)]™ with 2 € As; implying 2 C § and sup(z) = §, and if
X C w; is unbounded then there is a § € S such that x C X for some

.1'6./45.

(MCtPI(S)) There is a sequence (As : § € S) such that for all § € S,
As C 0 and sup(As) = 6 and otp(As) = 9§, and if X C w; is unbounded
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then there is a 0 € S such that As C X.

With the exception of &l°®!(S), all of these principles were considered by
Dzamonja and Shelah in [9]. There they developed a forcing iteration related
to that of Fuchino, Soukup and Shelah in [11], adapted to deal with forcings where
the iterands are uncountable but have a strong form of the Knaster property and
only contain conditions from the ground model. Aside from the trivial fact that
&“(S) is a direct weakening of both ~ &(.S) and &<“(S), and all are weakenings
of &(S), Dzamonja and Shelah proved that no other implications exist between
these principles in ZFC. &l°*P(.S), which is not addressed in their paper, is trivially
stronger than &(.S); we prove here that it is strictly stronger. We also prove that
&(.S) does not imply &(7") for any disjoint stationary sets S and 7" in the absence
of CH. These results are dependent on violating the Continuum Hypothesis, as

illustrated by the following simple extension of some well-known theorems:

Theorem 7.0.7. If 2¥ = w;, then ~ &(S) > &“(S) +> #<“(9) > &lW®(S) and

all are equivalent to &(.5).

Proof The statement follows if we prove:
(i) ~ &(S5) < &(5),
(i) (S) <> d(S5),

(i) H=(5) < (S),
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(iv) &EUI(S) & &(S).

It is clear that (ii) follows from Theorem 6.2.3, and (ii) immediately implies (iii)

since &(S) — =“(S) — &“(S). Also, (iv) follows from the fact that (CH +

&(9)) <> &(S) and that a witness to {(S) can be trivially modified to produce a

witness to &l°®/(S). This leaves only (i), but it is easy to see that if (As: 6 € S)

is a witness to ~ &(S) then (As; : d € S) is a witness to &“(S), where A; = {A} :

n < w} is constructed by letting A} be As with the n least elements removed.
Hence ~ &(S) — &“(S) — &(S) and the theorem is proved.

U

&(S), for a particular S C wy, is stronger than &(w;) and differs from &°P!(w,)

in that even when CH holds it does not seem to be equivalent to &(w;). We will

prove the following two theorems:
Theorem 7.0.8. Con(ZFC) — Con(ZFC + &(w;) + (P (w;))).

Theorem 7.0.9. Con(ZFC) — Con(ZFC + —CH + &(S) + —&(T")), whenever S

and T are disjoint stationary subsets of w;.

7.0.1 The forcing P,,

We will prove both Theorems 7.0.8 and 7.0.9 using a single forcing. The argument
will be simplified somewhat by the fact that neither of the two &-principles that
we wish to prevent from being true in the generic extension will require us to use
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an iteration. This is not the case with those considered by Dzamonja and Shelah

in [9].

Theorem 7.0.10. If S and T are disjoint stationary sets in V and V' | $(S) +
291 = w,, then there is a partial order P,,, such that if G is a P,,,-generic filter over

V then V[G] = &(S) + —&(T) + ~&lP(w;).

To prove this we begin by fixing S, T" and V for the rest of this chapter to be
as in the statement of this theorem. To ensure that our forcing preserves &, we
use an equivalent version of {» that can guess initial sections of sequences of the
form ((by,gl,...,g") : @ < wy), where n € w, g™ is a countable partial function
from wy to 2 for all 1 < m < n and a < wy, and the (b, : @ < wy) form a strictly

increasing sequence of countable ordinals. This is defined formally as follows:

Definition 7.0.11. Let S C w; be stationary. Then {'(S) is the statement: there
exists a sequence (B, : a € S) such that if ((ba, g}, ...,g") : @ < w;) is a sequence
where n < w and (b, : @ < wi) is a strictly increasing sequence of countable
ordinals, g7 € {(f: X = 2): f#0 and X Cw; and |X|=w} for all & < w; and

1 < m < n, then the following set is stationary:

{6 €5 Bs = ((bas gas - Guu) * ¢ < 8)}.

Notation 7.0.12. Let §={(f: X = 2): f # 0 and X C w; and |X| = w}.

86



The axiom {'(S) is equivalent to {>(.5), as we will now show. The techniques

are similar to those in [19, IIJ:
Theorem 7.0.13. {$(5) < $/(9).

Proof We first prove {(S) — $/(S5). Let {I,, : n < w} be a family of pairwise

disjoint uncountable subsets of w; such that |J = w;. Fix a sequence of

n<w In
bijections (p, : n < w), where pg : Iy — w; X wy and for 1 < m < w we have
Pm A —> w1 X §.

Let (D, : a € S) be a witness to {(S). We will use this to construct our witness
to $'(S). So given Ds, if ran(py | (DsN1p)) is an increasing sequence of countable
ordinals indexed by ¢, then set (b, : @ < &) equal to this sequence. If not, then let
it be an arbitrary sequence of countable ordinals indexed by ¢§. Similarly, for each
1 <m < w,ifran(p,, | (DsN1,)) is a sequence (of functions) indexed by ¢, then let
(gl = o < 9) be equal to this sequence. Otherwise let it be an arbitrary sequence of
functions indexed by ¢. Then we claim that (Bs = ((bg, 95,93, ...) * @ <9) : d € S)
is a witness to $’(.9).

To see that this works, let (C, = (ca,hL,...,h%) : @ < wi) be a sequence
of the type we would like to guess. We let X = py'[{(a,ca) 1 @ < wi} U
Usrcmen (o' [{(e, h) - a < wi}]). Now observe that for each 1 < m < n there
is a closed unbounded set of ¢ such that ran (p, [ (0 N[, N X)) ={h : a < d}.

Call such a ¢ good for m. Similarly, there is a closed unbounded set of § such
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that ran (pg [ (0N I N X)) = {ca : @ < 6}; call such a § good for 0. Then be-
cause the intersection of countably many closed unbounded sets is itself closed
unbounded, we can find a stationary set of § that are good for all m < n and such
that Ds = X Nd. Then it can be seen by our construction of Bs that Bs is equal
to (Co : < §). This completes the proof.

To see that $'(S) — (5), let X C wy be arbitrary, and (¢, : a < wy) its
increasing enumeration. The sequence (C, = (c,) : @ < wy) is of the correct form
to be guessed by '(S) (with n = 0 in this case), allowing us to construct a witness
to $(S), denoted (Ds : 0 € S), by setting Ds = {c, : @ < § and (a, (c,)) € Bs} if
(co : v < 0) is a sequence of countable ordinals, and setting Dy to be an arbitrary
subset of ¢ if not.

0

Now, towards the proof of Theorem 7.0.10 we fix a witness to ¢/(S) in V,
denoted (Bs : § € S). Our forcing will be rigged so as to preserve a particular
&-sequence, which we define using the sequence (Bs : § € S).

So let 0 be in S. Given Bs = ({ba, g, ...,g™) : a < §), we will define the set As
as follows: choose a strictly increasing sequence of ordinals, (¢, : [ < w), that has
order type w and is cofinal in 6. Given (b, : @ < 0), set As = {b,, : | < w}. It is
simple to check that (As : 6 € S) forms a witness to &(S) in V' (in fact, it follows

from our construction of Ds in the latter half of the proof of Theorem 7.0.13).
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We also make the following definition, to be used when defining our forcing (this
is used to ensure that (A; : 6 € S) remains a witness to &(S5) in the generic

extension), for 1 < n < ng:

Fp=a

I<w

For some values of 6 and n, F§* will be a function, while for others it will not.

We now define the forcing we will use:

Definition 7.0.14. We will force with the product of wy and a single c.c.c. forcing

Q. We define Q like so:

(i) Fix a continuously increasing sequence (NN; : i € C) of countable elementary
submodels of (H(x), €), where x is a “sufficiently large” cardinal (for an
explanation of this phrase, see Chapter 2) and C' is a closed unbounded
subset of w; with the property that N, Nw; = «a for a € C. We also
insist that for all @« € C, and all n < w, if F (as defined above) is a non-
empty well-defined partial function from w; to 2, then F} € Npinc\(a+1)
for 1 < n < n,. There are only finitely many such functions for any a € C
so it is possible to find such a sequence of elementary submodels, by the

Lowenheim-Skolem theorem.

(ii)) Q is the set of those countable partial functions f : X C w; — 2 in V with
the following further properties:
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(a) otp(dom(f)) < w
(b) flrie Nmin(c\(i+1)) for all 7 < wy

(c¢) If 6 € T then dom(f) N4 < 6.
(iii) The ordering of Q is by extension: f <g g (f is stronger than g) iff f D g.
Definition 7.0.15. When « is an ordinal we define P, as follows:

(i) Set P, = {p : pis a function with dom(p) = « and ran(p) = Q such that

{6 <a:p(f)#1lg} is countable}.

(ii) The ordering in PP, is given by ¢ <p, p if and only if for all § < a, ¢(8) <g
p(B), and

{B <a:p(B) # lg and ¢(B) # p(B)} is finite.

The support of p, written supp(p), will as usual denote the set {5 < a: p(B) #

lg}. We will also make use of the following notation:

Definition 7.0.16. If ¢, p € P, and ¢ <p, p then we write (abusing notation)
q <ppif q | supp(p) = p, and q <, p if supp(q) = supp(p). The h and v stand for
horizontal and vertical respectively. Of course, it is possible that ¢ <p, p can hold

while ¢ <, p and ¢ <, p both fail to hold.

We will force with PP,,,. This type of product forcing is based on that of Fuchino,
Shelah and Soukup in [11]. The partial order Q is proper (see the discussion after
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Lemma 7.0.21) and consequently P, is also proper, see [11]. However, we will
not make explicit use of this fact and will later give a direct proof that w; is not
collapsed (see Lemma 7.0.23).

We will need the following two technical lemmas, both of which were used in
Chapter 5. They will be used frequently throughout this chapter and the next, so

we state them in full generality here:

Lemma 7.0.17 (The A-system Lemma). If k<% = x, and W is a collection of sets
of cardinality less than x, with |[W| = k™, then there is a U C W with |U| = %
and a set v such that for any distinct z,y € U we have x Ny = v. In this case we

say that U forms a A-system and v is referred to as the root of the A-system.

Lemma 7.0.18 (Fodor’s Lemma). Let A be a regular cardinal. If S C X\ is
stationary and f : .S — A\ is such that f(«a) < a for all @ € S (in which case we
say that f is a regressive function), then there is some ¢ < A such that {f < A :

f(B) = €} is a stationary subset of \.

Proof See [15] or [19, II].

Lemma 7.0.19. P, has the Ny-c.c.

Proof Assume otherwise and let (p, : @ < wy) be a sequence enumerating an

antichain of size Ny. Then the set {supp(pa) : @ < wq} is a collection of countable
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sets. V' F CH, so applying the A-system Lemma gives us a subsequence (p,, : € <
wa) such that for all 7, j < we we have some fixed countable v for which supp(pa,) N
supp(pa;) = v. If any two such p,, and p,, are identical when restricted to v then
they will be compatible elements, by the definition of the forcing. There can only
be w; many functions f : v — Q, because V' F CH. So by the pigeonhole principle
we can find a cofinal subsequence of our original antichain, (p,, : € < ws), consisting
of pairwise compatible conditions, which contradicts its being an antichain.
O
We will also need the following two facts to establish the preservation properties

of our forcing:

Lemma 7.0.20. Let C' C w; be a closed unbounded set of limit ordinals. Given
an uncountable set X = {d; : i < w;} of countable subsets of w;, each with order
type < w”, there is a € C such that for § € C'\ § there are uncountably many

i < wp with sup(d; Nd) < 4.

Proof See the proof of Claim 5.2.3, the lemma is proved there.

Lemma 7.0.21. Q has the following properties:

(i) Q has the Knaster property (i.e. given an uncountable set X of conditions
in Q we can find an uncountable subset Y C X such that any two conditions
in Y are pairwise compatible).
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(i) Any partial order of the form [[, ., Q; where each Q; = Q and I is finite,

ordered by the product order, has the Knaster property.

(iii) If [],c; Qi is asin (ii) and (ps : 0 < wi) is an uncountable sequence of distinct
elements in [[,.; @i, then there is an uncountable subsequence <p5( PRRECES
wy) such that if z C wy has order type w then f,; = U P54, (1) 1s a countable
partial function from w; to 2 with otp(dom(f,;)) <a€<j°’, for each 7 € 1.

Proof It is clear that (iii) = (ii) = (i), so we concentrate on proving (iii).

Given (ps : § < wy), let ds = Udom(p(;(i)), for each 6 € wy. Then each d;s
is a subset of w; of order type leslseéhan w®, because it is a finite union of such
sets. Let & be the least ordinal in C' (where C' is as in Definition 7.0.14) such that
C'\ € is a final section of C' of the type asserted to exist in Lemma 7.0.20. We
define a sequence (dg,€p : f € C'\ &) by induction. Assume §;, €; are defined for
JjeBN(C\E). Let g be the least countable ordinal such that §z # §; for any
J € BN(C\E), and sup(ds, N 3) < B. By the previous lemma we know we can
carry out this induction, and it is well-defined even when § = min(C'). We then
let €5 = sup(ds, N B). Then the function h : C'\ & — wi given by h(f) = €
is regressive. By Fodor’s lemma there is some ¢ < w; such that for a stationary
subset S* C C'\ &, we have B € St = ¢5 =e.

For all € S' and i € I we must have ps,(i) | € € Nuyin(c\(e+1)), by the

definition of Q, so because [ is finite and Nyin(c\(e+1)) is countable there are only
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countably many possibilities for the sequence (p(;ﬁ(z') [ e :1 € I) whenever (3 is
in S'. There are also only countably many possibilities for (otp(ps, (7)) : i € I),
whenever 3 € S*, since there are only countably many order types < w*. Hence
we can find a stationary set S? C St with a, 8 € S% implying (ps, (1) [ €:1 € I) =
(ps; (1) [ € i€ I) and (otp(ps, (i) : i € I) = (otp(ps,(i)) : 7 € I); if we couldn’t
find such a set then we would have a partition of S* into w many non-stationary
sets, which is contradictory.

Now we will fix S? to be as above and define the required sequence (3, : o < wy)
by induction. Let Sy be an arbitrary member of S?. Let av < wy and assume (f; :
J < a) is already defined and is such that for j < k < a, sup(d(;(ﬁj)) < inf(ds, , \ €)
and S;, B € S2.

Let J = U Then sup(J) is a countable ordinal. So if 3/ € S? is

j<a d5<6j> :
such that sup(.J) < 8’ then we know h(3’) = sup(ds, N B') = € and consequently
ds,, Nsup(J)\ e = (). Thus we choose f3, to be the least member of S* greater than
sup(J) that has not already been chosen.

To see that this works, and that <p5(ﬂa) : o < wy) is a subsequence of the
required kind, we first remark that for any two j < k < wy, Pés,) and Psg,, are
pairwise compatible. To see this, assume not. Then there is some m € [ and

v < wy such that (p(;(ﬁj)(m))(y) # (P55, (m)) (7). If v < e, this contradicts the fact

that 3; and Sy are both in S? and hence that <p5(ﬁj>(i) leriel) = (ps, (1) [ €:
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i € I). So~v > ¢, but then we must have that v € d(;wﬁ \ €, in which case k was
chosen so that v ¢ ds, 8- This is a contradiction, so all such Pés)) and ps 5, A€
pairwise compatible.

Now to complete the proof of the lemma, let + C w; have order type w. We
know that f,; = U s ﬁ&>(i) is a function for all ¢ € I, otherwise pairwise com-
patibility would n((l)ixhold. We now just need to check that otp(dom(f,,)) < w,
for each ¢ € I. So let m € I, and consider f, ,,. For all @ € 2 we have 3, € 52, so
P, (m) has a fixed order type, call it p. We also know that there is a partition
of sup(z) \ € into w many intervals such that the intersection of dom(f,,,) with
each interval has order type p, due to the way we defined <p5( by < wy) so that
sup(d(;(ﬁj)) < inf(ds, ,) \ € whenever j < k < w;. Consequently, dom(f; ) has
order type < p.w. Since p < w* this implies that otp(dom(f,.,)) < w*, because
w* is closed under ordinal multiplication.

Therefore (ps,,, : @ < wi) has the required properties and parts (i), (ii) and
(iii) of the lemma are proved.

O

We write VP« E ¢ if it is the case that lp,, IF ¢. The following lemma

establishes one half of the proof of Theorem 7.0.10. The other half of the proof is

given in Section 7.0.2.

Lemma 7.0.22. VFe = &P () + —&(T).
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Proof We begin by proving VP« |= —&l°%l(w;). Assume otherwise. If we fix a
sequence of functions (hs : § € Lim(w)) in V such that hs : [§,0 + w) — J is a
bijection, any witness to &°%!(w;) in V[G] can be coded by an unbounded subset
of w; in V[G]. Let 7 be a name for a set that codes a witness to &[°**!(w;) in V]G],
f a name for its increasing enumeration, and let p € P, force this. We will write
(Bs - § € Lim(w;)) to denote this witness to &l°*l(w;) in V[G] and p' IF “y € Bs”
to mean p' I “B € 77 where 3 is in [§,0 + w) and hs(5) = 7.

Then there is an a < wq such that supp(p) C a and for every v < w; and
every p/ € P, with p’ < p and supp(p’) C « there is some r € P, with r < p/
and supp(r) C « such that r IF “f('y) = ¢’ for some € < wy. To see this, let
¢ < wa, then there are only w; many conditions below p in P,,, with their support
contained in (. Fach of these conditions has a smaller condition determining the
value of f (7), for each v < wy, so let the function 7, be defined as follows:

If ( <ws and v < wy then:

7 (¢) = min{p < wy : Vp' < p(supp(p’) C ¢ =

Jr < p'(supp(r) C p and Je < wi(r IF “f(y) = €))}.

The function 7., is closed on a closed unbounded set of ordinals in ws, hence
there is a closed unbounded set of ordinals less than w, on which ., is closed for
all v < wy. Let a be in this closed unbounded set and be such that supp(p) C «,
then « is as required.
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Fix such an a. Let G be a P,,-generic filter over V' containing p and write
G* = H{r(a) : r € G}. Then G* is a function from w; to 2, so let X* = {f <
wy 1 G*(B) = 1}. We will show that for all 6 € Lim(w) \ w®, the set of p’ < p that
force As € X is dense below p in P,,, completing the proof.

So let p’ < p be a condition in P,, and § be in Lim(w;) \ w*. Then the set:
{e <d: there exists a ¢ <p,_ (p' [ @) U (Ip,, [ (w2 \ @)) with

supp(q) C a and ¢ |- “e € As”}

must have order type greater than or equal to w*. Hence we can find a 5 < §
which is in this set and which is not in dom(p’(«)), because dom(p'(«r)) has order
type less than w* by the definition of Q. Let ¢® be the condition witnessing
the fact that 3 is in this set, so that supp(¢”’) C a. Then setting ¢* = (¢° |
@)U (p' (@)U (B,0))U(p' [ (w2 \ a+1)) gives us a condition ¢* <p, p’ that forces
B € As and B € X, hence forces As € X. But p’ was an arbitrary condition
below p, so for all 6 € Lim(w;) \ w* the set of conditions forcing As € X is dense
below p. This contradicts the fact that p forces (A5 : 6 € Lim(w;)) to be a witness
to ol (w)).

A similar argument establishes that V¥« = —&(T). Having assumed there is
ap € P, forcing (A5 : § € T) to be a witness to &(7") (coded by 7, a name for
an uncountable subset of w;), we can find an o < wy as before. Given a p’ < p
we can then find a 8 < § for all § € T such that 5 ¢ dom(p'(«)) and then we can
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construct a gt forcing As exactly as before. This completes the proof of the
truct a ¢ forcing As € X* tly as befi Thi pletes the proof of th

lemma.

7.0.2 Preservation properties of our forcing P,,

The proof of the next theorem makes use of an inductive argument that will be

crucial in determining several properties of the generic extension:
Theorem 7.0.23. Forcing with P,,, does not collapse w;.

Proof Assume that it does, and that f is a P,,-name and p forces f : (w)¥ — w

to be an injective function. Then we define (pq, ¢a, Uy : @ < wq) by induction:

(i) Let po = qo = p and up = 0.

(ii) Let a = B+ 1, and assume that pg, ¢ and ug are defined. Pick ¢, to be a
condition such that g, < ps and for some n < w we have ¢, I “f(a) = n”.
We then set p, = ps | supp(pg) U qa | (w2 \ supp(ps)) and let u, = {d €
supp(Pa) : Ga(9) # pal(d)}. So u, is a finite set. We also get that ¢, <,

Pa <n ps. In fact, p, is the unique condition satisfying this inequality.

(iii) For «v limit, begin by defining p;, = (J;s., ps. This is a condition because p;

and p; for i, j < o are defined so as to agree on all v € supp(p;) N supp(p;).
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Again, find a g, < p/, such that g, I+ “f(a) =n" forn < w, and set p, = p., |

supp(pl,) U ga | (w2 \ supp(py,)). Let uq = {6 € supp(pa) : ¢a(0) # pa(0)}-

For all a, u, is a finite subset of (J,_,, supp(ps). By the A-system lemma,
7.0.17, we can find an uncountable set D C wy and I € [ws]<* such that {u, : « €
D} is a A-system with root I. Since [ is finite, by Lemma 7.0.21 (ii) we can find
a D' C D such that «, 8 € D’ implies ¢, | I and gg | I are compatible conditions
in the partial order [],.; @; where each @); = Q. We claim that for such a, 8 € D'
we must also have that ¢, and gg are compatible conditions in P, .

To see this, assume without loss of generality that o < (. Then for v €
supp(qs)\1, if v € ug then v & u, because ugNu, = I, 30 go(y) = pa(7y) by the defi-
nition of u,, and either p,(y) = ps(7y) or pa(7y) = 1o, which means g, () is compat-
ible with gg(7v) in Q. If v & ug then gs(y) = ps(7), which means g,(y) is compatible
with gs(7y) in Q. Either way, the condition ¢'®® = (pg [ {y < wy 1y & uq Uug})U
(qa I (ua \ I))U(gs | (ug \ I))U({gs(7) Uga(?y) : v € I}) is therefore a lower bound
to both ¢, and gz in P,,. And ¢*# < p because {y € supp(p) : ¢'*?(v) # p(7)}
is a subset of u, U ug and is therefore finite.

To complete the proof, observe that there must be some n’ < w such that
{a €D :gylF ¢ f () = n'”} is an uncountable set, by the pigeonhole principle.
But any two ordinals in this set, o and 8, will be such that ¢(®# is an upper bound

to both g, and gs, so ¢(*?) will force f(a) = f(B) and thus force f to not be an
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injective function, while itself being a stronger condition than p, which forces the

opposite. This is a contradiction.

We are now ready to prove our main theorem:

w1

Lemma 7.0.24. Let p € P, and 7 be a name such that p IF “7 € [w] and
let (A5 : 0 € S) be our previously fixed witness to &(S) in V' (see the discussion
after Theorem 7.0.13). Then the set of ¢ such that for some § € S, ¢ IF “As C 77

is dense below p.

Proof Initially the proof mimics that of Theorem 7.0.23. We define two sequences
of conditions in P,,, (po : @ < wy) and (g, : @ < wy), by induction so that for
all @ < w1, go < pa < p. We also inductively define u,, for all a < w; and (, for

1 <a<w:

(i) Begin by setting ¢y = po = p, and ug = 0.

ii) We handle the successor case first. Let a« = 8 + 1, and assume that ps and
B

qs are defined, as are ug and (3 (¢ is not defined if 5 = 0, but this will not

cause problems). Pick ¢, to be an arbitrary condition with ¢, < pg and such

that for some ( greater than:

max{a, sup({0 : 3i < a (g IF “6 € 77)})},

we have g, IF “C € 77. Let (, be the least such ¢, having already chosen g,.
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(i)

(We can always find such a ¢, unless some ¢; forces w; many ordinals into
7, in which case the lemma is trivial, so we assume otherwise.) We then set
Pa = pp | supp(pg) U g | (w2 \ supp(ps)), and let uy = {0 € supp(pa) :
7a(0) # pa(0)}. So u, is a finite set, by the definition of the forcing, and p,

is the unique condition such that ¢, <, po <p ps.

For «a a limit ordinal, begin by defining p/, = | f<a DB- This is a condition
because p; and p; for i, j < a are defined so as to agree on supp(p;) Nsupp(p;),
and « is countable. Find a ¢, < p!, such that ¢, IF “C € 7" for { >
max{a, sup({d : 3 < a (gl “0 € 77)})}, set po = pl, | supp(p,) U ga |

(wa \ supp(pl,)), and let (, be the least such ¢, having chosen ¢,. Again, let

U = {5 € Supp(pa) : Qa((s) # pa(é)}'

For all a, u, is a finite subset of | J;_, supp(ps). By the A-system Lemma,

7.0.17, we can find an uncountable set D C w; and I € [w,]<* such that {u, :

a € D} is a A-system with root I. We now need to find a further uncountable

set D' C D; we do this by induction, using (d, : @ < w;) to denote the increasing

enumeration of D’:

(i)

(i)

Let dy = min(D).

Assume dp is defined for all 8 < a. We define d,, to be the least ordinal in

D such that ug, NUs, supp(qa,;) = I. To see that this is well-defined, let
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U = Uge, supp(qa,) and note that this is a countable set. For v € U\ [
there is at most one j € D with v € u; (by the definition of a A-system),
so because U is countable and D is uncountable there must exist an ordinal
do € D with ug, NUs,, supp(qa,) = I as required. Thus d,, is well-defined

and our induction is complete.

This ensures that for o, § € D" with § < «, we have that for v € supp(qs) \ I
we have o (7) = ¢5(7) = pa(y) = ps(7).

Since [ is finite, by Lemma 7.0.21 (iii) we can find an £ C D’ with (e, : o < wy)
its increasing enumeration such that (g., [ I : @ < wq) has the properties stated in
that lemma. So if # C w; has order type w then (J,., g, (?) is a partial function
with a domain having order type < w* for each i € I.

So let #+ C E be a set of order type w in V. Set ¢, = U, @a [ (w2 \ 1) U
(Upez @ale) = € € I). Whether g, is a condition in our forcing or not will depend
on whether ¢, () satisfies the requirements (ii)(b) and (ii)(c) in the definition of Q
(see Definition 7.0.14), when € is in /. But first we need to observe that if ¢(€)
for € € I satisfies these requirements and hence is a condition then it will be a
stronger condition than each g, for a € x. This is easy to see from the way we
have defined F; for any a € x it is the case that {y € supp(qa) : ¢a(7) # ¢ (7)} is
finite.

However, ¢, will not in general be a condition. We need to use our original fixed
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&' sequence to find such ¢, that are conditions and which furthermore establish
that our fixed sequence (As : § € S) remains a witness to &(S) in V[G].

Let (&, : m < n) enumerate I and set D = ({Ceps Gen (£0)s -5 Qe (€n—1)) + @ <
wi). Recall that our {’(S) sequence was cooked up to guess initial sections of
sequences such as D. Let 6 € S be such that Bs =D | 0, otp{e, : @« < 6} = § and
sup{¢., : @ < 0} = 9§ and for all m < n, sup ({dom(g., ({m)) : @ < d}) = 0. These
latter three requirements each hold for a closed unbounded subset of wy, so it is
possible to find such a 6 € S. Then the set A’ = {e, < ¢ : (., € As} is a subset
of F, with order type w, and our forcing was defined in such a way that F| §m =
Uicar @(&m) s in Niin(e\5+1)) for all m < n. Hence the set Ff’" is a condition in
Q for all m < n, and s0 ¢* = ps | (wy \ {€m : m < n}) U {(Em, Fs™) : m < n} is
a condition extending all members of {g; : j € A’}. And D was defined in such a
way that ¢ IF “As C 7.

Note that p was arbitrary and {vy € supp(p) : p(7) # ¢.(v)} C I, s0 ¢ < p
and the theorem is proved.

O

The final thing we need to prove is that S remains stationary after forcing with

P,

PR

Corollary 7.0.25. Let p € P, and 7 be a name such that p - “7 € [w]*" is closed

unbounded”. Then the set of ¢ such that for some § € S, ¢ I+ “0 € 77 is dense
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below p.

Proof This is a simple extension to the proof of Lemma 8.0.17. Again we define
an uncountable set of conditions (g, : o < wy) forcing ordinals ¢, into 7 and we
find an uncountable E as before. By the methods used in the earlier proof, we
then find a ¢© < p such that for some 6 € S, ¢t I+ “As C 7. Then because
sup(A4s) = ¢ and ¢* forces 7 to be a closed subset of w; (since gt extends p) we
must have that ¢ IF “0 € 77. Since p was arbitrary and ¢ is in S, we obtain the
required result.
O
We could also infer the fact that S remains stationary from Lemma 6.1.2
which effectively states that &(S) is contradictory if S is not a stationary set.

This completes the proof that:

Con(ZFC) — Con(ZFC + —~CH + &(S) + —~&(T) + —~&°*)(w;))*.

7.1 Consistency results using iterated forcing

It remains for us to mention those consistency results that were obtained by
Dzamonja and Shelah in [9] using iterated forcing; these are summarised in the

following theorem.

1S. Fuchino and L. Soukup have improved on this result since the time of writing, proving
that there can consistently be further variants of & which sit strictly between & and &l°P!(w;).
See [12].
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Theorem 7.1.1 (Dzamonja, Shelah).

(a) Con(ZFC) — Con(ZFC + ~ &(wy) + —éhe(w1)),

(b) Con(ZFC) — Con(ZFC + &<“(wq) + —(~ &(w1))),

(¢) Con(ZFC) — Con(ZFC + ~ &(w;) + ~&<“(w1)).

Unlike our approach in Section 7.0.2, Dzamonja and Shelah used a forcing
iteration of length ws to prove Theorem 7.1.1 rather than a product. This seems

to be necessary.
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Chapter 8

Consistency Results on & and

Invariance, 11

In this chapter we generalise the consistency results of Chapter 7. We can adapt
the forcing technique we used there so as to apply to variations on &(x™"), for any
infinite regular x. In the general case, however, we encounter limitations that do
not occur in the case where k = w; these are discussed at the end of the present
chapter.

Specifically, we are able to prove the following analogue of Theorem 7.0.8:

Definition 8.0.2. Let S C A be a stationary subset of a regular cardinal. Then
&°Pl(S) asserts the existence of a sequence (A; : § € S) such that for all § € S,

As C 6 and sup(As) = 0 and otp(As) = 0, and if X C X is unbounded then there
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isa d € S such that A; C X.

Theorem 8.0.3. Let x be an infinite regular cardinal. If S and T are disjoint
stationary subsets of S% in V and V = ¢(S) + GCH, then there is a partial order
P.++ such that if G is a P.++-generic filter over V' then V[G] |= &(S) + —&(T") +
ﬁ*[otp] (ﬁ-&-)'

As before, we fix S, T and V for the rest of the proof to be two disjoint

stationary subsets of k™ and a model of ZFC + {(S) + GCH respectively. We

will again need to use an alternative but equivalent version of {(.S):

Definition 8.0.4. {’(S) is the statement that there exists a sequence (B, : a € S)
such that if ({bs, gL, ...,g°) : @ < k™) is a sequence where p < k is an ordinal and
(by : @ < K1) is a strictly increasing sequence of ordinals, g% € {(f: X — 2) :
f is non-empty and X C k% and |X| = s} for all @ < k™ and 1 < v < p, then

the following set is stationary:
{6€8:Bs={ba,g,....q°) - < )}
Notation 8.0.5. Let F={(f: X = 2): f#0 and X C k" and |X| = &}.
The axiom <¢'(.5) is equivalent to (S).
Theorem 8.0.6. {(S) < $/(9).

Proof The proof follows that of Theorem 7.0.13, with only minor modifications
needed, so we will not reproduce it here.
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0
As before, let (Bs : § € S) be a fixed witness to {’(S) in V. We define a witness

to &(S) that will preserved by our forcing:

Definition 8.0.7. Let § be in S. Given Bs = ({ba, g, ...,g%) : a < ¢), we will
define the set Ajs as follows: choose a strictly increasing sequence of ordinals,
(€ : | < k), that is cofinal in 6. Then set As = {b,, : | < k}, unless this does not
give us a set of ordinals cofinal in §, in which case we choose one arbitrarily. This

defines the sequence (45 : 6 € S).
Lemma 8.0.8. (A;:0 € S) forms a witness to &(S) in V.

Proof The proof is as in Chapter 7, following Lemma 7.0.13.

Definition 8.0.9. Let Fy =J,_, g2 forall 0 € S and p < k.

It is again not important that for some values of § and p, F} will not be
a function, or will be empty. We can now define the forcing we will use. The
similarities with the forcing defined in Chapter 7 are manifest, but nonetheless we
will give the definition in full, due to the central role it will play throughout the

present chapter:

Definition 8.0.10. We force with the product of k¥ and a single forcing Q. We
define Q like so:
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(i) Fix a continuously increasing sequence (N; : i € C') of elementary submodels
of (H(x),€), where y is a “sufficiently large” cardinal and C' is a closed
unbounded subset of kT with the property that N, Nkt = o and |N,| = &
for all « € C. Also, if a € C is such that sup(CNa) # aand {f; : i <y < Kk}
is a set of functions from k™ to 2, each of which is in N,, then J{fi : i < v}
is in N,. That is, N, for such « is closed under unions of less than k
many functions from x* to 2. We also insist that for all @ € C, and all
p < k, if F* is a non-empty well-defined partial function from % to 2, then

F2 € Nuinc\(at1)) for 1 < p < pq.

(ii) Q is the set of those functions f : X C k™ — 2 in V, where |X| = &, with

the following further properties:

(a) otp(dom(f)) <k~
(b) f [ 1 € Nmin(C\(z‘+1)) for all i < k™

(c) If 6 € T then dom(f)No < 0.

(iii) The ordering of Q is by extension: f <qg g iff f D g.

Definition 8.0.11. We define P,.++ as follows:

(i) Set Po++ = {p : pis a function with dom(p) = k** and ran(p) = Q such

that [{8 < &%+ : p(8) # 1g}] = K}
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(ii) The ordering in P.++ is given by ¢ <p . p if and only if for all 3 < x*7,

q(5) <q p(p), and

{8 <& :p(B) # 1g and ¢(B) # p(B)}| < .

The support of p, supp(p), is defined as usual. We also carry over the notation
q <p p and ¢ <, p from the previous chapter; the definition given before applies
equally to conditions in P,++.

The following is immediate:
Lemma 8.0.12. P.++ has the xTt-c.c.

Proof We can use the A-system Lemma, 7.0.17, because GCH holds. The proof

is the same as that of Lemma 7.0.19 in the previous chapter.

Lemma 8.0.13. P.++ does not collapse cardinals < k.

Proof It is sufficient to prove that any decreasing sequence of conditions of length
v < k has a lower bound in P,++. Let {p, : @ <y < K} be such a sequence.

Let ¢ € Py++ be defined by setting ¢(i) = U, pa(i) for all i < x*F. Then
we claim that ¢ is the required lower bound. To see this, we first need to check
that for each i < k, ¢(i) is a condition in Q. So let i be less than k™", then ¢(i) is
clearly a function because the functions in {p,(7) : & < v} are pairwise compatible.
Furthermore, its domain will have order type less than x* because the domain of
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each p, (i) does and v < k. It remains to check that (i) [ § € Nuin(c\(541)) for
all 0 < k. So let 6 be less than s, but then pa(i) [ 6 € Nmin(c\(5+1)) for each
a < 7, because they are all conditions in QQ, and we insisted that Nyin(cn(s+41)) be
chosen so as to be closed under unions of less than « many functions, giving us
the required result.

That ¢ is a condition in Py++ follows from the fact that |, - supp(pa) is a
set of size at most k. And it is a lower bound to each p, for a < 7 because
the set {5 € supp(pa) : q(B) # pa(B)} has size less than k due to the fact that

{pa : @ < v} is a decreasing sequence in P,++ and v < k.

We will also need the following two facts:

Lemma 8.0.14. Let C' C k™ be a closed unbounded set of limit ordinals. Then
given a set X = {d; : i < K1} of size kT with otp(d;) < k" for all i < k™, there
is a 8 € C such that for all 6 € C'\ § there is an unbounded set Y C x* with

i €Y = sup(d;Nd) <.

Proof Assume not, then there is a cofinal subset D C C' witnessing the failure of
the Lemma. Let v < k™ be such that DN+~ has order type x*. By assumption, for
any 0 € D N+, there are at most x many d; whose intersection with ¢ is bounded
below §. Hence we can find a j < k* such that sup(d; Nd) =6 for all 6 € DN+,

which contradicts d; having order type less than ".
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Lemma 8.0.15. Q has the following properties:

(i) Q has the k*-Knaster property. Given a set X, with |X| = s, consisting
of conditions in Q, we can find a cofinal subset ¥ C X such that any two

conditions in Y are pairwise compatible.

(i) Any partial order of the form [],.; @; where each Q; = Q and I has size &,

ordered by the product order, has the x™-Knaster property.

(iii) If J[;,c; @: is as in (ii) and (ps : 6 < k™) is a sequence of distinct elements
in J],.; @i, then there is a cofinal subsequence (pg( ey < k) such that
if # C k™ has order type k then f,; = Up(;wa)(i) is a countable partial

acx

function from s to 2 with otp(dom(f,;)) < k", for each i € I.

Proof We have that (iii) = (ii) = (i), trivially.

Part (iii) can be proved by an argument directly analogous to that in the proof
of Lemma 7.0.21, where we define sequences of length ™ rather than w;, and then
appeal to the generalised A-system Lemma, Lemma 8.0.14 and the fact that, like

w

w¥, k™ is closed under ordinal multiplication.

O
The following lemmas are all proved by arguments similar to those used in

Section 7.0.2. Only very minor modifications are needed, so we will not give the
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proofs again.
Lemma 8.0.16. Forcing with P,.++ does not collapse x™.

Lemma 8.0.17. Let p € P.++ and 7 be a name such that p IF “7 € [m*]“+ " and
let (As: 0 € S) be our fixed witness to &(S) in V. Then the set of g such that for

some 0 € S, qlF “As C 77 is dense below p.
Lemma 8.0.18. VFx++ |= <ol (k1) + ~&(T).

Thus we are able to prove Theorem 8.0.3.

~". if this is the case and

K 7

Recall that we required S and T to be subsets of §
k is regular then the proofs of the previous chapter can be generalised directly,
as outlined above. If, however, either S or T is not a subset of S,’f then we
cannot obtain the results of Theorem 8.0.3. The reason is that if, for example,
T C S% then we cannot force &(T) to fail while also allowing the forcing to have
the property that decreasing sequences of length less than x have a lower bound,

which means we cannot prove that x is not collapsed.
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Chapter 9

Some Open Questions

Several open questions have been brought to light in the course of this thesis. We
collect the most prominent ones here.

The main open question concerning & remains, of course, that of Juhasz:
Question 9.0.19 (Juhasz). Does & — =SH?

A variation on this question was asked by Brendle:
Question 9.0.20 (Brendle, [3]). Does ¥ +—-CH — —SH?

Miyamoto’s Theorem 3.0.3 is a partial answer to this.
Recall our definitions of Superclub and Superstick in Chapter 3. The following

two questions remain open:
Question 9.0.21. Does Superstick imply CH? Does Superclub imply {7
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In Chapter 4 we defined the notion of a T-preserving &-sequence and a directly

T-preserving &-sequence, where 7' is a normal Suslin tree.

Question 9.0.22. Given A, a &-sequence in V, is there a forcing P € V which
preserves A as a &-sequence while introducing a Suslin tree T’ so that A is T-

preserving (or directly T-preserving) in any P-generic extension?

Question 9.0.23. Is there a model of ZFC + & in which for any witness to &,

A, there is a Suslin tree Tz such that A is T;-preserving?

Question 9.0.24. Given a Suslin tree T', can a d-sequence be T-preserving with-

out being directly T-preserving?

In Chapter 5 we examined the relationship between & and cardinal arithmetic.
Though the basics of this are well-known, there is a surprisingly large amount that
remains to be proved on this. Our main question in Chapter 5 could be stated as

follows:

Question 9.0.25. If V E ZFC 4+ —=CH + ? + —é&, is there a cardinal preserving

forcing P € V' such that 1p IFp “&”7
The author is not aware of any known answer to the following:
Question 9.0.26. Does & + -CH — 2¥ = 2«17

The following question relates to our results in Chapter 6:
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Question 9.0.27. For F a A™-complete uniform filter on A*, where \ is singular,

is it the case that ZFC &;(Sg\fz\))?
This is related to the following prominent open question on <{):

Question 9.0.28. If \ is a singular cardinal, does 2* = A* imply Q(S?f?/\))?
Regarding our consistency results in Chapters 7 and 8, we ask the following:

Question 9.0.29. If X is regular and 7,5 C X are disjoint stationary sets, when

can we prove Con(ZFC) — Con(ZFC + &(S) + —~&(T))?

For example, it is not possible to do this when A = p™ and k < pif T C S}, S

is a reflecting stationary set, and [y holds (see e.g. [33]).
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