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Abstract 

 

The green peach aphid Myzus persicae is an economically important plant pest worldwide. 

Infestations deprive hosts of photoassimilates and aphids are primary vectors for hundreds 

of viruses. In plants, RNA silencing pathways have been implicated in resistance to viral, 

bacterial and fungal pathogens, as well as to a lepidopteran insect pest. I aimed to uncover 

any involvement of these pathways in aphid resistance. 

I found that in the model plant Arabidopsis, miRNA pathway mutants are more 

resistant to aphid infestation than wild-type plants or siRNA pathway mutants. MiRNA 

mutant resistance is independent of the Salicylic Acid (SA) and Jasmonic Acid (JA) 

signalling pathways. In contrast, miRNA mutants have elevated levels of PAD3 following 

infestation and accumulate the antimicrobial compound camalexin. Camalexin reduces 

aphid fecundity when fed by artificial diet, indicating a novel role for this compound in 

modifying insect reproductive development. 

In addition, I uncovered a role for the WRKY33 transcription factor and the 

miRNA miR393 in aphid resistance. Aphids are more fecund on wrky33 mutants and 

WRKY33 is differentially regulated between wild-type and silencing-deficient plants during 

aphid infestation. WRKY33 positively regulates PAD3, and is likely to positively regulate 

camalexin production during aphid infestation. Furthemore, aphids are more successful on 

plants overexpressing miR393. MiR393 is responsive to aphid infestation and is known to 

regulate camalexin production through auxin signalling. There is evidence that miR393 

may have additional roles in direct regulation of WRKY33 and PAD3. This is the first 

report of a plant miRNA mediating resistance against a phloem-feeding insect pest.  
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1.1 Aphids and agriculture 

 

The world’s population is predicted to rise to around nine billion by the year 2050 (United 

Nations. Dept. of & Social Affairs. Population, 2004). In order to adequately feed this 

increasing population, agriculture must adapt to produce an increased amount of food from 

a similar area of land and without a significant increase in chemical input. In addition, the 

effect of global climate change will have unpredictable impact on regions devoted to food 

production. 

Every year, pests and pathogens reduce productivity across all crop species. In 

particular, sap-sucking insects are some of the most destructive pests in temperate regions 

throughout the world (Blackman & Eastop, 2000). Of this group, aphids are of specific 

importance as they negatively impact plant productivity in three ways. Firstly, heavy 

infestations deprive host plants of photoassimilates which would otherwise have been used 

for growth and development. Secondly, aphids secrete large volumes of sticky fluid called 

honeydew. This allows growth of soot moulds on plant surfaces and reduces 

photosynthetic efficiency. Finally, the primary agricultural concern is that aphids act as 

carriers of plant viruses (Fig. 1.1). Hemipteran insects such as aphids and whiteflies are 

known to vector over one-third of the ~800 plant viruses described to date (Ng & Perry, 

2004; Hogenhout et al., 2008). In light of this role in the spreading of disease, aphids can 

be thought of as the mosquitoes of the plant world. 

The green peach aphid (Myzus persicae Sulz.) is one of the most agriculturally 

important aphid pests. The Swiss entomologist Johann Heinrich Sulzer described this 

species in the latter half of the 18
th

 century, with its species name derived from the latin, 

“of the peach.” Although it is found and lays eggs on peach trees, it has one of the broadest 

host ranges of any aphid species, encompassing 40 plant families and including many 
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economically relevant crops such as tobacco, potato, tomato, and rape seed. Of all aphid 

species, M. persicae is the most important virus vector (Blackman & Eastop, 2000). It can 

transmit over a 100 different plant viruses of which the majority are potyviruses (Ng & 

Perry, 2004), but also the economically important luteoviruses, including Beet western 

yellows virus (Turnip yellows virus) and Potato leafroll virus. Additionally, it can also 

quickly acquire and transmit non-persistent viruses such as the broad range Cucumber 

mosaic virus (Fig. 1.1) (Palukaitis & García-Arenal, 2003). 

For the last 60 years, aphid populations on agricultural crops have been largely 

controlled through the spraying of chemical insecticides. As a result of widespread and 

continuous exposure, M. persicae has developed resistance to several classes of 

insecticides, including organophosphates, carbamates and pyrethroids (Field et al., 1988; 

Martinez Torres et al., 1999). Until recently, neonicotinoids which target nicotinic 

acetylcholine receptors remained an effective control measure against M. persicae as well 

as many other insect pests. However, reports of resistance against this chemical class have 

emerged in M. persicae lineages on several continents which could have long-term impacts 

for aphid control in agriculture (Nauen & Denholm, 2005; Foster et al., 2008; Puinean et 

al., 2010). In light of increased insecticide resistance, alternative strategies must be 

developed for the control of aphid infestations. The use of aphid predators, such as the 

parasitic wasps Aphidius colemani and Aphidius ervi, which oviposit inside aphid bodies, 

is an alternative strategy to control aphid numbers. However, there is evidence that again, 

aphid lineages emerge which have increased resistance to this control measure (Li et al., 

2002). Intriguingly, the mechanisms responsible for parasitoid resistance appear distinct 

from those responsible for insecticide resistance and may involve the acquisition of 

beneficial bacterial endosymbionts (Oliver et al., 2003). In commercial environments, 

nethouses are used to protect virus-susceptible crops, such as cucurbits. However, 

nethouses only cover small areas of land, must be replaced relatively frequently and offer 



14 
 

no protection should a small founder population of insects reach the crop under protection. 

A greater understanding of how plants detect and respond to aphids, and conversely, the 

strategies employed by aphids to overcome plant defences would allow novel strategies to 

be developed to counter aphid infestations. This would ultimately lead to development of 

aphid-resistant crop varieties to negate the economic, environmental and social costs of 

increased insecticide use. 
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Figure 1.1 – Aphid infestations and the viruses they vector cause significant economic losses.  

(a) Aphid infestations can occassionally be so severe that “aphid holes” develop in crop production fields. In 

this example, aphid infestation has caused potato vines to prematurely senesce and die. Image adapted from 

(Suranyi et al., 2009). (b) Turnip yellows virus (TuYV) is an agricultural problem in the UK as it infects 

Brassica napus (oilseed rape). Here virus infection is characterized by yellow and purple mottled leaves and 

results in reduced productivity and poorer quality oil (photo by M. Stevens, Brooms Barn). (c) Cucumber 

mosaic virus (CMV) is one of the most common aphid-vectored viruses. It is able to infect >150 different 

plant species, and aphids can acquire the virus within minutes of feeding on an infected plant. Here CMV 

symptoms can be observed on cucumbers ranging from least severe (left) to most severe (right) (Image 

adapted from Texas Plant Disease Handbook (http://plantdiseasehandbook.tamu.edu/)). 
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1.2 The aphid life cycle 

 

The aphid group consists of over 4000 species, and within this group, there is considerable 

diversity in life cycles. Many aphids have an cyclically parthenogenic life cycle which 

accommodates distinct sexual and asexual reproductive phases (Fig. 1.2) (Blackman & 

Eastop, 2000). This reproductive strategy is required for species that are not tolerant to 

cold winters and must seek out primary host plants in autumn to mate and lay eggs to 

overwinter. Aphids are much more selective in selecting hosts (primary hosts) for 

oviposition than feeding (secondary hosts). Many aphid species use a single primary host 

for oviposition, but may feed on plants from a wider range of families during other parts of 

the year. For these cyclically parthenogenic aphids, individuals hatch from overwintered 

eggs in spring. Throughout this period, the population consists of only females and 

reproduction occurs by parthenogenesis, with adults giving birth to large numbers of 

genetically identical offspring (nymphs). This reproductive strategy is generationally 

telescopic, with the embryos of the next generation already beginning to develop within the 

bodies of newly-born nymphs. Nymphs are also born alive (viviparous reproduction), 

which is unusual amongst insects and facilitates a more rapid development to reproductive 

maturity. During spring, and also in overcrowded conditions, significant numbers of aphids 

are winged (alates). Despite limited flying ability, they are able to disperse passively on the 

wind to colonise secondary hosts. Alates are known to be particularly restless, and will 

seed small numbers of nymphs on a large number of secondary host plants. These seeded 

nymphs will then proceed through multiple generations of asexual reproduction throughout 

the summer months. Given favourable environmental conditions, such as high levels of 

heat and humidity and an absence of predators, this strategy can result in explosive 

population growth. Towards the end of summer, shortening day length and cooler 

temperatures trigger both physical and behavioural changes in insects. These give rise to 
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larger proportions of both alates and male insects in the population, and trigger a return to 

the sexual phase of the life cycle. Alates disperse from summer hosts and seek primary 

hosts on which to mate and lay eggs to survive winter. 

Under some circumstances however, such as regions with mild winters or in 

artificial glasshouse conditions, it is possible for aphids to exist by year-round 

parthenogenesis (anholocycly) (Turl, 1983; Fenton et al., 1998). In addition, aphids are 

most common in temperate regions, indicating that many species have evolved some 

degree of cold-adapted lifestyles. In these cases, aphids may exist purely by asexual 

reproduction and may even have lost ability to reproduce sexually. M. persicae colonies of 

northern England and Scotland are commonly anholocyclic, probably as a result of a lack 

of peach trees, the primary oviposition/sexual reproduction host for this species (Fenton et 

al., 1998). It is likely that the relatively mild winters coupled with a lack of primary hosts 

in these regions allow populations of mobile parthenogenic adults to survive without the 

need for sexual reproduction and egg laying. 
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Figure 1.2 – An aphid life-cycle can accommodate two distinct phases. 

In locations with mild winters and a lack of primary hosts (peach), M. persicae can exist with a monocyclical 

life cycle (a). In these environments, reproduction is purely asexual and there is no egg-laying stage. In 

locations with colder winters and/or where the primary host is more abundant, a bicyclical life-cycle may be 

apparent (a+b). In this life cycle, aphids reproduce sexually in autumn (fall) and lay eggs to survive winter. 

In spring, winged aphids (alates) migrate to many species of secondary host where aphids reproduce 

asexually over the summer. Image adapted from (Suranyi et al., 1998). 

 

 

1.3 The concept of immunity 

 

As sessile organisms, plants have evolved sophisticated means of protecting themselves 

against the myriad of attackers they encounter in nature. These assailants include the 

innumerable strains of viruses, bacteria or fungi that occur in the environment, or one of 

many species of insects and nematodes that feed on plants. In addition, defence responses 

must also be flexible enough to respond to multiple infections or infestations concurrently. 
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The underlying principle in immunity is how an organism is able to differentiate 

between “self” and “non-self”. Plants, like animals, are able to recognise characteristic 

signatures of pathogens that are variably termed Pathogen-Associated Molecular Patterns 

(PAMPs) or Microbe-Associated Molecular Patterns (MAMPs) (Segonzac & Zipfel, 

2011). These patterns are molecules or parts of molecules key to pathogen viability, and as 

such are retained by the pathogen through evolution. Examples of PAMPs perceived by 

plants include the bacterial motor protein flagellin (or its active epitope flg22) and the 

fungal cell wall protein chitin (Schwessinger & Zipfel, 2008). PAMPs are recognised on 

cell surfaces by a specific pattern recognition receptor (PRR) (Fig. 1.3a). PRRs identified 

to date are all transmembrane proteins and examples include the flagellin recognition 

protein FLS2 and the elongation factor Tu (EF-Tu) receptor EFR (Chinchilla et al., 2006; 

Zipfel et al., 2006). Recognition of a PAMP by its PRR represents the initial perception 

event in plant immunity and this triggers responses intended to stop pathogen colonisation 

of the host (Fig. 1.3a). Some PRRs have intracellular kinase domains which facilitate 

downstream signalling events that lead to appropriate defence responses (Segonzac & 

Zipfel, 2011). Some of these responses can be activated within minutes of PAMP 

perception, such as the generation of reactive oxygen species (ROS) or release of a burst of 

calcium ions. Additionally, PAMP recognition triggers transcriptional reprogramming and 

the induction of defence-related genes which is only detected several hours later. The 

response generated following PRR-mediated perception of PAMPs is in most cases enough 

to prevent colonisation by pathogens. This is referred to as PAMP-triggered immunity 

(PTI) and represents the basal layer of plant defence. 

In order to usurp PTI in compatible interactions in which the pathogenic bacteria 

and fungi can colonise a plant species, the pathogens produce proteinaceous virulence 

factors referred to as effectors (Fig. 1.3b). These molecules interfere with various aspects 

of host physiology and signalling to block induction of PTI and increase host susceptibility 
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(Jones & Dangl, 2006). How effectors are delivered into host cells is very much dependent 

on the lifestyle of the pathogen. Intracellular pathogens such as members of the Candidatus 

Phytoplasma genus use conventional secretory pathways as they are already contained 

within host cells (Bai et al., 2009). The majority of extracellular Gram-negative bacterial 

pathogens introduce effectors into host cells by the Type III Secretion System (T3SS), a 

delivery mechanism whereby molecules are injected directly into the cytoplasm of host 

cells via a needle-like protrusion embedded in the bacterial cell membrane (Alfano & 

Collmer, 2004) (Fig. 1.3b). In contrast to PAMPs, pathogen effectors are not essential for 

pathogen viability; however they can be essential for determining the success of 

colonisation on a specific host species. Effector genes are fast evolving, and can be 

deleted, altered or suppressed when they no longer serve a function as a virulence factor 

(Jones & Dangl, 2006). The reason underlying this is that hosts are constantly evolving to 

recognise effector molecules to activate a second level of immunity, referred to as Effector 

Triggered Immunity (ETI) (Fig. 1.3c). This response is mediated by resistance (R) genes. 

R gene products are often characterised by their nucleotide binding site and leucine-rich 

repeat (NBS-LRR) structures (Belkhadir et al., 2004). Their function is to either directly 

recognise pathogen effectors, or more commonly, to recognise the action of effectors on 

host proteins. This latter function is referred to as the guard hypothesis. This recognition 

prompts a much stronger defence response than that of PTI, and is often associated with a 

form of programmed cell death called the hypersensitive response (HR) (Jones & Dangl, 

2006). This localised cell death response isolates pathogens, limiting their ability to 

colonise other parts of the host. 
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Figure 1.3 – A model of plant immunity. 

(a) PAMPs are recognised by their respective pattern recognition receptors (PRRs), which triggers multiple 

defensive processes resulting in PAMP-triggered immunity (PTI). (b) Successful pathogens overcome PTI by 

introducing effectors into host cells that disrupt the defence response resulting in effector-triggered 

susceptibility (ETS). (c) Hosts may evolve R genes which encode proteins able to either recognise effectors 

directly or the damage caused by effectors. This triggers a more aggressive reaction termed the 

hypersensitive response (HR) which is a stronger form of resistance.  
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The suites of genes and proteins involved in both PTI and ETI have largely been identified 

through use of the model plants Arabidopsis thaliana and Nicotiana benthamiana and their 

interactions with several species of pathogenic bacteria, fungi and oomycetes (Segonzac & 

Zipfel, 2011). It is less clear how accurately this working model describes the plant defense 

response to insect pests. Nonetheless, there are examples of elicitors of plant defences 

present in insect saliva which can be classified as Herbivory-Associated Molecular 

Patterns (HAMPs) (Wu & Baldwin, 2010; Hogenhout & Bos, 2011). In addition, several 

studies have identified aphid salivary proteins, which suppress similar defence responses as 

those targeted by bacterial or fungal effectors (Will et al., 2007; Mutti et al., 2008; Bos et 

al., 2010). Resistance genes are also involved in crop resistance to aphids (Dedryver et al., 

2010; Dogimont et al., 2010). In general, aphid resistance appears to be polygenic although 

there are examples of single dominant R genes (Dedryver et al., 2010; Dogimont et al., 

2010). Similar to R gene-mediated resistance against bacteria and fungi, plant R genes are 

only effective against some aphid species and even between species biotypes (Fig. 1.4). 

Two R genes (Mi-1 and Vat) that confer aphid resistance in tomato and melon respectively 

have been isolated (Rossi et al., 1998; Dogimont et al., 2010). Both of these aphid R genes 

are members of the NBS-LRR family of resistance genes. Curiously, Mi-1 provides 

resistance against several root-knot nematode species and a biotype of Macrosiphum 

euphorbiae (potato aphid) in tomato, indicating that there may be some functional overlap 

in defence against these distinct plant attackers. Additionally, other putative R genes that 

are members of the NBS-LRR family and confer resistance to aphids have been identified 

(Dogimont et al., 2010). Therefore, whilst it remains to be elucidated whether all the 

molecular players identified in PTI and ETI against bacteria and fungi have roles in insect 

defence, the underlying principles hold true. 
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Figure 1.4 – Model of plant defence against aphid feeding. 

(a) Plants are able to perceive herbivory-associated molecular patterns (HAMPs) via aphid PRRs that leads to 

HAMP-triggered immunity (HTI). (b) Effectors present in aphid saliva allow insects to suppress HTI. This 

leads to a reduced immune response and enhanced aphid colonisation. (c) R genes present in resistant hosts 

are able to recognize aphid effectors, resulting in a strong immune response and enhanced level of resistance. 

Two such effectors (Mi-1 and Vat) confer resistance to biotypes of the potato and melon aphid respectively. 

Image taken from (Hogenhout & Bos, 2011). 

 

 

1.4 The role of phytohormones in plant defence responses 

 

A crucial determinant of whether invasion by a pathogen or pest is repelled is how 

successfully a host can modify its gene expression pattern to counteract the threat. Plants 

have evolved to produce a plethora of metabolites, many of which have defensive benefits 

against pathogens or pests. These metabolites may have functions in other non-defensive 

capacities, or they may be specifically produced, often in a highly localized fashion, 

following pathogen perception. The induction of some metabolic pathways may effectively 

restrict the colonisation of some pathogens but not others. Therefore, resources must be 
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channelled through pathways which are most effective against a certain pathogen. 

Additionally, plants should also balance growth and development versus defence response. 

Many metabolic pathways are governed by a set of phytohormones that are 

involved to some degree in almost all aspects of plant physiology. These hormones play 

varied and important roles in regulating the responses that plants make following 

perception of a pathogen or pest. Salicylic acid (SA) and jasmonates (JA) are perhaps the 

best studied as they are involved in immune responses against many biotrophic and 

necrotrophic pathogens and also against both chewing and piercing-sucking insect pests 

(Bari & Jones, 2009). Ethylene (ET) has been the focus of extensive investigation due to 

its role in modulating JA-dependent defence mechanisms (Lin et al., 2009). More recently, 

auxin, gibberellic acid (GA), brassinosteroids and cytokinins have emerged as additional 

regulators of plant defence processes (Robert-Seilaniantz et al., 2007). Many of these 

pathways communicate in a highly intricate fashion to further tailor defence responses to 

maximally utilise resources at the plants disposal. 

Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are two 

related mechanisms in plants. Both mechanisms utilise hormone pathways and mobile 

signals to increase resistance levels in tissues that may be some distance from the site of 

pathogen perception. Classic SAR is defined as a whole plant response to an earlier and 

localised challenge by a pathogen (Grant & Lamb, 2006). In addition, some degree of 

immunity to pathogens can be conferred by an earlier exposure to non-pathogenic 

rhizobacterial strains (Pieterse et al., 1998). In some circumstances, these previous 

exposures may also have growth promoting effects on plants. Immunity conferred by SAR 

and ISR is generally broad spectrum and long-lasting. However, there are distinct 

molecular mechanisms behind these resistances. 
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SA accumulation in both local and systemic tissues is required for effective SAR. 

SA is a small molecule which can be synthesised from phenylalanine, although the bulk of 

SA is produced from chorismate by isochorismate synthase (ICS) (Wildermuth et al., 

2001; Chen et al., 2009). A central regulator of SA signalling is non-expressor of PR gene 

1 (NPR1), which interacts with TGA MOTIF-BINDING FACTOR (TGA) transcription 

factors involved in the activation of many pathogenesis-related (PR) genes that are 

induced following pathogen challenge (Dong, 2004; Bari & Jones, 2009). Both SA levels 

and SA-responsive gene transcripts increase when plants are challenged with many 

biotrophic or hemi-biotrophic pathogens or piercing-sucking insects such as aphids and 

whiteflies (de Vos et al., 2005; Bari & Jones, 2009). Many PR genes are also activated 

when plants are directly treated with SA in the absence of pathogens. Arabidopsis mutants 

impaired in SA signalling are often more susceptible to biotrophic and hemibiotrophic 

pathogens. 

The JA signalling pathway is a lipid-derived signalling mechanism that is involved 

in multiple facets of plant responsiveness to the environment (Wasternack & Kombrink, 

2009). Specifically for defence, JA-related compounds are candidates to be the mobile 

signals in SAR and are involved to some extent in the establishment of ISR (Pieterse et al., 

1998). JA signalling is complex and requires multiple components many of which were 

identified in pathogen-susceptibility screens in Arabidopsis. 

JA is synthesised through multiple enzymatic reactions in chloroplasts and 

peroxisomes. Initially, galactolipids are converted to OPDA in a series of reactions 

involving the LOX, AOS and AOC enzymes in chloroplasts (Wasternack & Kombrink, 

2009). OPDA is subsequently transported to peroxisomes where a further series of six 

mostly well characterised reactions result in production of JA. JA is activated in the 

cytoplasm by conjugation to the amino acid L-isoleucine (Ile) by JAR1 to produce the 

highly bioactive molecule JA-Ile (Schaller & Stintzi, 2009; Wasternack & Kombrink, 
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2009). Perception of JA-Ile perception involves another set of proteins that ultimately 

control the transcription of JA-responsive genes. In the absence of JA-Ile, the suppressor 

JASMONATE ZIM DOMAIN (JAZ) directly binds and represses the activity of the 

transcription factor MYC2, preventing transcription of JA-responsive genes (Chini et al., 

2007). In the presence of JA-Ile, the Skp1-Cul1-F-box protein (SCF) ubiquitin ligase 

complex containing CORONATINE INSENSITIVE 1 (COI1) sequesters JAZ proteins 

resulting in their polyubiquitylation and degradation (Sheard et al., 2010). This interaction 

frees MYC2 to activate transcription of a suite of JA-responsive genes. 

SA and JA often act antagonistically, where activation of one leads to suppression 

of the other (Bari & Jones, 2009; Verhage et al., 2010). JA-mediated defence mechanisms 

are generally induced by necrotrophic pathogens such as the ascomycete fungi Alternaria 

and by insects with chewing mouthparts that cause large amounts of tissue damage such as 

Manduca sexta (tobacco hornworm) on tobacco or Pieris rapae (cabbage butterfly) on 

Arabidopsis (de Vos et al., 2005; Diezel et al., 2009). In contrast, biothrophic pathogens 

and piercing-sucking insects such as aphids induce SA and suppress JA. However, JA 

versus SA induction appears to differ between generalist and specialist insects (Diezel et 

al., 2009). Both JA levels and levels of JA-related transcripts increase following challenge 

by some pathogens or insects (de Vos et al., 2005). Many of these JA-related transcripts 

can also be induced by direct application of JA to a healthy plant (Ellis et al., 2002).  

A proportion of the genes that are responsive to JA are also responsive to the 

gaseous hormone ethylene (ET) (Wang et al., 2002; Robert-Seilaniantz et al., 2007; Bari & 

Jones, 2009; Verhage et al., 2010). As such, ET signalling is generally associated with 

defence against necrotrophs and chewing insects. Besides defence, ET also regulates 

numerous plant processes such as fruit development and response to some abiotic stresses 

(Lin et al., 2009). Its role in pathogen responses is borne from observations that 

Arabidopsis mutants unable to respond to ethylene are often more susceptible to disease 



27 
 

(Hoffman et al., 1999; Thomma et al., 1999). ETHYLENE INSENSITIVE 2 (EIN2) 

represents a crucial signalling node in ET perception (Alonso et al., 1999). In the absence 

of ET, its activity is negatively regulated by CTR1 (Lin et al., 2009). ET is perceived by a 

number of ETR receptors which relieve EIN2 from CTR1 suppression. This frees EIN2 to 

activate the EIN3 and EIN3-like families of transcription factors (Guo & Ecker, 2003; 

Stepanova & Alonso, 2009). The degree of communication and crosstalk between the JA 

and ET pathways varies depending on pathogen or pest. However, full understanding of 

these mechanisms remains elusive. 

The hormone auxin is involved to some extent in almost all processes that occur in 

plant cells (Chapman & Estelle, 2009). How auxin influences defence processes is not 

fully understood, however there is evidence that it may function through antagonism of the 

SA signalling pathway (Bari & Jones, 2009). Transcription of auxin-responsive genes is 

regulated by a large family of Auxin Response Factors (ARFs). The activation of ARF 

family members is reminiscent of the mechanism controlling JA pathway responses. In the 

absence of auxin, ARFs are bound by Auxin/Indole-3-acetic acid (Aux/IAA) repressors. 

Auxin is perceived by Transport Inhibitor Response 1 (TIR1) which is an F-box protein 

that interacts with the Skp1-Cul1-F-box protein (SCF) ubiquitin ligase complex 

(Dharmasiri et al., 2005). This complex directs the ubiquitination and degradation of 

Aux/IAA repressors, thus allowing ARFs to direct transcription of auxin-responsive genes. 

Studies in bacterial pathosystems indicate that increased levels of auxin tend to promote 

disease progression (Navarro et al., 2006; Chen et al., 2007). As one mechanism of auxin 

synthesis is linked to the indole pathway (Sugawara et al., 2009), auxin may also 

(in)directly regulate production of defensive glucosinolates and phytoalexins.  
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1.5 Phytoanticipants and phytoalexins 

 

Phytohormone pathways are present in all plant families studied to date, and as such have 

likely been conserved through the course of evolution. Plants however produce a galaxy of 

secondary metabolites which whilst not crucial to the functioning of individual cells, 

enhance fitness of the whole organism. Many of these metabolites are unique to specific 

plant families and some have potent antibacterial or insecticidal properties. In Arabidopsis, 

some of the best studied metabolite families are the glucosinolates and phytoalexins. 

Glucosinolates are synthesized from tryptophan (indole glucosinolates), methionine 

(aliphatic glucosinolates) and phenylalanine. Glucosinolates are phytoanticipants as they 

are already present in cells and function as a pre-existing defence mechanism (Koroleva et 

al., 2000). Upon tissue damage, glucosinolates are brought into contact with myrosinases 

which catalyse the production of toxic breakdown products such as nitriles, thiocyanates 

and isothiocyanates (Halkier & Gershenzon, 2006). There are examples however where 

glucosinolate production is induced following mechanical wounding, treatment with a 

bacterial elicitor or challenge with a fungal pathogen or insect pest (Halkier & Gershenzon, 

2006; Bednarek et al., 2009; Schlaeppi et al., 2010). Glucosinolates are characteristic to 

the brassica family and deter feeding of generalist insects (Kim & Jander, 2007; Kim et al., 

2008). However, they also serve as attractants to brassica specialists which are highly 

adapted to processing the toxic degradation products (Pratt et al., 2008). 

The predominant Arabidopsis phytoalexin is camalexin. This compound was first 

identified over 20 years ago, but how it functions in antibacterial and antifungal defence is 

not yet fully understood. Camalexin is derived from tryptophan and is produced by a 

metabolic pathway that branches from the indole glucosinolates (Glawischnig, 2007). 
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Camalexin production is induced following challenge by a wide variety of pathogens and 

some insects, including aphids (Glawischnig, 2007; Kuśnierczyk et al., 2008). It has 

inhibitory effects on the growth of some pathogens, mainly gram-negative bacteria and 

fungal necrotrophs (Rogers et al., 1996; Kliebenstein et al., 2005; Bednarek et al., 2009; 

Sanchez Vallet et al., 2010; Schlaeppi et al., 2010). The major regulators of camalexin 

biosynthesis were identified in a screen of Arabidopsis mutants deficient in camalexin 

accumulation (Glazebrook & Ausubel, 1994). These PHYTOALEXIN DEFICIENT (PAD) 

genes are often induced in a highly-localised fashion following pathogen challenge 

(Kliebenstein et al., 2005). Unlike glucosinolates, camalexin is not a pre-formed defence. 

It is present in miniscule quantities in unchallenged plants but accumulates in high 

quantities within 24-48h after inoculation. This suggests that it is metabolically expensive 

compound to produce and is only synthesised when required by the host. 

 

 

1.6 Plant deterrents specific to insects 

 

In addition to the pathways and reactions that occur in plants in response to pathogens, 

there is a range of plant defense responses that deter insect pests. These include the 

physical barriers erected by plants, such as leaf trichomes, which hinder the movement or 

feeding ability of insects or their larvae (Levin, 1973). Not only do trichomes act as 

physical barriers, some classes of glandular trichomes can secrete sticky or poisonous 

substances that act as feeding deterrents. In addition, the substances composing the waxy 

cuticle of leaves can hinder insect feeding attempts or reduce the ability to digest 

consumed tissue and impact insect fitness. 
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To counter the physical and chemical arsenal of plants, many insects have adopted 

a specialist feeding strategy. This strategy has a trade-off, in that it limits the number of 

species that are compatible hosts. However, it allows the development of counter-defence 

strategies against particular hosts. For example, the cabbage aphid (Brevicoryne brassicae) 

is a specialist of cruciferous plants which produce glucosinolates. Rather than being 

deterred from feeding, cabbage aphids are able to use these compounds for their own 

benefit by storing and using as a deterrent against their own predators (Pratt et al., 2008). 

Generalist insects have adopted a survival strategy whereby they have adapted to 

feed on a wide variety of plants. M. persicae is an example of a generalist insect, as it can 

colonise species belonging to 40 plant families (Blackman & Eastop, 2000). Whilst this 

strategy may increase the likelihood of finding a suitable host in the wild, it means that 

insects are generally less well adapted to each specific host they encounter and less likely 

to overcome species-specific defence mechanisms. 

A further determinant of the outcome of any plant-insect interaction is the feeding 

mode of the insect. Many orders of insects, such as coleopterans or lepidopterans possess 

chewing or crushing mouthparts designed for breaking apart plant tissues prior to 

digestion. Hemipteran insects such as aphids and whiteflies have piercing-sucking 

mouthparts (Fig. 1.5) and therefore adopt a very different and more subtle feeding strategy. 

Compared to chewing insects, hemipterans cause considerably less damage to plant tissues. 

They insert a long narrow tube (stylet) into plant tissue and attempt to navigate between 

plant cells causing minimal damage (Fig. 1.5) (Tjallingii, 2006). Plant-feeding hemipterans 

attempt to reach and puncture the xylem or phloem tissue where they can obtain water or 

sugar-rich sap (Tjallingii & Esch, 1993; Tjallingii, 1995). Despite this stealthy mode of 

feeding, phloem- or xylem-feeding insects do induce immune responses in plants (de Vos 

et al., 2005). However the composition and magnitude of these responses vary 
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considerable from those generated against either mechanical wounding or from feeding by 

chewing insects (de Vos et al., 2005). 

A final factor to consider with respect to insect feeding compared to pathogen 

colonisation is the attractiveness of a host to insects. Plants emit a varied bouquet of 

chemicals that function as signals to insects. The majority of angiosperms attempt to attract 

pollinating insects to their flowers to assist pollination, an aim that is realised partly 

through the production of attractive chemical signals. The basal production of some 

volatiles can discourage herbivorous insects from settling on a plant (Snoeren et al., 2010), 

and in response to insect attackers, some plants emit volatiles that function in attracting 

insect predators (de Vos & Jander, 2010). Some viruses and bacterial pathogens are known 

to modify the volatiles emitted by infected plants and it is thought this may function in 

increasing the attractiveness of the plant to the virus’s insect vector (Eigenbrode et al., 

2002; Mauck et al., 2010). 
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Figure 1.5 - Aphids puncture plant vascular tissues using stylets. 

(a) M. persicae feeding from the midvein of an Arabidopsis rosette leaf. The proboscis (black arrow) houses 

multiple stylets which are used to penetrate plant tissues and feed on phloem sap (photo by A.Davis). (b) 

Aphid stylets navigate through multiple tissues before terminating in the phloem sieve element. Final stylet 

track is depicted in black. Aborted stylet tracks are shown in white (black arrows). Phloem sieve tubes 

(black), xylem (hatched) and parenchyma (dotted) are illustrated. Image adapted from (Chapman, 1998) (c) 

Cross-section of the mouthparts from Aphis fabae (black bean aphid) feeding on Vicia faba (broad bean). The 

two maxillary stylets (MxS) interlock to form the food canal (FC) and the salivary canal (SC). Two 

mandibular stylets (MdS) enclose neuronal canals (NC) housing mechanoreceptor dendrites. Dark material 
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encircling the stylets is the salivary sheath (SS). White material outside of this is the plant cell wall (CW) 

Image adapted from (Chapman, 1998). 

 

 

1.7 Post-transcriptional regulatory processes in eukaryotes 

 

RNA silencing is a collective term to describe regulatory mechanisms that occur in most 

eukaryotic organisms whereby RNA can direct the sequence-specific inhibition of gene 

expression. This regulation can occur either at the transcriptional level through RNA-

induced modification of chromatin, or post-transcriptionally, where small segments of 

RNA bind to complementary sequences in mRNAs, guiding either the destruction of those 

molecules or preventing their translation. 

The phenomenon of RNA silencing, or RNA interference (RNAi) had been 

unknowingly observed for many years, with particular relevance for those studying the 

progression of viral disease in plants. In 1928, S.A.Wingard described how tobacco plants 

presenting symptoms of ring-spot virus on older foliage developed new growth and leaves 

that were apparently resistant to virus infection (Wingard, 1928; Baulcombe, 2004) (Fig. 

1.6a). He noted, “this masking of symptoms, or development of immunity, or whatever it 

is, seems to hold under greenhouse conditions for practically all the plants tested.” At the 

time, Wingard could not have guessed at the mechanisms underlying the resistance he had 

observed. In 1928, it was not even known that ring-spot virus was an RNA virus. However, 

his work serves to highlight one of the evolutionary pressures that resulted in the 

development and maintenance of RNA silencing machinery that would go largely 

unappreciated for the next 60 years. 
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It wasn’t until the late 1980s, with the advent of advanced molecular techniques 

and plant transformation that further light was shed on this phenomenon. Plant virologists 

were experimenting with the insertion of viral genes into plants in an attempt to understand 

disease resistance. These experiments had revealed that tobacco expressing the Tobacco 

mosaic virus (TMV) coat protein, were more resistant to TMV infection that non-

transgenic controls (Abel et al., 1986). It later emerged that plants expressing 

untranslatable forms of the Tobacco etch virus (TEV) coat protein were more resistant to 

TEV infection that non-transgenic controls (Lindbo & Dougherty, 1992b; Lindbo & 

Dougherty, 1992a) These were the first confirmations that RNA and not protein was the 

agent responsible for the resistance phenotype. 

Around the same time, experiments conducted using transgenic petunia shed light 

on another manifestation of gene silencing (Napoli et al., 1990; Van der Krol et al., 1990) 

(Fig. 1.7a-d). Introduction of a chalcone synthase (CHS) transgene into purple-flowered 

petunia plants silenced expression of the endogenous CHS gene, leading to production of 

flowers that were either white (totally silenced) (Fig. 1.7d) or variegated (partially 

silenced) (Fig. 1.7b,c). Upon examination, investigators found that introduction of the 

transgene resulted in a 50-fold reduction in mRNA levels of the endogenous CHS gene 

(Napoli et al., 1990). Although the mechanism responsible for this phenotype eluded the 

authors at the time, they did state that “the erratic and reversible nature of this phenomenon 

suggests the possible involvement of methylation”. In subsequent years, the 

characterisation of heterochromatic silencing would validate this prophecy. 

The experiments described above serve to illustrate the evolutionary pressures that 

favoured the maintenance of a system we know refer to as RNA silencing. The genomes of 

plants, like many other organisms, are composed of a large number of repetitive elements. 

These elements often transpose into other genomic regions and disrupt gene function. In 

addition, plants live in an environment populated with viruses. Stopping these two related 
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threats can be achieved with an RNA-based immune system which operates by sequence 

specificity. In many of the pioneering experiments in the field, including those described 

by both Napoli et al. and van der Krol et al., disarmed versions of the naturally tumour-

inducing plant pathogen Agrobacterium tumefaciens (A. tumefaciens) were used to 

introduce transgenes into plants. As transgenes were inserted along with the T-DNA 

element of Agrobacterium, the subsequent “genetic invader” inadvertently accessed the 

RNA silencing pathways to cause unexpected phenotypes. 

 

 

Figure 1.6 - An RNA-based immune system in plants. 

(a) In 1928, S.A.Wingard observed that tobacco plants infected with ringspot virus on lower leaves produced 

new growth that was immune to infection. This was most probably the first description of RNA silencing in 

an antiviral immune capacity. Image adapted from (Wingard, 1928). (b) Seventy years later, it was 

established using Potato virus X (PVX) that viral infections elicit production of antiviral small RNAs both in 

virus-inoculated leaves and later in systemic leaves, leading to plant immunity. Image adapted from 

(Hamilton & Baulcombe, 1999). 
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Figure 1.7 – Transgene-induced silencing is guided by small RNAs. 

(a-d)  Agrobacterium-mediated transformation of wild-type petunia (a) with a chalcone synthase (CHS) 

transgene unexpectedly led to silencing of the endogenous CHS gene, resulting in varying degrees of 

pigment-free flowers (b-d). Image adapted from (Napoli et al., 1990). (e) Hamilton and Baulcombe later 

revealed that this phenomenon of cosuppression was also guided by small RNAs. Using tomato plants 

transformed with a 1-aminocyclopropane-1-carboxylate oxidase (ACO) transgene, only plants silenced for 

ACO mRNA expression (top panel) produced  ACO gene-specific small RNAs (mid and bottom panels). 

Image adapted from (Hamilton & Baulcombe, 1999). 

  

 

We now have a much clearer understanding of how these related pathways operate in many 

different organisms. The work of Fire and Mello identified that gene silencing is caused by 

double-stranded RNA (dsRNA) (Fire et al., 1998), a discovery for which they were 

subsequently awarded the 2006 Nobel Prize for Medicine. A rapid series of discoveries 

from several labs, working with plants, worms and flies rapidly identified the molecular 

machines involved in gene silencing. Together, these discoveries established that dsRNA is 

cleaved into pieces of small interfering RNA (siRNA) by an endoribonuclease called Dicer 

(Bernstein et al., 2001). SiRNAs are subsequently incorporated into an RNA-induced 
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silencing complex (RISC) containing another ribonuclease with slicing activity called 

Argonaute (Hammond et al., 2000; Hammond et al., 2001). Direction of RISC to mRNAs 

with sufficient homology results in suppression of gene expression through either 

transcript cleavage or translational repression (Baumberger & Baulcombe, 2005; 

Brodersen et al., 2008; Lanet et al., 2009; Huntzinger & Izaurralde, 2011). Although many 

organisms enact variations of this process, the core fundamentals are retained across 

species. In recent years, the discoveries underlying gene silencing have allowed extensive 

investigation of many endogenous sRNA classes such as micro-RNAs (miRNAs) and 

PIWI-interacting RNAs (piRNAs) that play important roles in many eukaryotic cellular 

processes, such as the precise control of gene expression and maintenance of genome 

integrity in the germline (Bartel, 2004; Rajagopalan et al., 2006; Voinnet, 2009; Siomi et 

al., 2011). 

Plants are particularly interesting organisms to investigate, as RNA silencing 

appears to have expanded into multiple pathways that even now are not fully understood 

(Vazquez et al., 2010). In Arabidopsis, there are six RNA-dependent RNA polymerases 

(RDRs) which act to produce dsRNA from a single-stranded RNA (ssRNA) template and 

serve to both generate and amplify silencing signals (Dalmay et al., 2000; Ruiz-Ferrer & 

Voinnet, 2009). There are four Dicer-like (DCL) endoribonucleases which produce distinct 

sRNA size classes from dsRNA templates. DCL1 produces 21nt sRNAs and is involved 

with miRNA processing (Park et al., 2002; Kurihara & Watanabe, 2004). DCL2 produces 

22nt sRNAs and is involved with antiviral defence (Deleris et al., 2006). DCL3 synthesizes 

24nt sRNAs which feed into the RNA-directed DNA methylation (RdDM) pathway (Xie et 

al., 2004). DCL4 produces 21nt sRNAs involved in both antiviral defence and the trans-

acting small interfering RNA (tasiRNA) pathway (Vazquez et al., 2004b; Xie et al., 2005; 

Deleris et al., 2006; Henderson et al., 2006). This latter pathway is known to play a 

significant role in Arabidopsis organ development (Schwab et al., 2009). There is also 
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considerable diversification amongst the Argonaute (AGO) gene family. Arabidopsis 

encodes ten Argonautes which are divided across three clades (Vaucheret, 2008; Vazquez 

et al., 2010; Czech & Hannon, 2011). AGO1 is the predominant slicer of the miRNA 

pathway, although there are reports that this also involves AGO7 and AGO10 

(Baumberger & Baulcombe, 2005; Brodersen et al., 2008; Montgomery et al., 2008; Zhu et 

al., 2011). It has recently emerged that AGO2 may preferentially bind the miR* strands 

from some miRNA duplexes and that this may direct distinct functions from that encoded 

by the miR strand (Zhang, X et al., 2011). AGO4 is involved in a process by which 24nt 

siRNAs dependent on RDR2 and DCL3 for their generation direct the methylation of 

genomic loci from which they were produced (Zilberman et al., 2003; Matzke et al., 2007; 

Vazquez et al., 2010). AGO3 is known to play a role in plant immunity against a bacterial 

pathogen in a partially redundant process involving AGO2 and AGO7 (Zhang, X et al., 

2011). In comparison, the functions of AGO5, 6, 8 and 9 remain poorly understood. Even 

so, the breadth and scope for sRNA pathway involvement in many important cellular 

processes is clear. 

 

 

1.8 Small RNA involvement in plant-virus interactions 

 

Small RNAs play important roles in dictating the outcome of interactions between 

phytopathogens and their hosts. This is particularly important during viral infections (Ding 

& Voinnet, 2007). The genomes of RNA viruses and the replication intermediates of DNA 

viruses are substrates for enzymes involved in RNA silencing pathways. The ribonucleases 

DCL2 and DCL4 in particular are involved in cleaving viral RNA into virus-derived 

siRNA (vsiRNA) (Deleris et al., 2006; Ruiz-Ferrer & Voinnet, 2009) (Fig. 1.8). These 
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vsiRNAs guide the RISC to seek and destroy other viral nucleic acids. An important 

property of this RNA-based immune system is the ability to amplify a silencing signal. 

Plants encode multiple RNA-dependent RNA polymerases (RDRs) that can generate 

dsRNA from ssRNA templates (Ruiz-Ferrer & Voinnet, 2009). RDRs ensure that a 

significant population of sRNA species can be produced from a small amount of trigger 

RNA. The antiviral siRNAs produced during an infection are also mobile. It is known that 

sRNAs can move to neighbouring cells via plasmodesmata and over longer distances via 

the vascular system (Dunoyer et al., 2010; Molnar et al., 2010). This feature allows 

inoculation of uninfected tissues with anti-viral siRNAs before the infection has a chance 

to develop. This ability to spread and confer immunity in distant tissues explains the ring-

spot virus resistance first observed by Wingard in 1928. 

As a response, the majority of plant viruses have evolved suppressors of RNA 

silencing mechanisms (Ding & Voinnet, 2007). There are several points at which 

suppressors can interfere with silencing pathways. For example, the 2b protein from 

Cucumber mosaic virus (CMV) can specifically bind the 21nt size class of sRNAs and is 

also reported to interact directly with AGO1 (Zhang et al., 2006; González et al., 2010). 

Other viral suppressor proteins also interact directly with either siRNAs themselves or the 

protein complex which effect silencing (Vargason et al., 2003; Bortolamiol et al., 2007). 

Viral infections or transgenic expression of suppressors in plants often results in significant 

developmental abnormalities (Chapman et al., 2004).  As most suppressors do not 

distinguish between endogenous sRNAs and vsiRNAs, there is scope for significant 

interference with endogenous silencing pathways, such as the miRNA and tasiRNA 

pathways (Chapman et al., 2004; Jay et al., 2011). 
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Figure 1.8 – Hierarchical involvement of Arabidopsis Dicer-like (DCL) genes in antiviral defence. 

(a) A modified Turnip crinkle virus (TCV) was generated by replacing the coat protein and silencing 

suppressor (P38) with a GFP transgene. This recombinant virus (TCV-ΔP38) subsequently loses the ability to 

infect Arabidopsis Col-0 (figure modified from (Ruiz-Ferrer & Voinnet, 2009)). (b) TCV-ΔP38 regains 

virulence when rub-inoculated onto leaves of Arabidopsis dcl mutants. We now know that DCL4 in 

particular is crucial to antiviral silencing, although its activity is partially redundant with DCL2. 
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1.9 Small RNA involvement in resistance to cellular plant pathogens and pests 

 

The relationship between host silencing pathways and viruses is very direct. Viruses 

replicate intracellularly and so their genomes and transcripts are exposed to DCL and AGO 

enzymes. The association between the silencing machinery and cellular pathogens is not so 

well developed. It is known that elements of some siRNA pathways are involved in 

bacterial resistance (Katiyar-Agarwal et al., 2006; Katiyar-Agarwal et al., 2007; Katiyar-

Agarwal & Jin, 2010). It has been reported that several Arabidopsis miRNAs are involved 

in regulating resistance against Pseudomonas syringae (Li et al., 2010; Zhang, W et al., 

2011). The miRNA miR393 is of particular relevance through its association with 

transcripts involved in auxin signalling (Navarro et al., 2006). The auxin and SA signalling 

pathways act antagonistically so regulation of auxin may control activity of an SA-based 

defence response (Bari & Jones, 2009). More recently, miR393 was also shown to 

influence how resources are allocated between the glucosinolate and camalexin defence 

pathways in response to P. syringae infection (Robert Seilaniantz et al., 2011). 

Like viruses, some phytopathogenic bacteria produce effectors capable of 

interfering with aspects of sRNA signalling (Navarro et al., 2008). Several Arabidopsis 

miRNAs are induced following avirulent P. syringae infection or induction with the PAMP 

flg22 (Li et al., 2010; Zhang, W et al., 2011). Some virulent strains possess effectors that 

prevent this induction and enhance colonisation (Navarro et al., 2008). The Arabidopsis 

SUC-SUL line expresses an inverted repeat of the SUL (SULPHUR) gene under the control 

of the phloem-specific SUC2 promoter. These plants display a chlorotic phenotype in 

vasculature tissue and also in the neighbouring 10-15 cells. Stable expression of some 

bacterial effectors in SUC-SUL plants results in a loss of vein-centered chlorosis and 

induces stunting reminiscent of miRNA pathway mutants (Navarro et al., 2008). These 
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observations indicate that there is significant scope for both miRNA and siRNA pathway 

interference by bacterial effector proteins. 

Small RNA pathways coordinate resistance against the cyst nematode Heterodera 

schachtii (Hewezi et al., 2008). Expression of several miRNAs is altered following 

nematode infection, and in general, silencing pathway mutants are less susceptible to 

colonisation (Hewezi et al., 2008). The fact the nematodes alter developmental processes 

in the root cells that they infect to establish feeding sites suggests that nematode-

responsive miRNAs may play important roles in root development. This may share some 

features with Agrobacterium-induced tumour formation. Arabidopsis dcl1 plants, which 

lack most miRNAs, are resistant to tumour formation following Agrobacterium inoculation 

(Dunoyer et al., 2006). In addition, GFP expression is induced in tumours of 

Agrobacterium-infected GFP-silenced plants. These results suggest that manipulation of 

miRNA and siRNA activity may be a recurring theme during infection with a broad range 

of plant colonisers. 

With regard insect resistance, work carried out in Nicotiana attenuata (native 

tobacco) has shown there to be significant involvement of sRNAs and the processes they 

control in mediating resistance against a chewing insect pest (Pandey & Baldwin, 2007; 

Pandey et al., 2008). Transgenic plants silenced for NaRdR1 (irRdr1) are more susceptible 

to larvae of M. sexta compared to plants silenced for other NaRdR genes or a wild-type 

control. The irRdr1 plants do not accumulate either nicotine or the precursors of nicotine 

biosynthesis following insect attack (Pandey & Baldwin, 2007). Subsequent deep 

sequencing analysis revealed that a considerable portion of tobacco sRNAs are responsive 

to insect feeding and require RDR1 for their biogenesis (Pandey et al., 2008). Many of 

these changes were attenuated in irRdr1 plants and accounted for a proportion of the 

susceptibility phenotype of those plants. 
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1.10 Focus and aims of research described in this thesis 

 

In comparison to leaf-chewing insects that cause considerable damage to host plants, 

aphids and other phloem-feeders are comparatively stealthy and cause little damage at 

feeding sites. Despite this, aphid feeding is known to elicit considerable transcriptional 

reprogramming in infested tissue. Given the known involvement of sRNAs in coordinating 

defence responses to phytopathogenic viruses, bacteria, fungi and chewing insects, we set 

out to examine the roles of sRNAs in resistance against a phloem-feeding insect pest. The 

primary aim of this research was to identify how sRNAs may regulate the complex and 

large-scale response to aphid attack. 

 

 

1.11 Overview of thesis contents 

 

To realise this aim, we performed a resistance screen of a collection of Arabidopsis RNA 

silencing mutants against the green peach aphid M. persicae (chapter 3). This screen 

revealed that plants deficient in the miRNA pathway, but not other sRNA pathways, were 

more resistant to aphid infestation than either wild-type plants, or plants deficient in other 

siRNA-mediated silencing pathways. Aphids raised on miRNA pathway mutants displayed 

no change in survival over the 14-day test period, but produced significantly fewer 

offspring, suggesting that the miRNA mutant resistance phenotype interferes with aphid 

reproductive development or prevents the aphid from establishing a proper feeding site 

leading to less nutrient uptake and subsequent decline in aphid reproduction ability. 

To characterise this resistance phenotype, we used quantitative real-time PCR 

(qRT-PCR) to compare defence pathway induction between wild-type (Col-0), miRNA 
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mutant (dcl1) and siRNA pathway mutant (dcl2/3/4) following aphid exposure (chapter 4). 

The dcl1 plants have greater induction of several genes involved in secondary metabolism, 

including the camalexin biosynthetic gene PAD3. This data correlated with a significant 

increase in camalexin levels in aphid-infested dcl1 plants relative to Col-0 and dcl2/3/4. 

When fed camalexin by artificial diet, there was no effect on adult aphid survival, but a 

strong and inhibitory effect on reproductive success, consistent with the reduction in the 

number of aphid offspring (but not survival) observed on the miRNA pathway deficient 

plants. 

WRKY33 is a pathogen-responsive transcription factor that positively regulates 

PAD3. Aphids produced more offspring on wrky33 mutants relative to wild type Col-0, but 

the numbers of offspring on 35S:WRKY33 and Col-0 were similar (chapter 5). WRKY33 is 

also differentially expressed in both dcl1 and dcl2/3/4 plants relative to Col-0 during aphid 

infestation. Computational predictions suggested that both the WRKY33 and PAD3 

transcripts are direct targets of miR393. To validate these predictions, 5`RACE 

experiments were conducted. The WRKY33 transcript is not cleaved at the putative miR393 

target site, but was cleaved ~100nt upstream of this site. This other potential cleavage site 

is homologous to several other sRNA species in Arabidopsis leaves, but these sRNAs were 

not detected on northern blots. The PAD3 transcript is cleaved at two positions towards the 

3` end of the transcript from the miR393 site. These products are detected in aphid-

exposed leaves but not in mock-infested controls. Aphids produced more offspring on 

some plants overexpressing the miRNA miR393 (chapter 5). This indicates that WRKY33 

is involved in aphid resistance, most likely through its known role in camalexin production 

and is regulated by sRNA pathways. As aphid fecundity is also increased on the arf1 and 

arf9 mutants, miR393 may play a role in aphid resistance through its role in auxin 

perception and also direct regulation of PAD3 during aphid exposure. 
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To discover the particular miRNAs involved in regulating the aphid response, 

sRNA libraries generated from mock and aphid-exposed Arabidopsis rosette leaves were 

deep-sequenced (chapter 6). In addition, a M. persicae sRNA library was sequenced. This 

experiment illustrated that few Arabidopsis miRNAs were differentially regulated 

following aphid exposure. Nonetheless, detection of the apparent differentially regulated 

sRNAs on northern blots confirmed that some plant miRNAs were indeed aphid-

responsive. Of these, miR393 expression appeared to be altered the most upon aphid 

infestations although some aphid-exposed plants had increased and others decreased 

miR393 levels compared to mock-treated Col-0. 

This study reports for the first time that the miRNA pathway is involved in the 

orchestration of the plant defense response to aphids and may guide the identification of 

other defence pathways involved in aphid resistance. Furthermore, this work highlights a 

previously undocumented role for the phytoalexin camalexin in regulating plant defence to 

an economically important aphid pest. It was found that multiple sRNA-mediated 

regulatory factors are likely to orchestrate the induction of camalexin production. These 

regulatory factors may also play a role in plant defence to other pathogens where 

camalexin is a contributory factor. 
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Chapter 2 – Materials & Methods 
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2.1 Plant & insect growth/maintenance conditions 

 

Stock colonies of the green peach aphid Myzus persicae (RRes genotype O) (Bos et al., 

2010) were reared in 52cm x 52 cm x 50cm cages containing up to six Chinese cabbage 

(Brassica rapa, subspecies chinensis) plants with a 14-h day (90µmol m
-2

 sec
-1

 at 18°C) 

and a 10-h night (15°C) photoperiod. 

The following Arabidopsis thaliana mutants are all in the Col-0 background and 

were obtained from various laboratories as indicated. The ago1-25, 1-26 and 1-27 mutants 

(Morel et al., 2002) were supplied by Hervé Vaucheret (Laboratoire de Biologie Cellulaire, 

INRA Centre de Versailles, France). The dcl1-9, hen1-5, rdr1-1, rdr2-1 and rdr6 

(Jacobsen et al., 1999; Mourrain et al., 2000; Vazquez et al., 2004a; Xie et al., 2004) were 

kindly provided by Dr. Fuquan Liu (Cell & Developmental Biology, John Innes Centre, 

Norwich, UK). The dcl2, dcl3, dcl4, dcl2/3, dcl2/4 and dcl2/3/4 mutants (Xie et al., 2004; 

Xie et al., 2005; Henderson et al., 2006) were obtained from Prof. Olivier Voinnet (Swiss 

Federal Institute of Technology, Zurich, Switzerland). The hst, se1, ago2, ago4, ago7, 

35S::LOX2 and 35S::LOX2 antisense lines (35S::LOX2as) (Bell et al., 1995; Bollman et 

al., 2003; Zilberman et al., 2003; Vazquez et al., 2004b; Lobbes et al., 2006) were 

provided by the Nottingham Arabidopsis Stock Centre (NASC) (http://arabidopsis.info/). 

Arabidopsis dcl1.fwf2 and fwf2 plants (Katiyar-Agarwal et al., 2007) were kindly provided 

by Dr. Rebecca Mosher (The School of Plant Sciences, University of Arizona, AZ, USA). 

The pad3, npr1, sid2 mutants as well as 35S::miR393a and miR393a-p:GFP transgenic 

plants (Cao et al., 1994; Glazebrook & Ausubel, 1994; Nawrath & Metraux, 1999; Navarro 

et al., 2008) were obtained from Dr. Alexandre Robert-Seilaniantz (Prof. Jonathan Jones’s 

group, The Sainsbury Laboratory (TSL), Norwich, UK). The 35S::miR393b lines (Zhang, 

X et al., 2011) were provided by Dr. Hailing Jin (Department of Plant Pathology and 

Microbiology, University of California Riverside, Riverside, CA, USA). The 
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cyp79b2/cyp79b3 double mutant (Zhao et al., 2002) was obtained from Prof. Jean-Pierre 

Métraux (Department of Biology, Plant Biology, University of Fribourg, Switzerland). The 

coi1-35 and jar1 mutants (Staswick et al., 1992) were provided by Prof. Jonathan Jones 

(TSL, Norwich, UK) and ein2-5 and etr1-1 mutants (Bleecker et al., 1988; Alonso et al., 

1999) were from Dr. Freddy Boutrot (Dr. Cyril Zipfel’s group, TSL, Norwich, UK). All 

Arabidopsis plants used in the aphid fecundity experiments were germinated and 

maintained on Scotts Levington F2 compost. Seeds of the Arabidopsis sRNA mutants were 

vernalized at 4°C for 72h and grown in a controlled environment room (CER) with an 8-h 

day (90µmol m
-2

 sec
-1

 at 18°C) and a 16-h night (16°C). Two-week old seedlings were 

transferred to seedling trays containing twenty-four modules. Plants were used for 

experiments after a further two weeks when plants were four weeks old. 

Seed of the Arabidopsis hormone/secondary metabolite pathway mutants were 

vernalized for one week at 5-6°C and grown in a CER with a 10-h day (90µmol m
-2

 sec
-1

 at 

22°C) and a 14-h night (22°C) photoperiod. Plants were used for experiments at four 

weeks old. 

 

 

2.2 Aphid survival and fecundity assays 

 

All aphid survival and fecundity assays were carried out in a CER with an 8-h day 

(90µmol m
-2

 sec
-1

 at 18°C) and a 16-h night (16°C) photoperiod. Four-week old plants 

were potted into one litre round black pots (13cm diameter, 10cm tall) containing fresh 

compost and were caged in clear plastic tubing (10cm diameter, 15cm tall) (Jetran tubing, 

Bell Packaging, Luton, UK) capped at the top with white gauze-covered plastic lids. Each 

plant was seeded with four adult M. persicae from the stock colony and plants were 
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returned to the CER. After 48h, all adults were removed from test plants (day 0) and plants 

were returned to the growth room. On day 3, excess nymphs were removed leaving 5 

nymphs per plant. On day 11 when most nymphs reached adulthood and started to produce 

their own offspring, the numbers of these new nymphs were counted. The newly produced 

nymphs were removed while the adults remained on the plant. On day 14, a second nymph 

count was carried out along with a count of the surviving adults. Experiments were 

terminated on day 14. The total number of nymphs produced was calculated by combining 

the day 11 and day 14 nymph counts. Each experiment included 5 plants per genotype that 

were arranged in trays using a randomized block design and each experiment was repeated 

at least twice. Nymph production and adult survival data were analysed by Analysis of 

Deviance (ANODE) using GenStat v.11 (VSN International, Hemel Hempstead, UK). 

 

 

2.3 Short exposure survival and fecundity assay 

 

The experiments to assess aphid performance on wild-type Arabidopsis and the dcl1 and 

dcl2/3/4 mutants over two days (as opposed to 14 days as described above) were done 

following a method described elsewhere (Pegadaraju et al., 2005). In this method, five 

four-week old plants of each genotype were seeded with 15 unaged adult M. persicae from 

the stock colony using a fine paintbrush. Plants were returned to the CER with the same 

growth conditions as for the 14-day assay for a period of 48h. At the end of this period, the 

total number of aphids on each plant (both adults and newly-born nymphs) was counted. 

The experiment was conducted twice with similar results. Data from both experiments 

were combined and statistically analysed as for the survival and fecundity assays described 

above. 
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2.4 Aphid camalaxin diet assay 

 

To study the effect of camalexin on aphid survival and fecundity, aphids were fed on 

artificial diets containing various camalexin concentrations. Sachets for feeding aphids on 

artificial diets were constructed by cutting the top 2cm portion of a 50ml Corning tube and 

reattaching the lid. Parafilm was stretched over the open end to form a feeding sachet 

containing 100µl artificial diet. We used an artificial diet previously described for these 

experiments (Kim & Jander, 2007). This diet contained sucrose (440mM) and the 

following amino acids (Ala 10mM, Arg 16mM, Asn 20mM, Asp 10mM, Cys 3.3mM, Glu 

10mM, Gln 10mM, Gly 10mM, His 10mM, Ile 6mM, Leu 6mM, Lys 10mM, Met 5mM, 

Phe 3mM, Pro 7mM, Ser 10mM, Thr 12mM, Trp 4mM, Tyr 2mM, Val 7mM). Synthetic 

camalexin was provided by Jean-Pierre Métraux (University of Fribourg, Switzerland) 

(Stefanato et al., 2009). A camalexin stock solution (100mg/ml) was prepared by 

dissolving camalexin in DMSO. Aphids were fed either diet alone, diet containing 0.1% 

DMSO or diet containing variable concentrations of camalexin. The 0.1% DMSO control 

was the equivalent DMSO concentration in the highest camalexin treatment. Ten adult 

aphids from the stock cage were added to each feeder. Feeders were inverted, covered with 

a yellow plastic sheet and placed in a CER with an 8-h day (90µmol m
-2

 sec
-1

 at 18°C) and 

a 16-h night (16°C) photoperiod. The number of surviving adults (from 10) and number of 

nymphs produced were assessed after 48h. Each experiment contained 5 feeders per 

treatment and the experiment was conducted twice. ANOVA was performed to assign 

variance attributable to diet treatment and replicate using a GLM in GenStat. Means were 

compared by calculating t-probabilities within the GLM. 
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2.5 qRT-PCRs 

 

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays were 

conducted to quantify Arabidopsis gene expression upon exposure to aphids. For these 

experiments, thirty non-aged M. persicae nymphs from the stock cage were transferred to a 

single clip-cage using a fine paintbrush and confined to single mature rosette leaves of 

five-week old plants at one clip-cage per plant. Plants were returned to the CER with an 8-

h day (90µmol m
-2

 sec
-1

 at 18°C) and a 16-h night (16°C) photoperiod for either 6, 12, 24 

or 48 hours. Four aphid exposed leaves per treatment were pooled to produce each sample 

and leaves caged with aphid-free clip cages were used as controls. All samples were snap-

frozen in liquid nitrogen and stored at -80°C until further processing. The leaf samples 

were ground in chilled 1.5ml Eppendorfs using disposable pellet pestles (Sigma-Aldrich, 

St Louis, USA). Total RNA was extracted using Tri-Reagent (Sigma-Aldrich) and 

included a DNaseI treatment (RQ1 DNase set, Promega, Madison, USA). RNA was 

purified using the RNA cleanup protocol of the RNeasy Mini Kit (Qiagen, Hilden, 

Germany), analyzed for purity on a 1% agarose gel and Picodrop spectrophotometer 

(Picodrop Ltd, Saffron Walden, UK). RNA samples with an A260/A280 ratio of between 

1.85 and 2 were taken forward for qRT-PCR analyses. cDNA was synthesised from 500ng 

RNA using the MMLV-RT Kit (Invitrogen, Carlsbad, USA) and oligo dT primer following 

the manufacturer’s instructions. cDNA from these reactions was diluted 1:20 with dH2O 

prior to qRT-PCR. 

The 20µl reactions were setup in 96-well white ABgene PCR plates (Thermo 

Scientific, Loughborough, UK) in a CFX96 Real-Time System with a C1000 Thermal 

Cycler (Biorad, Hemel Hempstead, UK) using SYBR Green JumpStart Taq ReadyMix 

(Sigma-Aldrich). 
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All reactions were carried out using the following thermocycle: 3 mins at 95°C, 

followed by 40 cycles of (30 sec at 95°C, 30 sec at 60°C, 30 sec at 72°C), followed by melt 

curve analysis: 30 sec at 50°C, (65°C - 95°C at 0.5°C increments, 5 sec for each). 

Reference genes for this study were chosen by selecting nine candidates previously 

identified as superior reference genes (Czechowski et al., 2005). These were ACT2 

(At3g18780), UBQ10 (At4g05320), GAPDH (At1g13440), Clathrin adapter complex 

subunit (At5g46630), TIP41-like protein (At4g34270), SAND-family protein (At2g28390), 

PEX4 (At5g25760), At4g26410 and PTB1 (At3g01150). Using geNORM (Vandesompele 

et al., 2002), it was established that ACT2, Clathrin adapter complex subunit and PEX4 

were the most stable across a range of mock and M. persicae-exposed Arabidopsis rosette 

leaf RNA samples and hence are suitable reference genes for this study. Mean Ct values 

for each sample/primer pair combination were calculated from two or three replicate 

reaction wells. Mean Ct values were then converted to relative expression values using the 

formula 2
-ΔCt

 (Pfaffl, 2001) such that the sample with the lowest mean Ct value (most 

concentrated) was assigned a value of 1. The geometric mean of the relative expression 

values of the three reference genes was calculated to produce a normalisation factor unique 

to each sample (Vandesompele et al., 2002). Relative expression values for each gene of 

interest were normalised using the normalisation factor for each sample. The normalised 

expression values for each gene of interest were then compared between mock and aphid-

exposed samples across all plant genotypes tested in the experiment. Analysis of Variance 

(ANOVA) was performed to assign variance attributable to plant genotype, block and 

replicate using a general linear model (GLM) in GenStat. Means were compared by 

calculating t-probabilities within the GLM. For display of data, mean expression values 

were rescaled such that mock-infested Col-0 represents a value of 1. The primer sequences 

used for both reference and target gene quantification are listed below. 
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2.6 Arabidopsis qRT-PCR reference gene primer sequences 

 

Gene Name Primer Name Gene Identifier Sequence (5`>3`) 

ACT2 Actin2-newF*  At3g18780 GATGAGGCAGGTCCAGGAATC 

 Actin2-newR*   GTTTGTCACACACAAGTGCATC 

UBI10 UBI10 F1 At4g05320 AATACGCCTGCAAAGTGACTC 

 UBI10 R1  CCAACAGCTCAACACTTTCG 

GAPDH GAPDH F1 At1g13440 AGGTCAAGCATTTTCGATGC 

 GAPDH R1  AACGATAAGGTCAACGACACG 

CLATH CLATH F1 At5g46630 TGCGTTTTGGTTAATCTGTCTC 

 CLATH R1  CCGTGTTGTAACCGCTCTTC 

TIP41 TIP41 F1 At4g34270 TCCATCAGTCAGAGGCTTCC 

 TIP41 R1  AAGAAAGCTCATCGGTACGC 

SAND SAND F1 At2g28390 TGTGCCAAAGGGTAAAAGATG 

 SAND R1  AGCACAATATAGGGGGTCAAAC 

PEX4 PEX4 F1 At5g25760 TGCAACCTCCTCAAGTTCG 

 PEX4 R1  CACAGACTGAAGCGTCCAAG 

AT4G26410 AT4G26410 F1 At4g26410 GCAGGAAATTGCTTGAGAGG 

 AT4G26410 R1  AGTCCGTCCATCAAATCAGC 

PTB1 PTB1 F1 At3g01150 ACCCATCATCTGATCCCAAC 

 PTB1 R1  AACATGGAAATACTCCCCATTG 

 

*Primers designed by Akiko Sugio (JIC) 

 

2.7 Arabidopsis qRT-PCR target gene primer sequences 

 

Gene Name Primer Name Gene Identifier Sequence (5`>3`) 

PR1 PR1 F5** At2g14610 GTTGCAGCCTATGCTCGGAG 

 PR1 R5**  CCGCTACCCCAGGCTAAGTT 

LOX2 AT3G45140-lox2-RTF*    At3g45140 GCAAGCTCCAATATCTAGAAGGAGTG 

 AT3G45140-lox2-RTR*     CGGTAACACCATGCTCAGAGGTAG 

VSP2 VSP2 F3** At5g24770 GTTAGGGACCGGAGCATCAA 

 VSP2 R3**  AACGGTCACTGAGTATGATGGGT 

PDF1.2 PDF1.2 F4** At5g44420 CCATCATCACCCTTATCTTCGC 

 PDF1.2 R4**  TGTCCCACTTGGCTTCTCG 

HEL HEL F3 At3g04720 TGTGAGAATAGTGGACCAATGC 

 HEL R3  ATGAGATGGCCTTGTTGATAGC 

PAD3 PAD3 F3*** At3g26830 TGCTCCCAAGACAGACAATG 

 PAD3 R3***  GTTTTGGATCACGACCCATC 

CYP79B2 CYP79B2 F5 At4g39950 TCTCCGGTTTATCTCGTTCAGTA 
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 CYP79B2 R5  CGTGTCTCATTCTCAGGTAGCTT 

CYP83B1 CYP83B1 F2 At4g31500 TGCTGGTAGATATGGCGTGAC 

 CYP83B1 R2  AAGGGACCCGAATATTAAACATC 

CYP81F2 CYP81F2 F2 At5g57220 TGGCTATGCGTAAACTCGTG 

 CYP81F2 R2  GGTAAACTTCAAAATGGTGGTCA 

CYP89A2 CYP89A2 F2 At1g64900 AGTACTACGTCGCCAACATGG 

 CYP89A2 R2  ATCTCCTAGGAACAGCAAGAGC 

TIR1 TIR1 F2 At3g62980 TTCTTGTTCCGTGAGTTTTGG 

 TIR1 R2  CCAGCCACTGTTCGGTATATG 

AT4G12980 AT4G12980 F3 At4g12980 GAGGCATCACGTTACTCTTGG 

 AT4G12980 R3  TACCAACACCATTAGGCCTTG 

BDL-IAA12 BDL-IAA12 F3 At1g04550 TGTTCCATGGAGAATGTTTATCAAC 

 BDL-IAA12 R3  CTATCCTTCTGCTCTTGACGTC 

MPK3 MPK3 F5 At3g45640 TCCGAATGGCTACTTAGTATCTTTG 

 MPK3 R5  TGGAGCTACACTTAATCACTAGCAG 

WRKY33 WRKY33 miR F1 At2g38470 GCTGTGTACAATGCCAGTTTG 

 WRKY33 miR R1  TTCGTCTCTGCTGACAATCG 

 

*Primers designed by Akiko Sugio (JIC). 

**Primer sequences previously published (Abe et al., 2008) 

***Primer sequences previously published (Chassot et al., 2008) 

 

 

2.8 Arabidopsis camalexin extraction and quantification 

 

To determine if Arabidopsis camalexin levels increase upon aphid exposure, we measured 

camalexin content in aphid-exposed whole plants. For these measurements, five-week old 

Arabidopsis plants were infested with 30 adult M. persicae, harvested after 24h, snap-

frozen in liquid nitrogen and stored at -80 C. Plants without aphids were used as controls. 

Camalexin extractions were carried out using a method based on work described 

previously (Meuwly & Métraux, 1993). Briefly, total camalexin was extracted from whole 

plants using 70% ethanol and 90% methanol in the presence of 200ng o-anisic acid as an 
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internal standard. Following evaporation of organic solvent in a speedvac, plant debris was 

precipitated using 5% trichloroacetic acid before recovery of phenolic 

compounds/camalexin using a 1:1 ethyl acetate/cyclohexane mix. Samples were dried 

using a speedvac. 

Samples were analysed by High-performance liquid chromatography (HPLC) on a 

Surveyor instrument (Thermo Scientific) attached to a DecaXP
plus

 ion trap mass 

spectrometer (MS) (Thermo Scientific). Camalexin and o-anisic acid were separated on a 

50×2mm 3µ Luna C18(2) column (Phenomenex). All peak areas were integrated using the 

Xcalibur software Genesis algorithm (Thermo Scientific). Each experiment contained four 

biological replicates of each treatment and the experiment was conducted twice. 

 

 

2.9 GUS staining 

 

To assess the spatial aspect of PAD3 induction during aphid infestation, transgenic 

Arabidopsis lines expressing CYP71B15p::GUS (PAD3p::GUS) were obtained from Erich 

Glawischnig (Technische Universität München, Germany). These plants were grown in a 

CER with an 8-h day (90µmol m
-2

 sec
-1

 at 18°C) and a 16-h night (16°C) photoperiod. 

Leaves of four week old plants were clip caged with 30 M. persicae nymphs. Leaves clip 

caged without aphids were used as controls. After 48h, aphids were carefully removed with 

a dry paintbrush and leaves were immediately submerged in GUS staining solution (0.2M 

Na2HPO4, 0.2M NaH2PO4.2H2O, 10% Triton X-100, 10mM EDTA, pH7) containing 

50mg/ml X-Gluc (5-bromo-4-chloro-3-indolyl-beta-D-glucuronic acid) and 0.3% H2O2. 

Leaves were vacuum infiltrated with staining solution and returned to normal atmospheric 

pressure. This was repeated three times. Leaves were incubated in staining solution for 16h 
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at 37°C in the dark before destaining in 70% ethanol for two nights at 37°C. Destaining 

solution was changed twice during this period. Leaves were mounted on glass microscope 

slides in 40% glycerol and viewed under a Nikon Eclipse 800 light microscope attached to 

a Pixera Pro ES600 digital camera. 

 

 

2.10 Aphid symbiont qRT-PCR 

 

To assess the relative symbiont populations in aphids raised on plants of various camalexin 

concentrations, we conducted a qRT-PCR experiment using symbiont-specific primers. 

Primer sequences for both M. persicae reference genes and bacterial symbiont target genes 

are listed below. Five-week old Col-0, dcl1, dcl2/3/4 and pad3 Arabidopsis were used for 

this experiment. All plants were grown as described for the aphid survival/fecundity assay. 

Four plants of each genotype were individually seeded with 15-35 M. persicae nymphs 

from the stock colony and returned to the CER for five days. At this point, ten aphids from 

each Col-0 plant were transferred to one of four artificial feeders containing the artificial 

diet described previously. Ten more aphids from each Col-0 plant were transferred to one 

of four artificial feeders containing artificial diet plus camalexin (100µg/ml). Artificial 

feeders were then returned to the CER alongside test plants for a further two days. At the 

end of this period, all adult aphids from both test plants and artificial feeders were 

harvested and immediately frozen in liquid nitrogen. 

Genomic DNA was extracted from aphids using the OmniPrep for Plant DNA 

extraction kit (G Biosciences) following the manufacturer’s instructions. DNA was 

resuspended in 50µl TE buffer and quantified on a Picodrop spectrophotometer. All 

samples were diluted 1:10 with dH20 after quantification and prior to qPCR. 
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qPCR was carried out as previously described with the exception that the aphid 

reference genes EF1α and Tub1 were used for normalization. These have previously been 

used to normalize symbiont genome copy number in the pea aphid A. pisum (Oliver et al., 

2003; Oliver et al., 2006; Dunbar et al., 2007). 

 

2.11 M. persicae qRT-PCR reference gene primer sequences 

 

Gene Name Primer Name Gene Identifier Sequence (5`>3`) 

EF1α Ap EF1α F1* NCBI ID 100165786 CTGATTGTGCCGTGCTTATTG 

 Ap EF1α R1*  TATGGTGGTTCAGTAGAGTCC 

Tub1 Ap tub1 F1 NCBI ID 100168148 AGCCGGTCAGTGCGGAAACC 

 Ap tub1 R1  ACCCGACCGCCATGTTTGAGC 

 

*These primer sequences were previously used for normalization of B. aphidicola, H. defensa and S. 

symbiotica genome copy number in pea aphids (Oliver et al., 2003; Oliver et al., 2006; Dunbar et al., 2007). 

 

 

2.12 Bacterial symbiont qRT-PCR target gene primer sequences 

 

Gene Name Primer Name Gene Identifier Sequence (5`>3`) 

dnaK (B. aphidicola) Ba dnaK F1* BB0091** ATGGGTAAAATTATTGGTATTG 

 Ba dnaK R1*  ATAGCTTGACGTTTAGCAGG 

gyrB (H. defensa) Hd gyrB F1* NC_012751.1 CAAACGCAACGATCAAGAAA 

 Hd gyrB R1*  GGAACGATGGATTTCAGGAA 

gyrB (S. symbiotica) Ss gyrB F1* NZ_GL636117.1 CGCTGAACAGCTACATGGAA 

 Ss gyrB R1*  GCCGACCACAATTTTAGCAT 

 

*Primer sequences were previously used to assess genome copy number of several symbiotic bacterial 

species in pea aphids (Oliver et al., 2003; Oliver et al., 2006; Dunbar et al., 2007). 

**Gene identifier refers to BuchneraBASE gene ID (http://www.buchnera.org/) 
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2.13 Small RNA Northern blot 

 

Northern blot hybridisations were conducted to compare sRNA abundance in aphid-

exposed and mock-exposed Arabidopsis rosette leaves. Leaves of 5-week old plants were 

clip caged with 30 aphids or no aphids for 12 hours as described above. Samples consisted 

of a total of 6 leaves at one leaf per plant. Leaves were harvested and combined as samples 

before being snap-frozen in liquid nitrogen and stored at -80°C until further processing. 

Three samples were generated for each the aphid and no aphids (control) treatments. RNA 

was purified using Tri-Reagent (Sigma-Aldrich) as described in qRT-PCR methods with 

the following exceptions. Tissue was homogenised in a chilled TissueLyser LT (Qiagen) 

for 2 mins at 50 oscillations/sec using chilled metal ball-bearings. RNA was precipitated 

overnight at -20°C to increase recovery of the small RNA fraction. RNA was not DNase-

treated or purified on Rneasy columns as the size exclusion limits of these columns are too 

large and the small RNAs would have been largely lost. Unless otherwise stated, 10µg 

total RNA was loaded per lane. RNA was separated on a 15% polyacrylamide gel (7M 

urea, 20mM MOPS) before blotting onto a Hybond-NX membrane (GE Healthcare) by 

semi-dry electrotransfer. RNA was crosslinked to the membrane using 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC) dissolved in 1-methylimidazol for 1h at 60°C. 

Membranes were pre-hybridized for at least 2h in ULTRAhyb-Oligo hybridization buffer 

(Ambion) at 37°C with rotation. Probes were produced by terminal labelling of 

oligonucleotides complementary to the miRNA of interest with γ-
32

P-ATP in the presence 

of T4 polynucleotide kinase at 37°C for 1h. Labelling reactions were cooled on ice prior to 

recovery of radiolabelled probe from unincorporated reagents on a QIAquick Nucleotide 

Removal Kit column (Qiagen) as per the manufacturer’s instructions. Probes were eluted 

in 100µl dH2O which was added directly to the hybridisation solution. Probes were 
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hybridised to the membrane for 16-24h at 37°C with rotation. Membranes were washed (2 

x 30min) with washing buffer (0.1x SSC, 0.1% SDS) at 37°C with rotation before being 

wrapped in Saran wrap and exposed to storage phosphor screens (GE Healthcare) at room 

temperature. Exposure times varied due to differing miRNA abundance, but were typically 

between 1-2h. Images were recovered from storage phosphor screens using a Typhoon 

9200 Variable Mode Imager (GE Healthcare) and ImageQuant TL software (GE 

Healthcare). Membranes were stripped by addition of boiling stripping buffer (10mM 

Tris/HCl pH8.5, 5mM EDTA, 0.1% SDS) directly to the membrane surface for 5mins at 

room temperature with shaking. This was repeated until no signal could be detected from 

the membrane. Blots were re-hybridised for all miRNAs of interest including the U6 

blotting control. 

 

 

2.14 RNA-seq 

 

To identify sRNAs that may be induced in Arabidopsis upon aphid exposure, an RNA-seq 

experiment was conducted. Leaves of 5-week old plants were clip caged with 30 aphids or 

no aphids for 12 hours as described above. Samples consisted of a total of 5 leaves at one 

leaf per plant. Leaves were pooled into samples which were snap-frozen in liquid nitrogen 

immediately upon harvesting and stored at -80°C until further processing. Three samples 

were generated for each the aphid and no aphids (mock) treatments. All aphids that 

comprised the infestations (450 nymphs total) were pooled into a single seventh sample. 

RNA was double-extracted using Tri-Reagent as described above for qRT-PCR. All 

samples had A260/280 ratios of 1.85 or higher and yielded 8-12µg total RNA. 
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Libraries were prepared following the Illumina Small RNA v1.5 Sample 

Preparation protocol (Illumina Inc, San Diego, USA). Ligation of the 5` and 3` RNA 

adapters were conducted with 5µl (1.25-1.8µg) RNA of each sample. We followed the 

manufacturer’s instructions with two exceptions. Firstly, reverse transcription was carried 

out with a 10mM dNTP mix as opposed to 12.5mM. Secondly, PCR was performed using 

25µl reaction volumes instead of 40µl. 

Following ligation of the 5` and 3` RNA adapters, cDNA synthesis and PCR 

amplification, fragments corresponding to adapter-sRNA-adapter ligations (93-100bp) 

were excised from polyacrylamide gels and eluted using the manufacturer’s instructions. 

The seven libraries were then validated by A-tailing a proportion of the recovered 

DNA fragments with GoTaq DNA polymerase (Promega) and cloning into the pGem-T 

easy vector system (Promega). Recombinant plasmids were transformed into 

electrocompetent E. coli (DH5α) and bacteria were grown on carbenicillin
+
 (100µg/ml) 

agar plates for 16h at 37°C. Colony PCR was done using GoTaq and M13 forward and 

reverse primers to identify colonies containing the pGem-T easy vector and adapter-sRNA 

insert. Selected colonies were grown for 16h at 37°C in carbenicillin
+
 L-broth (100µg/ml) 

and DNA purified using QIAprep Spin Miniprep Kit (Qiagen).  The purified DNA (150 

ng) from each colony were sequenced using the BigDye (v3.1) sequencing protocol and 

M13 forward and reverse primers. Ready reactions were submitted to Genome Enterprise 

Limited (The Genome Analysis Centre, Norwich) for sequencing on Life Technologies 

3730XL capillary sequencers. 

Following validation that the libraries contained sequences corresponding to their 

source organism, all libraries were submitted to The Sainsbury Laboratory (TSL, Norwich, 

UK) for 36nt single-end sequencing on an Illumina Genome Analyzer. 
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2.15 Bioinformatic analysis of small RNA-seq data 

 

We used two data analysis pipelines to identify differentially regulated sRNAs in aphid-

exposed and non-exposed plants. In a first analysis, raw reads were processed to remove 

reads of low quality and adapter-adapter ligations containing no sRNA sequence. 

Remaining reads were trimmed to the first 20nt, the region of sequence corresponding to 

cloned sRNAs. Trimmed sequences were then matched to known Arabidopsis mature 

miRNA sequences deposited in miRBase (http://www.mirbase.org/) as of February 2011. 

Matches greater than 10nt were accepted and counted as a read of a known miRNA. The 

number of matches was rescaled to reads/million and compared among the three control 

and three aphid-exposed libraries. 

In a second analysis, raw reads were processed using the perl implementation of the 

UEA Plant sRNA toolkit (Moxon et al., 2008) (http://srna-tools.cmp.uea.ac.uk). Firstly, 

raw reads were converted from FASTQ format to FASTA and adapter sequences removed 

using the adaptor removal tool. Low quality reads, or those not matching the Arabidopsis 

genome (TAIR10) (August 2011) or outside the size criteria for sRNAs (16-26nt) were 

removed using the filter tool. The miRProf tool was used to assess number of reads 

matching to known miRNAs across all samples (miRBase 17 - August 2011). The miRCat 

tool was used to identify novel miRNA sequences from our datasets. 

 

2.16 5`RACE 

 

To assess if WRKY33 mRNA is cleaved by miR393, we conducted a modified 5` rapid 

amplification of cDNA ends (5` RACE) experiment (Llave et al., 2002). In this method, 
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the calf intestinal phosphatase (CIP) and tobacco acid pyrophosphatase (TAP) steps are 

omitted so that an RNA oligo can be directly ligated to cleaved mRNA fragments. 

50µg total RNA from both uninfested Arabidopsis Col-0 and aphid-infested (12h) 

Col-0 was used as starting material for 5`RACE. Polyadenylated RNA was purified from 

total RNA using the MicroPoly(A) Purist Kit (Ambion) as per the manufacturers 

instructions. Polyadenylated RNA was eluted from spin columns in 15µl of THE RNA 

Storage Solution (Ambion). Half of this (154ng and 291ng) RNA was used to ligate to the 

GeneRacer RNA oligo (250ng) from the GeneRacer Kit (Invitrogen). Reactions were 

catalyzed by T4 RNA ligase (5U) in 10µl reaction volumes at 37°C for 1h. RNA was 

recovered in phenol:chloroform and precipitated in 3M sodium acetate (pH 5.2) with 95% 

ethanol at -20°C for 1h. RNA pellets were subsequently washed in 70% ethanol and 

resuspended in 10µl dH2O. RNA was then reverse transcribed using SuperScript II reverse 

transcriptase following the maker’s instructions. Reactions were inactivated at 70°C for 

15min before digestion of RNA using RNase H (2U) for 20min at 37°C. cDNA was stored 

at -20°C prior to PCR. 

Touchdown PCR was performed to specifically amplify fragmented transcripts of 

interest ligated to the GeneRacer oligo. Primer sequences specific for the GeneRacer oligo 

and transcripts of interest are listed in the Arabidopsis 5`RACE primer sequences table 

below. Primers were designed using Primer 3 software (http://frodo.wi.mit.edu/primer3/) 

in accordance with guidelines provided with the GeneRacer Kit for touchdown PCR primer 

design. Reactions were carried out using the following thermocycle: 2 mins at 94°C, 

followed by 5 cycles of (30 sec at 94°C, 30 sec at 72°C), followed by 5 cycles of (30 sec at 

94°C, 30 sec at 70°C) followed by 25 cycles of (30 sec at 94°C, 30 sec at 65°C, 30 sec at 

68°C) with a final extension of 10 min at 68°C. Amplification products were visualized on 

a 1.5% agarose gel, excised using a sterile scalpel and recovered using a QIAquick Gel 

Extraction Kit (Qiagen) following the manufacturers instructions. Fragments were cloned 
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into the pGem-T easy vector system, transformed into E. coli (DH5α) and sequenced as 

described for small RNA library preparation. 

 

2.17 Arabidopsis 5`RACE primer sequences 

 

Gene Name Primer Name Gene Identifier Sequence (5`>3`) 

PHABULOSA PHABULOSA RACE R1* At2g34710 TGCAGAAGTAAGCGACCTTTCACAAACC 

 PHABULOSA RACE R2*  CGTCCCACCGTTTCCAGCAGGTATCAC 

WRKY33 WRKY33 RACE R1 At2g38470 CATGTTTCCTCACTGGACAACCGATGG 

 WRKY33 RACE R2  TCGGCTCTCTCACTGTCTTGCTTCCA 

WRKY18 WRKY18 RACE R1 At4g31800 TTCATATACAGTATTCAGACGACATCTA 

 WRKY18 RACE R2  ACAGTATTCAGACGACATCTAACTGGT 

AT5G18370 At5g18370 RACE R1 At5g18370 CATGGTTGATCTCATGCGCTCTCAAA 

 At5g18370 RACE R2  CCACTGAGTTTCTTTCGCCAATGCAG 

PAD3 PAD3 miR393 RACE R1 At3g26830 GTGGTGAACTTGAGAGCATCTCCATCGT 

 PAD3 miR393 RACE R2  GCTCTCTCTTCCAGGCTTAAGATGCTCGT 

 PAD3 miR854 RACE R1  GAAGGGTGCCATCCCGATGTCTTTG 

 PAD3 miR854 RACE R2  TCCGTATTGGAGAAGCGCCACTGGT 

    

 GeneRacer 5` primer  CGACTGGAGCACGAGGACACTGA 

 GeneRacer 5`nested primer  GGACACTGACATGGACTGAAGGAGTA 

 

*Primers designed by Sara Lopez-Gomollon (UEA) 
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Figure 2.1 – Examples of three aphid assays. 

(a) Aphid survival/fecundity assay. This experiment allows a longer-term assessment of aphid survival and 

fecundity on Arabidopsis. The 14-day test period allows effects on aphid development and performance 

during adulthood to be assessed. (b) Clipcages were used to confine aphid populations to single leaves. This 

allowed the generation of plant tissue samples that had been subject to relatively intense infestations. (c) 

Artificial feeders were used to assess the effect of camalexin on aphid survival and reproductive development 

over a 2-day test period. 
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Chapter 3 – The miRNA pathway is involved in Arabidopsis resistance to 

the green peach aphid Myzus persicae 
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3.1 Introduction 

 

The green peach aphid Myzus persicae is one of the most destructive pests on cultivated 

crops worldwide (Blackman & Eastop, 2000). This species causes feeding damage and, 

more importantly, is the vector of many different plant viruses (Ng & Perry, 2004; 

Hogenhout et al., 2008). However the mechanisms by which plants defend themselves 

against aphids and how aphids modulate plant processes are not fully understood. 

Aphids possess specialized mouthparts named stylets, which are developed for the 

piercing of plant tissues and ingestion of sap, and allow them to feed from phloem tissue 

(Tjallingii, 2006). Access to this tissue is gained following extensive probing by the stylets 

of epidermal and parenchymal cell layers, before establishment of a successful feeding site 

in the phloem sieve element (Tjallingii & Esch, 1993). Once established, feeding can be 

maintained for several hours (Tjallingii, 1995). 

In plants, small RNA (sRNA) molecules regulate changes in gene expression in 

response to a variety of biotic and abiotic stimuli (Sunkar & Zhu, 2004; Fujii et al., 2005; 

Ruiz-Ferrer & Voinnet, 2009; Katiyar-Agarwal & Jin, 2010). It has long been known that 

components of sRNA pathways play an extensive role in antiviral defence (Ding & 

Voinnet, 2007). More recently, sRNA pathways were implicated in plant defense responses 

to bacteria, fungi, nematodes and insects (Navarro et al., 2006; Pandey & Baldwin, 2007; 

Hewezi et al., 2008; Pandey et al., 2008; Ellendorff et al., 2009). Small RNAs modify gene 

expression by acting both at the transcriptional and post-transcriptional levels (Voinnet, 

2009). RNA-induced silencing is initiated by double-stranded RNA (dsRNA) which can 

occur as a stem-loop precursor, or a longer dsRNA molecule generated by either 

bidirectional transcription or action of an RNA-dependent RNA polymerase (RDR) on a 

single-stranded RNA (ssRNA) template (Ruiz-Ferrer & Voinnet, 2009). In Arabidopsis, 

segments of dsRNA are cleaved into 18-24 nucleotide (nt) sRNA duplexes by one, or a 
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combination of four Dicer-like (DCL) endoribonucleases. Following methylation of the 2nt 

3' overhang by the methyltransferase HUA ENHANCER1 (HEN1) (Yu et al., 2005), 

sRNA can be exported from the nucleus before incorporation into an RNA-Induced 

Silencing Complex (RISC) containing one of ten Argonaute (AGO) proteins (Vazquez et 

al., 2010). The sRNA guides the RISC to either cleave or repress translation of target 

transcripts bearing sufficient homology to the loaded sRNA. 

Small RNAs can be divided into subgroups depending on their source and mode of 

processing (Vazquez et al., 2010). Small interfering RNA (siRNA) is processed from 

segments of long, perfectly complementary dsRNA, which may be derived from pathogens 

(e.g. viruses) or generated from loci throughout the genome, but especially from highly 

repetitive regions (Rabinowicz et al., 2003; Matzke et al., 2007). The latter is consistent 

with the known role for siRNAs in directing heterochromatic silencing of genomic regions 

harbouring mobile genetic elements (Matzke et al., 2007). MicroRNA (miRNA) molecules 

are a class of largely 21nt sRNAs derived from imperfectly complementary stem-loop 

precursors. MiRNAs are excised from their precursors by DCL1 (Park et al., 2002; 

Kurihara & Watanabe, 2004), although the rate and fidelity of this excision is dependent on 

the cofactors SERRATE (SE) and HYPONASTIC LEAVES 1 (HYL1) (Dong et al., 

2008). MiRNAs are subject to methylation by HEN1 and are exported from the nucleus via 

both HASTY (HST)-dependent and independent mechanisms (Park et al., 2005). At some 

point, there is unravelling of the duplex into its component miR and complementary miR* 

strands, before one strand is selectively incorporated into RISC. AGO1 is the dominant 

slicer of the miRNA pathway (Baumberger & Baulcombe, 2005), although a proportion is 

reported to act through AGO7 or AGO10 (Brodersen et al., 2008; Montgomery et al., 

2008). 

The miRNA pathway is known to play a significant role in regulating the defence 

response that occurs following challenge by the bacterial biotroph Pseudomonas syringae  
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(Navarro et al., 2006; Zhang, W et al., 2011) or the pathogen associated molecular pattern 

(PAMP) flg22 (Li et al., 2010). Evidence suggests that a substantial set of miRNAs are 

differentially regulated following perception of these challenges, and have impact on 

hormone pathways regulating resistance. The defence pathways activated in response to 

attack from chewing herbivores are also governed by sRNAs. Growth of M. sexta larvae is 

enhanced on N. attenuata lacking RNA-dependent RNA polymerase 1 (RDR1) (Pandey & 

Baldwin, 2007). In this interaction, RDR1-dependent siRNAs are required to coordinate a 

defence response involving nicotine biosynthesis and the JA and ET signalling pathways 

(Pandey et al., 2008). 

Aphid infestations elicit transcriptional reprogramming in host plants despite 

causing little visible feeding damage (Moran et al., 2002; Couldridge et al., 2007; 

Kuśnierczyk et al., 2007; Kuśnierczyk et al., 2008; Gao et al., 2010). In one study, 

transcriptional changes were more pronounced than those elicited by fungal or bacterial 

pathogens, or a leaf-chewing lepidopteran pest (de Vos et al., 2005). MiRNAs in particular 

are known to target large families of transcription factors. Infestation by several aphid 

species also results in large-scale changes in the transcription factor profile of infested 

tissue (Kuśnierczyk et al., 2008; Gao et al., 2010). Given these observations and the 

known involvement of sRNAs in defence responses against pathogens and a chewing 

herbivore, we hypothesised that sRNAs may play a similarly important role in coordinating 

plant processes in response to aphid attack. 

In the work described here, we find that M. persicae fecundity is reduced on plants 

deficient in miRNA processing. In contrast, aphid performance is unchanged on plants 

deficient in other siRNA processing pathways. The resistance phenotype of the miRNA 

mutants is independent of their reduced stature phenotype. This indicates that the miRNA 

pathway is a negative regulator of M. persicae resistance in Arabidopsis. 
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3.2 Results 

 

Establishing a reliable aphid survival and fecundity assay 

Our initial aim was to develop an assay by which the success of aphids could be assessed 

across a range of Arabidopsis mutants. One measure of insect success is fecundity, which 

describes the capacity of an organism to produce offspring. A measurement of fecundity 

could include the age at which an aphid is first able to reproduce, or the total number of 

nymphs produced over a lifetime. Survival or mortality is another measure of aphid 

success that is distinct from reproductive capacity. Many examples of aphid assays in the 

literature make no distinction between these two parameters. Indeed, there is immense 

variation in the methodology used to assess aphid performance. There are studies where 

experiments are as short as two days (Pegadaraju et al., 2005), whereas other laboratories 

have favoured a longer term approach where experiments are run for two to three weeks 

(Kuśnierczyk et al., 2008). A longer exposure to test plants presumably allows detection of 

more subtle effects on aphid behaviour which might be missed in short term experiments. 

In some initial experiments, we used non-aged adult M. persicae to assess aphid 

performance. These experiments did not make a distinction between survival of adult 

insects and their fecundity (Fig. 3.1). Experiments were run for seven days after 

inoculation, with total aphid counts conducted every day from day three up until day seven. 

In some of these trials, there was considerable variation within each treatment (Fig. 3.1a). 

In other trials, we could not reproduce results and in some cases obtained contrasting sets 

of data between replicate experiments (Fig. 3.1b). 
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Figure 3.1 – Using non-aged adult aphids on plants produces inconsistent results. 

(a) An early experiment comparing M. persicae fecundity on Arabidopsis Col-0 and the dcl2/3/4 triple 

mutant. In this experiment, five non-aged adult aphids were added to each plant and total aphid counts were 

taken every day up to seven days. The graph indicates the total number of aphids counted when the 

experiment was terminated. Bars represent the mean (±SE) across six plants per genotype. This experimental 

protocol produced results with large degrees of variation within each treatment. (b) Non-aged adults were 

added to Col-0 and rdr6 plants following the same method as in (a). In these trials, the variation within each 

treatment was lower, however results were highly variable between repeat experiments. Bars represent the 

mean (±SE) across 4-6 plants per genotype. 

 

 

I suspected that these discrepancies were due to the use of non-aged adult insects, and that 

our initial trials did not take into account two factors which likely explain that majority of 

the variability. Firstly, insects taken from the stock colony as adults could have very 

different reproductive capacity. We discovered that upon reaching maturity, there is a peak 

in nymph production, which then stabilises with age (Fig. 3.2). Two adults separated by 

two or three days in age may therefore have very different levels of fecundity. In addition, 

the environment during juvenile aphid development has an impact on adult behaviour. It is 

known that the fecundity of adult insects has to an extent been pre-determined by 
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conditions within the stock cage. This may mask fecundity results when aphids are then 

raised on hosts of varying suitability. 

 

 

Figure 3.2 – Assessing aphid performance by two-week survival/fecundity assay. 

In this example, nymph production begins on day nine, peaks on day ten before stabilising towards the end of 

the experiment on day fourteen. In our final experimental design, nymphs produced up to day eleven are 

removed to reduce crowding on test plants. There is then a further three days of nymph production before the 

final nymph count on day fourteen.  

 

 

To counter these problems, we decided to progress using nymphs as test insects. These 

nymphs would be born and spend their entire lives on test plants. This hopefully minimises 

the influence of conditions within the stock cage. However, as M. persicae has telescoping 

generations, it is highly likely that a stressful or beneficial environmental condition will 

have bearing on multiple generations of unborn aphids in a female. This may have two 

consequences. Firstly, stress conditions that may have occurred in the aphid stock cage will 

be carried forward into experiments resulting in some variations in aphid performance 
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(survival plus fecundity) among biological replicates over time. Secondly, differences in 

aphid performance between treatments may be smaller as might be expected, because 

aphids have already generated embryos at various stages of development in the stock cage. 

Therefore, to increase the likelihood of finding Arabidopsis mutants that are 

disadvantageous or beneficial for the aphid, it appears to be essential that aphids are 

exposed to these plants as long as possible. For this reason, a new assay was developed in 

which aphids were exposed to the experimental plants from the time of birth until they bear 

their own young. To achieve this, adult aphids from the stock cage were allowed to 

produce young on the experimental plants during 48 hours and were then removed. Five 

nymphs remained on the experimental plants until they reached adulthood for maximally 

14 days at which time they are past their peak of nymph production (Fig. 3.2). Nymphs 

were counted at days 11 and 14, and to avoid crowding becoming a problem, all nymphs 

are removed from plants on day 11. I predicted that this assay would produce more 

consistent and sensitive results, thereby increasing the likelihood of the discovery of 

Arabidopsis mutants that are disadvantageous or beneficial to the aphids compared to wild 

type plants.  In an initial trial of this method, both aphid survival (the number of nymphs 

that developed into adults and were alive at 14 days) and fecundity (number of nymphs 

born from the adults at days 11 and 14) on wild type Col-0 and rdr1 mutants were highly 

consistent (Fig. 3.3a,b). These results provided confidence for continuing with this 14-day 

aphid survival and fecundity assay. 
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Figure 3.3 – Establishing performance readouts for the two-week survival/fecundity assay. 

(a) In  one of the earliest experiments using this method, we found that adult aphid fecundity was unchanged 

on the rdr1 mutant relative to Col-0. In the majority of subsequent experiments, we found that on Col-0, an 

average of between ten and fourteen nymphs are produced per adult over a two-week period. (b) We found 

no change in levels of survival between aphids raised on Col-0 and rdr1. In no subsequent experiments did 

we find any change in survival due to plant genotype. On Col-0, adult survival is typically between four and 

five insects from the original five that were seeded at the start of the experiment.  

 

 

In all subsequent experiments, I found no significant differences in aphid survival between 

Arabidopsis Col-0 and mutants (data not shown). However, significant differences in aphid 

fecundity were noticed on some Arabidopsis mutants compared to wild type Col-0. Hence 

I report on fecundity measurements only. 
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The miRNA pathway is involved in plant defence to aphids  

To determine whether sRNAs are involved in Arabidopsis resistance to M. persicae, aphid 

performance was assessed on a collection of rdr, dcl and ago mutants and wild type Col-0 

Arabidopsis. In an initial experiment, fecundity was unchanged among three RDR mutants 

(rdr1, rdr2, rdr6) compared to Col-0 (Fig. 3.4a). This indicates that RDRs are not involved 

in Arabidopsis resistance to M. persicae, unlike the rdr1 mutant of N. attenuata that has 

decreased resistance to the herbivore M. sexta (Pandey & Baldwin, 2007). In contrast, 

aphids produced significantly fewer offspring on dcl1 mutants relative to Col-0 (ANODE; 

p<0.001, n=5) but were not affected on dcl2, dcl3 or dcl4 mutants (Fig. 3.4b). In addition, 

aphid fecundity was significantly lower on the ago1-25 mutant (ANODE; p<0.001, n=5) 

but was unchanged on ago2, ago4 and ago7 mutants (Fig. 3.4c). Aphid performance was 

also not affected on the dcl2/3 and dcl2/4 double mutants or the dcl2/3/4 triple mutant (Fig. 

3.4d). Because DCL1 and AGO1 both process sRNAs in the miRNA pathway, these data 

suggest that the miRNA pathway is involved in Arabidopsis resistance to M. persicae, 

whilst other small RNA processing pathways appear not to play a significant role. 
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Figure 3.4 - The Arabidopsis miRNA pathway is involved in aphid resistance. 

Aphid fecundity is reduced on miRNA pathway mutants (dcl1, ago1) (b,c) but not mutants in other siRNA 

pathways (a-d). Each plant was seeded with five nymphs and the average fecundity of these nymphs as they 

progressed to adulthood was recorded. Bars represent the mean (±SE) of five plants of each genotype. Each 

experiment was repeated at least twice with similar results. Asterisks represent p<0.001 as determined by 

Analysis of Deviance (ANODE) (GenStat). 

 

 

miRNA mutant resistance to aphids is independent of plant stature 

To investigate this further, I conducted M. persicae fecundity assays on other mutants in 

the miRNA pathway. Additionally, to determine whether the smaller stature of dcl1 and 

ago1 mutants affects aphid fecundity, I included the Arabidopsis Plasmodesmata Located 

Protein 1 (PDLP1) overexpression line 35S::PDLP1a:GFP (Thomas et al., 2008) as a 
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control as this line exhibits a dwarfing phenotype similar to the miRNA mutants, but has 

no impairment in sRNA processing (Fig. 3.5a, 3.6). I observed that aphid fecundity was 

not significantly different between PDLP1 and Col-0, whilst aphids produced significantly 

fewer nymphs on the miRNA mutant dcl1 and the hen1 mutant which is deficient in all 

small RNA pathways (ANODE; p<0.001, n=5) (Fig. 3.5b). Similarly, aphids were 

significantly less fecund on hst and se1 mutants compared to both Col-0 and PDLP1 

(ANODE; p<0.001, n=5) (Fig. 3.5c). SERRATE is a zinc finger protein that assists DCL1 

in the accurate excision of miRNAs from their precursors whilst HST is involved in the 

export of miRNAs from the nucleus (Park et al., 2005; Dong et al., 2008). To provide 

additional evidence that plant stature does not affect aphid fecundity, I also assessed aphid 

performance on the partial dcl1 rescue line dcl1.fwf2, which retains impaired miRNA 

processing but exhibits a less dwarf phenotype (Katiyar-Agarwal et al., 2007) (Fig. 3.5a, 

3.6). Fecundity on these plants matched that of dcl1-raised aphids (Fig. 3.5d). I also 

obtained other ago1 alleles reported to have various degrees of dwarfism (Morel et al., 

2002). Aphid fecundity was comparable across all of these lines (Fig. 3.5e) although in our 

growth conditions the ago1-26 and ago1-27 mutants were similar in size and stature 

compared to the ago1-25 mutant analysed in Fig. 1C (Fig. 3.6). Nonetheless, these results 

suggest that the miRNA pathway is involved in regulating the plant resistance response to 

M. persicae, while other siRNA pathways are not involved. Furthermore, the resistance 

exhibited by miRNA pathway mutants is independent of the dwarfism phenotype. 
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Figure 3.5 - Plant stature has no effect on aphid fecundity. 

Aphid fecundity is reduced on Arabidopsis lines that aberrantly process miRNA (hen1, hst, se1) (b,c) but 

remains high on the unrelated dwarf PDLP1 (a,b,c). Reduced fecundity is also observed on the partial dcl1 

rescue line dcl1.fwf2 (a,c) and across several ago1 alleles (e). Bars represent the mean (±SE) of five plants of 

each genotype. Each experiment was repeated at least twice with similar results. Asterisks represent p<0.001 

as determined by ANODE.  
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Figure  3.6 - Phenotypes of all plants used in the silencing mutants fecundity screen. 

Plants are 4-weeks old in these photographs, the same age as plants that are first exposed to aphids in the 2-

week survival/fecundity trial. 

 

 

miRNA mutant resistance is absent in a short-term fecundity trial 

There is considerable variation in the methods employed by different laboratories to assess 

aphid performance. Using a 14-day assay, I observed that aphids were less fecund on 

miRNA pathway mutants compared to either wild-type plants or plants deficient in aspects 

of siRNA processing. To further characterise this resistance phenotype, I exposed Col-0, 

dcl1 (miRNA mutant) and dcl2/3/4 (siRNA mutant) to aphids using a previously published 

short-term protocol (Pegadaraju et al., 2005). In this experiment, plants are seeded with 15 
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non-aged adults and exposed for two days. At the end of this period, the total number of 

aphids on test plants is recorded. This method makes no distinction between survival and 

fecundity of test insects. Following this protocol, I found that the total numbers of aphids 

on Col-0, dcl1 and dcl2/3/4 plants were similar (Fig. 3.7). Therefore, the resistance 

phenotype exhibited by miRNA pathway mutants is not present during a 2-day 

experimental protocol, and is only revealed when insects are exposed to plants for a longer 

period. 

 

 

Figure 3.7 – miRNA mutant resistance is absent in a short-term performance assay.  

Aphid performance was assessed on wild-type (Col-0), miRNA mutant (dcl1) and siRNA mutant (dcl2/3/4) 

following the method described by (Pegadaraju et al., 2005). Bars represent the mean (±SE) of ten plants 

from two independent experiments. Data was analysed by ANODE (GenStat) and the letters indicate no 

statistically significant differences in aphid performance across these genotypes. 
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3.3 Discussion 

 

In these experiments, I show that the green peach aphid M. persicae produces significantly 

less progeny on Arabidopsis plants that aberrantly process miRNAs. I found no change in 

aphid performance on plants deficient in siRNA-mediated pathways. I continue to show 

that miRNA mutant resistance is independent of the developmental phenotype of these 

plants, as aphid fecundity is close to wild-type levels on 35S::PDLP1a:GFP transgenic 

plants which also exhibit a dwarf stature. Furthermore, aphid fecundity was similar 

between dcl1 and the dcl1.fwf2 line which has a partially-rescued phenotype. Interestingly, 

the resistance phenotype of a miRNA pathway mutant (dcl1) was absent when non-aged 

adult aphids were exposed to plants in a short-term performance assay. 

The finding that aphids were less successful on dcl1 plants was initially 

unexpected, as pathogen and insect performance has been shown to increase on silencing-

deficient hosts (Deleris et al., 2006; Pandey & Baldwin, 2007). Indeed, type III secretion 

system (T3SS)-deficient P. syringae (which normally reproduce poorly on Arabidopsis), 

show increased proliferation on miRNA pathway mutants, but not on plants defective in 

other silencing pathways (Navarro et al., 2008). Similarly, P. fluorescens and Escherichia 

coli, which do not normally infect Arabidopsis, can multiply on miRNA pathway mutants 

(Navarro et al., 2008). In addition, some RNA silencing mutants are hyper-susceptible to 

infection by the vascular fungi Verticillium (Ellendorff et al., 2009). More specifically for 

insects, an RDR1-silenced line of N. attenuata (irRdR1) is more susceptible to larvae of 

the solanaceous specialist M. sexta (Pandey & Baldwin, 2007). Nonetheless, there are 

several examples of increased resistance of Arabidopsis miRNA mutants to pathogens and 

pests. Both Arabidopsis miRNA or siRNA pathway mutants exhibit increased resistance to 

the cyst nematode Heterodera schachtii (Hewezi et al., 2008) and dcl1 plants are resistant 

to tumour formation following stab inoculation with tumourigenic Agrobacterium 
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(Dunoyer et al., 2006). This may be expected as miRNAs are integral players in plant 

development, and cyst nematodes and Agrobacterium reprogram plant development to 

generate cysts and galls, respectively, that provide feeding and replication sites for these 

plant colonisers. Thus, our observation that aphids do less well on Arabidopsis miRNA 

mutants may be a consequence of the highly specialised feeding mode of aphids. M. 

persicae does not form noticeable galls, but may still need to modulate specific 

developmental or basic plant defence processes that are regulated by miRNAs in order to 

establish long-term feeding sites. The salivary components that aphids release into cells 

while they navigate to the phloem and during phloem feeding (Will et al., 2007; Mutti et 

al., 2008; de Vos & Jander, 2009; Bos et al., 2010) may induce these modulations. We 

propose that M. persicae colonisation efficiency of Arabidopsis is enhanced by the ability 

of this aphid to modulate specific plant processes that are regulated by miRNAs. 

In a two-week fecundity assay, I demonstrated that significantly fewer nymphs are 

produced by aphids raised on miRNA pathway mutants relative to either wild-type plants 

or siRNA pathway mutants. When I repeated this experiment using a short two-day method 

described by Pegadaraju and colleagues, performance was similar across all genotypes. 

This inconsistency may involve several contributory factors. Firstly, as exposure times in 

these experiments were ~14-days and 2-days respectively, it could be that the resistance 

mechanism requires an exposure longer than two days before measureable effects can be 

observed on aphids. Secondly, as one method uses nymphs as test insects and the other 

adults, it could be that the resistance mechanism is effective against developing aphids 

whereas adults have some level of immunity. The data indicates that the miRNA mutant 

resistance phenotype interferes with aphid reproductive development and not the survival 

of insects as they mature from nymph to adult. It remains a possibility that the longevity of 

aphids is altered on some of plants assessed in these experiments, however I did not 

investigate this as part of the screen. 
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There are currently ~240 known miRNA species in Arabidopsis. Of these, only a 

small proportion has so far been implicated in plant defence signalling (Navarro et al., 

2006; Li et al., 2010; Zhang, W et al., 2011). In the miRNA mutants tested in this set of 

experiments (dcl1, ago1, se1, hst, hen1), the quantity of fully functional mature miRNAs is 

globally depleted. However, it is likely that the majority of miRNAs are not involved in 

aphid resistance. The crucial questions leading on from this exploratory work are to 

identify the suite of miRNAs that are important for aphid resistance, and the metabolic or 

other defence pathways that they regulate. This may facilitate the identification of novel 

mechanisms involved in aphid resistance in Arabidopsis. Additionally, there may exist 

aphid-inducible miRNAs. To our knowledge, no study has investigated responses of the 

sRNA transcriptome to a phloem-feeding insect. This work therefore presents an 

opportunity for novel miRNA discovery. 
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Chapter 4 – The camalexin pathway is involved in Arabidopsis miRNA 

mutant resistance to Myzus persicae 
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4.1 Introduction 

 

In higher plants, miRNAs negatively regulate gene expression at the transcript level. 

Additionally, it is known that in the moss Physcomitrella patens, miRNAs are involved in 

a process that guides DNA methylation (Khraiwesh et al., 2010), although it is currently 

unknown whether this phenomenon occurs in other plant species. The post-transcriptional 

targets of some miRNAs have been identified in Arabidopsis and include conserved 

transcription factors (Sunkar & Zhu, 2004; Wang et al., 2004). As some miRNAs are 

known to be involved in plant defence responses (Navarro et al., 2006; Zhang, W et al., 

2011; Zhang, X et al., 2011) and miRNA pathway mutants are more resistant to aphid 

infestation (Chapter 3), we hypothesised that the miRNA pathway mutants have altered 

defence pathway regulation upon aphid attack.  

Arabidopsis responses to aphid attack have been extensively investigated and 

involve suites of genes involved in numerous biochemical pathways (Moran et al., 2002; 

de Vos et al., 2005; Couldridge et al., 2007; Kuśnierczyk et al., 2007; Kuśnierczyk et al., 

2008). The magnitude and composition of the response vary between studies. In one 

example, the response to M. persicae involved a greater number of genes than defence 

responses against a bacterial biotroph (Pseudomonas syringae), a fungal necrotroph 

(Alternaria brassicicola), a cell-content feeding insect (Frankliniella occidentalis) or a 

leaf-chewing insect (Pieris rapae) (de Vos et al., 2005). Given that among all these 

attackers, aphids induce the least visible damage or necrosis, this result is somewhat 

remarkable. However, extensive aphid-induced transcriptional reprogramming has not 

been observed in all studies. Couldridge and coworkers found that only two genes were 

differentially expressed in leaves following two hours aphid exposure, increasing to 

twenty-five following a thirty-six hour infestation (Couldridge et al., 2007). It is likely that 
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plant response to aphids depends on experimental conditions and the temporal aspects, and 

both conditions must be considered carefully when assessing host responses. 

In some of the earliest studies using Arabidopsis as a model to study plant-aphid 

interactions, pathogenesis-related genes such as PR1 and BGL2 were found to be 

upregulated during aphid attack (Moran & Thompson, 2001; Moran et al., 2002), 

suggesting that there may be considerable overlap between the aphid response and the 

response generated against some biotrophic pathogens. Genes such as PR1 are SA-

responsive, raising the possibility that the aphid response may be dependent on a SA signal 

to trigger transcriptional reprogramming. However, no change has been recorded in SA 

levels of aphid-infested tissue relative to aphid-free controls (de Vos et al., 2005). 

Furthermore, aphids are no more successful, and in some cases are less successful, on 

plants deficient in SA signalling compared to wild-type plants (Mewis et al., 2005; 

Pegadaraju et al., 2005; Mewis et al., 2006). 

Aphid-responsive genes also involve those in the JA and ET defence pathways 

(Moran et al., 2002; Kuśnierczyk et al., 2007). JA appears particularly important, as plants 

supplied with exogenous JA are more resistant to aphid infestation (Ellis et al., 2002). 

Furthermore, aphid performance increases on JA pathway mutants, but was reduced on 

plants with constitutively activated JA signalling (Ellis et al., 2002). It has been suggested 

that aphids preferentially induce SA signalling as a means to dampen a more effective JA 

response. This model has been termed the decoy hypothesis (Zhu-Salzman et al., 2004). 

The role of glucosinolates in insect resistance has received much attention, 

specifically on the indolic forms synthesized from the amino acid Tryptophan. 

Glucosinolates have potent defensive benefits against chewing herbivores. Upon tissue 

disruption, glucosinolates are hydrolyzed by endogenous myrosinases to produce a range 

of compounds that act as insect deterrants (Koroleva et al., 2000). Aphids do not cause 
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significant amounts of feeding damage, but there is persuasive evidence to suggest that 

some glucosinolates possess powerful defensive properties against these pests. 

In Arabidopsis, aphid feeding catalyzes the conversion of indol-3-

ylmethylglucosinolate (I3M) to 4-methoxyindol-3-ylmethylglucosinolate (4MI3M) (Kim 

& Jander, 2007). In artificial diet experiments, 4MI3M exhibited a greater deleterious 

effect on aphid reproductive success than I3M did (Kim & Jander, 2007). It has therefore 

been suggested that this conversion is an adapted response in plants to produce 

glucosinolates that offer the greatest defensive benefit against aphids. Conversion of I3M 

to 4MI3M depends on activity of the cytochrome P450 CYP81F2 (Pfalz et al., 2009). 

Mutants lacking functional CYP81F2 do not accumulate either 4MI3M or the intermediate 

4-hydroxyindol-3-ylmethylglucosinolate (4OHI3M) and are more susceptible to aphid 

colonization (Pfalz et al., 2009). Thus, 4MI3M and 4OHI3MA play active roles in aphid 

resistance in Arabidopsis. However, aphid performance on the cyp79b2/cyp79b3 double 

mutant, which is deficient in all indolic glucosinolates, and wild type plants are similar 

(Kim et al., 2008). Whilst the double mutant does not support higher aphid numbers, they 

do senesce and die much faster than wild-type plants when aphid colonies are allowed to 

develop for an extended period of up to 30 days (Kim et al., 2008).  How glucosinolates 

exert protective effects in plants against aphids is not yet understood. The glucosinolates 

are unlikely to be hydrolysed by myrosinases prior to ingestion by the aphid as these 

insects cause minimal tissue disruption. The indolic glucosinolate fraction is less abundant 

while breakdown products of indolic forms are comparatively enriched in whole aphids 

and aphid honeydew than in whole plants or phloem exudate (Kim et al., 2008). On the 

other hand, the aliphatic glucosinolates pass through aphids unaltered, and are found in 

similar quantities in aphid honeydew as in plants. Therefore, the indolic glucosinolates 

may be broken down in aphids in a manner that is myrosinase-independent or in the 

phloem prior to ingestion. 
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The role of phytoalexins in aphid resistance is less defined compared to that of 

glucosinolates. The pathway leading to camalexin synthesis, which branches from the 

indole glucosinolates, is also not fully described. However, both the camalexin and indole 

glucosinolate pathways compete for the common precursor indole-3-acetaldoxime (IAOx) 

which is derived from Tryptophan (Zhao et al., 2002; Glawischnig et al., 2004). 

CYP71A13 converts IAOx to indole-3-acetonitrile (IAN) which is the substrate for as yet 

uncharacterised reactions leading to the production of dihydrocamalexic acid (DHCA) 

(Nafisi et al., 2007). DHCA is converted to camalexin by CYP71B15 (PAD3) (Schuhegger 

et al., 2006; Böttcher et al., 2009; Su et al., 2011). Although PAD3 is induced during 

infestations by the generalist aphid species M. persicae in some studies, survival of these 

aphids on pad3 mutants and wild-type Arabidopsis plants were similar over a 2-day 

exposure to the experimental plants (Pegadaraju et al., 2005). On the other hand, the 

crucifer-specialist aphid species B. brassicae, which also induces PAD3 on Arabidopsis, is 

more successful on pad3 mutants than on wild-type Col-0 over a 13-day exposure to the 

experimental plants (Kuśnierczyk et al., 2008). Thus, the effectiveness of camalexin may 

differ between aphid species and/or may become more noticeable when aphids are exposed 

to it for longer periods of time. 

Phytohormone synthesis and response pathways are also involved in the complex 

plant defense responses to aphid attack. Moreover, other components of the glucosinolate 

and camalexin synthesis pathways may influence aphid performance. To investigate why 

the miRNA pathway mutants are more resistant to aphids (chapter 3), the expression levels 

of various genes in the glucosinolate, camalexin and phytohormone pathways were 

analysed in the aphid-exposed miRNA mutant dcl1, the siRNA pathway mutant dcl2/3/4 

and wild-type Col-0. 
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4.2 Results 

 

Transcriptional response to M. persicae infestation is first detected at 12hpi 

To assess the temporal aspect of the host response to infestation, I used quantitative real-

time PCR (qRT-PCR) to assess induction of a range of defence pathway-related transcripts 

in the Col-0 ecotype (Fig. 4.1, 4.2, 4.3). I measured defence induction at six, twelve, 

twenty-four and forty-eight hours and found that significant transcriptional changes are 

first detected at 12-hpi (Fig. 4.1a,d 4.2a,b 4.3c). The changes present at 12-hpi were 

generally maintained at the 24-hpi and 48-hpi time points and in many cases the magnitude 

of induction was higher at these later time points (Fig. 4.1a,c,d 4.2c 4.3c). Eight out of the 

eleven genes tested showed some degree of induction in aphid-infested samples relative to 

mock infestation controls. This is perhaps not surprising as all of these genes have 

previously been implicated in aphid defence responses. Of the genes induced in aphid-

exposed samples, those involved in SA-response (PR1) (Fig. 4.1a), tryptophan-derived 

secondary metabolism (PAD3, CYP79B2, CYP83B1, CYP81F2) (Fig. 4.1d 4.2a,b,c) and 

JA/ET-response (PDF1.2, HEL) (Fig. 4.1c 4.3c) were most consistently induced. In 

contrast, genes involved in JA synthesis (LOX2) and response (VSP2) were either stable or 

repressed (Fig. 4.1b 4.3b). These results are consistent with the known antagonistic 

interaction between the SA and JA signalling pathways. As the transcriptional response 

against infestation appears to be mobilised at 12-hpi, we selected this time point for future 

experiments as it would be possible to detect decrease as well as increase in gene 

expression levels. 
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Figure 4.1 - Investigation into temporal response of Col-0 plants to M. persicae infestation. 

qRT-PCR analysis of transcripts involved in (a) SA response (PR1), (b) JA production (LOX2), (c) JA/ET 

response (PDF1.2), and (d) camalexin production (PAD3) following 6, 12, 24 or 48h aphid infestation. Bars 

represent the mean expression levels (±SE) across four biological replicates. Leaves housed in empty cages 

(Mock) for the same period were used as controls. Asterisks indicate statistically significant differences at 

p<0.05 as determined by t-probabilities within a General Linear Model (GLM). The mock-treated sample at 

each timepoint is displayed as a value of 1. 
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Figure 4.2 - Investigation into temporal response of Col-0 plants to M. persicae infestation. 

qRT-PCR analysis of transcripts involved in production (a) glucosinolates and camalexin (CYP79B2), (b) 

glucosinolates (CYP83B1), and (c) aphid-relevant glucosinolate (CYP81F2). (d) CYP89A2 has previously 

been found to be highly repressed following 48h aphid feeding (de Vos et al., 2005). Expression levels were 

measured following 6, 12, 24 or 48h aphid infestation. Bars represent the mean expression levels (±SE) 

across four biological replicates. Leaves housed in empty cages (Mock) for the same period were used as 

controls. Single asterisks indicate statistically significant differences at p<0.05, double asterisks indicate 

differences at p<0.01 as determined by t-probabilities within a GLM. The mock-treated sample at each 

timepoint is displayed as a value of 1. 
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Figure 4.3 - Investigation into temporal response of Col-0 plants to M. persicae infestation. 

qRT-PCR analysis of transcripts involved in (a) defence signalling (MPK3), (b) JA response (VSP2), and (c) 

ET response (HEL) following 6, 12, 24 or 48h aphid infestation. Bars represent the mean expression levels 

(±SE) across four biological replicates. Leaves housed in empty cages (Mock) for the same period were used 

as controls. Single asterisks indicate statistically significant differences at p<0.05, double asterisks indicate 

differences at p<0.01 as determined by t-probabilities within a GLM. The mock-treated sample at each 

timepoint is displayed as a value of 1. 
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Camalexin, indole glucosinolate, ET and JA pathway transcripts are upregulated in 

aphid-exposed dcl1 mutants 

To identify defence pathways involved in the miRNA mutant resistance phenotype, I 

exposed Col-0, dcl1 and dcl2/3/4 plants to 12h M. persicae infestations. PAD3 

(CYP71B15), a marker for the camalexin biosynthetic pathway (Chassot et al., 2008; Xu et 

al., 2008), was most strikingly induced upon exposure to aphids in the dcl1 mutant 

compared to Col-0 and the dcl2/3/4 triple mutant among all the genes tested (Fig. 4.4a). In 

addition, CYP81F2, a gene involved in the indolic glucosinolate pathway was significantly 

induced in aphid-infested dcl1 plants compared to Col-0 and dcl2/3/4 (Fig. 4.4d). The JA 

biosynthetic gene LOX2 was also significantly upregulated in aphid-exposed dcl1 

compared to aphid-exposed Col-0 and dcl2/3/4 (Fig. 4.5b). The defence-related gene 

MPK3 was most strongly induced in dcl1, although the increase was not significantly 

different to aphid-exposed Col-0 or dcl2/3/4 (Fig. 4.6). PR1, a marker for SA signalling (de 

Vos et al., 2005; Kuśnierczyk et al., 2007), is upregulated upon aphid exposure, however 

its induction was not significantly different among aphid-exposed Col-0, dcl1 and dcl2/3/4 

plants (Fig. 4.5a). The basal expression levels of some genes, such as CYP79B2 and 

CYP83B1 of the indole glucosinolate/camalexin pathways were greater in dcl1 compared 

to Col-0 and dcl2/3/4, but did not alter significantly upon exposure to aphids (Fig. 4.4b,c). 

VSP2 and PDF1.2 have been used as downstream markers of the JA and ET pathways (de 

Vos et al., 2005). I found that the expression of these genes were either stable or repressed 

following aphid treatment and did not differ significantly across any of the lines tested 

(Fig. 4.5c,d). In contrast, the ethylene-responsive transcript HEL (PR4) was significantly 

induced in aphid-exposed dcl1 plants compared to aphid-exposed Col-0 and dcl2/3/4 (Fig. 

4.5e). As genes involved in glucosinolate and camalexin biosynthesis and the JA- and ET- 

signaling pathways were differentially regulated in dcl1 plants, I hypothesised that these 
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pathways may be responsible for the aphid-resistant phenotype of Arabidopsis miRNA 

pathway mutants. 

To assess if differences in gene expression at 12-hpi were consistent at later time 

points, I exposed Col-0, dcl1 and dcl2/3/4 plants to 24- and 48h aphid infestations (Fig. 

4.7). I found that PAD3 and HEL remained significantly upregulated in aphid-exposed dcl1 

relative to aphid-exposed wild type plants at the later time points (Fig. 4.7). Many of the 

other genes were upregulated in both aphid-exposed Col-0 and dcl1 mutants indicating that 

these do not contribute to the difference in aphid resistance of miRNA pathway mutants. 
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Figure 4.4 - MiRNA mutants have differential expression of enzymes involved in tryptophan-derived 

secondary metabolism. 

qRT-PCR analysis of transcripts involved in production of (a) camalexin (PAD3), (b) camalexin/indole 

glucosinolates (CYP79B2), and (c-d) indole glucosinolates (CYP83B1, CYP81F2) following 12h aphid 

infestation. MiRNA mutants (dcl1) show greater induction of PAD3 and CYP81F2 compared to Col-0 and 

dcl2/3/4 and also have increased basal expression of CYP79B2 and CYP83B1. Bars represent the mean 

expression levels (±SE) across nine biological replicates from three independent experiments. Letters 

indicate differences at p<0.05 as determined by t-probabilities within a GLM. (e) Position of PAD3, 

CYP79B2, CYP83B1 and CYP81F2 in the camalexin and indole glucosinolate biosynthetic pathways. (f) 

Aphid fecundity is similarly increased on camalexin-deficient (pad3) and camalexin/indole glucosinolate-

deficient (cyp79b2/cyp79b3) mutants indicating that camalexin production is the major resistance factor. (g) 

Aphid fecundity is unchanged on cyp81f2 mutants. Bars represent the mean (±SE) of ten plants of each 

genotype from two experiments. Letters indicate differences at p<0.05 as determined by ANODE.  
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Figure 4.5 - MiRNA mutants have altered expression of genes involved in JA synthesis and ET 

response. 

qRT-PCR analysis of transcripts involved in (a) SA (PR1), (b,c) JA (LOX2, VSP2), (d) JA/ET (PDF1.2) and 

(e) ET (HEL) pathways following 12h aphid infestation. Expression of LOX2 and HEL are increased in dcl1 

relative to both Col-0 and dcl2/3/4. Bars represent the mean expression levels (±SE) across nine biological 

replicates from three independent experiments. Letters indicate differences at p<0.05 as determined by t-

probabilities within a GLM. (f) Aphid fecundity is increased on ethylene-insensitive ein2 mutants. Bars 

represent the mean (±SE) of ten plants of each genotype from two experiments. Experiment was repeated 

with similar results. Letters indicate differences at p<0.05 as determined by ANODE. 
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Figure 4.6 – Defence-related gene MPK3 is induced by aphid exposure. 

MPK3 is more highly induced in aphid-exposed dcl1 compared to Col-0 and dcl2/3/4, although the increase 

is only statistically significant between Col-0 and dcl1. Bars represent the mean expression levels (±SE) 

across nine biological replicates from three independent experiments. Letters indicate differences at p<0.05 

as determined by t-probabilities within a GLM. 

 

 

Figure 4.7 – Induction of PAD3 and HEL at 24-hpi and 48-hpi. 

Induction of PAD3 at 24hpi (a) and 48hpi (b) is highest in dcl1 compared to Col-0 and dcl2/3/4. Induction of 

HEL at 24hpi (c) and 48hpi (d) is also significantly higher in aphid-exposed dcl1 relative to Col-0 and 

dcl2/3/4.  
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Some auxin-related transcripts respond to aphid infestation but are not differentially 

regulated in silencing pathway mutants 

Because camalexin synthesis (mediated by PAD3) is a branch of the auxin synthesis 

pathway, I investigated other genes involved in auxin signalling (Fig. 4.8). Furthermore, 

the auxin and SA pathways can act antagonistically during infection with P. syringae (Bari 

& Jones, 2009). Two targets (TIR1, BDL-IAA12) have been used to assess auxin response 

with relevance to miRNA-based resistance against P. syringae (Navarro et al., 2006), 

whilst At4g12980 is a putative auxin-responsive gene that is highly repressed following 

48h aphid infestation (de Vos et al., 2005). In our analysis, TIR1 is expressed at a slightly 

higher basal level in dcl1 relative to Col-0 and dcl2/3/4 (Fig. 4.8a), although this was not 

statistically significant. TIR1 was similarly repressed in all lines following aphid exposure. 

BDL-IAA12 was similarly expressed in all lines both in the presence and absence of aphids 

(Fig. 4.8b). Therefore this gene appears to play no role in aphid defence. At4g12980 was 

repressed in Col-0 and dcl1 during aphid exposure although this change in expression was 

only significantly different for dcl1 compared to non-exposed dcl1 mutants, aphid-exposed 

wild type plants and non- and aphid-exposed dcl2/3/4 mutants (Fig. 4.8c). These data 

indicates that similar to previous studies, some genes involved in auxin signalling are 

aphid-responsive. Although how the auxin pathway helps regulate resistance to M. 

persicae needs further investigation. 
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Figure 4.8 – Regulation of  auxin-related transcripts during M. persicae infestation. 

qRT-PCR analysis of transcripts involved in auxin signalling (a) TIR1, (b) BDL-IAA12 and auxin response 

(c) At4g12980 following 12h aphid infestation.  TIR1 and At4g12980 are repressed during aphid treatment 

but the magnitude of repression was not different between any line tested. BDL-IAA12 is not aphid reponsive 

nor differentially expressed between Col-0, dcl1 and dcl2/3/4. Bars represent the mean expression levels 

(±SE) across nine biological replicates from three independent experiments. Letters indicate differences at 

p<0.05 as determined by t-probabilities within a GLM.  

 

 

M. persicae fecundity is increased on pad3 mutants but not on cyp81f2 plants 

Results so far indicated that PAD3 expression is specifically induced in aphid-exposed dcl1 

plants. Hence, PAD3 involvement in aphid resistance was further investigated. The 

cytochrome P450 PAD3 catalyzes the conversion of dihydrocamalexic acid to camalexin, 

the major Arabidopsis phytoalexin (Schuhegger et al., 2006). CYP79B2 acts upstream of 
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the glucosinolate and camalexin pathways (Zhao et al., 2002), and CYP81F2 is involved in 

a downstream part of the indolic glucosinolate pathway and acts parallel to camalexin 

syntheses (Pfalz et al., 2009). Both are involved in aphid resistance. To investigate the 

contribution of PAD3 compared to CYP81F2 and CYP79B2, the pad3 (camalexin-

deficient), cyp79b2/cyp79b3 (camalexin and indole glucosinolate-deficient) and cyp81f2 

(aphid-relevant glucosinolate-deficient) mutants were exposed to aphids. Aphid fecundity 

was significantly higher on both pad3 and cyp79b2/cyp79b3 mutants compared to Col-0 

(ANODE; p<0.05, n=10) (Fig. 4.4f). However, aphid fecundity was not significantly 

different on cyp79b2/cyp79b3 plants compared to pad3. Moreover, aphid fecundity was 

not significantly increased on the cyp81f2 mutant relative to Col-0 (Fig. 4.4g). Together 

this indicates that the additional blocking of glucosinolate production had little additive 

effect on aphid resistance when the camalexin pathway was disabled. The finding that 

aphid performance was increased on pad3 mutants is consistent with the induction of 

PAD3 expression in aphid-exposed dcl1 plants. Thus, under the experimental conditions 

used in these fecundity experiments, camalexin plays a more substantial role than indolic 

glucosinolates in the aphid resistance exhibited by Arabidopsis miRNA pathway mutants. 

 

 

Aphid fecundity is unaffected on JA and SA pathway mutants but is increased on 

ein2 plants 

My qRT-PCR data indicated that in dcl1 plants, the JA pathway transcript LOX2 is induced 

following aphid infestation (Fig. 4.5b). This is in contrast to aphid-infested Col-0 and 

dcl2/3/4 where this transcript is repressed. Thus, JA signalling may be involved in miRNA 

mutant resistance. To assess this possibility, I exposed plants defective in JA signalling 

(coi1, jar1, 35S::LOX2) to aphids. Aphid fecundity was slightly increased on these lines 
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relative to controls (Fig. 4.9b) however the increase was not statistically significant. 

Therefore, whilst dcl1 plants exhibit differential regulation of the JA pathway relative to 

Col-0 and dcl2/3/4, this pathway does not affect plant resistance to aphids in wild type Col-

0. Aphid fecundity was also not significantly increased on plants deficient in SA signalling 

(npr1, sid2) relative to Col-0 (Fig. 4.9a). Thus, the SA pathway does contribute to the 

aphid resistance phenotype of wild-type plants either. It remains to be investigated if the 

JA and SA pathways contribute to resistance in the dcl1 background. 

As dcl1 plants show increased induction of the ET-responsive HEL transcript following 

infestation (Fig. 4.5e 4.7c,d), I investigated whether ethylene signalling affects aphid 

performance by assessing aphid performance on the ethylene-insensitive etr1-1 and ein2-5 

mutants. Aphid fecundity was significantly higher on ein2 plants relative to Col-0 

(ANODE; p<0.05, n=10) (Fig. 4.5f) but was not significantly changed on etr1. 

 

 

Figure 4.9 – Aphid fecundity assays on SA and JA pathway mutants. 

(a) Aphid performance is unchanged on plants deficient in SA production (sid2) and signalling (npr1) 

compared to Col-0. (b) Aphid performance was equal on plants deficient in JA biosynthesis (jar1, 

35S:LOX2) and perception (coi1). 35S:LOX2 antisense (as) plants served as a negative control for 

35S:LOX2. Bars represent the mean (±SE) from ten plants per genotype.  The experiments were conducted 

twice and the results combined for statistical analysis by ANODE (GenStat). 
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Camalexin accumulation is increased in miRNA pathway mutants 

To assess whether increased PAD3 expression in dcl1 plants led to increased levels of 

camalexin, I exposed plants to 24h aphid infestation and measured camalexin content by 

high-performance liquid chromatography (HPLC) and mass spectrometry (MS). I found 

that camalexin was present in similarly small quantities in Col-0, dcl1 and dcl2/3/4 plants 

without aphid challenge (Fig. 4.10a). Aphid-exposed dcl1 plants showed noticeable 

camalexin accumulation whereas there was no significant accumulation observed in Col-0 

or dcl2/3/4 (Fig. 4.10a). This result indicates that elevated levels of PAD3 expression 

correlate with increased amounts of camalexin. 

Although I observed increased build-up of camalexin in aphid-infested dcl1 relative 

to aphid-infested Col-0 and dcl2/3/4, the quantities measured were much lower than those 

previously found in plants challenged with bacterial or fungal pathogens. To better assess 

the absolute quantities of camalexin that accumulate in response to aphids, I used clipcages 

to confine aphids to single leaves for 48h. Single leaves were then harvested and processed 

as for the whole plant samples. Unfortunately, data from this experiment was not yet 

available for inclusion in this investigation. However, I predict that a similar pattern of 

camalexin content will be found in single leaf samples as for whole plant samples. 
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Figure 4.10 – Camalexin accumulates in aphid-exposed dcl1 plants. 

HP-LC (+MS) analysis of mock and aphid-infested Col-0, dcl1 and dcl2/3/4 indicates that dcl1 accumulates 

more camalexin when exposed to aphids than Col-0 and dcl2/3/4. Bars represent the mean amount of 

camalexin (±SE) detected in whole plants exposed to 30 M. persicae. Experiments contained 4 biological 

replicates of each treatment and the experiment was conducted twice. 

 

 

PAD3 induction is highly localised during M. persicae infestation 

It is known that camalexin build up is highly localised to the site of attack by some 

necrotrophic pathogens (Kliebenstein et al., 2005). I suspected this was also true during 

aphid infestation. To assess this, single leaves of plants expressing a PAD3p:GUS 

transgene were exposed to 48h aphid infestation. Leaves were harvested and infiltrated 

with X-Gluc (5-bromo-4-chloro-3-indolyl-beta-D-glucuronic acid) to detect areas of β-

glucuronidase (GUS) production. GUS staining was absent in non-treated plants (Fig. 

4.11a). Leaves exposed to spores of the necrotrophic fungus Botrytis cinerea showed GUS 

staining in a characteristic circular pattern surrounding the edge of the Botrytis lesion 

(Kliebenstein et al., 2005) (Fig. 4.11b). GUS staining was also observed in leaves exposed 

to M. persicae, although the magnitude and pattern of staining differed considerably from 

Botrytis-exposed leaves. The staining patterns on aphid-exposed leaves were much less 

uniform than for Botrytis, and occurred mainly at aphid stylets penetration sites, but 
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resulted in one of three principle outcomes (Fig. 4.11c-h). First, in the majority of feeding 

sites, GUS staining was observed in small patches around sites of stylets penetrations (Fig. 

4.11e,f). Secondly, in a smaller proportion of feeding sites, stylets tracks were observed 

without any GUS staining (Fig. 4.11c,d), indicating that aphids had either abandoned 

probing at this site, or had established a successful feeding site without activating a 

defence response involving PAD3 induction. Thirdly, on some leaves, GUS staining was 

observed in an extremely localised fashion (Fig. 4.11g,h), appearing confined solely to the 

vasculature tissue at a site where feeding had been attempted. These data suggest that 

PAD3 is expressed in the vasculature and raises the possible that camalexin is present in 

the phloem stream and is ingested by aphids when they feed. 
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Figure 4.11 – PAD3 induction by M. persicae feeding is localised. 

Transgenic Arabidopsis (PAD3p:GUS) rosette leaves were exposed to either no treatment (a), Botrytis 

cinerea (B05.10) (b) or M. persicae (c-h) for 48h. Aphid feeding generally elicited three patterns of PAD3p 

induction. (i) Feeding sites with no PAD3p induction (c,d), (ii) Feeding sites with considerable localised 

PAD3p induction (e,f) and (iii) Feeding sites with highly localised PADp3 induction confined to the 

vasculature (g,h). Aphid stylet tracks are indicated with black arrows. 
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Camalexin inhibits adult aphid reproduction but not survival 

To determine if camalexin is toxic for aphids, these insects were fed camalexin via an 

artificial diet. Ten adult aphids were transferred to parafilm sachet feeders containing a 

complex artificial diet previously used to examine aphid performance (Kim & Jander, 

2007). Following two days feeding, the numbers of remaining live adults were recorded as 

adult survival, and the total number of nymphs produced was recorded as fecundity. I 

found that at all camalexin concentrations tested, fecundity was significantly reduced 

compared to both diet-only (Diet) and DMSO (0.1%) controls (t-probabilities within GLM; 

p<0.01, n=10) (Fig. 4.12a). The degree of fecundity loss observed correlated closely with 

increasing camalexin dosage. In contrast, I found that adult survival was unchanged at all 

camalexin doses relative to diet-only control (Fig. 4.12b). However at camalexin doses of 

62.5µM and 500µM, adult survival was significantly lower than the DMSO control (t-

probabilities within GLM; p<0.05, n=10) (Fig. 4.12b). Thus, camalexin affects the 

reproductive success of aphids but does not appear to reduce aphid survival. 
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Figure 4.12 – Camalexin affects aphid reproductive development when fed by artificial diet. 

(a) Feeding camalexin by artificial diet retards aphid fecundity. (b) Survival of adult insects was not affected 

at any concentration tested. DMSO (0.1%) served as a negative control. Each experiment contained five 

feeders at each condition. Bars represent the mean number of nymphs produced (a) or surviving adults (b) 

(±SE) from two independent experiments. Letters indicate differences at p<0.05 as determined by t-

probabilities within a GLM. 

 

 

Camalexin does not alter B. aphidicola numbers in aphids 

To assess if camalexin alters the population of the bacterial endosymbiont B. aphidicola, I 

raised populations of aphids on plants of various abilities to produce camalexin (Col-0, 

dcl1, dcl2/3/4 and pad3) for seven days. In addition, after five days, some Col-0 raised 

aphids were transferred to camalexin-free artificial diets and artificial diets containing 

500µM camalexin for the final two days of the experiment. Genomic DNA was 

subsequently extracted from all aphids and endosymbiont populations were quantified by 

qPCR. In this experiment, relative populations of B. aphidicola were similar across all 

treatments (Fig. 4.13). Thus, camalexin does not impact the absolute number of the aphid 

primary endosymbiont. 
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Figure 4.13 – Camalexin does not alter B. aphidicola populations. 

Aphids were raised for seven days on the camalexin pathway mutant pad3, the low camalexin producers Col-

0 and dcl2/3/4, and the high camalexin producer dcl1. After five days, some Col-0 raised aphids were 

transferred to camalexin-free diet (diet only) and 500µM camalexin-spiked diet (diet+cam.) for the final two 

days. B. aphidicola populations were examined by qPCR. Differences were assessed by calculating t-

probabilities within the GLM. The experiment was conducted once and contained three biological replicates 

of each treatment. 

 

 

4.3 Discussion 

 

The data shows that dcl1 plants display greater resistance to M. persicae infestation, and 

that this is in part due to hyper-activation of the camalexin defence pathway. In contrast, 

this pathway is only modestly induced in Col-0 and dcl2/3/4 plants. One possibility is that 

factors that act as brakes or suppressors of defence hyper-activation in Col-0 or dcl2/3/4 

are ineffective or absent in dcl1 plants. Suppressors of hyper-activation may be protein 

effectors present in aphid saliva that can modify aspects of host physiology and suppress 

defensive mechanisms. Therefore host proteins involved in camalexin production or 

specific miRNAs involved in management of this pathway may be targets for as yet 
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uncharacterised aphid salivary effectors. Indeed, effectors from a plant pathogen are 

capable of interfering with host miRNA processing (Navarro et al., 2008). Another 

possibility is that plants actively manage their response through the induction of specific 

miRNA species that target transcripts involved in the camalexin pathway. This control 

mechanism would be largely disabled in dcl1 plants. As high quantities of camalexin are 

toxic to Arabidopsis cells in culture (Rogers et al., 1996), this dampening effect may 

represent a form of plant self-defence. 

In Arabidopsis, some miRNAs target transcripts related to secondary metabolism. 

One group of miRNAs (miR160, miR167, miR390, miR393) are specifically related to 

auxin signalling (Zhang, W et al., 2011), which is linked to camalexin and glucosinolate 

biosynthesis. In addition, miR393 has a role in the plant immune response as it is induced 

following exposure to the PAMP flg22 (Navarro et al., 2006; Li et al., 2010) and following 

inoculation of both virulent and avirulent strains of P. syringae pv. tomato (Pst) (Zhang, W 

et al., 2011). It has recently been reported that miR393 also has a role in resource 

allocation between the glucosinolate and camalexin pathways (Robert Seilaniantz et al., 

2011). It is possible that this group of miRNAs play important roles in aphid resistance. 

Dcl1 plants are able to induce the JA biosynthetic gene LOX2 following aphid 

attack, unlike Col-0 and dcl2/3/4 where this transcript is repressed following aphid 

exposure. LOX2 expression is regulated by TCP transcription factors which in turn are 

governed by miR319 (Schommer et al., 2008). An absence or reduced quantity of 

functional miR319 may afford hosts a level of JA pathway induction when normally this is 

repressed. However the role of this mechanism in aphid resistance is unlikely to be major, 

as our fecundity assays indicate that aphids are not significantly more successful on plants 

deficient in this signalling pathway. 
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My qRT-PCR assays indicated that aphid-resistant dcl1 plants increase 

transcription of an ET-responsive gene compared to susceptible Col-0 and dcl2/3/4 plants 

following aphid colonisation. Fecundity assays confirmed involvement of ET signalling in 

resistance as aphid performance was improved significantly on ein2 mutants. Our result 

showing no change in aphid fecundity on etr1 is consistent with previous studies, where 

performance of M. persicae and B. brassicae was either unaffected or reduced on etr1 

mutants (Mewis et al., 2005; Mewis et al., 2006). Other laboratories demonstrated that 

saliva-induced aphid resistance is independent of EIN2 and ethylene signalling (de Vos & 

Jander, 2009) while EIN2 is known to be critical for resistance to M. persicae following 

treatment with the bacterial protein harpin (Dong et al., 2004; Liu et al., 2011). It remains 

a possibility that altered regulation of this signalling mechanism contributes to the dcl1 

resistance phenotype. 

Aphid fecundity is increased on the pad3 and cyp79b2/cyp79b3 mutants relative to 

Col-0. In contrast, aphid performance was unchanged on the cyp81f2 mutant. Taken 

together, these results indicate that under our experimental conditions, production of 

camalexin rather than indole glucosinolates is the major resistance factor. As both PAD3 

and camalexin production are highly inducible in dcl1 plants, the data suggests that this 

defence pathway contributes substantially to the miRNA mutant resistance phenotype. 

The finding that PAD3 is involved in aphid resistance is in contrast to Pegadaraju et 

al. who found no statistically significant increase in M. persicae colonisation ability on 

pad3 mutants (Pegadaraju et al., 2005). In addition, Kim and coworkers found no change 

in fecundity of aphids raised on cyp79b2/cyp79b3 mutants relative to wild-type plants 

(Kim et al., 2008). However, in both cases non-aged aphids were exposed to the mutant 

plants for a relatively short period, i.e. 2 to 5 days, whereas in the experiments reported 

herein the nymphs were born on the mutant plants and reared on these plants to adulthood 

(c. 16 days) during the course of which they began producing nymphs themselves. Thus, 
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differences in experimental procedures may account for the different outcomes. Indeed, I 

previously showed that the dcl1 resistance phenotype is absent when experiments were 

carried out following a previously published protocol (Pegadaraju et al., 2005). Our results 

are in agreement with those of Kuśnierczyk and coworkers (Kuśnierczyk et al., 2008), who 

found that B. brassicae (cabbage aphid) is more successful on pad3 relative to wild-type 

Arabidopsis when both plants are pre-treated with UV light to induce camalexin 

production. In these experiments, aged nymphs were raised on test plants for 13 days, a 

protocol very similar to our own assay. Furthermore, aphids produce less progeny on 

artificial diets containing camalexin compared to control diets, confirming that camalexin 

negatively impacts M. persicae performance. This indicates an unsuspected depth to 

camalexin function beyond antifungal and antibacterial defence. This work also highlights 

the extensive role of miRNA-mediated regulation of secondary metabolic defence 

pathways with relevance to resistance against an aphid pest. 
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Chapter 5 – Regulation of the camalexin biosynthetic pathway in 

Arabidopsis 
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5.1 Introduction 

 

I previously showed that Arabidopsis plants deficient in miRNA processing are more 

resistant to infestation by M. persicae (Chapter 3), and that this resistance is at least partly 

due to these plants ability to overproduce camalexin during aphid exposure (Chapter 4). 

We confirmed that camalexin plays a role in aphid antibiosis as aphids fed camalexin by 

artificial diet produced less progeny than aphids fed on camalexin-free control diets 

(Chapter 4). 

Production of camalexin is induced by a wide variety of plant attackers that 

includes bacteria, fungi, viruses, oomycetes and insects (Glawischnig, 2007). However, not 

all these attackers are susceptible to this phytoalexin. There is evidence that camalexin 

increases the permeability of fungal membranes and causes induction of genes involved in 

membrane stress and repair (Sellam et al., 2007; Joubert et al., 2011). Some necrotrophic 

fungi have evolved means of exporting camalexin from cells (Stefanato et al., 2009), 

suggesting that increased virulence is attained by exporting camalexin or neutralising its 

effects.  In contrast to the glucosinolate pathway, which can be considered a pre-formed 

defence, camalexin is only present in minute quantities in the absence of challenge 

(Glawischnig, 2007). Upon pathogen or pest perception, there is transcriptional activation 

of the camalexin biosynthetic genes and subsequent camalexin accumulation. 

Camalexin production involves transcriptional induction of the biosynthetic genes 

(PAD3, CYP71A13) and is regulated by two mitogen-activated protein kinase (MAPK) 

cascades (Qiu et al., 2008; Ren et al., 2008; Mao et al., 2011). The MPK4 cascade is 

responsive to the PAMP flg22 or the bacterial biotroph P. syringae (Qiu et al., 2008). The 

MPK3/6 pathway is activated during exposure to the fungal necrotroph B. cinerea (Ren et 

al., 2008; Mao et al., 2011). Intriguingly, both cascades converge on the WRKY 

transcription factor WRKY33, suggesting that this transcription factor is particularly 
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important in activating camalexin production. In the MPK4 pathway, MPK4 exists in a 

nuclear complex with mitogen-activated protein kinase 4 substrate 1 (MKS1) and 

WRKY33. Treatment with flagellin or inoculation with P. syringae results in MPK4 

activation. Once activated, MPK4 phosphorylates MKS1 resulting in the release of both 

MKS1 and WRKY33 (Qiu et al., 2008). WRKY33 is then free to activate transcription of 

W-box element-containing promoters which include the camalexin biosynthetic gene 

PAD3 (Qiu et al., 2008). In response to B. cinerea, it was found that activation of the 

MPK3/MPK6 pathway was required for camalexin accumulation (Ren et al., 2008). 

Further work revealed that WRKY33 is a target for phosphorylation by MPK3/MPK6 and 

that WRKY33 binds its own promoter in a potential positive feedback regulatory loop 

(Mao et al., 2011). Induction of camalexin production by WRKY33 following B. cinerea 

infection is independent of MPK4. Therefore perception of bacterial and fungal pathogens 

may trigger two distinct signalling cascades that converge on WRKY33. 

It is known that many miRNAs target conserved transcription factor families. The 

transcription factor WRKY33 is induced in response to several pathogens (Lippok et al., 

2007), and appears particularly important for camalexin production. As work described in 

previous chapters indicated that camalexin is important in aphid resistance, I speculated 

that WRKY33 may also be important in camalexin production during aphid attack. 
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5.2 Results 

 

Aphid fecundity in increased on wrky33 mutants and restored to wild-type levels on 

35S:WRKY33 

WRKY33 is known to positively regulate pathogen-responsive genes including PAD3 

(Petersen et al., 2008; Qiu et al., 2008). It is therefore important in defence against 

pathogens where camalexin production is an effective resistance mechanism. To test the 

importance of WRKY33 in M. persicae resistance, I tested aphid performance on both the 

wrky33-1 mutant, and a transgenic line expressing the 35S:WRKY33 construct in a 

wrky33-1 background (Zheng et al., 2006). I found that aphid fecundity was significantly 

increased on the wrky33 mutant relative to Col-0 (Fig. 5.1) (ANODE; *p<0.01, n=15) and 

was returned to wild-type levels on 35S:WRKY33-expressing plants (Fig. 5.1). This data 

indicates that WRKY33 is important in aphid resistance in Arabidopsis, perhaps through 

its known role in regulating camalexin production by PAD3. 

 

Figure 5.1 – WRKY33 is involved in aphid resistance. 

Aphid performance is increased on wrky33 relative to Col-0. Fecundity is returned to wild-type levels on  

plants expressing 35S:WRKY33 in a wrky33 background. Bars represent the mean (±SE) of fifteen plants of 

each genotype from three experiments. Asterisk indicates differences at p<0.01 as determined by ANODE. 
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WRKY33 is differentially regulated between wild-type and silencing-deficient plants 

during aphid infestation 

To investigate how WRKY33 is regulated during M. persicae infestation, I conducted qRT-

PCR experiments using RNA samples generated from mock and aphid-exposed (12h) Col-

0, dcl1 and dcl2/3/4 plants. I found that at this timepoint, levels of WRKY33 transcript in 

mock-treated samples were similar (Fig. 5.2). However, I noticed differential expression of 

WRKY33 following aphid exposure. WRKY33 is repressed slightly during aphid infestation 

in Col-0, but is significantly induced in both aphid-exposed dcl1 and dcl2/3/4 (Fig. 5.2). 

The fact that WRKY33 is differentially expressed between Col-0 and dcl1 during aphid 

infestation suggests that a DCL1-dependent sRNA is involved in WRKY33 regulation. 

Absence of this sRNA in the dcl1 mutant would account for increased levels of WRKY33 

mRNA. As basal levels of the transcript are similar between Col-0 and dcl1, this 

differential response must only be generated following aphid perception. Surprisingly, 

WRKY33 was also induced in aphid-exposed dcl2/3/4 plants to a level comparable to 

aphid-exposed dcl1. This was not expected, as dcl2/3/4 mutants have a fully functional 

miRNA pathway and would be expected to show a response similar to Col-0. This result 

reveals a further level of complexity to WRKY33 regulation during the aphid defence 

response, and suggests that both siRNAs and miRNAs may contribute to the regulation of 

this transcription factor. 
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Figure 5.2 – Regulation of WRKY33 expression in silencing-deficient Arabidopsis. 

qRT-PCR analysis of WRKY33 transcript levels in response to aphid infestation between Col-0, dcl1 and 

dcl2/3/4. Bars represent the mean expression levels (±SE) across six biological replicates from two 

experiments. Letters indicate differences at p<0.05 as determined by t-probabilities within a GLM.  

 

 

miR393 is predicted to target WRKY33 

My results show that plants lacking functional WRKY33 are more susceptible to aphid 

colonisation, implying that WRKY33 is involved in aphid resistance. WRKY33 is also 

differentially regulated between Col-0 and the dcl1 and dcl2/3/4 silencing pathway mutants 

during aphid exposure, suggesting that this transcription factor is under post-transcriptional 

regulation. To assess whether WRKY33 mRNA is targeted by Arabidopsis miRNAs, I used 

the psRNATarget analysis server to predict WRKY33-miRNA targeting interactions. This 

analysis predicted that WRKY33 mRNA is a target of miR393 and that the interaction 

likely results in mRNA cleavage due to base-pairing at the central 10-11 positions (Fig. 

5.3). I also included the targeting events between miR393 and other experimentally 

validated targets for comparison (Fig. 5.3). Confidence of WRKY33 targetting was lower 
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than for the other three targets (lower Expectation (E) score), however the important 

positions of 2-8 and 10-11 from the miRNA 5` end were perfect matches. It is also known 

that in animal systems, RNA secondary structure in the vicinity of a miRNA target site can 

have an important bearing on the success of targeting (Kertesz et al., 2007). Although it is 

not known how important this factor is in plant systems, it is worth noting that the program 

predicted the WRKY33 target site to be more accessible than for the other confirmed targets 

(lower Target Accessibility (UPE) score). The other targets of miR393 are genes involved 

in auxin perception (Navarro et al., 2006). This has an impact on the allocation of 

resources between the camalexin and indolic glucosinolate pathways (Robert Seilaniantz et 

al., 2011). It is therefore possible that regulation of WRKY33 may further explain the role 

on miR393 in camalexin production. 

 

 

Figure 5.3 – The WRKY33 transcription factor is a predicted target of miR393. 

The psRNATarget program was used to assess predicted targets of Arabidopsis miR393 using default 

settings. In addition to the previously validated targets (AFB2, AFB3, TIR1), the transcription factor WRKY33 

was predicted to be regulated by transcript cleavage. psRNATarget is provided by the Zhao Bioinformatics 

Laboratory  (Samuel  Roberts Noble Foundation).  
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WRYKY33 mRNA is cleaved at a position distant from the putative miR393 target site 

To assess whether miR393 directs cleavage of the WRKY33 transcript I used a modified 

5`RACE protocol that has previously been used to validate predicted miRNA-target 

interactions (Wang et al., 2004). In this experiment, I detected a distinct WRKY33 cleavage 

product when I used mock-infested leaf cDNA as template (Fig. 5.4a). This product was 

absent when aphid-infested leaf cDNA was used as template (Fig. 5.4a). As a positive 

control, a primer pair was used to amplify a fragment of the PHABULOSA transcript 

generated by miR165/166 family cleavage. These reactions produced a similar product 

irrespective of treatment (Fig. 5.4a). I subsequently cloned and sequenced both the 

PHABULOSA and WRKY33 fragments. All PHABULOSA fragment clones (7/7) terminated 

at a position corresponding to the 10
th

 nucleotide of miR165/166, as would be expected for 

canonical miRNA cleavage.  All WRKY33 fragment clones (18/18) terminated at a site 

~100nt towards the 5` end of the transcript from the putative miR393 target site (Fig. 5.4b). 

A prediction of the secondary structure of the central portion (nts 333-1503) of the 

WRKY33 transcript was made with RNAfold (Fig. 5.4c), indicating the predicted miR393 

target site (red) and the termination site of the cleavage product (black arrow). 
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Figure 5.4 – WRKY33 mRNA is cleaved at a site distinct from miR393 binding.  

(a) 5`RACE indicates a WRKY33 cleavage product of ~320nt in mock-treated cDNA sample but not aphid-

exposed cDNA sample. A cleavage product of ~220nt from PHABULOSA-miR165/166 served as a positive 

control. (b) Depiction of the cleavage site and its position relative to the predicted miR393 target site. 

Numbers in brackets indicate that all sequenced clones terminate at the same nucleotide. (c) Secondary 

structure prediction of central portion (pos.333-1503) of WRKY33 transcript using the RNAfold program 

(Institute of Theoretical Chemistry, University of Vienna). Putative miR393 binding site (red) and actual 

cleavage site (black arrow) are indicated. 
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Aphid fecundity is increased on miR393 overexpressing Arabidopsis 

My data indicated that WRKY33 is under post-transcriptional regulation. A computational 

prediction suggested that this regulation may involve miR393. However, 5`RACE revealed 

that WRKY33 transcript is cleaved at a site ~100nt distant from the predicted miR393 

binding site. Nonetheless, to assess whether miR393 expression level influences aphid 

performance, I obtained two miR393a overexpression lines (35S:miR393a lines 3 and 21) 

that have previously been used in performance assays of bacterial and fungal pathogens 

(Navarro et al., 2006; Robert Seilaniantz et al., 2011). I tested aphids in a performance 

assay using these plants and found that whilst survival was unaffected, aphid fecundity was 

consistently higher on 35S:miR393 (line 3) (Fig. 5.5a) (ANODE; p=0.001, n=15) 

compared to the Col-0 control group. Although fecundity on 35S:miR393 (line 21) was 

higher than on Col-0, this increase was not statistically significant. This result indicated 

that there is involvement of miR393 in Arabidopsis resistance against M. persicae. In the 

original publication of these lines, miR393 is more highly overexpressed in line 21 

compared to line 3 (Navarro et al., 2006). This suggested that there may also be a dose-

dependent response involved in miR393-mediated aphid susceptibility. To confirm my 

initial result, I obtained two miR393b overexpression lines (miR393b OE lines 6 and 11) 

(Zhang, X et al., 2011). In aphid performance assays, fecundity was significantly increased 

on line 11 relative to Col-0 (Fig. 5.5b) (ANODE; p=0.05, n=10). Fecundity was increased 

slightly on line 6 although this was not statistically significant. When taken together with 

the previous results using miR393a overexpressing plants, two out of four transgenic lines 

result in a significant increase in fecundity, indicating involvement of miR393 in aphid 

resistance. 
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Figure 5.5 – Aphid fecundity in increased on plants overexpressing miR393. 

(a) Aphid performance was significantly increased on 35S:miR393a (line 3) relative to Col-0 but is 

unchanged on 35S:miR393 (line 21). Bars represent the mean (±SE) of fifteen plants of each genotype from 

three experiments. (b) Fecundity was significantly increased on miR393b overexpression line 11 relative to 

Col-0 but was unchanged on miR393b overexpression line 6. Bars represent the mean (±SE) of ten plants of 

each genotype from two experiments. Asterisks indicate differences at **p=0.001, *p<0.05 as determined by 

ANODE. 

 

 

miR393b is induced in the vasculature of aphid-exposed leaves 

In order to determine whether expression of miR393 is aphid-responsive, I obtained plants 

expressing either the miR393a or miR393b promoter fused to a GFP reporter (miR393a-

p:GFP, miR393b-p:GFP) (Navarro et al., 2006). Single leaves of these plants were exposed 

to aphid infestation using clipcages, as previously described for qRT-PCR experiments. In 

this experiment, I could not observe any GFP fluorescence in the midveins of infested 

leaves, but I did see weak GFP fluorescence in the secondary and tertiary veins of 

miR393b-p:GFP leaves exposed to aphids (Fig. 5.6b-d). There was no fluorescence visible 

in mock-infested miR393b-p:GFP leaves (Fig. 5.6a). This provides evidence that miR393 

is induced in aphid-exposed leaves, and that this induction may be confined to the 

vasculature system or cells with access to it. Strikingly, no fluorescence was observed in 



122 
 

either mock or aphid-exposed miR393a-p:GFP leaves. Therefore, aphid-induced miR393 

expression therefore appears to operate solely through the miR393b locus. 

 

 

Figure 5.6 – Aphid feeding induces GFP expression in vasculature of miR393b-p:GFP expressing 

plants. 

Transgenic Arabidopsis expressing either miR393a-p:GFP or miR393b-p:GFP were exposed to aphids in 

clipcages. (a) miR393b-p:GFP leaves exposed to empty clipcages were used as controls and we detected no 

GFP expression. (b-d) Faint GFP expression was observed in secondary and tertiary veins of  miR393b-

p:GFP leaves exposed to aphids. No GFP expression was observed in either mock or aphid-treated 

miR393ap:GFP leaves. 

 

Basal WRKY33 expression is unchanged in 35S:miR393a expressing Arabidopsis 

I monitored the basal level of WRKY33 transcription in Col-0 and two miR393a 

overexpression lines previously used in aphid performance assays (Fig 5.5a). I found that 
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levels of WRKY33 transcript are similar across these lines in the absence of aphid challenge 

(Fig. 5.7). It is likely that there is differential regulation of WRKY33 between these plants 

during aphid infestation; however time constraints did not allow for this investigation. 

 

 

Figure 5.7 – Basal WRKY33 expression in miR393 overexpressing plants. 

qRT-PCR analysis of basal level of WRKY33 transcript abundance in Col-0 and 35S:miR393a (lines 3 and 

21). Bars represent the mean expression levels (±SE) across four biological replicates from a single 

experiment. Letters indicate differences at p<0.05 as determined by t-probabilities within a GLM. 

 

 

Aphid performance is increased on the auxin mutants arf1 and arf9 

One mechanism by which miR393 can regulate the camalexin/glusosinolate pathways is 

through auxin response factors (ARFs) (Robert Seilaniantz et al., 2011).  ARFs are 

transcription factors that control induction of auxin-responsive genes following auxin 

treatment. ARF1 and ARF9 are of particular relevance with regard pathogen resistance. 

The mutants arf1 and arf9 are impaired to varying degrees in ability to synthesise 
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camalexin following P. syringae inoculation, and have increased basal levels of some types 

of glucosinolates (Robert Seilaniantz et al., 2011). I decided to test the arf1 and arf9 

mutants in an aphid performance assay to assess whether an altered 

camalexin/glucosinolate balance due to interference with auxin responsiveness would have 

an impact on the success of aphid colonisation. In these assays, aphid fecundity was 

increased on both arf1 and arf9 compared to Col-0 (Fig. 5.8) (ANODE; *p<0.05 

**p<0.01, n=10). This indicates that interference with auxin signalling can have knock-on 

effects on other defence pathways that have impact on aphid reproduction. 

 

 

Figure 5.8 – ARF1 and ARF9 are involved in M. persicae resistance. 

Aphid performance is similarly increased on the auxin pathway mutants arf1 and arf9 relative to Col-0. Bars 

represent the mean (±SE) of ten plants of each genotype from two experiments. Asterisks indicate difference 

from Col-0 at *p<0.05 and **p<0.01 as determined by ANODE.  

 

Interaction between miR393 and PAD3 

I previously investigated if WRYK33 mRNA was a direct target of the miRNA miR393. 

Results indicated that WRKY33 is likely a target for sRNA-mediated regulation, however 

this appears complex and may involve other factors besides miR393. I next wondered 
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whether PAD3 may also be under some degree of sRNA-mediated regulation. I used 

psRNATarget to predict possible interactions between known miRNAs and PAD3 mRNA. 

This analysis revealed that miR393 may also regulate PAD3 by transcript cleavage (Fig. 

5.9). To confirm this interaction, I again conducted 5`RACE using primers specific for 

PAD3 transcripts. This experiment revealed that PAD3 transcripts are cleaved to produce 

two major cleavage products. This only occurs during aphid infestation and not in mock-

infested plants (Fig. 5.10a). Sequencing of the cleavage products revealed that they 

terminate at positions towards the 3` end of the PAD3 transcript from the predicted 

miR393 target site (Fig. 5.10b). 

 

 

Figure 5.9 – Predicted interaction between miR393 and PAD3 mRNA. 

psRNATarget prediction indicated that PAD3 is a weak target for miR393 regulation. For this prediction, the 

maximum expectation threshold was set to 5.0, where 3.0 is the default. This allowed for display of miRNA-

target interactions with lesser complementarity. 
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Figure 5.10 – PAD3 mRNA is cleaved at sites distinct from miR393 binding during aphid infestation.  

(a) 5`RACE indicates PAD3 cleavage products of ~210nt and ~100nt in aphid-exposed cDNA sample but not 

mock-treated cDNA sample. (b) Depiction of the cleavage sites and their position relative to the predicted 

miR393 target site. +24 and +134 refer to number of nucleotides towards 3` end of PAD3 transcript relative 

to predicted miR393 cleavage site. 22/26 and 4/26 refer to the number of colonies that showed termination at 

these positions. 
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5.3 Discussion 

 

In this work, I set out to explore the regulatory mechanisms which control camalexin 

production in response to M. persicae infestation. I focussed on the WRKY33 transcription 

factor, as it is required for transcriptional induction of the camalexin biosynthetic 

machinery in responses against both bacterial and fungal pathogens. I found that WRKY33 

is also involved in aphid resistance, as M. persicae are more fecund on wrky33 mutants 

relative to Col-0. I continued to show that WRKY33 is differentially regulated in silencing-

deficient plants relative to Col-0 during aphid infestation, implying that this transcription 

factor is under some degree of post-transcriptional control. A prediction of miRNA-mRNA 

interactions suggested that WRKY33 is a target for miR393. However, 5`RACE indicated 

that WRKY33 mRNA is cleaved at a position distant from miR393 binding. In addition, 

miR393 was also predicted to target the camalexin biosynthetic gene PAD3. 5`RACE 

indicated that PAD3 mRNA is cleaved at postions 3` of the predicted miR393 binding site. 

Nonetheless, as miR393b is induced during aphid exposure and aphids have increased 

fecundity on 35S:miR393 expressing plants, it suggests that miR393 plays some role in 

regulating camalexin production during aphid attack. 

MiR393 regulates auxin perception through its targeting of the F-box gene 

transcripts AFB2, AFB3 and TIR1 (Navarro et al., 2006). It is also important for regulating 

metabolite flow through the glucosinolate and camalexin pathways during fungal and 

bacterial pathogenesis. It has been proposed by Robert-Seilaniantz and colleagues that this 

is primarily achieved through the activity of ARF1 and ARF9 (Robert Seilaniantz et al., 

2011). In responses to pathogens, the auxin and SA pathways act antagonistically. By 

interfering with auxin responses, pathogens can manipulate the extent to which SA can 

increase host resistance (Bari & Jones, 2009). In contrast, the role of auxin in insect 

resistance is not as well developed. In both previously published experiments and my own, 
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we find that integrity of the SA signalling pathway has little bearing on Arabidopsis ability 

to resist aphid infestation. Therefore, the role of miR393 in aphid defence seems unlikely 

to rely on an interaction with this signalling pathway. I did however observe increased 

aphid performance on the arf1 and arf9 mutants. Both these mutants are known to have 

higher basal levels of some glucosinolates, including 4-OHI3M which is thought to be 

involved in aphid resistance (Kim & Jander, 2007; Pfalz et al., 2009; Robert Seilaniantz et 

al., 2011). In addition, these mutants accumulate less camalexin than wild-type plants 

when exposed to P. syringae (Pst DC3000) (Robert Seilaniantz et al., 2011). This finding 

is in agreement with my previous work, where I found that plants less able to synthesise 

camalexin were more susceptible to aphid colonisation. It seems likely that the arf1 and 

arf9 mutants are also impaired in camalexin production upon exposure to aphids, and this 

accounts for their relative susceptibility. In addition, plants constitutively overexpressing 

miR393 have increased levels of glucosinolates following flg22 treatment, but fail to 

accumulate camalexin after inoculation with Pst DC3000. If this pattern is also true during 

aphid exposure, it is again evidence that plants impaired in camalexin production are 

aphid-susceptible and that miR393 is important for production of this phytoalexin. 

In addition to controlling the camalexin/glucosinolate balance through ARF1 and 

ARF9, I suspect that miR393 plays a more direct role through interaction with WRKY33, 

PAD3 or both. Plants deficient in either siRNA or miRNA processing have altered 

regulation of WRKY33 during aphid infestations compared to wild-type plants, and plants 

with non-functional WRKY33 are more susceptible to infestation. This indicates that 

WRKY33 has a role in aphid defence. However, as aphid-susceptible dcl2/3/4 plants have 

a comparable WRKY33 expression pattern to aphid-resistant dcl1 plants, there must be 

other factors besides WRKY33 involved in activating camalexin production. It is known 

that WRKY33 is closely related to WRKY25, and that both these transcription factors have 

roles in salt-tolerance in a process involving abscisic acid (ABA) (Jiang & Deyholos, 
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2009). It is possible that the regulation of multiple functionally redundant WRKY family 

members by miRNAs is a major factor in determining levels of camalexin synthesis. It is 

also possible that WRKY33 is involved in regulating other defence pathways besides 

camalexin, although this was not covered by my investigation. 

I found that WRKY33 is regulated at the post-transcriptional level by the presence 

of a cleavage product as determined by 5`RACE, although this cleavage product was 

distant from the predicted miR393 target site. There are three possible explanations for this 

result. Firstly, WRKY33 mRNA may be targeted by another unidentified miRNA or 

siRNA. Bioinformatic analysis illustrated that there is considerable homology around the 

cleavage site between WRKY33 mRNA and both a known siRNA (#16276 ASRP database) 

and a recently identified miRNA (miR5021) (Borges et al., 2011). However, I was unable 

to detect miR5012 in Arabidopsis rosette leaves. A probe to detect siRNA #16276 only 

detected high molecular weight RNA and not sRNA. If WRKY33 is cleaved by another 

sRNA then it remains to be identified. The second possibility is that miR393 does not 

regulate WRKY33 through transcript cleavage. It is possible that the reduced homology 

between miR393-WRKY33 relative to other known miRNA-target interactions means 

regulation is exclusively through translational repression. Unfortunately the time 

constraints on this study meant that I was unable to pursue this prospect. A third alternative 

is that miR393 directs an unconventional cleavage of WRKY33 mRNA. For example, the 

RNA-directed DNA methylation (RdDM) pathway involves 24nt siRNAs that are able to 

guide DNA methylation machinery to genomic loci where there is transcription of highly 

repetitive elements such as transposons. In this pathway, protein complexes guided by 

sRNAs catalyse methylation of DNA or histones that subsequently silence expression of 

particular genomic loci. This illustrates the principle that sRNAs can guide catalysis of 

reactions distant from the sRNA-target interaction. In addition, it has recently emerged that 

miR393-directed cleavage products are more heterogeneous that initially thought (Si-
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Ammour et al., 2011). It may be that under some circumstances, miRNA-AGO1 loaded 

RISCs are involved in cleaving target transcripts at additional sites beyond those 

previously reported for miRNA-mRNA interactions. Factors such as RNA secondary 

structure may play a role in directing this process, which would be a novel finding in 

miRNA-guided gene regulation in plants. Further 5`RACE experiments detected cleavage 

products towards the 3` of the predicted miR393 target site on PAD3 mRNA. This pattern 

is similar to cleavage products generated from the confirmed miR393 target genes AFB2, 

AFB3 and TIR1. It is therefore more likely that any additional role of miR393 in camalexin 

production is through direct regulation of PAD3 during aphid exposure. 

To date, miR393b is unique amongst stress-responsive miRNAs as its 

complementary miR* strand (miR393b*) has a defensive function independent of the miR 

strand (Zhang, X et al., 2011). It would have been interesting to assess M. persicae 

performance on plants overexpressing miR393b* to discover whether the miR* defensive 

function that is active against P. syringae is also effective against insects. MiR393b* is 

reported to act through AGO2 and confer defensive benefit through increased production 

of the antimicrobial peptide PR1. In my previous experiments, aphid fecundity was 

unchanged on the ago2 and npr1 mutants. Therefore it is unlikely that miR393b* is 

involved in aphid resistance. 

The data presented here builds on my previous observations that camalexin is 

important in aphid resistance and its production is regulated by pathogen or insect-

responsive miRNAs. As camalexin is mostly important for resistance against necrotrophic 

pathogens it raises the interesting question of how should aphid pests be compared to plant 

pathogens? In many of our experiments, aphid performance on defence pathway mutants 

mimics that described for necrotrophs. For example, Zheng et al. found that the fungi B. 

cinerea and A. brassicicola are more successful on wrky33 mutants but that resistance is 

restored to wild-type levels following introducing of a 35S:WRKY33 transgene (Zheng et 
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al., 2006). We observed this same pattern following M. persicae infestation. This is 

surprising, as aphids elicit responses similar to biotophic pathogens, and their lifestyle of 

feeding from living tissue and dispersing when nutrient quality reduces is more reminiscent 

of a biotrophic lifestyle. It may be that as with differing pathovars of pathogens, aphid 

biotypes exist that have significantly different resistances and susceptibilities to host 

defence processes. The colony used in these experiments belongs to genotype O, which has 

become the dominant M. persicae lineage in the UK (B. Fenton, unpublished data). 

Additionally, these aphids have been maintained for several years on Chinese cabbage 

(Brassica rapa subspecies chinensis). Camalexin has not been detected in Chinese 

cabbage. However, these plants are known to contain many of the same glucosinolate 

biosynthetic genes found in Arabidopsis (Wang et al., 2011). As such, the colony may have 

developed significant tolerance to glucosinolates but a susceptibility to camalexin and this 

may explain the results described. Obtaining aphid colonies from other laboratories would 

allow this hypothesis to be tested. 
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Chapter 6 – Investigation of the Arabidopsis miRNA response to M. 

persicae infestation 
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6.1 Introduction 

 

In recent years, it has emerged that significant portions of the genomes of eukaryotic 

organisms do not encode proteinaceous gene products. These non-coding regions are not 

inert, but in fact can be highly transcribed, producing a cornucopia of non-coding RNA 

(ncRNA) molecules that play significant biological roles. It has been proposed that one of 

these roles may be to drive the complexity that is apparent in higher organisms (Salmena et 

al., 2011). For example, the model worm Caenorhabditis elegans (C. elegans) has a 

comparable number of protein-coding genes to Homo sapiens, yet the human genome is 

around thirty times larger (Salmena et al., 2011). It is probable that the non-coding 

fractions of genomes carry considerable amounts of information that has regulatory 

function over the coding portion.  

One of the best-studied classes of ncRNAs are microRNAs (miRNAs). MiRNAs 

represent the smallest functional genes known to date and are present in almost all 

eukaryotes (Voinnet, 2009).  In plants, miRNAs are short (~21nt) RNAs transcribed from 

loci located mostly in the introns of coding genes or in intergenic regions. MiRNA genes 

are transcribed by RNA Polymerase II to produce pri-miRNAs (Lee et al., 2004). Single-

stranded pri-miRNAs display an imperfect fold-back structure including a characteristic 

stem-loop hairpin motif. Maintenance of this particular secondary structure requires 

activity of the RNA-binding protein DAWDLE (DDL) (Yu et al., 2008). The stem may be 

many tens of nucleotides in length and contains some degree of mismatching. In 

Arabidopsis, miR:miR* duplexes are excised from their precursors by the 

endoribonuclease Dicer-like 1 (DCL1). DCL1 recognizes hairpin structures and executes 

two cleavage reactions to remove the loop and the 5` and 3` tails of the hairpin. This 

produces ~21nt miRNA duplexes that include 2nt overhangs at the 3` ends. Efficient 

DCL1-dependent excision of miR:miR* duplexes requires both  the dsRNA-binding 
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protein HYPONASTIC LEAVES 1 (HYL1) and the zinc finger protein SERRATE (SE) 

(Dong et al., 2008). At some point, the duplex unwinds into the component miR and miR* 

strands. The factors which determine which strand is incorporated into an RNA-induced 

silencing complex (RISC) are not fully understood, however this is influenced by which 

strand displays weakest base-pairing at the 5` end (Tomari et al., 2004). It was previously 

thought that miR* strands were quickly degraded and had no functionality. However it has 

recently emerged that miR* strands may have roles in pathogen resistance independent of 

the miR strand (Zhang, X et al., 2011). 

My previous work indicated that Arabidopsis plants deficient in miRNA processing 

are more resistant to infestation by the green peach aphid M. persicae (chapter 3). This 

resistance phenotype is not present in plants deficient in other RNA silencing pathways, 

nor is it due to the developmental abnormalities exhibited by miRNA pathway mutants. 

The observed resistance negatively affected aphid reproductive capacity but had no effect 

on the survival of adult insects. I subsequently investigated responses of wild-type (Col-0), 

miRNA mutant (dcl1) and siRNA mutant (dcl2/3/4) during the early defence response to 

aphid infestation (chapter 4). I discovered that miRNA pathway mutants constitutively 

overexpress some genes involved upstream of the indole glucosinolate and camalexin 

defence pathways. In addition, these plants are also more able to induce transcription of 

genes involved in the JA and ET signalling networks and in downstream parts of the 

glucosinolate and camalexin defence pathways. I found that dcl1 plants synthesise 

increased quantities of camalexin relative to controls during aphid infestation, and that 

aphids fed camalexin by artificial diet had reduced fecundity compared to camalexin-free 

controls. Thus, an increased quantity of camalexin may contribute to the miRNA mutant 

resistance phenotype. 

To further understand the mechanism that allows dcl1 plants to better induce 

camalexin production, I focussed on signalling mechanisms upstream of PAD3 that might 
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be relevant to aphid resistance (Chapter 5). I found that aphid performance is altered on 

arf1 and arf9 mutants, which are impaired in auxin responsiveness and are less able to 

synthesise camalexin during P. syringae infection (Robert Seilaniantz et al., 2011). In 

addition, I found that there is differential regulation of the WRKY33 transcription factor 

between silencing pathway mutants and wild-type plants. Aphids were also more fecund 

on wrky33 mutants, indicating that this transcription factor is involved in aphid resistance. 

As WRKY33 is known to bind the promoter and enhance transcription of PAD3 (Qiu et al., 

2008), it provides further insight into the mechanism of camalexin production in 

Arabidopsis. 

There are ~240 known miRNAs in Arabidopsis, and the targets of some of these 

have been identified. A common trend is that miRNAs target large families of transcription 

factors (Sunkar & Zhu, 2004). Furthermore, the targets of some miRNAs are known to be 

involved in tryptophan-derived secondary metabolism. One group of miRNAs (miR160, 

miR167, miR390, miR393) are specifically related to auxin signalling (Zhang, W et al., 

2011), which is linked to camalexin and glucosinolate biosynthesis. In addition, miR393 

has a role in the plant immune response as it is induced following exposure to the PAMP 

flg22 (Navarro et al., 2006; Li et al., 2010) and following inoculation of both virulent and 

avirulent strains of P. syringae pv. tomato (Pst) (Zhang, W et al., 2011). It has recently 

been reported that miR393 has a specific role in resource allocation between the indole 

glucosinolate and camalexin pathways (Robert Seilaniantz et al., 2011). 

I previously observed that Col-0, dcl1 and dcl2/3/4 plants respond differently to 

aphids, and speculated that a subset of Arabidopsis miRNAs orchestrate the complex and 

substantial transcriptional response that occurs in plants following aphid attack. In this 

chapter, I aim to identify both aphid-responsive miRNAs and novel miRNAs induced by 

aphid exposure. This would hopefully facilitate identification of specific interactions that 

help explain the resistance phenotype of miRNA pathway mutants. 
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6.2 Results 

 

Deep sequencing of aphid-exposed Arabidopsis sRNA libraries 

I previously identified that a transcriptional response to aphids begins in Arabidopsis 

rosette leaves following 12h infestation (chapter 4). At an earlier timepoint (6h), I could 

not observe any consistent changes in gene expression levels. In contrast, at later 

timepoints (24h, 48h) the defence response appears to be fully induced and could launch 

secondary or tertiary signalling events. As my objective was to identify key early changes 

in the sRNA transcriptome that may guide the wider transcriptional response, I chose to 

investigate aphid-induced changes from rosette leaves exposed to 12h aphid infestation. In 

these experiments, thirty M. persicae nymphs were contained within clipcages as 

previously described for generating RNA samples. Leaves exposed to empty clipcages 

were used as negative controls. I pooled multiple leaves subjected to the same treatment to 

produce three aphid-exposed and three mock-treated samples. RNA was extracted from 

these samples and sRNA libraries were produced in accordance with the Illumina sRNA 

Sample Preparation Kit. Libraries were subsequently sequenced on an Illumina Genome 

Analyzer. 

To assess miRNA expression levels, I normalised the number of reads present in 

each of the libraries by rescaling the raw reads to reads per million. Read profiles were 

then produced for all known Arabidopsis miRNAs (Figs. 6.1, 6.2, 6.3). Surprisingly, we 

were able to detect reads matching to all known miRNAs, although the number of matches 

to each individual miRNA varied considerably. In general, we detected greater numbers of 

matches to miRNAs that were discovered first (low miRBase numbers) (Fig. 6.1) relative 

to more recently identified sequences (high miRBase numbers) (Figs. 6.2, 6.3). In order to 

categorise miRNAs that were responsive to aphid treatment, I looked for miRNAs where at 
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least two out of the top three number of reads were from aphid-treated libraries. In total, 

twenty-four miRNAs matched these criteria. Read profiles for twelve of these miRNAs are 

shown in Figure 6.4. Of these twelve, a smaller set of seven miRNAs were present in 

greater abundance in the three aphid-exposed libraries relative to the three control libraries 

(Fig. 6.4). 

I used the same process to identify miRNAs that may be repressed during aphid 

infestation (Fig. 6.5). As with the set of aphid-induced miRNAs, there was considerable 

variation in the number or reads between libraries of the same treatment. When I looked at 

variation across all the libraries, eight miRNAs met the criterium where at least two out of 

the bottom three numbers of reads were from aphid-treated libraries (Fig. 6.5). Of this set, 

three miRNAs were present in lesser abundance in the three aphid-exposed libraries 

relative to controls. 
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Figure 6.4 – Individual library profiles of candidate aphid-induced miRNAs determined by sRNA-seq. 

Shown are the individual library profiles for 12 of 24 miRNAs that were identified by sRNA-seq as being 

aphid-inducible. For some of the candidate miRNAs, the normalized number of reads was heavily skewed by 

a single library (a,e,f,k). For other miRNAs, the normalized number of reads was consistently higher in 

aphid-treated libraries relative to controls (c,g,i,j,k,l). Shown are the normalized number of reads 

(reads/million) across the three control (mock) and three aphid-exposed (aphids) libraries.  



142 
 

 

Figure 6.5 – Individual library profiles of candidate aphid-repressed miRNAs determined by sRNA-

seq. 

Shown are the individual library profiles for 8 miRNAs that were identified by sRNA-seq as being aphid-

repressed. For some of these candidates, the normalized number of reads may be heavily influenced by a 

single library (b,e,g,h). For other miRNAs, the normalized number of reads was consistently lower in aphid-

treated libraries relative to controls (a,c,d,f). Shown are the normalized number of reads (reads/million) 

across the three control (mock) and three aphid-exposed (aphids) libraries. 
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Northern blot validation of aphid-responsive miRNAs 

Deep sequencing analysis suggested that a number of known Arabidopsis miRNAs are 

responsive to infestation by M. persicae. To validate these results, I selected a proportion 

of the miRNAs found to be variable in read number between mock and aphid treatments 

and assessed expression level in independent samples by small RNA northern blot (Fig. 

6.6). I found that expression of many of the miRNAs tested by northern blot were more 

stable than data from sRNA-seq suggested. However, I did observe some variation both 

between mock and aphid-treated samples and between replicates. In replicate one, 

expression of several miRNAs (miR163, miR167, miR393) was lower in aphid-exposed 

leaves compared to mock-treated. A similar pattern was observed in replicate three, where 

expression of three miRNAs (miR167, miR390, miR393) appeared slightly lower in aphid-

treated leaves. In contrast, in replicate two, expression of all miRNAs tested was higher in 

aphid-treated leaves. Although the pattern of expression was not consistent between 

replicates, miR393 appeared to be the miRNA most responsive to aphid treatment. As this 

miRNA has been previously implicated both in pathogen resistance and in camalexin 

production, this miRNA may also be important in aphid resistance. 
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Figure 6.6 – Northern blot validation of differentially expressed miRNAs. 

We were unable to confirm by northern blot the induction or repression of specific miRNAs identified by 

sRNA-seq. We saw that miR393 was repressed by aphid treatment in some replicates (1,3) but induced in 

another (2), indicating that this miRNA is aphid-responsive. This pattern was also present in a more subtle 

fashion for some of the other miRNAs tested (miR163, miR167, miR390). U6 was used as a loading/blotting 

control. 10µg RNA was loaded for each sample. 

 

 

Further analysis of aphid-exposed Arabidopsis sRNA libraries 

To reconcile the differences between the initial sRNA-seq analysis and northern blot data, I 

conducted a secondary bioinformatic analysis of our sRNA libraries. I suspected that the 

initial analysis may have been too relaxed in matching sequencing reads to known 

miRNAs, thus giving rise to a large number of false positive results. For the secondary 

analysis, we used the perl implementation of the UEA sRNA toolkit (Moxon et al., 2008) 

(http://srna-tools.cmp.uea.ac.uk). This toolkit has been specially developed for analysis of 
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plant sRNA datasets and has been previously used in studies aimed at identifying stress-

responsive miRNAs. 

In the secondary analysis, we used the miRProf tool to assess read counts of known 

miRNAs across the libraries. This analysis detected much fewer miRNAs across the six 

libraries than our initial pipeline (Fig. 6.7). We detected 42 miRNA or miRNA* sequences 

that were present in at least five libraries, or in at least two libraries of one treatment but 

not the other (Fig. 6.7). The majority of miRNAs detected were sequences that have been 

known for some time, as indicated by a low miRbase number. As many of the more 

recently identified miRNAs (with high numbers) were identified in reproductive tissues, it 

is possible that many of these sequences are not found in rosette leaves at all. In addition, it 

is known that compared to other tissues, Arabidopsis rosette leaves have low miRNA 

content.  

In general, miRProf analysis largely agreed with the northern blot experiment that 

had failed to validate some differentially expressed miRNAs from the primary analysis. 

MiRProf also revealed that a smaller number of miRNAs were aphid-responsive compared 

to the primary analysis (Fig. 6.7, 6.8, 6.9). I decided that similar to the primary analysis, 

for a miRNA to be considered aphid-induced at least two of the three libraries with the 

greatest number of reads must be from the aphid-exposed block. In contrast, for a miRNA 

to be considered aphid-repressed, at least two of the three libraries with the fewest number 

of reads must be from the aphid-exposed block. Using these criteria, only eight miRNAs 

were induced (Fig. 6.8) and a single miRNA was repressed (Fig. 6.9). Of the induced 

miRNAs, only two (miR163, miR393) were found in both the primary and secondary 

analysis. There was no correlation between repressed miRNAs between the primary and 

secondary analysis. Interestingly, miR319 was found to be aphid-inducible in the primary 

analysis, but was the sole miRNA that was aphid-repressed in the secondary analysis. 



146 
 

 

Figure 6.7 – MiRNA profiling in control and aphid-exposed libraries using miRProf. 

The six libraries were re-analysed using the miRProf tool (UEA Plant sRNA toolkit). Forty-two known 

miRNAs were detected in at least five libraries and the normalized read counts (reads/million) (log10) are 

shown. In addition, included are miRNAs detected in at least two libraries of one treatment but none of the 

other (miR868). Individual miRNAs identified as candidates for being aphid induced (red) or aphid-repressed 

(green) are indicated. 
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Figure 6.8 – Individual library profiles of candidate aphid-induced miRNAs determined by miRProf. 

Shown are the individual library profiles for the 8 miRNAs that miRProf identified as being aphid-induced. 

As with the previous analysis, some profiles are skewed by a single library (a,d) whereas other profiles are 

consistently higher in aphid-exposed libraries relative to controls (b,c,e,f,g,h).  
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Figure 6.9 – Individual library profiles of candidate aphid-repressed miRNAs as determined by 

miRProf. 

Shown is the individual library profile for miR319, the only miRNA identified by miRProf as being aphid-

repressed. Bars represent the normalised number of reads (reads/million) across three mock-infested and 

three aphid-infested libraries.  

 

 

Northern blot confirmation of newly identified aphid-responsive miRNAs 

MiRProf analysis revealed that some miRNAs not originally identified may be aphid 

responsive. To assess the validity of the miRProf analysis, I again conducted sRNA 

northerns for some of the newly identified aphid-responsive miRNAs (Fig. 6.10). I found 

that miR391, identified as aphid-inducible by miRProf, was slightly induced in replicates 

one and two and stable in replicate three. MiR822 was very lowly expressed in all samples 

and appeared not be differentially expressed between treatments. I was unable to detect 

miR868 in any samples. 
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Figure 6.10 – Northern blot validation of differentially expressed miRNAs identified by miRProf. 

MiR391 is aphid-induced in some replicates (1,2) but stable in another (3). MiR822 was stable across all 

samples tested. MiR868 was not detected in any samples. U6 was used as a loading/blotting control. 10µg 

RNA was loaded for each sample. 

 

 

Identification of novel Arabidopsis miRNAs 

To assess the possibility that previously unidentified miRNAs may be induced by aphid 

exposure, I used the miRCat tool to look for novel miRNAs that were present in the aphid-

treated libraries and absent in control libraries. MiRCat found a small number of reads that 

were present in the aphid-exposed libraries but not in controls. However, as these reads all 

matched to portions of known miRNA sequences and were only found as single reads in 

each library, I did not classify these as novel miRNAs. 
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6.3 Discussion 

 

This investigation had two primary objectives. Firstly, to identify Arabidopsis miRNAs 

that are responsive to aphid-infestation, and secondly, to identify novel miRNAs 

specifically induced during aphid exposure. 

First analysis of the deep sequencing data suggested that a substantial number of 

miRNAs were differentially regulated during aphid exposure. I was unable to validate most 

of these changes by northern blot. However, expression of some miRNAs (miR163, 

miR167, miR390, miR393) was variable between treatments in several replicates. These 

miRNAs appeared repressed during some infestations but induced in others. This pattern 

was most obvious for miR393, a miRNA previously implicated in aphid resistance 

(Chapter 5). MiR393 is known to be induced following exposure to the PAMP flg22 or 

inoculation with both virulent and avirulent strains of P. syringae (Navarro et al., 2006; Li 

et al., 2010; Robert Seilaniantz et al., 2011). The fact that it may also be responsive to M. 

persicae infestation suggests there may be considerable overlap between roles of miRNAs 

in response against both a bacterial biotroph and a phloem-feeding insect. This might have 

been expected, as both P. syringae and M. persicae elicit SA-dependent defence responses 

as well as camalexin production. The same miRNAs may therefore play similar roles in 

coordinating the responses against these two distinct plant attackers. 

I previously speculated that manipulation of miR393 abundance may be important 

in regulating the level of camalexin production and hence aphid resistance (Chapter 5). My 

experiments showed that artificial overexpression of miR393 can render plants more 

susceptible to aphid colonisation (Chapter 5). It is therefore curious to why miR393 

abundance may increase during aphid exposure. As I previously stated, this could be 

achieved through the action of a salivary effector introduced into the phloem stream during 

aphid feeding. In contrast, it may be that suppression of miR393 aids plant defence against 
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aphids. This may partly explain why dcl1 plants (which lack miR393) are more resistant to 

aphid colonisation. My data shows that miR393 is responsive to aphid infestation, although 

I observed significant variation in direction of response between independent infestations. I 

currently cannot explain this variability, however it may be that miR393 is a focal point for 

both positive and negative regulatory pressures. Successful manipulation of plant processes 

in the majority of feeding sites may induce miR393 expression. Alternatively, successful 

perception of aphid feeding may activate processes to direct miR393 repression. The 

proportion of successful feeding sites within a colony may determine this balance. 

In this chapter, miR391 is identified as an aphid-inducible miRNA worth future 

investigation. MiR391 was identified as aphid-inducible both by miRProf analysis of our 

sequencing data and by northern blot. MiR391 is less well-studied relative to miR393, and 

has to date only been implicated in the response to phosphate starvation (Lundmark et al., 

2010). Predicted targets of mR391 are mostly genes of unknown function, and no 

predictions have been validated experimentally. It would be interesting to determine how 

important the interaction between miR391 and its predicted target transcripts are with 

respect to aphid resistance. It may be that this miRNA executes functions that are highly 

specific to defence against aphids, but have no involvement in defence against other 

pathogens studies to date. 

On the occasions where northern analysis confirmed miRNA induction, the 

differences between mock and aphid-treated samples was often subtle. My previous work 

showed that changes induced by aphid feeding may occur in a highly localised fashion, 

such as the phloem cells (Chapters 4 and 5). These changes may often only occur in a 

small number of cells around each feeding site. The experiments described here assess 

abundance of mature miRNA sequences at the whole leaf level. It is possible that there are 

significant alternations in the miRNA profile of cells that are either in close proximity or 
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able to perceive aphid feeding. However, these changes may be masked by stable 

expression in the majority of cells in the leaf where aphid challenge is not perceived. 

From experiments described here, the majority of Arabidopsis miRNAs appear not 

to be transcriptionally responsive to aphid challenge. However, the absolute abundance of 

a miRNA gives little indication to whether it is being incorporated into an active RISC. 

Assessment of this could be achieved by high throughput sequencing after crosslinking 

immunoprecipitation (HITS-CLIP) to assess the AGO1-bound sRNAs in mock-treated and 

aphid exposed samples. This would uncover any preferential loading of miRNAs into 

RISCs in response to aphid treatment. However, this experiment would also have the 

background problem described above if conducted at the whole leaf level. A protocol 

would have to be devised to enrich for cells responding to aphid challenge. One solution 

might be to feed aphids on a reporter line expressing GFP under an aphid-inducible 

promoter. Plant tissue could then be digested to isolate protoplasts, and GFP-expressing 

cells recovered using a cell sorter. This would give the most accurate portrayal of both 

miRNAs and mRNAs that are differentially regulated during aphid infestation. 

It has been proposed that in eukaryotic systems, many different RNA species may 

communicate to regulate activity of one another. This theory, termed the competing 

endogenous RNA (ceRNA) hypothesis involves miRNAs, coding-gene mRNAs and long 

non-coding RNAs (lncRNAs) including pseudogenes (Salmena et al., 2011). In animals, 

many coding-gene mRNAs contain multiple miRNA target sites. Similar miRNA target 

sites are also present in some lncRNAs. It has been proposed that coding mRNAs and 

lncRNAs may compete for a limited pool of miRNAs. By this mechanism, altered 

transcription of lncRNAs could influence the expression of coding-genes in a miRNA-

dependent manner but without the requirement for altered miRNA gene expression. The 

ceRNA hypothesis is largely focussed on gene regulation in animals; in particular with 

how disruption of miRNA function by other non-coding RNAs plays a role in cancer 
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development. However, there are parallels with gene regulation in plants. There is 

currently one described example of a naturally occurring Arabidopsis lncRNA that can 

influence coding gene expression through competition for a miRNA (Franco-Zorrilla et al., 

2007; Ebert & Sharp, 2010). In plants, this process has been termed target mimicry, and 

has been subsequently developed as a tool for miRNA gene knockdown (Todesco et al., 

2010; Ivashuta et al., 2011). 

 

In addition to sequencing six Arabidopsis sRNA libraries, I sequenced a library of 

sRNAs from the aphids that comprised all infestations. I had two main objectives for 

sequencing this library. The first was to assess whether sRNAs from wild-type Arabidopsis 

could be detected in aphids. Other investigations have described gene knockdown in 

several orders of insect after feeding on transgenic plants producing siRNAs targeting 

insect transcripts (Baum et al., 2007; Frizzi & Huang, 2010; Zha et al., 2011). In addition, 

it has recently emerged that intact plant miRNAs can transit the digestive system of 

mammals, and may have regulatory function over mammalian gene transcripts (Zhang, L 

et al., 2011). I speculated that plants may employ such a mechanism to defend themselves 

from phloem-feeding insects they encounter in nature. Secondly, this library and the 

recently available genome scaffold for M. persicae would have facilitated sRNA 

identification for this aphid species. There are currently only miRNA sequences available 

for one aphid species, Acyrthosiphon pisum (A. pisum) (pea aphid), which is a specialist of 

legumes. It would have been interesting to compare sRNA profiles between A. pisum and 

M. persicae, one a specialist aphid and the other a generalist. This would offer insight into 

roles that sRNAs may have in other important aspects of aphid biology, such as 

determining host range. Unfortunately, time constraints meant I have been unable to pursue 

this investigation.  
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Chapter 7 – General Discussion 
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7.1 Summary of research 

 

It was uncovered that M. persicae produces less progeny on Arabidopsis mutants impaired 

in miRNA processing (Chapter 3). Upon aphid exposure, these mutants have higher 

expression of the camalexin biosynthetic gene PAD3 and accumulate more camalexin than 

wild-type plants (Chapter 4). M. persicae produces more progeny on pad3 and other 

mutants that are unable to produce camalexin (Chapter 4). Moreover, these aphids are less 

fecund on artificial diets containing camalexin than on camalexin-free diets (Chapter 4). 

These findings indicate that (i) the miRNA pathway is involved in the negative regulation 

of camalexin biosynthesis upon aphid attack, (ii) camalexin may contribute to aphid 

resistance of the Arabidopsis miRNA pathway mutants, (iii) and camalexin negatively 

impacts aphid fertility but not survival. 

The contribution of miR393 to Arabidopsis aphid resistance was investigated 

(Chapter 5), because it was previously shown that miR393 is involved in the Arabidopsis 

defense response to P. syringae and the PAMP flg22 (Navarro et al., 2006; Li et al., 2010) 

and co-workers in the Hogenhout laboratory have demonstrated that components of the 

flg22-mediated PTI pathway play a role in aphid resistance (Bos et al., 2010; D. Prince, 

unpublished results). Furthermore, miR393 negatively regulates the auxin receptor genes 

TIR1, AFB2 and AFB3 thereby preventing activation of auxin response factors ARF1 and 

ARF9 with the resulting effect of promoting glucosinolate production over camalexin 

(Robert Seilaniantz et al., 2011) (Fig. 7.1). Aphid feeding appears to induce phloem-

specific expression of miR393b, but not miR393a (Chapter 5). Additionally, M. persicae 

are more fecund on 35S:miR393 lines and on Arabidopsis arf1 and arf9 mutants (Chapter 

5). These results suggest that miR393 is a negative regulator of the Arabidopsis defense 

response to M. persicae attack. This is consistent with the findings described in chapter 3 

that miRNA pathway mutants are more resistant to M. persicae.  
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It was also investigated if the WRKY33 transcription factor, which directly 

regulates the expression of PAD3, is negatively regulated by miRNAs (Chapter 5). 

Bioinformatic predictions indicated WRKY33 mRNA is a putative target of miR393. 

Aphids produced more progeny on the Arabidopsis wrky33 mutant, but not on the 

35S:WRKY33 line (Chapter 5). Moreover, upon aphid exposure, WRKY33 expression is 

upregulated in dcl1 mutants but not in wild type plants. 5`RACE experiments on cleaved 

WRKY33 transcripts in mock-inoculated Arabidopsis did provide preliminary evidence for 

degradation of WRKY33 transcripts by (an) unknown miRNA(s) but no evidence for the 

involvement of miR393 (Chapter 5). Indeed, WRKY33 expression is not constitutively 

downregulated in (non-aphid-exposed) 35S:miR393 lines (Chapter 5). However, it is still 

possible that miR393 inhibits translation of WRKY33 mRNA in aphid-exposed plants, and 

this needs further investigation. These results are nonetheless consistent with findings 

described in chapter 3 that miRNA pathways mutants are more resistant to M. persicae, 

and those in chapter 4 that the camalexin pathway is involved in Arabidopsis defense 

response to aphid attack. 

To discover Arabidopsis miRNAs that are responsive to M. persicae infestation, I 

deep-sequenced three aphid-exposed Arabidopsis sRNA libraries and three aphid-free 

control libraries (Chapter 6). Whilst the expression of the majority of host miRNAs was 

unchanged during aphid infestation, the expression of nine miRNAs, including miR393, 

were altered in the aphid-treated versus mock-treated samples. However, subsequent 

northern blot hybridisation experiments revealed that miR393 expression is induced during 

some infestations but repressed in others, suggesting that it may be temporally and 

spatially regulated during aphid infestation. Thus, it is likely that miRNAs play a role in 

plant defence regulation during aphid infestation. 

In conclusion, data presented in all four experimental chapters provide independent 

evidence that the Arabidopsis miRNA pathway negatively regulates plant defence 
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signalling during aphid infestation. In the absence of miRNA processing, plants become 

more resistant to M. persicae. In addition, it was found that specific miRNAs are 

upregulated during aphid attack and this may downregulate the production of camalexin, 

which can be toxic to the aphid. Because it is not in the plants best interest to increase 

expression of miRNAs that downregulate plant defense, the possibility that aphids play an 

active role in upregulating miRNAs directly or indirectly should be considered. This is the 

first report of miRNA involvement in regulating plant resistance against a phloem-feeding 

insect pest. 

 

 

Figure 7.1 – Current model for miR393 involvement in glucosinolate/camalexin pathways. 

MiR393 is induced by PAMP (flg22) treatment or by expression of a 35S:miR393 construct.  The microRNA 

targets three auxin receptors (TIR1, AFB2, AFB3) reducing plant sensitivity to auxin and preventing 

activation of ARF1 and ARF9. As ARF9 is a positive regulator of camalexin production, and both ARF1 and 

ARF9 are negative regulators of glucosinolate production, this has the effect of channelling resources away 

from camalexin towards glucosinolates. Image adapted from (Robert Seilaniantz et al., 2011). 
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7.2 Camalexin is toxic to a number of plant attackers 

 

Camalexin production is induced by a wide variety of plant attackers including bacteria, 

fungi, viruses, insects and oomycetes (Glawischnig, 2007). However, the proportion of 

these colonisers that are susceptible to camalexin is much narrower. The bacterial biotroph 

P. syringae reproduces less rapidly at camalexin concentrations of 500µM (Rogers et al., 

1996), however it is debatable whether camalexin accumulates to this concentration in vivo 

(Glawischnig, 2007). The concentration required to retard growth of the fungal necrotroph 

A. brassicae is ten times lower (Pedras et al., 1998), and more likely represents a 

concentration that occurs in the leaves of infected plants. In my experiments, I observed 

that a camalexin concentration of 62.5µM was sufficient to reduce aphid fecundity when 

aphids were raised on artificial diets (Chapter 4). This level is comparable to experiments 

conducted with A. brassicae. It is possible that aphid performance is reduced at lower 

concentrations; however this was not tested in my experiments. Using a PAD3p::GUS 

reporter line, I observed that PAD3 induction is highly localised to the site of penetration 

by aphid stylets (Chapter 4). The concentration that occurs around feeding sites is not 

known, however it is fair to presume that it is significantly higher than the level measured 

at the whole leaf or whole plant level. It is known that following inoculation with the 

fungal necrotroph B. cinerea, levels of camalexin at the infection front can be nearly 

twenty times higher than in tissues 1cm away from the infection (Kliebenstein et al., 

2005). It is therefore possible that the concentrations fed in artificial diet assays are 

comparable to the quantities of camalexin found at aphid feeding sites. Furthermore, due to 

technical limitations, we had to cap the duration of the artificial diet assay to two days. 

This is short in comparison to our plant assays where aphids are raised for 14-16 days. It 

may be that longer exposures to lower quantities of camalexin result in similar outcomes 

compared with the acute exposure given artificially. 
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When I assessed aphid performance on plants of varying ability to produce 

camalexin, I found significant variation in results. Aphids were more successful on plants 

unable to synthesise camalexin (pad3, cyp79b2/cyp79b3) or on plants with varying 

deficiencies in camalexin production (arf1, arf9, wrky33, 35S:miR393a, 35S:miR393b). In 

contrast, I observed decreased aphid performance on miRNA pathway mutants, including 

dcl1 plants, which I found synthesises greater quantities of camalexin than wild-type 

plants. To more precisely assess the role of camalexin in the miRNA mutant resistance 

phenotype, aphid performance could be assessed on a dcl1/pad3 double mutant relative to 

dcl1. I would expect that aphid fecundity on dcl1/pad3 would be partially returned to wild-

type levels. Work is continuing towards generating the dcl1/pad3 double mutant for this 

experiment. In addition, it would be interesting to assess fecundity on either a double 

miR393 mutant or a miR393 knockdown. I expect a reduction in aphid fecundity on either 

of these lines relative to wild-type plants. Comparing aphid fecundity on the miR393 

mutant/knockdown and dcl1 plants would indicate what proportion of the dcl1 resistance 

phenotype is dependent on miR393 alone. A final experiment may be to generate a silent 

mutation of the putative miR393 target site in PAD3 to produce a miR393-resistant PAD3 

transcript. This experiment would indicate the extent of this specific miRNA-mRNA 

interaction in aphid resistance, because in the scenario that miR393 directs degradation or 

translational repression of PAD3 transcripts, plants expressing a miR393-resistant PAD3 

would be better able to induce camalexin production (during aphid exposure) than plants 

expressing a miR393-susceptible PAD3. These plants would be more resistant to M. 

persicae as well. 

Camalexin is known to inhibit growth of several necrotrophic fungal pathogens. 

My data shows that it is also effective at impairing the reproductive development of a 

hemipteran insect. In addition, camalexin exhibits anti-proliferative and pro-apoptotic 

properties against some human cancer cell lines (Mezencev et al., 2003; Mezencev et al., 
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2011). Thus, camalexin may target dividing cells. Finally, there is evidence that camalexin 

disrupts cell membranes (Joubert et al., 2011). Treatment of the fungus A. brassicicola 

with 125µM camalexin shows hugely increased fungal membrane permeability and 

induction of genes involved in membrane stress and repair compared to camalexin-free 

controls (Sellam et al., 2007; Joubert et al., 2011). Pathogens have evolved mechanisms to 

limit camalexin-induced damage. For example, a pathogenic strain of B. cinerea expresses 

an ABC transporter to pump camalexin out of cells (Stefanato et al., 2009), indicating that 

camalexin is taken up by cells and may perturb intracellular processes. 

Camalexin inhibits aphid fertility but not adult survival. Given that camalexin has 

anti-proliferative and pro-apoptotic properties, it is plausible that camalexin inhibits 

growth of aphid embryos. Another possibility is that camalexin negatively affects cells in 

the aphid digestive tract that are probably exposed to the highest concentrations of 

camalexin. As these cells are involved in obtaining nutrients from the diet, reduced 

functionality may result in nutrient deficiencies, which could impact embryo development. 

Given that camalexin also has anti-microbial properties (it inhibits P. syringae proliferation 

for instance), another possibility is that camalexin reduces aphid fecundity by reducing the 

number of primary intracellular endosymbionts Buchnera aphidicola (B. aphidicola), 

which produce essential amino acids required for growth and reproduction of aphids. 

Indeed, aphids cured of their symbionts through antibiotic treatment produce considerably 

fewer offspring than untreated aphids (Prosser & Douglas, 1991). However, an experiment 

described in chapter 4 indicated that B. aphidicola numbers were similar in aphids raised 

on plants producing zero, low and high levels of camalexin. There was also no difference 

in B. aphidicola numbers of aphids raised on camalexin spiked- or camalexin-free artificial 

diets. Thus, camalexin does not appear to affect B. aphidicola population growth. 

Nonetheless, it remains possible that camalexin can disrupt other functions in the 

symbiotic relationship. Camalexin could reduce the efficiency with which B. aphidicola 
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can synthesise the essential amino acids required by aphids or interfere with the maternal 

transmission of symbionts to aphid offspring. 

 

 

7.3 MiRNAs target multiple gene transcripts in plants 

 

The mechanisms of gene regulation that are guided by small RNAs (sRNAs) have been the 

focus of extensive investigations both in plants and animals. MiRNA-target pairing is 

known to be heavily influenced by matches in the seed region, at positions 2-8 nucleotides 

from the miRNA 5` end. Complementarity at positions 10-11 is crucial for determining 

whether regulation occurs by transcript cleavage or translational repression. It is generally 

accepted that miRNA-transcript interactions in plants display greater complementarity than 

those present in animals (Voinnet, 2009). However it is becoming clear that plant miRNAs 

also regulate target transcripts displaying a lower degree of sequence similarity. 

It has emerged that miR393 targets multiple transcripts, including TIR1, AFB2 and 

AFB3 and possibly others. Additionally, miR393-directed cleavage products are more 

heterogeneous than might be expected from a miRNA that targets multiple transcripts with 

near-perfect complementarity. Significant quantities of cleavage products are detected in 

the region ~100-200-nt towards the target 3` end of the canonical cleavage site on TIR1, 

AFB2 and AFB3 transcripts (Si-Ammour et al., 2011). With this finding, it seems 

reasonable to consider PAD3 as a legitimate target for miR393-mediated regulation. In my 

experiments with aphid-treated Arabidopsis, I find two distinct PAD3 cleavage products 

24nt and 134nt towards the 3` end of the transcript from the putative miR393 target site. 

These products are absent in mock-treated plants, probably because PAD3 is so lowly 

expressed that interactions between this transcript and miR393 are uncommon. Therfore it 
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is likely that the miR393-PAD3 interaction has specific roles in stress responses where 

production of camalexin is important. 

MiRNA duplexes are composed of two strands that have 2nt overhangs at the 3` 

ends. MiRNAs function through the miR strand, that is complementary to the target, whilst 

the miR* strand, which has the same sequence as the target and is generated during 

miRNA maturation, was previously thought to be junk RNA holding no significant 

biological function. However, miR393 appears unique in that miR393b* has a role in a 

defence processes independent from miR393 and which operates through an AGO2-

catalysed pathway. Whilst there is evidence that miR393b and not miR393a is upregulated 

in the phloem during aphid feeding (Chapter 5), aphid fecundity and survival are not 

affected on the ago2 mutant (Chapter 3) indicating that miR393b* likely does not have a 

role in plant defense to aphids. It remains to be seen whether other miR* sequences are 

active in this pathway and have roles in plant defence. 

 

 

7.4 MiRNAs as negative regulators of defence 

 

In previous studies, miR393 emerged as a key regulator of defence against biotrophic and 

necrotrophic pathogens through its role in regulating auxin receptor genes (Navarro et al., 

2006), which are involved in resource allocation into camalexin versus glucosinolate 

production pathways (Robert Seilaniantz et al., 2011) (Figure 7.1). MiR393 is a negative 

regulator of camalexin production and its regulation appears to be altered during some 

aphid infestations. Additionally, I found that miRNAs, including perhaps miR393, may 

have distinct roles in negatively controlling camalexin production through the targeting of 

PAD3 transcripts. Thus, whilst camalexin production appears to be induced upon aphid 
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attack, it is subsequently suppressed because of the induction of miRNAs.  There is an 

example in the literature of an Arabidopsis miRNA (miR164) that functions as a brake of 

developmental signalling with important consequences for the timing of leaf senescence 

(Kim et al., 2009). Perhaps miR393 is involved in a balancing act between limiting 

pathogen colonisation and ensuring continued growth? This could involve fine-tuning 

camalexin production to a level where pathogen or pest performance is sufficiently limited 

but with minimal impact on rate of plant growth. It is also possible that miR393 is induced 

to prevent defence hyper-activation and to prevent quantities of camalexin accumulating 

that are toxic to host cells. 

In addition to miR393, there are other miRNAs that are involved in Arabidopsis 

defence to insect herbivores. The miRNA miR163 is highly expressed in A. thaliana but 

silent in the close relative Arabidopsis arenosa (A. arenosa) (Ng et al., 2011). MiR163 is 

known to target transcripts of farnesoic acid methyltransferase (FAMT), an enzyme that 

converts farnesoic acid (FA) to methyl farnesoate (MeFA). MeFA is an unepoxidized 

analogue of insect juvenile hormone III (Shinoda & Itoyama, 2003), which has previously 

been implicated in plant defence, since its presence negatively impacts the growth and 

development of some insect herbivores. FAMT is induced in both A. thaliana and A. 

arenosa by insect damage and the fungal elicitor alamethicin, whilst miR163 is only 

induced A. thaliana and not in A. arenosa (Ng et al., 2011). Thus, A. arenosa produces 

more FAMT because of the absence of miR163 during insect attack, whilst FAMT 

production is negatively regulated by miR163 in A. thaliana. This difference may have an 

evolutionary advantage as A. arenosa is an outcrossing plant with a long vegetative stage 

compared to the inbreeding A. thaliana and is therefore more likely to encounter insect 

herbivores or pathogens that would benefit from a more aggressive defence response (Ng 

et al., 2011). Interestingly, my sRNA-seq data suggested that miR163 is induced in whole 

leaves following aphid exposure although this was not confirmed by northern blot 
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hybridisation experiments (Chapter 6). Nonetheless, if MeFA negatively impacts the 

growth and development of aphids, the absence of miR163-mediated negative regulation of 

FAMT in A. thaliana miRNA pathway mutants is likely to contribute to the aphid-resistant 

phenotype of these plants. To test this possibility, we obtained A. thaliana mir163 mutants 

but aphid performance assays on these plants have not yet been conducted. 

Differential expression/presence of miRNAs may not vary only among plant 

species, but also between ecotypes within a species. It is known that there are significant 

differences in siRNA profiles between the closely related A. thaliana Col-0 and Ler 

ecotypes (Zhai et al., 2008). These differences are known to have impact on the FLC locus 

and control of vernalization and flowering time (Zhai et al., 2008). It is less clear how 

miRNA profiles differ between ecotypes. However, differences in either miRNA 

expression or targeting preferences may contribute to the ability of Arabidopsis ecotypes to 

respond to the environment. For example, all Arabidopsis accessions studied to date are 

able to produce camalexin, but there are considerable differences in the quantities 

synthesised in response to various treatments.  Some ecotypes can be considered high 

camalexin producers under certain stresses, but may be low producers under an alternate 

stress (Glawischnig, 2007). It seems unlikely that these differences are caused by disparity 

in the efficiencies of the camalexin biosynthetic enzymes. Therefore, there may be 

differences in elicitor recognition and signal transduction mechanisms and variation in 

miRNA-mediated regulation represents one possible mechanism by which signal 

transduction may differ between Arabidopsis ecotypes. 

MiRNA-mediated regulation during environmental responses may also be involved 

in the priming phenomenon, where it has been observed that plants exposed to either 

chemical treatment or pathogen challenge are better able to resist future assaults (Conrath 

et al., 2006). Induction of both defence pathway transcripts and their negative regulators 

could enable plants to launch specific defence responses upon stress or pathogen/pest 
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attack. Thus, primed plants may have increased presence of both defence gene transcripts 

and counter-defensive miRNAs. Once these plants perceive stress or pathogens/pests 

above a certain threshold, a change in miRNA levels would allow more rapid adjustments 

of the proteinaceous components of the defence pathway and a better adapted immune 

response to the particular stress/pathogen/pest. 

 

 

7.5 Pathogens and pests manipulate plant silencing pathways 

 

Many plant viruses encode suppressor molecules that usurp antiviral RNA silencing and 

interfere with endogenous silencing processes guided by miRNAs (Ding & Voinnet, 2007). 

Additionally, some effector proteins from virulent strains of P. syringae are known to 

interfere with aspects of both siRNA- and miRNA-mediated gene silencing (Navarro et al., 

2008). This is additional evidence of the possibility discussed above that plants keep tight 

control over induction of defence pathways through the regulatory action of some 

miRNAs.  Similarly to P. syringae and viruses, it is plausible that aphids modulate host-

silencing processes to enhance colonisation. For instance, aphids may induce or suppress 

specific miRNAs that modulate the plant defence response to the aphid benefit. Aphid 

saliva, which is released into the cytoplasm of plant cells during stylet probing and the 

phloem stream during feeding, may contain proteins that alter the expression of miRNAs 

directly or indirectly. Specifically, one or more of these aphid proteins could interfere with 

miR393-specific regulation. The role of miR393 in glucosinolate/camalexin production 

during PAMP treatment and P. syringae infection has been previously described. In this 

model, miR393 regulates auxin responsiveness through targeting of the auxin receptor 

transcripts TIR1, AFB2 and AFB3 (Fig. 7.1). Similarly, an aphid protein that promotes 
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miR393 transcription, processing or activity, could shift balance of metabolic flow towards 

glucosinolates (many of which have no effect on aphid performance) and away from 

camalexin, which is deleterious to aphid fecundity (Chapter 4). The work described in this 

thesis also uncovers a role of the WRKY33 transcription factor in aphid resistance 

(Chapter 5). Thus, it is possible that miR393, or other currently unidentified sRNAs, target 

WRKY33 mRNA to further repress camalexin accumulation. 

Pathogen attack results in the induction of WRKY33 and camalexin production. 

These are also induced by PAMPs such as flg22. Aphids do not induce WRKY33 in wild 

type Arabidopsis (Figure 5.7a). However, aphids do induce WRKY33 in a dcl1 mutant 

(Figure 5.7a) suggesting that during aphid attack, WRKY33 may be negatively regulated by 

miRNAs. WRKY33 directly regulates PAD3 expression and camalexin production, which 

is toxic to the aphid. Hence, it seems to be to the benefit of the aphid but not the plant to 

limit WRKY33 expression. It is interesting that the biotrophic pathogen P. syringae induces 

WRKY33, but unlike aphids it benefits from the upregulation as basal resistance of plants to 

P. syringae DC3000 is compromised on WRKY33 overexpression lines (Zheng et al., 

2006). To this end, this bacterium produces effectors that downregulate certain miRNAs, 

including miR393, to promote disease and also grows better on miRNA-deficient mutants 

(Navarro et al., 2008) and is restricted in growth on miR393 overexpression lines (Navarro 

et al., 2006). In contrast, aphids are more fecund on miRNA-deficient mutants, do not 

upregulate WRKY33 in wild-type plants, and do better on both wrky33 mutants and 

miR393 overexpression lines. The wrky33 plants are also more susceptible to necrotrophic 

fungi, but unlike aphids, these pathogens induce WRKY33 (Zheng et al., 2006). Because 

WRKYs are predicted to regulate miRNA expression (Zhou et al., 2008; Pandey & 

Somssich, 2009) it remains to be determined if the upregulation of specific miRNAs during 

aphid attack is a self-regulatory process (as discussed previously) or if aphid effectors 

upregulate specific miRNAs, including miR393, that reduces camalexin production via 
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direct negative regulation of PAD3, and more indirectly via the auxin perception pathway. 

However, the latter seems most plausible. 

Figure 7.2 illustrates a model of how miRNA-mediated regulation of plant 

defence during aphid attack might operate. In this model, it is assumed aphids suppress 

PTI-related pathways, evidence for which has accumulated during the past few years in the 

Hogenhout lab (Bos et al., 2010) (D. Prince, unpublished work; this thesis). In this model, 

aphid feeding triggers a basal defence response in plant cells (Fig. 7.2a,b). This response 

may be triggered by perception of either host DAMPs produced during puncturing of the 

phloem by aphid stylets, or aphid PAMPs present on the surface of the aphid stylets and 

saliva. DAMPs or PAMPs are recognised by a currently unknown pattern-recognition 

receptor (PRR) and may involve the action of the leucine-rich repeat receptor-like kinase 

(LRR-RLK) BAK1 (Fig. 7.2b). This triggers mitogen-activated protein kinase (MAPK) 

cascades (Fig. 7.2c) that ultimately result in transcriptional reprogramming via pathogen-

responsive transcription factors. Indeed, it is known that WRKY33 is released from its 

suppressor MKS1 by an MPK4-dependent phosphorylation event during P. syringae 

infection or flg22 treatment (Qiu et al., 2008), and is activated during B. cinerea infection 

in a distinct process that appears to operate through MPK3/6 (Ren et al., 2008; Mao et al., 

2011). Free WRKY33 is able to transcriptionally activate PAD3 (Fig. 7.2d). Because the 

data presented in chapter 5 suggest that miR393b is upregulated in the plant phloem under 

aphid attack, an aphid effector (injected into plant cells during aphid probing and feeding 

(Fig 7.2g) may upregulate miR393b expression, thereby reducing camalexin production 

either directly by reducing the accumulation of PAD3 (Fig. 7.2e) (in a scenario where 

miR393 targets PAD3 transcripts) or indirectly via downregulating the auxin receptors and 

channelling resources away from camalexin production (Fig. 7.1; not illustrated in Fig. 

7.2). Such a putative effector would likely need access to companion cells from the phloem 

stream to be functional (Fig. 7.2g), and could act via two broad mechanisms. Firstly, by 
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promoting transcription of miRNA loci, perhaps by interaction with the Pol II 

transcriptional apparatus (Fig. 7.2h), or secondly, by direct interaction with miRNA-AGO 

complexes, either by modifying AGO loading preferences, or enhancing interactions 

between RISCs and their mRNA targets (Fig. 7.2i). Either mechanism would result in 

cleavage or translational repression of PAD3 mRNAs (Fig. 7.2e) with reduced 

accumulation of this gene product and reduced production of camalexin (Fig. 7.2f).  

The model in figure 7.3 illustrates how disabling the miRNA pathway will render 

plants more resistant to aphids. In these miRNA pathway mutants, PAMP or DAMP 

perception and downstream signalling is likely to be similar to that in susceptible Col-0. 

However, in dcl1 plants, mature miRNAs are not excised from their precursors (Fig. 7.3a). 

Therefore effector action has little impact on post-transcriptional regulation (Fig. 7.3a,b), 

allowing increased accumulation of PAD3 mRNA (Fig. 7.3c). As WRKY33 is known to 

operate a positively regulating feedback loop (Mao et al., 2011), WRYK33 transcripts 

accumulate resulting in more WRKY33, which positively regulates PAD3 expression and 

downstream camalexin production (Fig. 7.3d). 
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Figure 7.2 – Model of Col-0 response to M. persicae infestation. 

(a) Puncturing of the phloem by aphid stylets generates Damage-Associated Molecular Patterns (DAMPs) 

and subsequent salivation introduces Pathogen-Associated Molecular Patterns (PAMPs) and effectors into 

phloem stream. (b) Detection of DAMPs or PAMPs by an unknown Pattern Recognition Receptor (PRR), 

perhaps associated with BAK1 triggers a host defence response. (c) Activation of MAP-kinase cascades 

trigger activation of WRKY33. (d) WRKY33 induces defence-related genes including PAD3. (e) Transcripts 

are subject to post-transcriptional regulation in cytoplasm, leading to a modest increase in PAD3 and small 



170 
 

amounts of camalexin production (f). Additionally, salivary effectors may penetrate companion cells (g) to 

interact with components of the host miRNA pathway. This could increase miRNA gene transcription (h) or 

improve or modify targeting efficiency (i) leading to a dampened defence response. 
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Figure 7.3 – Model of miRNA mutant resistance to M. persicae infestation. 

In response to DAMPs or PAMPs, miRNA mutants generate a similar response to Col-0 (Fig. 7.2) with the 

following exceptions. (a,b) A dcl1 mutant is unable to produce mature miRNAs, rendering effector 

manipulation of this pathway redundant.  Removal of post-transcriptional regulation allows increased 

accumulation of PAD3 mRNA (c). This results in greatly increased amounts of PAD3 and camalexin 

production (d). 
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In my experiments using PADp:GUS reporter lines (Chapter 4), I noticed that there 

was considerable variation in the levels of GUS staining around M. persicae feeding sites. 

Sequencing data indicated that at the whole leaf level, miR393 is responsive to aphid 

exposure (Chapter 6). A further possibility is that miR393 may be exposed to both positive 

and negative regulatory pressures during aphid infestation. As high levels of miR393 

expression are deleterious to plant defence against aphids, detection of aphid feeding 

(perhaps by aphid PAMP perception) may trigger events to reduce miR393 expression or 

activity (Fig. 7.4). An aphid effector capable of inducing miR393 expression or activity 

may counteract this process (Fig. 7.4). This push and pull on miR393 expression may 

account for the variable miR393 expression measured by northern blot (Chapter 6) or 

variable levels of GUS staining around aphid feeding sites (Chapter 4). 
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Figure 7.4 – miR393 as a node for determining levels of camalexin production. 

(a) Elicitation of a PAMP response is weaker than effector action on miR393, resulting in either increased 

miR393 transcription or improved targetting efficiency. MiR393 suppresses camalexin production by 

targeting PAD3. (b) The PAMP response is stronger than effector action and suppresses miR393 

transcription or activity by an unknown mechanism. This results in primary camalexin production through 

WRKY33-PAD3. WRKY33 self-activation reinforces the strength of this response. Solid arrows represent 

strong signalling, broken arrows represent weak signalling. 

 

7.6 Aphid crop protection strategies 

 

Currently, most aphid-control measures involve the spraying of chemical insecticides. 

However, this strategy is limited in its effectiveness. It may not be economically viable to 

spray crops when the yield losses imposed by aphids are lower than the cost of spraying 

(Dedryver et al., 2010). In addition, as aphids are important primarily in virus 

transmission, spraying will have little benefit to plants that have already acquired a virus. 
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Finally, some aphid species (including M. persicae) are notorious for having developed 

resistance to multiple classes of chemical insecticide (Nauen & Denholm, 2005; Puinean et 

al., 2010). 

Another strategy to limit agricultural losses is the use of resistant plant varieties. 

This has been employed historically in the production of aphid-resistant apple varieties 

(Dedryver et al., 2010). More recently, attempts at introducing aphid resistance into 

lettuce, barley and wheat have been met with varying degrees of success. One particularly 

successful example has been the use of the Vat gene to confer resistance against the melon 

aphid (Aphis gossypii). This durable R gene has been effective at controlling aphid 

infestations in France against asexual melon aphid populations (Dogimont et al., 2010). 

The use of aphid-resistant transgenic plants is another strategy that is currently 

being trialled. One strategy takes advantage of the aphid alarm signal (E)-β-farnesene 

(Eβf). When aphids are attacked by predators, they release a sticky substance of which Eβf 

is the primary constituent.  Exposure to Eβf causes other aphids nearby to drop off the host 

plant or to disperse to distant tissues. Arabidopsis does not naturally produce Eβf, as it 

lacks Eβf synthase, the enzyme for Eβf production. However it does produce related 

sesquiterpenes from a common precursor. Transgenic Arabidopsis engineered to produce 

the pheromone synthesise sesquiterpene profiles enriched for Eβf that elicit potent alarm 

and repellent responses in M. persicae. The pheromone also functions to attract aphid 

enemies (Beale et al., 2006; de Vos et al., 2010; Yu et al., 2011). Therefore, transgenic 

production of Eβf appears to protect plants by increasing rates of parasitism on aphid 

colonies.  

To date, camalexin has only been detected in a small number of closely related 

cruciferous plants. However, as the precursors of camalexin are involved in auxin 

signalling, they are likely present in a significant number of plant species. It may be 
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possible to introduce the genes responsible for camalexin production (CYP71A13, PAD3) 

into other naturally non-producing species. As it is likely that aphids do not encounter high 

quantities of camalexin frequently in nature, this may hold potential as a crop protection 

strategy. However, introducing the camalexin biosynthetic machinery into foreign hosts 

may have unforeseen consequences. The channelling of large amounts of resources to 

phytoalexin production at the expense of auxin signalling may cause undesirable side-

effects. Knowledge of tryptophan metabolism in each host would allow an assessment of 

this likelihood to be made. Additionally, whilst camalexin may be an effective defence 

against generalist aphids such as M. persicae, it is likely that brassica specialists have a 

higher tolerance to this plant compound. It might therefore be interesting to examine 

pathways involved in regulating basal defence responses which would be more effective 

against a number of aphid species. 

 

 

7.7 Antagonising the antagonist 

 

Perhaps a better strategy may be to target the braking action of miRNAs on metabolite 

production. This could be achieved in two ways. Firstly, it may be desirable to reduce 

miR393 activity upon aphid infestation. This could be achieved by target mimicry, where 

plants would be engineered to express a miR393 “sponge” or antagonist RNA. This 

principle has been successfully demonstrated in plants as a means of quenching miRNA 

activity (Todesco et al., 2010). Although miR393 overexpressors or knockdowns do not 

exhibit significant developmental phenotypes relative to other miRNAs, there are miR393-

associated phenotypes (Zhang, X et al., 2011). This is likely due to miR393 involvement in 

auxin sensitivity. This could be overcome by expressing the construct under a specifically 
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aphid-inducible promoter. An example of this would be At5g62360 (a pectin 

methylesterase inhibitor), a gene not induced by several plant pathogens but strongly 

induced by M. persicae feeding (de Vos et al., 2005). Upon aphid perception, induction of 

the miR393 antagonist would quench available miR393, removing the braking action of 

miR393 on camalexin production. This would also only be active in cells able to perceive 

aphid feeding. By tailoring this response to be highly localised this would hopefully 

prevent unwanted side effects on other pathways, or a loss of plant productivity due to 

over-allocation of resources towards defence. Alternatively, emerging technologies such as 

transcription activator-like (TAL) effectors make introduction of single base mutations into 

genes of interest easily achievable. In Arabidopsis, this could be used to modify WRKY33 

mRNA to resist binding of miR393 or other miRNAs. This may eliminate the brake effect 

that miRNAs have on camalexin production. However, unless this strategy was also 

targeted to cells directly involved in aphid response, there may again be unforeseen side-

effects of disrupting a miRNA-mRNA interaction at the whole organism level. 
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