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RECEIVED DATE  

The ability to modify the character of fluorescent emission by a laser-controlled, optically nonlinear 

process has recently been shown theoretically feasible, and several possible applications have already 

been identified.  In operation, a pulse of off-resonant probe laser beam, of sufficient intensity, is applied 

to a system exhibiting fluorescence, during the interval of excited state decay following the initial 

excitation.  The result is a rate of decay that can be controllably modified, the associated changes in 

fluorescence behavior affording new, chemically-specific information.  In this paper, a two-level 

emission model is employed in the further analysis of this all-optical process; the results should prove 

especially relevant to the analysis and imaging of physical systems employing fluorescent markers – 

these ranging from quantum dots to green fluorescence protein.  Expressions are presented for the laser-

controlled fluorescence anisotropy exhibited by samples in which the fluorophores are randomly 

oriented.  It is also shown that, in systems with suitably configured electronic levels and symmetry 

properties, fluorescence emission can be produced from energy levels that would normally decay non-

radiatively.   
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1.  Introduction 

 

In any molecular system that exhibits fluorescence, the primary result of ultraviolet/visible absorption is 

the electronic excitation of individual fluorophores.  Typically, ultrafast intramolecular vibrational 

redistribution processes produce a degree of immediate relaxation with a partial degradation of the 

acquired energy, subsequent fluorescence occurring from the lowest level of the electronic excited state.  

As is well known, the throughput of a laser beam in such photo-activated systems can produce 

stimulated emission when the optical frequency matches the fluorescence, a phenomenon that has found 

analytical applications in stimulated emission depletion spectroscopy.1-7  However, it has recently 

emerged that a moderately intense, completely off-resonant probe laser beam can also significantly affect 

process of fluorescence.8-11  Under such conditions the probe essentially confers optical nonlinearity on 

the fluorescent emission, and in consequence each excited-state lifetime, , is appreciably modified.   

 

The essence of the effect can be captured in a very simple general formula, 1 1 1

fl nr I        ; the 

first two terms on the right correspond to inverses of the excited-state lifetimes for fluorescence and 

competing non-radiative decay, respectively, whilst the effect of the probe emerges in the form of the 

additional term proportional to I, the irradiance of the off-resonant probe.  In a heterogeneous sample the 

above constant of proportionality, , which is determined by detailed molecular nonlinearity, will 

generally take a different value for each chemically distinct component.  One can draw some analogy 

with the well-known enhancement of emission, which can occur through coupling with strong electric 

fields.12-14  However, the newly discovered mechanism signifies similar modifications to spontaneous 

fluorescent emission that are produced without the presence of any surface or static field, through direct 

interaction with the oscillating electric field of throughput electromagnetic radiation.  Initial estimates 

have suggested that fluorescence lifetimes, under specified conditions, can be reduced by 10% or more, 

for an input laser irradiance of 1011 W cm-2 (with typical values of 16  10-30 C m for the magnitude of 
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the transition dipole moment and a photonic energy as 10-19 J),8 so that the effect should be readily 

amenable to measurement with modulation-based instrumentation.  In systems with suitably configured 

electronic levels and symmetry properties, it is also possible for fluorescence emission to be produced 

from energy levels that would normally decay non-radiatively.   

 

In this paper we report in detail on how, in systems of randomly oriented fluorophores, the effects of 

laser-controlled fluorescence will be manifest in changes to the emission anisotropy.  Our methods are 

developed from a fully quantum mechanical analysis of the molecular electrodynamics, a methodology 

whose value has been brought to the fore and proven in numerous works by Mukamel – see for example 

refs 15-21.  We begin in section 2 with a recap on the theory of laser-controlled fluorescence.  In section 

3, it is shown how a two-level formulation of theory can be implemented using an expedient, entirely 

rigorous procedural algorithm that highlights the twin dependence on static and transition dipole 

moments.  Using this method, we secure tractable expressions whose broad validity will extend from 

quantum dots22,23 to fluorescent proteins24-28 – indeed any material whose emission spectrum is 

dominated by one excited electronic state.  In section 4, following an outline of the procedures for 

performing the requisite rotational averages, precise expressions are duly presented for the modified 

fluorescence anisotropy, characterizing and quantifying the probe control mechanism.   A brief 

discussion of the results is given by way of conclusion (section 5).  

 

 

2.  Laser-controlled fluorescence 

 

Fluorescence that occurs through spontaneous emission generally involves a single molecule-photon 

interaction (Fig. 1), and its representation in theory is cast in terms of first-order time-dependent 

perturbation theory.  In circumstances where no other light is present – a condition which, in normal 

experiments, is satisfied once the radiation responsible for the initial electronic excitation has passed out  
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Fig. 1.  Energy level representation for spontaneous fluorescence.  Electronic states (and their vibrational 

manifolds) are signified by the boxes, the wavy line is the emitted fluorescence (  ) and the vertical 

arrow is a transition due to the emission.  Energy levels E0 and E denote the ground and excited 

molecular states, respectively, and the dot symbolizes a single molecule-photon interaction.  

 

of the system – then higher order (odd-rank) perturbation terms are usually insignificant, only denoting 

self-energy corrections.  However, higher-order interactions will also arise on application of an off-

resonant probe laser, namely where a laser wavelength is chosen at which the fluorophores are optically 

transparent.  There is no net absorption or stimulated emission of such a beam, but elastic forward-

scattering events do occur – photons are annihilated and created into the same radiation mode (which 

thus emerges unchanged).  Such events can engage by nonlinear coupling with the fluorescence 

emission, resulting in three concerted molecule-photon interactions (Fig. 2), i.e. an overall process 

whose quantum amplitude is determined by third-order perturbation theory.  Similar effects occur in 

connection with resonance energy transfer, as numerous studies have shown;29-38 such behavior is  
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Fig. 2.  Energy level representation for the nonlinear coupling mechanism.  As Fig. 1, but also including 

the off-resonant laser beam (  ) denoted by the upper wavy line; the upper dot symbolizes two 

concerted molecule-photon interactions (i.e. elastic forward-scattering).  

 

nonetheless in contrast to the perturbations that can be brought into effect by a static field, the leading 

orders of which arise in second-order, i.e. linear in both the emitted and the applied field. 

 

The intensity of fluorescence,   I , (or power per unit solid angle) follows from the Fermi Rule,39 

the associated rate being multiplied by the energy of a fluorescence photon,   ck .40,41  The result 

signifies the signal that is produced by a single molecule initially in the relevant excited state.  By 

inclusion of the mechanism under present scrutiny, the net intensity is hence determined from 

    I d  = 2 ck'|
   1 3

fl flM M |2 , where 
 1

flM  and 
 3

flM  are the quantum amplitudes for first- and 

third-order interaction processes, respectively, and the density of radiation states is 
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 8   k V c2 3 d .  As determined elsewhere,9 from this expression a general representation for 

the intensity of laser-controlled fluorescence is found, and is given by; 
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(1)

 

 

where the fluorescence-decay transition dipole moment is designated by the shorthand notation 

 0 0   – in which   denotes the excited state, and 0  the ground state.  The nonlinear 

transition susceptibility  ; ,    ijk
0  is defined below.  In equation (1), the implied summation 

convention for repeated Cartesian tensor (subscript) indices is used, and I is the irradiance of the laser 

probe, with e  and e representing the polarization vectors of fluorescence and probe photons, 

respectively.  For simplicity, all photons are assumed linearly polarized.   

 

The initial term on the right-hand side of Eq. (1) corresponds to spontaneous emission, intrinsic to the 

system and independent of the probe laser beam; the last term signifies a coupling of the elastically 

forward-scattered probe beam with the fluorescence emission.  The middle term, linear in I, signifies a 

quantum interference of these two concurrent processes; the overall multiplier of I in this term can be 

identified with ck  times the  that appeared in the equation for excited state lifetime, in Section 1.  In 

principle, measuring the effect of the passive beam at varying levels of intensity should enable the value 

of  to be experimentally determined.  In general, it may be assumed that the leading term in (1) is 

non-zero and the middle one is the leading correction, although a configuration is possible in which the 

third term exists on its own, i.e. when the first and second terms are null; this will be discussed in detail 

in section 4.3.   
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Continuing, the sum-over-states form of the third-order nonlinear optical ‘transition 

hyperpolarizability’ tensor, explicitly exhibiting the frequency dispersion, is as follows;   
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(2)

 

 

where   is the probe beam frequency, r and s are intermediate molecular states, Exy = Ex – Ey is an 

energy difference between two such states (for example 0
  E ck ) and the transition moments 

are defined in the same manner as 0 .  The tildes serve as a reminder to add to the excited state 

energies, in the case of near-resonance conditions, imaginary terms to accommodate line-shape and 

damping.  With reference to later comments, it is worth noting here that there is no assumption of 

Kleinman symmetry42 at this stage – this being a simplifying device, commonly made for calculational 

expediency, that would impose complete index symmetry for such a tensor.  

 

 

3. Two-level systems 

 

Considering the dependence of the fluorescence signal on the optical frequency of the probe, it is 

evident that the denominators within the transition hyperpolarizability tensor of equation (2) are 

primarily responsible for determining any degree of enhancement or suppression of the fluorescence 

emission.  These factors are ultimately determined by the relative positioning of the fluorophore energy 

levels, relative to the magnitude of the probe photon energy.  To discover more, it is convenient to 
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assume that the probe light is delivered in the form of a tunable beam with optical frequency   , a 

condition that specifically precludes single-photon excitation of ground-state molecules.  It will also be 

assumed that the chosen range of probe frequencies cannot produce multiphoton excitation.  The main 

challenge in evaluating the nonlinear response characterized by the transition tensors within equation (1) 

now lies with implementing the required sum over intermediate states.  There is a potentially infinite 

number of energy levels associated with r and s, and to ease calculational complexity it is common to 

reduce such sets to a small, finite number by approximation.  In the present context, it is defensible to 

consider only the states through which the majority of the optical transitions occur, which in the case of 

many fluorescent systems limits the selection to just the ground and lowest energy excited states, i.e. a 

two-state model may be applied.15,16,18,20,22-28,43-52  To be clear, the assumption is that the character of the 

fluorescence emission process, including the effect of the probe radiation, is dominated by two 

electronic levels; it is not to be presumed that the state from which the fluorescence decay occurs is 

necessarily the same as the state initially populated by photoexcitation. 

 

Restricting both intermediate states featured within equation (1) to just 0  and  , only four unique 

routes can describe virtual transition sequences from the excited to ground molecular states progressing 

through both r and s: the 0r s    sequences specifically expressible as 000 , 00 , 0 0   

and 0 .  Each sequence generates a combination of 0   transition electric dipole moments, 0  

and 0 , in combination with the static dipole moments of the ground and excited energy levels, 00  

and   respectively.  It can be assumed that the former transition electric moments 0  and 0 are 

real (as is always possible, given a suitable choice of basis set for the molecular wavefunctions – for the 

present we exclude considerations of electronic degeneracy) and therefore equal, by virtue of the 

Hermiticity of the dipole operator.  Detailed analysis reveals that the dependence on permanent 

moments emerges only in terms of their vector difference, 00 d   , i.e. the shift in static dipole 

moment that accompanies the transition.  (Indeed, this feature applies to all nonlinear optical 



 

9 

susceptibilities, treated by a two-level model.)  With the benefit of an algorithmic method, the following 

prescription can be adopted:53-55 

 

 
00 00; 0,        d     (3) 

 

whose general validity has been proven to rest on a canonical transformation of the quantum interaction 

operator.56  Applying this protocol requires application of an associated rule: any transitional mechanism 

that connects the initial and final system states (here, for the emission process) through a ground state 

static dipole is to be discarded, and hence only two of the originally proposed four sequences, namely 

0 0   and 0  persist.  Applied to the six terms within equation (2), the two-level 

hyperpolarizability tensor is generally expressible as a sum of 12 separate contributions.  Further 

simplification ensues because a number of these terms, when 0r   and/or s  , are precluded by the 

conditions of perturbation theory, namely the exclusion of virtual states that equate to the initial or final 

state.  The two-state form of  ; ,    0
ijk  thus re-emerges as: 
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(4) 

 

It may be observed that the second and third terms on the right in equation (4) exhibit an antisymmetry 

with respect to interchange of the indices i and j.  However, in the physical observable delivered by (1), 

this tensor is index-contracted with a i,j-symmetric product of polarization vectors.  Consequently, since 

only the i,j-symmetric part of (4) can contribute to the fluorescence signal, it is expedient to replace 

 ; ,k

    0
ij , without further approximation, by an index-symmetrised form, 

   ; ,
k

    0

ij
 that is 

defined as follows: 

 



 

10 

         
 

0 0 0

2 2 2

1 2
; , ; , ; , = .

2

i j k

k

  

  
 

           
 

      


ijk jikij

0 0 0  (5) 

 

It is notable that the expression on the right is, in fact, fully index-symmetric, i.e. symmetric with respect 

to interchange of any pair of indices.  We therefore observe that the two-level model delivers a result 

that is consistent with the adoption of Kleinman symmetry, even though the latter condition has not been 

artificially imposed.  Furthermore, there is a significant physical consequence; it emerges that the 

physical mechanism for the laser-controlled emission depends only on the transition dipole, and not on 

the static moments.  In passing we note that a low-frequency,   0, limit of the above analysis requires 

caution, because in this limit some of the intermediate system states, allowed for a finite , become 

identifiable with the initial or final state of the process, and are necessarily removed from the sum over 

states.  However, the ensuing result is of little interest since it represents only a correction to the more 

prominent response – which arises in second order perturbation theory, as noted earlier. 

 

 

4. Fluorescence anisotropy 

 

We now turn our attention to optical polarization features.  As is well established, there is a great deal of 

important information, highly relevant to speciation and structure determination, which can be derived 

from fluorescence anisotropy.  Specifically, the anisotropy parameters signify the degree to which 

fluorescence retains a directionality of polarization from the initial excitation – see for example chapter 

5 of the classic text by Valeur.57  The associated experimental measurements can also inform on excited 

state photophysical processes such as internal conversion, hindered rotation, rotational diffusion, 

intramolecular energy transfer etc.  Each of these processes represents one of the means by which the 

character of fluorescent emission can differ from that of the preceding absorption – quite apart from the 

Stokes shift in wavelength that is normally apparent.  The former processes all provide situations in 
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which the emission dipole moment need not be parallel to the absorption moment.  To accommodate 

such features in the present theory, the initial absorption must now be incorporated into our analysis.  

Since the probe beam is only delivered to the system after the initial excitation, we have: 

 

        
2 2

1 1 3

abs fl flM M M  I    . (6) 

 

Here, the subscript abs denotes the single-photon absorption mechanism, and the angular brackets 

denote an orientational average to account for the fact that the molecular transition moments associated 

with absorption and emission (the latter duly modified by the probe), although correlated within the 

molecular frame, are together randomly oriented relative to the input propagation.  The structure of 

equation (6) provides for the excitation and emission processes to be separable in time.  In more detail, 

the quantum amplitude 
 1

absM  corresponding to the initial absorption is proportional to e 0
0  , where e0  

represents the input polarization vector aligned in the z-direction by definition, and   designates the 

state initially populated by the excitation.  As indicated above, the latter may or may not be the same as 

the electronic state from which subsequently emission occurs, depending on factors such as the 

possibility of intervening relaxation or intramolecular energy transfer.   

 

The anisotropy is now determined from the general expression     
    r = I I I + 2 I , 

where I  and 
I  are the components of fluorescence intensity polarized parallel and perpendicular, 

respectively, to the electric vector of the initial excitation beam.57  In the present context, this requires 

detailed examination of the tensor contractions within equation (1), and the performance of orientational 

averages.   
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4.1. First order correction 

 

In equation (1), we recall that the first term represents single-photon induced fluorescence, the last term 

corresponding to the process modified by the off-resonant laser throughput; the second term signifies a 

quantum interference of these two processes, the lead correction.  For present purposes it is assumed that 

the third term under these conditions represents a comparatively small contribution; its contribution is 

considered later.  The most computationally effective procedure for implementing the necessary 

orientational averages is well established – see for example Appendix 2 of ref. 41.   It involves intricate 

matrix algebra whose scale escalates rapidly with rank.  Thus, whereas the leading term associated with 

regular fluorescence requires only a fourth-rank tensor average (cast in terms of isotropic tensors as a 3  

3 matrix) the correction requires a sixth-rank average (15  15).  On completion, the following result 

emerges: 
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(7)

 

 

where  0 0,I   is a constant of proportionality whose value is determined by the initial (excitation) 

beam irradiance I0 and its corresponding optical frequency 0; overbars denote complex conjugation.  In 

the above expression, the first two terms signify the usual response, subsequent terms representing the 

leading corrections produced by the probe.  The equation is explicitly cast in terms of the three distinct 
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angles between each pair of polarization vectors, for the incident, off-resonant probe and emitted light: 

 1

0cos  e e ,  1cos   e e  and  1

0cos   e e .  The result also utilizes a shorthand notation to 

describe the products of molecular transition moments, where for example ijT  represents 
0 0

i j

   , whilst 

 i ij j
T  corresponds to 

 
0 0

i ij j

   .  In these instances and in all subsequent application of this notation, the 

first index of each T tensor is associated with the initial molecular excitation.   

 

As shown in the previous Section, taking the two-level form of the nonlinear response tensors has the 

effect of introducing Kleinman symmetry in each of the optically nonlinear response tensor 

contributions – based on the symmetric transition hyperpolarizability portrayed in equation (5).  It 

emerges that the six nonlinear response tensor products that feature in equation (7) are no longer linearly 

independent, and the result can be recast in a simpler form involving just three such products; 
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where the following have been applied, 
     

2kk kk kki ij j i jj i i ijj
T T T T T T  , 

     
2jk kj jki ij k i ij k i ijk

T T T T T T   and 

     
2ik ik iki jj k i jk j i jjk

T T T T T T  .  In deriving specific results for independent polarization components, 

further simplification can now be achieved by writing each of the above molecular tensors explicitly in 

terms of components of the two transition dipole moments, the photo-selected 0
μ  and the emission 

0
μ .  In the following, we introduce  as the angle between these two moments.  Assuming that the 

initial excitation has plane polarization e in the x-direction, the fluorescence is now resolved for 
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polarizations e  in the z- and x-directions, respectively; the results are as follows.  For 

0, 2, 2       ; 

 

    
 
 

2

2 2

0 0 2 2 2

0

2 2
, 1 ,

7

I
I



 


 
  

 
      
 
 

0 2

0 0 2
cos

2cos


 I
c

  (9) 

 

and for 2, 0, 2       ; 

 

    
 
 

2
2

2 2

0 0 2 2 2

0

6 3 2cos
, 2 .

7
I



 


 
  



 
      
 
 

0

0 0 2cos


 
I

I
c

  (10) 

 

Hence, upon substitution of equations (9) and (10) into the general anisotropy expression, we find: 

 

 
 

 

2
2

2
2

1 1
,

5 20 11cos 7





 



  


 

2 0

0

3cos cos



KI
r =

KI
    (11) 

 

where   
1

2 2 2

02K   


 c .  The above equations (9), (10) and (11) are consistent with results 

recently reported as equations (5), (6) and (7) of reference 8 – subject to a correction of the latter for 

omission of the 
2

0
 
factors featured in the equations presented here.   The discussion and conclusions 

of that earlier study remain valid and are not revisited here.  In the limiting case I = 0, the well-known 

expression57   r  21 5 3cos 1  is recovered.  Generally, however, a change in fluorescence 

anisotropy can be seen to result from the interaction with the probe beam – although it is to be re-

emphasized that the state of the latter beam is unaffected.   
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4.3. Inclusion of higher corrections 

 

Up to this point, the third term in equation (1), quadratically dependent on probe laser intensity, has not 

been considered in detail as its contribution to the overall fluorescence intensity is generally expected to 

be negligible.  Nevertheless, there can be circumstances in which the third term alone provides the 

fluorescence response, i.e. when the first and second contributions are null.  As we shall see, to address 

this case requires us to move beyond the two-level approximation.  Consider, for example, a system 

where, following optical excitation, population is efficiently transferred to a state   that might
 

normally decay non-radiatively, transitions from   to 0  being weak or entirely precluded – for 

example as a result of inherent geometric or symmetry constraints.  Then, terms in equation (1) that 

feature 
0  will not contribute to the observed emission, which instead is activated solely in response to 

the off-resonant throughput.  Clearly, the two-level model would also predict a vanishing response from 

the probe laser, due to the associated structure of the transition hyperpolarizability (5).  However the 

more general analysis, accommodating higher energy levels in the sum over states, allows the possibility 

of a decay transition that is symmetry allowed by three-photon selection rules.   

 

An outline for an all-optical switch based on laser-controlled fluorescence may be described as 

follows: (i) an individual molecule is indirectly excited to a ‘dark’ state (i.e. one whose direct dipolar 

excitation from the ground state is forbidden); (ii) precluded by the one-photon dipole selection rules, 

fluorescence occurs from this ‘dark’ state through optical nonlinear activation only; (iii) this activation 

arises due to the presence of the intense non-resonant laser field, i.e. the relevant molecular transitions 

are assumed three-photon allowed, but single-photon forbidden.  Examples are afforded by excited 

states of A2 symmetry, in molecules of C2v or C3v symmetry, or states of Au symmetry in D2h species.  In 

such a case, switching action is enabled since the throughput or absence of the laser input will cause 

activation or deactivation of the fluorescence, respectively.  Clearly it is necessary for the radiation to be 
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delivered in a pulse whose duration and delay, both with respect to the initial excitation, are sufficiently 

short that it can engage with the system before there is significant non-radiative dissipation of the 

excited state.  

 

The result for this case is secured on completion of a rotational-average requiring the rarely utilized 

eighth-rank isotropic tensor average,58,59 requiring manipulations with a 105  105 matrix.  The 

calculation leads to the following result: 

 

 

         

     

     

   

2
2 2 2 2 2

0 02 2

0

2 2 2

2 2 2 2 2

2 2

, 3 3cos cos cos cos cos
84

6 6cos cos cos cos 2cos 2cos 1

3 cos cos 4cos cos cos 5cos cos 4cos 3

3 cos cos 4co

i ijj k kll

i ijk j kll

i ijk l jkl

i jjk i kll

I
I I T T

c

T T

T T

T T

     


     

       

 

 
        

 

    

     

   

     

2 2 2

2 2 2 2 2

s cos cos cos 5cos cos 1

cos cos 4cos cos cos 5cos cos 4cos 7 .
i jkl i jkl

T T

     

       

   

      


 

(12)

 

 

Here, the T tensors accommodate sums over products of transition moments that specifically exclude 

, on the basis of the decay transition being symmetry-forbidden under electric dipole selection rules; 

however, for simplicity, we retain the assumption of Kleinman index symmetry in the embedded  

tensor (corresponding to the last three indices in each T).  We observe that the emission depends 

primarily on presence of the probe laser light, providing a basis for optically switchable emission.   

 

4.4. Complete result for a two-level system 

 

For completeness, although the above result must apply to emission from an indirectly excited state, one 

can adopt the corresponding result for a case of electric dipole-allowed emission and thereby provide a 
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completely general result for the probe-modified fluorescence anisotropy, accommodating all of the 

terms arising from equation (1).  Taking once again the two-level model for the emission, we have: 

 

 
    

     

2 4
2 2 2

2 4
2 2 2

1 1 21 17
.

5 20 11cos 21 43 30

 

 

  

 

    


   

2 0 0 2

0 0 2

3cos cos 15cos

cos

 

 

KI K I
r =

KI 7 K I
    (13) 

 

In a case where the absorption and transition moments are parallel, we secure the simple result: 

 

 

 
   

4
2 2

2 4
2 2

2 2 21
.

5 9 13 21



 




 

0

0 0



 

K I
r =

KI 7 K I
        (14) 

 

With increasing intensity of the probe beam, the first departures from the probe-free result, r = 0.4, can 

be anticipated in the linear-response regime.  In fact, it is evident from Taylor series expansions of both 

(13) and (14) that a plot of the measured anisotropy against I will exhibit a monotonic reduction taking 

the form   21
5

3cos 1 1r I     , whose constant of proportionality  can be interpreted in terms of 

the transition moments. 

 

 

5.  Conclusion 

 

Building on earlier work, the theory of laser-controlled molecular fluorescence has been developed in 

order to elicit a number of features of particular experimental significance.  Use of the two-level 

emission model is widely valid for systems including those that incorporate common fluorescent 

markers, and here it proves to offer succinct and experimentally tractable results.  The analysis has thus 
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been shown to deliver results of broad applicability – whose simplified form, without further 

approximation, is consistent with the adoption of Kleinman symmetry.  Equations have been derived for 

the anisotropy of fluorescence that can be expected from a system responding to the passage of off-

resonant light, its leading correction being linearly dependent on the probe irradiance and manifest as a 

reduction of the measured anisotropy.  It has also been shown that, for some electronic states which 

normally decay non-radiatively, it is possible to optically switch fluorescent emission using the off-

resonance probe.  In all such respects, the capacity to engage with and to optically control the 

fluorescence process offers significant new grounds for the interrogation of fluorescent materials. 
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TOC figure: Artist’s impression of laser-controlled fluorescence 


