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ABSTRACT 
 

When parametric nonlinear processes are employed in the cause of efficient optical frequency conversion, the media 
involved are generally subjected to substantially off-resonant input radiation.  As such, it is usually only electronic 
ground states of the conversion material that are significantly populated; higher levels are engaged only in the capacity 
of virtual states, and it is frequently assumed that just one such state dominates in determining the response.  Calculating 
the nonlinear optical susceptibilities of molecules on this basis, excluding all but the ground and one excited state in a 
sum-over-states formulation, signifies the adoption of a two-level model, a technique that is widely deployed in the 
calculation and analysis of nonlinear optical properties.  The two-level model offers tractable and physically simple 
representations of molecular response, including wavelength dependence; it is also the origin of the widely applied 
'push-pull' approach to designing optically nonlinear chromophores.  By contrast, direct ab initio calculations of optical 
susceptibility are commonly frustrated by a complete failure to determine such dispersion features.  However, caution is 
required; the two-level model can deliver potentially misleading results if it is applied without regard to the criteria for 
its validity, especially when molecular excited states are significantly populated.  On the basis of a precise, quantum 
electrodynamical basis for the theory, we explore in detail why there are grounds for questioning the general validity of 
two-level calculations in nonlinear optics; we assess the criteria for high frequency conversion efficiency and provide a 
new graphical method to assist in determining the applicability of a two-level model for hyperpolarizability calculations.  
Lastly, this paper also explores the applicability and detailed conditions for the two-level model for electronically 
excited molecules, identifying problematic results and providing tractable methods for improving the accuracy of 
calculations on real molecule-photon interactions. 
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1.  Introduction 

 
In the development of theory to address the interactions of light and matter, one of the most widely deployed models is 
the two-level approximation.  Usually applied to electronic states in systems with discrete energy levels, it is a 
theoretical model that is deeply embedded in a wide range of material representations, extending from those of atoms1,2 
and more recently quantum dots3,4 through to a formalism applicable to molecules and chromophores of significant 
structural complexity.5  To the extent that any such systems are amenable to a two-level representation, the advantages 
are obvious; relative calculational simplicity, and results cast in formulae that entail a sufficiently small set of parameters 
for their experimental determination to be realistic.  Moreover the theoretical constructs of a two-level system have a 
certain appeal, offering the potential to exploit congruence with the dynamics of a spin-½ system and its associated Pauli 
matrices. 
 

In the course of developing the received theory of nonlinear optics, the two-level approach has also been very widely 
used.  With the typical intensity levels of pulsed laser light, there arises a significant probability for two or more photons 
to interact simultaneously (within the limits of quantum uncertainty) with each optically distinct center.  This alone 
suggests a need for caution in applying any model where the available electromagnetic energy can span the gap between 
states other than those close to the single photon energy quantum.  Moreover, the materials that are most effective for the 
utilization of nonlinear optical effects in frequency conversion (especially in the case of second harmonic generation, 
forbidden in an isotropic gas) are those whose energy level structures are significantly more complex than atoms.  
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Nonetheless, the two-level model has received wide application in such a context;6-22 it not only delivers results of a 
relatively simple form, it also relates well to long-established concepts of chemical structure.  In particular, a wealth of 
synthetic studies23-33 have been based upon the anticipated and oft-proven connection between ‘push-pull’ chromophore 
structures34-40 (these facilitating intramolecular electron transfer) and an enhanced second harmonic response.  The 
devising of simple structural rules, ultimately derived from the two-level model, has undoubtedly assisted the laboratory 
development of many high-efficiency nonlinear optical materials.  However, the direct ab initio calculations of optical 
susceptibility are frequently frustrated by a complete failure to determine dispersion characteristics.41-47   

 
When parametric nonlinear processes are employed in the cause of efficient optical frequency conversion, the media 

involved are generally subjected to substantially off-resonant input radiation.  As such, it is usually only the electronic 
ground state of the conversion material that is significantly populated; higher levels are engaged only in the capacity of 
virtual states.  Thus, in considering phenomena that involve optical frequencies comparable to the positioning of one 
specific level – often the lowest electronic excited state – it is tempting to cast the theory, for simplicity, in terms of a 
two-level system.  However, caution is required; the two-level model can deliver potentially misleading results if applied 
without regard to the criteria for its validity – more especially when molecular excited states are indeed populated.  On 
the basis of a precise, quantum electrodynamical framework for the theory, this paper explores the applicability and 
detailed conditions for the two-level model, identifying problematic results and providing tractable methods for 
improving the accuracy of calculations on molecule-photon interactions.   
 
 

2.  Basis of two-level perturbation theory 
  

For the systems discussed in this paper, it is sufficiently accurate to develop theory in terms of non-relativistic QED.  As 
a result, since intramolecular Coulomb binding energies are much greater than the coupling to radiation, molecule-
photon interactions are treated by perturbation methods.48  The following Hamiltonian for non-relativistic QED is 
directly amenable to multipolar development: 

 
 rad mol intH H H H= + +   . (1) 
 

Eq. (1) comprises: (i) the radiation Hamiltonian, radH ; (ii) the molecular Hamiltonian, molH  and; (iii) the interaction 
Hamiltonian, intH .  The rate, Γ, of any optical interaction is found from Fermi’s Rule;49 

 
 22

FI FMπ ρΓ =
h   . (2) 

 
where Fρ  is the density of the states, and FIM  is the quantum amplitude coupling the initial and final states.  Time-
dependent perturbation theory is required to determine FIM , the expression corresponding to which is generated from 
the following infinite series;50 
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where I  and F  represent the respective initial and final states of the system; namely, states that are composed of 
molecular and radiation parts, with the operator intH  acting upon both.  Moreover, ( ) 1

0 0IT E H −≈ −  in which 

0 rad molH H H= +  is the unperturbed Hamiltonian and IE  is the energy of the initial state.  The next step involves the 
implementation of the completeness relation 1

n
n n =∑ , so that Eq. (3) is recast as; 
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where the virtual system states are denoted by R , S , T .... upon which 0H  operates, and En is the energy of a state 
denoted by its subscript.  In the two-level model, where the virtual states are limited to either a ground state 0  or a 
single excited state u , the completeness relation is an approximation since other residual states 2n ≥ are not applied; 

namely, 0 0 1 1 1+ =  in the two-level model.   

 
It is interesting to observe that, on application of the two-level approximation, if the expectation value determined 

from an operator Â  for a ground-state molecule is equal to the expectation value in an excited state, then the ground and 
the excited state expectation values for any positive integer power of that operator, ˆ nA , are again equal.  That is, if 

ˆ ˆ0 0 1 1 ,A A=  the approximation implies ˆ ˆ0 0 1 1n nA A=  (proven elsewhere, ref. 51).  A clear flaw in applying 
the two-level approximation is apparent for the case where the ground and excited state energy levels have the same 
expectation value for distance and momentum, resulting in the expectation value for the squares of the distance and 
momentum to be the same for both energy levels.  Since we can express the total energy of such a two-level system in 
terms of the latter factors, it implies that the two states are degenerate.  This may readily be shown in the explicit case of 
the expectation value for the Hamiltonian of a harmonic oscillator:  

 
 2 2 21 1ˆ ˆ ˆ .

2 2n nn nn nnE H p m x
m

ω≡ = +  (5) 

 
from which it would be inferred that 0 1E E= , as detailed in the above text, if 00 11ˆ ˆp p= and 00 11ˆ ˆx x= .  The implication is 
that the two-level approximation is unusable for treating two energy levels of a harmonic oscillator as a complete basis 
set; whereas this is an unlikely choice, there are many other systems where the same logic would apply less glaringly. 

 
 

3. Two-level model for elastic scattering and second harmonic generation 
 

3.1 Success of the two-level model 
 

The aim of this section is to discuss the validity of the two-level model through an examination of calculations relating 
to elastic (Rayleigh) scattering.  Returning to Eq. (4), it is clear that successive terms of the perturbation theory relate to 
processes of progressively higher photonic order; for our present purposes, a description of the two-photon event of 
Rayleigh scattering and three-photon event of second harmonic generation (SHG) are determined from the second and 
third terms on the right-hand side of the expression, respectively.  Note, these two scattering processes are chosen for 
their calculational ease; higher-order optical mechanisms will follow the same pattern.  An expression for the 
polarizability tensor 00

ijα  is thus found from Eq. (4) – which is minus the molecular part of the quantum amplitude of 
Rayleigh scattering – and is given by;52 

 

 ( )
0 0 0 0

00

0 0

;
r r r r

i j j i
ij

r r rE E
μ μ μ μ

α ω ω
ω ω

⎛ ⎞
− = +⎜ ⎟⎜ ⎟− +⎝ ⎠

∑ % %h h
  . (6) 

 
Here, the index i is assigned to emission and j to absorption (since the input and output photons are identical the tensor 

00
ijα  is i, j-symmetric), 0 0r r≡μ μ  denotes a transition dipole moment, and ωh  is the energy of an input photon; 
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0 0r rE E E−≡% % % , in which r represents the virtual matter state.  Moreover, the tildes denote the inclusion of a damping term 
i
2 γ , where γ is the FWHM linewidth, and the implied summation convention for repeated Cartesian tensor indices is 

employed.  This summation over the virtual states, which denote electronically excited energy levels, is the vital aspect 
of the following discussion.  Next, determining the hyperpolarizability, 00

ijkβ , of second harmonic generation results in 
the summation; 

 

 ( ) ( )( ) ( )( ) ( )( )
0 0 0 0 0 0
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, 0 0 0 0 0 0

2 ; , ,
2 2
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β ω ω ω

ω ω ω ω ω ω

⎛ ⎞
⎜ ⎟− = + +
⎜ ⎟− − + − + +⎝ ⎠

∑ % % % % % %h h h h h h
 (7) 

 
where s denotes a second virtual state and the subscript k is assigned to an emission photon.  In the case of second 
harmonic generation, and indeed n-harmonic generation, the input photons are indistinguishable, thus the indices 
associated with them are freely interchangeable.  Therefore the following equation can be used in this instance to form a 
fully j, k symmetric tensor:

 

1
( ) 2i jk ijk ikjβ β β⎡ ⎤= +⎣ ⎦ . 

 
Following from these general expressions, we now compare the two-level approximation (TLA) against a multi-level 

model, where the latter incorporates background contributions (BG) that are omitted in the TLA.  For simplicity, the 
subsequently  presented results are to be limited to three levels.  By taking account of this comparison, Eq. (6) is now 
written as follows; 

 

 
00 TLA BG

0 0 0 0 0 0 0 0

0 0 0 0

... ,

ij ij ij
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u u u uE E E E
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′ ′ ′ ′

′ ′
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⎛ ⎞
= + + + +⎜ ⎟⎜ ⎟− + − +⎝ ⎠

% % % %h h h h

 
(8)

 

 
where the frequency dependence on the tensors is here and henceforth suppressed, u′  is a third level, 0 0u u≡μ μ

 

and 
0 0u u′ ′≡μ μ  – i.e. the transition dipole moments are assumed real (as is always possible, given a suitable choice of basis 

set for the molecular wavefunctions) – and the terms within brackets correspond to the TLA.  It is noteworthy that, in the 
case where the intermediate state is 0 , the terms involving 00

iμ  and 00
jμ  cancel each other out.  This feature, i.e. that 

terms involving ground state static dipoles can be discarded, forms a basis for the algorithmic method50,53-55 now to be 
deployed for the more complex (nonlinear) mechanism of SHG. 

 
The algorithmic method, for this case, involves the restriction of both intermediate states featured within Eq. (7) to 

just 0  and u , and only four unique routes describe transitions starting and finishing in the ground molecular state 
progressing through both r and s; explicitly the 0 0r s→ → →  sequences are expressible as 0000 , 0 00u , 00 0u  and 
0 0uu .  Each sequence generates a combination of both transition dipole moments, either 0uμ  or 0uμ , as well as the static 
dipole moments of the ground and excited energy levels, 00μ  and uuμ , respectively.  Detailed analysis of nonlinear 
optical susceptibilities shows that the dependence on static moments emerges only in terms of their vector difference, 

00uu= −d μ μ , and with the benefit of the algorithmic method, the following prescription is adopted: 
 
 00 00; 0.uu uu→ − = →dμ μ μ μ     (9) 
 

Applying this procedure requires application of an associated rule: any mechanism that connects the initial and final 
system states through any ground state static dipole is to be discarded, and hence only one of the originally proposed 
four sequences, namely 0 0uu , persists.  Applying the algorithm to Eq. (7), the two-level hyperpolarizability tensor is 
obtained.  After performing a similar analysis, when the intermediate states are restricted to the three-levels, 0 , u  

and u′ , it is then clear that the hyperpolarizability tensor becomes; 
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(10)

 

 
where ′d = 00u u′ ′ −μ μ .  A justification for the two-level model is that the bracketed terms of Eqs (8) and (10) are likely to 
dominate over the others (as the denominator is smaller).  Higher energy levels will always result in the production of 
larger denominators in the first term and, hence, a smaller contribution.   

 
 

3.2 Failure of the two-level model 
 

Under certain configurations, it is clear that the two-level model is likely to fail.  An example of this may be illustrated 
by redefining the earlier expression of (10) in terms of the following variables, whose significance is apparent from Fig. 
1: 1 0uE E ωΔ = −% % h , 2 02 uE Eω−Δ = −% %h , 1 0uE E ω′′Δ = −% % h , and 2 0 2uE E ω′′Δ = −% % h  (Fig. 1).  Clearly there are linear 
relationships between these quantities, and for casting the hyperpolarizability tensor in terms of them we shall select two 
that are linearly independent, namely 1EΔ % and 1E′Δ % .  In terms of these variables we have 2 1E E ωΔ = Δ −% % h  and 

2 1E E ω′ ′Δ = Δ −% % h .  
 
 

 
Fig. 1.  Three-level energy diagram, where ωh  is the energy of the input beam and u, u’ denote the first and second excited levels; 

1EΔ % , 
2EΔ % , 

1E′Δ % , 
2E′Δ %  are defined in the text. 
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Therefore, Eq. (10) now becomes; 
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(11)

 

 
From this expression it is clear that the 10th term is the most significant under conditions that generate the smallest 
values of the 'sEΔ % , namely energy values well below that of a typical electronic transition.  This is because all the terms 
except 1, 4, 7 and 10 will have a large denominator, and it is only in the 10th term that both denominator factors may be 
diminished (i.e. small 1EΔ %  and 2E′Δ % ). 
 

 
 

Fig. 2.  A landscape illustrating the relative magnitude of the two-level denominators compared to the denominators corresponding to 
a third level in the SHG hyperpolarizability, 00

ijkβ , where the scale is in units of ωh . 
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In order to visualize the scale of correction represented by the additional inclusion of terms involving the third level 
u’, it is expedient to devise a plot based on the magnitudes of the various tensor terms, under the simplifying assumption 
that all of the transition (and static) electric dipole moments have a broadly similar value.  As an indicator of the 
difference which inclusion of the third level introduces, we now define a parameter β´, a ratio of the addendum 
‘background’ β BG to the two-level result β TLA.  The results, exhibited in the contour map of Fig. 2, show how this 
parameter varies as a function of the two energy offset values 1EΔ % and 1E′Δ % .  The inclusion of an arbitrary damping 
factor assuages the cuts in this figure that would otherwise reflect exact resonance conditions, where perturbation theory 
technically fails; thus, the axes show the real energy values (in multiples of hω) and the imaginary part of each complex 
energy is assimilated into the graph, using a representative damping factor value γ ~ 0.1 hω.  Regions in such a map that 
are devoid of detail essentially represent conditions under which use of the two-level approximation generates almost 
useless results, since even the introduction of a third level changes the results by more than 100%  – and it could only be 
supposed that the inclusion of higher levels would add further corrections.  However the islands of increasing color 
density represent conditions where the two-level approach is more defensible, producing results whose error falls into a 
more acceptable range approaching 20% or less.  For systems that satisfy these conditions, the two-level results for 
hyperpolarizability would be little improved by the complication of introducing a third level into the calculations.  The 
further analysis of such criteria is the subject of ongoing research. 

 
To complete the picture, it is worth bearing in mind the transition dipole moments of each numerator which, although 

for simplicity previously assumed to be of similar magnitude, may in certain systems display a very different behavior.  
If the lowest excited state is accessible from the ground state by a weak or forbidden transition (as denoted by a small 
magnitude for 0uμ ), a single higher energy level involving a strong transition may be substituted for the lowest state in 
the two-level model.  If other states, of similar energy magnitude, also involve strong transitions then the two-level 
model will again fail – as, for example, where there is significant thermal excitation. 

 
 

4.  Optical harmonics in electronically excited media 
 

On application of a strongly, resonantly pumped laser to the system, the parametric optical response due to elastic 
scattering is partly determined by the response mediated by the excited molecule, i.e. whose initial and final states are 
defined by u  in the two-level model.  Within this model, it is known that the excited state polarizability is the exact 
negative of the ground state polarizability, as is easily shown from Eqs (6) and (8): 

 
 0 0 0 0 00

0 0 0 0
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. (11) 

 
It is now shown that analogous identities are obtainable for systems where the two-level model is not applied.  Upon a 
summation over all molecular states ζ, the following expressions may be determined for the polarization from Eq. (6);  
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from which the identity 0ij

ζζ

ζ

α =∑  is formed.  In the two-level model, this outcome shows that 00
ijα

 

equates to uu
ijα−

 
minus other background contributions and, thus, reinforces Eq. (11).   
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Moreover, in the two-level model, an analogous ‘mirror’ identity will arise between the ground and excited state 
hyperpolarizability.  To prove this we determine uu

ijkβ  from an algorithmic method modified from earlier, which is 
achieved by simply interchanging the labels 0 and u, resulting in the prescription:54  

 
 00 00 ; 0 .uu uu→ − = − →dμ μ μ μ     (13) 
 

Therefore, by again restricting both intermediate states of Eq. (6) to just 0  and u , remembering that the initial and 
final states are now denoted by u , only u00u occurs for the sequence u r s u→ → → , so that; 
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If the ‘mirror’ identities 00 0uu

ij ijα α+ =

 

and 00 0uu
ijk ijkβ β+ =  do not exactly hold, the two-level approximation clearly fails; 

physically this will indeed be the case for most molecules.  Similarly, the summation over all molecular states for the 
hyperpolarizability, i.e. following from Eq. (7), is shown to be zero:  
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(15)

 

 
Here, the variables r , s  and ζ  are cyclically permuted within the second and third term (on the first line) to obtain the 
desired result.  In fact it has been shown in previous work that the sum over all matter states of any optical susceptibility 
is exactly zero.56  This was specifically verified for optical processes comprising two-, three- and four-photon 
interactions.  The general result emerges in the form of a traceless operator in Hilbert space, which is symbolized by;   

 
  ˆ 0A

ζ

ζ ζ =∑

  

. (16) 

  
where the operator Â  is identified with the general form of the operator whose expectation value delivers the 
polarizability ˆ ijα , hyperpolarizability 

îjkβ  or higher-order hyperpolarizability. 

 
 

5.  Conclusion 
 

This paper has brought a variety of new perspectives to bear on the applicability of the two-level approximation in 
nonlinear optics.  In Section 2 we examined fundamental reasons why there should be doubt over the fidelity of using 
such an approach, despite its widespread application.  On consideration of a recently derived theorem on the expectation 
values of quantum mechanical operators, illustrated by a very simple case, it was concluded that there are many systems 
in which erroneous results will ensue from the hidden assumption that two energy levels constitute a complete basis set.  
In Section 3 the detailed calculations of parameters for elastic Rayleigh scattering and second harmonic generation (or 
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second harmonic scattering which invokes the same material tensor) were used to exemplify the effect of curtailing the 
perturbative sum over states at either two, or three levels.  The latter case can provide a basis for estimating the likely 
significance of all higher level corrections, since it will usually provide the largest contribution to such a correction.  The 
contour map depiction, which we introduced to visualize these features, should itself prove directly amenable as a tool 
for those who design new molecular materials for nonlinear optics.  Knowledge of the positioning of the first and second 
electronic excited states, and the chosen wavelength for the laser input, will readily enable the sufficiency of using a 
two-level approach to be decided.  Lastly, in Section 4, we drew attention to the strikingly different nonlinear optical 
response that can be anticipated when any excited electronic states are significantly populated; again, the consequences 
of adopting a two-level model lead to results that are seldom likely to be a true representation.  In each respect, it 
appears that the extent of widespread usage of two-level calculations is more a reflection of its simplicity than accuracy. 
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