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Abstract: 
 
The past decade has seen an increase in interdisciplinary science and in the analysis 

of Social-Ecological Systems (SES). The study of the complex interactions between 

humans and nature is central to the understanding of our planet’s state and to plan for 

the future. This thesis develops a systemic approach that uses network theoretical 

tools to analyze structural properties, agent based models to simulate dynamics of a 

system, and a resilience framework to analyze, conceptualize and discuss the results 

given by the theoretical models. A combination of models and techniques drawn 

from different disciplines is synthesised in order to develop a uniform set of tools 

which is effective for a structural analysis of SES. 

 

The first step in this research integrates network and resilience theory, and builds a 

theoretical model that analyzes how landscapes’ structural properties affect the 

dynamics of a simple predator-prey system. The second step builds upon the first and 

introduces a “managing institution” that is able to alter the landscapes’ structural 

properties according to pre-determined rules. It analyzes how human intervention 

influences the landscape network of a given system and how these properties 

influence the predator-prey system under study. The third step in this work constructs 

a model that analyzes management communities’ interactions. The model aims to 

uncover the relationship between authority and management path homogenization, 

which influences the ability of the social system to proactively build resilience.  

 

Methods, techniques used, and the models presented in this thesis can prove 

extremely useful as a first assessment of a SES resilience. They potentially assist 

policymakers to make more informed decisions based on a combination of empirical 

experience and computer assisted reasoning. Moreover, this research contributes 

towards a theoretical understanding of the complex evolutionary mechanisms that 

govern a SES.  
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1 Introduction 
 

The world is becoming increasingly complex and interlinked due to globalization and 

the advancements of technologies. Ecological degradation, conflicts, persistent 

poverty and hunger are all signs of an increasingly unstable world. The inter-linkages 

existing between the social and the ecological system are important as the two 

systems depend on one another. The social system is build and shaped by relations 

happening within the system. Social variables, interacting with each-other, may 

shape the ecological system in which they are embedded and vice-versa (e.g. the 

food crisis, that is, the sharp increase in staple food prices experienced in 2007, 

highlights the interconnectedness of the social system with the ecological system) 

 

In this context “linear thinking” has proved to be inadequate. New practical 

approaches to assess the capabilities of societies to adapt and transform themselves 

in an ongoing changing environment need to be undertaken. In order to explain the 

increasing complexity and interrelations, the concept of ecological resilience, first 

introduced by Holling, has been extended in order to combine ecological and social 

systems by scholars of different disciplines (most of the literature deals with social 

ecological system abbreviated to SES). Resilience is a fundamental feature of most 

SES as it denotes the amount of external and internal shocks that a SES can undergo 

without being totally disrupted. Its study, embracing the methods and tools of the so-

called “science of complexity”, can prove of paramount importance in the 

understanding of a system’s behaviour. The concept of resilience is based on non-

equilibrium dynamics and is crucial for the comprehension of weaknesses, strength, 

and recovery capacity of a given site. For example, think of the recovery of the 

tourism industry after the Asian Tsunami, the recovery of the economy after 9/11, the 

impacts of intensive agriculture on water sources, and the impacts of energy on the 

economy. 

 

However, the complexities and the interrelations occurring in a SES call for a 

definition of a different (new), formalized theoretical framework. To serve this 

purpose best, the tools and the definitions provided by the study of networks should 
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be integrated in resilience thinking. Representing complex systems with a network 

(nodes attached to each other through edges) allows an understanding of the network 

resilience erosion of various systems at various temporal and spatial scales. 

Resilience of a SES viewed from a network perspective may help to explain which 

actions should be undertaken in order to “plan” and “adapt” in a sustainable way. 

The relation between networks and resilience could be identified through specific 

metrics that enable a redefinition of resilience concepts from a network perspective 

and may give rise to a network-resilience theory allowing a better understanding of 

sustainable development, adaptation and of the transformations occurring throughout 

the world today. In other words, a network resilience theory will improve the 

understanding of SES by looking at individual SES subsystems (of a given spatial 

territory) and hence feeding back on where the weaknesses and the strength of a SES 

lies. In an interconnected and interdependent world, this different approach to 

resilience can provide useful insights on how to enhance the adaptability of societies 

to climate change and other external shocks, whether natural or anthropogenic in 

nature. 

 

1.1 Research questions and objectives 
 

In order to integrate network methods and resilience thinking, there is a need to 

introduce both theories. Subsequently, it will be discussed how the two can be 

integrated and why a structural approach (i.e. network approach) is useful in helping 

to assess the resilience of the system. Thus, the central/main research questions to 

which this thesis wants to provide an answer are the following: 

 

1. Is it possible and to integrate resilience principles and network theory, and if 

yes, how? 

2. How do the dynamics of a system unfold and how are they influenced by the 

structural properties of the system?  

 

The first question relates to the feasibility of integrating network methods in 

resilience thinking (see Chapters  3,  4, and  5). The second main research question 
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pertains to the feasibility of measuring the influence of different structural properties 

on the resilience of a system, while taking dynamics into account (see Chapters  5,  6, 

 7, and  8). The second question is closely related to the first but it also encompasses 

the concept of network adaptability to internal or external disturbance.  

 

The questions outlined above need to be answered not only conceptually, but there is 

also a need for a more formalized, numerically simulated, approach to network 

resilience in order to better comprehend an evolving social-ecological system. The 

creation of an algorithm representing the main features of a SES could give useful 

insights on its evolution, its strengths and weaknesses. 

 

1.2 Thesis Outline 
 

The thesis is organized as follows. 

 

Chapter  2 justifies how resilience of SES is assessed. More precisely, the chapter 

first frames the research in a broader epistemological view, then looks at the 

definition of complex adaptive systems and comments on the availability (and 

suitability) of tools to analyse such systems in order to accomplish the objectives of 

this thesis.  

 

Chapters  3,  4, and  5 present the main theoretical background and methods used in 

order to build the theoretical models reported in Chapters  6,  7, and  8. More 

specifically, Chapter  3 is an overview on network theory. In Chapter  3, terminology 

regarding network theoretical tools is first defined. Second, the most commonly used 

network metrics are presented in detail, as well as the characteristics of network 

classes such as random, small world, scale-free and regular networks are described. 

Finally, the chapter looks at how network theoretical tools have been applied so far, 

with particular focus on ecological networks. 

  

Chapter  4 is an overview of the resilience framework. The first part of the chapter is 

concerned with defining resilience and liking social and ecological resilience, thus 
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shifting the focus of the analysis from a single system (social or ecological) to a 

combination of the two: Social-Ecological System. The main resilience concepts are 

then described in detail as well as the difficulties encountered in applying resilience 

concepts in the field. 

 

Chapter  5 describes a first possible integration of network theoretical tools in the 

broader resilience framework. It introduces simulations and agent based models, 

methods used in subsequent chapters (i.e. Chapters  6,  7, and  8). Agent based models 

are further analyzed pointing out strength and weaknesses of this approach to 

modelling complex systems. Moreover, the chapter presents possible advantages and 

limitations of a case study in relation to the thesis objectives. Section 5.2 of this 

chapter is based on Baggio (2011). 

 

As previously mentioned, Chapter  6 presents a first theoretical model that deals with 

a simple landscape viewed as a network in which predators and prey interact. 

Predator-prey is the simplest possible food web and has been chosen to not over-

complicate the model so as to focus on how the network structure and connectivity 

properties influence the “resilience” of the system. Here resilience is specifically 

defined as the amount of connectivity disturbances that a simple system (such as the 

one represented by the model) can absorb while maintaining coexistence of predators 

and prey. The model presented in Chapter  6 hence aims to represent a rather simple 

ecological system. Chapter 6 further develops analysis presented in a paper published 

in Landscape Ecology (Baggio et al. 2011), where the first author (i.e. the author of 

this thesis) has designed the research, coded the model, analyzed the model and 

wrote the paper. Kehinde Salau assisted the author in coding the model, Michael 

Schoon assisted the author in writing the paper and Marco Janssen and Orjan Bodin 

have helped the author with the research design and reviewing the paper. 

 

Chapter  7 builds on Chapter  6 adding management interaction to the system 

analyzed. Thus, it incorporates an agent that represents a social system, allowing for 

the construction of a simplified SES. The objective of Chapter  7 is to understand the 

impacts of simple management strategies within a complex system, by looking at 

how different management strategies give rise to diverse landscape structures. 
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Moreover, the chapter looks at possible feedbacks existing between social actors 

(such as managers) and the ecological system Chapter further develops analysis 

presented in a paper at NAACSOS (Baggio et al. 2009) where the first author (i.e. 

the author of this thesis) has designed the research, coded the model, analyzed the 

model and wrote the paper. Kehinde Salau has helped the author in revising and 

coding the model, Michael Schoon assisted the author in writing the paper and 

Marco Janssen reviewed the paper and the research design. 

 
Chapter  8 focuses more on the social aspects of the system, presenting a model that 

looks at how authority influences the heterogeneity of management strategies. 

Diversity in the range of management strategies is needed in order to foster a 

resilient SES. High homogenization is responsible for narrowing the windows of 

opportunity for experimentation and innovation that often allow a SES to adapt and 

transform in the face of potential internal and external disturbances. 

 

Chapter  9 outlines and discusses conclusions from each model concentrating on how 

structural properties are able to indicate a possible enhancement or erosion of the 

resilience of a SES. Moreover, it brings the three models together from a theoretical 

point of view, and gives an overlook of different possible avenues that can further 

enhance our understanding of SESs (e.g. by linking models, experiments and case 

studies).  
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2 Justifying the approach 
 

This chapter is concerned with the justification of the approach chosen throughout 

the research. In particular, section  2.1 explains the epistemological point of view of 

the author regarding this research. Section  2.1.1 looks at how it is possible to acquire 

knowledge of a real system, while section  2.1.2 explains the usefulness of the 

practice of analogy. Finally, section  2.1.3 clarifies the suitability of the 

methodological approach chosen in view of the nature of the research undertaken. 

 

The second part of the chapter presents the justification of using network methods 

rather then other complex-system analysis tools. Section  2.2 defines complex 

adaptive systems (CAS) by outlining their main characterizing features. Section  2.2.1 

gives a brief overview of the tools used to analyze complex adaptive systems: non-

linear dynamics, statistical mechanics or physics and networks. A more 

comprehensive review of the science of networks is given throughout Chapter  3. 

 

2.1 An epistemological point of view 
 

The methodological approaches adopted are clearly influenced by one’s own 

viewpoints and convictions. There is still much interest in the way knowledge is 

acquired, a research question studied in philosophy for more than 2000 years dating 

back as far as Plato, Socrates and before. It is beyond the scope of this thesis to dwell 

into the debate, since it is not the main object of this field of study, but my viewpoint 

on how knowledge could and should be achieved is briefly explained. Although the 

importance of an epistemological frame in which research should be embedded is 

recognised, this frame is not considered to provide any strict guideline. Finding 

reasonable explanation of the phenomena under study is, in my opinion, the crucial 

aspect of a researcher and of this research. 

 

In recent years a number of concepts and techniques derived from physics have been 

applied in different fields such as biology, economy, sociology, ecology. Network 

theory is one notable example of techniques derived from physics and applied 
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elsewhere (see Barabási and Bonabeau (2003) and Watts (2004) for non-

mathematical reviews and Chapter  3). However, the idea of applying instruments that 

derive from physics and mathematics to other disciplines is far from new. Indeed, 

Hobbes’ work The Leviathan (1651) attempts to use Galilean laws of motion to 

derive an ideal configuration of society; Hume’s An Enquiry Concerning Human 

Understanding (1748) hoped to build a science of society that was a reflection of 

Newton’s theories of the solar system. 

 

However, the work presented in this thesis does not mechanically apply physical 

laws and theorems to the object of the research, but it makes the best possible use of 

the knowledge that is available in order to build specific methods aimed at 

understanding the actual and predicted performance of a system. In order to reach a 

reasonable understanding of a system, a set of initial conditions and a series of agent 

based models (explained in section  5.2) are built and analyzed so as to derive 

possible future behaviours of such system. At a later stage, understanding the system 

could contribute to identify the correspondence between adopted choices and 

outcomes, allowing reasonable forecasts of future behaviour. 

 

As Einstein points out, mathematical constructs come first, and it is only after these 

constructs are built and conclusions are drawn deductively that it is possible to 

confront these conclusions with reality (van Gigch, 2002a). Once, confronted with 

the real world, mathematical constructions can be accepted, modified or rejected. In 

other words, formulated theories should be empirically tested so as to reject or 

modify parts which fail to represent a reality (Popper, 1959). Today it is better to 

refer to computational models, rather than mathematical constructions, as uncertainty 

and the importance of agents in the social science and particles in quantum 

mechanics have led scholars to re-think ways of modelling reality (for in depth 

information on agent based modelling and simulations refer to section  5.2). This new 

type of modelling is the product of the aforementioned testing of theoretical 

constructions; in fact the axiomatic base of models is inadequate to explain the 

complexity of real world phenomenon (Henrickson & McKelvey, 2002).  
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Majorana (1942) draws a parallel between physics (i.e. quantum mechanics) and 

social sciences. In particular, in quantum mechanics there is no fatal succession of 

phenomena (e.g. no pure/strong determinism), but there exists a probability of 

consequences. Moreover, this probability (or statistical character) is not dependent 

on the uncertainty resulting from a voluntary action, but it is an intrinsic quality of 

the system. This leads also to a “lack of objectiveness in the description of 

phenomena” (Mantegna, 2005: 139) since  

the result of any measure seems, […], to be concerned with 
the state where the system is led during the same 
measurement rather than the undetectable state in which the 
system was before the perturbation.  

 

According to Majorana’s reasoning there is scope to use statistical mechanics (in the 

case of this research, network theoretical techniques as explained throughout Chapter 

 3) methods and tools in social sciences. Always according to Majorana and as 

reported by Mantegna (2005: 140):  

the statistical laws of social sciences might increase their 
function, since their function is not only of empirically 
establishing the resultant of a great number of unknown 
causes, but, above all, it is to provide an immediate and 
concrete evidence of reality. The interpretation of this 
evidence requires a special skill, which is an important 
support of the art of government.  

 

Generally speaking, theories fit in a general framework (following the paradigms 

discussed in Kuhn (1962)), that is applied until better alternatives are found or until 

their inefficiency is proved. Although this framework can be falsified, it is under its 

“shield” that a research is often set up (Lakatos, 1974). This shield provides core 

principles that allow the researcher to not have to continually defend them. In other 

words, core paradigms are changed only if empirical evidence clearly shows that 

they are false statements or completely inefficient (Lakatos, 1974). However, it is 

also possible that core paradigms might change due to conceptual problems that 

could arise (i.e. problems of internal/external consistency or discrepancies with 

traditions in other/our fields) rather than for their empirical invalidity. The research 

tradition or framework used defines the characteristics considered problematic (i.e. 

conceptual and quantification aspects) as well as the method/s which is/are to be used 
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to deal with these problems (Laudan, 1977). Therefore, progress in science occurs 

either by investigating the real world empirically, by abstracting features and 

representing reality through models (section  2.1.1), or when it is possible to increase 

the applicability of existing theories through the use of analogy, concept explained in 

section  2.1.2. The use of analogy follows the saying: “Pluralitas non est ponenda 

sine necessitate”1. 

2.1.1 Acquiring knowledge of the Real World: 
 

The process of acquiring knowledge is a long debated issue in philosophy. Aristotle 

and the Stoics thought that a real system should be studied through four different 

aspects, namely physica (aisthêsis for the Stoics), i.e. the study through observation 

of perceivable quantities (e.g. the five senses); logica (logos), or reasoning, thus 

formulation of theories (e.g. mathematical constructions or computational models); 

ethica (arètê), or the norms in which the real system are embedded (e.g. values and 

norms); politica (hormê), or dealing with the actions that shape and are shaped by the 

real system (e.g. action research) (Nijland, 2002). Hence, knowledge is not only 

acquired via feedbacks occurring between deductive reasoning and empirical testing 

(as in Figure 2-1A), but also from two other components that might as well be 

equally important: action (politica) and the model of values (ethica) (as shown in 

Figure 2-1B). 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure  2-1 Interrelation between cognitive acts 
Without (A) and with (B) action and model of values; arrows indicate the relations between the 
“domains”  (adapted from: Nijland, 2002). 
 

                                                 
1 Entities should not be multiplied unnecessarily (sentence attributed to Ockham (1284-1347)). 
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According to Figure 2-1 and to a more constructivist perspective, reason alone can 

not provide us with an objective knowledge of the real world (i.e. absolute, objective 

Truth does not exist), but experience based activities are equally important (van 

Gigch, 2002b). Moreover, actions undertaken and the model of values to which a 

researcher and the object/subject of the research refer to, interact with reason and 

empirical testing in improving knowledge. For example, as van Gigch states (2002b), 

management science has tried to formalize the decision making processes, often 

making tied assumption on the model of values (e.g. greed) and on the influences of 

actions, thus not looking at action and values so as to take into account clients-

recipients relations. However, as Nijland (2002) points out, an unarticulated holistic 

approach is not useful; “a longitudinal, interdisciplinary, participatory but 

quantitative social-system analysis” is preferred (Nijland, 2002: 212). The four 

aspects of cognition are more or less important depending on the methodology used 

(e.g. observation in statistical analysis, reasoning in simulation of system dynamics) 

(Nijland, 2002).  

 

Since the aim of this research is to integrate network theoretical tools (Chapter  3) and 

resilience thinking (Chapter  4), the theoretical aspects are prevalent. Therefore, the 

approach used in this research concentrates on the aspects relating to reason. 

Although the importance of integrating reasoning with the other aspects of cognition 

is recognised, at this stage focussing on the logos is thought to be the best way to 

undertake this research. The starting point is given by the problems arising in 

“measuring resilience” (Carpenter et al., 2001) (see Chapter  4), and an abstract 

selection of the fundamental variables that are thought to drive a system’s resilience 

is performed. These fundamental variables are used in order to construct and 

simulate a theoretical model. Future stages of the work might as well include the 

empirical testing of the model and how values and action can influence and are 

influenced by it.  
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2.1.2 Analogy: a way of integrating different disci plines 
 

Analogies are useful when the objective is to compare an unfamiliar system with one 

that is better known. In particular, according to Maxwell (Turner, 1955), analogies 

generate science through the transferring of a mathematical problem’s solution from 

one branch of science to another (e.g. from physics to social sciences), and through 

the fact that, making an analogy more complete might develop into a “new 

theoretical and experimental inquiry” (Turner, 1955: 234). The use of analogy helps 

with the identification of mathematic formulations of relations and actions, since 

they are transferred from familiar system to unfamiliar ones: analogies extend a line 

of reasoning of a known field to an unknown one. 

 

When it is possible to establish some similarities between different phenomena, it is 

also possible that a common law or principle exists. This line of reasoning could lead 

in the right direction, especially if similarities exist not only between attributes of 

two phenomena but also between the functions of the elements or the structure of 

different systems. The usefulness of analogy depends on whether consequences can 

be tested or observed and then passed from one more familiar system to a rather 

unfamiliar one (Gentner, 1983). A mathematical model might be constructed if it is 

possible to reproduce structural relations from a better known environment. Although 

analogies have to be used with caution, in order to avoid the possibility of abuses 

(Daniel, 1955), Nagel (1961) claims that theories should show at least a formal 

analogy to already familiar (existing) constructed systems in order to understand how 

to apply it to concrete problems. 

 

It is also worth mentioning the difference that exists between analogy and homology, 

since often the definitions of the two terms overlap and are not clear. Following Fitch 

(2000: 229, Box 1):  

homology is the relationship of any two characters that have 
descended, usually with divergence, from a common 
ancestral character and analogy is the relationship of any two 
character that have descended convergently from unrelated 
ancestors.  

 



21 
 

Homology means similarity attributable to common origin, while analogy might be 

interpreted as similarity attributable to common evolution2.  As for the research 

undertaken, it is referred to homology if two different systems have a set of 

empirically tested correspondence of properties and mechanisms. Homology is rarely 

used as it is not easy to find different complex systems with an exact correspondence 

of empirically tested properties and mechanism. Analogy is used to better illustrate 

certain aspects of the work, since it has been shown that analogies can lead to the 

development of new fields of inquiry (see for example: Majorana, 1942; Mantegna, 

2005; Turner, 1955).  

 

2.1.3 Thesis Approach 
 

There are numerous papers dealing with epistemological issues comparing or trying 

to integrate methodologies and approaches in social and natural sciences (Nijland, 

2002; van Gigch, 2002a,  2002b). Thus, a structural approach, using the tools of 

network theory (explained in Chapter  3), could give useful and new insights on how 

coupled SESs behave. Clearly, this approach and this work is centred on the 

“reasoning” chapter of Nijland (2002) tetrahedron of knowledge acquisition 

(depicted in Figure 2-1B) as elucidated in section  2.1.1, and  once a computational 

(or agent based) model is constructed, there will be a need for empirically verifying 

these model, and to look at the different context (model of values) and different 

management (action) that will affect and will be affected by the models itself. 

 

The role of this thesis is to explain, rather than predict, systems’ strengths and 

weaknesses, since social systems might be inherently impossible to predict, as 

pointed out by Bernstein et al. (2000). Since SES are open systems, problems of 

replicability or applicability may arise, but these issues may be raised and addressed 

once a first set of coherent and logical arguments are put in place (i.e. the aim of this 

research). Further, the key purpose of this research is not to assess the behaviour of 

single actors (e.g. individuals), that is inherently very difficult or impossible to 

predict, but in the behaviour of a SES on the aggregate, starting from single 

                                                 
2 Here evolution is intended in its general meaning (e.g. not biological evolution). 
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heterogeneous agents interacting between themselves. Thus the objective is to 

understand if and how regularities may emerge from the behaviour of single actors 

(Majorana, 1942). In this perspective, the building of a coherent theory might be 

useful in order to explain if and how different structures influence the dynamics of a 

SES, so as to assess the resilience of a given SES.  

 

To conclude, the final aim of this thesis is to integrate network methods in resilience 

thinking, so as to analyze the resilience of an SES from a structural perspective. In 

this context SESs are approached from a network point of view, trying to capture 

only the most important properties of single nodes (e.g. individuals, species etc.) and 

their interactions (e.g. edges that connect two nodes) in a dynamic setting. I am 

aware that I will not find any absolute or objective “Truth”; however, I think that this 

research will allow a better understanding of SES dynamics, hence an increased 

verisimilitude of real system representation and possibly the design of policies that 

are more able to enhance or erode the resilience of a SES. 

 

2.2 Complex Adaptive Systems 
 

It is not easy to define complex adaptive systems (CAS) in an unambiguous way, 

however, following Levin (2002) a system is characterized as complex and adaptive 

if a) its components (or agents) are diverse and behave differently, b) these 

components interact locally (where locally is not necessarily geographically 

constrained), and c)  there is an independent process that is based upon those 

interactions and that allows for change in the composition/behaviour of components. 

 

The properties of a CAS described above assign to CAS some characterizing features 

(Levin, 2002; Waldrop, 1992). More precisely, such systems are characterized by: 

• Non-determinism, since it is impossible to precisely determine the behaviour 

of CAS; the only predictions that can be made are probabilistic; 

• Presence of feedbacks, whether positive or negative, loops are present in 

such systems and the relationships that forms between the components 

become more important than the component itself; 
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• Distributed nature, hence it becomes very difficult to precisely locate 

functions and properties; 

• Qualitative difference between larger and slower functions (or cycles) and 

smaller and faster ones (Holling, 2001,  2004; Levin, 2002; Waldrop, 1992); 

• Limited decomposability, as the structure of such systems is studied as a 

whole. Again, the interactions between the components are a fundamental 

variable, thus it is very difficult if not impossible, to analyze CAS by 

decomposing it; 

• Self-similarity, implies that a system will have the same structures at 

different scales; 

• Emergence and self-organization, i.e. universal structures might emerge in 

CAS as they self-organize, although it is not possible to foresee these by 

looking at its components. 

 

Interactions between species in an ecosystem, the behaviour of consumers, or people 

and groups in a community, the stock-market, the immune systems, the river 

networks, and birds’ flying patterns among others, are all examples of CAS. The 

analysis of CAS, given its peculiarities, calls for a new strategy, in order to make 

cross-disciplinary comparisons searching for features that are common to different 

systems in different domains (Lansing, 2003). In particular, different tools have 

“emerged” in order to try to understand CAS. 

 

2.2.1 Tools for analyzing complex systems 
  

In order to analyze CAS, Amaral and Ottino (2004) identify three main “toolboxes”: 

• Non-linear dynamics 

• Statistical mechanics 

• Networks 
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Non-linear dynamics 
 
Complex adaptive systems are characterized by the non-linearity of the interactions 

of their components. Although non-linear dynamics and chaos are nowadays part of 

science (Amaral & Ottino, 2004), it is worth stressing the fact that non-linearity does 

not imply non-predictability, but rather that deterministic views of the world should 

be critically examined.  

 

There are a number of mathematical techniques that enable one to deal and to find 

solutions for systems characterized by non-linear dynamics, however, most of these 

solutions are obtained through numerical approximations, and thus there is a need of 

powerful computers that allow nonlinear dynamics to exhibit self-organization and 

chaos. Since chaotic behaviour often arises from the iteration of simple mathematical 

equations, it is possible to affirm that chaos suggests that systems that are simple 

when decomposed, become very complicated when they are treated as a whole. 

Systems that display such non-linear behaviour are virtually everywhere, examples 

of which can be the economies, stock markets, population growth, and turbulent 

fluids. 

 

Statistical mechanics 
 
The origin of statistical mechanics (or physics) at the turn of the 20th century led to a 

new meaning of prediction, and permitted the introduction of discrete models such as 

cellular automata and agent-based models (Amaral & Ottino, 2004). Moreover 

statistical mechanics allows us to reason in terms of ensembles, thus leading the way 

to conceptualizing “universality” and “scaling” (Amaral & Ottino, 2004).  

 

Thanks to the techniques of statistical mechanics, the availability of data and the use 

of computers, it has been discovered that many physical systems display universal 

properties that do not depend on the single components and on the single interactions 

that exist within a system. Moreover, it can be argued that some universality exists in 

other complex systems as well (e.g. social, ecological), although exact solutions are 

very difficult, if possible, to obtain, and most current research use numerical 

simulations (i.e. see section  5.2) in order to reach probable solutions. Statistical 
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mechanics is also concerned with the idea that there exist a set of relations (scaling 

laws), that could help the understanding of different critical exponents that 

characterize the behaviour of parameters and functions. 

 

Finally, statistical physics methods introduce discrete models. Discrete, or agent-

based modelling has been successful especially in ecology and social sciences (e.g. 

see section  5.2.1 and  5.2.2 and references therein) (Amaral & Ottino, 2004). This 

type of modelling is concerned with algorithms (computer programs) rather than 

equations and allows its components to interact and evolve. More precisely, agents 

(or basic building blocks) live in a certain environment, and they may possess 

different characteristics, which can change over time. This type of modelling allows 

to investigate different scenarios and in some cases this approach has replaced 

equation based ones (e.g. predator prey models, fire spreading etc.) (Amaral & 

Ottino, 2004). This thesis makes wide use of agent based models combined with 

network theoretical tools in order to look at the resilience of SES. Agent based 

models and simulations are discussed in depth in section  5.2.  

 

Networks 
 
Most systems can be viewed as networks; that is, elements that interact with each 

other. Networks are described extensively in Chapter  3; here the explanation will be 

limited to how networks can help us in analyzing complex systems by giving a very 

simple and hypothetical example. First of all, a definition of a SES is required. 

Figure 2-2 represents a closed, simplified system. The analysis is based on two 

different types of agents: ecological and socio-economic ones. In this case, 

ecological nodes are defined as those nodes that refer to resources that are non-

human (abiotic or biotic environment), while socio-economic nodes refer to those 

that are based on humans. Moreover, the interactions that occur between ecological 

and socio-economic nodes and between nodes that belong to the same macro-

category are analysed.  
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To begin with, assume a closed, small, geographical space, in which two resources 

are present (ecological nodes) and two type of organization exist (socio-economic 

nodes), as shown in Figure 2-2. 

 

 

Figure  2-2 Over-simplified interactions in a geographical space  
(Own elaboration) 
 

 

Figure 2-2 can be represented by a network as shown in Figure 2-3: 

 

Figure  2-3 Network representation of the simplified system  
(Own elaboration) 
 

The network representation is very effective in indicating which relations exist 

between the different nodes. At this point, the light grey dots represent the ecological 

agents and the dark grey dots represent the socio-economic ones. Moreover, the 

connections can be directed (represented by an arrow) or bi-directed (represented by 

a double arrow). Directed connections symbolize an extraction, type of relationship, 

that is, a relation that represents a flow of resources from one agent to another. Bi-

directed edges symbolize a bargaining (or exchange) type of relation. The network 

represented in Figure 2-3 can be shown in an evolving setting. After defining the two 

Resource 1: Water 
resource 

Resource 2: Staple 
Food 

Agent 1: Tourism 
workers 

Agent 2: Primary 
sector workers 
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macro-categories explained in the previous paragraph, it is possible to affirm that, in 

this example, there exist some agents that are more connected than others. 

  

The dark grey dots are connected by a bi-directed arrow, representing the fact that 

they both need to interact in order to divide the extraction from the light grey dots 

(represented by the two directed connections). Moreover, there is an additional 

extraction type of relationship (single-pointed arrow) also between the two socio-

economic nodes, meaning that one of the two nodes needs exclusively “something” 

from the other. As it is shown, even in this over-simplified example, the collapse of 

one dot can lead to the collapse of the entire system (Figure 2-4, moving clockwise 

from graphs A to D): 

 

 

Figure  2-4 Effects of the removal of the most connected node in time 
(Own elaboration) 
 

Figure 2-4 graphically explains the effects of the removal of one ecological agent. In 

this case, in which we simulate a close system with only two resources and two 

agents, the main resource dries out (A); this leads to the disappearance of the 

extraction connections that connect to the second ecological dot and to the socio-

economic ones (B); since the dried out ecological node is crucial, as it is the only 

input for the survival of the other two nodes, the latter also “disappear” (C). The 

process described in (B) repeats itself creating a cascading effect, which will lead to 

D 

C A B 
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the disappearance of the remaining edges and to the collapse of the whole system 

(D). 

 

It is possible to reproduce a more realistic system by giving characteristics and 

behaviour rules to single nodes and edges (or relation between nodes) existing in the 

system represented by a network. In other words, it is possible, and possibly better, 

to integrate network theoretical tools with agent based modelling, thus allowing for 

pre-determined actions and dynamics to unfold upon an identified network. Chapters 

 6,  7, and  8 propose three different theoretical models that look simultaneously at 

dynamics that unfold on a network so as to look at how structural properties affect 

the resilience of a SES.  
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3 Network theory 
 

This chapter resumes section 2.2.1 and expands, introduces, explains, and defines the 

terminology that refers to science of networks (graphs) (section  3.1). Secondly it 

deals with the measures that are commonly used to statically characterize a network 

(section  3.2) and metrics widely used in social network analysis (section  3.2.1). 

Section  3.3 introduces different classes of networks, based on previous definitions 

and measurements. More precisely it defines regular networks ( 3.3.1), random 

graphs ( 3.3.2), small worlds ( 3.3.3), scale-free networks ( 3.3.4), and introduces the 

concept of modularity ( 3.3.5). Section  3.4 reviews the main studies dealing with real 

network and reports the main findings. A particular focus is given to ecological 

networks (food webs) characterizing them as transportation networks ( 3.4.1). Finally 

a brief summary of what has been explained in the whole chapter ( 3.5) is provided. 

 

I am aware that networks are used across different disciplines, but, since the 

objective is to integrate it with Socio-Ecological System (SES) resilience there is a 

need to use an unambiguous terminology. Hence, I will not adopt sociological 

definitions, but rather a more mathematical one. I refer to nodes and edges, and not 

to actors and ties; to adjacency matrices and not to socio-matrices, to clustering 

coefficient and average shortest path length, rather than to fraction of transitive 

triples and characteristic path length. The terms just mentioned are defined and 

explained in detail in the first two sections of this chapter (i.e. sections  3.1 and  3.2), 

but listing the terms that I will use and their counterparts in sociology enhances 

communication across disciplines.  

 

3.1 Network Structure 
 
Networks can be considered as a tool to analyse and abstractly represent complex 

systems. A network can be thought of as a set of nodes connected through edges as 

shown in Figure 3-1: 
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Figure  3-1 Network representation  
The black dots are called nodes, while the lines connecting any pair of nodes are called edges 
(Own elaboration). 
 

Network theory (here also called graph theory) dates its conceptual origins back to 

the 1730s thanks to Euler (1736); but the starting point of modern graph theory is 

considered to be the work of  two Hungarian mathematicians on random graphs 

(Erdős & Rényi, 1959,  1960). The terminology and definitions used in this chapter 

follow the work of Börner et.al (2007), integrated by authors that have extensively 

written on networks measures and terminology (Albert & Barabási, 2002; Amaral & 

Ottino, 2004; Barabási & Bonabeau, 2003; Börner et al., 2007; da Fontoura Costa et 

al., 2007; Dorogovtsev & Mendes, 2002; Newman, 2003b; Strogatz, 2001; Wang & 

Chen, 2003; Watts, 2004). 

 

As explained above, a network is a set of nodes connected through edges.  Following 

a more rigorous definition it is possible to say that a graph (network) G is defined by 

a non-empty set of nodes { }nvvV ,...,1=  and a non-empty set of 

edges ( ) ( ){ }ji uvuvE ,,...,, 11= : G = (V, E). The total number of nodes in the graph of 

the set V is represented by N, while the total number of edges in the network of the 

set E is represented by M. The i-th node of the set V can be connected to the j-th node 

through an edge; that is, an edge connects a pair (i, j) of nodes. If an edge belonging 

to E connects a pair of nodes (i, j), i and j are said to be neighbours.  

 

Networks can be undirected or directed. Undirected graphs have edges that connect a 

pair of nodes in a transitive fashion (that is, edges that connect node i to node j and 

vice-versa), while directed graphs are composed only by directed edges connecting a 
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pair of nodes in a given direction. Undirected edges (or edges) are normally 

represented by a straight line or a double arrow line, while directed edges are 

normally represented by an arrow indicating the direction of the relation between a 

pair of nodes. Figure 3-2 gives a graphical representation of an undirected and a 

directed graph: 

 

 

Figure  3-2 Undirected Network (right) and a Directed Network (left)  
Undirected edges (right) and directed edges (left) (Own elaboration). 
 

Networks can also be weighted. Real networks display a wide heterogeneity when it 

comes to assess the strength of the relations that exist between nodes. Weighted 

networks can be directed or undirected. Figure 3-3 displays an example of a 

weighted undirected graph. 

 

    

Figure  3-3 Weighted network  
The strength of the edges is given by the thickness of the line (Own elaboration). 
 

To be more rigorous, in weighted networks each edge (i, j) is associated with a 

weight wij (also be called the weight of an edge). Having defined the weight of an 

edge, it is possible to define the strength of node i (is ) as the sum of the weights of 

its edges: ∑=
j

iji ws . Weighted networks clearly provide more information upon the 

graph, since they combine topological information with quantitative measures. 
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Independently from whether weights or edges directions have been defined, a 

network is termed connected if no isolated nodes exist. A giant component can be 

defined as the largest connected part of a network. 

 

In a network, sub-graphs may be defined. Sub-graphs’ properties in random graphs 

were first extensively studied by Erdős and Rényi (1959). A sub-graph is a graph 

whose nodes and edges are all also nodes and edges of a larger network. Formally a 

sub-graph can be defined as follows: consider a graph G = (V, E), then a sub-graph 

G1 = (V1, E1) of G is a sub-graph of G if and only if all the nodes of V1 belong to V 

and all the edges of E1 belong to E. 

 

The simplest types of sub-graphs are called trees, cycles and complete sub-graphs. 

The notations used by Albert and Barábasi (2002) are used to formally assess the 

order and the property of sub-graphs. Trees are hierarchical graphs in which every 

node has only one node from which it originates (also called parent node). The order 

of the tree is defined by the number of nodes that composes it, as shown in  

Figure 3-4:  a tree of order k has k nodes and k-1 edges. 

 

 

Figure  3-4 Trees 
Tree of order 3 (left), a tree of order 4 (centre), and a tree of order 5 (right) (Own elaboration). 
 
Cycles are closed loops in which every two consecutive edges have one node in 

common. The node needs to belong exclusively to the consecutive edges. The order 

of the cycle is again defined by the number of nodes; more precisely, a cycle of order 

k has k nodes and k edges, as shown in Figure 3-5: 
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Figure  3-5 Cycles  
Cycle of order 3 (left), a cycle of order 4 (centre), and a cycle of order 5 (right) (Own 
elaboration). 
 

Complete sub-graphs are sub-graphs that are fully connected. The order of complete 

sub-graphs is again given by the number of nodes that compose the sub-network. In 

other words, a complete sub-graph of order k has k nodes and k(k-1)/2 edges (k(k-1)/2 

is the maximum number of edges in a graph if every pair of nodes is connected 

through one edge and node do not have edges that lead to themselves), as shown in 

Figure 3-6: 

 

Figure  3-6 Complete sub-graphs 
Complete sub-graph of order 4 (left) and order 5 (right)  
(Own elaboration). 
 
As explained in the previous paragraph, the maximum number of edges that exist in a 

graph is given by k(k-1)/2. A graph can not contain self-referring edges (loops) or 

multiple edges that connect a pair of nodes. If a graph contains loops or multiple 

edges, it is called multi-graph. Figure 3-7 shows multiple edges and loops. 

 

 

Figure  3-7 Loop (right) and multiple edges connecting a pair of nodes (left)  
(Own elaboration). 
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Last but not least, the definition of a bipartite-graph is given. A bipartite graph is a 

graph in which two different set of nodes co-exist. In the case of this work, social 

and ecological node will be represented as two different sets. Hence, it is possible to 

define a bipartite-graph as G=(Vse+Vec, E), where Vse is the non-empty set of social 

nodes, Vec is the non-empty set of ecological nodes, and E is the non-empty set of 

edges. An example of a bipartite-graph is shown in Figure 3-8: 

 

 

Figure  3-8 Bipartite-graph representation 
Only the relations between the two different sets of nodes are represented (here socio-economic 
nodes in dark-grey and ecological nodes in light-grey) (Own elaboration). 
 

Graphs and networks can be represented graphically (as shown so far) or as a matrix. 

The matrix that defines a network is also called adjacency matrix. The adjacency 

matrix is a square matrix in which values are 1 if a connection exists between the 

nodes to which the cell refers (interception of column and row), and 0 if the two 

nodes are not connected. Formalizing: the adjacency matrix { }ijij aA =  is a NN ×  

matrix defined such as 1=ija  if Eji ∈,  and 0=ija  if Eji ∉, . If the matrix is 

representing an undirected graph, then it will be symmetric as jiij aa = . If the 

adjacency matrix is representing a directed graph, then there is the possibility that the 

matrix is asymmetric; i.e. jiij aa ≠ . Finally, if the adjacency matrix is representing a 

weighted graph, than the matrix is not represented by 0,1, =jiij aa  but by the strength 

of the edges: jiij ww , , whose value is given by the strength of the connection between 

node i and node j (and vice-versa). Figure 3-9 depicts the adjacent matrix for 

undirected, directed, unweighted and weighted graphs: 
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Figure  3-9 Networks and their adjacency matrices 
Undirected (top-left), directed (top-right), weighted undirected (bottom-left) and weighted 
directed (bottom-right) graph representation with their respective adjacency matrix. Note how 
the matrix is symmetric when the graphs are undirected, asymmetric when directed. Moreover, 
the weights are represented by the thickness of the line and weights are given arbitrarily on a 
scale from 1 to 5 (1 the weakest, 5 the strongest) (Own elaboration). 
 

3.2 Network Measures 
 

So far, section  3.1 has dealt with different structures that highlight certain properties 

of a whole network. This section introduces the measures that are commonly used in 

order to statically characterize a network’s topology.  

 

This section starts by defining local measures. Local measures are those metrics that 

refer to a single node or to a pair of nodes. As explained before, a network is a set of 

nodes connected through edges. If it is possible to reach a node from another node 

then an “ideal” walk on certain edges is carried out. If the walk connects a pair of 

nodes, this walk will have a finite distance. Moreover, in graph theory the walk is 

defined as path. Formally, a path jiP, that connects node i to j is defined as an ordered 
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sequence of n+1 nodes and n edges that will connect i and j; the length of the path 

jiP, is equal to n.  

Now, it is possible to define the nearest neighbours of a node keeping in mind what a 

path is. In this context it is possible to affirm that the nearest neighbours of a node 

are those nodes that are reachable in a unit path length. In other words, the nearest 

neighbour of node i are those nodes whose Pi, z = 1, where z represent any node in 

the unitary distance. 

 

When referring to length or distance between two nodes in an unweighted network 

only the geodesic distance between the two is taken into account. The geodesic 

distance is unitary (or its length is equal to one) if node i and j are connected through 

an edge, independently from the actual physical distance that may exist between the 

nodes as shown Figure 3-10. In case of weighted networks, the distance may as well 

be calculated as the sum of the weights of the edges that it is necessary to bypass in 

order to reach node j from node i.  

 

 

Figure  3-10 Geodesic distance 
In an undirected graph, the geodesic distance between nodes 1,2 and 1,3 is equal to 1, while the 
physical distance is different (being distance 1,2<distance 1,3) (Own elaboration). 
 

Given the definitions above, it is possible to define the shortest path length ( ji ,l ) as 

the shortest geodesic path that is exist from node i to node j; if nodes are connected 

through directed edges, then ijji ,, ll ≠ . The diameter (D) of a network is then 

defined as the maximum shortest path length in a graph. In other words, the diameter 

of a network is the maximum of the shortest path lengths that exist in a network: max 

( ji ,l ) where i and j represent any pair of nodes existing in the graph.  

 

2 
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The average shortest path length ( l ) of a network is, as the name suggests, the 

mean value of ji ,l  over all possible pairs of nodes i, j that exist in a network. 

Formally: 
ji

ji

N ,

,∑l
where jiN ,  is equal to the number of all the possible pair of 

nodes.  

 

Making use of the definition of path, it is also possible to define reachability. 

Reachability can be defined as the possibility of reaching node j starting from node i, 

irrespective of the number of edges and nodes that it is needed to bypass. In  

Figure 3-11, for example, all nodes are reachable in the undirected network, while in 

the directed graph, if we start from node 2 no node is reachable, while if we start 

from node 1, only nodes 2, 3, and 4 are reachable. 

 

 

Figure  3-11 Undirected (left) and Directed (right) graph  
(Own elaboration). 
 

Another important measure that characterizes a node is the number of edges that are 

linked to it. The number of edges that are connected to a node is also called the node 

degree (or the degree k of node i: ki). The average degree of a network is then the 

sum of the node’s degrees divided by the number of nodes that exist in the network: 

i. e. N
k

k i∑=  . The degree of a network can also be defined as the number of the 

nearest neighbours of a node. In undirected graphs, the definition given above holds 

perfectly. In directed graphs, it is possible to differentiate the in-degree of a node i 

( iink , ) and the out-degree of a node i ( ioutk , ).  

 

The in-degree represent the incoming edges that are connected to node i, while the 

out-degree measures the number of edges outgoing edges from a node i. Figure 3-11 
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graphically shows the definition of degree, and the nearest neighbours of a given 

node. More precisely, referring to Figure 3-11: k1 = k4 = 3; k3 = 2; k2 = k5 = 1; for 

the undirected graph. Moreover, the nearest neighbours of node 1 are nodes 2, 4 and 

3. As for the directed graph, the in-degree of a node is separated from its out-degree, 

hence: 1,ink = 1, 1,outk = 2; 2,ink = 1, 2,outk = 0; 3,ink = 1, 3,outk = 1; 4,ink = 2, 4,outk = 1; 

5,ink = 0, 5,outk = 1. In the directed graph it is also possible to define the nearest 

neighbours in two ways; the nearest neighbour from which node 1 can be reached is 

node 4, while the nearest neighbours that can be reached from node 1 are nodes 2 and 

3. Clearly, the higher the degree of a node, the more that node will be important for 

the network structure (Albert & Barabási, 2002; Barabási & Bonabeau, 2003; 

Dorogovtsev & Mendes, 2002).  

 

When not all nodes in a network have the same degree, then it may be interesting to 

study how wide is the node degree distribution ( )(kP ) (Albert & Barabási, 2002). 

The degree distribution in undirected graphs is the probability that node i will have 

degree (or number of edges) k. In directed graph we need to differentiate the in-

degree distribution and the out-degree distribution.  

 

Another measure that is widely used to characterize a network topology is the 

clustering coefficient of node i (Ci). The clustering coefficient can be thought of as a 

way to determine how many nearest neighbours of node i are also nearest neighbours 

to each other. More precisely, if we select a node i with degree ki, then the maximum 

number of edges between the nodes connected to node i will be equal to 2)1( −ii kk , 

and the actual number of edges between the ki nodes will be equal to Ei; thus the 

clustering coefficient of node i, Ci, can be defined as the ratio between the maximum 

number of edges and the actual number of edges: ( )1
2

−=
ii

i
i kk

EC . 

 

After defining the clustering coefficient of a given node, it is possible to define the 

average clustering coefficient C. The average clustering coefficient is defined as the 
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average value of the nodes clustering coefficient (Ci) over the possible N nodes: 

N

C
C i

i∑
= . 

 

There are other numerous metrics found to characterize a network’s topological 

properties.. Amongst them it is worth to highlight the concepts of global and local 

efficiency. Global and local efficiency are measures introduced by Latora and 

Marchiori (2001). The efficiency measure is built upon the assumption that the 

network transmits information and that there is hence a scope to explore how well its 

nodes can interact locally and globally (Crucitti et al., 2004; Latora & Marchiori, 

2001). Unlike the average shortest path length, that is reasonable for the connected 

component of a network, or for completely connected networks, the global efficiency 

is well-defined even for unconnected networks (Crucitti et al., 2004; Latora & 

Marchiori, 2001).   

 

More precisely, the efficiency in communication between a pair of nodes ji,  can be 

defined as being inversely proportional with respect to the shortest path; i.e. 

ij
ij d

1=ε for every pair of nodes ji, . If there is no path that connects nodes ji, , 

+∞=ijd  thus 0=ijε . Given the definition of efficient communication it is possible 

to define the global efficiency as the average efficiency of the network (Latora & 

Marchiori, 2001). Formalizing: 

∑
∑

∈≠

∈≠

−
=

−
=

Gji ij

Gji ij

dnNNN
GE

1

)1(

1

)1(
)(

ε
. 

In order to allow comparisons of the efficiency )(GE  across different networks,  

E(G) is normalized considering the case in which a network with the same number of 

nodes is fully connected; that is, E(G) is normalized by  
2

)1( −NN
edges, case in 

which communication is most efficient. Thus 1)(0 ≤≤ GE  being 1)( =GE  only if 

the network is fully connected. )(GE is the global efficiency of the network: 

globEGE ≡)( . 
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If the global efficiency is the average efficiency of the network, it is possible to think 

at the local efficiency as the average efficiency of sub-graphs. In mathematical 

notation, that is: ∑ ∈
=

Gi iloc GE
N

E )(
1

, where iG  is the sub-network of the 

neighbours of node i . 

 

Another important characteristic of complex networks is assortativity. Assortativity is 

a measure that allow us to understand if the network displays a positive correlation 

between the degree of its nodes and the probability that they are attached to one 

another: a node with high degree will preferentially attach itself to a node of a high 

degree as well (Newman, 2002,  2003a). In other words, assortativity refers to the 

fact that similar nodes tend to connect with each other. 

 

A simple way to measure assortativity is by using the Pearson correlation coefficient 

between the degree k of a given pair of nodes (e.g. ji, ) (Newman, 2002): 

jiji kkkkr ∗−∝ . When 0>r the network is considered to display assortative 

mixing; when 0<r  the network displays disassortativity and when 0=r the 

network does not display assortativity (or disassortativity). 

 

An example of an assortative network will be a social network in which people tend 

to connect with those that have similar characteristics (e.g. income, age, sex, race, 

type of work etc.); on the contrary, if people tend to connect with those that have 

different characteristics, then the network will display disassortative mixing 

(Newman, 2003a). An important characteristic to take into account is the degree of a 

node. If the network displays assortative mixing, then high degree nodes will prefer 

to attach to other high degree nodes. Vice versa, if the network displays 

disassortative mixing, high degree nodes will preferentially connect to low degree 

nodes. Most social networks seem to display assortative mixing, while most 

technological and biological networks tend to display disassortative mixing 

(Newman, 2002,  2003a). 
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3.2.1 Social Networks metrics 
 

Social network analysis has developed its own terminology. Nonetheless, social 

network analysis focuses on different measures than those described above. In 

particular, the concept of centrality of a network node with respect to others is 

considered. There are numerous measures of centrality (Hanneman & Riddle, 2005), 

but it is possible to group each measure into two broad categories: local measures 

and global measures. 

 

Local centrality can be thought of as a measure of how well a node is connected to 

its neighbours; a node degree refers to the simplest local measure of a node 

centrality. 

  

Global centrality takes the whole network structure into account in order to 

determine the importance of a node with respect to the entire graph. There exist two 

common measures that are used to compute global centrality: closeness centrality 

and betweenness centrality (Börner et al., 2007). 

  

Closeness centrality is used to calculate the geodesic distance between different 

nodes. A node is globally central if it constitutes a neighbour to many other nodes. In 

other words the shorter the path between node i and other nodes, the higher the 

centrality of node i. Formalizing: 

∑
=

=
n

j
jiP

iCc

1
,

1
)( . 

Betweenness centrality describes the importance of a node in a network based on the 

flow it can control. In other words the importance of a node is given by its 

uniqueness. As an example it is possible to think at two different communities that 

speak different languages (hence facing communication barriers). A problem arises 

when the two communities need to talk to each other, and there is only one person 

who is able to communicate effectively with both communities. The node that 
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represents this individual will have a high betweenness centrality. More precisely the 

betweenness b of node i can be formalized as follows: 

∑=
jh

jih
i L

L
b

,

,,  where jhL ,  represents the total number of shortest path from h to j and 

jihL ,,  represents the number of those paths that will pass through node i, It is also 

possible to characterize the betweenness distribution. More specifically, it is possible 

to compute the probability distribution ( )bP  that a node has betweenness b.  Finally, 

it is also possible to calculate edge betweenness (be). Edge betweenness has the same 

meaning of node betweenness and is calculated as follows: ∑=
jh

jeh
e L

L
b

,

,, where jhL ,  

represents the total number of shortest path from h to j and jehL ,,  represents the 

number of those paths that will pass through edge e. 

 

Since both measures (Cc and b) depend on the size of the network, both measures are 

normally standardized in order to allow comparisons. More precisely, closeness 

centrality is divided by N-1 and betweenness centrality is divided by ( )( )21 −− NN .  

 

Another measure that may be of interest is the so called distribution of node 

distances. According to Börner et al. (2007), it is possible to characterize two main 

measures of node distances. The first being simply the probability distribution of 

finding two nodes separated by a distancel . The second indicator is called the 

average mass of a graph, since it involves computing how many nodes it is possible 

to find within a distance less or equal to l . Thus, if we define the average mass of a 

graph as ( )lM , then at 0=l average mass includes only the starting node, hence 

( ) 10 =M ; if 1=l  than ( ) kM += 11  (that is, the starting node plus its nearest 

neighbours) and so on. 

 

Since the objective of the thesis is to look at structural properties of networks whose 

nodes represent social components (human) and ecological components of a SES, at 

this point, there is no need to go beyond the formal description of the most important 

measures that will be used throughout the thesis.  
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3.3 Network Classes 
 

The characterization of the structural properties of a network is usually defined by its 

connectivity properties (in simple words, how nodes and edges are formed and 

attached to each other) (Albert & Barabási, 2002; Amaral & Ottino, 2004; Barabási 

& Bonabeau, 2003; Dorogovtsev & Mendes, 2002; Strogatz, 2001; Watts, 2004). In 

the previous sections (i.e. sections  3.1 and  3.2) structural properties and measures 

commonly used to define connectivity properties have been characterized. This 

section defines four major categories of network classes. A network class is an 

ensemble of networks that share the same properties, mainly with respect to their 

degree distribution function, average clustering coefficient, and average shortest path 

length. 

 

Four network classes are widely reviewed in the literature according to their 

statistical properties: regular networks, random graphs, small worlds, and scale-free 

networks (Albert & Barabási, 2002; Amaral & Ottino, 2004; Barabási & Bonabeau, 

2003; Börner et al., 2007; Dorogovtsev & Mendes, 2002; Erdős & Rényi, 1959,  

1960; Newman, 2003b; Strogatz, 2001; Wang & Chen, 2003; Watts, 2004).  

 

3.3.1 Regular Networks 
 

As intuition suggests, regular networks display the smallest average path length and 

the highest clustering coefficient. Regular network have N  nodes and ( ) 21−NN  

edges. Regular networks do not appear in real-world. Nonetheless they may be useful 

to study a particular case of a regular graph, the so called regular lattice. The regular 

lattice is a model in which every node i is connected only to k of its neighbours. The 

term “lattice” as explained by Wang and Chen (2003) could suggest a two-

dimensional (d=2) square grid, but the most simple lattice is uni-dimensional and 

can be represented by a row or a ring. This type of network is highly clustered, 

being 43=REGC , while the average path length tends to infinity as ∞→N . 
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3.3.2 Random Graphs 
 

Erdös and Rényi (1959; 1960) were the first to study the statistical properties of 

random graphs (thus also called ER model). Since their pioneering work, random 

graphs have been widely studied in graph theory (Bollobás, 1985). This section looks 

at random graphs describing the properties that are more important from a “complex 

network” point of view.  

 

First of all, an informal definition of random graph (random network) is provided. As 

described by Erdös and Rényi (1959), imagine N buttons scattered randomly on the 

floor, if one ties two buttons randomly together with probability p, one will end up 

with a random graph with on average ( ) 21−∗ NNp edges distributed randomly 

(Albert & Barabási, 2002; Dorogovtsev & Mendes, 2002; Erdős & Rényi, 1959,  

1960; Strogatz, 2001). Random graphs described in this section have a fixed number 

of nodes, while the number of edges varies according to the probability of edge 

existence (p in the previous paragraph) (Dorogovtsev & Mendes, 2002) as shown in 

Figure 3-12. 

 

 

 

Figure  3-12 E-R (random) graph 
N=20 and different probability of nodes being connected: from 0 (top-left), 0.05 (top-right), 0.1 
(bottom-left), 0.25 (bottom-right) (Own elaboration). 
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Moreover, random graphs are characterized by the following average shortest path 

length: ( ) ( ) ( ) ( )kNpNNER lnlnlnln ≡=l , that is, the average shortest path 

length increases as the natural logarithm of N for large N. 

 

As explained section  3.2 on network measures, the clustering coefficient is a way to 

answer the following question: how many nearest neighbours of node i are also 

nearest neighbours to each other? In random graph, the probability that two of the 

nearest neighbours of node i are also nearest neighbours to each other is equal to p. 

Thus, the clustering coefficient of a random graph scales according to 1/N. More 

precisely: NkpCER == . 

 

Erdös and Rényi were also the first to study the maximum and minimum node degree 

in a random graph (Erdős & Rényi, 1959). The random graph degree distribution 

approaches a Poisson distribution for large N (Albert & Barabási, 2002; Dorogovtsev 

& Mendes, 2002). As explained above, a random graph contains ( ) 21−∗ NNp  

edges on average. Furthermore, the degree distribution is binomial (thus it 

approaches a Poisson distribution for large N): ( ) ( ) kNk
ER pp

k

N
kP −−−







 −
= 11

1
, i.e. 

the average degree will then be equal to ( )1−∗ Np . As mentioned above, for large N 

the degree distribution of a random graph can be thought of as a Poisson distribution, 

hence: ( ) !k
ke

kP
kk

ER

−

= , where the expected value and variance are equal to k  

(see Figure 3-13). 
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Figure  3-13 Degree distribution of a random graph 
p=0.0015 and N=10000 (dots) compared to a Poisson distribution (line), where k is the degree 
and <k> is the average degree and y axis represent probability of finding a node with degree k 
(after Albert & Barabási, 2002). 
 

Thus, it is possible to define a random graph as any graph whose degree distribution 

follows a Poisson. This peculiar distribution of node degree in random graph means 

that although edges are placed randomly, the resulting network is rather 

homogeneous, with most of the nodes having the same degree, while the distribution 

rapidly decays for large and small degrees (Dorogovtsev & Mendes, 2002).  

 

3.3.3 Small-World Networks 
 

Watts and Strogatz (1998) discovered that some real networks can not be classified 

as completely random graphs nor regular graphs. Thus, they thought of a model that 

could preserve important characteristics of both random and regular graphs. 

 

The original small-world (SW) network can be thought of as the result of the lattice 

example described above. In this case, Watts and Strogatz represented a regular 

uniform and one-dimensional (represented by a ring) lattice, where every node i is 

connected toK nearest neighbours. From the regular lattice, then, every edge is 

rewired with a probability p. The higher the p parameter, the more the graph will 

resemble a random graph. Thus small-world graph can be defined as a class of graph 

that is neither completely ordered nor completely random, but somewhere in 

between. 
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The original model by Watts and Strogatz (1998) can also be obtained by adding new 

edges between the nodes of the lattice. In this case, node i and j, where j is not one of 

the nearest neighbours of i, are connected through an edge with probabilityφ . As 

shown in Figure 3-14, increasing φ  has a very similar effect on the regular lattice as 

when increasing p in the rewiring small-world. 

 

 

Figure  3-14 Generation of small-world networks 
Rewiring edges (top) or addition of edges (bottom). In both cases the generation starts with a 
regular graph (left), as edges are rewired (top) or added (bottom) the graph becomes a small 
world (centre); continuing the process of rewiring edges (top) or addition of edges (bottom) 
leads to a random graph (right) (after Dorogovtsev & Mendes, 2002) 
 

SW graphs can be positioned somewhere between random graphs and regular graphs, 

with regard to two measures explained in section  3.2. A regular lattice will display 

long average path length, scaling REGl  asN , while at the same time, it will be 

highly clustered, with REGC  independent of scale and equal to 43 for large k . On 

the contrary, random graphs (ER-type) display a short average path length and ERl  

scales as ( )Nln  (as explained in section  3.3.2), while they do not display a high 

clustering coefficient, scaling ERC  as N1 .  
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Figure  3-15 Average shortest path length and clustering coefficient in Small World networks 
Normalized shortest path length (here L) and clustering coefficient (C) as a function of p 
(rewiring probability) for the SW graph with N=10000 and <k>=10 (after Watts & Strogatz, 
1998) 
 

As depicted by Figure 3-14 and Figure 3-15, and as explained above, there is an 

abrupt change in the average path length that occurs for a given value of p. Thus, it is 

of interest to identify the value of p at which this transition occurs independent from 

the network sizeN . Since there is a size *N , such as if NNN SW ∝< l,* , but if 

( )NNN SW ln,* ∝> l  then p  is dependent upon the system size. In other words, 

SWl  does not start to decrease until NKp ≥ , at least one shortcut has to exist. 

 

The clustering coefficient is slightly different in the case of the rewiring small-world 

graph or in the case of the edge addition small-world graph. More precisely: 

• The clustering coefficient for the rewiring version is:  

( )
( ) ( )31

122

13
p

K

K
CSWR −

−
−= ; 

• The clustering coefficient for the addition version is:  

( )
( ) ( )24122

13

++−
−=

pKpK

K
CSWA . 

 

As Newman (2003b)  points out, the degree distribution of small-world network does 

not approximate reality very well. This difference between the small-world degree 

distribution and the degrees distributions seen in real networks derives from the 

construction process of the small-world network. Moreover, SW degree distribution 
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is calculated differently, whether it refers to the rewiring or the adding edge version 

of the model (with the latter simpler to calculate analytically).  

 

If p=0 than the degree distribution will be a vertical line to k  (such as the degree 

distribution of a regular lattice) as shown in Figure 3-16: 

 

Figure  3-16 Regular lattice degree distribution  
where <k> is average degree, and P(k) the proability of finding a node with degree k, being k the 
degree of a node (Own elaboration). 
 

In the adding edges case, each node has at least a degree equal to 2K, plus a 

binomially distributed number of shortcuts, thus it is possible to affirm that the 

probability P(k) of having degree k is equal to: 

KiNKi
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for KK 2≥  and 0)( =kP  for Kk 2< . 

 

In the rewiring edges case, for 0>p  each node will still retain at least K/2 edges 

after the rewiring process is complete. Following Barrat and Weigt (2000) the degree 

distribution in the rewiring case can be formalized as follows: 

( ) ( )
( )

pK
nKk

nKn
KKk

n

e
nKk

pK
pp

n

K
kP −

−−
−

−

= −−
−








= ∑ !

1)(
),min(

0

 

for Kk ≥  and 0)( =kP  for Kk < . 

 

The resulting degree distribution is a rather homogeneous one, similar to the degree 

distribution of a random graph (Poisson), with a peak and an exponential decay as 

kk  

( )kP
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shown in Figure 3-17. Moreover, Figure 3-17 shows how small-world networks are 

rather homogeneous, with the majority of nodes having the same degree (as the peak 

at Kk = suggests). 

 

 

Figure  3-17 Degree distribution of the small-world network 
Rewiring edges for K=3, different levels of p and N=1000; full circles represent the 
corresponding ER graph. k = degree of node i and P(k) = probability of finding a node with 
degree k (after: Barrat & Weigt, 2000). 
 

3.3.4 Scale-Free Networks 
 

ER graphs and SW networks have similar degree distributions, that is, both classes of 

networks peak at a certain value k  and then they decay exponentially (as depicted 

in Figure 3-13 and Figure 3-17). 

 

However, in real networks, nodes and edges are not randomly assigned, but the way 

they behave and attach follows specific rules. One of these rules can be classified as 

preferential attachment: new nodes will connect to the already most connected nodes 

in the network. Preferential attachment can also be thought of as popularity is 

attractive (or the rich get richer).  

 

Barábasi and Albert (1999) construct a model (BA) that is capable of reproducing the 

preferential attachment behaviour. Moreover, the BA model differs with respect to 

ER and SW in the fact that it is a dynamic model; hence, it looks at the evolution of a 
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network, assuming that the topology of a network can be explained by its evolution 

through time. More precisely the BA model is based upon the application of two 

rules, which are considered key features of networks that are built on real data. 

• Growth : starting with a small number of nodes 0N , at every time step one new 

node is added and connected to n already existing nodes, being 0Nn < ; 

• Preferential attachment: the probability Π  that a new node will attach to an 

already existing node depends on the degree k of the already existing node i: 

( )
∑

=Π

j
j

i
i k

k
k . 

After a certain time interval t, the network constructed following the rules defined 

here, will have 0NtN += nodes and kt edges (Figure 3-18 shows the evolution and 

construction of such a scale-free network). 

 

.  

 

Figure  3-18 Evolution of a the BA model 
Starting with N0=3 number of nodes, at each time step a new node is added as well as k<N0=2 
number of edges, new nodes attach according to the preferential attachment rule (Own 
elaboration). 
 

Numerical simulations show how the BA model evolves into a scale invariant state 

(thus the name Scale-Free) where the probability of finding a node with degree k 

follows a power law with exponent BAγ  equal to 3: i.e. for largeN , 3)( −∝ kkP . 

t=0 

t=2 t=3 

t=1 
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Figure 3-19 depicts numerical simulations for the BA model with different starting 

number of nodes. 

 

 

Figure  3-19 Numerical simulation of the BA model  
Where N=N0+t=300,000 and N0 differs, being 1 (circles),  3 (squares),  5 (diamonds),  7 
(triangles). Being k the degree of node i and P(k) the probability of finding a node with degree k 
(after Barabási et al., 1999). 
 

The average path length of the BA model is smaller compared to that of a random 

graph (ER), as shown in Figure 3-20. More precisely, the average path length of the 

BA network increases with respect to the logarithm of N, with the best fit assuming 

the following form: ( ) CBNABA +−= lnl . 
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Figure  3-20 ER (random graph) and BA model average path length (l) 
The network having <k>=4 and being of the same size N (after Albert & Barabási, 2002). 
 

The fact that the BA model has a smaller average path length than that of a random 

graph ER indicates the higher efficiency of the Scale-Free topology compared with 

the random graph topology when nodes are hit by random errors (see section 5.1 for 

more information on errors and attacks effect on different network topologies). The 

clustering coefficient has been widely investigated for Small-Worlds and Random 

Graphs; there is no analytical formulation of C for the BA model. However, Albert 

and Barabási (2002) show that the clustering coefficient of a BA network will be of 

the following form: 75.0−∝ NCBA , which is higher than the clustering coefficient of a 

random graph (being 1−∝ NCER ) as shown in Figure 3-21.  
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Figure  3-21 Clustering coefficient (C) of the BA model and the ER graph 
Note how the two clustering coefficient diverge when N (size of the network) increases (after 
Albert & Barabási, 2002). 
 

Another important property of the BA model is that its node degrees are correlated. 

This result is the outcome of the construction of the network (that evolves) and is a 

feature that is not present in random graphs (where node degrees are uncorrelated). 

In other words, if nodes that have degree k and nodes that have degree l are taken 

into account, then the number of pairs connected with degrees k and l will be kln . 

Since lkkl nnn ≠ , correlations do exist (in random networks lkkl nnn = ). It is 

important to know that this correlation arises spontaneously, but are nevertheless 

non-trivial (due to the dynamical process that generates the BA network). 

 

3.3.5 Modularity 
 

All the network classes described in section  3.3 can have different characteristics 

based on the metrics portrayed in section  3.2. Another characteristic of complex 

networks is modularity. Modularity or community structure seems to be a common 

feature of many different networks (Newman, 2006; Newman & Girvan, 2004). A 

modular structure refers to a network whose nodes are densely connected within a 
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specific group and loosely connected to nodes belonging to other groups. Figure 3-22 

graphically displays a modular network. 

 

 
Figure  3-22 Modular network with 10 communities 
(Own elaboration) 

 

Discovering the best possible partition of a network across communities is a non-

trivial problem. There is a need to balance accuracy and computational limits given 

by present-day possibilities (and costs). Newman and Girvan (2004) propose the 

following algorithm in order to detect community structures (or modules) in complex 

networks: 

 

1. The betweenness scores for all edges in the network is calculated (i.e. refer to 

section  3.2.1 for detailed information on betweenness). 

2. The edge with the highest betweenness score is removed from the network; if 

two or more edges have the same highest score, one edge will be randomly 

chosen and removed. 

3. Repeat steps 1 and 2. 

 

This algorithm allows defining different modules existing in a network and 

introduces a new network metric: the modularity index (Newman & Girvan, 2004). 
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The modularity index is a measure that allows the comparison of different network 

partitionings. Formalizing, Q being  the modularity index: 

∑ 
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ij jiM

kk
a

M
Q ,22

1 δ , where ic  represent the community to which node i 

belongs and 
ji cc ,δ  is the Kronecker delta function taking value 1 if nodes i and j 

belong to the same community, and 0 otherwise. M represents the total number of 

edges in the network and ija  represents the network’s adjacency matrix (see section 

 3.1). 

 

To this point , this chapter introduced and described network structures and the most 

common metrics used in the literature. Moreover, a brief classification of networks 

based on certain metrics is given. The next section of this chapter characterizes real 

networks as found in the literature and reports their main metrics. 

 

3.4 Real Networks 
 

In the previous sections of this chapter, the main measures used to topologically 

characterize a network have been explained, and four models that are often used to 

classify a graph have been presented: regular, random (ER), small-world (SW) and 

scale free (SF). This section summarizes a sample of networks studied, giving a 

central role to ecological networks (more precisely, food webs). 

 

The increased use of complex network tools is largely attributed to the growing 

interest in complexity issues since the turn of the last decade, thus the will to go 

beyond reductionism and understand organizing principles of complex systems 

accompanied by the increase in computing power and the possibility of accessing 

large databases. This led to the study of the first real world networks (Albert & 

Barabási, 2002; Dorogovtsev & Mendes, 2002). 

 

Since 1999 a number of real networks have been analysed (see the reviews of Albert 

& Barabási, 2002; Caldarelli, 2007; Dorogovtsev & Mendes, 2002; Newman, 2003b; 

Watts, 2004). Some of the most meticulously studied large networks are: the World 



57 
 

Wide Web, the citation of academic papers and the scientific collaboration networks. 

This is also due to the availability of data and the small relative cost of obtaining 

them. 

 

At present, the World Wide Web represents the largest network on which 

information is available. The WWW network is defined as a graph whose nodes are 

the web pages and whose edges are the hyperlinks connecting two web pages. It is a 

directed network; thus, it has an in-degree distribution and an out-degree distribution. 

At first, as explained in Barabási and Albert (Albert & Barabási, 2002; Barabási & 

Albert, 1999), scholars were expecting the WWW to follow a Poisson distribution, 

hence behaving as a random graph. However, they soon discovered that the WWW 

was following a power law degree distribution, thus resembling what has been 

classified as a scale-free network. Table 3-1 gives an overview of the studies that 

refer to the World Wide Web. 

 
Table  3-1 World Wide Web based networks 

 

Network N  k  outγ  inγ  l  C  

WWW 325729 4.51 2.45 2.10 11.20  

WWW (Altavista) 203549 10.46 2.70 2.10 16.18  

WWW pages (nd.edu) 269504 5.55 2.40 2.10 11.27 0.29 

WWW, site level 153127 35.21  1.94 3.10 0.11 

Notes: The table reports their size (N), the average degree (k ) the in and out degree exponent 

of the power law distribution ( inγ  and outγ ), the average path length (l ) and the clustering 

coefficient (C ) (adapted from: Albert & Barabási, 2002; Dorogovtsev & Mendes, 2002; 
Newman, 2003b). 
 

In citation networks, academic papers represent the nodes of the network and citation 

to other papers represents the edges. This type of network excludes or renders highly 

improbable the appearance of loops, since it is very unlikely to cite papers that are 

still not published (with the citation of forthcoming papers as an exception). 

Collaboration on scientific papers is another well studied network. Here, nodes are 

represented by authors and an edge is formed when two authors collaborate on a 

paper. This type of network is often limited to authors that pertain to a certain 

“literature” (e.g. medline, biology, mathematic, physics and so on). Table 3-2 gives 
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an overview of citation and collaboration networks that have been analysed in the 

literature.  

Table  3-2 Co-authorship and citation based networks 
 

Network N  k  γ  l  C  

 SPIRES co-authorship   56 627 173.0 1.2 4.0 0.73 

 Biology co-authorship   1 520 251 15.5  4.9 0.60 

 Neuroscience co-authorship   209 293 11.5 2.1 6.0 0.59 

 Math. co-authorship   70 975 3.9 2.5 9.5 0.76 

 LANL co-authorship   52 909 9.7  5.9 0.43 

 Citation   783 339 8.6 3.0   

Notes: The table reports their size (N), the average degree (k ) the degree exponent of the 

power law distribution ( γ ), the average path length (l ) and the clustering coefficient (C ) 

(adapted from: Albert & Barabási, 2002; Dorogovtsev & Mendes, 2002; Newman, 2003b). 
 

Networks have also been analysed in different context such as biology (e.g. protein 

and neural networks) and linguistics (e.g. words that appear in the same sentence). 

Networks examining the structure of boards of directors have also been studied, 

where every director is a node and an edge is formed when two directors sit on the 

same board. Finally, other types of networks such as the network of sexual contact 

and of telephone or e-mail exchange have been analyzed. Table 3-3 gives a summary 

of these studies. 
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Table  3-3 Other networks 
 

Network N  k  γ  
outγ  inγ  l  C  

 Caenorhabditis elegans    282   14.0      2.65   0.28  

 Escherichia coli   (metabolic)   778   7.4   2.2     3.20    

 Metabolic network    765   9.6   2.2     2.56   0.67  

 Protein interactions    2115   2.1   2.4     6.80   0.07  

 Saccharomyces cerevisiae   1870   2.4    2.4   2.4      

 Word co-occurrence    460902   70.1      2.67   0.44  

 Words Roget's Thesaurus    1022   5.0      4.87   0.15  

 Words, synonyms    22 311   13.5   2.8     4.50   0.70  

 Film actors    449 913   113.4   2.3     3.48   0.78  

 Company directors    7 673   14.4      4.60   0.88  

 E-mail messages    59 912   1.4   2.0 1.5  4.95   0.16  

 E-mail address books    16 881   3.4      5.22   0.13  

 Phone call    533106   3.2   2.1 2.1   

 Sexual contacts    2 810    3.4 3.4  3.20   

Notes: The table reports their size (N), the average degree (k ) the in and out degree exponent 

of the power law distribution ( inγ  and outγ ) or the degree distribution if the network is 

undirected (γ ), the average path length (l ) and the clustering coefficient (C ) (adapted from: 

Albert & Barabási, 2002; Dorogovtsev & Mendes, 2002; Newman, 2003b). 
 

3.4.1 Ecological Networks: Food Webs 
 

Although ecological networks resemble topological characteristics of other networks 

(Dunne et al., 2002a, 2002b), recent development points at treating them as 

transportation networks (Caldarelli, 2007; Garlaschelli, 2004; Garlaschelli et al., 

2003). In other words, ecological networks are represented as the structure on which 

other dynamics unfold.  

 

Ecological networks, more precisely food webs, require the detection of the predator-

prey relationships of every species with all others present in the designed study area. 

This predator-prey relationship may as well be represented by a network whose 

nodes are species and whose directed edges are predator-prey relations. 
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Theoretically, in order to properly describe an ecological system it would be crucial 

to know the amount of predation as well, but, since this information requires 

extensive field work it is usually overlooked by most food webs studies. Although 

the nodes of a food web usually represent different species, recent studies prefer to 

design ecological networks whose nodes represent trophic species (Caldarelli, 2007; 

Dunne et al., 2002a,  2002b; Garlaschelli, 2004; Garlaschelli et al., 2003; Williams & 

Martinez, 2000). Trophic species are defined as a group of species that are 

functionally equivalent, that is, that share the same set of prey and predators3. 

 

A food web shapes and is shaped by the environment. Simple organisms such as 

bacteria and plants form the basis of a food-web, and for this reason they are also 

called basal (species that have no prey). Basal species have to convert the flow of 

resources that comes from the environment into a flow of resources for intermediate 

species (species that have preys and predators) that in turn will transform more 

resources in order to sustain top species (species that have no predators). Figure 3-23 

graphically represents such relations.  

 
Figure  3-23 Food-web graphic representation 
The flow of resources is represented by the directed edges while nodes represent trhophic 
species (Own elaboration). 
 

The flow of resources is the crucial element in a food web, and the ecological 

network can be thought of as a transportation network in which resources are 

transferred from the environment up to top species (Garlaschelli, 2004; Garlaschelli 

et al., 2003). According to Dunne et al. (2002a; 2002b) connectance (also called edge 

density) plays a crucial role in assessing the robustness of a food web. Connectance 

can be defined as the number of edges (predations) that are present in an ecological 

network with respect to the maximum number of possible edges (predations). 

                                                 
3 From here on, for brevity the word species refers to trophic species unless other specified. 

= basal 

= intermediate 

= top 

= environment 
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Formally: )1( −= nn
mc ,where =m the number of edges that exist in the web and 

=− )1(nn  the number of possible edges (hence for big enoughn , 2n
mc ≅ ). 

 

Recent studies that depict food webs as transportation networks have led to the 

discovery of scale-invariance of the system (Garlaschelli, 2004; Garlaschelli et al., 

2003). Moreover, depending on the graphical representation of the transportation 

network it is possible to assess the efficiency of the food web, with a star-like 

network appearing as the most efficient and the chain-like network as the least 

efficient (see Figure 3-24). 

 

Figure  3-24 Food webs as transportation networks 
From the most efficient (star-like at the left) to the least efficient type (chain-like at the right), 
(Own elaboration). 
 

Furthermore, it is possible to associate the star-like and the chain-like topology of a 

food web to an “efficiency exponent” η ; with 1=η attributed to the most efficient 

network (shown at the left in Figure 3-24) and 2=η  to the most inefficient network 

(shown at the right in Figure 3-24) (Garlaschelli, 2004; Garlaschelli et al., 2003). 

Table 3-4 reports the main food-webs studied so far with the most important 

measures used to characterize them. 
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Table  3-4 Food-webs 
 

Food web   N  c  l  C  η  

 Bridge Brook Lake   25 0.171  1.85   0.16   

 Skipwith Pond  25 0.315  1.33   0.33  1.13 

 Coachella Valley 29 0.312  1.42   0.43  1.13 

 Chesapeake Bay   31 0.071  2.65   0.09   

 St Martin Island  42 0.116  1.88   0.14  1.16 

 St Marks Seagrass 48 0.096  2.04   0.14  1.16 

 Grassland 63 0.026  3.74   0.11  1.15 

 Silwood Park  81 0.030  3.11   0.12  1.13 

 Ythan Estuary1 83 0.057  2.20   0.16  1.13 

 Scotch Broom   85 0.031  3.11   0.12   

 Little Rock Lake 93 0.118  1.89   0.25  1.13 

 Canton Creek   102 0.067  2.27   0.02   

 Stony Stream   109 0.070  2.31   0.03   

 Ythan Estuary2   124 0.038  2.34   0.15  1.13 

 El Verde Rainforest   155 0.063  2.20   0.12   

 Lake Tahoe   172 0.131  1.81   0.14   

 Mirror Lake   172 0.146  1.76   0.14   

Notes: Where possible, for every food web the number of trophic species (sizeN ), connectance 

( c ), average path length (l ), clustering coefficient (C ) and the efficiency exponent (η ) are 

reported. Ythan Estuary is reported without (1) and with (2) parasites (adapted from: Dunne et 
al., 2002a; Garlaschelli, 2004)  
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3.5 Concluding Remarks 
 

This chapter has introduced one of the tools and techniques that will be used at a 

later stage in order to assess the resilience of a system. First of all the structure of 

networks has been explained and some definitions of network structures have been 

presented (e.g. sub-graphs, trees, cycles, complete sub-graphs).  

 

The most commonly used measures have been introduced so as to characterize the 

topological features of a network (e.g. global efficiency, local efficiency, degree, 

degree distribution, closeness centrality etc). Finally, the interdisciplinary character 

of network theory has been demonstrated by looking at how networks have been 

applied in very different domains. Section  3.4 has shown how network theoretical 

tools have been used in different disciplines that go from biology to ecology, from 

economics to sociology, highlighting food webs as transportation networks. Given 

the use of network approaches in such different disciplines, the use of network 

metrics appears to be a promising avenue for characterizing CAS, such as SES from 

a structural perspective. Network theoretical tools need to be used in conjunction 

with a framework that allows us to explicitly incorporate SES characteristics. 

Network theoretical tools embedded in a resilience framework (explained in Chapter 

 4) will be used to assess SES resilience in subsequent chapters of this work (i.e. 

Chapters  6,  7, and  8). 
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4 Resilience Theory 
 

This chapter centres on the concept of resilience, so as to put in context the 

methodological tools that will be used as the analysis proceeds (i.e. chapters  6,  7, and 

 8). Section  4.1 defines resilience and justifies the linkages that exist between the 

social and the ecological systems. Section  4.1.1 reports the main methods used and 

the theoretical advancements made in resilience theory (i.e. adaptive cycle and 

panarchy). Section  4.1.2 introduces the peculiarities of humans and how they can 

influence ecological systems.  

 

Section  4.2 glances upon the several attempts made to measure resilience across 

different disciplines. Section  4.2.1 shows the importance of human interactions with 

the ecological system using the framework of Anderies et al. (2004). Finally, section 

 4.3 summarizes the main characteristics of the resilience theoretical framework in 

relation to thiw work, and gives brief concluding remarks on the importance of 

resilience for the analysis of a SES. 

 

4.1 Linking Social and Ecological Resilience 
 

Resilience is the ability of a SES to absorb disturbance and re-organize while 

undergoing change, so as to still retain essentially the same functions, structures, 

identity and feedbacks (Walker et al., 2004).  

 

The definition above has evolved from the original one introduced by Holling in the 

early 1970’s when equilibrium thinking was still the most important way to look at a 

system. In his seminal paper, Holling (1973: 17) defines resilience “as the ability of 

an ecological system to return to an equilibrium state after a temporary disturbance”. 

Resilience as defined by Walker et al. (2004) can be thought of as the synthesis 

between Gunderson and Holling definition of resilience given in 2002 (Gunderson & 

Holling, 2002) and the operational definition given by Carpenter et al. (2001). 

Specifically resilience refers both to the amount of disturbances that a system can 

undergo while maintaining its original functions and controls (Gunderson & Holling, 
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2002)4, as well as to the extent to which a SES is able to self-organize, learn and 

adapt (Carpenter et al., 2001) 5. 

  

The resilience definition used is based on non-equilibrium and accommodates the 

need to be “integrative” (i.e. using a systemic approach) in order to understand any 

SES. That is, it goes beyond reductionism and looks at how a system behaves as a 

whole. It is not possible to look at single and separated causation relation, as it is 

important to look for and understand multiple causes that are at least partially 

interlinked with each other. Furthermore, it is crucial to incorporate uncertainty, and 

base decisions upon multiple hypotheses, and not upon the testing (approve/reject) of 

a single one (Holling, 1998). 

 

Since the resilience concept embraces uncertainty and multiple hypotheses, the 

interaction between humans and nature (characterized by uncertainty, surprises and 

multiple possible explanations) becomes central in order to be able to give a 

reasonable explanation of a SES. Moreover, it is accepted that 

production/consumption and well-being do not only depend on the social system, but 

also on the ecological system in which they are embedded (Arrow et al., 1996; 

Olsson et al., 2004; Scoones, 1999; Walker et al., 2002).  

 

According to Scoones (1999) the ecological system is the result of the interaction 

between itself and the social system, more precisely the ecological system affect the 

social one, which in return impacts upon the ecological system as shown in  

Figure 4-1. 

 

Figure  4-1 Interaction between social and ecological systems 
(Own elaboration). 

                                                 
4 i.e. a measure of the system’s ability to cope with unexpected/unpredictable events (Holling, 2001). 
5 For in depth information on the various definition of resilience used in the literature, please refer to 
(Brand & Jax., 2007). 

Ecological  
System 

Social  
System 
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Therefore, a specific SES is the result of a context specific history of (inter)actions 

occurring between humans and the environment (Scoones, 1999), hence the 

importance of linking social issues to ecological issues. It is then possible to define a 

spatial system6 consisting of two major components: humans and nature (i.e. social 

system and ecological system). Thus, resilience is a characteristic of the whole 

system (social AND ecological) and the interactions and processes that exist between 

and within the two system are fundamental for its assessment.  

 

It is worth recalling that resilience is the ability of a system to absorb disturbance and 

re-organize while undergoing change so as to still retain essentially the same 

function, structure, identity and feedbacks (Walker et al., 2004). Given the 

interlinkages that exist between the social and the ecological system, it is possible to 

argue that social and ecological resilience are strictly related. According to Adger 

(2000) the link that exists between the social and the ecological system is stronger 

the more a community is resource dependent. Therefore, the resilience of an SES will 

depend on the biodiversity of the ecosystem among other ecological variables, and 

on the institutional rules and the means of production that are present in the social 

system. The stronger the resource dependency of a given community, the stronger 

the relation between social and ecological resilience will be. Thus it is possible to say 

that for many predominantly rural societies, social relations are mainly shaped by the 

local environment in which they are embedded. Such communities are not able or do 

not have the possibility to substitute natural for man-made capital. This reasoning 

leads to assert the importance of enhancing the resilience of a SES. From this point 

of view the resilience of a system is a vital component of sustainable development 

and sustainable resource utilization (Adger, 2000). 

                                                 
6 Here a spatial system refers to any territorial space where there exist nature and human interaction 
(directly or indirectly). To some degree a spatial system can be defined as any region or territory on 
earth. The boundaries will be artificial in any case. 
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4.1.1 From Adaptive Cycles to Panarchy 
 

Starting from the original definition of resilience in 1973, and proceeding to the most 

recent definition given by Walker et al. (Holling, 1973; Walker et al., 2004), it is 

possible to affirm that the complexity of SES does not rely upon the random 

interaction of a great number of elements, but, most likely, on the interlinkages that 

occur between a small set of controlling variables (Holling, 2001,  2004). Amaral 

and Ottino (2004: 148) define complex adaptive system as follows: 

A complex system is a system with a large number of 
elements, building blocks or agents, capable of interacting 
with each other and with their environment. The interaction 
between elements may occur only with immediate 
neighbours or with distant ones; the agents can be all 
identical or different; they may move in space or occupy 
fixed positions, and can be in one of two states or of multiple 
states. The common characteristic of all complex systems is 
that they display organization without any external 
organizing principle being applied. The whole is much more 
that the sum of its parts. 

 
According to Holling (2004) and to the definition above, self-organization is crucial, 

and is achieved thanks to a small set of controlling variables interacting with each 

other. These interactions are the drivers of the complexity, the adaptability and the 

transformability of a SES. The evolution of these key interconnected elements can be 

represented by an adaptive cycle. 

 

The adaptive cycle is an abstract construction in which four stages are represented. A 

system does not follow the four stages linearly, but it can jump from one phase to 

another, forward or backwards. The four phases are defined as: growth, 

accumulation, restructuring, renewal and they can be divided into two main parts: a 

front-loop of growth (or exploitation) (r ) and accumulation (or conservation) (K ) 

and a back-loop of novelty (or release or creative destruction) (Ω ) and renewal (or 

reorganization) (α ). The front-loop is generally more predictable and less 

characterized by uncertainties and surprise (thus more stable), while the back loop is 

generally less predictable or unpredictable and is characterized by a higher degree of 

surprise and uncertainty (thus more unstable). Figure 4-2 represents the adaptive 
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cycle. It is important to stress again that the succession is not linear, but a system can 

jump from one phase to another independently of the arrows shown in Figure 4-2. It 

is also worth noting that accumulation refers to accumulation of resources that can be 

either desirable or not (e.g. phosphates accumulation in soil due to fertilizers). 

 

 

Figure  4-2 Adaptive cycle representation 
Arrows on the loops indicate the succession of stages (after: Gunderson & Holling, 2002). 
 

Three main dimensions allow the definition of the different stages of the adaptive 

cycle: potential, connectedness and resilience; in other words: the capacity of the 

system to accumulate and use resources, the increase of the rigidity of connections 

and the capacity of the system to absorb shocks. Figure 4-2 represents the adaptive 

cycle on a plane: the axis of “resilience” is not shown. If the third axis is added and 

the cycle is projected in a three dimensional space, it is possible to observe how 

resilience increases or decreases depending on the phase of the cycle (as shown in 

Figure 4-3).  

 

More precisely, in this thesis, the most important relationship is the one occurring 

between connectedness and resilience: as connectedness increases, the resilience of 

the system seems to decrease. Connectedness can be thought of a measure of the 

rigidities of a system. A rigid (highly connected) system undermines the ability to 

respond (adapt effectively, or maintain controls and functions) to surprise and 

uncertainty, since the flexibility and learning from different experiences is crucial for 

maintaining a system in a desirable state. For example, one may think of 

connectedness as wires between two objects. At first, an increase in connectedness 

renders the two objects more stable, thus enhancing their state, but if the number of 
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wires keep increasing, than eventually the two objects will be unable to move. In this 

case, a shock affecting one of the two objects will transmit entirely to the other, 

favouring a “cascading” collapse. 

 

Figure  4-3 Adaptive cycle projected in a three dimensional space 
(after: Holling & Gunderson, 2001). 
 

The Lake Mendoza case study (Carpenter et al., 2001) is reported as an example to 

facilitate the understanding of the adaptive cycle. Since the object of the example is a 

lake, it is possible to affirm that the management will attempt to keep the lake in its 

desirable state of clear water versus the undesirable state of turbid water (from here 

on: clear state and turbid state). According to Carpenter et al. (2001) Lake Mendoza 

in Wisconsin is an example of a slow change from the clear state to the turbid state. 

The lake was characterized by a first front loop of growth and accumulation (from r  

to K ) when the first settlers came in the 1840’s. Agricultural production did not 

increase much, but population did, as well as the human-produced waste. After 

World War II, an increase in agricultural production as well as urbanization in the 

area triggered a sharp decrease (collapse) in water quality (with the lake being now 

in the Ω  phase as a result).  

 

Given the situation, the proposed solution favoured the diversion of sewage effluents 

from the lake (phaseα , reorganization and experimentation of new ways). 

Unfortunately, when completed, the diversion did not improve the water condition of 

the lake, since what was saved from sewage was added to the lake as increase in 

fertilizer use. The spread of bacteria created public nuisance and lowered even more 
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the water quality of the lake, hence returning rapidly to another Ω  phase. Since the 

failure of the sewage effluent diversion, managers of the lake thought of another way 

to tackle the continuing decrease of water quality, hence initiating another set of 

policies aimed to restore/increase water quality in Lake Mendoza (another α  phase), 

but due to low participation of the most affected interest groups (social problem), this 

possible remedy produce limited results, leading to another Ω  phase. Again, a new 

set of possible solutions was put in place (this time bio-manipulation) initiating a 

new reorganization (α ) phase, and for the fourth time, the policies in place did not 

result in the desired outcome. Hence, nowadays a new set of policies is tried, 

although the effects can still not be ascertained. Figure 4-4 summarizes the adaptive 

management cycles of Lake Mendoza: 

 

 

Figure  4-4 Adaptive cycle representation of management of Lake Mendoza 
(after: Carpenter et al., 2001). 
 

From Figure 4-4 it would seem that the stages of the adaptive cycle are subsequent to 

one another, but again, it is important to remind that the phases of the adaptive cycle 

do not follow any order by definition (Walker et al., 2004): its stages are by no 

means intended to be fixed and regular. Systems can move forward, or go back from 

one phase to another, may even jump certain stages, but most importantly, cycles 
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occur at a number of different scales, hence cross-scale interactions are crucial in 

determining the dynamics of a SES (Walker et al., 2004).  

SES are characterized by multiple cross-scale interactions, involving high levels of 

uncertainty and possible surprises. In addition, cross-scale interactions are, according 

to the resilience perspective, what defines a SES multi-stable behaviour (Folke, 

2006); that is, SES can have multiple stabilities in the same basin of attraction (as 

explained in section  4.1.2). Therefore cross-scale interactions may be the reason why 

policies that seem to be appropriately targeted for a single issue do not succeed, as 

these kind of policies fails to address other levels of the system. Cross-scale 

interaction can be divided into two main categories as shown in Figure 4-5: 

 

• Time interactions: policies and actions implemented today may have 

undesired consequences in the future and may be limited by actions and 

policies implemented in the past. 

• Space interactions: policies and actions at the local level may be influenced 

or may influence unintentionally policies and actions taken at a higher level 

(e.g. local actions are influenced and may influence county policies and 

actions that influence or are influenced by national policies and action). 

 

 

Figure  4-5 Stylized Panarchy  
(after: Holling, 2001) 
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In this context, Panarchy may be defined as the whole of the hierarchical levels (i.e. 

the whole of the different time and space scales), where each level is characterised by 

an adaptive cycle. More precisely, the concept of Panarchy combines the hierarchical 

structure of systems evolving from small and fast systems, such as individual choice 

or a leaf of a tree, to large and slow systems, such as social embedded institutions or 

a whole forest. This nested structure exchanges renewal and conservation thanks to 

two processes, called revolt (e.g. dramatic changes, such as a fire or a disease), and 

remember (e.g. rebuilding based on past history, as in the case of unused seeds or 

embedded institutions). Smaller and faster systems affect larger and slower ones 

through the revolt element, while larger and slower systems have an impact on 

smaller and faster ones through the remember element as shown in  

Figure 4-6. Although the representation of the connections existing between different 

levels is far from complete, as multiple linkages between different phases of each 

level may exist, the two described above (revolt from smaller Ω  to larger K  and 

remember from bigger K  to smaller α ) may be crucial for the understanding of a 

system (Holling, 2001,  2004). 

 

 

Figure  4-6 Panarchy: small and fast vs slow and big 
How smaller and faster cycles are influenced and influence slower and bigger cycles in the 
Panarchy context (after: Gunderson & Holling, 2002) 
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To explain the Panarchy nature of SES it is possible to think of the management of a 

particular rural area where a policy to enhance agricultural production is put in place. 

The policy aims at incentivizing the use of fertilizers. Fertilizers will increase 

agricultural production, but an extensive use may actually reduce soil capacity 

(increasing the phosphate present in the soil), this leading, in the long run, to an 

actual decrease of ecosystem resilience, and eventually affecting in an undesired way 

the agricultural production at a different time scale (e.g. in the long run). In the 

context of the lake example proposed above, one may think of an increase in 

fertilizer use due to prior policies designed to improve agricultural production. The 

increased use of fertilization introduces phosphates into the soil, and from there into 

the lake, eventually creating the conditions for a transition from a clear state to a 

turbid state (Elmqvist et al., 2003; Folke et al., 2004). 

 

According to the adaptive cycle and Panarchy of SES, human history exhibits non-

regular changes but rather disruptions that are spasmodic and catastrophic (e.g. the 

collapse of the Western Roman Empire, the French and the Soviet Revolution) 

followed by a long period of development (Holling, 2001). More precisely, it is 

possible to affirm that two main trends have been observed in the history of SES: 

 

• Levels of Panarchy are added over time: an increase in the complexity of 

societies and differentiation of species in an ecosystem (e.g. from the tribal 

organization to the nation states, from unicellular organisms to mammals). 

• Changes from one regime to another are rapid and discontinuous, often non-

predictable and surprise-generators. 

 

Discontinuous and unpredictable shifts may be the result of small changes and 

shocks that accumulate throughout the various levels of the Panarchy. In particular, 

an abrupt shift of a system (collapse) could happen when the adaptive cycle at 

various levels finds itself in the Ω  phase (Holling, 2001,  2004; Holling & 

Gunderson, 2001). To clarify this concept, a very simplified example is presented. 

Recall the previous example of Lake Mendoza and think of two groups deriving their 

livelihoods from local resources: farmers and fishermen. Moreover, for the sake of 

simplicity, let us assume that both groups are educated and fully informed on the 
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state of the lake and the amount of phosphates that will cause a shift of the lake from 

a clear to a turbid state. Let us further assume that the regional government decides 

to increase agricultural production, thus incentivizing the use of fertilizers (that 

contain phosphates). We also assume that these incentives, if used, will provoke a 

regime shift and both, farmers and fishermen are aware of such consequences. What 

will happen in this hypothetical situation? Since the key objective is to define 

Panarchy, let us depict only two different scenarios: 

 

• The two groups have created a joint institution to manage the local lake and 

surroundings in order to enhance the standards of living of the 

community(social system in K  phase). In this case, it may well be the case 

that farmers renounce to introduce more phosphate into the soil and the lake. 

• There is civil unrest and the two groups are in conflict (social system in Ω  

phase). In this context, the farmers may welcome the new set of policies and 

increase fertilizer use. The lake shifts to a turbid state and the fishermen are 

forced to leave the lake (which may also lead to a “cultural” change, in the 

case of fishermen losing indigenous knowledge in the long run). 

 

4.1.2 Introducing interactions with and within huma ns 
 
As the example above reveals, the interactions of humans with one another and the 

environment in which they are embedded is fundamental for the resilience of a SES. 

Moreover, collapse is often triggered by events that are almost non-predictable7. 

How can humans then adapt to this uncertainty and surprise state that characterises 

the world in which they live? 

 

Humans have the ability to foresee and intentionally pursue different paths of SES 

management. As the management of Lake Mendoza has demonstrated, humans are 

able to adopt strategies based on their experience, and based on an envisioned 

specific objective. Moreover, they are able to select those strategies that they deeme 

to be the most appropriate one. The social system is also able to learn from prior 
                                                 
7 In the example given in section  4.1.1, information will be very limited, not permitting a clear cut 
decision even to the joint institution, leading to multiple different possible outcomes. 
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knowledge and to experiment new ways (or management paths) so as to achieve 

desired outcomes. However, as the same example shows, the ability to foresee and to 

intentionally manipulate certain aspects of a SES does not always lead to the desired 

result. Since the knowledge of a panarchical adaptive system (as a SES is) can never 

be complete, one should always plan for the possibility that uncertain and extreme 

events may happen. Social-Ecological systems are characterized by a high level of 

uncertainty and surprise; policies that are designed in order to optimise one scenario 

(or one possible foreseen future) could result in worsening the situation, since 

predictions often fail to materialise. Thus, it is worth to implement policies that can 

be robust across multiple scenarios (alternative possible foreseen futures), and that 

can enhance the resilience of the overall SES (Bankes, 2002). Furthermore, as Alfred 

Marshall pointed out more than a century ago, optimising one scenario is a useful 

solution only in the short run and when the system is fairly stable (i.e. institutions, 

culture, politics, and general economic conditions) (Foster, 2005), and this is not 

clearly the case in the present world and for most if not all of the SES. 

 

Another characteristic that can be thought quite peculiar in humans is 

communication. More precisely, humans are capable of communicating ideas and 

experiences. Communication plays a crucial role in the development of feasible and 

flexible strategies necessary to manage adaptively (or co-manage adaptively) SES. In 

this context a very interesting result has been discovered through simulations (Bodin 

& Norberg, 2005): if the social network (or network of relations) is over-connected, 

the flexibility of the system is reduced and the whole community behaves as a single 

entity, hence not allowing for experimentation and reducing the resilience of the 

overall SES. However, relations and communication can foster (if not locked-in) 

flexibility and new ideas, as well as inform learning. In the the Lake Mendoza 

example, communicating past experiences allowed managers to experiment with new 

management paths (strategies) that could have produced better results. Moreover, 

they preserved prior knowledge and increased their experience in resource 

management. 

 

Finally, the third main characteristic that differentiate humans is technology. 

Technology amplifies the actions undertaken and permits a wider range of 
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possibilities. To return to the Lake Mendoza example, technological advances have 

given the possibility to divert sewage, and to bio-manipulate the lake. Clearly, 

technology can also be a drawback, as it has been the case for fishing industry in the 

North Sea, where new ways of fishing have almost fully depleted the stocks of cod. 

 

Summarizing, it is possible to affirm that human (inter)actions strongly influence the 

resilience of a SES. It is possible to assume that the resilience of a system is the 

result of four crucial aspects, with the first three applicable to every level of the 

panarchy. The four aspects are defined as in Walker et al. (2004: 2-3): 

 

• Latitude: the maximum amount a system can be changed 
before losing its ability to recover (before crossing a 
threshold which, if breached, makes recovery difficult or 
impossible).  

• Resistance: the ease or difficulty of changing the system; 
how “resistant” it is to being changed.  

• Precariousness: how close the current state of the system is 
to a limit or “threshold.”  

• Panarchy: because of cross-scale interactions, the resilience 
of a system at a particular focal scale will depend on the 
influences from states and dynamics at scales above and 
below. For example, external oppressive politics, invasions, 
market shifts, or global climate change can trigger local 
surprises and regime shifts. 
 

Social actors (humans) of a SES can influence the latitude, the resistance and the 

precariousness of the system. More accurately, Walker et al. (2004) redefine the four 

crucial aspects of resilience from a different perspective. In the context set by Walker 

et al. (2004) a system tends to move toward a basin of attraction. Besides, there may 

be more than one basin of attraction depending on the initial conditions and the 

position of a system. To explain: think of a basin of attraction as a bowl, and the 

system as a ball that continuously moves inside the bowl (assuming hence a non-stop 

movement, so that no single equilibrium is reached). Now, assume that there may be 

more than one bowl and the ball can, driven by internal and external factors, jump 

from one bowl to the other. Different bowls represent different basins of attraction as 

depicted in Figure 4-7 and Figure 4-8. 
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Figure  4-7 Basin of attraction representation 
The dashed line representing the different bowl’s boundaries and the black dot representing the 
ball (as described above) (after: Walker et al., 2004). 
 

After defining the concept of basin of attraction, it is possible to redefine the four 

aspects of resilience as follows (the four characteristics are also shown in Figure 4-8) 

(Walker et al., 2004): 

 

• Latitude (L): the width of the basin of attraction (of the bowl); as latitude 

increases, the resilience of the system also increases as it is more likely that 

the ball (system state) will remain in the basin of attraction: a greater number 

of states can be achieved without crossing any threshold. 

• Resistance (R): the depth of the basin of attraction (of the bowl); as the 

resistance increases, greater magnitude of disturbance is required for our ball 

(system state) to cross the threshold and moving to another basin of 

attraction. 

• Precariousness (Pr): how near is the system (our ball) to the boundary of the 

basin of attraction in which it moves. The more the system is precarious, the 

more it will be position itself near the threshold. 

• Panarchy: how the three attributes/characteristics above are influenced by 

cross-scale interaction. That is, how slower and bigger system influence/are 

influenced by our ball and how our ball influences/is influenced by faster and 

smaller system. 
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Figure  4-8 Representation of the four crucial aspect of resilience 
L being latitude, R being resistance, Pr being precariousness as described above. The dashed 
line represent the threshold between the different basin of attraction (after: Walker et al., 2004) 
 

 

Given the definitions above, it can be claimed that humans are capable, given their 

unique features, to alter the basin of attraction in which their SES is embedded. 

Communication fosters new ideas, or preserves tested ideas and allows for 

experimentation or neglect experimentation, while the ability to predict and take 

action based on prior information can better or worsen their situation. Technology 

enables to alter the movement of the system and the basin of attraction. However, the 

limitation and the drawbacks of these characteristics need to be addressed. More 

precisely, the social system can influence the latitude (widening it or narrowing it), 

the resistance (making the basin deeper or shallower), and the precariousness 

(moving the system away or near the threshold line). Two models that deal with the 

presence of humans  and management strategies (or paths) devised for simple SES 

are presented in Chapters  7 and  8. 
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4.2 Theory into practice? 
 

As seen in section  4.1.2, humans have unique features that enable them to manage 

SESs; however, these characteristics are useful to the extent that predictions are 

accurate and communication is effective and translates into action. 

 

The concept of resilience implies the capacity of absorbing disturbances and 

reorganization maintaining the same functions, structure and feedbacks while 

undergoing change  (Olsson et al., 2004). Thus, an understanding of the SES is 

essential, and so is its “measurement”. Although there is ongoing research regarding 

the “measurement” and the adaptive management of SES from a resilience 

perspective (Anderies et al., 2004; Anderies et al., 2006; Carpenter et al., 2001; Folke 

et al., 2004; Janssen et al., 2006; Perrings, 1998; Reggiani et al., 2002; Walker et al., 

2002), quantitatively assessing resilience remains a very difficult task, due to 

complications in disentangling interactions within the subsystems and identifying 

clear causal relationships.  

 

These difficulties are mainly due to the complications arising from the panarchical 

nature of SESs, and the uncertainty that exists when determining the resistance, the 

latitude and the precariousness of the basin of attraction in which the system is 

embedded. In other words, variation in one system affects other systems, often at 

different spatial and time scales (e.g. fertilizers used in agriculture to enhance the 

economic system, actually lower the resilience of the ecosystem and, in the long run, 

of the economic system as well). Actions that may enhance resilience in one system 

in a certain space at a certain time may lower resilience of that very same system at 

another space or time scale.  

 

Given these interaction and the complexity of SES, difficulties arise in assessing the 

build up or erosion of resilience in a quantitative way. Thus, the literature discussing 

the resilience perspective stresses the importance of adaptive management in order to 

either prevent an undesirable basin of attraction or move away from an undesired one 

(Walker et al., 2002). Adaptive management is based on the continuous feedbacks 
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occurring between the social and the ecological system. These feedbacks should 

enhance the learning and the ability to devise possible alternative future scenarios, 

maintaining the diversity needed for reorganization (Carpenter et al., 2001; Olsson et 

al., 2004; Walker et al., 2002). Adaptive management needs to handle the interplay 

between disturbance and reorganization, stressing adaptive capacity, learning, and 

possible innovation allowing for cross-scale interaction and uncertainty. Therefore, 

the management of SES’s implies the advancement toward more desirable states in 

the same basin of attraction, and/or a shift into a more desirable basin of attraction.  

 

4.2.1 Resilience: a first practical definition 
 

As seen throughout this chapter (Chapter  4), a SES is characterized by external (e.g. 

increased urbanization, regional policy that affect local context etc.) and internal 

variables (such as farmers, policy entrepreneurs etc.). Although there are different 

frameworks used to conceptualize resilience, the conceptual framework proposed by 

Anderies et al. (2004) is used here in order to allow a first working definition of 

resilience. In order to comprehend the framework, robustness of a SES needs to be 

defined. Robustnass is defined as the maintenance of a system performance under 

different possible scenarios (different possible and unpredictable external or internal 

events and uncertainty about the information existing on the system). Thus, 

according to Anderies et al. (2004) a robust system may not have the most efficient 

configuration for one possible future (so as to perform at an optimum level), but it 

will be able to perform in more possible futures, while the most efficient 

configuration for one future will easily collapse if that one future does not happen 

(Anderies et al., 2004; Bankes, 2002). 

 

Moreover, this approach is used as the starting point for integrating resilience and 

network theory in Chapter  5 and subsequent chapters of this thesis (i.e. Chapters  6,  7, 

and  8). The robustness conceptualization is the one proposed by Anderies et al. 

(2004) and reported in Figure 4-9. 
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Figure  4-9 SES conceptual framework 
as proposed in Anderies et al. (2004),  (after: Anderies et al., 2004). 
 

To better illustrate the framework, an example will be provided; specifically we will 

take into account two systems, one that deals with agriculture and another that deals 

with fisheries8. In the two different contexts just outlined, the elements in Figure 4-9 

are described as follows (Anderies et al., 2004): 

 

A. The resource being water supply for irrigation or fishery. 

B. The resource users being farmers and fishermen. 

C. The public infrastructure providers being the local government (or the 

farmers and the fishermen themselves, depending on the local context). 

D. The public infrastructure being the works for irrigation, dams etc. (i.e. 

physical capital) or the rules, norms and beliefs that those managing and 

using the system adopt (i.e. social capital). 

 

These four key elements link with one another as Figure 4-9 depicts. What follows is 

a possible description of these links keeping in mind the two systems outlined above 

(Anderies et al., 2004): 

 

                                                 
8 For in depth information on the framework here outlined and the potential complication that may 
arise please refer to the original paper by Anderies et al. (2004). 
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1. Resource and resource users: water or fish availability. In the case of water, it 

may be pointed out that availability when needed is more important, than the 

overall availability irrespective of time. Moreover the link may reveal 

information regarding the exploitation (use) of the resource and the possible 

lessons that can be learned from what has been done in the past. 

2. Resource users and public infrastructure providers: this link could represent 

negotiation and/or interest groups, the voting (if the context allows it) or the 

monitoring of the performance of the providers. 

3. Public infrastructure providers and the public infrastructure itself: building 

the infrastructure needed and their maintenance. 

4. Public infrastructure and resource: how the public infrastructure affects the 

resource (e.g. irrigation is putting water availability at risk? Is the provision 

of free technology for fishermen putting the fishery stocks at risk?) 

5. Public infrastructure and resource dynamics: how infrastructures affect the 

dynamics that have contributed to create. In other words, it is necessary to 

look at the feedbacks between public infrastructures and the ecological 

system (e.g. over-fishing or overuse of water resources due to the 

infrastructures provided). This link may seem similar to the previous one, but 

the main feature here has to do with the feedback structure. 

6. Public infrastructure and resource users: monitoring resource users (e.g. 

fishers and farmers). Make sure resource users obey the rules set for the use 

of the infrastructures provided. Sanctioning (and so enforcement) is also part 

of this link as well as maintenance and production of the infrastructures 

themselves. 

7. Biophysical external events such as floods, droughts, earthquakes etc. 

8. Social external events such as migration, changes in commodity prices, major 

changes in the political arena, civil war etc. 

 

The framework proposed tries to broadly illustrate the structure of agents and links 

that exist in a SES. In addition it is possible to give another and more precise 

definition of what a shift might be when looking at a SES as a single integrated 

system. In this context, it is important to understand that a resource collapse does not 

necessarily imply a system collapse; that is, in order for the SES to collapse (change 
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basin of attraction) both, the ecological and the social system need to collapse. If this 

is not the case, we may simply have a SES closer to the collapse threshold (or nearer 

to shift to another basin of attraction, as explained by Figure 4-7 and Figure 4-8). In 

other words, the SES may find itself in a more precarious state being precariousness 

defined as in section  4.1.2, nevertheless the SES has not yet shifted basin of 

attraction. To be aware of what a SES collapse (shift) signifies, involves the 

comprehension of how interactions between and within the different agents of the 

system affect the overall SES. In other words, it is possible to enhance our 

understanding of the resilience of a SES by looking at how single agents interact 

with one another and with the surrounding environment (i.e. refer to Chapters  6,  7, 

and  8 for a theoretical application of these thoughts).  

 

4.3 Concluding Remarks 
 

This chapter explained what resilience is, and how its definition has evolved. 

Moreover, it links social and ecological resilience, hence allowing treating a SES as a 

single system. Section  4.1 introduced and explained the recent advances in resilience 

theory, particularly focusing on the concept of adaptive cycle and Panarchy. This 

explanation was facilitated by a practical example (Lake Mendoza).  

 

The features characterizing humans have been described in section  4.1.2. These 

features have been integrated in a wider SES context so as to explaine how the social 

system is able to intentionally affect and being affected by the ecological system. 

The terminology used is borrowed by Walker et al. (2004), and the description of the 

attributes that can be shaped by social systems has been presented.  

 

Although progress has been made since Holling first introduced the concept (and 

since scholars first linked social and ecological systems), there is still much ongoing 

research with regard to ways to understand, conceptualise and measure the resilience 

of a SES. In this context, the tools used in network theory may be applied 

successfully to resilience theory, permitting a better visualization and comprehension 

of a system’s strengths and weaknesses, so as to devise better strategies or 
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management paths that lead to adaptation and/or transformation. The integration 

between network theoretical tools and the resilience framework, or, in other words 

how network theoretical tools can be used in order to assess the resilience of a SES, 

will be the focus of the Chapters  5,  6,  7, and  8. 
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5 Network-Resilience Integration 
 
Chapters  3 and  4 have introduced network theory and have summarized the main 

features of resilience thinking. This chapter looks at a first possible network 

resilience definition (section  5.1). Moreover it gives a brief summary of the different 

impact that disturbances (namely errors and attacks) have on network topological 

features. Thus, section  5.1.1 analyzes how errors and attack influence network 

metrics described throughout Chapter  3, in different network classes, described in 

section  3.3. 

 

The second part of the chapter (section  5.2) will briefly outline the preferred avenue 

so as to achieve meaningful insights on how to integrate network metrics and 

resilience of a SES. At first, section  5.2 provides an introduction and justification of 

the use of simulations and agent based models, the latter are investigated in section 

 5.2.1 where they are introduced. Section  5.2.2 outlines important application for 

Chapters 6, 7 and 8. Section  5.2.3 highlights some of the main issues concerning 

agent based models. Section  5.2.4 explains how an agent based model might be 

evaluated and validated. Section  5.2 is a revised version of Baggio (2011).  

 

Section  5.3 examines the possibility of devising a case study as an approach to 

analyze resilience from a network perspective. Ideally case studies will be used in the 

future in order to validate the models presented in  6,  7, and  8, However, at this stage 

of the research a case study is beyond the scope the thesis as first, it is necessary to 

theoretically advance our knowledge and the understanding of how network metrics 

influence the resilience of a SES. Finally, a brief summary of the chapter and of the 

purpose of using theories and methods described here as well as in Chapters  3 and  4 

is provided in section  5.4. 
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5.1 Resilience of a Network 
 

At this stage, a clear definition of network resilience is not available. However, 

network theory has dealt in depth with the concept of robustness. The robustness of a 

network is assessed (in network theory) by analyzing the effect of nodes’ failures on 

common network metrics such as giant connected component (GCC), clustering 

coefficient, average shortest path length, global and local efficiency (please refer to 

sections 3.1, 3.2 and below). Moreover, failures of nodes can be random or targeted 

as explained in section 5.1.1 (Albert et al.  2000; Crucitti et al. 2004). Robustness has 

been widely studied on static networks, specifically investigating structural 

properties of random and scale-free networks (Albert et al. 2000; Crucitti et al. 

2004); however, it does not take into account the dynamic processes shaping the 

evolution of networks and the evolution of processes unfolding upon the networks.  

 

On the other hand, as explained throughout Chapter 4, resilience is an intrinsically 

dynamic concept, thus the starting point is defining network resilience as the amount 

of disturbances a network can undergo without being totally disrupted, that is, 

without breaking down its giant component, while allowing the network to evolve 

(that is to create or delete nodes and edges). Thus, while robustness refers to semi-

static networks, resilience of a network refers to a “robustness” analysis in the case 

of evolving networks, that is, allowing for a network to change in time by removing, 

adding edges and nodes. 

 

The giant connected component contains most of the networks’ nodes. In network 

theory giant components are studied in relation with random graphs, since they 

appear unexpectedly once the percolation threshold is reached (Albert & Barabási, 

2002; Börner et al., 2007; Caldarelli, 2007; Dorogovtsev & Mendes, 2002; Newman, 

2003b). The percolation threshold can be thought of as the critical edge-density at 

which a giant component emerges. A rigorous definition is also provided by 

Dorogvtsev and Mendes (2002: 1151):  

percolation is a phenomenon determined for structures with 
well defined metric structure, e.g., regular lattice. In case of 
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networks […] one can speak about the emergence of a giant 
component. 

 

Moreover, since an SES can be represented by an undirected or by a directed graph, 

the structure of the giant component in both cases will be analyzed. First of all9, it is 

important to stress that in a directed network the existence of a path from node i  to 

node j  does not imply that an inverse path exists. Therefore, what is defined as a 

giant component in an undirected network is considered a giant weakly connected 

component (GWCC) of a directed network. To better understand this concept, refer 

to Figure 5-1. The components not connected to the GWCC (or GCC in undirected 

networks) are called disconnected components (DC) (as in Figure 5-1). 

 

Figure  5-1 Giant connected component (GCC) 
Sample network composed by a GWCC (connected light-grey nodes) and DC (disconnected 
dark-grey nodes) (Own elaboration) 
 

Further, in case of a directed network (a network whose edges are directed) the 

GWCC can be divided into a giant strongly connected component (GSCC) a giant in-

component (GIN), and a giant out-component (GOUT). The GSCC consist of nodes 

that are joined by directed paths (i.e. every node of the GSCC is reachable by any 

other node of the GSCC). The GIN consists of nodes from which it is possible to 

reach the GSCC and the GOUT consists of nodes that can be reached from the 

GSCC. Finally, the GWCC contains tendrils and tubes. Tendrils are nodes that 

cannot reach or be reached by the GSCC but are connected to the GOUT or GIN 

while tubes are nodes that connect GIN and GOUT. Figure 5-2 is built on Figure 5-1 

but the GWCC is divided into the components just outlined above. 

                                                 
9 This section will use the terminology, definitions and acronyms from Börner et al (2007) and from 
Dorogvtsev and Mendes (2002). 
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Figure  5-2 Giant connected component of a directed network 
Sample network as in Figure 1; the GWCC is divided as follows: GSCC (black nodes), GIN 
(stripe nodes), GOUT (grid nodes), tendrils (grey nodes), tube (white nodes) and DC (dark-grey 
nodes);  (Own elaboration). 
 

5.1.1 Disturbances and Resilience in a Static Netwo rk 
 

Given the starting definition of network resilience it is important to distinguish 

between two main disturbances that may affect the resilience of a network: errors and 

attacks. Errors are considered random failures, while attacks are failures that hit 

specific nodes. Errors and attacks have different effects on the main statistical 

features of a network depending on its topology (Albert et al., 2000; Crucitti et al., 

2004).  Random failures and specific failures (i.e. errors and attacks) have been 

studied in relation to random and scale-free networks. As discussed in sections  3.3.2 

and  3.3.4, random graphs are homogeneous while scale-free networks are non-

homogeneous as shown in Figure 5-3. In random network most of the nodes have 

more or less the same degree (i.e. the degree distribution of a random network 

follows a Poisson distribution). In scale-free networks the majority of the nodes have 

a low degree; although some nodes have a very high degree (i.e. the degree 

distribution of a scale-free network follows a power law). 
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Figure  5-3 Random and Scale-Free network  
Random network (left), scale-free network (right) with 100 nodes and 99 edges 
(Own elaboration).  
 

The degree distribution is found to heavily affect the behaviour of a network when it 

is hit by random or targeted failures. More precisely, in random graphs there is no 

appreciable difference between an error and an  attack, while on the contrary, scale-

free networks seem to be much more robust to errors (thus random failures) rather 

than to attacks (Albert et al., 2000). This difference in behaviour is intuitively very 

easy to understand. Since in random networks most of the nodes have the same 

degree, targeting one of them or eliminating randomly one node does not have any 

differentiated impact. On the contrary,  the degree distribution of scale-free networks 

follows a power-law and is highly heterogeneous. In scale-free network, as one 

recalls from section  3.3.4, a high number of nodes has low degree and very few 

nodes have high degree (as shown in Figure 5-3). Thus, it is intuitive when a random 

error occurs, there is a high probability that a node with low degree is hit, thus 

having a low impact on the whole network structure. On the contrary, if an attack on 

the highly connected nodes takes place, the network will be more easily disrupted, 

with respect to a comparable random network, as shown in Figure 5-4. 
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Figure  5-4 Attack and random errors on random and scale free networks 
A represents the rail network of the USA (i.e. a random network); B the airport network of the 
USA (i.e. a scale free network); C shows the effect of random errors on the railway network; D 
shows the effect of random errors on the airport network; E shows the effect of attacks on the 
airport network. Attacks and errors have the same effect on random network, thus the attacks 
for the railway network of the USA are not reported (after: Barabási & Bonabeau, 2003) 
 

Figure 5-5 also looks at the behaviour of a random and a scale-free network when 

errors and attacks occur, but, the effect of errors and attacks is measured by how they 

influence the average path length and the relative size of the giant connected 

component. As Figure 5-5 portrays, the topology of the network clearly influences 

the robustness of a graph with respect to errors and attacks. Figure 5-5 gives a visual 

representation of the key argument of this section and of the whole thesis: topology 

matters. Due to the degree distribution of its nodes, random networks are more 

susceptible to errors in comparison to scale-free network that are very robust to this 

kind of failure. On the contrary, scale-free networks are highly vulnerable if the most 

connected nodes are attacked.  
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Figure  5-5 Error and attack tolerance 
Represent the effect of errors (squares) and attacks (circles) (i.e.  f represents the fraction of 
nodes that has failed)  on the relative size S (a and b) and the average path length l (c and d) of 
the giant connected component of a random graph (a and c) and of a scale-free network (b and 
d). (after: Albert & Barabási, 2002). 
 

Moreover, it is possible to look at the effects of errors and attacks from an efficiency 

(global and local as described in section  3.2) point of view. Again, Figure 5-6 clearly 

shows, the topology of a network plays a significant role with regard to the 

maintenance of efficiency as defined here. As previously explained, scale-free 

network are more tolerant to random failures than random graphs, while on the other 

hand, random network are more tolerant than scale-free network to targeted failures. 
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Figure  5-6 Global efficiency of a network with regard to errors and attacks 
Errors are considered random failures, while attack target the nodes with highest degree. ER = 
Random graph as described by Erdős and Rényi (1959; 1960), BA = Scale-free network with 
preferential attachment as described by Barabási and Albert (1999) (after: Crucitti et al., 2004). 
 
Furthermore, failures influence the average shortest path and the relative size of the 

giant connected component, and they also shape the efficiency of a network. It is 

then possible to confirm that designing a topology that is able to tolerate errors and 

attacks could be a first step in building a SES that is more resilient (i.e. network 

resilient as defined in section  5.1) 

 

Finally it is worth looking at how assortativity (see section  3.2) influences the 

resilience of a network. A network that displays assortative mixing will be more 

tolerant to attacks, since its high degree nodes will be clustered with other high 

degree nodes, while networks that display disassortative mixing are much more 

susceptible to attacks (Newman, 2002,  2003a). It is worth remembering that errors 

and attacks are defined as random and targeted failures. Moreover, it is possible to 

think of attacks as targeted interventions. In a SES, the social system may decide to 

intervene locating a particular node of the food web or of the landscape network, and 

such intervention can be thought of as an attack. Another consequence of the 

assortativity of a network is the formation of the giant component. In assortative 
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networks10 the giant component forms more easily than in disassortative networks 

(Newman, 2002). At the same time, the relative size of an assortative network’s giant 

component is smaller than that of a disassortative network.  

 

5.2 Assessing Resilience: Simulations and Agent-Bas ed 
Modelling 

 
Social and ecological systems might be inherently impossible to predict (Bernstein et 

al., 2000) and can be defined as CAS. As already explained in section  2.2, it is not 

easy to define CAS in an unambiguous way. However, here I summarize the 

definition reported in section  2.2 and used throughout this work. Following Levin 

(2002), a system can be defined as a CAS when a certain number of elements - its 

components - are interacting in interdependent ways. These interactions are typically 

nonlinear and, although “simple” at a local level, they collectively form a non-

predictable set of behaviours and structures at a more macro level (i.e. not derivable 

as a straightforward composition of the local characteristics, or, the sum is 

greater/smaller the its parts). 

 

The properties of a CAS described above results in some characterising features 

(Levin, 2002; Waldrop, 1992) already extensively explained in section  2.2. Here 

these features are just briefly recalled so as to remember them to the reader: 

• Non-determinism.  

• Presence of feedbacks.  

• Distributed nature.  

• Qualitative difference between larger and slower functions (or cycles) and 

smaller and faster ones  

• Limited decomposability.  

• Self-similarity.  

• Emergence and self-organisation. 

 

                                                 
10 Assortative network and disassortative network will be used for brevity, although the following 
terminology is more appropriate: a network that displays assortative/disassortative mixing. 
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Interactions between species in an ecosystem, the behaviour of consumers, or people 

and groups in a community, the stock-market, the immune systems, the river 

networks, and patterns of birds’ flight are all examples of complex adaptive systems: 

in these cases emergent configurations are often not possible to understand via a 

reductionist analysis. That is, via an approach that reduces a complex system into 

sub-components, assuming that relations between these sub-components are stable 

and static. It is counterproductive and can be highly misleading to assume that a 

complex system is a mere sum of its components. 

 

The study of CAS calls for a new strategy, which makes cross-disciplinary 

comparisons looking for features that are common to different systems in different 

domains (Lansing, 2003). CAS differ from systems studied in other disciplines such 

as classical physics, where success is achieved due to the high power of theoretical 

predictions, and to the accurate representation of that part of reality that the 

researcher wants to represent (Henrickson & McKelvey, 2002). When dealing with 

CAS, it is possible to argue that the role of a model should aid the understanding of 

the fundamental processes, regularities and universalities that might or might not 

exist in such systems. Simulations may prove to be the best tool to analyse and 

understand the complexities of social and ecological systems. 

 

Models are a representation of reality, not reality itself, and modelling is the activity 

of abstracting from what one considers as fundamental features of a real system for a 

specific purpose. Models used to represent reality can be a result of different 

techniques: statistical, mathematical (e.g. differential equations) or simulations. 

Statistical models are constructed from existing data, thus they might be inherently 

flawed if we are to model complex systems that display nonlinearities, critical 

thresholds or sensitive dependence on initial conditions. Statistical models are able to 

forecast a limited timeframe only if the system that we want to represent is fairly 

stable (Farmer & Foley, 2009). Moreover, in economics, general equilibrium models 

are used. Unfortunately, these models assume a predetermined, “perfect” world and 

hence are not able to display patterns such as those observed in the recent financial 

and economic crisis (Farmer & Foley, 2009). These models might be appropriate to 

explain certain outcomes only under a pre-determined, narrow set of conditions, 
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while failing to explain outcomes of complex adaptive systems. Mathematical 

models can be more complex; however, the complexities existing in social and 

ecological systems often do not allow for differential equation based models to have 

exact analytical results, unless the system is greatly simplified by making strong 

assumptions (e.g. the homogeneity assumption) in order to obtain tractable 

representations (e.g. the impossibility of finding analytical solutions to the three-

body problem, as pointed out by Poincaré (1892-1899)). Following Galan et al. 

(2009) is possible to describe a formalised model as “mathematically intractable” 

when, given today’s state of mathematics, the model cannot provide solutions or 

understandable insights of the model’s behaviour. In other words, when assumptions 

and simplifications do not permit a correct representation of the unique features of 

human behaviour (e.g. reflexivity, learning, heterogeneity of agents etc.) (Henrickson 

& McKelvey, 2002). Given the adaptiveness and the characteristics of CAS 

described at the beginning of this section and in section  2.2, it is not possible to 

model CAS as an entity that passively responds to external forces but rather as an 

entity that actively responds to external and internal inputs. 

 
Simulations (or computational modelling) can be used to build formal 

representations of reality (thus a model) without the need for over-simplification or 

very strong assumptions. They seem a natural candidate for representing complex 

adaptive systems, while other techniques might be more appropriate in explaining the 

behaviour of systems that are fairly stable, in which the outcomes are the result of 

linear combinations of internal relations, rely on equilibrium conditions and focus on 

universality. In other words, the laws that govern human behaviour are a result of 

chain path selections, thus inherently different from certain laws physics such as 

Newton’s second law of motion: maF = , where relations are linear and solutions 

are deterministic. 

 
Simulations imitate processes (Hartmann, 1996) and can be thought of as 

representations of reality in which it is possible to explore different hypotheses, 

assumptions and parameters. They provide insights into the world represented 

through the use of analogy (Peck, 2008). They may be helpful for descriptions, 

building scenarios or devising new theoretical developments (Garson, 2009; 
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Hartmann, 1996). Simulations enable us to explore the dynamics of a real process, 

where it is often not possible to proceed by empirical experiments either because of 

scale, cost, ethical considerations or theoretical impossibility (e.g. what would have 

been the response to a policy that has not been implemented but that could have been 

a possible alternative solution?) (Hartmann, 1996). Simulations are a powerful tool if 

used correctly, and much effort should be devoted to reflecting upon the assumptions 

made in order to represent reality. It is crucial to understand the role of assumptions 

in the model building process. Every equation, parameter, rule, inclusion, or 

exclusion of variables is based upon certain hypotheses, and a model’s validity is as 

good as its assumptions (Silvert, 2001). Thus, the primary role of a researcher should 

be the identification and the understanding of the implications of such assumptions. 

Every model, especially when seeking to represent a CAS, needs to be built through 

a process of continuous interactions between modellers and researchers or 

practitioners that deal with empirical issues. It is vital to understand what is 

happening in the field and how case studies, experiments, and other techniques are 

employed (Peck, 2008; Silvert, 2001). 

 

5.2.1 Agent Based Models 
 

Agent-based models (ABM) (or individual-based models –IBM- as often called in 

ecology) allow the simulation of a system from the bottom-up, that is, through an 

ensemble of individual entities called agents. These behave according to a 

predetermined set of rules and are subject to defined initial parameter configurations 

(Bonabeau, 2002; DeAngelis & Mooij, 2005; Macy & Willer, 2002). Agents in the 

model can represent any scale of social or ecological organisation, from single 

individuals to institutions, from a single organism to species (Bonabeau, 2002; 

DeAngelis & Mooij, 2005; Macy & Willer, 2002; Peck, 2008; Srbljinovic & Skunca, 

2003). The application of ABM has grown consistently in the last 15 years, both in 

ecology as well as in social sciences  (Breckling et al., 2006; DeAngelis & Mooij, 

2005; Macy & Willer, 2002). Human beings as well as the environment in which 

they live, are complex, non-linear, path-dependent and self-organising (Bonabeau, 

2002; DeAngelis & Mooij, 2005; Macy & Willer, 2002). Understanding these 
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dynamics may provide a description of a system not at an averaged aggregate, global 

level (i.e. using standard analytical techniques) but as an emergent configuration of 

the interactions between individual agents (Macy & Willer, 2002). Even simple 

ABM can display complex and surprising behaviour patterns such as Schelling’s 

segregation models (1969; 1971), which provide insightful and novel information on 

the mechanisms for social groupings (Bonabeau, 2002) as explained below and in 

Figure 5-8. 

 

Agent based models are widely regarded as an appropriate modelling technique for 

the study of emergent phenomena and CAS. They do not assume that a system will 

move towards an equilibrium, although the system modelled might reach one (e.g. 

segregation in the Shelling model (1971)). In ABMs, at every simulation time-step 

(i.e. every time the whole iteration process shown in Figure 5-7 is restarted), agents 

act according to the surrounding environment and take action following the rules 

defined, thus allowing the discovery of critical thresholds and the emergence of 

behaviours not easily (or not) inferable when considering single agents. This 

happens, for example, when interactions between agents are characterised by 

nonlinearities and thresholds, when agents display memory, path dependence and 

time-correlations such as with learning and adaptation, when space is explicit and 

fundamental (e.g. distances and landscape heterogeneity exist) and agents’ positions 

are not fixed (e.g. agents move on an heterogeneous landscape, thus their interaction 

also depend on their position in time), or when populations are heterogeneous 

(Bonabeau, 2002; Breckling et al., 2006; DeAngelis & Mooij, 2005; Macy & Willer, 

2002). The description of these single agents’ characteristics with reference to the 

whole system can be very difficult to model in an analytical way (Srbljinovic & 

Skunca, 2003), as the agent behaviour becomes more complex, the complexity of 

equations increases exponentially leading to their intractability. Moreover, in ABMs 

stochasticity (i.e. probabilistic behaviour) is not “noise” but is deliberately an 

inherent component of the model and agents’ behaviour (Bonabeau, 2002).  

 

In an ABM setting, agents are programmed in order to obey predetermined rules, to 

react to certain environmental conditions, to interact with one another, and might 

even to be able to learn and adapt (Bonabeau, 2002; Gilbert & Terna, 2000). Thus, 
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the modeller needs to define the agents by programming their cognitive abilities and 

the interactions amongst themselves and with the environment. More precisely, a 

researcher who uses computer simulated ABM to represent a real system needs to 

undertake a model-building process that can be delineated in three stages (Galán et 

al., 2009). First of all, one needs to conceptualise the system that will be represented, 

thus defining the purpose, the “research question” and identifying the crucial 

variables of the system and their interrelations. Subsequently, it is necessary to find a 

set of formal specifications that is able to fully characterise the conceptual model. 

Finally, the model needs to be coded, implemented and executed (Galán et al., 2009). 

According to Gilbert and Terna (2000) when the model is iterative, every agent 

receives input from the environment, processes it, and act (reacts), generating a new 

input until a pre-determined condition is met (e.g. time limit or all agents find 

themselves in a given condition). Figure 5-7 graphically represents this process. 

 

 

Figure  5-7 Graphical representation of the simulation process 
(Own elaboration) 
 

Agent based models can generate series (time series in most cases) of state variables 

at different scales. The results should be analysed using advanced statistical 

techniques and tools, since a single simulation run is simply a particular case in the 

infinite parameter space.  

 

Numerous applications of ABMs exist, especially in social sciences and ecology 

(Bernardes et al., 2002; Bodin & Norberg, 2005; Cuddington & Yodzis, 2000; Hovel 
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& Regan, 2008; Nonaka & Holme, 2007; Schelling, 1971; Sznajd-Weron & Sznajd, 

2000; Sznajd-Weron & Weron, 2002; Weins, 1997; Wilson, 1998). Section  5.2.2 

reports and explains in detail two selected ABM. As an example, consider a model in 

which a number of agents are spread over a two-dimensional lattice. Each one of 

them has an opinion which, for the sake of simplicity, can only assume two values. 

An agent can change her opinion conforming to the one of the four immediate 

neighbours if all neighbours have identical opinions. Let also assume that these 

changes happen with a certain probability distribution influenced by an external 

factor. This is the simple scheme according to Sznajd-Weron and Sznajd (2000), 

which is based upon a well known model for the magnetization in a material 

proposed by Ising (1925) (which has become probably the most famous model in the 

recent history of physics). This simple ABM has raised much attention and many 

applications have confirmed its validity. For example, it has been used to reproduce 

distributions of votes in political elections (Bernardes et al., 2002), to infer how 

strong an advertising campaign has to be in order to help one of two products 

dominate the whole market (even if the former initially captured a small part of it) 

(Schulze, 2003), or to simulate price formation in a financial market (Sznajd-Weron 

& Weron, 2002) 

 

At this point, it is worth to examine in depth a famous example of ABM so as to look 

at the architecture (or how an ABM may be build). For this purpose, Schelling’s 

model of segregation (Schelling, 1971) re-implemented in NetLogo (Iozzi, 2008; 

Wilensky, 1997a), can be taken as a first example. Schelling developed two different 

agent based models in order to explain self-segregation (Schelling, 1969,  1971). The 

simplest uses a one-dimensional space (a line) in which two types of agents (blue and 

red, circle and crosses) are randomly placed. Each agent knows her neighbours in a 

determined region (number of agents left and right from a determined agent). Each 

agent can be in two different states: happy or unhappy, depending on how many 

neighbours of the same type she has and an internal parameter that defines a 

“happiness threshold” (i.e. the percentage of similar agents in the neighbourhood 

necessary to be happy). If the agent is unhappy, she will move to another empty 

space. “Happiness” is computed at every time-step and the simulation stops when no 

more unhappy agents exist. Even with this simple rule, it is possible to discover an 
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interesting emergent behaviour as the population converges and self-segregates, thus 

having regions populated by one type of agent and regions populated by another. The 

other model of segregation proposed by Schelling uses a two-dimensional space. 

Here the neighbourhood is defined using the von Neumann neighbourhood 

construction (i.e. four cells orthogonally surrounding the cell where the agent is 

placed). This second model resembles the first as for agents’ attributes (happiness 

thresholds and movement). Again, after a certain number of time-steps the model 

converges to a state where no unhappy agents exist, and regions of different types of 

agents are created (thus again, there exist self-segregation and regions of only circles 

or only crosses appear). The “strength” of self-segregation critically depends on the 

“happiness threshold” of each agent as shown in Figure 5-8. 

 

 
 
Figure  5-8 Schelling’s  self-segregation  model in NetLogo 
Self segregation model as resulted in the NetLogo simulation: 3 different values of  “happiness 
threshold”, two types of agents (light grey and dark grey). Figures were generated by using the 
same random-seed (90) so as to be sure that the differences in the results reported graphically 
are only effect of the happiness threshold parameter. A represent the initial state, B represent a 
world in which happiness threshold = 25%, C happiness threshold = 50% and D happiness 
threshold = 75% (Own elaboration). 
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More precisely, it is possible to report a pseudo-code that enables a better 

understanding of the mechanisms involved in the model. In the NetLogo 

environment (Wilensky, 1999) it is necessary to first setup global variables and 

variables that will only be property of a certain type of agent. In the example above, 

global variables are the average similarity and the percentage of unhappy agents. 

Average similarity is computed by looking at the percentage of agents of the same 

type (the same colour in our example). Four agent’s own variables exist:  

 

1. happy? reports whether an agent is happy, thus if the threshold condition is met; 

happy can assume two values: true or false, being true when an agent is happy 

and false when an agent is not happy; 

2. similar-nearby reports how many neighbouring patches are occupied by an agent 

of the same colour; 

3. other-nearby reports how many neighbouring patches are occupied by an agent 

of a different colour; 

4. total-nearby is the sum of the previous two variables. 

 

Once defined the main variables used or computed by the model, one has to initialise 

the model (thus performing a setup procedure). It is good practice to reset all 

variables to zero before the setup. In the setup of the Schelling model it is necessary 

to input the number of agents that will populate our world. Once the agents are 

created, they need to be assigned to a specific colour (in the example used, agents are 

equally split between light grey and dark grey) and also assign them to a location 

(agents in this case are randomly assigned). If an agent is assigned to a cell where 

another agent already exists, the agent will try to find another location and will move 

until she finds an empty cell. When agents have their own colour and are placed on a 

two dimensional space, it is possible to set the “happiness threshold” variable. In the 

example proposed, this threshold is equal for all the agents in the model, but it is also 

possible to assign different happiness thresholds to every agent (this may be an 

interesting exercise in order to look for possible differences between the original 

model and the “personalised happiness threshold model”). 
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Once the model is configured, it is possible to start the simulation, thus looking for 

patterns that emerge during the time-development of the model. In order to run the 

simulation, at every time-step agents need to perform predetermined tasks. In our 

example, the simulation stops when all agents are happy (thus 

agenttruehappy ∀=   ? ). In case there are unhappy agents, these will move, looking 

randomly for a new empty cell11). Once all the agents have checked if they are happy 

or not (and in the latter case have moved), global variables and own agent’s variable 

are computed, and the simulation is ready to enter a new time-step. As stated before, 

the simulation will run until all agents are happy, thus until the variable happy? is set 

to true  for every agent. 

 

5.2.2 Selected applications of Agent Based Models 
 

As described in section  5.2.1, ABM have been extensively used in ecology 

(DeAngelis & Mooij, 2005) and in social sciences, with a particular focus on social 

dynamics (Castellano et al., 2009). In this section two selected ABM are presented. 

The two models presented will form the foundations for the ideas and the 

development of the theoretical work described in subsequent Chapters  6,  7, and  8. 

First of all, a simple predator-prey model is presented. This model has been 

implemented in NetLogo (Wilensky, 1997b) and used by Wilson (1998) to compare 

ABM results with more traditional predator-prey modelling techniques. More 

precisely, in the ABM presented two type of agents exist: predators and preys. Both 

types of agent move randomly on a two-dimensional lattice, but are able to move 

only if the chosen location is not occupied by an agent of the same type. Prey type 

agents are simpler, as they die only via predation and each prey has a set probability 

to reproduce (e.g. prey reproduce if random 100 < prey_reproduce ). 

Each predator has a handling time. Handling time mimics the handling and eating of 

the prey by the predator; when the handling time of a predator is greater than zero 

(handl > 0), predators can reproduce. Each predator reproduces with a given 

probability, similar to prey-type agents. When handl = 0, predators look for prey and 

                                                 
11 For more detailed discussion on problems of random movement and differences between the 
NetLogo implementation and the original movement described by Schelling see Iozzi (2008). 
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kill the prey when their location overlaps; once a prey is killed the predator who 

killed a prey “replenishes” its handling time; the time-step ends and the whole 

iterative process starts again. Figure 5-9 visualises the graphical interface, where one 

can easily change predators and prey settings. 

 

 

Figure  5-9 Predator-prey model interface 
(Own elaboration). 
 
This simple ABM has been used to investigate the effects of parameter changes on 

predator-prey dynamics and to compare ABM results with other modelling 

techniques. Nonetheless, referring to the population dynamics’ context, the function 

of such model is, in Wilson’s own words  (1998: 126), “to bridge the fundamental 

gap between real biological systems and general population-level models”. The use 

of simulations seems to be fundamental in producing new theoretical insights on 

complex adaptive systems. Simulations and ABM in particular, seem to be a 

promising tool, and, as of now, numerous applications have been proposed in 

ecology (DeAngelis & Mooij, 2005). More precisely ABM models could set the 

agenda for a new research process exploring learning and evolution issues, which can 

be better described by rule-based simulations such as ABM than by mathematical 

models. Evolution dynamics and predator-prey under different modelling assumption 

are the most prominent candidates of this new research agenda, given that single 
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agent interactions may give rise to emergent behaviour at population and community 

level,   (Cuddington & Yodzis, 2000; Hovel & Regan, 2008; Nonaka & Holme, 

2007). 

 

Social science, in particular social dynamics, is another very promising field in 

which ABM and simulations have been widely used. Opinion dynamics, cultural and 

language dynamics, crowd behaviour and the formation of hierarchies have been 

looked through the lenses of simulation and ABM (Castellano et al., 2009). More 

precisely, here we will concentrate on opinion diffusion following the Deffuant 

model (Deffuant et al., 2000; Stauffer et al., 2004) and a subsequent modification 

(Deffuant et al., 2005). 

 

In its original formulation (Deffuant et al., 2000) a population of N agents is 

considered. These agents are represented by nodes and each node might interact 

(discuss) with any other neighbouring node12. To each node (i ) an opinion ix  is 

assigned. Opinions are randomly chosen in the interval [0, 1]. A determined 

threshold τ   is set. This threshold represents a “maximum distance of opinion”; in 

other words, if the opinions are too distant, no real discussion is possible, and no 

change in opinion will occur. The rules of the model are as follows: at each time-step 

a randomly selected node interacts with one of its first neighbours. Let i  and j  be 

two interacting nodes at time t. If τ>− )()( txtx ji  nothing happens, and, as 

explained above, both agents will retain their own opinions; if τ<− )()( txtx ji  then 

the opinions of both agents will start converging. How fast they will converge 

depends on another parameter conv, which lies in the interval [0, 0.5]. More 

precisely:  

)()()()1( txtxconvtxtx ijii −+=+
       [eq.  5-1] 

)()()()1( txtxconvtxtx jijj −+=+
      [eq.  5-2] 

 

                                                 
12 Terminology refers to Network theory, please refer to Chapter  3 for an in-depth discussion of 
network theoretical related concepts. 
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The same dynamics occur in the case when opinions are considered discrete (Stauffer 

et al., 2004); that is, they do not assume continuous values between two numbers 

(e.g. 0 and 1), but assume values with intervals (e.g. only integer values such as 1, 2, 

3). As briefly explained, the difference lies in the fact that the opinion of each node 

can take an integer value Qs∈ , where s is the opinion taken and Q  the ensemble of 

all possible opinions. In this case, the difference with the previous model is that the 

threshold is also an integer, and that the resulting opinion after a discussion with a 

neighbouring agent is rounded to the nearest integer.  

 

This model in its continuous form has been used to explain the formation of clusters 

of people that share the same opinion and the possible polarization of opinions in 

societies. Clusters of nodes sharing the same opinion form for different values of the 

“discussion threshold”; polarizing societies happens if 2.0=τ  while homogenisation 

occurs if  5.0=τ  independently from the convergence parameter conv, as shown in 

Figure 5-10. 

 

Figure  5-10 Deffuant model results 
Opinions convergence when 5.0=τ  (left) and 2.0=τ  (right), N  = 1000 and conv = 0.2 
(after: Deffuant et al., 2000). 
 

Social dynamics is also a field in which the use of simulations and ABM has proved 

very promising. Humans are able to learn, adapt and transform their opinion and their 

strategies according to their social environment. Learning, adaptation and 

transformation allows emergent behaviour that is not easily (or impossible) to infer 

by looking at individual interactions or by making strong assumptions about 

homogeneous mixing and the “average” individual. 
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5.2.3 Issues with ABMs 
 

Agent based models are often very complicated and hence understanding them in 

detail can be a quite intricate exercise (Galán et al., 2009). There is scepticism 

around computational models, as the results might be counterintuitive (though 

counterintuitive does not necessarily suggest incorrectness). Here, it is worth 

remembering that the main purpose of simulations and ABMs is to allow for new 

theoretical developments and advances. If the model is considered plausible (within 

reason) and coded correctly, even if its results might be counterintuitive, it can still 

assist in advancing existing theories or deepening our theoretical understanding of 

the system under study. One risk is that the results might be the consequence of an 

unknown process inside the “black box” (the computer) used to perform the 

simulation (Macy & Willer, 2002). The latter can be and has to be tackled by 

publicising the models and by exposing the models’ code to the scientific community 

so that it will be possible to validate and replicate the results. Moreover, the value of 

ABMs for theoretical development could be dismissed as “muddying in the water”, 

as the number of variables, parameters and their relations may approach the 

complexity found in the real world (Peck, 2008). It is important to take into account 

that agent-based models are not a universal solution.  

 

At present day, there is no formal methodological procedure for building an ABM, 

although there are certainly similarities across all model building methods. The first 

step that needs to be considered is to make sure that there are no discrepancies 

between what one thinks the model is representing and what the coded model is 

actually doing (Galán et al., 2009). More precisely, it is worth taking into account 

that a model has to serve a purpose, and hence, has to contain the right level of detail. 

As already noted, a model cannot retain all of the real world’s details and it should be 

a simplified, although meaningful, representation of reality (Axelrod, 1997; 

Bonabeau, 2002). When constructing a model it is necessary to abstract from the real 

world, hence in ABMs more than in other modelling techniques it is necessary to 

refer to practitioners or draw on empirical research or carefully reviewing the 

existing literature in order to gain insights into processes and fundamental behaviours 
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that characterise single agents and their interrelations. It is important to look for 

implications, and evaluate that very same model. The absence of a clear research 

question to answer will render the model less useful in understanding the part of 

reality under investigation. Thus, assumptions need to be thoroughly identified and 

the impact of each one of them on the results produced by the model needs to be 

measured  (Galán et al., 2009). Moreover, ABMs should be treated with caution, 

when looking for the quantitative aspects of the results (Bonabeau, 2002), as the 

importance and the validity of ABMs relies on their ability to explain different 

configurations arising from the set of parameters used, and in allowing a (mainly) 

qualitative understanding of the system studied. 

 

ABMs and simulations need to be treated and approached differently from traditional 

analytical models (Peck, 2008). The most challenging aspect of ABMs resides in a 

careful understanding and planning of how single agents behave. The choice of the 

rules that will allow them to interact with the environment and between themselves is 

a central issue. There is a need for a systematic procedure and it is necessary to avoid 

assumptions that are not confirmed by “general wisdom” (existing literature, experts 

assessments etc.). Therefore, as already stressed, a continuous interaction and 

feedback between researchers and “experts” is necessary, so that it may be possible 

to shed light over the appropriate parameter space region to explore and the 

interactions that exist between agents. This will also allow to assess the 

appropriateness of the model in its different stages (initiation, running, validation) 

(Farmer & Foley, 2009; Galán et al., 2009; Peck, 2008).  

 

Even when one engages continuously with experts and carefully plans his/her 

simulation following all good practices possible in the model building process, there 

is still room for errors and artefacts (Galán et al., 2009). More precisely, errors refer 

to a disparity between the coded model and the model that the modeller intended to 

code (e.g. the modeller wants the model to call for taskA before taskB, but the model 

runs taskB before taskA). It is important to highlight the fact that there is no error if 

there is no disparity between the actual model and what was meant by the researcher, 

thus it is not possible to assert that an error exists if the modeller’s objectives are not 

known. Obviously, the modeller’s intentions should always be stated in a clear way. 
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Artefacts, on the other hand, are disparities between the assumptions made by the 

researcher and thought to be the cause of specific results and what is actually causing 

them. This might happen as sometimes it is necessary to formulate hypotheses that 

are not critical for the system’s representation but are nevertheless required in order 

to run the simulation code (e.g. the size of a grid might influence the results although 

the size is not a one of the critical assumptions of the modelled system). It is 

important to point out that an artefact ceases to be an artefact as soon as it is 

discovered, and the cause of the results becomes known. Both errors and artefacts 

can be avoided. In order to avoid errors, one needs to meticulously check the coding 

procedure and all its parts in order to make sure that the coded model is performing 

exactly as it was intended to. Artefacts can be avoided by implementing a model with 

the same critical hypotheses but with different assumptions, as to control how results 

are affected. This is a common procedure to assess the validity of the outcomes. 

 

5.2.4 Evaluation of ABM 
 

Validating, verifying and evaluating ABMs can be a demanding task. The revealed 

behaviours of simulations are usually not understandable at first glance (Srbljinovic 

& Skunca, 2003). Nonetheless, it is possible to evaluate an ABM or a simulation. 

The first criterion is an assessment of its reliability by allowing for different separate 

implementations and comparing the results. In other words, if time and resources 

allows it, it is good practice to implement the model on different machines on 

different platforms or even coding the model in different programming languages. 

This is by itself, however, not sufficient to evaluate an ABM, Taber and Timpone 

(1996) propose three more methods for validating a simulation model. They ask:  

 

1. Do the results of a simulation correspond to those of the real world (if data 

are available)?  

2. Is the process by which agents and the environment interact corresponding to 

the one that happens in the real world (if the processes in the real world are 

known)?  
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3. Is the model coded correctly so that it is possible to state that the outcomes 

are a result solely of the model assumptions?  

 

Answering the first two questions allows for assessing the validity of the 

representation (model), thus gauging how well the real system we want to describe is 

captured and explained by its representation. Answering the third question 

guarantees that the model’s behaviour is what the modeller really intended it to be 

(Galán et al., 2009). Evaluating an ABM requires data from the real world and the 

involvement of knowledgeable experts that might be able to give insights into the 

“real” processes and dynamics and hence help evaluate its ability to represent reality.  

 

Moreover, it is worth highlighting the importance of the conceptual accuracy that is 

needed in order to build ABMs that are able to advance our theoretical understanding 

of a system. Every part of the code in a model should be grounded in the literature or 

be informed by “experts” (i.e. empirical researcher, practitioners etc.), and the final 

test of any ABM is its importance in advancing the understanding and the 

development of new formal theories. ABMs explain rather than predict, allowing for 

a qualitative understanding of the fundamental processes underlying the system 

modelled. Finally, as Henrickson and McKelvey (2002: 7295) state: 

Future, significant, social science contributions will emerge 
more quickly if science-based beliefs are based the joint 
results of both ABMs and subsequent empirical corroboration. 

 

5.3 Assessing Resilience: Case Study Research 
 

Case study research has been widely used in the past. More precisely, in the 1930’s 

case study research was already employed in the University of Chicago amongst 

sociologists (Tellis, 1997b). The popularity of case study research led to a public 

debate between the Chicago school and researchers and professors at Columbia 

University, who thought that case study methods led to biased result and were not-

scientific. The debate was won by researchers and professors of the Columbia 

University, thus leading to a decline of case study methodology (Tellis, 1997b). 

Nonetheless, case study methodology is still widely used especially in social 
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sciences, though the discussion on its validity is still ongoing (Gerring, 2004). 

Moreover, case studies have not been widely used exclusively in social sciences. 

Charles Darwin drew his ideas on evolution after a single trip to the Galapagos in 

1835; Alfred Wegener discovered the same fossil species along the South American 

and the African coast, leading him to form his continental drift theory in 1915. 

 

Often, one or more carefully chosen cases have led to amend, assess and/or reject 

theoretical frameworks. Therefore, a “case study is an intensive study of a single unit 

for the purpose of understanding a larger class of (similar) units” (Gerring, 2004: 

342). Irrespective of the area of research, it is important to have a clear theoretical 

framework and a clear purpose when deciding on a suitable case. Theory plays a 

central role, knowledge of prior research is crucial in order to build up knowledge 

from a case study, and it is not simply a matter of answering a single, isolated 

empirical question (Yin, 1994). Having a clearly defined theoretical framework, as 

the one proposed in Chapters  3 and  4 and section  5.1, allows for selecting the 

case/cases to be studied, since case studies can be of single or multiple design 

(Gerring, 2004). A clearly defined theoretical framework enables to specify what is 

going to be explored, hence allowing to stipulate rival theories and generalising the 

results. In other words, a theoretical framework permits the definition of a limited 

number of variables (issues) considered crucial for the understanding of the system 

studied (Tellis, 1997b). 

 

Case studies can be defined according to their purpose (Tellis, 1997a,  1997b; Yin, 

1994). Exploratory case studies help the identification of research questions and 

hypotheses. Explanatory case studies try to give a plausible explanation of causal 

relations. Descriptive cases are used to assess the validity or to help in the formation 

of a theoretical framework, thus requiring a theory to be developed before starting 

the study. Case studies validity is enhanced when inferences are descriptive, when 

propositional depth is preferred over breadth, when discovering causal mechanisms 

is more important than discovering cause-effect, when the strategy of the research is 

exploratory, thus helping in tuning a theoretical framework (model), rather than 

confirm it (Gerring, 2004). 
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Can case studies be generalized? This is a long debated issue. Critics claim that 

results of a case study can not be widely generalized (see for example: Lincoln & 

Guba, 1985), although others counter this idea by differentiating between two main 

different types of generalization: analytic and statistical generalization (Yin, 1994). 

Yin defines analytic generalization as a “template with which to compare the 

empirical results of the case study” (Yin, 1994: 31), and statistical generalization 

when “an inference is made about a population (or universe) on the basis of 

empirical data collected about a sample” (Yin, 1994: 30). Analytical generalization is 

what is possible to achieve using a case study, thus ignoring the sampling limitations. 

Furthermore, single-unit case studies can allow for testing of causal implications of a 

theory and can provide evidence in order to validate/amend certain theoretical 

arguments since they are likely to be comparable (Gerring, 2004). However, single-

unit case studies might show problems of representativeness if universal/general 

conclusions are drawn from a single case study. Multiple-unit cases are best suited in 

order to confirm results coming from given theoretical models, although one need to 

be careful in making assumptions on the comparability across the chosen case 

studies. 

 

For the scope of this research, I do think that a single-unit case study might not be 

representative in order to confirm a theoretical model. Moreover, given that the 

concept of resilience is intrinsically dynamic, I do think that a single case study will 

not be suitable for enhancing the theoretical knowledge of how networks metrics can 

help us understand the resilience of SESs. Since a single unit case study is centred 

upon a single space and time unit, for the purpose of this thesis it is worth to resort to 

other methods in order to better comprehend the relations between network metrics 

and the resilience of a SES. Such methods are described in Chapters  3 and  4, and 

sections  5.1 and  5.2. Nonetheless, I do hope, in the future, to be able to have the 

necessary resources in order to design a multiple case study in order to validate and 

amend the models presented in Chapters  6,  7, and  8. Ideally, the multiple case studies 

will involve different locations and repeated visits over a determined time-span. 

Unfortunately, the design of such research is, at present, impossible, given the time-

frame and the resources of a PhD student. 
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5.4 Concluding Remarks 
 

This chapter described a first possible integration of the Resilience framework 

outlined in Chapter  4 and network theoretical tools as outlined in Chapter  3. 

Differences in impact between failures (or random removal of nodes) and attacks (or 

targeted removal of nodes) have been explained as depending on the network 

topology. Unfortunately, the differences have been assessed only in static networks, 

that is, networks that do not evolve over time. The problem of temporal spatial scales 

is paramount in assessing the resilience of a SES, thus two possible ways of 

assessing resilience of a SES have been outlined: a case study and the use of agent 

based models. Agent based models have the limitations and the problems of 

validation described in sections  5.2.3 and  5.2.4. However, if carefully planned and 

implemented they allow exploring the dynamics (the time dimension) and spatial 

features of a SES. 

 

Case studies have the advantage of giving in depth information and directly link to 

reality, nonetheless, in order to assess the resilience of a system using network 

theoretical tools a case study should be investigated repeatedly in time. Moreover, 

the case study should be multiple; different case studies should be carried out in 

different location for a determined time-span. This is due to the specific properties of 

SES, the need to look for some universality in the integration that has been proposed. 

Given the scope, the time-frame and the resources of a PhD student, this avenue is 

not feasible at the moment, but it will be highly important in the future, in order to 

falsify, enhance, or accept the models that are presented and analysed in Chapters  6, 

 7, and  8. 

 

Before discussing the work that forms the substantial contribution of this thesis and 

is presented in the following chapters, it might be worth summarizing the theoretical 

framework used in this thesis. Chapters  3,  4, and  5 have presented a number of 

methods and theories that form the theoretical basis for the development of the 

models presented in the subsequent chapters (i.e.  6,  7, and  8). It is also worth 

repeating that the main aim of this thesis is to enhance the understanding of how 

structural properties influence (or not) the resilience of a SES. In order to answer the 
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main research questions outlined in section  1.1, this thesis develops a systemic 

approach that uses network theoretical tools to analyze structural properties, agent 

based models to simulate the evolution of a system and the resilience framework to 

analyze, conceptualize and discuss the results given by the theoretical models 

presented in the next three chapters.  
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6 Assessing Resilience: Integrating Network Metrics  
and Agent Based Modelling 

 

As briefly outlined in section  5.4, Chapters  6,  7, and  8 aim at a formal integration of 

network metrics, resilience thinking and agent based modelling. It is worth to 

highlight the fact that initial parameters in the model presented in Chapters 6, 7 and 8 

do not determine a priori the findings presented. That is, model’s parameters have a 

probability of influencing a change in the basin of attraction, however, given the 

stochasticity of ABM (as explained in section 5.2) may allow for the same 

parameters to lead to a change in basin of attraction or to a change of the state in the 

same basin of attraction. A change in the basin of attraction refers to change in 

species composition (as explained in Chapter 6 and 7), while a change in the state of 

a system simply refers to different population levels or if local extinctions occurs 

without leading to global changes in the species composition. On the other hand, if 

deterministic models are used, it is possible to affirm that the initial parameter 

configuration already determines the state of the system and if a change in the basin 

of attraction occurs. 

 

The model developed in this chapter has been published in Landscape Ecology 

(Baggio et al., 2011) and is a first step in the integration of the different methods 

extensively explained in Chapters  3,  4 and  5. This chapter will present an ABM of 

predator-prey dynamics on a landscape represented by a network. The agents of the 

model (predators and prey) are able to move between different nodes of the 

landscape network. Population levels and the coexistence probability given node-

centrality and network metrics are analyzed. Here different basins of attraction (see 

Chapter  4) of the simple ecological system under study are represented by 

coexistence or not-coexistence of species. Different states of the system in the same 

basin of attraction are represented by different population levels and different 

dynamics that unfold during the simulations of the model. The model presented in 

this chapter shows that both predator and prey species benefit from living in globally 

well-connected patches enhancing the resilience of the “coexistence” basin of 

attraction. However, the maximum number of prey species is reached, on average, at 
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lower levels of connectivity than for predator species. Hence, prey species benefit 

from constraints imposed on species movement in fragmented landscapes since these 

constraints reduce the need for anti-predatory strategies and may allow safe heavens 

for prey. 

 

6.1 A simple ecological system 
 

The model presents a simple ecological system in which two species (predator and 

prey) exist. Predator-prey relations represent the simplest possible food web as 

explained in section  3.4.1. Species are distributed heterogeneously and, given the 

variety of habitats that exist in nature, habitat fragmentation per se does not 

necessarily threaten species. However, in recent years, fragmentation seems to have 

conspicuously accelerated given human population growth and urban sprawl, and the 

pace and scale of fragmentation is increasingly posing threats for species’ survival. 

Understanding the ecological consequences of habitat fragmentation is now part of 

many research agendas that deal with conservation, biodiversity and adaptation to 

climatic change. More recently there has been an increased use of network 

approaches in conservation of both marine and terrestrial landscapes (Bodin & 

Norberg, 2007; Planesa et al., 2009; Urban et al., 2009). This network approach 

describes landscapes as networks of habitat patches (nodes) connected by edges 

representing links between different patches (Urban & Keitt, 2001), indicating the 

ability of an organism to directly disperse/diffuse from one patch to another (from 

node i to node j) (Pascual-Hortal & Saura, 2006). Movement of organisms to/from a 

specific patch is limited to connected habitat patches, or patches that are situated 

close enough to allow species migration (Bodin & Norberg, 2007). Therefore, a 

network perspective allows combining landscape patterns and predator-prey 

dynamics (Bodin & Norberg, 2007; Minor & Urban, 2007; Urban & Keitt, 2001) so 

as to better understand the influence of structural properties on a simple ecological 

system (landscape on predator-prey dynamics hence on population persistence). 

However, almost all of these studies have focused on single species and how they 

might be affected by various levels of habitat fragmentation. Here, the focus will be 

more broadly on how habitat fragmentation (thus landscape heterogeneity) may 
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affect two interacting species (a predator and a prey species) with active movement 

decisions as opposed to the widely used random movement.  

 

Issues of space and time-scale increase the complexity of predator-prey dynamics as 

their inclusion leads to substantially different outcomes even if all other variables 

that affect these dynamics are kept constant (Fahrig & Nuttle, 2005). Past literature 

has dealt in depth with land-fragmentation and its effect on movement (Bolker, 2003; 

Droz & Pekalski, 2001; Fahrig & Nuttle, 2005; Inchausti & Ballesteros, 2008; 

Nonaka & Holme, 2007; Pascual-Hortal & Saura, 2006; Rougharden, 1977,  1978). 

In order to understand the importance of spatial heterogeneity (or landscape 

heterogeneity), it is necessary to focus on how fragmentation affects the resilience of 

the system. Recalling the importance of defining resilience of what to what (see 

Chapter 4), resilience refers to how levels of fragmentation measured through 

network metrics (explained extensively in Chapter  3) increase or decrease the 

probability of a change in the basin of attraction. Thus, landscapes are represented by 

a network in order to uncover the significance of heterogeneous fragmentation. 

Network representation of a landscape allows looking at the relationship that exists 

between predator-prey dynamics and network metrics. In other words, this chapter 

seeks to understand how the structure of habitat fragmentation affects the resilience 

of a simplified ecological system.  

 

As species diffuse and respond to landscape patterns and the surrounding 

environment, connectivity properties, spatial conditions, hence fragmentation, need 

to be taken into account (Rougharden, 1977,  1978). According to previous 

experimental papers, the landscape structure is able to alter predation pressure (With 

et al., 2002), thus modifying how prey behave over time, depending on the landscape 

structural changes (Kareiva, 1987). Landscape heterogeneity per se does not seem to 

have any significant effect on predator-prey dynamics; however, when combined 

with movement capabilities, it may lead to important alterations of predators and 

prey populations (Fahrig, 1998). 

 

The interaction between predators and prey has been studied with differential 

equations (i.e. Lotka-Volterra), reaction-diffusion equations (Benson et al., 1993; 
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McLaughlin & Roughgarden, 1991), and individual based models (Cuddington & 

Yodzis, 2000; DeAngelis & Mooij, 2005; Droz & Pekalski, 2001; Hovel & Regan, 

2008). In analytical models, population is treated as a whole (homogeneous mixing) 

in order to achieve tractable results (see also section  5.2). Agent (individual) based 

models (IBM or ABM) centre on individual differences (Breckling et al., 2006; 

DeAngelis & Mooij, 2005; Grimm & Railsback, 2005). As extensively explained in 

sections  5.2.1, and  5.2.2, ABMs allow population dynamics to emerge from 

individual predators and prey. This approach is essential in order to uncover the 

complexities arising in predator-prey systems on heterogeneous and fragmented 

landscapes (McCauley et al., 1993).  

 

This chapter focuses on the consequences of movement between patches, rather than 

the spatial details of a single patch, as the focus lies in uncovering how 

fragmentations alters the resilience of the system presented. Individual predator and 

prey on heterogeneous landscapes, represented as networks of habitat patches, are 

modelled. The central research questions that will be answered in this chapter are the 

following: 

 
• How does the underlying network of habitat patches influence population levels?  

• Does network connectivity, more precisely patch (node) centrality, drives 

predator-prey dynamics and the probability of coexistence?  

 

Referring to the definition of system resilience given at the beginning of this chapter, 

and at the terminology extensively described in Chapter  4, the two questions above 

can be rewritten as follows  

 

• How does network connectivity affect population levels in the same basin of 

attraction? 

• How network connectivity favours or hinder the probability of shifting basin of 

attraction?  
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6.2 Methods 
 
In a given landscape, predator-prey interactions are modelled according to the ABM 

proposed by Wilson (1998) (see section  5.2.2 for information on the model). The 

study presented by Wilson (1998) is extended by including a networked landscape 

where nodes represent habitat patches. Habitat patches are considered land where 

prey can eat, predators can hunt, and both species can reproduce (Droz & Pekalski, 

2001; Ives & Dobson, 1987). Edges represent movement possibilities between 

different patches. In the past, species models of networks with small and large patch 

numbers have been studied. Small number of patches have been studied to resemble 

ecosystems, while a larger number have been used to examine the coexistence of 

multiple species (Blasius et al., 1999; Cominsa & Hassell, 1996; Hastings, 2001; 

Jansen, 2001). More recently Holland and Hastings (2008) have developed a 

manageable ten-patch model that supplements the realism of models with small 

number of patches while displaying results similar to networks with a larger number 

of habitat patches.  

 

Given the aim of this model, the focus is centred on movement capabilities of agents 

between different habitat patches. Recently, the movement of predators and prey has 

been widely researched in order to explicitly incorporate space into modelling 

species interaction, with an emphasis on predators’ searching strategies and the anti-

predatory behaviour of prey (Inchausti & Ballesteros, 2008; Linhares, 1999; 

McLaughlin & Roughgarden, 1991). Nonetheless, few studies take active behavior 

into account and I think that species do move according to the feedback they receive 

from the surrounding environment (e.g. intra-species competition, search strategies 

and anti-predatory behavior).  Therefore, in the model presented, agents actively 

choose to move according to signals (inputs) given by their surrounding 

environment. The results of the model presented here, where a threshold rule is used 

to determine the movement decisions by prey and predators, can be compared to 

more simplistic models of migration based on diffusive and random movement. This 

comparison may shed further light on the importance of understanding the effects of 

landscape connectivity.  
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A detailed description of the ABM proposed is provided in the ODD (Overview, 

Design concepts, and Details) protocol available in Appendix II, section  II.i. The 

ODD protocol is a standard protocol for describing individual and agent based 

models (Grimm et al., 2006), so as to allow for a deeper understanding of the model 

and to facilitate replication.The code used for the model presented in this chapter is 

reported in Appendix III, section III.i. 

 

6.2.1 The network of habitat patches 
 

To build on the work of Holland and Hastings (2008), a landscape with N=10 habitat 

patches and varying number of edges (E) that connect them is considered. Habitat 

patches (nodes) are placed randomly on a two-dimensional grid and are connected 

through edges according to their proximity to other patches (patches within small 

Euclidean distance from each other are connected first). Geographic proximity is an 

important aspect concerning the network topology of a landscape (Minor & Urban, 

2007,  2008); the networked landscape presented is based on Euclidean distances in 

order to better simulate movement of species on real landscapes. The network used is 

considered simple: the use of loops and multiple edges is not allowed. All habitat 

patches are considered equal; as a result, the ability to sustain prey does not vary 

throughout the patches. The landscape is interpreted as an undirected, un-weighted 

network (see section  3.1) and a graphical representation of the network used is given 

in Figure 6-1. An undirected network contains edges that enable movement from one 

node to another and vice versa. An un-weighted network only considers edges as 

connectors and not pathways with explicit distance (note, Euclidean distance is only 

used in order to determine if a connection, an edge, should exist between two 

patches). Although more complex network representation may lead to different 

results, an undirected, un-weighted network is still able to provide adequate 

information that enables the assessment of patch importance on the species’ 

movement abilities (Estrada & Bodin, 2008). 
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6.2.2 The species 
 
There are two types of agent-sets, predator and prey, each of which is assigned 

randomly to a habitat patch. In the mathematical notation subscript 1 is used to 

represent prey and subscript 2 is used to represent predators. The initial number of 

predators and prey is proportional to the number of nodes in the network, as shown 

in Table 6-1. Each prey has the ability to reproduce with probability Pr,1 at each 

time-step and to die via predation with probability Pk,2, if both prey and predator are 

assigned to the same patch i. Predators may also reproduce at every time-step with 

probability Pr,2 , given they have successfully attacked (thus killed) a prey and are 

currently in their handling period (Th), a timeframe in which predators are consuming 

the prey and hence have the “energy” to reproduce. Predators die naturally according 

to a fixed death rate (Pm,2). Drawing from the literature, movement behaviour of 

agents between patches is simplified. Agents move between patches according to 

density thresholds characterising one or both species. The prey moves if its density in 

a given patch i (Dn1i) is higher than a predetermined threshold (DU,1), so as to mimic 

intra-species competition for food. The prey also moves if the predator density (Dn2i) 

rises above a predetermined threshold (DU,2) in order to mimic anti-predator 

behaviour (Creel et al., 2005; Fischhoff et al., 2007; Ives & Dobson, 1987; Lima, 

2002; Luttberg & Schmitz, 2000; Nelson et al., 2004). If prey density falls below a 

predetermined threshold (DL,1), predators move between patches looking for higher 

densities of prey, thus imitating predatory search strategies (Ioannou et al., 2008; 

Lima, 2002; Linhares, 1999). Table 6-1 summarizes variables and values used in the 

ABM presented. 
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Table  6-1 Summary of variables, symbols and values used in the ABM. 

 

Simbol Variable Name 
Values from distributions used in 

Monte Carlo simulations 

N Number of nodes 10 

E Number of  edges Varies from 0 to 45 

C Size of a node 100 

n1 Initial number of prey Poisson with mean 25  * N 

Pr,1  Prey reproduction rate Poisson with mean 0.25 (25%) 

DU,1  Prey density upper limit Random uniform distribution [0.5, 0.9]  

DL,1  Prey density lower limit Random uniform distribution [0.2, 0.4] 

n2  Initial number of predators Poisson with mean 10 * N 

Pr,2  Predator reproduction rate Poisson with mean 0.2 (20%) 

Pk,2   Predation probability Poisson with mean 0.2 (20%) 

Pm,2   Predator death rate Poisson with mean 0.06 (6%) 

DU,2   Predator density upper limit Random uniform distribution [0.3, 0.6] 

Th   Predator handling time 3 

Note: Parameters are set at the beginning of each run as described. Internal species parameters 
are drawn from the distributions described. The number of edges, E, varies from 0 to 45 as 
shown in Figure 6-1.  
 

Population levels for both predators and prey are measured for every patch 

throughout the different simulation runs. The mean values of the parameters 

presented in Table 6-1 are one of the configurations that enable fairly stable 

coexistence in the model presented by Wilson (1998). That is, using the mean 

parameters presented and a full network, the likelihood of coexistence is almost 

certain (being probability of coexsistenc 99.9%). The Monte Carlo method is used to 

explore a wider parameter space and test for the sensitivity of the outcomes. The 

importance of landscape fragmentation in the welfare of predator-prey systems is 

assessed by altering the number of existing connections between patches 

independently from species reproduction, death and predation rates. 

 



122 
 

   
 

   
 

 
 

 

Figure  6-1 Geoproximity Network 
Graphical representation of a geoproximity network for E = 5 (A), E = 15 (B), E = 20 (C) and E 
= 25 (D), E = 30 (E), E = 35 (F), and E = 45 (G) (Own Elaboration). 
 

6.2.3 Network structures and predator-prey dynamics  
 

The analysis is based on network metrics that statistically characterize landscape 

connectivity (extensively explained in sections  3.2 and  5.1). More precisely, the 

following node-centrality and network metrics are taken into account (numbers in 

parenthesis refer to sections in the thesis where in depth information on each of the 

metrics can be found). 

• closeness centrality (clos) (section  3.2.1) 

• average closeness centrality (avgclos) (section  3.2.1) 

• global efficiency (avgeg) (section  3.2) 
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• local efficiency (el) (section  3.2) 

• average local efficiency (avgel) (section  3.2) 

• degree centrality (deg) (section  3.2) 

• average network degree (avgdeg) (section  3.2) 

• cde: (clos + el + deg) / 3 

• average cde (avgcde):  avgcde = ( avgclos + avgel + avgdeg) / 3 

• density (dens) (section  3.2 and  3.4.1) 

• giant connected component (gcc) (section  5.1) 

• average cluster coefficient (avgcc) (section  3.2). 

 

The focus of the analysis is on node-centrality and other network metrics that are 

relevant for measuring the dispersal of species. Detailed results for each metric used 

are presented in Table 6-8 and Table 6.9. 

 
Although results are presented for all outlined metrics the analysis is confined to 

selected metrics for the sake of simplicity. More precisely, the analysis is based on 

two node-centrality measures and three network metrics that are most important 

when assessing coexistence probabilities and shaping predator-prey population 

levels: i.e. closeness centrality (clos), an average of node-centrality measures 

(closeness centrality, node degree and local efficiency) denoted cde, network average 

local efficiency (avgel), global efficiency (avgeg), and the percentage of nodes 

belonging to the giant connected component (gcc). Closeness centrality measures the 

average geodesic distance (shortest path length) between one node and all other 

nodes in the network within its reach. In other words, a node is globally central if it is 

reachable from many other nodes. Local efficiency is the average efficiency of local 

sub-graphs (Latora & Marchiori, 2001). In essence, it is a measure of how effectively 

information spreads through a network on a local scale; in this case, the information 

is perceived as species diffusion between connected patches. Global efficiency is 

defined as the average of the inverse distance between two nodes; it is related to an 

agent’s movement ability and it is measurable for unconnected graphs (Crucitti et al., 

2004; Latora & Marchiori, 2001). The giant connected component can be defined as 

the largest part of the network whose nodes are connected to each other. All 
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measures used are normalized to facilitate comparisons between the different 

networks created through the simulations.  

 

6.3 Results 
 

The Monte Carlo method is used to gain a broader understanding of the model 

dynamics. The number of edges varies from 0 to 45. For a given number of edges, 

1000 simulations with different parameter configurations drawn from the 

distributions presented in Table 6-1 are performed. Each simulation lasts for 5000 

time steps. Since the main focus is on long-term population dynamics and the 

probability of species coexistence, data on the average population levels of predators 

and prey from the last 1000 time-steps as well as data population levels for every 

time-step are collected. 

 
The use of the Monte Carlo method enables to assess the importance of node 

centrality and other network metrics under a wide range of dynamics. Figure 6-2 

displays the dynamics of 8 select runs from the original 10000. These runs were 

specifically chosen because they represent the distinct regimes and population 

patterns that arise from simulations. Figure 6-2A focuses on the population level of 

the whole network, while Figure 6-2B and Figure 6-2C focus on population at the 

node level, specifically nodes 1 and 5, respectively. Nodes 1 and 5 have been chosen 

as representative of local interaction. Note the differences between global and local 

dynamics. Species can abandon a certain node for some period of time due to intra- 

and/or interspecies competition (i.e. prey on node 1 at run 1) but may persist on other 

connected nodes, thus fostering global survival (i.e. total prey on the network during 

run 1). Moreover, if nodes are connected, temporary extinction on a node is also 

possible (i.e. local extinction), as shown in Figure 6-3D as the very same nodes may 

as well be repopulated by migration of species (due to its connectedness to other 

nodes where extinction has not occurred). The greater fluctuation of both species that 

occur on a local scale, compared with what happens to population trends at the 

network level, is due to migration, i.e. it is a local phenomenon (e.g. Figure 6-2A and 

Figure 6-2B or run 7 represented in Figure 6-3A and Figure 6-3B). Figure 6-3 
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displays selected runs from Figure 6-2 with shorter time intervals for magnified 

viewing of some of these dynamics.  

 

Table 6-2 contains the internal species parameters used and the corresponding values 

for the metrics of the whole network, while Table 6-3 contains the centrality 

measures for nodes 1 and 5, for the 8 representative runs. Figure 6-2, Table 6-2, and 

Table 6-3, demonstrate the existence of a positive correlation between connectivity 

levels and long-term coexistence; as one progresses from run 1 to 8, the number of 

edges increase and so does the possibility for coexistence. However, between runs 4 

and 6, where the network contains 30 to 35 edges, the predator population becomes 

variable. In run 4 (30 edges), the predators are able to coexist, while they fall victim 

to early extinction in runs 5 (30 edges) and 6 (35 edges). All three intermediate runs 

consist of similar network metrics (avgeg of 0.833, 0.826, and 0.889 respectively), 

and so, the reason for the variable dynamics stems from internal species parameters. 

The predation rate of predators in run 6 (Pk,2 = 0.12) is about half the value in other 

runs, and as a result, the predators reproduce slowly due to inefficient hunting and 

stay at relatively low levels until sudden extinction. The early dynamics of runs 4 and 

5 are almost identical; increased predation rates (Pk,2 = 0.20 and 0.24, respectively) 

implies that the predators are more effective at capturing prey and hence boosting 

their population. It is this prey dependency that leads to heightened predator 

oscillations, as the efficient hunters begin to migrate from one node to another (if 

possible) in search of prey. The predator population in run 4 outlive that of run 5 due 

to the interplay between the movement thresholds of the prey. It is worth to take note 

of the reduced oscillations in run 4 versus run 5 on the network level in Figure 6-2A. 

Compared to run 5, the prey population in run 4 migrates to other connected nodes 

when its current node is less crowded with prey or more crowded with predators, 

which amounts to less variability in the ‘boom-bust’ cycles of the predator 

population.  

 

The richness in dynamics that occur on each node, and the network as a whole, do 

depend on the internal species parameters. Nonetheless, various network metrics 

allow valuable conclusions to be drawn on the usefulness of a “corridor” or 

networked landscape approach. On average, well connected (or more central) patches 
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enhance the probability of coexistence between predators and prey, independently 

from the different dynamics that arise across the broader parameter space analyzed. 

 
Table  6-2 Parameters for selected runs graphically represented in Figure 6-2A, 6-3A and 6-3C 

 

General Internal Species Parameters 
Network Metrics 

(global-scale) 

run  E n1 n2 Pr,1 Pr,2 Pm,2 Pk,2 DU,1 DL,1 DU,2 avgel avgeg gcc 

1 0 27 15 0.28 0.25 0.09 0.21 0.626 0.238 0.359 0 0 0 

2 5 28 16 0.3 0.21 0.1 0.19 0.793 0.252 0.4 0 0.133 0.3 

3 10 45 14 0.24 0.21 0.04 0.2 0.578 0.258 0.598 0.397 0.375 0.8 

4 30 33 18 0.28 0.25 0.06 0.2 0.701 0.346 0.3 0.892 0.833 1 

5 30 42 16 0.31 0.2 0.03 0.24 0.856 0.217 0.392 0.898 0.826 1 

6 35 46 18 0.28 0.31 0.09 0.12 0.545 0.349 0.346 0.934 0.889 1 

7 40 39 13 0.23 0.12 0.01 0.27 0.664 0.33 0.484 0.959 0.944 1 

8 45 40 13 0.34 0.16 0.08 0.24 0.58 0.248 0.475 1 1 1 

Note: 8 runs representative of the different dynamic regimes of the parameter space. This table 
summarizes the values of the internal species parameters and metrics of the whole network for 
the 8 runs. 
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Table  6-3 Node-centrality metrics for runs represented in Figure 6-2B, 6-2C,  6-3B, 6-3D 

 

General 
Node Metrics  

(local-scale) 

Run Ni clos cde 

1 1 0 0 

1 5 0 0 

2 1 0.2 0.104 

2 5 0 0 

3 1 0 0 

3 5 0.509 0.457 

4 1 0.643 0.668 

4 5 0.9 0.87 

5 1 0.9 0.876 

5 5 0.9 0.876 

6 1 0.9 0.894 

6 5 0.75 0.806 

7 1 1 0.977 

7 5 1 0.977 

8 1 1 1 

8 5 1 1 
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Figure  6-2 Dynamics of the model for 8 select runs. 
These runs represent the total regime of dynamics under the parameter space explored.  Global 
(network) dynamics (A) and local (node) dynamics (B and C) . Parameter values, network and 
node centralities are presented in Table 6-2. Network population levels are divided by 10. y axis 
represent population levels and x axis represent time-steps. Graphs are indexed by run (from 1 
to 8 following Table 6-2 (A) and Table 6-3 (B and C) (Own elaboration). 
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Figure  6-3 Magnified Dynamics 
Dynamics of the model for selected runs, from Figure 6-2, on shorter time intervals (to magnify 
visuals). A and B represent run 7 at the global and at the local scale (network vs node 1), where 
local oscillations are more amplified. Differences in the time-scale used are necessary in order to 
clearly visualize the patterns. C represent a magnified visual of the high fluctuation that occur 
in run 5, while D is a magnified representation of predator-prey dynamics on node 5 of run 8, 
where temporary local predators extinction occur (Own elaboration). 
 

Internal parameters regarding reproduction, predation, death rates and active 

movement behaviour are crucial in allowing coexistence in the long-term, and give 

rise to different dynamic regimes as depicted in Figure 6-2 and Figure 6-3. 

Independently from internal species parameters, alteration of the landscape by 

connecting different patches or enhancing the centrality of particular patches further 

increases the probability of coexistence between predator and prey. In short, 

increasing connectivity matters, as it is evident looking at run 3 in Figure 6-2B and 

Figure 6-2C. In this run only the connectivity properties of the nodes differ, leading 

to quick extinction of predators on node 1 (being clos = 0) , and leading to a longer 

persistence of predators on node 5 (being clos = 0.509). 

 

The importance of node-centrality is visualized in Figure 6-4, where the behaviour of 

average population levels for the last 1000 time-steps is evaluated based on node-
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centrality measures. Given the stochastic nature of the model, data relative to 

predator and prey population levels are smoothed the using a locally weighted 

regression of predator and prey populations on the node-centrality measures used. 

The use of smoothed data allows for a better understanding of the relationship that 

exists between node-centrality and population levels of predators and prey. 

Additionally, regression results are truncated, so as to discard negative population 

levels. LOESS smoothing methods allows fitting low-degree polynomial regression 

to a subset of the observed data, giving lower (higher) weights to points further away 

from (closer to) where the dependent variable is being estimated (Cleveland, 1979; 

Cleveland & Devlin, 1988). The weights given to distance between points of the 

independent variable follow the tricube weighting function, which assigns weights as 

follows: 

( )






≥

<−=
10

11
)(

33

xfor

xforx
xw

       [eq.  6-1] 
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Figure  6-4 Node-Centrality vs Population Levels 
Relation between node-centrality and population levels of predator and prey per node. Raw (the 
average population level of the last 1000 time-steps) and smoothed (resulted from the LOESS 
regressions) predator and prey population levels are reported on the y axis, while node-
centrality measures are represented on the x axis. Graphs are drawn on two different scales: 
one for the raw data (from 0 to 280) one for the smoothed data (from 0 to 70) (Own 
elaboration).  
 

Examining node-centrality measures allows for a better understanding of local 

connectivity properties of a node, and consequently, the importance of that node 

from an ecological point of view, as shown in Figure 6-4, where the direct effect of 

network connectivity measures on species population levels is visualized. Predators 

are the more dynamic species in this model as shown in Figure 6-2, Figure 6-3 and 

Figure 6-4. Moreover, data collected and analysed suggest that low node/network 

connectivity contributes directly to predator extinction both locally and globally. In 

other words, low node/network connectivity erodes the resilience of the system, 

facilitating a change of the basin of attraction. For example, as shown in Figure 6-4, 

an increase in local network connectivity, as measured by closeness centrality, 

promotes survival and coexistence of both species, and thus enhances the resilience 

of the system as previously defined. When closeness approaches 1 the population of 

both species begin to stabilize. A fully connected network represents a fully 

connected landscape. If a fully connected landscape, under the range of parameter 
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values considered, promotes coexistence and convergence towards a viable 

population level (as shown in Figure 6-4), an interesting research question arises. Is 

closeness centrality (or, more generally, node-centrality) a significant measure for 

assessing the probability of coexistence between species in general, or better, how 

does closeness centrality influence the resilience of the basin of attraction? 

 

In order to answer this question, data on predator population extinction for different 

measures of network connectivity have been collected. Extinction of predators is 

recorded at the node and network level, so as to assess how node-centrality and 

network metrics affect the probability of predator survival. The metrics used are real 

numbers that take values from the closed interval [0,1]. Our dependent variable is a 

dummy variable that assumes a value of 0 if predators go extinct on a specific node 

or on the network and 1 otherwise.  

 

As preliminary analysis, Spearman correlations have been computed and are reported 

in the following tables. As Table 6-4 and Table 6-5 show, average population levels 

on the whole network and on the nodes cannot be directly associated with model 

parameters. The only internal parameter that seems to have a strong direct effect on 

population levels is the upper-prey density threshold (DU,1) that influences average 

prey levels on nodes and on the network. Hence, from this preliminary analysis, it is 

possible to infer that general population levels are actually dependent on a 

combination of parameters. Moreover, if all parameters and centrality and 

connectivity measures are used in isolation, it is also possible to affirm that node 

centrality and network connectivity play a more important role than all but one 

internal species parameter (DU,1) (confront Table 6-4, Table 6-5 Table 6-6 and  

Table 6-7). Connectivity seems to be more related to averaged population levels than 

most of the internal parameters (when taken singularly). Thus, connectivity matters 

and enhances the probability of coexistence independently from the internal 

parameters considered. 
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Table  6-4 Spearman correlations of prey and predators on nodes vs internal parameters. 
 

 nodeprey nodepred 

n1 0.0079* -0.0051 

Pr,1 0.1509* 0.2349* 

n2 -0.0013 0.0167* 

Pr,2 -0.2011* 0.1925* 

Pm,2 0.2392* -0.2904* 

Pk,2 -0.1269* 0.0969* 

DU,1 0.6010* 0.1900* 

DL,1 0.2077* -0.1313* 

DU,2 -0.0071* 0.0261* 

Note: * denote significance at 5% level 
 

Table  6-5 Spearman correlations of prey and predators on network vs internal paramenters. 
 

 netprey netpred 

n1 0.0070* -0.0055 

Pr,1 0.1641* 0.2785* 

n2 -0.0037 0.0201* 

Pr,2 -0.2163* 0.2063* 

Pm,2 0.2591* -0.3060* 

Pk,2 -0.1393* 0.0851* 

DU,1 0.6394* 0.2267* 

DL,1 0.2249* -0.1444* 

DU,2 -0.0050 0.0203* 

Note: * denote significance at 5% level 
 

Table  6-6 Spearman correlations of average prey and predators on nodes vs node centralities. 
 

 nodeprey nodepred 

clos 0.3002* 0.4738* 

cde 0.3004* 0.4622* 

Note: * denote significance at 5% level 
 
Table  6-7 Spearman correlations of average prey and predators on network vs network metrics. 
 

 netprey netpred 

avgeg 0.2648* 0.4146* 

avgel 0.2628* 0.4057* 

gcc 0.2645* 0.4395* 

Note: * denote significance at 5% level 
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The claim that connectivity matters and enhances or diminishes the probability of 

coexistence, thus the resilience of the system as defined in the beginning of this 

chapter, is reinforced by the results of the logit regressions reported in Table 6-8 and 

Table 6-9. Logit regressions have been calculated for different node-centrality and 

network metrics, all of which are relevant for locally regulating the dispersion of 

agents (i.e. all the metrics used have the same ecological meaning as they all relate to 

the ability of species to diffuse from one patch to another) (Estrada and Bodin, 

2008). Results are similar given the high correlation that exists between the metrics 

used as reported in Table 6-10 and Table 6-11.  

 
Table  6-8 Logit regression results of local survival probabilities for predator 
populations given node centrality measures 

 

dep var indep var β par est β par est β par est β par est 

locpred clos 
3.505 

(0.023)* 
   

 deg  
2.787 

(0.021)* 
  

 el   
2.572 

(0.195)* 
 

 cde    
3.436 

(0.023)* 

 Pseudo R2 0.179 0.142 0.151 0.178 

 Class 67.90% 66.57% 66.73% 68.79% 

 AIC 1.130 1.181 1.169 1.129 

Note: Standard errors in parenthesis, * = significant at 1% level. 100000 observations, 
McFadden adjusted R2 is reported as well as the probability of correctly classifying the 
dependent variable given the parameter estimates (Class). Akaike Information Criterion is 
reported (AIC). 
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Table  6-9 Logit regression results of global survival probabilities for predator 
populations given network metrics 

 

Indep var dep var β par est β par est β par est β par est β par est β par est β par est β par est 

globpred avgclos 
3.162 

(0.023)* 
       

 avgdeg  
3.111 

(0.003)* 
      

 avgel   
3.204 

(0.023)* 
     

 avgcde    
3.163 

(0.023)* 
    

 dens     
2.799 

(0.225)* 
   

 avgeg      
3.140 

(0.022)* 
  

 gcc       
3.910 

(0.029)* 
 

 avgcc        
3.264 

(0.233)* 

 
Pseudo 

R2 
0.142 0.122 0.157 0.146 0.122 0.152 0.167 0.150 

 Class 66.69% 66.72% 67.08% 66.81% 66.72% 67.49% 67.51 66.77% 

 AIC 1.187 1.213 1.166 1.182 1.213 1.172 1.149 1.176 

Note: Standard errors in parenthesis, * = significant at 1% level. 100000 observations, 
McFadden adjusted R2 is reported as well as the probability of correctly classifying the 
dependent variable given the parameter estimates (Class). Akaike Information Criterion is 
reported (AIC). 
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Table  6-10 Correlation between node-centrality used in the logit models presented in Table 6-8 
 

 clos deg el cde 

clos 1    

deg 0.9764 1   

el 0.7938 0.7461 1  

cde 0.9708 0.9520 0.9100 1 

 
 
Table  6-11 Correlation between network metrics used in the logit models presented in Table 6-9 
 

 avgclos avgdeg avgel avgcde dens avgeg gcc avgcc 

avgclos 1        

avgdeg 0.9872 1       

avgel 0.9407 0.9071 1      

avgcde 0.9937 0.9816 0.9816 1     

dens 0.9872 1 0.9071 0.9816 1    

avgeg 0.9908 0.9638 0.9476 0.9854 0.9638 1   

gcc 0.8774 0.8012 0.8870 0.8725 0.8011 0.9198 1  

avgcc 0.9478 0.9253 0.9941 0.9753 0.9252 0.9455 0.8670 1 

 
 

Centrality measures provide a mean to assess the probability of local survival of 

predators on a heterogeneous landscape. From the logit regressions reported in  

Table 6-8, closeness centrality has the strongest effect (magnitude of the coefficient) 

on survival probabilities. This preeminence is also shown in Figure 6-5, where 

predicted probabilities at specific closeness centrality values and at specific cde are 

reported. Predator survival probabilities gradually increase depending on the 

connectedness of the network, and no abrupt changes occur. These results seem to 

indicate that even without controlling internal species parameters, enhancing the 

connectivity between different patches increases the probability of coexistence 

between predators and prey. Moreover, if only a node is taken into account, a value 
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of closeness centrality higher than 0.65 (or a value of cde>0.67) leads to a favorable 

probability (>0.5) of survival.  

 

 

Figure  6-5 Predicted survival probabilities vs node centralities 
Predicted predator survival probability (y axis) vs closeness centrality and cde (x axis) (Own 
Elaboration). 
 

For nodes with closeness centrality equal to zero, the probability of predator survival 

is low as they are unable to disperse to any other nodes in search of new prey sources 

and, likewise, replenishment of their current prey source is also impossible from 

outside sources. It is important to stress that a favorable probability (>0.5) of survival 

for the predators does not guarantee species persistence. As the probability does not 

=1, at some point, the predators may still die out, though this time to extinction 

grows longer as increased connectedness of the patches and heightened feasibility of 

migratory movement for both predators and prey decreases the odds of predator 

extinction. It is also important to remember that even highly connected patches do 

not guarantee coexistence. Internal species parameters might be of fundamental 

importance in allowing persistence of a species, and this is well represented by the 

reported results, which demonstrate that even in fully connected landscape networks, 
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where centrality measures reach their maximum value, 1, the probability predator 

survival is around 0.77 (hence much below 1). 

 
Global survival probability is best predicted by gcc (i.e. the percentage of nodes 

belonging to the giant connected component), although other network metrics give 

similar estimates. Connectivity in a landscape network is crucial as it allows species 

more freedom of movement and enhances their ability to migrate in search of food 

and safety. Between the other metrics examined, global efficiency and the average 

local efficiency of the landscape networks also play an important role in assessing 

these probabilities. Both measures are related to the ability of the networked 

landscape to facilitate/hinder in species diffusion.  

 

The importance of connectivity for increasing global survival probabilities is clear 

from the analysis performed. Both local and global survival probabilities gradually 

increase by increasing the level of connectivity at the node and at the network level. 

When the network is connected (i.e. when all its nodes belong to the giant 

component), global survival probabilities are enhanced, although, given the 

importance of internal species parameters, there is always a chance that even the 

most well connected network leads to some species extinction. 

 

The robustness of the results of the model presented has been assessed by conducting 

similar analyses in different types of networks.  First, the same ABM using a random 

network has been analyzed, varying the number of edges from 0 to 45. The results 

are qualitatively the same as those presented here. Next, an ABM using the same 

“geoproximity” network but with fixed parameters at the mean values used in this 

study, while varying the number of edges and reconfiguring the network structure, 

has been analyzed. Similar results are found, although in the latter case, network 

centrality measures play a major role in determining predator survival probability 

(logit regressions show a correct classification of over 90% compared to the 65% 

presented here). Moreover, at mean values, an increase in closeness centrality from 0 

to 0.2 leads to an increase in predator survival probability from 0.09% to 5.79%, 

while an increase of closeness centrality from 0.2 to 0.4 leads to an increase in 

survival probability from 5.79% to 80.66%, thus suggesting the existence of 
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“connectivity thresholds” for species with certain reproduction, death and predation 

rates, and with specific movement thresholds given by intra and inter species 

competition. Lastly, using mean values, favourable survival probabilities (i.e. above 

0.5) arise at a much lower level of closeness centrality (0.333 instead of 0.65). Mean 

values of the model presented here are used in the model presented in Chapter  7 as to 

assess how management decisions affect the networked landscape and therefore the 

resilience of the system. 

 

6.4 Discussion 
 
Understanding the ecological consequences of habitat fragmentation is becoming 

increasingly important, given the mounting pressure of human population and the 

possible effects of climatic changes on ecosystems. Addressing possible effects of 

fragmentation on predator-prey dynamics becomes crucial for biodiversity 

conservation and in order to understand the resilience of a system. In this context, 

this study highlights three main findings.   

 

First, at high levels of node-centrality for different patches, predators move so 

rapidly through the fully connected network that low prey numbers in any specific 

node do not hamper their population growth. In other words, predators become a 

successful population of migrants constantly moving in search of patches where it is 

easier to find, attack, and feed on prey. This first finding demonstrates that the 

connectivity of a landscape is of particular importance to predators’ survival, with 

the latter largely dependent on movement through different patches (ecological 

areas) due to range requirements, that is, the need to migrate long distances in search 

for food and mating (Coppolillo et al., 2004). Jaguars present a real world example of 

predators with large ranges that are highly dependent on movement between different 

patches, as landscape connectivity is essential for their survival (Michalski & Peres, 

2005; Ortega-Huerta & Medley, 1999). Loss of prey is the driving force that leads 

predators to move between patches in the model presented here, and the possibility 

of migration is a key aspect of their survival.  
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Second, increasing connectivity benefits both predator and prey species however, the 

maximum population for both species occurs at different levels of connectivity. 

Predator and prey species benefit from living in globally central patches (i.e. with 

high closeness centrality) as shown in Figure 6-4. However, the maximum 

population of prey is reached, on average, at lower closeness centrality levels 

compared to predators. Prey benefits from the constraints imposed on predator 

movement, with the latter supporting prey populations, as the risk of predation and 

the use of anti-predatory strategies decreases. The reintroduction of grey wolves in 

North America and the respective decline in elk population densities provides a real 

world example of our model results. Increasing connectivity, as well as living on 

globally central and locally central patches, enhances the probability of coexistence 

between prey and predators, thus enhancing the resilience of the system. In this 

instance, the ‘top-down’ process of predation keeps prey populations in check, while 

allowing for coexistence, which is fundamental for the maintenance of biodiversity 

(Terborg et al., 1999).  

 

Third, the results of the ABM presented match theoretical expectations from corridor 

ecology (Hilty et al., 2006). In corridor ecology, conservation centers upon 

connecting different patches rather than constructing isolated protected areas or 

islands of conservation. Moreover, it is important to notice how internal species 

parameters, such as reproduction rates, death rates, predation rates and active 

decision regarding migration, have a significant effect upon population levels. 

However, while human management of the connectivity between different patches is 

a possible conservation strategy, altering species internal parameters on a large scale 

is not (at least with present-day technology). As of today, biologically controlling for 

reproduction, death and predation rates of large animal populations have not 

succeeded (leaving ethical considerations and possible unintended consequences 

aside). 

 

To conclude, the results of the effect of increased connectedness between patches on 

predator-prey dynamics can lead to different ways to manage a given landscape. 

Strategies of managing landscapes differ according to management objectives. Some 

possible management decisions depending on population levels are analyzed in the 
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following chapter; nonetheless more connected environments increase the resilience 

of the system. The relation between connectivity and resilience is not so straight 

forward, as the model shows, the interplay of connectivity with population dynamics 

can be two-fold, leading to the need for thoughtful policies that take all the three 

main findings presented into account. Specifically, the model could be used to look 

at better ways to manage large mammal species, but also to manage possible pests 

that are able to move actively from one environment to another, following their prey. 

Finally, even if it is recognized that a simple network may hide important variables 

that drive predator-prey dynamics in reality, a simple network representation still 

allows for a coarse-grained assessment of which management strategies lead to set 

managerial goals.  
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7 Assessing Resilience: Introducing a simple social  
system  

 
This chapter is an extension of the model presented in Chapter  6. The model 

presented in this chapter has also been presented in a paper at the NAACSOS 

conference in 2009 (Baggio et al., 2009). Both models deal with a landscape network 

on which predator and prey interact according to pre-determined rules. The main 

difference between the two models lies in the addition of an external manager that is 

able to alter the landscape network in the model presented in this chapter. Both 

models are ABMs (called also metapopulation models) and in both, the analysis 

centers upon the role of network metrics and how these metrics affect the probability 

of a regime shift. A regime shift, or change in the basin of attraction occurs when the 

species composition changes. 

 
This chapter explores the consequences of management decisions in a networked 

landscape by adding management actions to the system. Management actions 

translate in the ability to increase or decrease species’ cost of movement between 

habitat patches. The goal of this exercise is to understand the impacts of simple 

institutional arrangements within a complex system. More precisely, exploring how 

simple management rules may give rise to different landscape structures affecting 

predator-prey dynamics, hence affecting the resilience of a simple ecological system. 

 

The interesting aspect of adding managers to the landscape arises because humans 

possess agency and have the ability to foresee and intentionally pursue different 

paths for managing landscapes (Holling, 2001; Holling & Gunderson, 2001 and 

section  4.1.2). Thus, managers can adapt to and adopt different mechanisms, which, 

based on their experience, they deem as most appropriate. They also have the ability 

to learn from their experience as well as experiment with new techniques in order to 

achieve desired outcomes. However, the ability to foresee and intentionally 

manipulate certain aspects of a landscape does not always lead to desired results 

(Holling & Gunderson, 2001 and section  4.1.2). This may happen for either of two 

reasons.  Since our knowledge of complex adaptive ecological systems can never be 

complete, managers may not have sufficient information to make appropriate 
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decisions. In addition, managers should be aware that due to system stochasticity,  

uncertain events and surprises will eventually occur (Holling, 1998).  

 

In the system modelled in this chapter, predator-prey dynamics on a landscape are 

characterized by a degree of uncertainty and surprise (as in Chapter  6). Therefore, 

policies that are designed in the view of a manager’s objectives, to optimise one 

possible foreseen future, could result in worsening the situation. As stressed during 

the whole thesis, it is not possible to exactly predict even the behaviour of a rather 

simple ecological system such as the one presented.  

 
As in the previous chapter, the system changes basin of attraction according to 

species extinction. Three possible basins of attraction exist: in the first predators and 

prey coexist, the second is a landscape where only prey survives, and the third is a 

landscape where both predators and prey become extinct. The model allows to 

evaluate how management actions aimed at maintaining coexistence of species can 

have unintended consequences, hence leading to a loss of resilience. Thus, the model 

presented assesses the resilience of the predator-prey system in face of management 

actions that intentionally disturb the landscape network, so as to affect migration of 

species from one patch to another. 

 
Managers interact with their environment in a variety of ways. Today’s world is 

characterized by a high level of technology. Technology refers to the tools, both 

physical and institutional, that allow humans to alter their environment more 

effectively, and/or on a larger scale. Technology amplifies the actions undertaken 

and permits a wide range of possibilities as explained throughout section  4.1.2. More 

precisely, in this chapter technology refers to the ability to build bridges, tunnels, 

fences and other means able to modify ecological corridors so as to increase/decrease 

species’ perceived distance (or cost of movement) between one patch and another 

within the landscape. In the language of network analysis, technology enables a 

manager to increase/decrease the weights of edges linking different nodes (patches). 

Technology may also be a drawback (again, as extensively explained in section 

 4.1.2), as it might add uncertainty, have unintended side effects, or allow people to 

over-harvest or improperly manage a landscape or resources and assets. As brief 
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examples of the drawbacks of technology, one can think of the new fishing 

technology and the results on the cods in the North Sea. Further it is possible to look 

at how the building of huge dams changed the ecology of whole regions, hence 

adding new uncertainties such as the increased likelihood of events that never 

happened before. Finally, it is possible to look at unintended consequences of 

management actions suche as the constructions of the barriers that were supposed to 

protect New Orleans from flooding and how these technological solutions have 

performed during Hurricane Katrina. 

 

Conservationists and protected area managers work with issues pertinent to the 

management of local and global species populations and patch dynamics on a daily 

basis.  Many of their options focus on increasing or decreasing the cost of movement 

between patches through habitat restoration, the creation of barriers and bridges to 

habitat movement, and the translocation of species (Gordon, 1994; Griffith et al., 

1989) given budgetary constraints. Translocation of species relates to the forced 

movement of species or of individuals pertaining to a species towards or to a certain 

area. Due to increasing habitat fragmentation (Franklin et al., 2002), the difficulty in 

bringing more land under strict protected area status (Brockington et al., 2008), 

encroachment on existing protected areas by human communities (Child, 2004), and 

threats to species from global and regional climate change (Hannah et al., 2002), 

many conservationists now view protected areas as only part of a broader set of 

conservation options.  Instead of parks that protect key landscape patches in corridors 

of conservation, managers work to protect animal movement between patches within 

a protected area and between patches along a larger corridor that may include 

protected areas (Beier & Noss, 1998; van Aarde & Jackson, 2007). In this particular 

context, it is possible to use the model presented here to look at habitat patches as 

nodes and the corridors that connect different patches as edges.  

 

As seen in Chapter  6, node characteristics on local and global population dynamics  

is a very important feature for the resilience of a system as the one modelled here. 

More precisely, centrality measures or measures of how tightly the nodes of a 

network are interlinked, affect predator-prey dynamics. Although species have 

always dealt with habitat fragmentation, fragmentation is rapidly increasing mainly 



145 
 

due to human interventions. Populations are endangered not only by natural means 

such as climatic change, but also due to rapid human population expansion (Meyer & 

Turner II, 1992), increased urbanization, and the ever-increasing impact of humans 

on the landscape through technology that allows for heavy landscape alterations. As 

elucidated in Chapter  6, spatial heterogeneity plays a crucial role in the coexistence 

of species, given the importance of the structure of a landscape due to its effect on 

movement ability of a species. Therefore, species need patches across a landscape to 

be connected in order to maintain local and global populations (Weins, 1997).   

 

Consequently, this chapter centers upon the ability of a manager to alter the 

landscape in order to allow coexistence while not depleting resources that are 

fundamental for prey survival. As previously explained (see section  5.2), the main 

objective of using ABM is not to prove theorems, but to allow a better understanding 

and representation of reality, hence, hopefully, fostering improved landscape 

management based on given objectives.  

 

7.1 Methods 
 
As mentioned above, the aim of this chapter is to uncover possible management 

strategies that lead to coexistence of species, in our case predators and prey, while 

maintaining vegetation, i.e. the resources needed for the prey to be able to feed 

themselves and reproduce. The ABM designed is an extension of the model 

developed in Chapter  613.  

 

7.1.1 The landscape 
 

Habitat patches are represented by nodes and the whole landscape is fixed (that is, 

nodes do not vary throughout simulations) with 10 nodes (N = 10). Every node has 

an ability to sustain prey (C), which affects prey density. The ability of a node to 

sustain prey decreases if the number of prey is higher than a determined threshold; 

nonetheless, the same node is able to recover to the original ability to sustain prey 

                                                 
13 Please refer to the ODD presented in Appendix II , section  II.ii  II.ii for in depth information on the 
ABM proposed, and to Appendix III, section  III.ii, for the code of the ABM presented in this chapter. 
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when prey density is below a determined threshold. This assumption is based on a 

recent study by Asner (2009) who shows significant differences in the structural 

diversity of canopy in African savannas between protected and accessible to 

herbivores areas. However, research to uncover the relation between herbivores and 

vegetation, hence ecological restoration, is still underway, and results might differ 

(Suding et al., 2004) as they are space and time-dependent (e.g. topographic location, 

and geologic substrate)  (Asner et al., 2009). The time of recovery will be different 

depending on the density of prey present on a specific node. More precisely, ti (time 

of recovery) varies according to Di,1 (density of prey on a specific node i) as follows:  

if 3.015.0 1, ≤< iD   

set 5.01 −= −tt titi ; 

if  15.00 1, ≤< iD  

set 75.01 −= −tt titi ;   

if 01, =iD  

set 11 −= −tt titi . 

 

The number of edges (E) is fixed in order to represent a fully connected network 

( 452/)1( =−= NNE ), and the presence of an edge captures the possibility for a 

predator (or prey) to diffuse from one patch to another. Multiple edges and loops are 

not considered. Edges will have an initial weight computed as the Euclidean distance 

between the nodes they connect (ijwe ). The weights mimic the difficulty/ease with 

which predators and prey are able to move from one patch to another, in other words, 

weights of edges correspond to the cost of movement from one node to another for 

predators and prey. 

 

7.1.2 The Species 
 

The number of prey and predators will be proportional to the number of nodes 

( Nn ∗1  and Nn ∗2 ). At every time-step, both type of agents (predators and prey) 

have the ability to reproduce according to a predetermined probability (Pr,1 and Pr,2). 

Predators and prey also have the ability to die from natural causes with probability 



147 
 

Pm,1 and Pm,2 respectively. The prey has a probability Pk,2 of dying via predation, if a 

predator and the designed prey find themselves on the same node. Both, predators 

and prey have the ability to move according to a Poisson distribution with mean S1 

and S2. Movement behaviour between patches is simplified adopting a recent 

framework proposed by Nathan et al. (2008) that enables the study of species’ 

movement by looking at four different dimensions and their interaction.  In this 

context, in order to mimic the external conditions of the framework used, movement 

between different nodes is possible only if an edge exists and if the weight of that 

edge is lower than the predator or prey movement capability. Prey and predators 

move only to nodes where ijwe < S1 (or S2). If no edge exists or all edges have an 

exceedingly high cost of movement being 1Sweij >  for all ijwe , the agent (predator 

or prey) dies. In order to simplify the work by Nathan et al. (2008), agents are 

thought to be “semi-intelligent”, thus predators and prey have limited navigation 

capacity, as they are only able to locate reachable nodes (where ijwe < S1 or S2) 

(Nathan et al., 2008). If more than one reachable node exists, the agent chooses 

randomly one of its possible destinations. Both agent types (predators and prey) face 

no limitation on in-patch movement, however, between-patch movement is limited 

by the motion capacity of each predator (or prey), based on S1 and S2 respectively 

(Nathan et al., 2008). Agents move driven by “internal motivations” (internal state of 

the framework proposed by Nathan et al. (2008)) associated with intra-species 

competition, anti-predatory behaviour and predator’s search strategies. 

 

Thus, agents move between different nodes based on the density of that particular 

species and its competitors on the same node. Densities are computed based on the 

node size as follows: Di,1

i

i

C

n∑= 1 and Di,2

i

i

C

n∑= 2 . Such densities are compared to 

density thresholds. Prey move according to a prey upper limit threshold (DU,1) in 

order to mimic intra-species competition (for food and space), thus referring to the 

internal state or motivation for movement (Bartumeus & Levin, 2008). Furthermore, 

prey move between nodes if predator density rises above a certain threshold (DU,2), 

mimicking anti-predatory behaviour (Creel et al., 2005; Fischhoff et al., 2007; Ives & 

Dobson, 1987; Lima, 2002; Luttberg & Schmitz, 2000; Nelson et al., 2004). Finally, 
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predators move between patches if prey density falls below a pre-determined 

threshold (DL,1) to mimic predatory search strategies (Bartumeus & Levin, 2008; 

Ioannou et al., 2008; Lima, 2002; Linhares, 1999).  

 

7.1.3 Management of a landscape 
 

Since the aim of this chapter is to look at possible landscape management strategies 

and subsequent effects on predator-prey dynamics, coexistence and ability to sustain 

prey preservation, a manager agent is added to the model. The manager has the 

ability to act on every edge of the network. During each time-step, a manager is 

given a budget (B). The budget will vary across the different runs, but not during a 

single run (that is, the budget allocated at each time-step is determined a-priori).  

 

Humans, as previously mentioned, have the ability to foresee and  alter landscape 

thanks to the modern technology (Holling & Gunderson, 2001) (see section  4.1.2 for 

more information on the unique abilities of humans in a resilience context). Thus, a 

manager will act upon those patches that s/he considers endangered, in order to 

maintain either coexistence, or prey on a single node (patch); i.e. in order to maintain 

a desired basin of attraction. A manager will act according to his/her own thresholds 

that mimic alarms or warning signals (MtU and MtL). Both thresholds refer to prey, 

since a large number of prey (MtU ) endangers the ability to sustain prey of a node, 

due to vegetation depletion; while a critically low density of prey (MtL) endangers 

the existence of predators (at least locally) as food resources become scarce. 

Moreover, there is a possibility that a manager miscalculates the density of predators 

and prey. This error, if present, will be normally distributed with mean 0 and 

standard deviation of 5. The error term follows a normal distribution with mean 0 as 

it can be assumed that the over and under estimation of population size are likely to 

be balanced. Standard deviation is chosen arbitrarily in order to induce mistakes that 

might affect the action of the manager on the overall system, but are not too high in 

magnitude, given the recent advances in technology (e.g. use of aerial surveys, GPS, 

satellites etc.). In other words, a manager takes action according to the following 

rules:  
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  if UiUiii MtDCerrn ∗∗>+ 1,1   

and/or   

if LiLiii MtDCerrn ∗∗<+ 1,1   

  set node i “endangered”. 

 

The manager also assesses the need to take action based on the ability to sustain prey 

on a node and a corresponding threshold (Mct) is set. Mct represents another type of 

warning signal. It relates to the preservation and/or the will to recover the ability to 

sustain prey of a single patch (node). In other words, if  the ability to sustain prey C 

of node i is lower than the threshold Mct the manager will act trying to reduce the 

number of prey on that very same node. However, a manager might hold his/her own 

views or estimates of the ability to sustain prey of the node (C), hence a variable V 

that represent a manager’s own view of is introduced. The view of a manager has 

effects on the ability to sustain prey (C), and thus a manager will always over or 

underestimate the ability to sustain prey of a specific node i. More precisely, 

considering 2020 +≤≤− V , a manager will take action based on Mct according to 

the following rule:  

  if  MctVCi <+   

  set node i “endangered”. 

 

The manager selectively takes action to protect the most endangered nodes. 

Endangered nodes are those node set “endangered”  by the rules described in this 

section. A manager takes action by manipulating the cost of movement (weights) of 

the edges. Increasing and decreasing ijwe  bears a fixed cost (McI, McD respectively) 

and a maintenance cost. Maintenance costs refer, for example, at the necessary costs 

to maintain a tunnel, a bridge or an electrified fence. The maintenance cost is 

calculated as the natural logarithm of the absolute value of the original Euclidean 

distance used to compute the weight of edges at time 0 ( ijowe ) and the actual weight 

at time-step t ijtwe ; thus, the maintenance cost is ijtij wewe −0ln . The use of natural 

logarithm is given by the negative returns of scale of maintenance cost. Increasing 

ijwe  imitates the building of fences and other activities aimed at preserving 
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predetermined areas from predators and prey (at this stage other human activities 

other than the manager are not taken into account), while decreasing ijwe  mimics the 

building of tunnels, bridges, corridors, and other means that facilitate the diffusion of 

species from one patch to another. 

 

However, the manager is able to act upon the landscape only if the budget (B) s/he is 

allocated covers for both the maintenance as well as fixed costs. Every time a 

manager takes action, he/she has to check whether the budget is sufficient. For 

instance, if a manager needs to act upon different nodes and thus edges that are 

connected to these nodes, and wants to increase the cost of movement towards one 

node, or decrease the cost of movement towards another node, s/he will assess 

actions and for every action s/he will have to perform the following check, thus 

actually solving a maximisation under constraints. 

if ( )>−− ijtij weweB 0ln McI ( if increasing cost of movement) 

increase ijwe  by SI 

if ( )>−− ijtij weweB 0ln McD (if decreasing cost of movement) 

decrease ijwe  by SD 

As the aim of the paper is centred upon the ability of a manager to alter a landscape 

and look at the landscape itself from a network perspective, parameters regarding 

predators and prey are kept constant at the mean levels used in Chapter  6. Variables 

concerning the manager such as the budget size (B), prey population thresholds (MtU 

and MtL), the increased and decreased cost of movement for every action (SI and SD), 

the fixed costs sustained (McI and McD), the view of the manager (V), and the 

possibility to miscalculate the predator and prey numbers (err) are varied throughout 

the simulations as depicted in Table 7-1. 

 

Table  7-1 Managing Landscapes: ABM input parameters 

 

Simbol Variable Name Value 

N Number of nodes 10 

E Number of  edges 45 

we Cost of movement (weight) 
Varies according to manager actions (MAX 
we = 92 without manager action)  
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Simbol Variable Name Value  

ti Time-lag of recovery 5 

C Capacity of a node 100, varies according to simulation events 

n1 Initial number of prey 25 * 10 

Pr,1 Prey reproduction rate 0.25 (25%) 

Pm,1 Prey natural death rate 0.10 (10%) 

S1 Prey movement ability 
Poisson distributed with mean 30 calculated 
at every time-step 

DU,1 Prey density upper limit 0.9 

DL,1 Prey density lower limit 0.15 

n2 Initial number of predators 10 * 10 

Pr,2 Predator reproduction rate 0.2 (20%) 

Pk,2 Predation probability 0.2 (20%) 

Pm,2 Predator natural death rate 0.06 (6%) 

S2 Predator movement ability 
Poisson distributed with mean 60 calculated 
at every time-step 

DU,2 Predator density upper limit 0.6 

Th Predator handling time 3 

B 
Manager budget (does not 
accumulate) 

100, 250, 500 

V Manager view of capacity -15, 0, 15 

err Errors in counting species 
Yes/No variable if Yes, error varies at every 
time-step 

MtU Manager Upper threshold  0.6, 0.8 

MtL Manager lower threshold 1.2, 1.4 

Mct Manager capacity threshold 50, 70, 90 

McD Cost of decreasing we  50 

McI Cost of increasing  100 

SI 
Amount of we  increase in case of 
action that increases we 

100 

SD 
Amount of we decrease in case of 
action that decreases we 

10 
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7.1.4 Running the model 
 

As explained in section  7.1.1, the landscape is here represented by a fully connected 

network and internal species parameters are kept constant during the simulations, 

while parameters regarding management decisions are varied as reported in  

Table 7-1. Managers are able to act upon ijwe , since the purpose of this chapter is to 

shed light on the impacts of simple management decisions on the landscape structure 

(as well as explore how corresponding landscape structures affect predator-prey 

levels). Structural properties are here measured via average closeness centrality, 

global efficiency, average local efficiency and average strength (see section  3.2 for in 

depth information on the metrics used). Average strength is used instead of average 

degree given that weights on edges exist.  

 

The model runs for 10000 time-steps and is repeated 30 times per parameter 

combination. From Table 7-1 is easy to infer that 216 parameter combinations based 

on management decisions are explored. The landscape network is recorded at every 

time-step as management decisions may alter ijwe  according to the rules outlined in 

section  7.1.3. Moreover, prey and predators levels are recorded at every time-step at 

the network level. Differently from the model presented in Chapter  6, here only 

network levels are analyzed, but population levels and network metrics are collected 

at every time-step (as they may change at every time-step). Figure 7-1 is a snapshot 

of the model interface used in NetLogo 4.1. 
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Figure  7-1 Snapshot of the Netlogo interface 
(Own elaboration). 
 

7.2 Results 
 

The analysis of the model centres upon the structural properties resulting from 

management decisions. The key variables of interest are the following (numbers in 

parenthesis refer to sections in the thesis where in depth information on each of the 

metrics can be found):  

• average closeness centrality (section  3.2.1) 

• average local efficiency (section  3.2) 

• average strength (or average weighted degree) (section  3.1 and  3.2)  

• global efficiency (section  3.2) 

 

All measures used to assess the structural properties of the networked landscape have 

the same ecological meaning, as in Chapter  6. They all relate to the ability to 

facilitate or impede diffusion/movement from one patch to another. Amongst the 

metrics proposed, global efficiency is the measure that better captures the overall 

ability of the network of diffusing species (predators and prey). All the metrics used 
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depend on management decision (the alteration of ijwe ). The evolution of network 

measures over time is analyzed. Thus time series of network metrics are considered 

as the best method of analyzing the results. However, no standard statistical time 

series analysis is used given the limitation of these techniques explained in section 

 5.2. In other words, in order to look at how different structural properties influence 

the probability of coexistence, the evolution of network metrics over time has been 

used (as shown in Figure 7-2). 

 

 
Figure  7-2 Global efficiency vs time 
Left Figure represents a landscape on which coexistence is highly possible, while right Figure 
represent a landscape on which total or predator extinction is very likely. y and x axes are on 
different scales as what is important is the qualitative difference in the global efficiency 
evolution, independently of the actual values. (Own elaboration). 
 

Looking at Figure 7-2 two different patterns emerge. The pattern on the left displays 

convergence and stability, and it indicates higher probabilities of coexistence, while 

the pattern on the right displays two critical transitions and corresponds to systems 

that are more likely to shift basin of attraction. Here, as in the previous chapter, a 

change in basin of attraction occurs if species composition changes; three basins of 

attraction exist, one in which species coexist, one in which predators go extinct but 

prey survive, and one in which both, predators and prey go extinct. Thus, it is 

possible to assess the resilience of the system, as defined at the beginning of this 

chapter, by looking at the two distinct patterns visualized in Figure 7-2. Figure 7-2 

clearly shows a difference in the evolution of global efficiency. Figure 7-2 is an 

example of two main different patterns observed over 6480 similar figures (216 

parameter combinations times 30 repetitions). Thus, different patterns as reported in 

Figure 7-2 influence the resilience of the system as defined at the beginning of this 
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chapter. As the analysis can not be based only on visual intuition, global efficiency 

variance and has been calculated (that is the second statistical moment). Variance, 

and higher statistical moments relate to the distribution of the time series thus 

highlighting characteristics on the amplitude and possible transitions of such series. 

Moreover, they are the simplest tools to assess differences in patterns such as the one 

visualized in Figure 7-2. 

 

Other methods can be used to assess critical transitions in time series or to highlight 

how chaotic is a time series. These techniques, such as the use of Lyapunov and 

Hurst exponents, are prone to different interpretations and different methods are 

actually used for their calculations. For this reason, this thesis prefers to use the 

simplest possible tool that is able to deliver meaningful (insightful) results given the 

models presented, and the intuition given by the visual results of the model. This 

approach follows the modeller’s paradigm that it is unnecessary to increase 

difficulties and complexities when other, simpler and easier to use instruments are 

available. Table 7-2 presents the two classifications rationales used in order to divide 

the evolution of networks into two main groups. Finally, the author is aware that 

parameters configuration has an effect on the probability of coexistence and thus on 

the resilience of a system. However, the aim of this chapter is to analyze how the 

evolution of structural properties influences the resilience of the system portrayed. 

Thus the analysis will concentrate on the evolution of global efficiency over time 

starting by the visual results and intuition as explained above. 
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Table  7-2 Rationale of time series classification 
 

          Groups of time 

series 

 

Classification type 

Group 0 Group 1 

Ist: Variance var close to 0  var > 0  

IInd: Higher moments: 

sd of skewness (sdskew)  

sd of kurtosis (sdkurt) 

sdskew < or close to 0.025 

AND  

sdkurt < or close to 0.05 

sdskew > 0.025  

AND  

sdkurt > 0.05 

Note: variance and higher moments refer to variance and higher moments of the evolution of 
the global efficiency metric 
 

Variance of global efficiency can be used as a tool to assess the probabilities of 

changing basin of attraction as also shown in Figure 7-3.  

 

 
Figure  7-3 Time series Ist classification  
(i.e. classification of the basin of attraction based on variance of global efficiency (egvar) (Own 
elaboration). 
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More precisely, Figure 7-4 divides the predator-prey outcomes into two groups based 

on the structural properties of the evolving network. In fact, it looks at the evolution 

of global efficiency. The first group of time series (noted as group 0), has variance of 

global efficiency close to zero (or in the neighbourhood of 0), and resembles the 

pattern visualized on the left of Figure 7-2. The first group (or group 0) allows for 

high probabilities of coexistence (0.95 or in the 95.48% of cases). However, even if 

the evolution of the networked landscape resembles the pattern followed by the 

second group, there is still a probability that only prey survives, i.e. there is still a 

probability of a change in the basin of attraction, with the probability of predator 

extinction close to 0.05 (or in the 4.51% of cases). 

 

The second group of time series (noted as group 1), has variance of global efficiency 

0>≈  (where 0≈  denotes in the neighbourhood of 0), and corresponds to the pattern 

visualized on the right of Figure 7-2. If the networked landscape evolves over time 

resembling this pattern, total extinction has a high probability of occurrence (0.77 or 

in the 76.92% of cases); predator extinction has a moderate probability of occurrence 

(0.21 or in the 20.51% of cases), while coexistence is very unlikely (probability of 

coexistence being 0.03 or in the 2.56% of cases).  
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Figure  7-4 Probabilities of shifting basin given Ist classification  
i.e. probabilities of coexistence, total extinction and predator extinction given variance of global 
efficiency. Groups are characterized as in Table 7-2, where group 0 characterizes runs in which  
variance of global efficiency is close to 0 and group 1 has variance of global efficiency > 0  (Own 
elaboration). 
 

 

Moreover, it is possible to classify the two different clusters of global-efficiency 

evolution over time by analyzing higher moments of global efficiency. Here, the 

author of this thesis recognizes the arbitrariness of the approach. However, 

increasingly higher moments of the global efficiency time-series have been tried so 

as to look for the “lowest higher moments” that lead to a perfect classification of at 

least one basin of attraction (i.e. total extinction in this case).  As a matter of fact, 

looking at higher moments of global efficiency (i.e. skewness’ standard deviation 

and kurtosis’ standard deviation), it is possible to have a more precise division, as 

visualized in Figure 7-5. The classification based on higher moments clearly divides 

total extinction from the other two possible outcomes (coexistence, predators’ 

extinction) as it is shown in the following figure. 
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Figure  7-5 Time series IInd classification  
i.e. classification of the basin of attraction based on standard deviation of skewness (sdskew) and 
standard deviation of kurtosis (sdkurt) (Own elaboration). 
 

Recalling that 216 parameter configurations exist, it is indeed valuable to be able to 

classifying different simulations runs independently from their configuration. Being 

able to classify all the different simulation runs looking at the evolution of structural 

properties, more precisely, at the evolution of just one dimension (one variable, one 

structural property in our case),  allows to assess the important impact that network 

metrics  have on population dynamics. Based on Figure 7-5 and on higher statistical 

moments, it is possible to divide the evolution of global efficiency into two main 

groups (as before). The first group (noted group 0) is characterized by low values of 

higher moments of the evolution of global efficiency over time, being standard 

deviation of kurtosis lower than the neighbourhood of 0.05 and standard deviation of 

skewness is lower than the neighbourhood of 0.025. If the evolution of global 

efficiency over time has characteristics belonging to this first group (noted as group 

0) in Figure 7-6, it will be highly unlikely that total extinction will occur, although it 

may be possible that a change in the basin of attraction will happen, as probability of 
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coexistence is close to 0.91 (or 91.40% of cases) while probability of predator 

extinction =  0.09 (or 8.60% of cases).  

 

The second group (noted as group 1) is characterized by higher values of higher 

statistical moments of the global efficiency time series; more precisely, standard 

deviation of kurtosis is higher than 0.05 and standard deviation of skweness is higher 

than 0.025. If global efficiency follows the pattern characterized by this second 

group, as Figure 7-6 clearly shows, total extinction will most likely occur, being 

probability of total extinction =  1. 

 

 
Figure  7-6 Probabilities of shifting basin given IInd classification  
i.e. probabilities of coexistence, total extinction and predator extinction given the groups defined 
in Table 7-2.  where group 0 characterizes runs in which  the standard deviation of kurtosis 
(sdkurt) of global efficiency is < 0.05 and the standard deviation of skewness (sdskew) of global 
efficiency is < 0.025. Group 1 represent runs in which the sdkurt of global efficiency is > 0.05 
and the sdskew of global efficiency is > 0.025.   (Own elaboration) 
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7.3 Discussion 
 
The model presented in this chapter is an extension of the model analyzed in chapter 

 6. However, the model presented in Chapter  6 did not explicitly look at possible 

management interventions on a landscape. Although recognizing consequences of 

habitat fragmentation on the resilience of simple ecological system is important, 

understanding consequences of simple management strategies is crucial in order to 

assess possible outcomes that may enhance or reduce the resilience of a simple 

ecological system. Moreover, looking at possible management strategies also enables 

to start to understand how management can actually add uncertainty to the whole 

system. Further, looking at the implementation of management strategies may 

facilitate the recognition of which actions may foster or lower the resilience of a 

SES. .  

 
The model presented here assumes that management actively pursues the 

maintenance of the system in a specific basin of attraction (i.e. coexistence) and is 

able to alter the landscape thanks to technological solutions in order to favor the 

achievement of such objectives. Nonetheless, the will to achieve coexistence and the 

technology available to reach such purposes may have unintended consequences. 

Unintended consequences (here the transition to a new basin of attraction where 

either of the two or both types of agents go extinct) may arise, in case of managers 

possessing poor or wrong information (the latter two being represented by the 

parameters err and V), but it may also arises due to the complexities and the non-

linear dynamics inbuilt in the ecological system.  

 

As the complexities inbuilt in SES are difficult to understand, surprise is always 

possible. As an example, of possible surprises generated by management paths 

chosen, Liu et al (2007: 1514) report the following: 

Smelt (Osmerus mordax) was initially introduced to 
Wisconsin as a prey species for game fish such as walleyes 
(Stizostedion vitreum), but smelt ate juvenile walleyes 
leading to loss of walleye populations. In Puget Sound, 
growth management policy has caused urban density to 
intensify inside the urban growth boundary while 
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unintentionally facilitating sprawl outside the urban growth 
boundary  

 

Moreover, given the complexities described above, when planning possible protected 

areas, not only predator-prey relations need to be taken into account, but also the 

presence of humans. Establishing protected areas, if not carefully planned, can have 

unintended consequences. High-quality panda habitat, for example, has degraded 

faster when a protected area was established, than before the creation of the reserve 

(Liu et al., 2001). 

 

Further, management paths that are thought to be the cause of the ecological system 

degradation could result to be quite the opposite. The Kristianstads Vattenrike has 

been established as a protected area under the Ramsar Convention (is an 

intergovernmental treaty on maintaining the ecological character of their wetlands of 

international importance). In protected areas such the Kristianstads Vattenrike human 

activities such as grazing were not allowed as they were thought to be one of the 

causes of wetland’s degradation. However, as Olsson et al. (2004) have 

demonstrated, without grazing, the wetland was overgrown. This consequence led to 

rethink management strategies and allowed human activities, such as grazing, in the 

Vatternike. Grazing is now perceived as an important aspect for conserving the 

wetland system. (Olsson et al., 2004). 

 

The model presented in this chapter is a step towards the understanding of the 

interplay between humans and nature. Given the strategies and the behavior of the 

manager, according to the rules expressed in section  7.1.3, the landscape is altered. 

Looking at the evolution of the landscape’s structural properties, it is possible to 

assess the probability of maintaining a determined basin of attraction; that is, simple 

rules give rise to different landscape structures and these structures allow us to assess 

possible effects on predator-prey dynamics. 

 

Moreover, while in Chapter  6 the landscape is described as an un-weighted, 

undirected network, here the landscape is viewed as a weighted although undirected 

network. Global efficiency has been proposed as “synthesis” measure of the 
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structural properties. Global efficiency has the same ecological meaning as the other 

metrics presented (i.e. average closeness centrality, average local centrality, average 

strength), but is more suitable to be applied in the case of weighted and not fully 

connected networks as explained in section  3.2. Measuring global efficiency through 

time, it is possible to reach the following main conclusions. First, structural 

properties are a promising indicator when assessing the resilience of an ecological 

system. Second, if no critical transition occurs in the evolution of network metrics, 

the system is more likely to remain stable, thus staying in the same basin of 

attraction. On the other hand, if critical transitions have occurred in the past, the 

system is more likely to approach a threshold and hence change its basin of 

attraction. 

 
The main conclusions above could have important policy applications. As of now, 

few studies have concentrated on how the underlying evolving network alters 

dynamics over time. The model presented is a first attempt in this direction. Policies 

could then look at problems of structural properties and how they impact upon 

population dynamics, leading to better plan reserve networks based on the corridor 

ecology approach, or foster new understanding and experimenting new ways of 

managing natural resources and maintaining biodiversity. For example, it is possible 

to devise interventions that aim to exclude species from a certain area (e.g. through 

fencing) in order to maintain or to allow vegetation to grow back again. Excluding 

species from a certain area is likely to give rise to a critical transition in the network 

metrics over time such as the one presented in Figure 7-2. Therefore, it may be best 

to search for possible alternatives such as the creation of protected areas that find 

themselves geographically near the one that needs to be fenced, so as not to allow a 

critical transition in the structural properties of the network of protected areas.  

 

Extensions of the model are possible, but may come at the expense of 

methodological problems; i.e. the risk that the ABM becomes too complicated (see 

section  5.2.4) and provide few meaningful insights; in addition, complicating the 

model further may also give rise to errors and artifacts (see section  5.2.3) that may be 

difficult to discover. Nonetheless, the model could be extended by adding possible 

perturbations on the capacity of the nodes (C) and/or on the weight of the edges 
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(weij) and/or on the recovery of the node’s capacity (ti) or by endogenising the 

management thresholds and views (MtU, MtL, and Mct). Extending the model 

considering different type of perturbations (or disturbances) could deliver insights on 

which simple management strategies are more effective in reducing the probability of 

shifting basins of attraction. Extending the model by endogenising management 

thresholds (on which rules for altering the landscape are based) may allow for the 

introduction of learning, although as in the previous case, the model may loose its 

value as it can easily become too complicated to provide meaningful insights. 

 

To conclude, by altering the connectedness between patches (nodes), simple 

management decisions have important consequences on predator-prey dynamics. 

Strategies of managing landscapes differ according to management objectives, and 

ability to learn from or imitate successful (or not) strategies implemented by other 

managers, with whom information is shared. The next chapter looks at how diverse 

strategies evolve depending on authority of a manager’s network. The existence of 

multiple managers in a network, that are individually able to alter only a fraction of 

the landscape, is the next step towards a more comprehensive integration of Social 

and Ecological Network Resilience. Chapter  8 will present a model of strategy 

diffusion looking at how different atuhority distributions give rise to more 

homogeneous or more heterogeneous strategies. 
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8 The Social System: Strategy Diffusion between 
Managers 

 
Chapters  6 and  7 introduce models that mainly centre upon the ecological side of a 

SES. Chapter  6 looks at network effects on a simple ecological system, while 

Chapter 7 introduces feedback mechanisms between the ecological and the social 

system; however, in Chapter 7 only one single manager takes action. This chapter 

expands on the previous ones and deals with the existence of multiple managers and 

management communities and the interaction amongst them. In other words, this 

chapter deals with the diffusion of possible different management strategies 

(management paths) between N management units. This chapter can be thought as an 

extension of the manager unit of Chapter 7, although no explicit reference to the 

ecological system is made. Moreover, Chapter 8 does not explicitly analyze the 

resilience of a system. However, resilience is an indirect consequence of the number 

of options existing in a system. More precisely, if more room for pursuing novel 

strategies exists, a system will be more resilient (more options), while if strategies 

are homogenous and there is no room for experimentation and for developing new 

management paths, a system is likely to be less resilient (less options). As of now, it 

is best to keep separated the ecological and the social part of a SES due to the 

complications that arise when the systems are analyzed in conjunction. In other 

words, there is a need to first understand how structural properties influence the 

ecological part of the system, analyze possible feedback mechanisms and effect 

between the social and the ecological systems, and finally, looking at an expanded 

social system. 

 

Humans have distinctive abilities, as extensively explained in section  4.1.2. As 

already seen in the introduction to Chapter  7, humans are able to forecast, within the 

limits of prediction regarding complex systems, and to pursue different management 

paths. Moreover, managers communicate with one other ideas and experiences. 

Communication is a fundamental feature for developing flexible strategies to 

adaptively manage a SES. Finally, thanks to technology, humans are able to 

implement a devised set of alternative strategies (e.g. see section  7.1.3) having 
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sensible effects on the ecological system (as seen in the model presented in Chapter 

 7). Therefore, human (inter)actions play a crucial role in influencing the resilience of 

a SES. More precisely, the ability to foresee and pursue different management paths 

and the technology used to implement different strategies14 depend on the ability to 

learn, interact and communicate. Humans that are able to alter or to have a say in 

devising strategies for managing an ecological system can be defined as managers. 

Therefore, in managing natural resources, it is reasonable to assume that if no 

interaction occurs, each manager adopts a personal strategy, given the inputs 

received from the environment, but independently from the behaviour/choices of 

other managers in the network (Castellano et al., 2009). On the other hand, if 

managers are able to communicate effectively, opinions, ideas, and strategies may be 

exchanged and diffuse. These distinctive abilities allow humans to adaptively 

manage a SES. In order to adaptively manage a SES one needs to define adaptive 

capacity. 

 

Following Nelson et al. (2007: 397) adaptive capacity can be defined as the 

“preconditions necessary to enable adaptation, including social and physical 

elements, and the ability to mobilize these elements”. Adaptive capacity is a crucial 

attribute of a resilient SES, being the capacity to manage a SES so that the SES can 

maintain itself in the same basin of attraction, despite internal and external shocks 

that may affect the ecological, the social or both components of the system. 

Moreover, adaptive capacity also allows managers to try to shift the SES towards a 

more desired (according to who manages it) basin of attraction. Adaptive capacity, as 

the definition hints, is time and space specific, that is, adaptive capacity is local, 

being dependent on elements that are specific to a given community or environment 

at a given time. Nonetheless, it is possible to define preconditions necessary for 

adaptive capacity that are common to all communities and environments at all times. 

These preconditions, from here on named generic adaptive capacity, depend on 

ideas, opinions, and hence management strategies that exist in the SES. Thus, it is 

important to assess the diversification of ideas, opinions and strategies as they 

represent very important determinants of adaptive capacity. 

 
                                                 
14 In this chapter strategies and management paths are used as synonyms. 
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In order to clarify the concept of generic adaptive capacity, it is possible to look at 

real world example and plan a scenario with highly homogeneous societies. A 

determined management path is thought to be causing degradation in the whole SES. 

A new management strategy is devised by a highly homogeneous society. The new 

management path involves declaring the Kristianstads Vatternike protected area. No 

human activity is allowed inside the protected area. The manager(s) that devise this 

strategy are those with the highest power to influence behaviours or opinions through 

reputation and legal means. In a highly homogeneous society no one is able to 

challenge this strategy. Although the technology and possible solutions are at hand, 

as demonstrated by Olsson et al. (2004), new management paths will not be 

implemented, thus in our hypothetical scenario, the wetland will overgrow thus 

nullifying the purpose of the implemented strategy. 

 

Generic adaptive capacity not only results from how different managers perceive the 

world and the range of their managerial objectives, but also, and foremost, on the 

ability of these managers to exchange, learn, adapt, imitate their strategies from and 

with each other. Communication as well as the existence of different management 

paths is crucial for adaptive capacity and thus for adaptive management of a SES. 

The existence of different strategies is important for adaptively manage a SES, 

consequently it is important to understand under which conditions homogenization of 

management paths is more likely to occur. More precisely, if authority is defined as 

the power to influence behaviours or opinions through reputation and legal means: 

 

• Are there different authority structures that favour the homogenization (or 

synchronization) of management strategies, thus reducing the adaptive 

capacity to manage a SES? 

• What is the importance and what are the consequences of having an 

“external force” that pushes management towards a unified opinion, idea 

and consequently, towards the existence of one management path? 

 

In order to answer the questions posed above, it is necessary to understand what 

variables are fundamental in order to enable managers to synchronize their strategies. 
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Management strategies depend to some extent on personal opinions and the way an 

individual perceives the world given his entrenched personal, social and cultural 

values (worldview from here on). The chosen strategies often depend on the network 

of contacts and the authority of this of these contacts (Henrich, 2004). In this context, 

the role of worldview often explains the difficulty in diffusing novel ideas that may 

counter the entrenched worldviews that exist in a particular community, even though 

such new strategies potentially allows for improvements in the management of 

natural resources (Deffuant et al., 2005). Deffuant et al. (2000) proposed a model of 

opinion diffusion, were people interact only if their worldview is similar enough, 

while they do not interact if the magnitude of difference in worldview exceeds a 

predetermined threshold (please refer to section  5.2.2 for in depth information on the 

Deffuant model). The original model has been studied in different settings and with 

several minor modifications (Castellano et al., 2009; Deffuant et al., 2005; Stauffer et 

al., 2004), but none deals specifically with issues of authority and allows not only to 

assess the presence of strategies, but also their potential synchronisation. Moreover, 

it is reasonable to assume that strategies may change over time due to internal 

(change of opinion, or idea, or learning etc.) and external (change in management 

objective, new constraints etc.) factors. 

 

Societies where strategies are highly synchronized represent more homogeneous 

societies, where less room for experimenting with new ideas is allowed. If no or less 

room for novel strategies is permitted, imitation of strategies implemented by 

managers with higher authority may lead, in the long-run, to a reduced generic 

adaptive capacity, or in other words, a reduced ability to adapt to slow and fast 

changes surrounding environment (Levinthal & March, 1993). As an example, it is 

possible to imagine a particular community/society that has the technology and the 

resources to deal with shocks that affect the environment in which they live, such as 

climatic changes, lakes’ eutrophication, and coral bleaching. The community is 

highly homogeneous, thus only traditional strategies are explored. If the traditional 

strategies fail, and there is no room for experimenting novel strategies, the society is 

bound to not to be able to adapt and risks to collapse. 
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As exemplified above, in highly synchronized, hence homogeneous societies, where 

strategies are similar, and no room for novel experimentation is given, managers may 

be unable to understand the appropriate way to deal with a highly unpredictable 

environment, where extreme events have a non-zero probability to occur. Not being 

able to express new ideas that lead to new strategies lowers the generic adaptive 

capacity of the society itself, impacting on the adaptive capacity  and ultimately on 

the resilience of the whole SES. 

8.1 The Model 
 

Let’s assume that strategies used in order to deal with our surrounding environment 

(ecological system in our case) vary with time. Let’s also assume that these strategies 

are not fixed but they can change (“oscillate” with a given frequency or time 

interval) over time and a mechanism that synchronizes individual strategies exists. 

Under these conditions, the homogenization problem becomes a problem of 

synchronization. The pioneering work of Kuramoto (1975) and subsequent 

modifications (Arenas & Pérez Vicente, 1994; Pluchino et al., 2006) become highly 

relevant in this type of analysis. The model presented by Kuramoto (1975) is very 

generic, but is still able to highlight the fundamental drivers of spontaneous 

synchronization. The model refers to an ensemble of oscillators that have an intrinsic 

frequency (i.e. oscillators move with different “speed”); all oscillators influence one 

another, so that the frequency at time t is given by the intrinsic frequency plus the 

influence that oscillators have on one another. The influence or coupling, can be 

thought of as a “force” that draws the oscillators towards a common centre. 

Numerous applications and modification of the Kuramoto model exist in biological 

sciences, engineering, and computer science (refer to Arenas et al (2008) for an in 

depth review of the Kuramoto model). Applications of the Kuramoto model can be 

also found in social sciences. More precisely, applications in social sciences mainly 

refer to opinion formation (Pluchino et al., 2006) and economics and finance, where 

synchronization is normally assessed looking at correlations (Forbes & Rigobon, 

2002; Onnela et al., 2003). The Kuramoto model has been widely studied on 

different network topologies (Arenas et al., 2008). 
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Humans communicate and exchange ideas and opinions through networks of 

contacts (Boccaletti et al., 2006; Bodin et al., 2006; Caldarelli, 2007; Dorogovtsev & 

Mendes, 2002; Galstyan & Cohen, 2007). These networks influence the possibility of 

synchronization. Although in a different context Bodin and Norberg (2005) have 

presented a very interesting result relating the connectedness of the underlying social 

network and the ability of the social system to be flexible. The more a community 

behaves as a single entity, the more there is a risk that the resilience of the overall 

SES is reduced, as no room for novelty and experimentation is allowed. Nonetheless, 

a degree of connectedness is necessary so as to foster novel ideas and flexibility in 

management. 

 

In this chapter, the synchronization of strategies depends on how different people 

that have the authority to manage a given system (managers) are connected to each 

other, and on how different levels of authority influence the synchronization of 

strategies. Managers share information, ideas, opinions, and hence strategies based 

on a network of contacts. Since different management communities exist, the 

network on which managers act can be thought of as a highly modular network (i.e. a 

network whose density of edges within a module/community is fairly higher than the 

density of edges between modules/communities, as seen in section  3.3.5). When 

acting on a modular network, every module represents a “management community”. 

Managers are able to share strategies along their connections within their community 

based on their own world view and the authority they have within the community. 

Managers are also able to share strategies with managers from different 

communities; in the latter case, the synchronization of strategies will depend on their 

own world view and the authority of the whole community to which a manager 

belongs. 

 

8.1.1 Constructing the Model 
 

As mentioned in the previous section, managers act on a modular network15. Every 

node of such a network represents a single manager. The modular network is created 

                                                 
15  Please refer to Appendix III, section  III.iii for the code of the model presented in this chapter. 
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by joining different random networks that represent different management 

communities. More precisely, the modular networks, visualized in Figure 8-1, are 

created as follows:  

 

1. 10 different random networks are generated with 20 nodes each, so as to 

represent a network of management communities made by 200 people (10 

management communities, each having 20 managers). 

2. Each of the nodes has a probability cp  to be connected to another node 

belonging to the same initial random network. 

3. Every node of the ten different networks has a probability ocp  to be 

connected to a node of a different initial random network.  

4. occ pp > , where cp  is drawn from a random uniform distribution between 

0.9 and 1, while ocp  varies from 0 to 0.2 with a 0.025 increment, hence 

creating 9 different networks, so as to mimic a modular network whose 

modules (or communities) are very densely connected compared to the 

connections between modules (communities). 

 

Once the network is created, attributes are assigned to every manager as follows: 

 

1. The community to which a manager belongs, calculated with the algorithm 

proposed by Newman and Girvan (2004) and reported in section  3.3.5: ci  

2. Initial strategy of manager i , represented by a number drawn from a random 

uniform distribution between -1 and 1: ix  

3. Authority that a manager has within the community: iPw  that assumes values 

in the interval [0,1] 

4. Authority that a management community has when deals with managers 

belonging to other communities: iPb  that assumes values in the interval [0,1] 

5. Its own world view, represented by a number drawn from a random uniform 

distribution between 0 and 1: iw  
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Figure  8-1 Networks visualization for different values of poc 

where poc  = 0 (A), 0.05 (B), 0.1(C), 0.15(D), and 0.2(E) (Own Elaboration). 
 
A general parameter representing the “strength” of an external force is proposed: α . 

When 0=α  no external force acts upon the system, while when 1=α  a powerful 

external force pushes the whole system towards synchronization. This external force 

can be a homogenising factor that exists in a given region of management 

communities such as strong cultural values or religious beliefs or the external 

influence of an organization such as the UN. 
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The dynamics on the network unfold as follows: 

( ) ( )iij
Kj

w
ijii xxxxx ij sinsin ∗−−∗+= ∑

∈

ασ&      [eq.  8-1] 

when world views throughout the managers differ,  

 

and as according to: 

 

 ( ) ( )iij
Kj

ijii xxxxx sinsin ∗−−∗+= ∑
∈

ασ&      [eq.  8-2] 

when no different world view exist. 

 

Where: 

 

=K  first neighbours of node i 

ijij PwPw −=σ  if ciji ∈,  AND if 0≥−= ijij PwPwσ  

ijij PbPb −=σ  if ciji ∉,  AND if 0≥−= ijij PbPbσ  

0=ijσ  if 0<− ij PwPw  OR 0<− ij PbPb  

If 0=ijσ  than 0=ijw
ijσ  

jiij www −=  

 

Constraints on ijσ  are imposed, as it is reasonable to assume that a manager will 

synchronize his/her strategies only with those managers that have a higher degree of 

authority. 
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8.1.2 Simulating the Model 
 
Different modular networks with increasing ocp  are constructed. Manager’s 

parameters are initialized 50 times for each network, and the dynamics represented 

by eq.8-1 and eq.8-2 are run for 1000 time-steps (t-s). 

 

The model is run for different α  values (i.e. 0, 0.25, 0.5, 0.75, and 1) and for 

different authority distributions. Authority within communities is distributed as 

follows: 

 

1. Pw is normally distributed with mean 0.5 and standard deviation 0.125. If 

values are above 1 or below 0, they are reported to be equal to 1 and 0 

respectively, so that: 0 ≤ Pw ≤ 1. 

2. Pw is exponentially distributed with one agent having authority = 1. If values 

above 1 or below 0 exist, they are reported  to be equal to 1 and 0 

respectively, so that: 0 ≤ Pw ≤ 1. 

 

Authority between communities is distributed as follows: 

 

1. Pb  is equally distributed (every community has the same authority) with 

value 0.5 

2. Pb  represents a more “democratic” distribution of authority between 

communities, and thus is represented by a normal distribution with mean 0.5, 

and standard deviation 0.125. If values above 1 or below 0 exist, they are 

reported  to be equal to 1 and 0 respectively, so that: 0 ≤ Pb ≤ 1. 

3. Pb  represents a highly hierarchical system in which one community has 

1=Pb  and the other communities have Pbexponentially distributed between 

0 and 1. If values above 1 or below 0 exist, they are reported  to be equal to 1 

and 0 respectively, so that: 0 ≤ Pb ≤ 1. 

 

Table 8-1 reports a summary of the different combinations explored and the symbols 

used to represent different authority distributions. 
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Table  8-1 Symbols used and corresponding authority distributions 
 

Symbol 
Distribution of authority 

within community 

Distribution of authority 

between communities 

dexp exponential normal 

dnorm normal normal 

eqexp exponential equal 

eqnorm normal equal 

exexp exponential exponential 

exnorm normal exponential 

 

 

Simulations for eq.8-1 and eq.8-2 are performed for different values of α  (being α = 

0, 0.25, 0.5, 0.75 and 1), for different values of ocp (being ocp = 0, 0.025, 0.05, 

0.075, 0.1, 0.125, 0.150, 0.175, 0.2) and for the authority distributions described in 

Table 8-1. Furthermore, it is important to note that all values that represent different 

authority and different worldviews are not to be interpreted in absolute terms but 

only relatively to other values of the same attribute. 
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8.2 Results 
 

In order to assess if different authority distributions lead to different synchronization 

states at the end of the simulation (1000 time-steps), average “strategy values” of the 

50 initializations are collected for every period t. To assess the synchronization 

degree at the end of every run, a synchronization parameter is calculated following 

Pluchino et al. (2006). 

 

( )∑ −−=
2

)()(/11)( tXtxNtr ii       [eq.  8-3] 

 

The system is fully synchronized when 1)( =tr . Once the synchronization parameter 

given by eq.8-3 is calculated, the different distribution combinations shown  in  

Table 8-1 are ranked from the most synchronized to the least synchronized one 

(ranking values from 1 to 6, with 1 being the authority distribution combination that 

leads to the most synchronized state and 6 the least synchronized one). Ranks are 

used as the focus is on how different authority distributions lead to different 

synchronization states, hence, the focal point is on which authority distribution leads 

to the most synchronized state relatively to the other authority distributions, rather 

than in absolute terms. It is important to look at the relative synchronization in order 

to highlight how differences in authority distributions across and within management 

communities lead to relatively different synchronized states. Uncovering the relation 

between synchronization and authority distributions allows understanding how 

different structures of authority lead to different degrees of homogenisation. 

 

Figure 8-2 reports rank distribution and the type of authority distribution used. Figure 

8-3 reports the mean rank (r(t)) for different authority distributions, Figure 8-4 

reports median rank (r(t)) for different authority distributions and Figure 8-5 reports 

the mode rank (r(t)) for different authority distribution. All figures indicate which of 

the different authority distribution combinations is the most likely to lead to a more 

synchronized (homogeneous) state. 
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Figure  8-2 Distribution of rank versus authority distribution 
Rank is displayed on the y axis, while different authority distributions are displayed on the x 
axis for eq. 8-2 (no wv) and for eq. 8-1 (wv). Highest homogenization is reached at rank 1, lowest 
at rank 6 (Own Elaboration). 
 

 
Figure  8-3 Mean rank versus authority distribution 
Mean rank for the different simulation performed is displayed on the y axis, while different 
authority distributions are displayed on the x axis for eq. 8-2 (no wv) and for eq. 8-1 (wv). 
Highest homogenization is reached at rank 1, lowest at rank 6 (Own Elaboration). 
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Figure  8-4 Median rank versus authority distribution 
Median rank for the different simulation performed is displayed on the y axis, while different 
authority distributions are displayed on the x axis for eq. 8-2 (no wv) and for eq. 8-1 (wv). 
Highest homogenization is reached at rank 1, lowest at rank 6 (Own Elaboration). 
 

 
Figure  8-5 Mode rank versus authority distribution 
Mode rank for the different simulation performed is displayed on the x axis, while different 
authority distributions are displayed on the x axis for eq. 8-2 (no wv) and for eq. 8-1 (wv). 
Highest homogenization is reached at rank 1, lowest at rank 6 (Own Elaboration). 
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As it is evident, the authority distributions have an important effect when a 

worldview is absent (i.e. following eq.8-2). The differences in our worldview, could 

in theory mitigate the effect of differences in authority, but, when worldviews are 

very similar (or alternatively when cultural, social and personal beliefs are not crucial 

in devising strategies) different distributions of authority give rise to different 

degrees of homogeneity. More precisely, exponential distributions are more prone to 

lead to the most homogeneous states as shown in Figure 8-2, Figure 8-3, Figure 8-4 

and Figure 8-5. 

 

Moreover, most of authority distributions result in higher synchronization when α is 

not present (= 0). Thus, it is possible, even if this result may seem counterintuitive, 

that an external force that pushes individuals towards synchronization, does actually 

generate more heterogeneity. In short, α  does not seem to significantly alter the 

synchronization characteristics, as shown in Figure 8-6. 

 

Figure  8-6 Rank for different values of alpha 
Rank (y axis) from 1 (highest ranking) to 5 (lowest ranking) for the six authority distributions 
given different alpha (x axis) for eq. 8-2 (no wv) and eq. 8-1 (wv). Authority distributions are 
ranked according to alpha (i.e. which alpha value leads to the most homogeneous state in a 
particular authority distribution) (Own Elaboration ). 
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The fact that the external force gives results that are not aligned with our intuition is 

common in socio-physics (Castellano et al., 2009). A similar model (i.e. with respect 

to the role of external influence) that helps explaining the counterintuitive results of 

the α  parameter has been proposed and studied in relation to opinion formation by 

Tessone et al. (Tessone et al., 2006; Tessone & Toral, 2009). The model differs from 

the one presented here as its coupling is not given by dissimilarities between 

individuals and the dynamics are qualitatively different since it does not take 

different phases (thus oscillating strategies) into account. However, the external force 

(social pressure, advertisement etc.) is modelled as periodic forcing (e.g. in the form 

( )xC sin∗  ) similarly to the model presented in this chapter. The external force in the 

model presented in eq.8-1 and eq.8-2 ( ( )ixsin∗− α ) represents a common institution 

whose strength is given by the parameter α . The institution acts upon the whole 

system and, has different effects according the homogeneity or heterogeneity of 

strategies, as in Tessone et al.(2006) and Tessone & Toral (2009). Despite the 

differences in the synchronization of the various authority distributions, the 

proportion of non-synchronized individuals is very low (see Table 8-2 where 

minimum and maximum degrees of synchronization for every authority distribution 

for eq.8-1 and eq.8-2 are reported), thus, given the relative high homogeneity that 

results from the model, the external common driver is not able to act and force 

individuals towards a specific phase. Moreover, Figure as 8-6 shows, α seems to 

significantly affect the results only when it is absent (i.e. 0=α  thus 

( ) 0sin =∗− ixα ), leading almost in all cases and for both eq.8-1 and eq.8-2 to the 

most synchronized state. 

 

Table  8-2 Min and max values of synchronization as resulted by the simulations performed 
 
 

authority eq. 8-1 eq.8-2 
distribution  min max min max 
dexp 0.7982 0.8916 0.8048 0.9260 
dnorm 0.7897 0.8994 0.8103 0.9226 
eqexp 0.7859 0.8800 0.8042 0.9049 
eqnorm 0.7914 0.8747 0.8108 0.9153 
exexp 0.8016 0.8933 0.7942 0.9282 
exnorm 0.7953 0.8968 0.8178 0.9188 
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This counterintuitive result could be a consequence of the model inbuild 

characteristics, since given the dynamics of described in eq.8-1 and eq.8-2, α , acts 

upon the reinforcement of the original “strategy phase”, hence, in presence of a 

highly synchronized society, it counter-balances the coupling parameter ijw
ijσ or ijσ , 

limiting the synchronization factor. This result, as previously mentioned, is not new 

in the socio-physics domain. External forces have a strong “homogenization” effect 

only if an intermediate degree of heterogeneity exists in the system (Tessone et al., 

2006; Tessone & Toral, 2009). Figure 8-7 gives a visual representation of the 

explanation given regarding α so as to facilitate the understanding of the relationship 

between the external force effect and homogenization. As Figure 8-7 shows, the 

external force has a substantial positive effect only at intermediate levels of 

heterogeneity, while it has a negative effect (thus lowering synchronization) at high 

level of heterogeneity or very low level of heterogeneity. In other words, at 

intermediate levels of heterogeneity, the external force will drive the system towards 

homogenization, while at low and high levels of heterogeneity, the external force 

will act as a positive feedback, thus enhancing heterogeneity. 

 

 
Figure  8-7 Relation between external force and heterogeneity: negative and positife effects 
Positive and negative effects on homogenization are portrayed by the signs (Own Elaboration). 
 
The relationship between heterogeneity and the effect of an external force can also be 

applied in an archaeological context, such as the one described by Nelson et al. 
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(2006). In their paper Nelson et al. (2006), describe how Mimbres villages went from 

a more centralized (thus more homogeneous society) to a decentralized (or more 

heterogeneous society). Mimbres villages refers to villages in the Mimbres region in 

the modern US Southwest around the 12th century AD, as during that time the 

Mimbres region underwent a transition from what is called the classic Mimbres 

period to the post-classic reorganization phase (Nelson et al., 2006). More precisely, 

regarding the aspects that more are affected by different management paths, Nelson 

et al. (2006: 425) affirm the following:  

House size and configuration and the organization of storage 
and food preparation were not more homogeneous or 
standardized immediately preceding reorganization; on the 
contrary, they became increasingly homogeneous after the 
abandonment of Mimbres villages and reorganization in to 
dispersed hamlets. 
 

This can be explained by the model presented in this chapter as the external force 

(e.g. common overarching state organization, strong cultural beliefs common to all 

the Mimbres villages) acting upon all members of the village becomes 0 (i.e. α = 0), 

thus allowing for authority distributions to affect the homogenization of strategies 

between different households (in this case one may think of households of the 

Mimbres villages as managers in the model presented in this chapter). 

 

8.3 Discussion 
 

Three main conclusions can be drawn from the results described in the previous 

section.  First, as shown in Figure 8-3 there is a significant difference amongst the 

different authority distributions in case of equal world views. More precisely, if the 

authorities of the different communities follow an exponential distribution, 

resembling highly hierarchical governance structures, the whole system becomes 

more homogeneous. It is possible to argue that highly synchronized systems are 

beneficial in the K phase of the adaptive cycle as homogeneous management 

improves efficiency; however, a small degree of homogeneity is actually beneficial 

and necessary in any phase of the adaptive cycle as it allows preserving strategies to 

manage resources and relations (Nelson et al., 2006). In this context, the small degree 
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of homogeneity can be thought of as a necessary condition for the social system to 

preserve valuable knowledge (“remember”) (see section  4.1.1 on the adaptive cycle).   

 

The second conclusion drawn from the model presented confirms that authority 

distributions between different management communities influence far more 

significantly the possibility of synchronization and thus homogenization of strategies 

than differences of authority distribution within the same management community. 

As Figure 8-2 and Figure 8-3 show, differences between distributions of authority 

inside the very same community do not lead to significant differences (e.g. dexp vs 

dnorm, eqexp vs eqnorm and exexp vs exnorm), while distributions of authority 

between community seem to have a highly significant effect. Therefore, more effort 

should be put into examining cross-community relations, as these may as well be the 

drivers of strategic decisions. The third main conclusion drawn suggests that for high 

synchronization values, an external force causes more heterogeneity 

(asynchronization) rather than homogeneity (synchronization) at least in relative 

terms. This result should lead to a reconsideration of the role of informal and formal 

institution in presence of different levels of heterogeneity and synchronization in the 

system. The so called external force can be envisioned as an overarching institution 

(formal or informal) that is common to all managers and hence management 

communities who exist in the system. 

 

Given the results of the model presented, a high degree of synchronization is 

generally observed (as shown in Table 8-2). High homogenization is responsible for 

narrowing the windows of opportunity for experimentation. Thus, high 

homogenization reduces what has been previously defined as generic adaptive 

capacity and lead to an “efficiency trap”, where no novel strategies are explored and 

managers concentrate on a single way of dealing with the environment. Managers 

that are able to devise only one type/set of strategies will refine the very strategies 

they are familiar with, at the expenses of other possible ones (Levinthal & March, 

1993; Scheffer & Westley, 2007). In other words, thanks to the available technology, 

managers will become increasingly competent in changing the environment rather 

than adapting to it. In the long-run, different strategies are lost thus lowering the 

generic adaptive capacity. The reduction in generic adaptive capacity leads to a 
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system that lacks the precondition necessary for adaptive capacity especially in case 

of novel disturbances. In other words, such system loses the ability to adapt to shocks 

that have not been previously experienced or that are not known or expected by the 

managers of a SES. 

 

In order to be adaptive, the management of the SES should exhibit some degree of 

heterogeneity, if the management’s objective is to find the best possible strategy 

while maintaining flexibility and the possibility for novel ideas to emerge (Levinthal, 

1997). Given the results above, highly hierarchical governance structure are less able 

to respond to fundamental shifts in the slow variables that causes the system to 

change its basin of attraction. This final statement is also confirmed by a study on the 

resilience of three different archaeological cases in the U.S Southwest by Hegmon et 

al. (2008).  

 

More specifically, regarding the hierarchy thus the distribution of authority, the 

authors find a relation between highly hierarchical societies (in our model 

represented by the exexp distribution) and the magnitude of the societal collapse. 

Moreover, it is possible to assume that the people living in the three societies studied 

(Mimbres, Mesa Verde and Hohokam) had very similar if not the same worldview 

within their own community.  In this context, eq.8-2 can fairly represent the 

diversification of strategies or management paths present in the three different 

settlements. As it has been explained in this paragraph, homogeneity reduces the 

window of opportunity, thus lowering the generic adaptive capacity that will reduce 

localized adaptive capacity that will reduce the resilience of a SES. Hegmon et al. 

(2008: 319) affirm that in “Mimbres there are only tentative indications of social 

differentiations” hence authority could have been equally or normally distributed 

throughout the population (being here the population also able to manage the 

environment, thus effectively being represented by the “managers” of our model). 

Mesa Verde, present more social differentiation but mostly in the latest years, thus 

again, Mesa Verde can be represented by a normal or exponential distribution within 

and between communities belonging to it. Finally, as noted by Hegmon et al. (2008: 

319) “in the Hohokam case, there is strong evidence of differential access to social 

power as well as wealth and status, although there was intraregional variation”.  
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Analyzing the three cases supports the conclusion presented here and allows for an 

understanding of the role of authority in the adaptive capacity and at last on the 

resilience of a SES. The three cases can be represented by different authority 

distributions of the model presented, and as such, they can be seen at different levels 

of homogenization. These levels of homogeneity have had an important effect on the 

outcome of the societal collapse, as the authors affirm, “the Mimbres transformation 

was clearly the least severe” while “Mesa Verde and Hohokam, evidenced much 

harsher conditions prior to their more severe transformations” (Hegmon et al., 2008: 

321), due to the rigidity imposed by a homogeneous society and the lack of new 

possible management paths that could have facilitated the adaptation or 

transformation of these societies. 

 

The importance of the management or social system for the resilience of an SES is 

clear. Different ways to manage our landscape, our ecological system may lead to 

resilient paths or may lead to painful collapses and changes in the basin of attraction. 

Throughout history there have been different societies that are thought to have 

collapsed due to purely ecological reasons (Diamond, 2005). Thesis such as the one 

proposed by Diamond can be and have been disputed, as the social component of the 

SES is often what actually triggers transformation, adaptation and in cases, a painful 

shift in the basin of attraction. As Tainter points out (2006) a pure ecological collapse 

(i.e. a change of the basin of attraction only due to ecological reasons) has not been 

proven as it “denies the human capacity for flexible adjustments, including 

intensifying production” (Tainter, 2006: 72). 

 

To conclude, this chapter has shown how different management systems may 

actually facilitate or hinder the fostering of new management paths. Possible 

strategies that managers could implement are explored in Chapter  7. This chapter 

starts posing question of relating authority within and between communities and the 

ecological system that is been managed. Answering and developing questions on 

issues of authority in the management of ecological systems may help the 

understanding of how SES resilience is eroded or if the SES finds itself in an 

efficiency trap. The following and last chapter of this thesis will first summarize the 
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conclusions drawn from Chapters  6,  7, and  8. Further it will build a common 

framework in order to unify the models presented in this thesis so as to integrate 

social and ecological networks that, as it has been demonstrated, play a crucial role 

in shaping the resilience of a Social-Ecological System. 
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9 Conclusions 
 
Linking social and ecological systems in an evolving and complex world poses great 

challenges. Linear thinking, deterministic and based on a reductionist approach, has 

proved to be inadequate to explain complexities and behaviours of such systems. 

New approaches are deemed necessary in order to study a SES with its strengths and 

weaknesses. More precisely, this work integrates network theoretical tools and agent 

based modelling in the resilience framework so as to approach SESs from a structural 

perspective. 

 

As recalled throughout this thesis, the concept of resilience developed by Holling and 

co-workers (Brand & Jax., 2007; Holling, 1973,  1998; Holling & Gunderson, 2001; 

Walker et al., 2004) is an appropriate lens through which analyse and understand 

spatial and temporal evolution of a SES. The concept of resilience is based on non-

equilibrium or multi-equilibrium; it takes uncertainties and surprises into account, 

and looks at feedbacks and cross-scale interactions within and between the social and 

the ecological components of the system. 

 

However, resilience concepts do not automatically identify a set of straightforward 

metrics and techniques able to assess the state and the resilience of a SES. Given the 

complexities of such coupled systems, an approach drawing from and integrating 

different disciplines, methods and tools in a coherent and rigorous framework is 

needed. In this research, tools and methods provided by network science (Albert & 

Barabási, 2002; Barabási & Albert, 1999; Boccaletti et al., 2006; Börner et al., 2007; 

Caldarelli, 2007; da Fontoura Costa et al., 2007; Dorogovtsev & Mendes, 2002; 

Newman, 2003; Watts, 2004; Watts & Strogatz, 1998) are used to analyze SES from 

a structural perspective. Representing a SES as an ensemble of networks is a first 

step towards a network of networks representation. A structural perspective helps to 

understand structural weaknesses and strength of a system, so that it is possible to 

plan and adapt accordingly, as the relationship occurring between structural 

properties and functions of a complex system has been recognized in different fields , 

both theoretically and empirically (Baggio et al., 2010; Boccaletti et al., 2006; Bodin 
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& Norberg, 2005; Pastor-Satorras & Vespignani, 2001; Planesa et al., 2009; Stauffer 

et al., 2004; Vazquez, 2006). A resilience assessment from a structural perspective 

may allow a clearer understanding of the fundamental features of SES, enhancing 

knowledge of adaptation and transformation occurring in an interdependent and 

interconnected world. 

 

9.1 Advancing SES science: new methods and tools fo r 
understanding SES resilience 

 
In order to gain the insights presented in sections 6.4, 7.3, 8.3, and summarized in 

sections 9.2 and 9.3, a mix of methods and tools have been used throughout this 

thesis. More precisely, as explained in Chapter 2, the thesis makes extensive use of 

analogy, adapting tools and methods drawn from different disciplines. It combines 

network theoretical methods with the resilience framework and makes extensive use 

of ABMs, since they are judged to be the most appropriate modelling technique 

when dealing with CAS (as explained in Chapter 5). The aim of this thesis is to 

uncover the relation between structural properties and resilience of a SES. The 

structural properties of a system are the focus of the analysis in all the models 

presented; nonetheless, networks are considered as static and supportive of the 

evolution of dynamic processes in the models presented in Chapters 6 and 8. In 

Chapter 7, the network supports dynamic processes and also evolves over time 

according to predetermined rules.  

 

It is well known that dynamic processes unfolding on networks relates to the 

topology and the characteristics of the network on which they evolve (i.e. metrics or 

structural properties) (Boccaletti et al., 2006). However, the way in which the 

underlying network influences dynamics of SES is still an open question. Different 

tools and methods are needed in order to understand SES resilience from a network 

perspective. The analysis of CAS such as SES should be based on the continuous 

interactions between the abstraction of fundamental variables (model), pilot studies 

and experiments in order to validate or falsify the model constructed, and actual case 

studies and fieldwork. This thesis represents the first step of this cycle. Agent based 

models are used in order to mimic dynamics on an underlying network, 
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approximating reality in order to understand the influence of networks on the 

resilience of SES. 

 

Significant contributions in social sciences and, I would say, in the understanding of 

SES will, in the words of Henrickson and McKelvey (2002: 7295) “emerge more 

quickly if science-based beliefs are based on the joint results of both agent-modelling 

and subsequent empirical corroboration.” This thesis is thus a step towards building 

science beliefs based on ABM, accompanying their use with network theoretical 

tools, both set in the resilience framework. 

 

9.2 Understanding resilience from a network perspec tive 
 

As stated in the introduction, two research questions are central to this thesis, the first 

being: 

 

• Is it possible and to integrate resilience principles and network theory, and if 

yes, how? 

 

To set the background in which this work has been conducted, aspects of both, 

resilience thinking and network science are introduced in Chapters 3 and 4. A first 

working definition of resilience from a network perspective is given in Chapter 5: 

network resilience is the amount of disturbances a network can undergo without 

being totally disrupted, that is, without breaking down its giant component. 

 

Chapter 5 reports literature results regarding the well known existing relationship 

between the topology and the resilience of a network (Albert et al., 2000; Crucitti et 

al., 2004; Latora & Marchiori, 2001). Failures influence the most important network 

metrics such as the size of the giant component, the efficiency (global and local) and 

the average shortest path length. However, the results described refer to a semi-static 

analysis, where networks do not evolve and no dynamical process except the collapse 

of nodes is present. To mimic the evolution of SES from a network perspective, it is 

possible to think at how networks evolve when nodes are added or disappear, edges 
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are added, disappear or are rewired. It is also possible to envisage networks 

remaining fairly stable (e.g. infrastructure and landscape networks), and working as a 

support for dynamical processes, such as predator prey interactions, epidemics, or 

rumour and information spreading (Boccaletti et al., 2006). SESs are evolving 

systems, they may move between different states in the same basin of attraction, or 

shift basin of attraction. These concepts and findings lead to a second research 

question of this thesis: 

 

• How do the dynamics of a system unfold and how are they influenced by the 

structural properties of the system?  

 

To answer this question, it is necessary to assess the resilience of a system from a 

structural perspective, analyzing dynamic processes that unfold on fairly stable 

networks. Given the presence of feedbacks, cross-scale dynamics (temporal and 

spatial), emergence and self-organisation that characterise SESs, networks are used 

as a support for the models developed in Chapters 6, 7 and 8. In these chapters, 

networks are the “infrastructure” on which certain dynamic processes evolve.  More 

precisely, in order to assess how structural properties may influence the resilience of 

a system, following Carpenter et al. (2001), “resilience of what to what” is defined 

in the first section of every chapter. It is here worth highlighting that resilience is a 

neutral term, and that there are different types of resilience. Further, there is often a 

trade-off between resilience to different type of disturbances and between resilience 

at different spatial and temporal scales. In other words, it is possible to enhance 

resilience at a particular spatial and temporal scale, while decreasing resilience at a 

different temporal and spatial scale as well as it is possible to enhance resilience of a 

system to a specific type of perturbation while decreasing resilience to another 

specific perturbation. Therefore, when analyzing the resilience of a SES, it is 

necessary to identify as precisely as possible the resilience of what to what 

(Carpenter et al., 2001).  

 

Chapter 6 presents a first theoretical model where a simple landscape, represented as 

a network, is built. The landscape is first represented as a disconnected network, and 

connections are added until the landscape is represented by a fully connected 
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network. The effects of the underlying landscape network are assessed on predator-

prey interactions. In Chapter 6 and Chapter 7 a shift in the basin of attraction occurs 

when there is a change in the species composition of the system. Hence, in theory, 

three basin of attraction exist: one in which predators and prey coexist, one in which 

only prey survive, one in which there are no predators and no prey. More precisely, 

Chapter 6 centres upon understanding one main aspect of the relationship between 

structural properties and system resilience as defined, namely:  

 

• Does network connectivity facilitate or hinders the shift onto a new basin of 

attraction? 

 

As seen in sections 6.3 and 6.4, the connectivity of the network and the probability 

of shifting basin of attraction are related. Node centrality influences probability of 

coexistence on a local scale (e.g. on one node) while centrality at the network level 

influences the probability of coexistence on a global scale (e.g. on the whole 

network). The relationship discovered supports existing theories such as corridor 

ecology and the creation of reserve networks in order to foster long-term 

biodiversity (Cabeza & Moilanen, 2001; Hilty et al., 2006): connecting different 

patches of protected areas seems to enhance the resilience of the system modelled 

with respect to the coexistence of species. Thus, network connectivity has a tangible 

effect on the resilience of the ecological system as demonstrated in Chapters 6 and 

7. 

 
In order to investigate further the relationship that exists between structural 

properties of a SES and the resilience of a SES, another model is presented in 

Chapter 7. This model builds on the results obtained in Chapter 6, adding 

management (human) interaction with the ecological system. A manager is able to 

voluntarily alter the landscape that in return, will affect predator prey interactions (as 

demonstrated in Chapter 6). While Chapter 6 centres on the relation between basin of 

attraction and network metrics, Chapter 7 explicitly addresses the temporal dynamics 

of structural properties, introducing the simplest possible social system, formed by 

one social agent (manager in this case) able to alter the landscape network. More 

precisely, the manager is able to act upon the edges’ weights, representing an animal 
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perceived cost of movement, and connecting different landscape patches represented 

as nodes. Further, the model presented in Chapter 7 looks at possible feedbacks 

existing between social actors (such as managers) and the ecological system. Most 

importantly, the model described in Chapter 7 allows to relate the evolution over 

time of structural properties and the resilience of the system; in other words, it 

answers the following question: 

 

• How does the evolution of structural properties facilitate or hinders the shift to 

another basin of attraction? 

 

From the outcomes presented (see sections 7.2 and 7.3), the evolution of structural 

properties seems to play an important role in the resilience of a system. Using 

network metrics that are suitable for weighted networks, a relation between the 

temporal dynamics of these metrics and the resilience of a system is found. More 

precisely, using simple statistical measures such as variance, kurtosis and skewness 

(i.e. statistical moments) of the evolution over time of selected structural properties, 

it is possible to have a coarse-grain assessment of the probabilities that the system 

will shift basin of attraction. If no critical transition occurs in the time evolution of 

network metrics, the system is more likely to remain in the same basin of attraction. 

If critical transitions occur in the evolution of network metrics, the system is more 

likely to approach a threshold and hence change its basin of attraction. As in Chapter 

6, structural properties are confirmed to be a promising indicator when assessing the 

resilience of an ecological system. Chapter 6 presents a model mainly centred on a 

simple ecological system; Chapter 7 builds on the model presented in Chapter 6 and 

introduces a simple social system and feedbacks between the social and the 

ecological system. Chapter 7 may represent a first attempt to model a SES through 

ABM using network theoretical tools in order to analyze the effects of structural 

properties on the resilience of the SES. However, both chapters are more centred on 

the ecological system rather than the social one.  

 

The model presented in Chapter 8, on the other hand, does not take explicitly into 

account the ecological system and focuses on the social system. The model 

portrayed, analyzes the relationship between authority distributions and 
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homogenization of strategies. Being homogenization the act of becoming more and 

more synchronized. In contrast to the previous chapters, Chapter 8 does not assess 

the resilience of a SES per se. However, Chapter 8 highlights the existing 

relationship between strategy homogenization and what is defined as generic 

adaptive capacity (i.e. the preconditions necessary to be adaptive and that relate to 

learning, experience and knowledge). Thus, the focus is on social characteristics 

assumed to be necessary for adaptive management of a SES. The model mainly aims 

to uncover the relation between authority structures and homogeneity of management 

paths; thus, by extension, the relation between authority structures and generic 

adaptive capacity. The model presented in Chapter 8 is built mainly to answer the 

following question related to the resilience of a SES: 

 

• Are there different authority structures that favour the homogenization (or 

synchronization) of management strategies, thus reducing the adaptive 

capacity to manage a SES? 

 

Authority distributions in management communities influence the homogenization of 

strategies as seen in section 8.2 and 8.3. High homogenization of management paths 

is responsible for narrowing the possibility of experimentation and pursuing novel 

management paths. In other words, high homogenization reduces generic adaptive 

capacity. Systems in which strategies are highly homogeneous are assumed to lose 

the ability to adapt to shocks that have not been previously experienced or that are 

unknown or unexpected by the management of a SES. Moreover, the model confirms 

previous findings as, for example, those from archaeological studies in the U.S 

Southwest by Hegmon et al. (2008):  highly hierarchical governance structure are 

less able to respond to fundamental shifts in the slow variables, to novel shocks and 

unexpected outcomes, hence lowering the adaptive capacity of a SES.  

 

Previous findings have shown the importance of the social system for the resilience 

of a SES (see for example: Adger, 2000; Anderies et al., 2004; Anderies et al., 2006; 

Bodin et al., 2006; Bodin & Norberg, 2005; Carpenter et al., 2001; Elmqvist et al., 

2003; Folke, 2006; Holling, 2004; Liu et al., 2007; Olsson et al., 2004; Walker et al., 

2002). Different ways to manage the ecological system may lead to resilient paths or 
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to painful collapses and changes in the basin of attraction. In this context, adaptive 

capacity is a fundamental feature of the resilience of a SES. Lowering adaptive 

capacity decreases the possibility to experiment with novel management paths, and 

ultimately, lowers the ability of the social system to proactively build resilience. 

 

9.2.1 Relevance for policymakers 
 
As seen in section 9.2, and throughout the thesis, structural properties influence the 

resilience of SES. These findings are also supported by previous research that links 

networks and resilience of SES (Bodin et al., 2006; Bodin & Norberg, 2005; Janssen 

et al., 2006; Newman & Dale, 2005). Remembering that the models presented in 

Chapters 6, 7 and 8, following Carpenter et al. (2001), define typologies of 

resilience, it is possible to affirm that in the cases presented, connectivity plays a 

central role in increasing or decreasing the resilience of a SES. Moreover, as seen in 

Chapters 6 and 7, there is a number of well-known network metrics that play an 

important role in assessing resilience from a structural perspective. These metrics are 

the ones that indicate the easiness or the difficulty of dispersal and diffusion of 

processes from one node to another (i.e. closeness centrality, global efficiency, local 

efficiency, giant connected component, degree, strength or weighted degree, density, 

betweenness etc.). Variation in the structure of a system (viewed from a network 

perspective) influences the ability of a SES to maintain its original functions and 

controls despite disturbances and other parameters. Moreover, as described in  

Chapter 8, authority distributions influence the homogenization of management 

paths. Thus network properties and authority distribution have an important effect on 

the ability of a SES to self-organize, learn and adapt. 

 

Structural properties of the landscape or the social-network are thus important for 

SES resilience. This importance can be also assessed by real-life examples. As 

described in section 6.4, jaguars’ behaviour provides a first real world example of the 

conclusions drawn in section 9.2 and Chapter 6. They are highly dependent on 

movement for searching prey and for mating. Connectivity is thus essential for their 
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survival, hence for the resilience of the system studied (Michalski & Peres, 2005; 

Ortega-Huerta & Medley, 1999). 

 

These findings have implications for policies that aim at biodiversity conservation. 

Such policies, based on the conclusions drawn from Chapters 6 and 7 should avoid 

establishing isolated protected areas, and consider the opportunity to establish a 

network of protected areas. Increasing connectivity, as well as occupying globally 

and locally central patches, enhances the probability of coexistence between prey and 

predators, hence maintaining biodiversity. Impeding movement, on the other hand, 

by fencing and other means, may actually produce unintended effects, as seen in the 

model presented in Chapter 7. Excluding species from a certain area in order to 

maintain vegetation or other specific endangered species may give rise to a critical 

transition in the evolution of the structural properties of the landscape. As seen in 

section 7.2 and 7.3, these transitions negatively affect the probability of coexistence, 

hence biodiversity and ultimately the resilience of the system under study. Both 

Chapters 6 and 7 lead therefore to the conclusion that policies that aim at biodiversity 

conservation should foster the creation of a network of protected areas. Moreover, 

following the results presented in sections 6.4 and 7.3, it is important to create 

potential protected areas geographically near to other areas of the reserve network 

that may need to be enclosed. The enclosure of protected areas may be decided for 

vegetation depletion or increased human pressure. Whatever the reason, it is 

important to pinpoint alternative areas in spatial proximity so as to avoid a critical 

transition in the evolution of the reserve network’s structural properties, which will 

erode the resilience of the specific SES under study, with respect to biodiversity. 

 

Further, human activities (i.e. management paths) need to be taken into account 

along with possible unexpected consequences and surprises that specific strategies 

may raise. Examples of unexpected consequences of SES management can be drawn 

from Olsson et al. (2004) and Liu et al. (2007; 2001). In both cases protected areas 

were designed without taking into account the social system and the actual effect of 

some existing management strategies. In both cases this has produced unintended 

results. Thanks to what can be referred to as authority (as defined in Chapter 8), at 

least in the case of the Kristianstadt Vetternike, the consequences were addressed by 
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changing management path (Olsson et al., 2004) (see section 7.3 for a more complete 

description of the examples reported here). 

 

Management paths decided by the social component of a SES are fundamental for 

the resilience of the whole system. As mentioned throughout the thesis (i.e. section 

4.1.2, and Chapters 7 and 8), the social system has some peculiar features, such as 

the ability to foresee, communicate, and the technology to heavily affect the 

ecological system. These features allow the social system to play a crucial role in a 

SES, devising different management strategies in order to maintain the SES in the 

desired basin of attraction. In this context, homogenization of strategies and its 

consequences have been analyzed. Some conclusion for policymakers can be drawn 

also from the analysis and the findings of Chapter 8. Policymakers should 

concentrate not only at the creation of networks of protected areas while taking 

human (inter)actions always into account, but they also need to consider the authority 

structure of the social system that is part of the SES they are trying to address.  

 

Homogeneity as defined in Chapter 8, reduces the possibility of pursuing different 

strategies, thus lowering the generic adaptive capacity that will reduce the resilience 

of a SES. However, it is possible to speculate that homogeneous societies are 

economically more efficienct and thus work better in case of fairly stable systems. 

Unfortunately, SESs are generally, at present, becoming more and more unstable 

given globalization and the continuous changes experienced throughout the world 

(i.e. changes in the geopolitical arena, information technology, technology, climate 

changes etc.). Policy makers should then devise strategies that press on highly 

hierarchical governance structures to allow the implementation novel strategies and 

experimentation. Therefore they need to look at the heterogeneity that already exists 

in a social system and relate the existing heterogeneity/homogeneity to the possibility 

of acting as an external force in order to increase it, based on the conditions of a SES 

and the desired goals. The statement that homogeneity of strategies lowers adaptive 

capacity is supported by various studies on ancient civilizations and populations, 

such as the one reported by Nelson et al. (2006) and  Hegmon et al. (2008) in the 

U.S. Southwest and some of the examples proposed by Tainter (2006). 
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To conclude, structural properties influence the resilience of a system and should be 

taken into account when devising policies that aim to increase or decrease the 

resilience of a specific system to a specific disturbance. More so, if the disturbances 

that need to be addressed relate to diffusion and dispersal. It is also important to 

mention, that connectivity may not be always positive, but can generate traps and 

lock-in situations (Bodin & Norberg, 2005,  2007; Newman & Dale, 2005). As 

explained in section 9.4, none of the models presented has tried to address the 

drawbacks of connectivity, such as the spreading of pests and viruses. 

 

9.3 Future directions 
 
The main aim of this work is to assess the importance of structural properties and 

how structural properties affect the resilience of SES. As it is possible to recall from 

section 5.2, CAS, such as SES, differ from stable, linear systems, where once it is 

possible to know the starting conditions and the laws that govern the system, it is 

also possible to exactly predict its evolution. Given the complexities of SES, the role 

of a model should be to understand, rather than predict, the fundamental processes 

that govern it and the effect of these processes. In this highly uncertain context, 

simulations may prove to be the most appropriate tool to analyse and understand the 

complexities of a SES from a structural perspective. 

 

The models presented in Chapters 6, 7 and 8 represent fundamental processes that 

interplay in a simple SES. It is also known that a model is only as good as its 

assumptions, and for this reason, all assumptions on the behaviour of agents 

(predators, prey, and managers) in the models presented have been accurately 

checked so as to ground every behavioural rule and every relation between variables 

in the available literature. The work presented is built on key papers in the literature 

concerning the tools and methods used, at the best of my knowledge; been the fields 

of study (networks, resilience and ABM) expanding fast it is possible that not all the 

available literature has been taken into account. There are two main limitations of the 

work presented here, limitations that are also avenues for future research. Future 

work will concentrate on the empirical validation of the models presented and the 
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diffusion/dispersal of concurrent processes such as propagation of shocks viruses, 

invasive species and pests so as to assess how structural properties influence 

enhancement and, at the same time, the decrease of a SES resilience. 

 

9.3.1 Empirical validation of the models presented 
 

As explained in section 5.2.4, validating, verifying and evaluating ABMs can be a 

demanding task. It is worth recall here, that the first criterion to assess an ABM is its 

reliability by allowing for different separate implementations and comparing the 

results. The ABM presented are written in NetLogo (Chapters 6 and 7) and Matlab 

(Chapter 8), and have been implemented on different platforms (namely Windows, 

Unix/Linux and MacOs). However, the same models have not been recoded in 

different languages; that is, the models have not been coded in C++ or Java and 

compared to the ones written in Netlogo and Matlab. As described in Chapter 5, in 

order to evaluate ABM Taber and Timpone (1996) ask the following questions:  

 

1. Do the results of a simulation correspond to those of the real world (if data 

are available)?  

2. Is the process by which agents and the environment interact corresponding to 

the one that happens in the real world (if the processes in the real world are 

known)?  

3. Is the model coded correctly so that it is possible to state that the outcomes 

are a result solely of the model assumptions?  

 

It is possible to state that the results reported in sections 6.3, 7.2 and 8.2 are the result 

of model assumptions, as the code has been checked different times by different 

scholars and no errors or artefacts exist, at the best of my knowledge. On the other 

hand, the first two evaluation questions can be assessed only through in depth, 

multiple case studies over a period of time. In order to validate empirically the 

models presented, a large amount of data needs to be collected. Data that are not 

easily available: reproduction, death and predation rates for predators are very 

difficult to obtain (it is very easy to “miss” an event, even using new technologies 
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such as GPS collars); authority distributions within and between communities and 

their effect over time (as synchronization happens over time) can also be hard to 

acquire. The processes presented, the rules, and the funadamental variables are 

grounded in the available literature. However, more empirical work is needed to 

confirm the validity of the rules, processes, variables and parameter values proposed 

in the models. Moreover, in order to validate the ABM presented, data on predator 

prey are not the only ones needed. The evolution of structural properties over time is 

a critical component of every resilience assessment, as resilicence of a SES is an 

intrinsically dynamic, spanning over different temporal and spatial scales (as 

reported in Chapter 4). Unfortunately, empirical data that span over different 

temporal and spatial scales are difficult to obtain. 

 

To conclude, a complete empirical evaluation of the work presented in this thesis 

requires data from the real world and the involvement of knowledgeable experts, 

possibly through focus groups. Thus, in order to gauge the validity of the models 

presented it will be necessary to perform a multi-unit case study over time. In other 

words, in order to validate, modify or falsify the models presented, multiple case 

studies in different locations need to be designed. Further, these case studies should 

be analyzed on at least a 5 year time span, as resilience is an intrinsically dynamic 

concept. Cross temporal and spatial scales interactions are fundamental in order to 

understand the resilience of a SES. 
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9.3.2 Network effects on diffusion of concurrent pr ocesses 
 
The second main avenue for future research focuses on analyzing network effects on 

the diffusion of concurrent processes. More precisely, the models presented in 

Chapters 6 and 7 refer to diffusion and dispersal as “positive” or beneficial. In other 

words, diffusion and dispersal are viewed as factors that help the system to remain in 

the same, desired, basin of attraction. The effect of the interplay between beneficial 

and detrimental dynamics on a network has not been fully investigated. More 

precisely, future work will need to address the two following questions:  

 

1. Which network structures facilitate or impede the unfolding of positive and 

negative dynamics on the social and on the ecological network related by 

feedbacks mechanisms? 

2. How is it possible to influence the network structure of a system in order to 

minimize the diffusion of negative dynamics and enhance the diffusion of 

positive dynamics? 

 

These two questions are directly related. Only once it is possible to understand the 

influence of the network on the diffusion of positive and negative dynamics, it is 

possible to look at how to intervene on the edges and nodes of a network to uncover 

which structures minimize negative dynamics (such as viruses and pests and shocks 

that may alter the system) and enhance positive dynamics (such as predator dispersal 

or information diffusion).  

 

9.3.3 A network of networks to represent SESs 
 

Network analysis as demonstrated throughout this thesis, is a promising tool to 

understand weaknesses and strengths of a SES so as to assess its resilience. The 

language of networks, carefully defined, is common for social and ecological 

systems. Despite the fact that nodes and edges may perform functionally different 

tasks, the overall structural properties (i.e. network metrics) and the representation of 

social and ecological systems remains the same.  
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A first possible avenue to unify social and ecological networks such as the ones 

presented here is to represent a SES network as a network where humans are nodes 

of a wider food-web. In this context “human nodes” are classified according to their 

main occupations (e.g. fishermen, farmers, hunters, extraction of natural resources 

such as logging, minerals, etc...). The edges of this network are weighted and weights 

represent energy exchanges between species. The main problem of this approach is 

in the difficulty of reaching meaningful results and an understanding of the dynamics 

of the system. A network such as the one described, risks to be very densely 

connected, not allowing a clear comprehension of the implications and the effects of 

different structures on resilience. 

 

However, it is possible to envision a network of networks (Buldyrev et al., 2010; Gao 

et al., 2010; Parshani et al., 2010; Shao et al., 2010), comprised of a network 

representing a landscape, such as the one presented in Chapters 6 and 7, a network 

representing management communities, such as the one presented in Chapter 8, and a 

food-web, whose predator-prey interactions in Chapters 6 and 7 are a simplification. 

Two types of edges need to be taken into account in designing a network of networks 

such as the one described: one type representing information flows between nodes, 

and the other representing support (dependency) relationships. The first type of edges 

mainly exists within the management network, while support/dependency edges exist 

within and between the three networks. The basic structure of a possible network is 

depicted in Figure 9-1.  

 

 
Figure  9-1 Network of Networks 
Where M = management community network, L = landscape/resource network, F = food web. 
Edges between the networks are bidirectional, while their weights represent the density of 
support/dependency edges that exist between two networks of the network of networks (Own 
elaboration). 
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The analysis of such network of networks may enable the analysis of SES as one 

whole network, looking at different connectivity levels and how the interplay of 

connectivity within and between the networks affects the resilience of SES from a 

structural perspective. The robustness of a network of networks has only been 

recently investigated. More precisely, only a few specific cases have been analyzed, 

one example being the analysis of the power disruption occurred in Italy in 2003 

(28th of September) where the network of networks comprehend the power grid 

network and the Internet (Buldyrev et al., 2010; Gao et al., 2010; Parshani et al., 

2010; Shao et al., 2010). These studies seem to uncover an inbuilt fragility of 

networks of network increasing with the number of networks that are interrelated. 

However, research in this field is just at the beginning and more is needed. 

Nonetheless, I do think that a network of networks can be a very promising avenue in 

order to unify social and ecological networks in one network of networks 

representing a SES. Further, the design of a unified network of networks representing 

a SES could and should be coupled with dynamic processes unfolding on them, such 

as harvest, predation, reproduction, erosion of resources, diffusion/dispersal of 

species, viruses, pests, shocks, and management paths. The study of dynamic 

processes that unfold on this network of networks involves the use of ABM, for the 

reasons explained in Chapter 5 and as demonstrated throughout this thesis, so as to 

further enhance our understanding of SES and better assess their strength, 

weaknesses and resilience.  

 

This thesis is a step towards representing a SES from a structural perspective. 

Network theoretical tools and ABM have been embedded within the resilience 

framework. Structural properties influence the resilience of SES. Numerous 

challenges lie ahead in order to reach a comprehensive representation of a SES 

network that is able to take into account dynamic processes and cross scale 

interactions (Cumming et al., 2010). This section of the thesis suggests interesting 

developments in SES network representation. Starting from the fundamental 

processes used in this work, it is possible to link different networks and the dynamics 

unfolding on them. Hopefully, in the future, it will be possible to to represent a SES 

from a network perspective, and thus, it will be feasible to assess strength, 

weaknesses, traps and resilience of a SES by analyzing its structural properties. 
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9.4 Stating the innovations presented in this work 
 
Besides the answer to the research questions posed at the beginning of this work, and 

summarized in section 9.2, this thesis has made a number of significant contributions 

to the study of resilience of SES and the study of CAS. 

 

The first, and most important one, is of methodological nature. The combination of 

models and techniques drawn from different disciplines has been synthesised in order 

to develop a uniform set of tools which has proved effective for the structural 

analysis of SES. As it has been noticed several times in the discussion contained in 

this Chapter and throughout this thesis, both quantitative and qualitative instruments 

are necessary to fully exploit the potential of the methods presented here. This work, 

therefore, strongly supports the idea, already expressed by many scholars, that 

triangulation of research methods can give the necessary clues to lead to a ‘truer 

analysis’ of SES. 

 

As it has been discussed, network representation allows a wide range of simulations. 

Even simplified models, such as the one presented in Chapters 6, 7 and 8 are able to 

provide insightful results that have relevant suggestions for policymakers (as 

discussed in section 9.2.1). This is an important outcome. Social-Ecological systems 

are, indeed, complex, adaptive phenomena and this complexity is the essential unit of 

analysis for the understanding of the resilience of a SES. Its behaviour can be well 

considered to be in that ideal phase space region between a completely ordered 

conduct and a completely disordered one which has been also called the edge of 

chaos. This idea has been intuitively with us for a long time. However, only in the 

last years a group of scholars has considered that a linear deterministic description is 

largely insufficient to explain the behaviour of a system whose components interact 

in so different ways as extensively explained throughout this thesis. The relationships 

among the different component of a SES can be highly nonlinear and the whole 

ensemble can exhibit features which cannot be (or can be with enormous difficulty) 

derived by meaningful compositions of those of the single components. 
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Probably the most important result of this vision is the claimed impossibility to 

predict fully the dynamic evolution of the system and to recognise that a successful 

management of a CAS need to be adaptive itself. Numerical simulations seem to be 

the only real possibilities to overcome, at least partially, these difficulties and 

provide a range of solutions which will (Bankes, 2002: 7266) “allow users to iterate 

with the computer to gradually evolve policy schemas that have particular policy 

instances with desirable properties”.  

 

The dynamic progress of the ecological system has been related to the modifications 

of the network topology and proved models have been invoked to explain this 

evolution. Again, even with the limitations discussed, the results presented can prove 

extremely useful, as a first assessment of the resilience of a SES and thus for 

assisting policymakers in taking more appropriate decisions. In other words, this 

work is another step towards assisting policymakers to make decisions based on a 

combination of computer assisted reasoning, needed to help understanding 

(theoretically) the complex evolutionary mechanisms that govern a SES, and 

empirical data.  

 

As a final point, it is a firm conviction of the author that a more rigorous 

establishment of methodological tools such as those used in this work, can be a 

powerful way to help a transition towards a less undisciplined set of theories and 

models for SES and that this can be greatly beneficial for the understanding of the 

structure and the behaviour of these systems and its components. 
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I. Appendix: Glossary 
 

Glossary Term Definition 

Adaptive cycle 
Is an abstract construction composed by for stages. These stages are defined as 
growth, accumulation, restructuring, and renewal. A system jump from one stage to 
another forward or backward. 

Adjacency 
matrix 

Is a square matrix that defines a network in which rows and columns represent 
different nodes and the values are n if there exist a connection between a pair of 
nodes, and 0 otherwise, where n is 1 if the network is unweighted. If the matrix 
represents an undirected network, it will be symmetrical. If the matrix represents a 
weighted graph, the strength of the edges is represented (i.e. the strength of the 
connection between the pair of nodes is represented by n).  

Assortativity 
Measures the correlation between the nodes of a network. It indicates if a network's 
nodes will preferentially attach to similar nodes (assortative mixing) or to nodes that 
are different (disassortative mixing) 

Attacks Failures of a network's nodes and/or edges (e.g. highest degree, betweenness etc.) 

Average mass of 
a graph 

It consists in computing how many nodes are possible to find within a specified 
geodesic distance. 

Average shortest 
path length 

Is the average of all shortest path length that exists in the network. The shortest path 
length is the shortest geodesic distance that exists between a pair of nodes. 

Betweenness 
centrality 

Is a measure used to describe the importance of a node in a network. This 
importance is given by the uniqueness of a node (or edge). Betweenness centrality 
can be calculated for nodes or edges. 

Closeness 
centrality 

Is a measure used to calculate the geodesic distance between different nodes. A 
node is globally central if it is neighbour of many other nodes. The shorter the path 
between a particular node and other nodes, the more that particular node will be 
central. 

Clustering 
coefficient Is the probability that two neighbours of a node are also neighbours to each other. 

Connectance Is the number of edges that are present with respect to the maximum number of 
possible edges. (see also edge density). 

Degree 
The number of edges connected to a node. If the edges are directed it is possible to 
distinguish in-degree from out-degree of a node (being the first the number of 
incoming edges, and the latter the number of outgoing edges. 

Degree 
distribution Is the probability that a particular node will have a determined degree.  

Directed edge An edge that connect a pair of node in a given direction. They are normally 
represented by an arrow indicating the direction of the relation. 

Disassortativity (see assortativity) 
Edge A connection between two network elements (between a pair of nodes) 

Edge density 
Is a measure used to calculate the "density" of the edges. Namely it is the ratio 
between the existent number of edges and the maximum number of possible edges 
of a network. 

Errors Random failures of a network's nodes and/or edges 
Geodesic 
distance 

Is the distance between a pair of nodes connected through an edge. It is always 
unitary. 

Giant 
component 

Can be defined as the largest part of the network whose nodes are connected to 
each other. The giant component contains most of the networks’ nodes. 
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Global efficiency 
Is the average efficiency of a network where efficiency in communication between a 
pair of nodes can be defined as being inversely proportional with respect to the 
shortest path. 

Graph (see Network) 
Local efficiency Is the average efficiency of sub-graphs.  

Modularity It refers to a network whose nodes are densely connected within a specific group 
and loosely connected to nodes belonging to other groups. 

Network A set of elements connected to each other. It can be considered a tool to analyse 
and abstractly represent complex systems. 

Node A network element 

Panarchy 
Can be defined as the whole of the hierarchical levels each of whom is constituted 
by an adaptive cycle. The concept of Panarchy combines the hierarchical structure 
of systems going from small to and fast to large and slow. 

Percolation 
threshold 

Can be defined as the number of edges that exist in the network when the giant 
component emerges. 

Random graph 

Random graph are networks in which nodes are connected randomly to each other. 
In random graphs the average shortest path length increases as the natural 
logarithm of the number of nodes and the degree distribution follows a Poisson (i.e. 
nodes that deviate significantly from the average degree are extremely rare). 

Regular network 
Regular networks display the smallest average path length and the highest 
clustering coefficient. The regular lattice is an example of a regular network in which 
all nodes have the same degree. 

Resilience of an 
SES 

Is the ability of a Social-Ecological System (SES) to absorb disturbance and re-
organize while undergoing change so as to still retain essentially the same function, 
structure, identity and feedbacks. 

Scale-free 
Networks that are scale-free are mainly characterized by their degree distribution 
that follows power law. It seems that most real networks follow this power law 
distribution. 

Small world 

Small worlds are network whose characteristic lies in between random graphs and 
regular networks. This class of networks is characterized by small average shortest 
path length (thus similar to that of a random graph) and a high clustering coefficient 
(feature of regular networks). 

Sub-graph A Graph whose nodes and edges are also nodes and edges of the Network. The 
simplest sub-graphs are called trees, cycles and complete sub-graphs. 

Undirected edge An edge that connect a pair of nodes in a transitive fashion. They are normally 
represented by a straight line. 
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II. Appendix: ODD for the models presented 
 

II.i. Landscape connectivity and predator-prey dyna mics 
  

Purpose: 

 

An agent (individual) based model has been developed to assess how connectivity of 

patches on a landscape influences predator-prey dynamics and to assess the dependence 

of population levels on nodes and/or network connectivity measured in node degree and 

network density. 

State Variables and Scales: 

 

The model contains predator, prey and habitat patches (the latter is also referred to as 

nodes). Variables differ for the three main groups as follows. 

 

Individual predator-prey variables 

 

• Prey: 

o Location (which node they feed on) 

o Density (of prey) on a node 

o Reproduction rate 

 

• Predators: 

o Location (which node they search for prey) 

o Density (of predators) on a node 

o Reproduction rate 

o Predation (probability of attacking and killing a prey that is located on 

the same node) 

o Handling (time in which the predator does not attack but can reproduce) 
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Landscape variables: 

 

• Nodes (or habitat-patches): 

o Number of nodes  

o Size of nodes (based on maximum number of prey it can support) 

o Connectivity of the network (number of edges in the network and the 

configuration) 

Process Overview and Scheduling: 

 

The initial network of patches will not vary, as we are mainly interested in how the 

landscape (viewed as a network) affects the dynamics and the population sizes of 

predators and prey.  

 

The landscape is initialized first, the number of nodes is fixed, and distances between 

nodes are not taken into account (thus the existence (or absence) of an edge connecting 

two nodes is the only point of relevance). Moreover, the size of the nodes is assumed 

constant and equal for every node. The number of edges present in the network varies 

but not during the simulation (only in the initial settings). Nodes are randomly set on a 

two-dimensional grid; edges are added based on the proximity of the nodes, starting 

with the nodes that are closest to each other. 

 

Prey and Predators are assigned randomly to each node; though, their initial population 

is fixed. 

 

The following is a precise outline of model procedures during one time step. The 

procedures are sequential (i.e. one prey performs the whole procedure, followed by 

another prey etc.). However, the order in which agent are selected is random (prey1 may 

perform the procedure before prey2 in a given time-step, but prey2 may perform the 

procedures described before prey1 in a later time-step). Each agent (predator or prey) 

will complete the first procedure before moving on to the next: 
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1) Each prey sets node density (Dn1i), so they know how many predators and prey 

reside on their current patch. 

2) Each predator also sets node density (Dn2i) 

3) Each prey has the ability to reproduce with probability Pr,1. 

4) Each prey then has the ability to move to another node based on current density 

thresholds. That is, if the current node is connected and possesses high predator 

or prey density, each prey moves to a randomly chosen connected node and 

recalculates current node density, else the prey dies. More precisely, prey move 

if Dn1i 1,
1

U
i D

C

n
>=  or Dn2i 2,

2
U

i D
C

n
>= . If the chosen node for migration 

already has a high prey density, the migratory prey dies instantly. This is the 

final prey procedure in one time step 

5) In the same time step, each predator can successfully catch and kill a single prey 

with probability Pk,2; given both prey and predator reside on the same patch. 

6) Successful capture of prey means the predator is now in the handling period, 

where it may give birth to a single offspring with probability Pr,2. Note, 

predators may be in the handling period for several time steps, during this time, 

they cannot hunt prey. 

7) Then, with probability Pm,2, each predator may die ‘naturally’. 

8) Lastly, predators may move between nodes according to a prey density 

threshold. If the current node is connected and possesses low prey density, 

predators move to a randomly chosen connected node and recalculate current 

node density, else the predator immediately dies. If the prey density of the 

chosen node is low, the migratory predator dies immediately. More precisely, 

predators move if Dn1i 1,
1

L
i D

C

n
<=  and die if 1,1 Li DDn <  on the chosen node. 

This is the final predator procedure in one time step, and the final procedure of 

any agent. 

 

The following diagram gives a graphical representation of what has been explained in 

this chapter: 
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Design Concepts: 

Emergence 

• Population cycles and size depending on the landscape (network) configuration 

 

Interaction 

• Prey and predator interact through predation and density-dependent migration. 

 

Stochasticity 

• The model assumes probabilistic events (predation, reproduction, death, 

movement to other nodes, connection between nodes, initial placement of 

predators and prey). 

 

Setup of Landscape 
as a network 

Initialization of Prey 
and Predators 
 

Prey procedure: 
Set density 

Predator Procedure: 
Set density 

Prey procedure: 
Reproduce prey 

Prey procedure: 
Move prey  

Predator Procedure: 
Catch prey 

Predator Procedure: 
Reproduce 
predators 

Predator Procedure: 
Predators death 

Predator Procedure: 
Move predators 

Time-step ends 
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Observation 

• The focus is on the size of predators and prey for every node and node degree. 

Initialization: 

 

The total number of nodes are fixed and each of them are placed randomly on a two 

dimensional grid. Edges are formed based on Euclidean distances between nodes, 

connecting the nearest nodes first. Predators and prey are randomly assigned to a node. 

Their numbers are proportional to the number of nodes. Reproduction rates are fixed 

within a given species (thus every prey/predator has the same probability of 

reproducing). Rates of mortality and predation are also fixed for all predators. 

 

Upper and Lower density thresholds are assigned to prey, while just an upper density 

threshold is assigned to predators. Density thresholds do not vary across nodes. 

 

Variables are initialized as shown in the table below. In order to correct for the high 

stochasticity of the model, repeated runs are performed. Moreover, during the 

simulations the number of edges will vary from 0 to 45 with a 5 edge increment, while 

internal species parameters such as reproduction, death, predation rates and movement 

decision are initialized according to the table below and fixed. The biological 

parameters are not varied during the simulation because the purpose of the model is to 

assess the effect of network connectivity on predator-prey population dynamics.  
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Input: 

Symbol Variable Name 
Values drawn from distribution used 

for Monte Carlo simulations 

N Number of nodes 10 

E Number of edges Varies from 0 to 45 

C Size of a node 100 

n1 Initial number of prey Poisson with mean 25 * 10 

Pr,1  Prey reproduction rate Poisson with mean 0.25 (25%) 

DU,1  Prey density upper limit Random uniform distribution [0.5, 0.9] 

DL,1  Prey density lower limit Random uniform distribution [0.2, 0.4] 

n2  Initial number of predators Poisson with mean 10 * 10 

Pr,2  Predator reproduction rate Poisson with mean 0.2 (20%) 

Pk,2   Predation probability Poisson with mean 0.2 (20%) 

Pm,2 Predator death rate 
Poisson with mean 0.06 (6%) 

DU,2   Predator density upper limit Random uniform distribution [0.3, 0.6] 

Th   Predator handling time 3 

Submodels: 

 

Model Setup: 

• Network 

o Landscape is represented by an undirected network 

o Multiple edges and loops are not allowed 

o Edges are placed between nodes based on Euclidean distances 

o N number of nodes are generated 

o The network will contain E edges where: 2/)1(0 −≤≤ NNE   

o Size C is assigned to every node  

 

• Prey and Predators 

o Initial number of prey, n1, calculated from a poisson distribution with 

mean 25 (before every run, a value is chosen according to a poisson 

distribution with mean 25). 
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o Initial number of predators, n2, calculated from a poisson distribution 

with mean 10 (before every run, a value is chosen according to a poisson 

distribution with mean 10.) 

o Random assignment of predators and prey to a node i 

o The density of prey on node i, Dn1i
C

n i1=    

o The density of predators on node i, Dn2i
C

n i2=  

 

Model Development: 

• Prey 

o Prey reproduce with probability Pr,1 derived from a poisson distribution 

with mean 0.25 (for every run, a value is chosen according to a poisson 

distribution with mean 0.25. The value is fixed for the whole simulation 

run). 

o Intraspecific competition for space/food 

� If the current node is isolated (its degree = 0), then the migratory 

prey dies. 

� If Dn1i > DU,1 then prey move to a randomly chosen connected 

node j and recalculate current node density 

� If Dn1i >  DU,1 then the prey dies. 

o Anti-predator behaviour 

� If the node is isolated (its degree = 0), then a migratory prey dies. 

� If Dn2i >  DU,2 then prey move to a randomly chosen connected 

node j and recalculate current node density 

� If Dn2i >  DU,2 then the prey dies. 

• Predators 

o Predators search and attack prey. If predators and prey are on the same 

node i, and handling time, Th, equals zero, Predators kill prey with 

probability Pk,2 derived from a poisson distribution with mean 0.2 (for 

every run, a value is chosen according to a poisson distribution with 

mean 0.2. The value is fixed for the whole simulation run) 
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� If predator is successful then it sets Th to 3 

• Th decreases by 1 at every timestep 

o If predator is successful then it reproduces with probability Pr,2 derived 

from a poisson distribution with mean 0.2 (for every run a value is 

chosen according to a poisson distribution with mean 0.2. The value is 

fixed for the whole simulation run) 

o Predator search behaviour 

� If the current node is isolated (its degree = 0), the migratory 

predator dies. 

� If Dn1i <  DL,1 then predators move to a randomly chosen 

connected node j in order to look for prey. 

� Recalculate density of the prey on the new node j 

� If Dn1i <  DL,1 then the predator dies. 

o Predators die of natural death with probability Pm,2 derived from a 

poisson distribution with mean 0.06 (for every run, a value is chosen 

according to a poisson distribution with mean 0.06. The value is fixed for 

the whole simulation run). 

 

Implementation 

The model is implemented in NetLogo 4.1 
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II.ii. Managing Landscapes’ Resilience 
 

Purpose 

 
An agent (individual) based model has been developed in order to assess how a single 

manager is able to alter the connectivity of a landscape thus influencing predator-prey 

dynamics. Do population levels of predators and prey depend on actions a manager 

undertakes via changes in the network connectivity, hence can manager enhance 

resilience of a system or preventing resilience erosion? 

State Variables and Scales 

 
The model presents one manager agent, populations of predators and prey, and habitat 

patches (nodes).  Variables differ for the four main groups as follows. 

 

Individual predator-prey variables 

 

• Manager 

o Budget (yearly and does not accumulate) 

o Cost of infrastructure (one time cost for every time the manager acts) 

o Cost of maintenance (defined as the natural logarithm of the absolute 

value of the original weights divided by the current weight of the edges 

on which he has acted upon) 

o View of the world 

o Possibility of errors in counting species 

o Priority list based on densities of predators and prey 

o Possibility of decreasing/increasing the cost of movement (weight) of an 

edge 

 

• Prey: 

o Location (which node they feed on) 

o Density on a node 
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o Reproduction rate 

o Natural death rate 

o Movement capability 

 

• Predators: 

o Location (which node they search for prey) 

o Density on a node 

o Reproduction rate 

o Natural death rate 

o Predation (probability of attacking and killing a prey that is located on 

the same node) 

o Handling (time in which the predator does not attack but can reproduce) 

o Movement capability 

 

Landscape variables: 

• Nodes (or habitat-patches): 

o Number of nodes  

o Size of nodes (maximum capacity) 

o Time till recovery of maximum capacity 

• Edges 

o Number of edges in the network 

o Weight of edges represent the cost of movement for both species 

Process Overview and Scheduling 

 
The landscape is initialized first, the number of nodes is fixed, and edges are placed 

randomly between nodes with a given weight (cost of movement) that is, originally, the 

Euclidean distance between two given nodes. The capacity of the nodes is equal for 

every node, but it can decrease if too many prey feed upon a given node (patch). 

Moreover, the capacity of the node is recovered if there are no preys present or if prey 

density on that node is particularly low for a given number of time-steps.  The number 

of edges present in the network varies but not during the simulation (only in the initial 

settings), but their weight will vary according to the actions taken by the manager. 
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Prey and predators are assigned randomly to each node: their initial number is fixed and 

proportional to the number of nodes. 

 

Prey have the ability to reproduce or die via predation at every time-step (with some 

probability). Moreover, prey die according to a fixed death rate (natural death). Note 

that the predation event will only occur if predators and preys are located on the same 

node. 

 

Predators also have the probability to reproduce at every time-step, given they have 

successfully attacked a prey and find themselves in handling time. Predators die 

naturally according to a fixed death rate. 

 

Prey move between nodes according to densities thresholds, that is, if the density of 

prey is too high and/or the predator density is too high in their current node, prey will 

move towards a randomly chosen connected node within reach. Prey die if their current 

node has no connections, the weights of the edges attached to their current node are all 

higher than their ability to move (thus the other nodes are not reachable), or the chosen 

node has a prey density considered too high. 

 

Predators move between nodes according to a density threshold, more precisely, if the 

prey density of the current node is too low, predators move to a randomly chosen 

connected node within reach Predators die if the current node is isolated, the weights of 

the edges attached to their current node are all higher than the predator’s ability to move 

(thus not reachable), or the prey density of the chosen node is too low. 

 

Managers have a given budget, and they have the possibility of reducing/increasing the 

weights of the edges (cost of movement for prey and predators). The manager decides to 

decrease the cost of movement based on his own species density thresholds (which 

differ from predator and prey density threshold) on a given node. The manager decides 

to increase the cost of movement if the capacity of the node falls below a certain 

threshold. Moreover, managers can have a “view of the world” that causes them to 

over/under estimate the capacity of a node; moreover, managers can be inaccurate when 
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counting the prey and the predators (thus adding an error term to the count of predators 

and preys on a given node). 

 

The following diagram gives a graphical representation of the process above: 

 

 

Manager takes (or 
not) action 

Setup of Landscape 
viewed as a Network 

Initialization of Prey 
and Predators 
 

Prey procedure: 
Set density 

Predator Procedure: 
Set density 

Prey procedure: 
Reproduce  

Prey procedure: 
Move prey  

Predator Procedure: 
Reproduce. 

Predator Procedure: 
Catch prey 

Predator Procedure: 
Move predators 

Predator Procedure: 
Predators’ death 

Prey procedure: 
Prey death 

Initialization of 
Manager 

Manager assessing 
Predators on nodes 

Manager assessing 
Prey on nodes 

Manager assessing 
Capacity of nodes 
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Design Concepts 

 

Emergence 

• Population cycles and size dependent on landscape (network) configuration and 

the actions of the manager 

 

Interaction 

• Prey and predator interact through predation and densities that depend on the 

capacity of the node on which they are located. The manager interacts with the 

landscape based on predator and prey densities, which depend on the capacity of 

the node on which the species are located. 

 

Stochasticity 

• The model assumes probabilistic events (predation, reproduction, death, 

movement to other nodes, connection between nodes, initial placement of 

predators and prey). 

 

Observation 

• The focus is on the size of predators and prey for every node and on the overall 

network, and on the ability of the manager to alter the landscape by altering the 

cost of movement (weights of edges). 

Initialization 

 
Nodes are fixed and placed randomly. The network is fully connected and edges have a 

weight attribute initially based on Euclidean distances between the nodes (between 0.1 

and 92 given the size of the “environment”). Initial node’s capacity is equal for every 

node. Predators and prey are randomly assigned to a node. Their numbers are 

proportional to the number of nodes. Reproduction and death rates are fixed for 

predators and prey (thus every prey /predator has the same probability of reproducing 

and to dying from natural causes). Predation, the probability that a predator will kill a 

prey at every given time-step, is also fixed. 
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Upper and Lower density limits are assigned for prey, while an upper density threshold 

is assigned for predators. Density thresholds do not vary across nodes. 

 

A budget is assigned to a manager who will act based on fixed density thresholds that 

refer to predators and prey. The manager agent can be inaccurate in counting these 

densities or not. Moreover, the manager has his own personal view of the world that 

influences the capacity threshold and thus the action taken in reference to the node 

capacity. 

 

Variables are initialized as shown in the table below. In order to correct for the high 

stochasticity of the model, repeated runs with the same set of parameters are performed. 

Budget levels, fixed costs, and threshold levels for the manager will also vary since the 

objective of the model is to look at possible strategies and their consequences on 

population dynamics. 

Input 

The following table summarizes symbols, actual variable names and values used in the 

simulations. 

 

Simbol Variable Name Value 

N Number of nodes 10 

E Number of  edges 45 

we Cost of movement (weight) 
Varies according to manager actions 
(MAX we = 92 without manager action)  

ti Time-lag of recovery 5 

C Capacity of a node 100, varies according to simulation events 

n1 Initial number of prey 25 * 10 

Pr,1 Prey reproduction rate 0.25 (25%) 

Pm,1 Prey natural death rate 0.10 (10%) 

S1 Prey movement ability 
Poisson distributed with mean 30 
calculated at every time-step 

DU,1 Prey density upper limit 0.9 

DL,1 Prey density lower limit 0.15 
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Simbol Variable Name Value 

n2 Initial number of predators 10 * 10 

Pr,2 Predator reproduction rate 0.2 (20%) 

Pk,2 Predation probability 0.2 (20%) 

Pm,2 Predator natural death rate 0.06 (6%) 

S2 Predator movement ability 
Poisson distributed with mean 60 
calculated at every time-step 

DU,2 Predator density upper limit 0.6 

Th Predator handling time 3 

B 
Manager Yearly budget (does 
not accumulate) 

100, 250, 500 

V Manager view of capacity -15, 0, 15 

err 
Normally distributed errors in 
counting species 

Yes/No variable if Yes, error varies at 
every time-step 

MtU Manager Upper threshold  0.6, 0.8  

MtL Manager lower threshold 1.2, 1.4 

Mct Manager capacity threshold 50, 70, 90  

McD 
Cost of decreasing we by a fixed 
amount 

50 

McI 
Cost of increasing we by a fixed 
amount 

100 

SI 
Amount of we  increase in case 
of action that increases we 

100 

SD 
Amount of we decrease in case 
of action that decreases we 

10 

Submodels 

 

Model Setup: 

 

• Network 

o Landscape is represented by an undirected network 

o Multiple edges and loops are not allowed 

o N  number of nodes is chosen 

o Edges are placed randomly between nodes 

o Edges will have an initial weight (cost of movement) computed as 

Euclidean distance between the nodes they connect (we). 
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o The network will contain E = 45 edges (fully connected network) 

o Capacity C is assigned to every node: NC ∀= 120  

o Capacity is recovered at speed ti (that is, ti is initially set, and when it 

reaches 0, o1 unit of capacity is recovered). ti varies according to the 

density of prey present on a specific node. ( 5.01 −= −tt titi  if  

3.015.0 1, ≤< iD ; 75.01 −= −tt titi  if 15.00 1, ≤< iD ; and 11 −= −tt titi  if 

1,iD ). 

 

• Prey and Predators 

o Initial number of  n1 N∗= 25  

o Initial number of predators n2 N∗= 10  

o Random assignment of predators and prey to a node i 

o Let ni,1 be a prey assigned to node i, then the density of prey on node i 

Di,1
C

ni∑= 1,  

o Let ni,2 be a predator assigned to node i, then the density of predators on 

node I Di,2
C

ni∑= 2,  

• Manager 

o Budget is assigned at each time-step and does not accumulate (B will 

vary) 

o Manager has the probability of making mistakes in counting prey and 

predators for its own thresholds (err Yes/No). Thresholds (MtU and MtL) 

are used in order to decide when to act in reducing we between nodes. 

Decreasing we has a fixed cost McD and we is reduced by a variable 

amount SD. 

o Manager has its own view of the capacity of the nodes (V) and, based on 

a threshold (Mct), he decides whether to increase the cost of movement 

to a specific node or not. Increasing cost of movement we has a fixed 

cost McI and we by a variable amount SI. 

o Manager maintenance costs defined as: ijtij wewe −0ln . 
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Model Development: 

• Prey 

o Prey reproduce with probability Pr,1 = 0.25 

o Intraspecific competition for space/food 

� If the node is not connected (its degree = 0), or weij > S1 for every 

connected node, the prey dies. 

� If Di,1 >  DU,1 then prey move to a randomly chosen connected 

node j if weij < S1 

� Recalculate density of the prey on the new node j 

� If Di,1 >  DU,1 then the prey dies. 

o Anti-predator behaviour 

� If the node is not connected (its degree = 0), or weij > S1for every 

connected node, the prey dies. 

� If Di,1 >  DU,2 then prey move to a randomly chosen connected 

node j if weij < S1 

� Recalculate density of the prey on the new node j 

� If Di,1 >  DU,1 then the prey dies. 

o Prey die of natural causes with probability Pm,1 = 0.08 

• Predators 

o If handling time Th > 0 predators reproduce with probability Pr,2 = 0.20 

o Predators search and attack preys. If predators and prey are on the same 

node i, and handling time Th =0, Predators kill preys with probability Pk,2 

= 0.2 

� If predator is successful then it sets Th = 3 

• Th decreases by 1 at every timestep 

o Predator search behaviour 

� If the node is not connected (its degree = 0), or weij > S2 for every 

connected node, the predator dies. 

� If Di,1<  DL,1 then predators move to a randomly chosen connected 

node j if weij < S2 in order to look for prey. 

� Recalculate density of the prey on the new node j 
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� If Di,1<  DL,1 then the predator dies. 

o Predators die of natural causes with probability Pm,2 = 0.06 

• Manager 

o Renew B 

o Assess the need to take action to preserve the capacity of a single node  

(if C + V < Mct).  

� Calculate maintenance cost, if ( )>−− ijtij weweB 0ln  McI  then 

the manager acts and increases the cost of movement weij   by SI  

to prevent prey from entering a particular node i from its 

neighbouring nodes. 

o Determine the need to take action in order to avoid local extinction of 

prey and predators acting upon the number of prey on node i (if n1 + err 

> C*D U,1*MtU and/or  n1 + err < C*D L,1*Mt L ) 

� Calculate maintenance cost, if ( )>−− ijtij weweB 0ln McD then 

the manager acts and decreases the cost of movement by SD 

according to priority lists from the highest   

| n1 + err - C* DU,1*MtU | to be connected to the lowest  

| n1 + err - C* DL,1*Mt L | and so on.  

 

Implementation 

The model is implemented in NetLogo 4.1 
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III. Appendix: Models’ codes  
 

Code belonging to models presented in chapter  6 and  7 and explained thanks to the 

ODD protocol in Appendix II, section  II.i and  II.ii respectively are implemented in 

NetLogo 4.1. The model presented in chapter  8 is implemented in Matlab R2008a. 

Some of the modules used in order to build the model presented in chapter  8 have been 

adapted from matlab files build by other authors. References to the author are made in 

the comments to the code. More precisely, the code of the following functions has been 

adapted from Gergana Bounova: random-graph and writepaj, the code of the module 

substr has been adapted from Peter J. Acklam and randint from Christoph Teuscher. 

 

III.i.  Landscape connectivity and predator-prey 
dynamics 

 
This model is implemented in Netlogo 4.1. 
 
 
breed                 [prey a-prey]   
breed                 [predators predator] 
breed                 [nodes node] 
breed                 [donothing] 
undirected-link-breed [edges edge] 
globals               [time 
                       pred-extinction-time 
                       prey-extinction-time 
                       geo 
                       name 
                       filename 
                       netime 
                       initial-number-prey 
                       initial-number-predators 
                       prey-reproduce 
                       predation 
                       predator-reproduce 
                       predator-death-rate 
                       preydens-up 
                       preydens-low 
                       predens-up 
 prey1 
 prey2 
 prey3 
 prey4 
 prey5 
 prey6 
 prey7 
 prey8 
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 prey9 
 prey10 
 pred1 
 pred2 
 pred3 
 pred4 
 pred5 
 pred6 
 pred7 
 pred8 
 pred9 
 pred10 
 degree1 
 degree2 
 degree3 
 degree4 
 degree5 
 degree6 
 degree7 
 degree8 
 degree9 
 degree10 
                       ] 
predators-own         [handling]       
patches-own           [countdown] 
turtles-own           [preydens 
                       predens 
                       nodenum 
                       nodesize 
                       my-node 
                       node-degree 
                      ] 
edges-own             [geodist]                       
                    
 
;;;;;;;;;;;;;;Setting Landscape Network Configurati on;;;;;;;;;;;;;;;; 
 
to setup-one 
  clear-all 
   
  set-default-shape donothing "triangle" 
  create-donothing 1 
  [ set color black] 
  ask turtles with [color = black] [die]   ;; the w ho = 0 dies out 
before the first report  
end 
to setup 
 ; random-seed seed 
   
  set-default-shape nodes "circle" 
  create-nodes numnodes [ 
    set color blue 
    set size 0.1 
    set nodesize capacity             
    if nodesize = 0 [                        
    set nodesize 1] 
    set nodenum [who] of self        
    set label nodenum             
    setxy random-xcor random-ycor 
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  ]   
 
                                                  
if (netipe? = "full") [           ;;creates a fully  connected network 
  ask nodes [ 
    create-edges-with other turtles 
    set node-degree count edge-neighbors 
  ] 
] 
 
if (netipe? = "geoprox")[ 
 ;; creates a network based on geographical proximi ty with N nodes and 
edges in the interval [0, N(N-1)/2] 
 
  ask nodes [ 
    create-edges-with other turtles 
  ] 
    set geo (list) 
  ask edges [ 
    set geodist precision link-length 8 
    set geo fput geodist geo 
  ]   
  while [count links > numedges] [ 
    ask edges with [geodist = max geo] [ 
      die 
    ] 
    set geo remove max geo geo 
  ]     
] 
   
if (netipe? = "random")[                                     ;; 
creates a simple random network with N nodes and N( N-1)/2 edges 
  while [count links < numedges] [ 
      ;;Note that if the link already exists, nothi ng happens 
      ask one-of nodes [create-edge-with one-of oth er turtles] 
  ] 
  ask nodes[ 
  set node-degree count edge-neighbors 
  ] 
] 
if (netipe? = "e-r")[                                        ;; 
creates an Erdos and Reiny graph 
  ask nodes [ 
     ;;we use "self > myself" here so that each pai r of turtles 
     ;;is only considered once 
    create-edges-with turtles with [self > myself a nd 
                                    random-float 1. 0 < prob] 
    set node-degree count edge-neighbors 
  ] 
]   
 
 
  set-default-shape prey "square" 
  set initial-number-prey random-poisson 25 
  create-prey initial-number-prey * numnodes ;; cre ate the sheep, then 
initialize their variables 
  [ 
    set color white 
    set label-color blue - 2 
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    set nodenum random numnodes                                     
;;number of the node i belong to 
    if nodenum = 0 [ 
      set nodenum numnodes] 
    set my-node one-of nodes with [nodenum = [noden um] of myself]   ;; 
same as nodenum, but useful for some coding procedu res 
  ;  setxy random-xcor random-ycor 
    hide-turtle 
  ] 
   
  set-default-shape predators "square" 
  set initial-number-predators random-poisson 10  
  create-predators initial-number-predators * numno des ;; create the 
predators, then initialize their variables 
  [ 
    set color red 
    set handling 0 
    set nodenum random numnodes                                    
;;number of the node i belong to 
    if nodenum = 0 [ 
      set nodenum numnodes] 
    set my-node one-of nodes with [nodenum = [noden um] of myself]  ;; 
same as nodenum, but useful for some coding procedu res 
  ;  setxy random-xcor random-ycor 
    hide-turtle 
  ] 
   
  ask prey[                                   ;;set  intial densities 
   set-dens 
  ] 
  ask predators[ 
   set-dens 
  ] 
  export-network 
   
   set  degree1 [node-degree] of nodes with [nodenu m = 1] 
   set  degree2 [node-degree] of nodes with [nodenu m = 2] 
   set  degree3 [node-degree] of nodes with [nodenu m = 3] 
   set  degree4 [node-degree] of nodes with [nodenu m = 4] 
   set  degree5 [node-degree] of nodes with [nodenu m = 5] 
   set  degree6 [node-degree] of nodes with [nodenu m = 6] 
   set  degree7 [node-degree] of nodes with [nodenu m = 7] 
   set  degree8 [node-degree] of nodes with [nodenu m = 8] 
   set  degree9 [node-degree] of nodes with [nodenu m = 9] 
   set  degree10 [node-degree] of nodes with [noden um = 10] 
      
  set  prey1 0 
  set  prey2 0 
  set  prey3 0 
  set  prey4 0 
  set  prey5 0 
  set  prey6 0 
  set  prey7 0 
  set  prey8 0 
  set  prey9 0 
  set  prey10 0 
  set  pred1 0 
  set  pred2 0 
  set  pred3 0 
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  set  pred4 0 
  set  pred5 0 
  set  pred6 0 
  set  pred7 0 
  set  pred8 0 
  set  pred9 0 
  set  pred10 0 
   
  set time 0    
   
  ;; Setting parameters using Monte Carlo method:  
  set initial-number-prey random-poisson 25 
  set initial-number-pred random-poisson 10 
  set prey-reproduce random-poisson 25 
  set predation random-poisson 20 
  set predator-reproduce random-poisson 20 
  set predator-death-rate random-poisson 6 
   
   
  set preydens-up random-float 0.4 + 0.5 
  set preydens-low random-float 0.1 + 0.3 
  set predens-up random-float 0.3 + 0.3 
   
end 
 
to go 
  if not any? prey and not any? predators [ stop ] 
   
  ask prey[ 
   set-dens 
  ] 
  ask predators[ 
   set-dens 
  ] 
   
  ask prey [ 
     
    reproduce-prey 
    if preydens > preydens-up 
      [move-prey] 
    if predens > predens-up 
      [move-prey]  
  ] 
   
  ask predators [ 
    if handling > 0 [set handling handling - 1]   
    catch-prey 
    if handling > 0 [reproduce-predators] 
    mortpred 
    if preydens < preydens-low  
     [move-predators] 
  ] 
  
 if pred-extinction-time = 0 [ 
   if not any? predators[ 
    set pred-extinction-time time 
   ] 
 ] 
 if prey-extinction-time = 0[   
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   if not any? prey [ 
    set prey-extinction-time time  
   ]  
 ] 
  
 if time > 4000[ 
   set prey1 (prey1 + count prey with [nodenum = 1]  * 0.001) 
   set prey2 (prey2 + count prey with [nodenum = 2]  * 0.001) 
   set prey3 (prey3 + count prey with [nodenum = 3]  * 0.001) 
   set prey4 (prey4 + count prey with [nodenum = 4]  * 0.001) 
   set prey5 (prey5 + count prey with [nodenum = 5]  * 0.001) 
   set prey6 (prey6 + count prey with [nodenum = 6]  * 0.001) 
   set prey7 (prey7 + count prey with [nodenum = 7]  * 0.001) 
   set prey8 (prey8 + count prey with [nodenum = 8]  * 0.001) 
   set prey9 (prey9 + count prey with [nodenum = 9]  * 0.001) 
   set prey10 (prey10 + count prey with [nodenum = 10] * 0.001) 
   set pred1 (pred1 + count predators with [nodenum  = 1] * 0.001) 
   set pred2 (pred2 + count predators with [nodenum  = 2] * 0.001) 
   set pred3 (pred3 + count predators with [nodenum  = 3] * 0.001) 
   set pred4 (pred4 + count predators with [nodenum  = 4] * 0.001) 
   set pred5 (pred5 + count predators with [nodenum  = 5] * 0.001) 
   set pred6 (pred6 + count predators with [nodenum  = 6] * 0.001) 
   set pred7 (pred7 + count predators with [nodenum  = 7] * 0.001) 
   set pred8 (pred8 + count predators with [nodenum  = 8] * 0.001) 
   set pred9 (pred9 + count predators with [nodenum  = 9] * 0.001) 
   set pred10 (pred10 + count predators with [noden um = 10] * 0.001) 
 ] 
     
  tick 
  set time time + 1 
  update-plot 
end 
 
to set-dens    ;; to set densities 
   set nodesize [nodesize] of my-node 
   set preydens ((count prey with [nodenum = [noden um]  of myself]) / 
nodesize) 
   set predens ((count predators with [nodenum = [n odenum] of myself]) 
/ nodesize) 
end 
 
 
to move-prey  ;; prey procedure, prey move along ed ges depending on 
the denisities 
     
     ifelse any? [edge-neighbors] of my-node  
      [set nodenum [nodenum] of one-of [edge-neighb ors] of my-node 
       set my-node one-of nodes with [nodenum = [no denum] of myself] 
       set nodesize [nodesize] of my-node 
        set preydens ((count prey with [nodenum = [ nodenum]  of 
myself]) / nodesize) 
          if preydens > preydens-up [ 
          die] 
       ] 
       [die] 
end 
 
to move-predators  ;; predator procedure, predaot m ove along edges 
depending on the densities 
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    ifelse any? [edge-neighbors] of my-node  
      [set nodenum [nodenum] of one-of [edge-neighb ors] of my-node 
       set my-node one-of nodes with [nodenum = [no denum] of myself] 
       set nodesize [nodesize] of my-node 
       set preydens ((count prey with [nodenum = [n odenum]  of 
myself])/ nodesize) 
         if preydens < preydens-low [ 
         die]  
      ] 
      [die] 
end 
 
to reproduce-prey  ;; prey procedure 
  if random-float 100 < prey-reproduce [  ;; throw "dice" to see if 
you will reproduce 
    hatch 1 [  
              set nodenum [nodenum] of myself 
    ] 
  ]   
end 
 
to reproduce-predators  ;; predators procedure 
  if random-float 100 < predator-reproduce [  ;; th row "dice" to see 
if you will reproduce 
    hatch 1 [  ;set handling 0  
     set nodenum [nodenum] of myself 
       
    ]  ;; hatch an offspring and move it forward 1 step 
  ] 
end 
 
to catch-prey  ;; predator procedure 
  if handling = 0 [ 
    if any? prey with [nodenum = [nodenum] of mysel f] [ 
      let victim one- of prey with [nodenum = [nodenum] of myself]                     
;; grab a random prey 
      if random- float 100 < predation                                                       
;; did we get one?  if so, 
        [ ask victim [ die ]                                                          
;; kill it 
          set handling handling + handling- time                                       
;; get energy from eating 
        ]                                      
    ] 
  ]                                                                                        
end 
 
to mortpred  ;; turtle procedure 
  if random-float 100 < predator-death-rate [ die ]  
end 
 
to update-plot 
  set-current-plot "populations" 
  set-current-plot-pen "prey" 
  plot count prey 
  set-current-plot-pen "predators" 
  plot count predators 
end 
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;;;;;;;;;;;;;;REPORTING THE NETWORK;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;; 
 
to-report pad [ number digits ] 
  let expanded ( word "000000000000000" number ) 
  let len length expanded 
  report substring expanded ( len - digits ) len 
end 
 
to-report next-log-filename [ prefix digits suffix]  
;; report the first filename that does not exist 
 let next-id# 0 
 let next-id$ "" 
 let keep-looking? true 
 while [ keep-looking? ] 
   [ set next-id# next-id# + 1 
     set next-id$ ( word prefix ( pad next-id# digi ts ) suffix ) 
     set keep-looking? file-exists? next-id$ 
   ] 
report next-id$ 
end 
 
to export-network 
   set name new-seed 
    random-seed name                                             
    let z random 10000 
    set netime date-and-time 
    set netime remove ":" netime 
    set netime remove "." netime 
    set netime substring netime 0 10 
    set netime word z netime 
    set filename next-log-filename netime 5 ".txt"   
    file-open filename 
      let blank "   " 
      let namenodes [who] of nodes 
      let nnodes max [who] of nodes 
      file-type "*Vertices"  
      file-type blank  
      file-print nnodes 
      file-print "*Arcs" 
      ask nodes   [ 
        let neigh link-neighbors 
        if (count neigh) > 0 [ 
          foreach [who] of neigh [ 
            file-type who 
            file-type blank 
            file-type  ? 
            file-type blank 
            file-print 1 
          ] 
        ] 
      ] 
           
  file-close 
end 
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III.ii.  Managing Landscapes’ Resilience 
 
This model is implemented in Netlogo 4.1. 
 
breed                 [prey a-prey]   
breed                 [predators predator] 
breed                 [manager] 
breed                 [nodes node] 
breed                 [donothing] 
undirected-link-breed [edges edge] 
globals               [time 
                        
                       pred-extinction-time 
                       prey-extinction-time 
                       error-nodelist 
                       prey-priority 
                       pred-priority 
                       neutral-priority 
                       ce 
                       eff 
                       cost 
                       cost-previous 
                       no 
                       pri 
                       remaining 
                       maincost 
                       maincost_list 
                       filename 
                       netime 
                       name 
                        
                        
                        
 
  
 prey1 
 prey2 
 prey3 
 prey4 
 prey5 
 prey6 
 prey7 
 prey8 
 prey9 
 prey10 
 pred1 
 pred2 
 pred3 
 pred4 
 pred5 
 pred6 
 pred7 
 pred8 
 pred9 
 pred10 
nodesize1 
nodesize2 
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nodesize3 
nodesize4 
nodesize5 
nodesize6 
nodesize7 
nodesize8 
nodesize9 
nodesize10 
 
                       ] 
predators-own         [handling]       
patches-own           [countdown] 
turtles-own           [ 
                       preydens 
                       predens 
                       count_prey 
                       count_pred 
                       nodenum 
                       nodesize 
                       my-node 
                       node-degree 
                       dist-prey 
                       dist-pred 
                       my-desired-node 
                      ] 
 edges-own            [origdist 
                       dist  
                       dist-previous 
                      ]                    
 manager-own          [mmm] 
 nodes-own            [time2 
                       fence 
                       time-recovery 
                       real_lag 
                       reco] 
              
 
 
;;;;;;;;;;;;;;;;;Setting Landscape Network Configur ation;;;;;;;;; 
to setup-one 
  clear-all 
   
  set-default-shape donothing "triangle" 
  create-donothing 1 
  [ set color black] 
  ask turtles with [color = black] [die]   ;; the w ho = 0 dies out 
before the first report  
   
;; procedure for avoiding same output filename in m ultiple core  
;; behaviour space! 
    set name new-seed 
    random-seed name                                             
    let z random 10000 
    set netime date-and-time 
    set netime remove ":" netime 
    set netime remove "." netime 
    set netime substring netime 0 10 
    set netime word z netime 
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  set filename next-log-filename netime 5 ".txt"   
  file-open filename 
   
end 
 
to setup 
  
  random-seed seed 
    
  set-default-shape nodes "circle" 
  create-nodes numnodes [ 
    set color blue 
    set size 2 
    set nodesize capacity                      
    if nodesize = 0 [                          
    set nodesize 1] 
    set nodenum [who] of self                                      
    set label nodenum                          
    set time2 time-lag 
    set real_lag time-lag 
    set fence 0 
    setxy random-xcor random-ycor 
    loop [ 
    ifelse count nodes-here > 1 [ 
    setxy random-xcor random-ycor]    
    [stop]    
    ]  
  ]   
 
                                                  
if (netipe? = "full") [           ;;creates a fully  connected network 
  ask nodes [ 
    create-edges-with other turtles 
    set node-degree count edge-neighbors 
  ] 
  ask edges [ 
    set dist link-length 
    set dist-previous dist 
    set origdist link-length 
  ] 
] 
   
if (netipe? = "random")[                                      
;; creates a simple random network with N nodes and  N(N-1)/2 edges 
  while [count links < numedges] [ 
      ;;Note that if the link already exists, nothi ng happens 
      ask one-of nodes [create-edge-with one-of oth er turtles] 
  ] 
  ask nodes[ 
  set node-degree count edge-neighbors 
  ] 
  ask edges [ 
    set dist link-length 
    set dist-previous dist 
    set origdist link-length 
  ] 
] 
if (netipe? = "e-r")[                                         
;; creates an Erdos and Reiny graph 
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  ask nodes [ 
     ;;we use "self > myself" here so that each pai r of turtles 
     ;;is only considered once 
    create-edges-with turtles with [self > myself a nd 
                                    random-float 1. 0 < prob] 
  ] 
  ask edges [ 
    set dist link-length 
    set dist-previous dist 
    set origdist link-length 
  ]   
]   
 
  set-default-shape manager "triangle" 
  create-manager 1 
  [hide-turtle] 
   
  set-default-shape prey "square" 
  create-prey initial-number-prey * numnodes  [ 
    set color white 
    set label-color blue - 2 
    set nodenum random numnodes                                     
;;number of the node i belong to 
    if nodenum = 0 [ 
      set nodenum numnodes] 
    set my-node one-of nodes with [nodenum = [noden um] of myself]    
;; same as nodenum, but useful for some coding proc edures 
    setxy random-xcor random-ycor 
    hide-turtle 
  ] 
  set-default-shape predators "square" 
  create-predators initial-number-predators * numno des  
;; create the predators, then initialize their vari ables 
  [ 
    set color red 
    set handling 0 
    set nodenum random numnodes                                    
;;number of the node i belong to 
    if nodenum = 0 [ 
      set nodenum numnodes] 
    set my-node one-of nodes with [nodenum = [noden um] of myself]  ;; 
same as nodenum, but useful for some coding procedu res 
    setxy random-xcor random-ycor 
    hide-turtle 
  ] 
       
   set prey1 count prey with [nodenum = 1] 
   set prey2 count prey with [nodenum = 2]  
   set prey3 count prey with [nodenum = 3]  
   set prey4 count prey with [nodenum = 4]  
   set prey5 count prey with [nodenum = 5]  
   set prey6 count prey with [nodenum = 6]  
   set prey7 count prey with [nodenum = 7]  
   set prey8 count prey with [nodenum = 8]  
   set prey9 count prey with [nodenum = 9]  
   set prey10 count prey with [nodenum = 10]  
   set pred1 count predators with [nodenum = 1] 
   set pred2 count predators with [nodenum = 2] 
   set pred3 count predators with [nodenum = 3] 
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   set pred4 count predators with [nodenum = 4] 
   set pred5 count predators with [nodenum = 5] 
   set pred6 count predators with [nodenum = 6] 
   set pred7 count predators with [nodenum = 7] 
   set pred8 count predators with [nodenum = 8] 
   set pred9 count predators with [nodenum = 9] 
   set pred10 count predators with [nodenum = 10] 
  set nodesize1 capacity 
  set nodesize2 capacity 
  set nodesize3 capacity 
  set nodesize4 capacity 
  set nodesize5 capacity 
  set nodesize6 capacity 
  set nodesize7 capacity 
  set nodesize8 capacity 
  set nodesize9 capacity 
  set nodesize10 capacity 
   
  set time 0    
     
  export-network 
   
  ask prey [                                   ;;se t intial densities 
             set-dens 
             set-dist-prey 
           ] 
  ask predators [ 
                  set-dens 
                  set-dist-pred 
                ]    
  ask nodes[ 
            set my-node self            ;so nodes c an also run the 
'set-dens' code with no errors 
            set-dens 
           ] 
  set remaining budget 
  set maincost_list [] 
end 
 
;;;;;;;;;;;;;;;;;;;;;RUNNING PROCEDURE;;;;;;;;;;;;; ;;;;;;;;;;;;;;;; 
 
to go 
  if not any? prey and not any? predators [stop] 
 
   
  ask nodes[   
;; ADDING NODESIZE (CAPACITY) EROSION need to do be tter for the time 
lag when preydens=0 
            set reco 0 
            set-dens                     
            recovery 
  ] 
            
   
  ask prey [ 
  set-dens] 
  ask predators [ 
  set-dens] 
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  ask prey [ 
    reproduce-prey 
    if preydens > preydens-up 
      [move-prey] 
    if predens > predens-up 
      [move-prey]  
    mortprey 
    ] 
   
  ask predators [     
    if handling > 0 [reproduce-predators] 
    if handling > 0 [set handling handling - 1]   
    catch-prey 
    if preydens < preydens-low  
    [move-predators] 
    mortpred 
  ] 
  
 if pred-extinction-time = 0 [ 
   if not any? predators[ 
    set pred-extinction-time time 
   ] 
 ] 
 if prey-extinction-time = 0[   
   if not any? prey [ 
    set prey-extinction-time time  
   ]  
 ] 
  
 ;if time > 4000[ 
   set prey1 count prey with [nodenum = 1] 
   set prey2 count prey with [nodenum = 2]  
   set prey3 count prey with [nodenum = 3]  
   set prey4 count prey with [nodenum = 4]  
   set prey5 count prey with [nodenum = 5]  
   set prey6 count prey with [nodenum = 6]  
   set prey7 count prey with [nodenum = 7]  
   set prey8 count prey with [nodenum = 8]  
   set prey9 count prey with [nodenum = 9]  
   set prey10 count prey with [nodenum = 10]  
   set pred1 count predators with [nodenum = 1] 
   set pred2 count predators with [nodenum = 2] 
   set pred3 count predators with [nodenum = 3] 
   set pred4 count predators with [nodenum = 4] 
   set pred5 count predators with [nodenum = 5] 
   set pred6 count predators with [nodenum = 6] 
   set pred7 count predators with [nodenum = 7] 
   set pred8 count predators with [nodenum = 8] 
   set pred9 count predators with [nodenum = 9] 
   set pred10 count predators with [nodenum = 10] 
 ;] 
  set nodesize1 ([nodesize] of nodes with [nodenum = 1]) 
  set nodesize2 ([nodesize] of nodes with [nodenum = 2]) 
  set nodesize3 ([nodesize] of nodes with [nodenum = 3]) 
  set nodesize4 ([nodesize] of nodes with [nodenum = 4]) 
  set nodesize5 ([nodesize] of nodes with [nodenum = 5]) 
  set nodesize6 ([nodesize] of nodes with [nodenum = 6]) 
  set nodesize7 ([nodesize] of nodes with [nodenum = 7]) 
  set nodesize8 ([nodesize] of nodes with [nodenum = 8]) 
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  set nodesize9 ([nodesize] of nodes with [nodenum = 9]) 
  set nodesize10 ([nodesize] of nodes with [nodenum  = 10]) 
 
      
    if (feedback? = "error")[ 
      set prey-priority [] 
      set pred-priority [] 
      set remaining  budget 
      ask-concurrent nodes [set-error] 
      ask manager [manager-strategy] 
    ] 
       
    if (feedback? = "exact")[             
      set prey-priority [] 
      set pred-priority [] 
      set remaining budget 
      ask-concurrent nodes [set-count] 
      ask manager [manager-strategy] 
    ]               
   
  ask edges [ 
  if dist <= 10 [ 
  set dist 10] 
  ] 
  export-network 
  tick 
  set time time + 1 
  update-plot 
  update-plot2 
end 
 
 
to set-dens    ;; to set densities 
   set nodesize [nodesize] of my-node 
   if nodesize = 0 [ 
   set nodesize 1] 
   set preydens ((count prey with [nodenum = [noden um]  of myself]) / 
nodesize) 
   set predens ((count predators with [nodenum = [n odenum] of myself]) 
/ nodesize) 
end 
 
 
to set-dist-prey 
 set dist-prey  random-poisson preymove   
end 
 
to set-dist-pred 
 set dist-pred random-poisson predmove 
end 
 
to move-prey  ;; prey procedure, prey move along ed ges depending on 
the denisities 
    ifelse any? ([edge-neighbors] of my-node) with [[dist] of edge 
[who] of self [who] of [my-node] of myself < [dist- prey] of myself]  
      [ 
       set my-desired-node one-of ([edge-neighbors]  of my-node) with 
[[dist] of edge [who] of self [who] of [my-node] of  myself < [dist-
prey] of myself] 
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       set nodenum [nodenum] of my-desired-node 
       set my-node one-of nodes with [nodenum = [no denum] of myself] 
       set nodesize [nodesize] of my-node 
       set preydens ((count prey with [nodenum = [n odenum]  of 
myself]) / nodesize) 
         if preydens > preydens-up [ 
         die ]  
      ] 
      [die] 
 end 
 
 
to move-predators  ;; predator procedure, predators  move along edges 
depending on the densities 
  
  ifelse any? ([edge-neighbors] of my-node) with [[ dist] of edge [who] 
of self [who] of [my-node] of myself < [dist-pred] of myself] 
    [ 
      set my-desired-node one-of ([edge-neighbors] of my-node) with 
[[dist] of edge [who] of self [who] of [my-node] of  myself < [dist-
pred] of myself] 
      set nodenum [nodenum] of my-desired-node 
      set my-node one-of nodes with [nodenum = [nod enum] of myself] 
      set nodesize [nodesize] of my-node 
      set preydens ((count prey with [nodenum = [no denum]  of myself]) 
/ nodesize) 
      if preydens < preydens-low [ 
        die]  
     ] 
     [die] 
end 
 
to reproduce-prey  ;; prey procedure 
  if random-float 100 < prey-reproduce [  ;; throw "dice" to see if 
you will reproduce 
    hatch 1 [  
              set nodenum [nodenum] of myself 
    ] 
  ]   
end 
 
to reproduce-predators  ;; predators procedure 
  if random-float 100 < predator-reproduce [  ;; th row "dice" to see 
if you will reproduce 
    hatch 1 [  ;set handling 0  
     set nodenum [nodenum] of myself 
       
    ]  ;; hatch an offspring and move it forward 1 step 
  ] 
end 
 
to catch-prey  ;; predator procedure 
  if handling = 0 [ 
    if any? prey with [nodenum = [nodenum] of mysel f] [ 
      let victim one- of prey with [nodenum = [nodenum] of myself]                     
;; grab a random prey 
      if random-float 100 < predation                                                 
;; did we get one?  if so, 
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        [ ask victim [ die ]                                                          
;; kill it 
          set handling handling + handling- time                                       
;; get energy from eating 
        ]                                      
    ] 
  ]                                                                                        
end 
 
to mortprey 
   if random-float 100 < prey-death-rate [ die ] 
end 
 
to mortpred  ;; turtle procedure 
  if random-float 100 < predator-death-rate [ die ]  
end 
 
to update-plot 
  set-current-plot "populations" 
  set-current-plot-pen "prey" 
  plot count prey 
  set-current-plot-pen "predators" 
  plot count predators 
end 
 
to update-plot2 
  set-current-plot "performance" 
  set-current-plot-pen "cost" 
  plot cost-previous 
  set-current-plot-pen "noeffect" 
  plot no 
end 
 
;;;;;;;;;;;;;;;;;;;;;;;ADAPTIVE STRATEGIES;;;;;;;;; ;;;; 
 
;strategies to be implemented: 
; ERROR in MEASURMENT 
; error = follows a normal distribution with mean 0  and sd to be 
decided (error_pred and error_prey) 
; correctestimation = no error in feedback, that is  count prey/pred is 
exactly known by the manager (count_prey and count_ pred) 
 
to set-error 
      set count_prey count prey with [nodenum = [no denum] of myself]  
+ ( random-normal 0 5) 
          if count_prey < 0 [set count_prey 0] 
      set count_pred count predators with [nodenum = [nodenum] of 
myself] + (random-normal 0 5 )     
            set prey-priority [] 
            set pred-priority []      
                   if (count_prey > nodesize * prey dens-up * manup)  [ 
                        set prey-priority fput my-n ode prey-priority  
                     ] 
                     if (count_prey < nodesize * pr eydens-low * 
manlow) [ 
                        set pred-priority fput my-n ode pred-priority  
                     ] 
      set prey-priority sort-by [[count_prey] of ?1  > [count_prey] of 
?2] prey-priority 
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      set pred-priority sort-by [ [count_prey] of ? 1 > [count_prey] of 
?2] pred-priority 
      set pri (length prey-priority) + (length pred -priority) 
end 
 
to set-count 
      set count_prey count prey with [nodenum = [no denum] of myself] 
      set count_pred count predators with [nodenum = [nodenum] of 
myself]  
         set prey-priority [] 
         set pred-priority []      
                     if (count_prey > nodesize * pr eydens-up * manup)  
[ 
                        set prey-priority fput my-n ode prey-priority  
                     ] 
                     if (count_prey < nodesize * pr eydens-low * 
manlow) [ 
                        set pred-priority fput my-n ode pred-priority  
                     ] 
set prey-priority sort-by [[count_prey] of ?1 > [co unt_prey] of ?2] 
prey-priority 
set pred-priority sort-by [ [count_prey] of ?1 > [c ount_prey] of ?2] 
pred-priority 
set pri (length prey-priority) + (length pred-prior ity) 
end 
 
; TYPE OF PARAMETER CONFIGURATION 
; 3 types: need to be found in the literature (poss ibly empirical 
data,  
;          so as to relate it to possible different  ecosystems) 
; 
 
;  AIM OF THE MANAGER 
;  carrying capacity threshold before size 
;  coexistence 
;  combination of carr capacity and coex 
 
; 
; HOW MANAGER CAN INTERVENE  
; increasing/lowering cost of movement (thus the va riable cost ) one 
time (and then it returns to its previous value) 
; increasing/lowering cost of moevement permanently   
; limited intervention to x unit of increase/reduct ion    
         
to manager-strategy 
 
;;to calculate maintenance cost, we use the origina l distance (link-
lenght) - the actual distance (dist) in absolute va lue and sum it 
;;subtracting it from remaining  
 
 ask edges [ 
      set maincost_list fput (((abs (origdist - dis t)) / 2) ) 
maincost_list 
 ] 
 set maincost sum maincost_list 
 if maincost != 0[ 
 set remaining remaining - 10 * ln maincost 
 ] 
 if remaining < 0 [ 
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 set remaining 0 ] 
  
 ask edges [set dist-previous dist] 
 
if remaining > 0 [ 
 
 ;; How the manager intervenes to preserve patch (n ode) capacity by 
fencing and excluding animals on a determined patch  
  
   ask nodes [ 
     
      if nodesize + view < capth [ 
        if fence = 0 [ 
         if remaining > incost [ 
          ask edges with [end1 = myself or end2 = m yself] [ 
            set dist dist + inwe 
          ] 
        
  
        set fence 1 
        set remaining remaining - incost 
         ] 
        ] 
       ]   
        if fence = 1 and (nodesize + view = capacit y + view) [ 
          if remaining > 10 [ 
            ask edges with [end1 = myself or end2 =  myself] [ 
              set dist dist - inwe 
            ]   
            set fence 0 
            set remaining remaining - incost 
          ]   
        ]      
   ] 
 
  ask nodes [   
  if fence = 0 [ 
   
    while [(empty? prey-priority = false) and (empt y? pred-priority = 
false)] 
     [ 
       let target_node  one-of prey-priority 
       let endangered_node one-of pred-priority 
       ifelse remaining > decost[ 
         ifelse any? edges with [end1 = target_node  and end2 = 
endangered_node] or any? edges with [end1 = endange red_node and end2 = 
target_node][ 
           ask edge [who] of target_node [who] of e ndangered_node [ 
             set dist dist - dewe 
             set prey-priority remove target_node p rey-priority 
             set pred-priority remove endangered_no de pred-priority 
           ] 
         set remaining remaining - decost 
         ] 
         [stop]  
       ] 
       [stop] 
      ]  
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   while [(empty? prey-priority = false) and (empty ? pred-priority = 
true)] 
      [ 
        let target2_node one-of prey-priority 
        let neutral one-of nodes with [member? self  prey-priority = 
false] 
        ifelse neutral != nobody [ 
          ifelse remaining > decost [ 
            ifelse any? edges with [end1 = target2_ node and end2 = 
neutral] or any? edges with [end1 = neutral and end 2 = target2_node][ 
              ask edge [who] of target2_node [who] of neutral [ 
                set dist dist - dewe 
                set prey-priority remove target2_no de prey-priority 
              ] 
            set remaining remaining - decost  
            ] 
            [stop] 
          ] 
          [stop]     
        ] 
         
        [stop] 
      ] 
 
   while [(empty? prey-priority = true) and (empty?  pred-priority = 
false)] 
      [ 
        let endangered_node2 one-of pred-priority 
        let neutral2 one-of nodes with [member? sel f pred-priority = 
false] 
        ifelse neutral2 != nobody [ 
          ifelse remaining > decost[ 
            ifelse any? edges with [end1 = endanger ed_node2 and end2 = 
neutral2] or any? edges with [end1 = neutral2 and e nd2 = 
endangered_node2][ 
              ask edge [who] of endangered_node2 [w ho] of neutral2[ 
                set dist dist - dewe 
                set pred-priority remove endangered _node2 pred-
priority 
              ] 
            set remaining remaining - decost 
            ] 
            [stop] 
          ] 
          [stop] 
        ]       
        [stop]   
      ] 
  ] 
  
  ] 
 
] 
             
end 
 
;;;;;;;;;;;;;;;;;;;;;;;;;RECOVERY:;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;; 
 
to recovery 
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     if count prey with [nodenum = [nodenum] of mys elf] >= (nodesize * 
preydens-up +  nodesize * preydens-up / 100 * 10)[ 
        set nodesize nodesize - 1 
        set reco 1 
        set time-recovery time-lag 
        if nodesize = 0 [ 
          set nodesize 1 
        ] 
        set time2 time-lag 
        set real_lag time-lag 
     ] 
     if reco = 0 [   
       let rec (count prey with [nodenum = [nodenum ] of myself] / 
nodesize) 
       if rec > 0.15 and rec <= 0.3 [ 
          set time-recovery real_lag - 0.5 
          set real_lag time2 
          set time2 time2 - 0.5 
           if time-recovery <= 0 [ 
            set nodesize nodesize + 1 
            set time2 time-lag 
            set real_lag time-lag 
           ] 
       ] 
       if rec > 0 and rec <= 0.15 [ 
          set time-recovery real_lag - 0.75 
          set real_lag time2 
          set time2 time2 - 0.75 
           if time-recovery <= 0 [ 
            set nodesize nodesize + 1 
            set time2 time-lag 
            set real_lag time-lag 
           ] 
        ]    
       if count prey with [nodenum = [nodenum] of m yself] = 0 [ 
          set time-recovery real_lag - 1 
          set real_lag time2 
          set time2 time2 - 1 
           if time-recovery <= 0 [ 
            set nodesize nodesize + 1 
            set time2 time-lag 
            set real_lag time-lag 
           ]            
       ] 
       if nodesize >= capacity [ 
              set nodesize capacity 
       ] 
     ]   
 end               
 
;;;;;;;;;;;;;;;;;;;REPORTING THE NETWORK;;;;;;;;;;; ;;;;;;;;;;;;;;; 
 
to-report pad [ number digits ] 
  let expanded ( word "000000000000000" number ) 
  let len length expanded 
  report substring expanded ( len - digits ) len 
end 
 
to-report next-log-filename [  prefix digits suffix ] 
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;; report the first filename that does not exist 
 let next-id# 0 
 let next-id$ "" 
 let keep-looking? true 
 while [ keep-looking? ] 
   [ set next-id# next-id# + 1 
     set next-id$ ( word prefix ( pad next-id# digi ts ) suffix ) 
     set keep-looking? file-exists? next-id$ 
   ] 
report next-id$ 
end 
 
to export-network 
  if any? nodes [ 
   let blank "   " 
   let namenodes [who] of nodes 
   let nnodes max [who] of nodes 
   file-print "*start*" 
   file-type "prey on node" 
      file-type blank  
   file-type prey1 
      file-type blank  
   file-type prey2 
      file-type blank   
   file-type prey3  
      file-type blank  
   file-type prey4  
      file-type blank  
   file-type prey5  
      file-type blank  
   file-type prey6  
      file-type blank  
   file-type prey7  
      file-type blank  
   file-type prey8  
      file-type blank  
   file-type prey9  
      file-type blank  
   file-print prey10 
   file-type "predators on node" 
      file-type blank  
   file-type pred1  
      file-type blank  
   file-type pred2  
      file-type blank  
   file-type pred3  
      file-type blank  
   file-type pred4  
      file-type blank  
   file-type pred5  
      file-type blank  
   file-type pred6  
      file-type blank  
   file-type pred7  
      file-type blank  
   file-type pred8  
      file-type blank  
   file-type pred9  
      file-type blank  
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   file-print pred10 
   file-type "node-capacity" 
      file-type blank 
   file-type nodesize1 
      file-type blank  
   file-type nodesize2 
      file-type blank  
   file-type nodesize3 
      file-type blank  
   file-type nodesize4 
      file-type blank  
   file-type nodesize5 
      file-type blank  
   file-type nodesize6 
      file-type blank  
   file-type nodesize7 
      file-type blank  
   file-type nodesize8 
      file-type blank  
   file-type nodesize9 
      file-type blank  
   file-print nodesize10 
   file-type "predator extinction" 
      file-type blank 
   file-type pred-extinction-time 
      file-type blank  
   file-type "prey extinction" 
      file-type blank    
   file-type prey-extinction-time 
      file-type blank  
   file-type "remaining budget"  
      file-type blank   
   file-type remaining 
      file-type blank  
   file-type "id" 
      file-type blank    
   file-print netime 
                                  
   file-type "*Vertices"  
   file-type blank  
   file-print nnodes 
   file-print "*Arcs" 
      ask nodes   [ 
      let neigh link-neighbors 
        if (count neigh) > 0 [ 
           foreach [who] of neigh [ 
           file-type who 
           file-type blank 
           file-type  ? 
           file-type blank 
           let i  who 
           let j  ? 
           file-print [dist] of edge i j 
           ] 
        ] 
     ] 
  ]       
end 
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III.iii.  Management strategy synchronization 
 
This model is implemented in Matlab2008a. 
 
%This script runs all the model with different powe r structures 
between and within communities. More precisely the first term is the 
power btw, the second the power structure within. 
 
clear 
clc 
if exist('D:\A_STUDI\Analysing\Matlab\strategy_dyn_ model\data')~=7 
    mkdir('data'); 
end 
 
diary ('data\modelrun.txt') 
 
%number of networks is 10,with increasing connectiv ity btw communities 
R = 10;               %number of runs per network 
T = 1000;             %time-steps per run 
c = 10;               %components of the network 
n = 20;               %nodes for every component 
 
for p_bet = 0:0.025:0.2           %probability of h aving edges outside 
a community 
    hh = ['netnum: ' num2str(p_bet)]; 
    disp(hh); 
     
    a = 0.8;  b = 1; 
    p_att = a + (b-a)* rand;    
%prob of attach within communities [0.8,1] 
 
    [ci net] = modnet (n,c,p_att,p_bet); 
    N = length(net); 
    %this is to write the network in pajek format 
    nome_rete = strcat('net_',num2str(p_bet),'.net' ); 
    writepaj (net,nome_rete); 
     
 
     
    for state=0:0.25:1      
 
        disp('eq_norm'); datestr(now) 
        eq_norm_strategy_dyn (R,T,c,n,state,net,ci, p_bet); 
 
        disp('eq_mono'); datestr(now) 
        eq_mono_strategy_dyn (R,T,c,n,state,net,ci, p_bet); 
 
        disp('dem_norm'); datestr(now) 
        dem_norm_strategy_dyn (R,T,c,n,state,net,ci ,p_bet); 
 
        disp('dem_mono'); datestr(now) 
        dem_mono_strategy_dyn (R,T,c,n,state,net,ci ,p_bet); 
 
        disp('mono_norm'); datestr(now) 
        mono_norm_strategy_dyn (R,T,c,n,state,net,c i,p_bet); 
 
        disp('mono_mono'); datestr(now) 
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        mono_mono_strategy_dyn (R,T,c,n,state,net,c i,p_bet); 
 
    end 
end 
    disp('Finish all');datestr(now) 
    diary off 
 
 
 
BUILDING THE MODULAR NETWORK 
 
function [ci net] = modnet (n, c, p_att, p_bet) 
 
%creates a modular network,  
 N = n*c;            %number of nodes (agents) of t he whole network 
 
%following loop needed to generate c number of rand om networks where c 
is the number of communities. 
 
for i = 1:c ; 
    z = genvarname (strcat ('gi', num2str (i))); 
    eval ([ z '=rnd (n, p_att);']); 
end 
 
%following procedure is needed in order to chain th e different c 
networks in one single matrix (or network) 
a = []; 
for i = 1:c; 
    a = [a strcat(',gi',num2str(i))]; 
end 
aa = substr(a,1); 
z = genvarname ('net'); 
eval ([z '= blkdiag(' aa ');']); 
 
%following procedure needed to connect different co mmunities with 
%probabilty p_bet 
 
ci = components (net); 
for i = 1:c; 
    a = find (ci==i); 
    b = find (ci~=i); 
    for i = 1:N; 
        aa = randselect (a,1); 
        bb = randselect (b,1); 
        if rand < p_bet ; 
            net(aa,bb)=1; net(bb,aa)=1; 
        end 
    end 
end 
 
function graph = rnd (n, p_att) 
%this function creates random-graphs and connects t hem into one single 
%modular network. 
 
    graph = random_graph (n, p_att); 
    graph = connect_graph (graph); 
end 
 
% Random graph construction routine with various mo dels 
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% INPUTS:  N - number of nodes 
%          p - probability, 0<=p<=1 
%          E - fixed number of edges 
%          distribution - probability distribution:  use the 
"connecting-stubs model" generation model 
%          fun - customized pdf function, used only  if distribution = 
'custom' - used as: 
%                random_graph(n,p,E,distribution,@m yfun,degrees), 
where myfun is the function name,  
%                of a fn saved in myfun.m 
%          degrees - particular degree sequence, us ed only if 
distribution = 'sequence' 
% OUTPUTS: adj - adjacency matrix of generated grap h (symmetric) 
% Note 1: Default is Erdos-Renyi graph G(n,0.5) 
% Note 2: Can generate a disconnected, multi-edge g raph with self-
loops - check using isconnected.m/issimple.m 
% Source: Various random graph models from the lite rature 
% 
% Gergana Bounova, October 31, 2005 
 
function adj = random_graph(n,p,E,distribution,fun,degrees)  
 
adj=zeros(n); % initialize adjacency matrix 
 
switch nargin 
    case 1  % just the number of nodes, n 
        p = 0.5; % default probability of attachmen t 
        for i=1:n 
            for j=i+1:n 
                if rand<=p 
                    adj(i,j)=1; adj(j,i)=1; 
                end 
            end 
        end 
  
    case 2  
% the number of nodes and the probability of attach ment, n, p 
        for i=1:n 
            for j=i+1:n 
                if rand<=p 
                    adj(i,j)=1; adj(j,i)=1; 
                end 
            end 
        end 
   
    case 3 % fixed number of nodes and edges, n, E      
        while numedges(adj) < E 
            i=ceil(rand*n); j=ceil(rand*n); 
            if not(i==j) % do not allow self-loops 
                adj(i,j)=adj(i,j)+1; adj(j,i)=adj(i ,j); 
            end 
        end 
     
    otherwise % pick from a distribution; generate *n* random numbers 
from a distribution 
        Nseq=1;  % ensure the while loops start 
        switch distribution 
            case 'uniform' 
                while mod(sum(Nseq),2)==1 % make su re # stubs is even 
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                    Nseq = ceil((n-1)*rand(1,n)); 
                end 
            case 'normal' 
                while mod(sum(Nseq),2)==1 % make su re # stubs is even 
                    Nseq = ceil((n-1)/10*randn(1,n) +(n-1)/2); 
                end 
            case 'binomial' 
                p=0.5;  % default parameter for bin omial distribution 
                while mod(sum(Nseq),2)==1 % make su re # stubs is even 
                    Nseq = ceil(binornd(n-1,p,1,n)) ; 
                end 
            case 'exponential' 
                while mod(sum(Nseq),2)==1 % make su re # stubs is even 
                    Nseq = ceil(exprnd(n-1,1,n)); 
                end 
            case 'geometric' 
                while mod(sum(Nseq),2)==1 % make su re # stubs is even 
                    Nseq = ceil(geornd(p,1,n)); 
                end     
            case 'custom' 
                % pick a number from a custom pdf f unction 
                % generate a random number x betwee n 1 and N-1 
                % accept it with probability fun(x)  
                while mod(sum(Nseq),2)==1 % make su re # stubs is even 
                    Nseq = []; 
                    while length(Nseq)<n 
                        x = ceil(rand*(n-1)); 
                        if rand <= fun(x) 
                            Nseq = [Nseq x]; 
                        end 
                    end 
                end 
            case 'sequence' 
                Nseq = degrees; 
        end 
            
        % connect stubs at random 
        nodes_left = [1:n]; 
        for i=1:n 
            node{i} = [1:Nseq(i)]; 
        end 
   
        while numel(nodes_left)>0   % edges < sum(N seq)/2 
             
            randi = ceil(rand*length(nodes_left)); 
            nodei = nodes_left(randi);               % pick a random 
node 
            randj = ceil(rand*length(node{nodei}));  
            stubj = node{nodei}(randj);              % pick a random 
stub 
     
            randii = ceil(rand*length(nodes_left));  
            nodeii = nodes_left(randii);             % pick another 
random node 
            randjj = ceil(rand*length(node{nodeii}) ); 
            stubjj = node{nodeii}(randjj);           % pick a random 
stub 
     
            % connect two nodes, as longs as stubs different 
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            if not(nodei==nodeii & stubj==stubjj) 
                % add new links 
                adj(nodei,nodeii) = adj(nodei,nodei i)+1;  
                adj(nodeii,nodei) = adj(nodei,nodei i); 
                % remove connected stubs 
                node{nodei} = setdiff(node{nodei},s tubj); 
                node{nodeii} = setdiff(node{nodeii} ,stubjj); 
            end 
     
            % remove empty nodes 
            nodes_left1 = nodes_left; 
            for i=1:length(nodes_left) 
                if length(node{nodes_left(i)})==0 
                    nodes_left1 = setdiff(nodes_lef t1,nodes_left(i)); 
                end 
            end 
            nodes_left = nodes_left1; 
   
        end 
       
end  % end nargin options 
 
% Gergana Bounova, December 18, 2005 
 
 
function A = connect_graph(B) 
%the following code connects different random-graph s so as to build a 
modular network 
 
A = B; 
N = length(A); 
[ci cmp] = components(A); 
if length(cmp)>1 
    nn = find(ci>1); 
    k = length(nn); 
    if k>0 
        r = randint(k,1,[1,N]); 
        A(nn,r)=1; A(r,nn)=1; 
        for i=1:N 
            A(i,i)=0; 
        end 
    end 
    [ci cmp]=components(A); 
    if length(cmp)>1 
        A = connect_graph(A); 
    end 
end 
 
function [ci sizes] = components(A) 
% Compute connected components 
% [ci sizes] = components(A) returns the component index vector (ci) 
and the size of each of the connected components (s izes).  The number 
of connected components is max(components(A)).  The  algorithm used 
computes the strongly connected components of A, wh ich are the 
connected components of A if A is undirected (i.e. symmetric). 
% 
% This method works on directed graphs. 
 
A = double(A); 
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if ~issparse(A) 
    A = sparse(A); 
end 
 
[ci sizes] = comps(A); %refers to a dll library. 
 
function writepaj(adj,fnm,x,y,z) 
 
% Write adjacency matrix to a Pajek .net format 
% 
% CAUTION: Before loading the .net file into Pajek,  open, save and 
% close it in WordPad. That fixes some strange UNIX -Win 
incompatibility 
% Gergana Bounova, March 14, 2006 
 
% EXAMPLE 
% *Vertices    4 
%        1 "v1"                                     0.1000    0.5000    
0.5000 
%        2 "v2"                                     0.1000    0.4975    
0.5000 
%        3 "v3"                                     0.1000    0.4950    
0.5000 
%        4 "v4"                                     0.1001    0.4925    
0.5000 
% *Edges 
%       14       31 1  
%       46       51 1  
%       51       60 1  
 
dirname = 'U:\AA_JACO\strategy_dynamics\strategy_dy n_model\data\';    
% dir for net file 
filename =  strcat (dirname, fnm); 
 
N = length(adj); % number of nodes 
fid = fopen(filename,'w'); 
 
fprintf(fid,'*Vertices  %6i\r',N); 
if nargin < 3 
  for i=1:N 
    fprintf(fid,'     %3i %s                     %1 .4f    %1.4f   
%1.4f\r',i,strcat('"v',num2str(i),'"'),rand,rand,0. 5); 
  end 
elseif nargin >2 && nargin < 5 
  for i=1:N 
    fprintf(fid,'     %3i %s                     %1 .4f    %1.4f   
%1.4f\r',i,strcat('"v',num2str(i),'"'),x(i),y(i),0. 5); 
  end 
else % 3D coords 
  for i=1:N 
    fprintf(fid,'     %3i %s                     %1 .4f    %1.4f   
%1.4f\r',i,strcat('"v',num2str(i),'"'),x(i),y(i),z( i)); 
  end 
end 
 
fprintf(fid,'*Edges\r'); 
for i=1:N 
  for j=1:N 
    if adj(i,j)>0 
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      fprintf(fid,'    %4i   %4i   %2i\r',i,j,adj(i ,j)); 
    end 
  end 
end 
 
fclose(fid) 
 
 
 
SETTING ATTRIBUTES FOR THE DYNAMICS OF THE MODEL 
 
Equal authority/reputation distribution between com munities, normal 
distribution within 
 
function eq_norm_strat_dyn (R,T,c,n,state,net,ci,p_bet) 
 
 
    strategy = []; 
    op_mod = []; 
    norm_dyn = zeros(T, c*n); 
    
 
    for p = 1:R 
 
        %attributes assigned to every node 
        attrib = eq_norm_gen_attr(ci,c,n);   
         
%Run the dynamics of the kuramoto model and retreiv e opinion evolution 
and last opinion(dyn and end_strat). Opinions are n ormalized (a-
min)/(max-min) 
 
        dyn = dynamics (net,attrib,c,n,T,state,p_be t); 
        [r cc]=size(dyn); 
        end_strat = dyn(r,:); 
        strategy = [strategy ;end_strat]; 
        norm_dyn = norm_dyn + dyn; 
    end 
    
% save dynamics matrix (averaged node dynamics per network) 
    norm_dyn = norm_dyn./R; 
    matname = 
['data\eq_norm_dyn_','state_',num2str(state),'_net_ ',num2str(p_bet),'.
txt']; 
    save (matname, 'norm_dyn','-ascii', '-tabs') 
 
 
function attrib = eq_norm_gen_attr(ci,c,n) 
 
N = length(ci); 
attrib = ci;                 %= component to which a node belongs 
attrib = [attrib rand(N,1)] ;        %= World view [0,1] 
aj=-1; 
bj=1; 
attrib = [attrib (aj+(bj-aj)*rand(N,1))];  %= strat egy [-1,1] 
 
w = 0.5                     ;        %= mean of nor mal 
sd = 0.125                  ;        %= sd of norma l  
 
%generating normal distribution for power within co mmunities 



276 
 

pw = zeros(N,1); 
for zz = 1:c 
    normpw = normrnd(w,sd,n,1); 
    pw(ci==zz) = normpw; 
end 
attrib = [attrib pw];                %= power withi n communities 
p_bet2 = repmat(0.5,1,c); 
p_bet3 = repmat(p_bet2,n,1); 
attrib = [attrib p_bet3(:)];         %= power betwe en communities 
 
 
Equal authority/reputation distribution between com munities, 
exponential distribution within 
 
function eq_mono_strat_dyn (R,T,c,n,state,net,ci,p_bet) 
 
    strategy = []; 
    op_mod = []; 
    norm_dyn = zeros(T, c*n); 
   
    for p = 1:R 
 
        %attributes assigned to every node 
        attrib = eq_mono_gen_attr(ci,c,n);       
 
%Run the dynamics of the kuramoto model and retreiv e opinion evolution 
and last opinion(dyn and end_strat). Opinions are n ormalized (a-
min)/(max-min) 
        dyn = dynamics (net,attrib,c,n,T,state,p_be t); 
        [r cc]=size(dyn); 
        end_strat = dyn(r,:); 
        strategy = [strategy ;end_strat]; 
        norm_dyn = norm_dyn + dyn; 
    end 
    
    % save dynamics matrix (averaged node dynamics per network) 
    norm_dyn = norm_dyn./R; 
    matname = 
['data\eq_mono_dyn_','state_',num2str(state),'_net_ ',num2str(p_bet),'.
txt']; 
    save (matname, 'norm_dyn','-ascii', '-tabs') 
 
 
function attrib = eq_mono_gen_attr(ci,c,n) 
 
N = length(ci); 
attrib = ci;                     %= component to wh ich a node belongs 
attrib = [attrib rand(N,1)] ;    %= World view [0,1 ] 
aj=-1; 
bj=1; 
attrib = [attrib (aj+(bj-aj)*rand(N,1))];   %= stra tegy [-1,1] 
 
%procedure for calculating power within: 
pw = zeros(N,1); 
for zz = 1:c 
    pwr = round (1+rand*19);        %= select rando m agent that will 
be the most powerful    
    monopw = exprnd(0.125,n,1);     %= generate vec tor of low power 
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    monopw(pwr,1) = 1;              %= insert power ful agents in 
vector 
    pw(ci==zz) = monopw; 
end 
attrib = [attrib pw];             %= power within c ommunities 
p_bet2 = repmat(0.5,1,c); 
p_bet3 = repmat(p_bet2,n,1); 
attrib = [attrib p_bet3(:)];        %= power betwee n communities 
 
 
Normal authority/reputation distribution between co mmunities, normal 
distribution within 
 
function dem_norm_strat_dyn (R,T,c,n,state,net,ci,p_bet) 
 
    strategy = []; 
    op_mod = []; 
    norm_dyn = zeros(T, c*n); 
     
 
    for p = 1:R 
 
        %attributes assigned to every node 
        attrib = dem_norm_gen_attr(ci,c,n); 
  
%Run the dynamics of the kuramoto model and retreiv e opinion evolution 
and last opinion(dyn and end_strat). Opinions are n ormalized (a-
min)/(max-min) 
 
        dyn = dynamics (net,attrib,c,n,T,state,p_be t); 
        [r cc]=size(dyn); 
        end_strat = dyn(r,:); 
        strategy = [strategy ;end_strat]; 
        norm_dyn = norm_dyn + dyn; 
    end 
    
% save dynamics matrix (averaged node dynamics per network) 
    norm_dyn = norm_dyn./R; 
    matname = 
['data\dem_norm_dyn_','state_',num2str(state),'_net _',num2str(p_bet),'
.txt']; 
    save (matname, 'norm_dyn','-ascii', '-tabs') 
 
function attrib = dem_norm_gen_attr(ci,c,n) 
 
N = length(ci); 
attrib = ci;                   %= component to whic h a node belongs 
attrib = [attrib rand(N,1)] ;               %= Worl d view [0,1] 
aj=-1; 
bj=1; 
attrib = [attrib (aj+(bj-aj)*rand(N,1))];   %= stra tegy [-1,1] 
 
w = 0.5; 
sd = 0.125; 
%procedure for calculating power within: 
pw = zeros(N,1); 
for zz = 1:c 
    normpw = normrnd(w,sd,n,1); 
    pw(ci==zz) = normpw; 
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end 
attrib = [attrib pw];                %= power withi n communities 
 
%procedure for power between: 
p_bet2 = normrnd(0.5,0.125,1,c); 
p_bet3 = repmat(p_bet2,n,1); 
monopb = p_bet3(:); 
attrib = [attrib monopb];          %= power between  communities 
 
 
Normal authority/reputation distribution between co mmunities, 
exponential distribution within 
 
function dem_mono_strat_dyn (R,T,c,n,state,net,ci,p_bet) 
 
 
    strategy = []; 
    op_mod = []; 
    norm_dyn = zeros(T, c*n); 
    
 
    for p = 1:R 
 
        %attributes assigned to every node 
        attrib = dem_mono_gen_attr(ci,c,n);       
  
%Run the dynamics of the kuramoto model and retreiv e opinion evolution 
and last opinion(dyn and end_strat). Opinions are n ormalized (a-
min)/(max-min) 
 
        dyn = dynamics (net,attrib,c,n,T,state,p_be t); 
        [r cc]=size(dyn); 
        end_strat = dyn(r,:); 
        strategy = [strategy ;end_strat]; 
        norm_dyn = norm_dyn + dyn; 
    end 
    
% save dynamics matrix (averaged node dynamics per network) 
    norm_dyn = norm_dyn./R; 
    matname = 
['data\dem_mono_dyn_','state_',num2str(state),'_net _',num2str(p_bet),'
.txt']; 
    save (matname, 'norm_dyn','-ascii', '-tabs') 
 
 
function attrib = dem_mono_gen_attr(ci,c,n) 
 
N = length(ci); 
attrib = ci;                    %= component to whi ch a node belongs 
attrib = [attrib rand(N,1)] ;               %= Worl d view [0,1] 
aj=-1; 
bj=1; 
attrib = [attrib (aj+(bj-aj)*rand(N,1))];   %= stra tegy [-1,1] 
 
%procedure for calculating power within: 
pw = zeros(N,1); 
for zz = 1:c 
    pwr = round(1+rand*19);        %= select random  agent that will be 
the most powerful    
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    monopw = exprnd(0.125,n,1);    %= generate vect or of low power 
    monopw(pwr,1) = 1;             %= insert powerf ul agents in vector 
    pw(ci==zz) = monopw; 
end 
attrib = [attrib pw];           %= power within com munities 
 
%procedure for power between: 
p_bet2 = normrnd(0.5,0.125,1,c); 
p_bet3 = repmat(p_bet2,n,1); 
monopb = p_bet3(:); 
attrib = [attrib monopb];          %= power between  communities 
 
 
Exponential authority/reputation distribution betwe en communities, 
normal distribution within 
 
function mono_norm_strat_dyn (R,T,c,n,state,net,ci,p_bet) 
 
    strategy = []; 
    op_mod = []; 
    norm_dyn = zeros(T, c*n); 
 
    for p = 1:R 
  
        %attributes assigned to every node 
        attrib = mono_norm_gen_attr(ci,c,n);       
 
%Run the dynamics of the kuramoto model and retreiv e opinion evolution 
and last opinion(dyn and end_strat). Opinions are n ormalized (a-
min)/(max-min) 
        dyn = dynamics (net,attrib,c,n,T,state,p_be t); 
        [r cc]=size(dyn); 
        end_strat = dyn(r,:); 
        strategy = [strategy ;end_strat]; 
        norm_dyn = norm_dyn + dyn; 
    end 
    
% save dynamics matrix (averaged node dynamics per network) 
    norm_dyn = norm_dyn./R; 
    matname = 
['data\mono_norm_dyn_','state_',num2str(state),'_ne t_',num2str(p_bet),
'.txt']; 
    save (matname, 'norm_dyn','-ascii', '-tabs') 
 
function attrib = mono_norm_gen_attr(ci,c,n) 
 
N = length(ci); 
attrib = ci;                      %= component to w hich a node belongs 
attrib = [attrib rand(N,1)] ;               %= Worl d view [0,1] 
aj=-1; 
bj=1; 
attrib = [attrib (aj+(bj-aj)*rand(N,1))];   %= stra tegy [-1,1] 
 
w = 0.5; 
sd = 0.125; 
%generating normal distribution for power within co mmunities 
pw = zeros(N,1); 
for zz = 1:c 
    normpw = normrnd(w,sd,n,1); 
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    pw(ci==zz) = normpw; 
end 
attrib = [attrib pw];               %= power within  communities 
 
%procedure to calculate power between 
p_bet2 = exprnd(0.125,1,c); 
p_bet3 = repmat(p_bet2,n,1); 
monopb = p_bet3(:); 
pbr = round (1+rand*9);            %= select powerf ul community 
maxpbc = ones(n,1);                %= max power of community  
monopb(ci==pbr) = maxpbc;          %= one community  has max power 
attrib = [attrib monopb];          %= power between  communities 
 
 
Exponential authority/reputation distribution betwe en communities, 
exponential distribution within 
 
function mono_mono_strat_dyn (R,T,c,n,state,net,ci,p_bet) 
 
    strategy = []; 
    op_mod = []; 
    norm_dyn = zeros(T, c*n); 
  
    for p = 1:R 
 
        %attributes assigned to every node 
        attrib = mono_mono_gen_attr(ci,c,n);       
 
%Run the dynamics of the kuramoto model and retreiv e opinion evolution 
and last opinion(dyn and end_strat). Opinions are n ormalized (a-
min)/(max-min) 
        dyn = dynamics (net,attrib,c,n,T,state,p_be t); 
        [r cc]=size(dyn); 
        end_strat = dyn(r,:); 
        strategy = [strategy ;end_strat]; 
        norm_dyn = norm_dyn + dyn; 
    end 
    
% save dynamics matrix (averaged node dynamics per network) 
    norm_dyn = norm_dyn./R; 
    matname = 
['data\mono_mono_dyn_','state_',num2str(state),'_ne t_',num2str(p_bet),
'.txt']; 
    save (matname, 'norm_dyn','-ascii', '-tabs') 
 
function attrib = mono_mono_gen_attr(ci,c,n) 
 
N = length(ci); 
attrib = ci;                      %= component to w hich a node belongs 
attrib = [attrib rand(N,1)] ;               %= Worl d view [0,1] 
aj=-1; 
bj=1; 
attrib = [attrib (aj+(bj-aj)*rand(N,1))];   %= stra tegy [-1,1] 
 
%procedure for calculating power within: 
pw = zeros(N,1); 
for zz = 1:c 
    pwr = round (1+rand*19);        %= select rando m agent that will 
be the most powerful    
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    monopw = exprnd(0.125,n,1);     %= generate vec tor of low power 
    monopw(pwr,1) = 1;              %= insert power ful agents in 
vector 
    pw(ci==zz) = monopw; 
end 
attrib = [attrib pw]; 
%procedure to calculate power between 
p_bet2 = exprnd(0.125,1,c); 
p_bet3 = repmat(p_bet2,n,1); 
monopb = p_bet3(:); 
pbr = round (1+rand*9);            %= select powerf ul community 
maxpbc = ones(n,1);                %= max power of community  
monopb(ci==pbr) = maxpbc;          %= one community  has max power 
attrib = [attrib monopb];          %= power between  communities  
 
 
Dynamics of the model 
 
function  dyn = dynamics(net,attrib,c,n,T,state,p_bet) 
 
%dynamics of the model: Syncrhonization = homogenei zation of 
strategies. in case of equation 8.2 wv=1 as 1 is th e “neutral” (thus 
is like saying that wv has no effect on the authori ty/reputation 
differences. 
 
N = length(net); 
alfa = 3; 
fac = 10; 
 
for t = 1:T 
      
    for i = 1:N 
        neighb = find(net(i,:)==1); 
        oscilw_v = []; 
        oscilb_v = []; 
        sum_oscilw = 0; 
        sum_oscilb = 0; 
        sum_w = []; 
        sum_b = []; 
        cpw=[]; 
        cpb=[]; 
        for k = 1:length(neighb) 
            if attrib(i,1)==attrib(neighb(k),1) 
                coup_w = (attrib(neighb(k),4) - att rib(i,4)); 
                wv = (abs(attrib(i,2) - attrib(neig hb(k),2))); 
                if coup_w <= 0 
                    coup_w = 0; 
                else 
                    coup_w = (coup_w^wv)*fac; 
                end 
                strat1= attrib(i,3); 
                strat2= attrib(neighb(k),3); 
                oscilw= (sin(strat2-strat1)-state*s in(strat1));           
                oscilw_v(1,k) = oscilw; 
                sum_oscilw = coup_w*(oscilw); 
                sum_w(:,k) = sum_oscilw; 
            else 
                coup_b = (attrib(neighb(k),5)- attr ib(i,5)); 
                wv = (abs(attrib(i,2) - attrib(neig hb(k),2))); 
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                if coup_b <= 0 
                    coup_b = 0; 
                else 
                    coup_b = (coup_b^wv)*fac; 
                end 
                strat1= attrib(i,3); 
                strat2= attrib(neighb(k),3); 
                oscilb= (sin(strat2-strat1)-state*s in(strat1));            
                oscilb_v(1,k) = oscilb; 
                sum_oscilb = coup_b*(oscilw); 
                sum_b(:,k) = sum_oscilb; 
            end 
        end 
          
        strat1 = strat1+ sum(sum_w)+sum(sum_b); 
        attrib(i,3)=strat1; 
        dyn(t,i)=strat1; 
    end 
end 
 
 
Functions used as “utilities” in the building of mo del  
 
function outstr = substr(str, offset, len, repl) 
%SUBSTR Extract a substring out of a string. 
% 
%   SUBSTR(STRING, OFFSET, LENGTH) extracts a subst ring out of STRING 
with 
%   given LENGTH starting at the given OFFSET.  Fir st character is at 
offset 0. 
%   If OFFSET is negative, starts that far from the  end of the string.  
If 
%   LENGTH is omitted, returns everything to the en d of the string.  
If LENGTH 
%   is negative, removes that many characters from the end of the 
string. 
% 
%   SUBSTR(STRING, OFFSET, LENGTH, REPLACEMENT) wil l not return the 
substring 
%   as specified by STRING, OFFSET, and LENGTH (see  above) but rather 
replace 
%   it by REPLACEMENT and return the result. 
% 
%   Examples: 
% 
%      Get first character:              substr(str ing,  0, 1) 
%      Get last character:               substr(str ing, -1, 1) 
%      Remove first character:           substr(str ing,  1) 
%      Remove last character:            substr(str ing,  0, -1) 
%      Remove first and last character:  substr(str ing,  1, -1) 
% 
%   SUBSTR is a MATLAB version of the Perl operator  with the same 
name. 
%   However, unlike Perl's SUBSTR, no warning is pr oduced if the 
substring is 
%   totally outside the string. 
 
%   Author:      Peter J. Acklam 
%   Time-stamp:  2004-02-21 22:49:14 +0100 
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%   E-mail:      pjacklam@online.no 
%   URL:         http://home.online.no/~pjacklam 
 
   % Check number of input arguments. 
   error(nargchk(2, 4, nargin)); 
 
   n = length(str); 
 
   % Get lower index. 
   lb = offset + 1;             % offset from begin ning of string 
   if offset < 0 
      lb = lb + n;              % offset from end o f string 
   end 
   lb = max(lb, 1); 
 
   % Get upper index. 
   if nargin == 2               % SUBSTR(STR, OFFSE T) 
      ub = n; 
   elseif nargin > 2            % SUBSTR(STR, OFFSE T, LEN) 
      if len >= 0 
         ub = lb + len - 1; 
      else 
         ub = n + len; 
      end 
      ub = min(ub, n); 
   end 
 
   % Extract or replace substring. 
   if nargin < 4 
      outstr = str(lb : ub);                        % extract 
substring 
   else 
      outstr = [str(1:lb-1) repl str(ub+1:end)];    % replace 
substring 
   end 
 
function r = randint(i,j,interval) 
% Random integers 
 
% r = randint(i,j,[from,to]) Returns a ixj matrix w ith random  
% integers from the interval [from,to].  
% 
% Note that randint is also function of the Matlab communication 
% toolbox! 
% 
% Inputs: 
%   i            : Matrix i dimension 
%   j            : Matrix j dimension 
%   interval     : Integer interval [from to] 
% 
% Outputs: 
%   r            : ixj random integer matrix 
% 
% Examples: 
%   r = randint(1,1,[1,10]) 
%   r = randint(1,1,[1,10]) 
%   r = randint(3,4,[1,10]) 
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%-------------------------------------------------- -------------- 
% (c) 2006 Christof Teuscher 
% christof@teuscher.ch | http://www.teuscher.ch/chr istof 
%-------------------------------------------------- -------------- 
 
 
from     = interval(1); 
to       = interval(2); 
 
r = from + round(rand(i,j) * (to - from)); 
 
function A = randselect(x,n) 
% Select n random elements from a list 
 
if size(x,1)==1 
    x=x'; 
end 
c = length(x); 
y = rand(c,1); 
C = sortrows([x y],2); 
A = C(1:n,1); 
 
function [ A ] = intrnd(n, min, max, rep) 
% Generates n random integers in (min, max), no rep etitions 
% rep = 0 -> no repetitions 
% rep = 1 -> repetitions 
 
if nargin<4 
    rep = 0; 
end 
if rep>1 
    rep=1; 
end 
if max<=n 
    error('Interval must be > No. of items'); 
end 
 
if rep==1 
    A = round(min + (max-min).*rand(n,1)); 
else 
    A = []; 
    A(1) = round(min + (max-min)*rand); 
    i=2; 
    while i<n+1 
        k = round(min + (max-min)*rand); 
        if ~ismember(k, A) 
            A(i) = k;  
            i = i+1; 
        end 
    end 
end 
A = A'; 
 
function norm = normalize(mat,type) 
norm = []; 
[row col]=size(mat); 
 
if nargin<2 
    type=0; 
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end 
 
if type~=1; 
    ms=max(mat); 
    ms=max(ms); 
    mn=min(mat); 
    mn=min(mn); 
    norm=(mat-mn)./(ms-mn); 
end 
 
if type==1 
    ms=max(mat); 
    mn=min(mat); 
 
    for ii=1:col 
        norm=[norm (mat(:,ii) - mn(:,ii))/(ms(:,ii)  - mn(:,ii))]; 
    end 
end 
 
end 
 
 
Results analysis (or degree of synchronization/homo genisation) 
 
function order = rparam(mat) 
%to calculate the synchronization parameter of our model, based on 
pluchino et al.; in order to measure the synchroniz ation of the 
system, we adopted an order parameter related to th e standard 
deviation of the end-strategies.  
 
[row,col] = size(mat); 
m = mean(mat); 
diff=[]; 
 
for co=1:col; 
    diff =[diff (mat(:,co)-m(:,co)).^2]; 
end 
 
sdiff = sum(diff); 
order = 1-sqrt(sdiff.*(1/(r 
ow))); 


