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Abstract 

 

Land plants evolved from charophyte algae over 470 million years ago. The body of land 

plants has changed considerably ever since, but recent genomic analyses have shown 

that most angiosperm developmental gene families were already present in early land 

plants. This raises the question of how a conserved set of developmental regulators 

could direct such a large increase in morphological complexity. I have addressed this 

problem using two approaches. First, I defined the evolutionary relationships between 

plant bHLH proteins, a large group of transcription factors that include important 

development regulators. I identified and analysed bHLH sequences from different 

species of land plants and algae and showed that these proteins underwent a radiation 

in the charophyte ancestors of land plants. bHLH subfamilies and their specific 

interaction domains were conserved throughout land plant evolution, suggesting that 

the gene regulatory networks in which they participate are very ancient. The second 

approach was to characterise the evolution of a developmental mechanism that controls 

the differentiation of rooting cells. In angiosperms, root hair development is controlled 

by a network of RSL class I and class II genes. In mosses, the development of rooting 

structures is also controlled by RSL class I genes. To understand the evolution of the RSL 

network, I generated RSL class II mutants and overexpression lines in mosses and found 

that they also show defects in rooting cell differentiation. I dissected the transcriptional 

interactions between the moss RSL genes and auxin and found that these are very 

different in mosses and angiosperms. These results point to the existence of an ancient 

rooting cell differentiation mechanism, whose transcriptional interactions have changed 

during land plant evolution. Together, these analyses support the conclusion that the 

evolution of novel developmental processes in land plants was partly driven by the 

reutilisation of very ancient developmental networks. 
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The colonisation of terrestrial environments by multicellular plants over 470 

million years ago was one of the most important events in the history of the planet. 

Land plants drastically changed atmospheric and geochemical cycles and paved the way 

for the evolution of terrestrial metazoan groups and complex terrestrial ecosystems. The 

evolution of plants on land was itself characterised by a series of radical transformations 

of their body plans, that included the formation of three-dimensional tissues, a de novo 

evolution of a multicellular diploid sporophyte generation, the evolution of multicellular 

meristems with the capacity for branching, and the development of specialised tissues 

and organs such as vasculature, roots, leaves, seeds and flowers. 

What is the genetic and molecular basis for the complex evolution of plants on 

land? The recent genome sequencing efforts have revealed that basal plants such as 

lycophytes and mosses have homologues of most gene families that control specific 

developmental processes in angiosperms. These findings raise important questions 

regarding the origin of these developmental mechanisms. In this thesis, this problem is 

approached in two ways: 1) defining the evolutionary relationships of a large family of 

plant transcription factors, the bHLH proteins and 2) characterising the evolution of an 

ancient developmental mechanism that controls the development of rooting cells, using 

mosses as a model system; these are the subjects of Chapter 2 and 3 of this thesis, 

respectively. In this chapter, a review of the evolution of developmental mechanisms in 

land plants is followed by a description of the morphogenesis and development of 

mosses. 

1.1. The history of land plants 

Land plants (embryophytes) evolved from freshwater multicellular algae, 

probably related to the extant charophytes Charales or Coleochaetales (Karol 2001; 

Lewis and McCourt 2004; Becker and Marin 2009). Together, land plants and 

charophytes form a monophyletic group, the streptophytes, which is sister to 

chlorophyte algae (Fig. 1.1A). The most basal and simple charophytes, such as 

Mesostigma, are unicellular, but a progressive transition towards complex 

multicellularity is clearly traceable in the different groups of streptophytes. Charophytes 

evolved many features that are plesiomorphic for land plants, such as hexameric 

cellulose synthases, the phragmoplast, plasmodesmata, apical meristems or a placenta 

(Graham et al. 2000; Becker and Marin 2009). However, it was the transition of 
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streptophytes to terrestrial environments that was associated with the evolution of the 

key features that define land plants, such as a multicellular sporophyte, retention of the 

zygote and embryo within the female gametophyte and apical cells with three cutting 

faces that allow the generation of three-dimensional parenchymatous tissues (Graham 

et al. 2000; Niklas and Kutschera 2009). 

The oldest fossil evidence for plants on land comes from spores and tissue 

fragments extending back through the mid-Ordovician, 470 million years ago (Wellman 

et al. 2003; Gensel 2008). The morphology of these microfossils suggests an affinity with 

extant liverworts, although the first macrofossils of liverworts only appear in the middle 

Devonian, around 390 million years ago (Hernick et al. 2008). The first land plant 

macrofossils, represented by the sporophytes of Cooksonia and similar forms, appear on 

older mid-late Silurian strata, around 425 million years ago (Fig. 1.1B; Edwards and 

Feehan 1980; Gensel 2008). Gametophytes have a lower preservation potential than 

sporophytes, but fossils from the Early Devonian Rhynie Chert indicate that the 

gametophytes of early land plants were complex (including stomata and conducting 

elements) and often resembling the gametophytes of extant liverworts (Taylor et al. 

2009). The oldest evidence for the existence of vascular plants comes from trilete spores 

found in upper Ordovician sediments, over 443 million years ago (Steemans et al. 2009), 

although tracheids can only be identified by the late Silurian, over 415 million years ago 

(Gensel 2008). By the late Silurian (around 425 million years ago), the now extinct 

rhyniophytes, zosterophylls and the first lycophytes (which are defined by the presence 

of microphylls) had evolved (Fig. 1.1B; Kenrick and Crane 1997; Taylor et al. 2009). 

The Devonian period (415-360 million years ago) was characterised by an 

explosion in the diversity of land plants (Kenrick and Crane 1997). This was due to the 

radiation of vascular plants with a dominant sporophyte generation, which were able to 

move from damper areas and colonise drier habitats (Bateman et al. 1998). The 

advantages of an increased dominance of the sporophyte on land were probably due to 

the potential for the production and air-dispersal of numerous spores after a singular 

water-dependent fertilisation event. Many important extant groups, including 

horsetails, ferns and the first seed plants, appeared and diversified during this period 

(Fig. 1.1B; Kenrick and Crane 1997). The expansion of plants on land during the Devonian 

period caused drastic changes in the geochemistry and atmospheric composition of the 

planet. The increased rate of weathering caused by large plants with complex root 

systems resulted in the formation of deep soils and supplied phosphorus that promoted  
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Figure 1.1 – Phylogenetic relationships among the major lineages of plants. 

A Phylogenetic relationships between the major extant groups of chlorophytes, prasinophytes and 

streptophytes (adapted from Niklas and Kutschera 2010). B Phylogenetic tree showing the phylogenetic 

relationships and evolutionary origin of extant and extinct groups of land plants (embryophytes); the thick 

bars indicate the minimum stratigraphic ranges based on megafossil evidence (adapted from Kenrick and 

Crane 1997). 
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terrestrial and marine productivity. This caused a large burial of organic carbon, a 

decrease in atmospheric CO2 levels and an increase in the levels of O2 (Algeo and 

Scheckler 1998; Lenton 2001). 

By the late Carboniferous period, around 300 million years ago, the land surface 

was covered by large forests of pteridosperms (seed ferns), lycophytes, tree ferns and 

sphenopsids (Willis and McElwain 2002). Gymnosperms appeared during this period 

(Taylor et al. 2009) and became dominant in the world flora between the Permian and 

the late Cretaceous period (between 260 and 70 million years ago) (Willis and McElwain 

2002). Basal angiosperms, magnoliids, early monocots and early eudicots appeared 

almost simultaneously during the early Cretaceous (100-145 million years ago) (Friis et 

al. 2006; Taylor et al. 2009) and later radiated and became dominant in a majority of 

habitats from the late Cretaceous (100-65 million years ago) until the present day (Willis 

and McElwain 2002). 

1.2. Evolution of developmental mechanisms in plants 

1.2.1. Sporophyte and gametophyte 

A key characteristic of land plants is that their life cycle is composed of two 

distinct multicellular generations: a haploid gametophyte and a diploid sporophyte. By 

contrast, in charophyte algae only the zygote cell is diploid. An alternation of two 

multicellular generations has evolved several times in different groups of algae (John 

1994) but it appears to have evolved only once in the streptophytes. Historically, two 

major theories have addressed the origin of the alternation of generations in land 

plants: the homologous (or transformation) and the antithetic (or interpolation) theories 

(reviewed in Blackwell 2003). The homologous theory states that land plant ancestors 

had an alternation of isomorphic generations; this theory has currently little support, 

except for the discovery of early Devonian fossils with almost isomorphic generations 

(Kenrick and Crane 1997). The antithetic theory (Bower 1908), by contrast, suggests that 

the sporophyte generation originated through the intercalation of mitotic divisions in 

the zygote before meiosis, resulting on a diploid embryo being retained on a 

gametophytic thallus. The sporophyte would then gradually evolve from a parasitic 

dependence on the gametophyte into a dominant, physiologically independent 
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organism. The antithetic theory is well supported by the phylogenetic relationships of 

streptophytes, and is now widely accepted. 

Recent insights from evolutionary developmental studies also support the 

antithetic theory of interpolation of a multicellular diploid phase in an ancestral 

haplontic life cycle. In the unicellular chlorophyte Chlamydomonas, the formation of a 

heterodimeric complex with the proteins Gsm1 and Gsp1 is sufficient to initiate the 

diploid phase of the life cycle (Lee et al. 2008); Gsm1 and Gsp1 are members of the TALE 

superclass of homeobox proteins, which in plants include the KNOX and BEL classes 

(Mukherjee et al. 2009); KNOX and BEL proteins are important regulators of sporophyte 

development in land plants (Hake et al. 2004; Sakakibara et al. 2008), suggesting that 

the function of TALE proteins is restricted to the diploid phase of the life cycle. Similarly, 

the floral meristem regulator LEAFY also functions specifically in the sporophytes of 

mosses and angiosperms (Tanahashi et al. 2005). In contrast to the TALE and LEAFY 

proteins specific role in sporophyte development, other genes and regulatory 

mechanisms appear to have been recruited from the gametophyte to the sporophyte 

generation. A good example is the family of type II MADS-box transcription factors. In 

different charophyte algae, a single type II MADS-box gene functions during haploid 

reproductive cell differentiation (Tanabe et al. 2005). Type II MADS-box genes radiated 

in land plants and formed two groups: the MIKCc and MIKC* (Henschel et al. 2002). 

MIKC* genes have retained a gametophyte function in bryophytes (Zobell et al. 2010) 

and angiosperms (Kofuji et al. 2003); however, MIKCc genes are expressed in both the 

gametophyte and sporophyte tissues in mosses and ferns (Münster et al. 1997; Quodt et 

al. 2007; Singer et al. 2007), but are mostly restricted to the sporophyte in Arabidopsis 

(Kofuji et al. 2003), where they have become specialised to the point of being the most 

important floral homeotic genes. Another example was the discovery that RSL class I 

genes control the differentiation of root hairs in the angiosperm Arabidopsis thaliana, 

and rhizoid and caulonema cells in the moss Physcomitrella patens (Menand et al. 

2007b). Root hairs, rhizoids and caulonemata are structures that fulfil similar rooting 

functions, but root hairs are tubular projections from epidermal cells of the root in the 

sporophytic life cycle stage, whereas rhizoids and caulonemata are filamentous 

structures that grow in the gametophytic life cycle stage. This suggests that RSL class I 

genes that controlled the development of rooting filaments in the gametophyte of early 

land plants were later recruited to control the development of root hairs in the 

sporophyte generation (Menand et al. 2007b). These examples suggest that the 
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elaboration of the sporophyte generation, and particularly the large radiation of 

morphology forms during the Devonian period, was partially achieved through the 

recruitment of genes and genetic mechanisms that had previously evolved and 

functioned in the gametophyte generation of charophytes and early land plants. 

The cues that mediate the transition of the different stages of the life cycle are 

likely to be predominantly epigenetic. Okano et al. (2009) and Mosquna et al. (2009) 

have shown that PpCLF and PpFIE, moss genes encoding putative subunits of a Polycomb 

group complex that regulates epigenetic states through chromatin modification, are 

required for the correct establishment of sporophyte and gametophyte identity: loss of -

function Ppclf and Ppfie mutants develop sporophyte-like bodies in the place of 

gametophores. The phenomenon of apogamy (development of sporophytes from 

gametophytes without fertilization) is long known to occur in fern and bryophyte species 

(Bell 1992), but the discoveries of Okano et al. and Mosquna et al. provide a glimpse into 

the molecular mechanisms that provide the epigenetic context of life cycle transitions. 

1.2.2. Leaf evolution 

Leaves have evolved multiple times during land plants evolution. Mosses and 

liverworts have leaf-like structures, but these are unrelated to the complex leaves of 

vascular plants; these have evolved independently as microphylls in lycophytes and 

several times as megaphylls in euphyllophytes. Microphylls, small and simple leaves with 

a single unbranched vein, are hypothesised to have evolved during the Silurian / early 

Devonian (Taylor et al. 2009) through either the vascularisation of stem enations, the 

reduction of flattened lateral branches or the sterilisation of sporangia (Crane and 

Kenrick 1997). The first leaves of euphyllophytes (megaphylls), which have a complex 

venation pattern, had evolved multiple times by the Late Devonian / Carboniferous, 

probably through the planation (flattening) and webbing of branch systems (Taylor et al. 

2009). The megaphylls of seed plants and ferns are clearly not homologous, but 

determining the total number of independent origins of leaves in euphyllophytes 

depends on the resolution of a complex phylogeny of Devonian and Carboniferous 

fossils (Friedman et al. 2004; Boyce 2009). 

The formation of leaves involves a transition from indeterminate growth in shoot 

apical meristems into a determinate growth programme. The indeterminacy of the 

shoot apical meristem is maintained by KNOX transcription factors; in different 
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angiosperms, the initiation of leaf determinate growth requires that KNOX genes are 

negatively regulated by ARP proteins in leaf primordia. Surprisingly, a similar KNOX-ARP 

mechanism operates during microphyll development in lycophytes, despite the 

independent origin of microphylls and megaphylls (Harrison et al. 2005). This suggests 

that the mechanisms for regulating determinacy and indeterminacy were present in the 

common ancestor of vascular plants and were recruited independently to control leaf 

initiation. By contrast, a mechanism involving Class III HD-Zip transcription factors that 

patterns stem vasculature was co-opted for the adaxial/abaxial patterning of leaves in 

seed plants but not in lycophytes (Floyd and Bowman 2006), reflecting the independent 

origin of microphylls and seed plant megaphylls. 

Unlike in plants with simple leaves, where KNOX expression is restricted to the 

shoot apical meristem, KNOX genes are expressed in the leaf primordia of fern fronds 

(Bharathan et al. 2002; Harrison et al. 2005) or reactivated during the development of 

compound leaves in seed plants (reviewed in Hay and Tsiantis 2009). This possibly 

reflects a delayed determinacy and meristematic properties of compound leaves, which 

in turn allow the generation of complex leaf morphologies. Supporting this hypothesis, a 

high degree of natural variation in the morphology of tomato compound leaves has 

been found to be caused by a dosage effect of a KNOX gene (Kimura et al. 2008). The 

reactivation of KNOX expression during compound leaf development appears to have 

had multiple evolutionary origins (Hay and Tsiantis 2009) and provide a remarkable 

example of how small changes in the spatial expression of a transcription factor can 

cause the evolution of a multitude of different morphologies. 

1.2.3. Root evolution 

The successful colonisation of terrestrial environments involved the evolution of 

multicellular organs that actively penetrate the substrate, anchor the plant, weather the 

soil and retrieve the mineral nutrients necessary for plant growth. The rooting function 

in free-living gametophytes (and to some extent in a few aquatic charophytes and 

chlorophyte algae) is performed by a system of rhizoid filaments. However, true roots 

comprising a specialised axis, a root cap, an endodermis, and an endogenous origin of 

lateral branches are only found in the sporophytes of vascular plants (Raven and 

Edwards 2001). The earliest vascular plants did not have specialised root axes, but the 

zosterophyllophyte-lycophyte clade had evolved roots by the early Devonian; on the 



Chapter 1: Introduction 

9 

other hand, there is no evidence of roots in other vascular plants until the middle 

Devonian (Gensel et al. 2001; Raven and Edwards 2001). This suggests that roots 

evolved at least twice in land plants and that the occurrence of an endodermis, 

endogenous branching and an endodermis in the roots of both lycophytes and 

euphyllophytes can be interpreted as the result of convergent evolution. Within the 

euphyllophytes, a fundamental difference in the anatomy of embryonic roots has 

suggested the existence of a further independent origin of roots in seed plants and in 

free-sporing plants (Raven and Edwards 2001). As discussed above, the development of 

root hairs in the root of angiosperms and of rhizoids in the gametophyte of mosses is 

controlled by RSL class I proteins (Menand et al. 2007b). Given the independent origin of 

roots in lycophytes and (possibly) in ferns, it will be interesting to determine if the 

development of root hairs/rhizoids in these groups has also involved the recruitment of 

RSL class I genes. Many questions remain regarding the exact homology of shoots and 

roots: in angiosperms, several regulatory factors that control shoot apical meristem 

(such as WUS and CLV3) have homologues that regulate the function of the root apical 

meristem (reviewed in Stahl and Simon 2010). It will be interesting to determine if these 

regulators are also required for the development of the root meristem of monilophytes 

and lycophytes.  

1.2.4. Flower evolution 

The evolution of seeds and flowers were major hallmarks in land plant evolution 

and the most important factors responsible for the dominance of gymnosperms and 

angiosperms on land floras for the past 250 million years. Little is known regarding the 

genetic mechanisms that guided the evolution of seeds in the Middle Devonian, but the 

evolution of flowers has received considerable attention by developmental and 

evolutionary biologists alike. 

The earliest fossils of flowers are from the early Cretaceous (around 125 million 

years ago), and indicate that a rapid diversification of floral forms occurred very early in 

angiosperm evolution (Friis et al. 2006). The evolution of flowers in angiosperms 

involved the transformation of unisexual gymnosperm reproductive structures into a 

hermaphrodite structure. Different theories providing an explanation for this 

transformation have been proposed (reviewed in Specht and Bartlett 2009). One of the 

most sounding is based on the discovery that homologues of floral homeotic genes are 
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present in gymnosperms: classes B and C, in particular, are expressed in gymnosperm 

reproductive structures, with class B genes being specifically expressed in the male 

structures (reviewed in Melzer et al. 2010). According to the out of male (or out of 

female) hypothesis (Theißen et al. 2002), changes in the spatial expression pattern of 

class B genes in male (or female) cones, could have given rise to the hermaphroditic 

precursors of flowers. 

Floral homeotic genes are central to the specification of flower organ identities 

and were probably a major driver of flower evolution: the ‘sliding boundary’ (Bowman 

1997) and the ‘fading borders’ (Buzgo et al. 2004) models propose that changes in the 

spatial expression domains of homeotic genes result in gradual transitions in organ 

morphology. Different floral organs could also potentially arise through changes in the 

protein interactions of floral homeotic genes or in the promoters of their target genes 

(Irish 2009). Another factor that has promoted flower evolution was the multiple 

evolution of a floral axis of asymmetry (zygomorphy) in different plant lineages. 

Interestingly, a mechanism involving the TCP transcription factor CYCLOIDEA was 

independently recruited multiple times to establish bilateral symmetry in eudicots 

families (reviewed in Preston and Hileman 2009). 

1.2.5. Evolution of transcription factors and signalling pathways 

The sequencing of different plant genomes opened the door for powerful 

comparative genomic analyses. These have shown that most developmental genes are 

highly conserved in land plants. Nearly all the 50-60 transcription factor gene families 

found in angiosperms are present in basal land plants, but only 15-30 are present in 

chlorophyte algae (Richardt et al. 2007; Riaño-Pachon et al. 2008). This indicates that 

there was a large increase in the number of transcription factor families in the 

streptophyte lineage, and that the core set of land plant transcription factors is highly 

conserved. Nevertheless, the average size of each transcription factor gene family is 

substantially smaller in mosses (less than 10 genes per transcription factor family) than 

in angiosperms (20-25 genes per family) (Richardt et al. 2007). This suggests that there 

was a large expansion and diversification of transcription factor families on land, 

possibly associated with the elaboration of the multicellular body. Interestingly, despite 

having a smaller set of transcription factors, mosses appear to have more elaborated 

two-component signalling systems (involving histidine kinases and response regulators) 
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than angiosperms (Rensing et al. 2008). The increase in the complexity of plant 

transcription factor families is reminiscent of the evolution of transcription factors in 

metazoans: a wide range of transcription factor families and classes are present in 

demosponges (the most basal metazoan group), but not in choanoflagelates (unicellular 

organisms that are the sister group to metazoans)(Rokas 2008; Degnan et al. 2009). The 

ancestors of bilaterians and cnidarians later underwent an expansion and diversification 

of transcription factor families, which correlates with an increase in morphological and 

cell type complexity (Rokas 2008; Degnan et al. 2009). 

A major factor driving transcription factor evolution in plants is the frequent 

occurrence of gene duplications, particularly whole genome duplications through 

autopolyploidy and allopolyploidy events. Many land plant species are polyploid (Cui et 

al. 2006), and possibly almost all angiosperm species (including Arabidopsis thaliana) are 

paleopolyploids, i.e. diploids with polyploid ancestors. The detection of collinearity 

between triplicate regions in rosid and asterid species suggests that there was a 

hexaploidy event in the common ancestral of the main eudicot lineages, around 150 

million years ago (Tang 2008). Additional duplications occurred later independently in 

several lineages, including two duplications in the Brassicales ancestors of Arabidopsis 

thaliana (Van de Peer et al. 2009a). It is estimated that the three whole genome 

duplications are directly responsible for the generation of 60% of the Arabidopsis genes 

during the last 150 million years (Maere et al. 2005; Van de Peer et al. 2009a). 

Regulatory genes (including genes involved in transcription and signal transduction) are 

preferentially retained after large scale duplication events than after small scale gene 

duplications, probably because of dosage effects and the importance of maintaining a 

correct stoichiometric balance in protein complexes (Blanc et al. 2004; Maere et al. 

2005). The three whole genome duplication events are calculated to be responsible for 

90% of the Arabidopsis transcription factors created over the last 150 million years 

(Maere et al. 2005). Interestingly, many whole genome duplications occurred 

independently in several plant groups during the Cretaceous-Tertiary boundary 65 

million years ago, a period of mass extinctions followed by extensive radiations (Fawcett 

et al. 2009). This suggests that whole genome duplications may confer a competitive 

advantage under changing environments and enhance the diversification potential of a 

lineage (Van de Peer et al. 2009b). Gene duplication can fuel evolution because a 

duplicate copy is free to evolve a novel function (neofunctionalisation) without 

compromising the function of the original gene. However, most retained duplicates 
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probably undergo a subfunctionalisation process instead, in which complementary loss-

of-function mutations occur such that both genes are required to produce the full 

complement of functions of the single ancestral gene (Prince and Pickett 2002). 

Mechanisms of gene regulation by RNA silencing are also conserved in land 

plants. The microRNA (miRNA) machinery appears to have evolved independently in 

animals and in plants (Axtell and Bowman 2008). In plants, miRNAs have been identified 

in the unicellular chlorophyte Chlamydomonas, but these are not homologous to any 

land plant miRNA (Molnár et al. 2007; Zhao et al. 2007). Dozens of miRNA families have 

been identified in land plants (Axtell and Bowman 2008). At least 16 of these miRNA 

families were present in the common ancestor of mosses and vascular plants and are 

highly conserved in other land plants (Tanzer et al. 2010). However, the majority of 

miRNAs is lineage specific and non-conserved (Axtell et al. 2007). In contrast to miRNAs, 

short interfering RNAs (siRNAs) are widely present in eukaryotic organisms; accordingly, 

they have been identified in chlorophytes and mosses (Zhao et al. 2007; Cho et al. 2008). 

The plant specific class of trans-acting siRNA (ta-siRNA) is present in mosses (Talmor-

Neiman et al. 2006) and, less clearly, in Chlamydomonas (Zhao et al. 2007). 

The major components of auxin signalling in land plants (AUX-IAA, ARFs and 

TIR1-AFBs) are absent from chlorophyte algae but present in land plants (Lau et al. 

2009), suggesting that it evolved in the streptophyte lineage. The auxin signalling 

response is functional in mosses (Bierfreund et al. 2003; Hayashi et al. 2008) and auxin 

polar transport has been found to occur in different moss structures (discussed later in 

this Chapter). All the genetic components required for cytokinin signalling are also 

present in mosses but not in chlorophytes (Pils and Heyl 2009). Nevertheless, there was 

an important expansion of most of the gene families involved in cytokinin signalling in 

vascular plants (Pils and Heyl 2009). P. patens has candidate gibberellin (GA) 

biosynthetic genes and GA–DELLA signalling components (Hirano et al. 2007; 

Vandenbussche et al. 2007; Yasumura et al. 2007; Anterola and Shanle 2008), but it does 

not have GA-dependent GID1–DELLA signalling. This mechanism appears to have 

evolved in vascular plants (Hirano et al. 2007; Yasumura et al. 2007), while the 

characteristic DELLA-GA mediated growth restraint probably evolved only after the 

divergence of lycophytes from other vascular plants (Yasumura et al. 2007). This 

suggests that the GA signalling pathways evolved gradually in land plants. An abscisic 

acid (ABA) signalling response is present in mosses (Knight et al. 1995; Komatsu et al. 

2009) and, accordingly, and the genome of P. patens encodes homologues of receptors 
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and transcription factors involved in ABA signalling (Rensing et al. 2008). The analysis of 

the P. patens genome suggests that signalling through jasmonic acid, ethylene or 

brassinosteroids evolved after the divergence of mosses from other land plants (Rensing 

et al. 2008). 

Most of the evidence used to infer the evolutionary origin of different signalling 

pathways is based on the genomic identification of homologues to known biosynthetic 

enzymes receptors or signal transducers; however, there are several reports of 

developmental effects caused by some of these hormones in basal plants that do not fit 

with the genomic predictions. It is possible that separate plant lineages have evolved 

slightly different signalling pathways, and it will take more that comparative genomics to 

identify these mechanisms. 

1.3. Moss development 

Liverworts, mosses and hornworts are the earliest diverging groups of land 

plants. Their phylogenetic position and the simplicity of their morphology and 

development make them excellent systems to study the evolution of developmental 

processes in plants. The moss Physcomitrella patens, in particular, has been intensively 

studied over the past decade: its full genomic sequence has been determined (Rensing 

et al. 2008) and a high rate of homologous recombination allows the precise targeting of 

genomic sequences upon transformation; this makes the generation of knockout 

mutants possible for virtually every gene (Schaefer 2001). The following sections are a 

brief description of moss development. 

1.3.1. Protonema 

Mosses begin their haploid development from a single-celled spore (Schofield 

1985). Upon germination, a uniseriate filament grows by successive divisions of a tip 

growing apical cell. The filament, composed of chloronema cells with numerous 

chloroplasts, can also originate branches from subapical cells. After several days of 

chloronemata development, some apical cells begin to differentiate a second cell type, 

the caulonema. Unlike chloronema, caulonema cells have few and elongated 

chloroplasts, and their growth rate is much higher. Together, chloronema and 

caulonema filaments constitute the protonema, the first stage of gametophytic 
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development. There are several differences between the two cell types that underlie 

two distinct functions: chloronemata carry out high rates of photosynthesis, while 

caulonemata increase the size of the colony. 

Chloronema cells have numerous and well-developed chloroplasts disposed 

around a large central vacuole (Duckett et al. 1998). Apical cells extend at a rate of 2-6 

µm.h-1 and divide every 10-12 hours (Schumaker and Dietrich 1997; Duckett et al. 1998; 

Cove 2005). Unlike most plant cells, chloronema cells arrest in the G2/M transition of 

the cell cycle (Schween et al. 2003). Caulonema cells have characteristic oblique cross 

cell walls, a strong cytoplasmic polarity and their nuclei typically undergo 

endoreplication (Duckett et al. 1998). Plasmodesmata in cross walls have expanded 

central lamina, like those associated with intense trafficking in vascular plants (Duckett 

et al. 1998). Like chloronema, caulonema filaments grow by divisions of a tip growing 

apical cell (Menand et al. 2007a). They extend at a rate greater than 20 µm.h-1 and 

divide every 6-8 hours (Schumaker and Dietrich 1997; Duckett et al. 1998; Cove 2005). 

Caulonema and chloronema cells show distinct phototropic responses (Cove and Knight 

1987) which are mediated by phytochromes (Mittmann et al 2004). 

Subapical cells can develop side-branch initials that give rise to secondary 

chloronema, caulonema or buds (Cove 2005). Side-branch initials always arise from the 

distal side of subapical cells, just behind the cross wall and in the flank opposite the 

nucleus; in a caulonema filament, this generally occurs in the third cell from the tip 

(Schmiedel and Schnepf 1979). In P. patens and in Physcomitrium turbinatum, 

caulonema side-branch initials develop near the wide end of the oblique cross walls 

(Jensen 1981; Schumaker and Dietrich 1997). In P. turbinatum, particularly, the 

orientation of the oblique cross wall is determined by the direction of light; this means 

that the place where a side-branch initial emerges is determined hours before, when the 

subapical cell was originated (Jensen 1981). However, in F. hygrometrica, the cell wall 

flank where the side-branch initial develops is independent of the orientation of the 

oblique cross cell wall (Schmiedel and Schnepf 1979). The first visible sign is a bulging on 

the cell wall, caused by apposition of new wall material. The new cell wall later pierces 

the older one; the nucleus migrates and divides in the base of the outgrowth, and a new 

cross wall forms (Schmiedel and Schnepf 1979). 

Protonemal filaments exhibit a strong polarity, more pronounced in caulonema 

cells, manifested in the cell division asymmetries, side-branch initials positioning and in 

cytoplasmic organization. The cytoskeleton has been shown to be crucial in the 
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establishment of this polarity. Protonema apical cells contain microtubule arrays that 

extend to the apical dome; treatment with the microtubule-depolymeriser drug cremart 

causes the cell to bend, develop new ‘tips’ or swell at the tip (Doonan et al. 1988), 

indicating that growth can still occur in the absence of microtubules, but not in a 

polarized manner. It was proposed that microtubules can respond to environmental 

signals like light and gravity and accordingly reorientate the filament growth (Doonan 

1991). Actin microfilaments are also axially oriented towards the apical dome. 

Experiments with the drug cytochalasin first showed that actin microfilaments are 

required for tip growth in protonema filaments (Schmiedel and Schnepf 1980; Doonan 

et al. 1988). More recently, several knockouts and knockdowns of actin associated 

proteins such as profilin (Vidali et al. 2007), myosin XI (Vidali et al. 2009), actin 

depolymerising factor (ADF) (Augustine et al. 2008), Arp2/3 complex subunits (Finka et 

al. 2008; Harries et al. 2005; Perroud and Quatrano 2006) and Wave/SCAR complex 

subunits (Perroud and Quatrano 2008) have been shown to cause a disruption of the 

subapical actin network and to inhibit tip growth. Interestingly, the development of 

gametophores is unaffected in many of these mutants, despite the strong defects that 

they have in the protonema and rhizoid tip growing filaments. 

Cell differentiation in the protonema 

Protonema development is extremely plastic: caulonema can give rise to 

chloronema, chloronema rise to caulonema, and both structures rise to buds; in 

addition, isolated cells can regenerate an entire colony (Cove et al. 2006). The 

chloronema-caulonema transition, in particular, is modulated by an array of endogenous 

and exogenous factors. 

A rich substrate or the addition of ammonium tartrate as the nitrogen source 

causes the preferential development of chloronema filaments, while poor media 

generally results in an increase in the number of caulonema filaments. However, 

Thelander et al. (2005) observed that high energy conditions such as external glucose or 

high light induce caulonemata formation and proposed an homeostatic model for the 

regulation of chloronemata and caulonemata formation: under low energy conditions, 

chloronemata growth is stimulated, leading to higher rates of photosynthesis; when 

energy is readily available, the colony can afford to produce caulonemata and that way 

increase the size of the colony. Interestingly, a knockout of a sulfite reductase causes an 
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inhibition of caulonema differentiation (Wiedemann et al. 2010), indicating that not only 

carbon and nitrogen, but also sulphate metabolism, play an important role in moss 

morphogenesis. 

Light is a major factor in determining protonema patterning. The formation of 

side-branches is mediated by at least 4 distinct photoreceptor systems: nuclear-localised 

cryptochrome (blue light receptors) and red light receptors induce branch formation, 

while plasma membrane-localised phototropins (blue light receptors) and phytochromes 

(red and far-red light receptors) determine the position of branches (Imaizumi et al. 

2002; Uenaka et al. 2005). The blue-light response is mediated by SBP-box transcription 

factors, which are negatively regulated by cryptochromes (Riese et al. 2008). 

Cryptochrome blue light signals inhibit auxin-induced caulonema differentiation and the 

expression of auxin inducible genes (Imaizumi et al. 2002), suggesting the existence of 

close links between light and auxin signalling during protonema development. 

Auxin treatment increases the number of caulonema filaments and rhizoids 

(Johri and Desai 1973; Ashton et al. 1979). Immunoenzymatic and immunofluorescence 

assays initially showed that auxin levels were higher in caulonema than in chloronema 

filaments (Atzorn et al. 1989; Bopp and Atzorn 1992). More recently, a fusion of the 

promoter of the Glycine max GH3 gene (which is responsive to auxin) with GUS has been 

extensively used to detect the sites of auxin response in P. patens: these are 

predominantly caulonema filaments, gametophore buds, the base of the gametophore 

stem, basal and mid-stem rhizoids, zygote and embryos, and the seta and foot of mature 

sporophytes (Bieurfreund et al. 2003; Fujita et al. 2008; Eklund et al. 2010). The genome 

of P. patens encodes the major gene families that are implicated in auxin homeostasis 

and signalling in angiosperms (Rensing et al. 2008) and some of these have been shown 

to be functionally conserved: GH3 proteins, which synthesise auxin conjugates, regulate 

auxin homeostasis in P. patens (Ludwig-Müller et al. 2009), while the responses of P. 

patens to an auxin antagonist suggest that the TIR1/AUX-IAA/ARF auxin signalling 

pathway is functionally conserved in mosses (Hayashi et al. 2008). Polar transport of 

auxin has been demonstrated to occur in caulonema filaments, rhizoids and sporophytes 

(Rose and Bopp 1983; Bopp and Atzorn 1992; Poli et al. 2003, Fujita et al. 2008), but 

different pieces of evidence suggest that it is local auxin biosynthesis that plays a major 

role in auxin peak formation in mosses: 1) there is no polar transport of auxin in 

gametophore shoots (Fujita et al. 2008); 2) the expression of SHI genes, which regulate 

auxin biosynthesis, coincides with the sites of auxin response (Eklund et al. 2010) and 3) 
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the 3 Physcomitrella PIN proteins are functionally related to the PIN5-type proteins that 

regulate subcellular homeostasis of auxin, and not to the PIN1-type proteins that are 

responsible for auxin efflux from cell to cell (Mravec et al. 2009). 

As mentioned earlier, the genome of P. patens encodes candidate GA 

biosynthetic genes signalling components. However, apart from a possible effect in 

spore germination (Anterola et al. 2009), P. patens lacks a detectable growth response 

to GA and there is no evidence for a functional conservation of the GA-DELLA signalling 

(Hirano et al. 2007; Yasumura et al. 2007). Cytokinins and cyclic adenosine 

monophosphate (cAMP) are thought to be involved in the differentiation of 

chloronemata cells. Although its role in plants is not very clear (Taiz and Zeiger 2002), 

cAMP was shown to be present (Handa and Johri 1976) and rapidly metabolized 

(Sharma and Johri 1982) in F. hygrometrica. The addition of exogenous cAMP inhibits 

the effect of exogenous auxin (Handa and Johri 1979), suggesting that the two 

substances have an antagonistic role. Addition of exogenous cytokinins also results in an 

inhibition of caulonema formation and increase of chloronema branching (Thelander et 

al. 2005), but their main effect is bud induction, which is discussed below. 

1.3.2. Gametophores and rhizoids 

A few weeks after spore germination, some protonemal side-branch initials 

develop into gametophore buds, initiating the second stage of gametophytic 

development.  Buds develop preferentially from caulonema filaments, although they can 

also develop, more rarely, from chloronemata. Bud formation is induced by red light 

(Imaizumi et al. 2002) and by exogenous cytokinin (Ashton et al. 1979). Calcium plays a 

major role in bud formation. There is an increase in membrane-associated calcium in the 

presumptive initial cell site after addition of exogenous cytokinin (Saunders and Hepler 

1981), while treatment of protonemata with calcium ionophores or calcium channel 

agonists results in initial cell formation on virtually every cell (Saunders and Hepler 1982; 

Conrad and Hepler 1988). 

Gametophore formation changes the filamentous, two dimensional organization 

of protonema into a three dimensional structure. A side-branch initial first undergoes 

four divisions that result in the formation of a tetrahedral-shaped shoot initial cell. This 

shoot initial cell then undergoes asymmetric, self-replacing divisions in 3 planes that 

generate leaf initials in a spiral pattern (Harrison et al. 2009). Application of exogenous 
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auxin causes an increase in the stem length (Hayashi et al. 2008; Fujita et al. 2008); 

conversely, Ppshi mutants (which have reduced auxin biosynthesis) and cryptochrome 

blue light signals (which inhibits auxin responses) induce smaller internodal lengths 

(Imaizumi et al. 2002; Eklund et al. 2010), indicating that auxin also plays a role in 

patterning gametophore development. Gametophore leaves consist of a single layer of 

cells, except in the conducting tissue (midrib) that develops in adult leaves. The planar 

growth of leaves is generated by asymmetric, self replacing divisions of leaf initials in 2 

planes. Further unevenly distributed divisions in the leaf contribute to the final leaf 

shape (Harrison et al. 2009).  

During the transition from filamentous (protonema) to intercalary 

(gametophores) growth, the cytoskeleton changes dramatically to adopt a typical 

angiosperm organization: interphase microtubules become predominantly cortical and 

the pre-prophase band, a land plant specific structure, appears (Doonan et al. 1987). A 

knockout of PpTON1, a protein required for the assembly of the pre-prophase band, 

causes strong morphological defects in gametophores, but not in the protonema 

(Spinner et al. 2010). 

Rhizoids are pigmented filaments that develop from epidermal cells of 

gametophores. The first rhizoids form at the base of the gametophores (basal rhizoids). 

Later, rhizoids (mid-stem rhizoids) develop also from epidermal cells below adult leaves 

(Sakakibara et al. 2003). Like caulonema filaments, rhizoids have distinctive oblique 

cross walls, few or no chloroplasts and elongate by fast tip-growth (Duckett et al. 1998). 

Many mutations or treatments (such as auxin) that affect caulonema differentiation also 

affect rhizoid formation (Ashton et al. 1979; Sakakibara et al. 2003; Menand et al. 

2007b). In fact, there are many similarities between caulonema filaments and rhizoids, 

and the two cell types are readily interchangeable. However, they can usually be easily 

distinguished based on their anatomical origin and branching frequency (most rhizoids 

do not form branches). 

Later in development, sex organs (antheridia and archegonia) are produced in 

the apex of the shoot. The antheridium produces numerous biflagellate male gametes, 

while the archegonium encloses a single egg (Schofield 1985). If water is available, 

antherozoids swim to the archegonium and fertilise the egg, originating the diploid 

zygote that initiates the sporophytic generation. 
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1.3.3. Sporophyte 

The initiation of sporophytic versus gametophytic development is controlled by 

an epigenetic mechanism involving a Polycomb group complex, which has been 

proposed to repress the initial stages of sporophyte development in the haploid 

generation (Mosquna et al. 2009; Okano et al. 2009). After fertilisation, the zygote 

undergoes a transverse division, which is controlled by homologues of the floral 

regulator LEAFY (Tanahashi et al. 2005). The basal cell resulting from this first division 

further divides to become the foot, while the apical cell is the precursor of the 

remainder of the sporophyte (Schofield 1985). The division of this apical cell is 

controlled by KNOX class 1 genes (Sakakibara et al. 2008), which also regulate shoot 

apical meristem development in the sporophyte of angiosperms. The cells of the lower 

part of the archegonium divide and form a gametophytic layer (the calyptra) that 

protects the embryo. As the embryo grows, the calyptra is teared apart from the 

gametophore, forming a protective cap around the sporophyte tip (Schofield 1985). The 

seta elongates through the activity of a subapical intercalary meristem (French and 

Paolillo 1975); seta elongation can be increased through the application of exogenous 

auxin (Poli et al. 2003). Unlike in the gametophore, a polar transport (basipetal) of auxin 

has been detected in the sporophytes of different moss species (Poli et al. 2003; Fujita 

et al. 2008). 

The mature sporophyte consists of a foot that penetrates the gametophore, a 

seta and a sporangium (capsule) where meiotic divisions produce haploid spores. The 

sporangium has a basal apophysis region, aerenchymal tissue, stomata (with single 

guard cells) in the base, spore sacs surrounding a central columella and peristome teeth 

covered by an operculum (Sack and Paolillo 1983; Miller and Miller 2006). Unlike F. 

hygrometrica and most other mosses, the sporophyte of P. patens lacks an operculum 

and a peristome, and it has a very short seta. A mature P. patens sporangium produces 

about 4000 spores (Cove 2005). 
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2.1. Introduction1 

The basic helix-loop-helix (bHLH) domain is a highly conserved amino acid motif 

that defines a group of transcription factors. It was originally described in animals 

(Murre et al. 1989) and soon discovered in all of the major eukaryotic lineages. Proteins 

that contain a bHLH domain (referred to as bHLH proteins) are involved in a myriad of 

regulatory processes. Their functions include regulating neurogenesis, myogenesis and 

heart development in animals (Massari and Murre 2000; Jones 2004), controlling 

phosphate uptake and glycolysis in yeast (Robinson and Lopes 2000), or modulating 

secondary metabolism pathways, epidermal differentiation and responses to 

environmental factors in plants (Ramsay and Glover 2005; Castillon et al. 2007). 

The bHLH domain consists of 50-60 amino acids that form two distinct segments: 

a stretch of 10-15 predominantly basic amino acids (the basic region) and a section of 

roughly 40 amino acids predicted to form two amphipathic α-helices separated by a loop 

of variable length (the helix-loop-helix region). Structural analyses of mammalian and 

yeast bHLH proteins showed that the basic region forms the main interface where 

contact with DNA occurs, while the two helices promote the formation of homo- or 

hetero-dimers between bHLH proteins, a prerequisite for DNA binding to occur (Jones 

2004). 

Phylogenetic analyses have classified the diversity of bHLH proteins into a 

number of distinct groups. Over 50 bHLH proteins are encoded in the genomes of most 

animals (metazoans) and are typically classified into 6 major groups (A-F), based on their 

ability to bind DNA (Atchley and Fitch 1997; Ledent and Vervoort 2001; Jones 2004). 

Detailed analyses using whole genome sequences showed that animal bHLH could be 

further classified in several smaller subfamilies that are highly conserved across major 

metazoan lineages (Ledent and Vervoort 2001; Simionato et al. 2007). Phylogenetic 

analyses indicate that 44 of these subfamilies were present in the common ancestor of 

all bilaterians, which is thought to have existed sometime before 600 million years ago 

(Simionato et al. 2007). The genomes of Arabidopsis thaliana and Oryza sativa (rice) 

encode even more bHLH sequences than animals. Different phylogenetic studies 

proposed the classification of plant bHLH into 15-25 subgroups (Buck and Atchley 2003; 

                                                           
1
 The results in this chapter (except section 2.3.6.) were published in: 

Pires N, Dolan L (2010) Origin and Diversification of Basic-Helix-Loop-Helix Proteins in Plants. Mol 
Biol Evol 27:862-74; Pires N, Dolan L. (2010) Early evolution of bHLH proteins in plants. Plant 
Signal Behav 5 (7). 



Chapter 2: Evolution of bHLH proteins in plants 

22 

Heim et al. 2003; Toledo-Ortiz et al. 2003; Li et al. 2006b). However, the origin and 

evolutionary history of these groups cannot be understood using A. thaliana and O. 

sativa sequences alone. The characterization of the evolution of plant bHLH diversity 

requires the phylogenetic analysis of bHLH proteins from a more diverse selection of 

plants, including algae, bryophytes and different lineages of vascular plants. 

In this chapter it is shown that the plant bHLH family is monophyletic and 

underwent a major radiation before the evolution of the mosses2. The bHLH groups 

established in the early land plants over 400 million years ago were conserved during 

subsequent plant evolution, although there were many gene duplications and losses 

within these groups. This analysis defines 26 subfamilies that represent deep 

evolutionary relationships between plant bHLH proteins. 

                                                           
2
 Plants are defined as the organisms that are likely to have been derived from the 

primary endosymbiotic event that gave rise to the red algae, chlorophytes and land plants 
(Rodríguez-Ezpeleta et al. 2005) 
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2.2. Materials and methods 

2.2.1. Sequence retrieval 

The Arabidopsis thaliana bHLH reported by Bailey et al. (2003), Heim et al. 

(2003) and Toledo-Ortiz et al. (2003) were retrieved from TAIR 

(http://www.arabidopsis.org/). A clear bHLH domain was not found in At1g31050 

(AtbHLH111) and At1g22380 (AtbHLH152), so they were not further used in this study; 

At2g20095 (AtbHLH133) and At4g38071 (AtbHLH131) could not be found in any 

database. A dataset of predicted Oryza sativa L. ssp. japonica bHLH proteins was 

retrieved from the Plant TFDB (Guo et al. 2008) and combined with the bHLH protein 

sequences reported by Li et al. (2006b), retrieved from the Rice Genome Annotation 

Project (http://rice.plantbiology.msu.edu/).  Eleven new proteins were numbered 

following the nomenclature style of Li et al. (2006b), while a clear bHLH was not found in 

Os01g65080 (OsbHLH033), Os04g35000 (OsbHLH145), Os11g02054 (OsbHLH160) and 

Os12g02020 (OsbHLH161). A dataset of predicted Physcomitrella patens bHLH was 

retrieved from the plant TFDB (Guo et al. 2008). A direct search of genes annotated as 

bHLH was performed on the genome assembly of Selaginella moellendorffii v1.0 

(http://www.jgi.doe.gov/). HMMsearch (Eddy 1998) was used to screen the genome 

assemblies of Cyanidioschyzon merolae (Matsuzaki et al. 2004), Chlamydomonas 

reinhardtii v3.0 (Merchant et al. 2007), Ostreoscoccus tauri v2.0 (Palenik et al. 2007), 

Thalassiosira pseudonana v3.0 (Armbrust et al. 2004), and the draft assemblies of 

Chlorella vulgaris C-169 and Volvox carteri (http://www.jgi.doe.gov/) with the PFAM 

profile Hidden Markov Model (pHMM) HLH_ls.hmm (http://pfam.sanger.ac.uk/).  

Five Homo sapiens and four Amphimedon queenslandica (demosponge) 

representative sequences of the major metazoan groups of bHLH proteins (based on 

Jones 2004; Simionato et al. 2007) were retrieved from Genbank; group F proteins are 

not clearly alignable to other bHLH (Ledent et al. 2002) and so they were not used in this 

study. The Saccharomyces cerevisiae bHLH proteins reported by Robinson and Lopes 

(2000) were retrieved from http://www.yeastgenome.org/. 
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For simplicity, all sequences were renamed according to the Supplementary File 

13. The complete amino acid sequence of all proteins can be found in Supplementary File 

2. 

2.2.2. Alignment and phylogenetic analysis 

Protein sequences were pre-aligned using HMMalign (Eddy 1998) and the 

pHMM HLH_ls.hmm from PFAM (http://pfam.sanger.ac.uk/). The bHLH region was then 

extensively manually aligned in BioEdit (http://www.mbio.ncsu.edu/BioEdit/ 

BioEdit.html). Unambiguous aligned positions were used for the subsequent 

phylogenetic analyses (Supplementary File 3; Supplementary File 3B). The JTT model was 

selected as the best-fitting amino acid substitution model with the Akaike Information 

Criterion implemented in ProtTest (Abascal et al. 2005). The maximum likelihood (ML) 

analyses were done with the program PhyML version 3.0.1 (Guindon and Gascuel 2003) 

using the JTT model of amino acid substitution, an estimated gamma distribution 

parameter and a Shimodaira-Hasegawa-like aLRT.  The PHYLIP package version 3.67 

(Felsenstein 1989) was used to perform 100 bootstrap replicas of a neighbour joining 

tree based on a JTT distance matrix. PAUP* version 4.0b10 (Swofford 2003) was used to 

perform 100 bootstrap replicas of a maximum parsimony tree. The Bayesian analysis 

was performed with MrBayes version 3.1.2 (http://mrbayes.csit.fsu.edu/): two 

independent runs were computed for 10 million generations, at which point the 

standard deviation of split frequencies was less than 0.01; one tree was saved every 100 

generations and 75,000 trees from each run were summarized to give rise to the final 

cladogram. The reconciliation tree was calculated using Notung 2.6 (Vernot et al. 2008). 

All trees were visualized using the program Figtree 

(http://tree.bio.ed.ac.uk/software/figtree/). 

Alignments of the bHLH domain of related sequences were used to build pHMMs 

with HMMbuild from the HMMER2.0 suite of programs (Eddy 1998). The pHMMs were 

used to identify and classify protein sequences not used in the phylogenetic analyses in 

the plant bHLH subfamilies. 

                                                           
3
 Supplementary Files are available from the CD that accompanies this thesis. 
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2.2.3. Detection of conserved motifs 

The MEME and FIMO software (Bailey and Elkan 1994) were used to discover 

patterns in the complete amino acid sequences of plant bHLH proteins. Each motif was 

individually checked so that incorrect or insignificant matches were discarded.  The 

complete plant amino acid sequences were also screened against the PFAM 23.0 

database (http://pfam.sanger.ac.uk/). 
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2.3. Results 

2.3.1. All the major groups of land plants have large numbers of bHLH proteins 

Previous phylogenetic analyses of plant bHLH proteins were based on the 

genome sequences of A. thaliana and O. sativa (Buck and Atchley 2003; Heim et al. 

2003; Toledo-Ortiz et al. 2003; Li et al. 2006b). This provided a useful, but limited, 

phylogenetic framework for the classification of bHLH proteins in flowering plants 

(angiosperms). Nevertheless, it provided no insight into the diversity of this family in the 

earlier diverging groups of land plants. To determine if these subfamilies were 

angiosperm specific or if they arose earlier in plant evolution and to understand the 

deeper evolutionary history of this family in plants, bHLH protein coding sequences were 

searched in the complete genome of the lycophyte Selaginella moellendorffii, the moss 

Physcomitrella patens, the chlorophytes Volvox carteri, Chlamydomonas reinhardtii, 

Chlorella vulgaris and Ostreoscoccus tauri and the red alga Cyanidioschyzon merolae. 

These sequences were combined with the previously reported A. thaliana and O. sativa 

sequences to generate a primary dataset consisting of 544 bHLH sequences representing 

the major evolutionary lineages of plants (Fig. 2.1). This dataset was then extended to 

include proteins from selected eukaryotic groups: the full set of bHLH proteins encoded 

in the genomes of the diatom Thalassiosira pseudonana and the fungi Saccharomyces 

cerevisiae, plus representative bHLH sequences from the sponge Amphimedon 

queenslandica and Homo sapiens (Fig. 2.1). 

There are large numbers of bHLH proteins in all species of land plants 

(embryophytes) sequenced to date. A. thaliana and O. sativa have over 150 bHLH 

sequences in their genomes, making it the second largest family of transcription factors 

in angiosperms (Xiong et al. 2005). Approximately 100 bHLH proteins are encoded in the 

genomes of the lycophyte S. moellendorffii and the moss P. patens (Fig. 2.1). In contrast, 

there are less than five bHLH-encoding sequences in the genome of each chlorophyte 

and red alga examined. Other unicellular eukaryotic organisms such as the diatom T. 

pseudonana and S. cerevisiae also have small numbers (less than 10) of bHLH proteins 

(Fig. 2.1; Robinson and Lopes 2000). In animals, the sponge A. queenslandica has 16 

bHLH-encoding genes while most bilaterians have over 50 genes (Simionato et al. 2007). 
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Figure 2.1 – Number of bHLH sequences in present in the different species. 

The total number of bHLH proteins found in the genome of each species is indicated. The cladogram is 

based on the current view of plant and eukaryotic phylogeny (Baldauf 2003; Lewis and McCourt 2004; 

Rodríguez-Ezpeleta et al. 2005); 
a
 (Robinson and Lopes 2000); 

b 
(Simionato et al. 2007). 
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Animals and land plants have considerably more bHLH sequences than other 

eukaryotic organisms. This suggests that the increase in the number of bHLH proteins 

occurred independently during the evolution of plants and animals. 

2.3.2. Key amino acid residues are highly conserved between plant and 

metazoan bHLH proteins 

To characterize the molecular evolution of plant bHLH proteins, the retrieved 

amino acid sequences were aligned in the conserved bHLH region (Fig. 2.2, 

Supplementary File 3). The first 10-15 amino acids correspond to the basic region, where 

most interactions with the DNA are made (Ferré-D'Amaré et al. 1993). Most animal 

bHLH proteins bind to hexanucleotide sequences (5’-CANNTG-3’) known as E-boxes. All 

E-box binding bHLH proteins have a glutamic acid (E) residue at position 9 that directly 

contacts the DNA at the CA nucleotides of the hexanucleotide sequence (Ferré-D'Amaré 

et al. 1993; Atchley et al. 1999). In plants, the critical E9 residue is present in 74% of the 

proteins analysed (Supplementary File 3).  Other positions of the basic region allow a 

better discrimination of the target DNA sequences, and are easily distinguishable in the 

major animal bHLH groups (Atchley and Fitch 1997; Ledent and Vervoort 2001; Jones 

2004; Atchley and Zhao 2007). Animal group A proteins bind the CAGCTG (or CACCTG) E-

box configuration and have a diagnostic arginine (R) at position 8. Animal group B 

proteins have a lysine (K) or histidine (H) residue at position 5 and an R at position 13 

and bind the CACGTG (or CATGTTG) E-box configuration. In plants, 53% of the bHLH 

proteins have the characteristic animal group B configuration H5-E9-R13 and only 8% have 

the typical R8-E9 found in animal group A. This suggests that most plant bHLH proteins 

also bind to E-boxes. Indeed, a number of plant bHLH proteins have been shown to bind 

the CACGTG sequence (e.g. Martínez-García et al. 2000; Toledo-Ortiz et al. 2003; Qian et 

al. 2007), which is classically known in plants as a G-box motif (Giuliano et al. 1988). 

Group E animal proteins, that bind N-boxes (CACGCG or CACGAG), have the same H5-E9-

R13 configuration as group B and a proline (P) at position 6. This configuration is absent 

in all the 544 plant bHLH proteins analysed. The remaining animal bHLH groups C and F 

proteins contain extra PAS and COE domains, not found in plant bHLH proteins, while 

group D proteins are atypical bHLH without a basic domain. 11% of the plant proteins 

have a conserved Q5-A9-R13 motif (Supplementary File 3), not present in animals. 
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Figure 2.2 – Alignment of the bHLH domain of representative plant proteins. 

A representative of each of the 26 subfamilies of plant bHLH is shown, together with the human protein 

Max, a well characterized bHLH protein. The shaded boxes indicate the position of the DNA-binding basic 

region, the two α-helixes and the variable loop region (Ferré-D'Amaré et al. 1993). The numbering of the 

amino acids follows (Atchley and Fitch 1997). This is a subset of the full alignment with all the proteins used 

in this study (Supplementary File 3). 
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This raises the interesting possibility that these proteins bind to a novel target DNA 

sequence. Other frequent basic amino acids in animal bHLH, such as R in positions 10 

and 12, are also highly conserved in plants (73% and 90%, respectively). 

The α-helices promote the formation of homo- or hetero-dimeric complexes 

between bHLH proteins. The structure of a dimer is stabilized by the hydrophobic amino 

acids isoleucine (I), leucine (L) and valine (V) in conserved positions in the bHLH domain 

(Ferré-D'Amaré et al. 1993). These positions are highly conserved in animals (Atchley et 

al. 1999) and in plants (Fig. 2.2). An L residue is present in sites 23 and 64 in 99% and 

96% of the plant proteins, and in 98% and 80% of the animal proteins, respectively. Sites 

54 and 61 have an I, L or V in 99% and 93% of the plant proteins, and in 98% and 93% of 

the animal proteins, respectively. A conserved P breaks the first helix and starts a loop of 

variable length (usually 6-9 residues in plants). Some loop residues are also conserved: 

site 47 is K or R in 88% of the plant proteins (Supplementary File 3) and 82% of the 

animal proteins (Atchley et al. 1999). 

The high degree of sequence similarity between the bHLH domain of plant and 

animal proteins, particularly in key DNA-interacting basic amino acids and in helix-

stabilising hydrophobic amino acids, indicates that the molecular structure and 

transcription factor activity of bHLH proteins are conserved between animals and plants. 

2.3.3. Twenty bHLH subfamilies found in flowering plants were also present in 

early land plants 

To understand the evolutionary relationships between plant bHLH proteins, 

conserved regions of the alignment shown in Supplementary File 3 were used to 

compute phylogenetic trees. A maximum likelihood (ML) analysis shows that proteins 

from different species cluster together in compact clades with high support values (Fig. 

2.3; Supplementary File 4). Maximum parsimony (MP) and neighbour joining (NJ) 

analyses support the existence of most of these clades (Supplementary File 4). Based on 

the topology of the trees, clade support values, branch lengths and visual inspection of 

the bHLH amino acid sequences, 26 subfamilies of bHLH proteins were defined (Fig. 2.3; 

Supplementary File 4). These subfamilies are mostly consistent with the groups 

proposed by previous phylogenetic analyses of plant bHLH using A. thaliana and O. 

sativa sequences alone (Buck and Atchley 2003; Heim et al. 2003; Toledo-Ortiz et al. 

2003; Li et al. 2006b). 
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Figure 2.3 – 20 subfamilies of bHLH were already established in the common ancestral of vascular plants 

and mosses. 

Maximum likelihood analysis of 544 plant bHLH, shown as an unrooted cladogram. The blue balloons 

delineate the 26 subfamilies of plant bHLH proteins; ballons encircled by a dashed line indicate that there is 

little evidence for monophyly. Coloured dots symbolize the species to which the proteins in each group 

belong (yellow: Oryza sativa (monocot); red: Arabidopsis thaliana (eudicot); green: Selaginella 

moellendorffii (lycophyte); blue: Physcomitrella patens (moss); purple: Volvox carteri, Chlamydomonas 

reinhardtii, Chlorella vulgaris, Ostreococcus tauri, Cyanidioschyzon merolae (chlorophytes and red algae). A 

full tree with protein names, proportional branch lengths and clade support values is given in 

Supplementary File 4. 
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Figure 2.4 – Reconciliation tree of subfamilies VIIIc(1) and VIIIc(2) showing multiple gene duplication and 

gene loss events. 

The reconciliation tree was calculated using the ML gene tree shown in Supplementary File 4 and the 

species tree shown in Fig. 2.1, although only the branches containing subfamilies VIIIc(1) and VIIIc(2) are 

shown here. Nodes where a gene duplication has occurred are indicated in red, whereas lost branches are 

indicated in grey. 
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The A. thaliana bHLH group nomenclature proposed by Heim et al. (2003) was 

adopted to label these subfamilies, with some modifications, e.g. Ib was divided in Ib(1) 

and Ib(2), and IIIa and IIIc were combined into III(a+c). Three new groups (XIII, XIV and 

XV) that include 28 A. thaliana sequences not present in the Heim et al. analysis were 

also defined. Of the 544 proteins analyzed, 10% do not clearly fall in any of the 26 

subfamilies and were classified as ‘orphans’ (Supplementary File 4). These proteins often 

have a high degree of sequence divergence from other bHLH: this may be due to lineage 

specific specializations or, alternatively, they may correspond to pseudogene sequences. 

One of the A. thaliana groups proposed by Heim and colleagues (group VI, consisting of 

only two proteins) falls in this ‘orphan’ category. 

Of the 26 plant bHLH subfamilies, 3 include only angiosperm proteins and 23 

include angiosperm and lycophyte proteins (Fig. 2.3). Since the last common ancestor of 

angiosperms and lycophytes lived sometime in the late Silurian period before 415 

million years ago (Kenrick and Crane 1997), this implies that these 23 bHLH subfamilies 

are at least 415 million years old. Interestingly, 20 of these subfamilies include not only 

vascular plants, but also moss proteins. Given that the oldest evidence for the existence 

of vascular plants is trilete spores in Upper Ordovician sediments (Steemans et al. 2009), 

this suggests that these subfamilies are more than 443 million years old. A bHLH protein 

from the chlorophyte algae O. tauri is a member of subfamily IVc (Fig. 2.3). This suggests 

that this subfamily may be over one billion years old (Heckman et al. 2001). 

A clade composed of V. carteri, C. reinhardtii and C. vulgaris bHLH proteins is 

sister to the proteins in subfamily Va. However, these chlorophyte proteins were not 

included into the Va subfamily as this relationship is not strongly supported. 

Nevertheless, this relationship suggests that subfamily Va is phylogenetically closer to 

chlorophyte proteins than to any other land plant proteins. Another group of V. carteri, 

C. reinhardtii and C. vulgaris proteins forms a clade that is clearly distinct from other 

plant proteins (Fig. 2.3); this probably represents a group that evolved amongst the 

chlorophytes or, alternatively, was present in the common ancestors of the 

chlorophytes and land plants but maintained among the chlorophytes and lost in the 

ancestors of land plants. The only bHLH-encoding gene found in the genome of the red 

algae C. merolae could not be allocated to any chlorophyte or land plant bHLH clade. 

A closer analysis of the outer branches of the different subfamilies in the ML tree 

shows the existence of many paralog genes, caused by multiple events of gene 

duplication and gene loss. To further understand the patterns of gene duplication, a 
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reconciliation tree was calculated for subfamilies VIIIc(1) and VIIIc(2) (Fig. 2.4). 

Reconciliation trees extract information from the topological incongruence between 

gene and species trees to infer duplications and losses in the history of a gene family 

(Vernot et al. 2008). Reconciliation is dependent on a strict determination of the correct 

phylogenetic relationships and should be interpreted with caution in this example. 

Nevertheless, the reconciliation tree indicates the existence of at least 10-13 

independent gene duplications and 7-9 gene losses throughout the history of these two 

subfamilies. 

In summary, the phylogenetic analysis shows that plant bHLH proteins form 26 

distinct subfamilies, or evolutionary lineages; 20 of these subfamilies were already 

present in early land plants 443 million years ago, by which time the mosses had 

diverged from the vascular plants. Despite several rounds of gene duplications and 

losses in different plant lineages, these subfamilies have been highly conserved 

throughout plant evolution. 

2.3.4. Plant bHLH proteins are monophyletic 

The phylogenetic information contained in the 50-60 amino acids of the bHLH 

allows delimitation of major evolutionary lineages of proteins in plants, but does not 

allow good resolution of deeper nodes that represent the phylogenetic relationships 

between different bHLH subfamilies; these basal nodes often have low support values 

(Supplementary File 4) and vary when using NJ or MP analyses (data not shown). Similar 

poor resolution was observed in previous classifications of bHLH proteins in other 

groups of organisms (Atchley and Fitch 1997; Ledent and Vervoort 2001; Buck and 

Atchley 2003; Toledo-Ortiz et al. 2003; Li et al. 2006b). Thus, the inter-subfamily 

relationships shown in Fig. 2.3 should be interpreted cautiously. Non-plant bHLH 

sequences were initially incorporated in the ML analysis. However, the large number of 

proteins and the great evolutionary distances (and consequent high degree of sequence 

divergence) caused the non-plant proteins to form very long branches, nested within 

plant clades with no obvious sequence similarity (data not shown). To circumvent this 

problem, a phylogenetic analysis was performed on a simplified alignment 

(Supplementary File 3) that includes chlorophytes, red algae, diatom and yeast proteins 

plus representatives of the 26 plant subfamilies and of the higher-order metazoan 

groups (Atchley and Fitch 1997; Simionato et al. 2007). 
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The deep evolutionary relationships between many proteins were still not 

resolved: most branches in the Bayesian phylogenetic tree had low support values (Fig. 

2.5). However, some close relationships between different plant bHLH subfamilies (Fig. 

2.3) were supported by this analysis. For example, subfamilies IVc and Va were probably 

established in the common ancestors of chlorophyte algae and land plants; subfamily 

IVb possibly evolved later among land plants from subfamily IVc proteins. Pairs of 

subfamilies such as VIIIc(1)/VIIIc(2), XI/XII and III(a+c)/IIIb seem to form monophyletic 

lineages. Interestingly, the five diatom sequences and a sponge group A protein form a 

well supported clade. Closer examination of the amino acid sequence of the five diatom 

bHLH proteins reveals that each of these proteins have an arginine in position 8 of the 

bHLH domain, a defining characteristic of group A proteins (Atchley and Fitch 1997). 
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Figure 2.5 – Plant bHLH do not group with other eukaryote bHLH. 

A Bayesian analysis was performed on an alignment of the bHLH sequence of one representative of each of 

the 26 subfamilies of plant bHLH, all the chlorophyte and red algae proteins, 5 proteins found in diatom 

Thalassiosira pseudonana, 8 Saccharomyces cerevisiae proteins and representatives of 5 major groups of 

metazoan bHLH in the sponge Amphimedon queenslandica and Homo sapiens. The tree is unrooted. The 

asterisks indicate possible monophyly conflicts. The numbers in the clades are posterior probability values; 

clades with less than 50% support were collapsed. 
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Although beyond the scope of this study, this suggests that group A might pre-date the 

origin of opisthokontes, the eukaryotic lineage that includes fungi and animals. 

No clustering of plant proteins with proteins from other eukaryotic organisms is 

found on the Bayesian tree (Fig. 2.5). The small number of bHLH proteins found in the 

genomes of different chlorophytes and red algae (Fig. 2.1) suggests that the first plants 

had one or a few bHLH proteins, from which all modern plant bHLH descended and 

radiated. This view is consistent with previous analyses that highlighted the distant 

relationship of angiosperm and animal bHLH proteins (Ledent and Vervoort 2001; Buck 

and Atchley 2003; Toledo-Ortiz et al. 2003). The lack of discernible phylogenetic 

relationships between bHLH subfamilies in plants and other eukaryotic organisms 

supports the hypothesis that plant bHLH proteins are monophyletic. 

2.3.5. Conserved non-bHLH motifs are present in most plant bHLH subfamilies 

The amino acids sequences outside the bHLH region are generally divergent, 

even in closely related proteins from the same species. Nevertheless, it has been 

reported that short conserved amino acid motifs are often present in related plant bHLH 

proteins (Heim et al. 2003; Li et al. 2006b). If this plant bHLH classification were correct 

then it would be expected that such motifs would be conserved within subfamilies. To 

determine if non-bHLH motifs were conserved throughout plant evolution, a search for 

for amino acid patterns was conducted in the dataset of plant bHLH proteins. Twenty-

eight motifs that are represented in both angiosperm and non-angiosperm proteins 

were found (Supplementary File 5). The relative position of each of these motifs is 

conserved (Fig. 2.6): most are located C-terminal to the bHLH domain, which itself is 

generally located towards the C-terminal half of plant proteins. Each of these motifs is 

only found in members of the same subfamily, apart from motif 9, which is found in 

both IVb and IVc proteins (Fig. 2.6). None of the 28 conserved motifs corresponds to 

known domains in the PFAM database. Motifs 14 and 15, present in several proteins of 

subfamily VII(a+b), overlap with the APB (active phytochrome binding) motif, shown to 

mediate the binding of several A. thaliana bHLH proteins to phytochrome B (Khanna et 

al. 2004). 
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Figure 2.6 – Non-bHLH amino acid motifs are highly conserved in each bHLH subfamily. 

An idealized representation of a typical member of each bHLH subfamily is shown, with the bHLH domain 

and other conserved motifs drawn as shaded boxes. The diagrams are not drawn to scale. The sequences of 

each motif in individual proteins are given in Supplementary File 5. 
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Motif 9 (present in IVb and IVc proteins) has a typical LZ (leucine zipper) conformation. 

The LZ is a dimerization domain that occurs in several regulatory proteins and consists of 

a periodic repetition of leucine followed by six other residues (Bornberg-Bauer et al. 

1998).Several animal bHLH proteins also have a LZ immediately C-terminal to the second 

helix (Atchley and Fitch 1997). However, its presence in unrelated bHLH proteins 

suggested a multiple origin of the LZ domain in animal bHLH proteins (Atchley and Fitch 

1997; Morgenstern and Atchley 1999). No similarities could be found between the bHLH 

sequences of IVb/IVc proteins and animal bHLH-LZ proteins. Therefore, it is likely that 

the acquisition of a LZ motif in bHLH proteins occurred independently in plant and 

animals. The occurrence of conserved domains outside the bHLH domain strongly 

supports the classification made on the basis of alignments of the bHLH sequence. 

The PFAM database of protein domains was queried with the 544 plant bHLH 

proteins: significant matches to an ACT domain were found in several unrelated proteins 

(OsbHLH036, VcbHLH001, CrbHLH002, OsbHLH170, VcbHLH002 and PpbHLH097). The 

ACT is a regulatory ligand-binding domain found in a diverse group of proteins, mostly 

metabolic enzymes (Chipman and Shaanan 2001). The occurrence of the ACT domain in 

plant bHLH proteins was previously reported (Anantharaman et al. 2001) and an ACT-

like domain was found to mediate homo-dimerization of the maize R protein (Feller et 

al. 2006). Feller et al. also found ACT-like domains in over 30 A. thaliana proteins using 

low stringency structure-based searches, but this could not be confirmed using stringent 

motif-based search methods. The occurrence of the ACT domain in a few proteins from 

different bHLH subfamilies suggests that the ACT-bHLH association occurred multiple 

times, possibly through domain-shuffling processes. Such mechanisms have been 

proposed to play an important role in the evolution of several metazoan bHLH proteins 

(Morgenstern and Atchley 1999; Ledent and Vervoort 2001). 

The presence of highly conserved motifs among proteins of the same subfamily 

supports the phylogenetic relationships inferred from the bHLH domain sequence alone. 

The conservation of these extra domains during plant evolution suggests that they are 

essential for the function of the bHLH proteins in the respective subfamilies. 

Nevertheless, the presence of the ACT domain in a few unrelated proteins also indicates 

that domain-shuffling processes may have played a small role in plant bHLH evolution. 
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2.3.6 At least six bHLH subfamilies evolved in the ancestors of land plants 

 

The phylogenetic analysis of plant bHLH proteins allowed the definition of the 26 

major subfamilies of plant bHLH, 20 of which were already present in early land plants. It 

would be particularly interesting to determine if these twenty bHLH subfamilies evolved 

in land plants during the colonisation of land or if they were inherited from their algal 

ancestors. Land plants evolved from charophyte-like algae over 470 million years ago 

(Lewis and McCourt 2004; Gensel 2008); therefore, identifying bHLH protein sequences 

in charophyte species would allow the testing of these hypotheses. 

Unfortunately, no genomic sequences are currently available from charophyte 

algae species, but a large collection of EST sequences is now being generated in the lab 

of Charles Delwiche, University of Maryland (personal communication). A blast search of 

one member of each bHLH subfamily on this EST collection identified 14 bHLH 

sequences from 6 charophyte species (Supplementary File 6). The incorporation of these 

sequences in the previously generated bHLH alignments and the generation of 

phylogenetic trees allowed an unequivocal classification of these bHLH proteins in 

different bHLH subfamilies (Fig. 2.7). This analysis reveals that proteins from the 

subfamilies IVb, IVc, VII(a+b), IX, XII and XIII are present in either Chlorokybales, 

Klebsormidiales or Zygnematales species. This indicates that these 6 bHLH subfamilies 

were already present in the common ancestral of Zygnematales and Choleochatales, 

long before the colonisation of land by plants. 
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Figure 2.7 – bHLH sequences identified in different charophyte species. 

The cladogram indicating the phylogenetic relationships between the difference charophyte groups is based 

in Karol et al. (2001). The table indicates the presence in each species of EST sequences from different bHLH 

subfamilies (The ‘+’ symbol indicates the presence of one or more sequences). 
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2.4. Discussion 

This analysis shows that most of the major subfamilies of plant bHLH 

transcription factors were already present in early land plants, before the separation of 

the moss and vascular plant lineages that occurred over 440 million years ago. In 

contrast, only a handful of bHLH sequences are encoded by the genomes of 

chlorophytes or red algae. This indicates that the large radiation of plant bHLH proteins 

occurred sometime between the separation of the chlorophyte / streptophyte lineages 

and the establishment of plants on land (Fig. 2.8). 

The recent advent of large scale sequencing projects has shown that many of the 

gene families that control angiosperm development were present in early land plants: a 

recent phylogenetic study of plant homeobox proteins has come to similar conclusions: 

14 classes of plant homeodomain proteins are present in both mosses and vascular 

plants, but fewer are present in unicellular chlorophytes or red algae (Mukherjee et al. 

2009). Previously, Floyd and Bowman (2007) had shown that many of the gene families 

that control angiosperm development were also present in mosses and lycophytes. 

Similarly, Richardt et al. (2007) found that there are more transcription factor families in 

land plants than in unicellular algae. Nevertheless, many of these families (such as the 

MIKCC MADS-box and TCP transcription factors) diversified after the divergence of 

lycophytes from the other vascular plants (Floyd and Bowman 2007). Two major 

hypotheses could explain the early radiation of the bHLH proteins in plants. The first is 

that the radiation occurred in parallel with the evolution of multicellularity in 

charophyte algae, long before the transition of plants to terrestrial environments. 

Charopyhtes are freshwater algae and the closest relatives to land plants (Fig. 2.8). The 

first charophytes were probably unicellular (Qiu 2008), but a gradual transition towards 

a complex multicellular body took place during charophyte evolution. The increase in 

the number of cell types and morphological complexity brought about by multicellularity 

would have been programmed by increasingly elaborate gene regulatory networks. 

bHLH proteins, with their ability to hetero-dimerize and differentially control gene 

expression, might have become an ideal tool to assemble such complex regulatory 

pathways. Consistent with this view is the observation that the first large radiation of 

the bHLH family in metazoans may have accompanied the evolution of multicellularity 

(Simionato et al. 2007). 
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Figure 2.8 – Evolution of bHLH proteins in plants. 

The simplified cladogram showing the phylogenetic relationships between the major groups of plants is 

based on Karol et al. (2001), Lewis and McCourt (2004) and Qiu et al. (2006). The grey balloons indicate the 

number of modern bHLH subfamilies predicted to be present at different nodes of plant evolution. Some of 

the most important events in land plant evolution are indicated. 
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A second hypothesis is that the diversification of plant bHLH proteins 

accompanied the colonization of the land. The challenges faced by plants in a dry 

terrestrial environment led to the evolution of many novel structures and physiological 

mechanisms, orchestrated by versatile gene regulatory networks. Distinguishing 

between these alternatives will require knowledge of the number of bHLH proteins 

encoded in the genomes of multicellular algae. The sequence of a charophycean 

(multicellular aquatic algae, sister group to land plants) genome would allow the testing 

of these hypotheses but unfortunately only EST sequences are currently available. 

However, the available ESTs are enough to show that at least six bHLH subfamilies were 

already present in the common ancestral of the Zygnematales and the Coleochaetales 

(Fig. 2.7). This supports the idea that the bHLH radiation started long time before the 

colonisation of land by plants. 

All sequenced genomes of chlorophytes and red algae encode few bHLH proteins 

(Fig. 2.1). Three distinct evolutionary lineages were detected in chlorophytes (Fig. 2.3). 

One lineage includes both chlorophytes and land plants (subfamilies IVc and IVb), 

implying that it pre-dates the divergence of chlorophytes from the ancestors of land 

plants, over one billion years ago (Heckman et al. 2001). Interestingly, a characteristic of 

these two subfamilies is the presence of a LZ motif associated with the bHLH domain. 

This association has also occurred, independently, in animals. A second lineage of 

chlorophyte proteins is more similar to subfamily Va than to any other bHLH subfamily, 

although support for monophyly is poor. A third lineage is distinct from all other plant 

bHLH proteins and possibly evolved only in chlorophytes. The only bHLH protein found 

in red algae could not be clearly allocated to any clade. This suggests that none of the 26 

subfamilies of plant bHLH proteins was established at the time of divergence of red 

algae from other plants, 1.5 billion years ago (Yoon et al. 2004). Alternatively, these 

protein lineages were lost in a C. merolae ancestor but are still present in other red 

algae; the availability of additional whole genome sequences from red algae will help to 

clarify this. However, the small number of bHLH found in all the chlorophytes and red 

algae examined (Fig. 2.1) and the lack of clear phylogenetic relationships with other 

eukaryotic bHLH proteins (Fig. 2.5) imply that all bHLH proteins found in plants evolved 

after the primary endosymbiotic event that led to the evolution of plastids and are not 

represented in other eukaryotic groups. 
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Table 2.1 – Functionally characterised bHLH proteins from different plant species. 

Name bHLH number Function Reference 

Subfamily Ia 

AtMUTE 
AtFAMA 
AtSPCH 

AtbHLH045 
AtbHLH097 
AtbHLH098 

control sequential cell fate specification during 
stomatal differentiation 

Nadeau, 2009; Serna, 
2009 

OsMUTE 
OsFAMA 
OsSPCH2 

OsbHLH055 
OsbHLH051 
OsbHLH053 

control stomata development Liu et al. 2009 

Subfamily Ib(1) 

RGE1/ZHOUPI AtbHLH095 
regulates embryonic development and 

endosperm breakdown 
Kondou et al. 2008; 

Yang et al. 2008 

Subfamily Ib(2) 

OsIRO2 OsbHLH056 
regulates genes involved in Fe uptake under Fe-

deficiency conditions 
Yuko et al. 2007 

Subfamily III(a+c) 

FIT AtbHLH029 
required for the up-regulation of responses to 

iron deficiency in Arabidopsis roots 
Bauer et al. 2007 

RERJ1 OsbHLH006 
involved in the rice shoot growth inhibition 

caused by jasmonic acid 
Kiribuchi et al. 2004 

Subfamily IIIb 

ICE/SCRM 
ICE2/SCRM2 

AtbHLH116 
AtbHLH033 

control stomatal development; implicated in the 
cold acclimation response and freezing tolerance 

Chinnusamy et al. 
2003; Kanaoka et al. 
2008; Fursova et al. 

2009 

TaICE41 
TaICE87 

Wheat
a
 potential activators of the cold-responsive genes Badawi et al. 2008 

Subfamily III(d+e) 

MYC2/ 
JAI1/JIN1 

AtbHLH006 
involved in abscisic acid, jasmonic acid and light 

signalling pathways 

Abe et al. 2003; 
Lorenzo et al. 2004; 

Yadav et al. 2005 

AIB AtbHLH017 involved in abscisic acid signalling Li et al. 2007 

PsGBF Pea
a
 regulates phenylpropanoid biosynthetic pathway Qian et al. 2007 

Subfamily IIIf 

TT8 
GL3 
EGL3 

AtbHLH042 
AtbHLH001 
AtbHLH002 

partially redundantly regulate anthocyanin 
biosynthesis, trichome and root hair 

development 

Nesi et al. 2000; 
Payne et al. 2000; 

Bernhardt et al. 2003; 
Zhang et al. 2003 

Ra/OSB1 
Rb 
Rc 
OSB2 
Lc 
IN1 
An1 

OsbHLH013 
OsbHLH165 
OsbHLH017 
OsbHLH016 
Maize

a
 

Maize
a
 

 Petunia
a
 

regulate the anthocyanin biosynthetic pathway 

Ludwig et al. 1989; 
Burr et al. 1996; Hu et 

al. 2000; Spelt et al. 
2000; Sakamoto et al. 
2001; Sweeney et al. 

2006 

Subfamily IVa 

NAI1 AtbHLH020 
required for the formation of an endoplasmic 

reticulum-derived structure, the ER body 
Matsushima et al. 

2004 

Subfamily IVc 

ILR3 AtbHLH105 
modulate metal homeostasis and auxin-

conjugate metabolism 
Rampey et al. 2006 

Subfamily Va 
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BIM1 
BIM2 
BIM3 

AtbHLH046 
AtbHLH102 
AtbHLH141 

implicated in brassinosteroid signalling Yin et al. 2005 

Subfamily VII(a+b) 

PIF1/PIL5 
PIF3 
PIF4 
PIF5/PIL6 
PIF7 

AtbHLH015 
AtbHLH008 
AtbHLH009 
AtbHLH065 
AtbHLH072 

bind to activated phytochromes and mediate 
light and gibberellin signalling responses; PIF4 

was recently shown to also mediate plant 
architecture responses to high temperatures 

Castillon et al. 2007; 
de Lucas et al. 2008; 

Leivar et al. 2008; 
Koini et al. 2009 

HFR1 AtbHLH026 
mediate both phytochrome and cryptochrome 

signalling 
Duek and Fankhauser, 

2003 

SPATULA AtbHLH024 
regulator of carpel margin development; 

mediator of germination responses to light and 
temperature 

Heisler et al. 2001; 
Penfield et al. 2005 

ALCATRAZ AtbHLH073 
required for the formation of a cell layer 

necessary for fruit dehiscence 
Rajani and 

Sundaresan, 2001 

UNE10 AtbHLH016 involved in the fertilization process Pagnussat et al. 2005 

BP-5 OsbHLH102 
involved in the regulation of amylose synthesis in 

the rice endosperm 
Zhu et al. 2003 

Subfamily VIIIb 

HEC1 
HEC2 
HEC3 

AtbHLH088 
AtbHLH037 
AtbHLH043 

redundantly control the development of the 
transmitting tract and stigma; each of these 

proteins can form hetero-dimers with SPATULA 
Gremski et al. 2007 

LAX OsbHLH123 regulator of axillary meristem generation in rice Komatsu et al. 2003 

INDEHISCENT AtbHLH040 
required for the differentiation, in the 

Arabidopsis fruit, of three cell types involved in 
seed dispersal 

Liljegren et al. 2004 

Subfamily VIIIc(1) 

AtRHD6 
AtRSL1 

AtbHLH083 
AtbHLH086 

required for the formation of root hairs Menand et al. 2007 

PpRSL1 
PpRSL2 

PpbHLH043 
PpbHLH033 

redundantly required for the development of 
rhizoids and caulonemata 

Menand et al. 2007 

Subfamily VIIIc(2) 

AtRSL2 
AtRSL3 
AtRSL4 
AtRSL5 

AtbHLH085 
AtbHLH084 
AtbHLH054 
AtbHLH139 

partially redundant and involved in root hair 
development 

Yi, 2008 

Subfamily XI 

UNE12 AtbHLH059 involved in the fertilization process Pagnussat et al. 2005 

PTF1 OsbHLH096 
involved in the responses to phosphate 

deficiency stress 
Yi et al. 2005 

Subfamily XII 

ZCW32/BPE AtbHLH031 controls petal size Szecsi et al. 2006 

BEE1 
BEE2 
BEE3 

AtbHLH044 
AtbHLH058 
AtbHLH050 

redundant positive regulators of brassinosteroid 
signalling 

Friedrichsen et al. 
2002 

CIB1 
CIB5 

AtbHLH063 
AtbHLH076 

shown to interact with the blue-light receptor 
CRY2 and promote floral initiation 

Liu et al. 2008 

Subfamily XIII 

LHW AtbHLH156 
regulates the size of the vascular initial 

population in the root meristem 
Ohashi-Ito and 

Bergmann, 2007 

Subfamily XIV 
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SAC51 AtbHLH142 
involved in a spermidine synthase mediated stem 

elongation process 
Imai et al. 2006 

Subfamily XV 

PRE1 
PRE2 
PRE3 
PRE4 
PRE5 
PRE6 

AtbHLH136 
AtbHLH134 
AtbHLH135 
AtbHLH161 
At3g28857

a
 

At1g26945
a
 

proposed to act as positive regulators of 
gibberellin signalling 

Lee et al. 2006 

KIDARI At1g26945
a
 

represses light signal transduction; interacts and 
negatively regulates HFR1 

Hyun and Lee, 2006 

Orphans 

AMS 
DYT1 
TDR 
Udt1 

AtbHLH021 
AtbHLH022 
OsbHLH005 
OsbHLH164 

required for correct anther development, 
particularly tapetum development 

Sorensen et al. 2003 
Zhang et al. 2006 

Li et al. 2006a 
Jung et al. 2005 

MEE8 AtbHLH108 required for early embryo development Pagnussat et al. 2005 

Fer Tomato
a
 controls iron-uptake responses in roots Ling et al. 2002 

Gmyc1 Gerbera
a
 

regulates the expression of an anthocyanin 
pathway enzyme 

Elooma et al. 1998 

delila Antirrhinum
a
 

regulates the pattern of anthocyanin 
pigmentation 

Goodrich et al. 1992 

JAF13 Petunia
a
 regulates the anthocyanin biosynthetic pathway 

Quattrocchio et al. 
1998 

PAR1 
PAR2 

At2g42870
a
 

At3g58850
a
 

negatively control growth and metabolic shade 
avoidance responses 

Roig-Villanova et al. 
2007 

a
 These proteins were not included in the phylogenetic analysis; their classification was based on 

pHMM scores to subfamily-specific pHMMs. 
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Plant transcription factor families usually have high expansion rates compared to 

metazoan families, caused by elevated rates of retention of duplicated genes (Shiu et al. 

2005). Accordingly, there are usually many (1-12) proteins per species in each of the 26 

plant bHLH subfamilies (Supplementary File 4), in contrast with the small number (1-4) 

of genes found in each of the 44 metazoan subfamilies (Ledent and Vervoort 2001; 

Simionato et al. 2007). Members of the same plant bHLH subfamily are frequently 

involved in the same biological process (Table 2.1). Usually the functions of these 

proteins overlap, causing them to be partially or totally redundant (e.g. HEC or BEE 

proteins). A striking exception comes from three A. thaliana subfamily Ia proteins, 

MUTE, SPEECHLESS and FAMA: they play non-overlapping roles in controlling sequential 

cell fate specification during stomatal differentiation, in a pathway surprisingly similar to 

metazoan bHLH proteins controlling muscle and neural development (Nadeau 2009; 

Serna 2009). Interestingly, the function of these proteins seems to be mostly conserved 

in rice and maize homologs, despite these species having considerably different stomata 

morphology and differentiation patterns (Liu et al. 2009). Other examples of members 

of the same bHLH subfamily regulating similar processes in different species are 

currently known (Table 2.1). A new challenge will be to understand how the function of 

bHLH proteins has changed during plant evolution. An interesting glimpse comes from 

subfamily VIIIc(1), where the P. patens proteins PpRSL1 and PpRSL2 – the only moss 

bHLH proteins that have been characterized so far – were shown to be required for the 

development of rhizoids (Menand et al. 2007). Rhizoids were lost during vascular plant 

evolution, but the two representatives of subfamily VIIIc(1) in A. thaliana (AtRHD6 and 

AtRSL1) are required for the formation of root hairs, analogous structures to rhizoids 

with a similar rooting function (Menand et al. 2007). This suggests that these proteins 

were independently recruited to fulfil similar functions during land plant evolution. 

The presence of highly conserved motifs (such as the APB motif in PIF proteins) 

in the different plant bHLH subfamilies (Fig. 2.6) indicates that the partners of molecular 

interactions are also conserved. This is particularly exciting, because it suggests that 

protein interactions that are at the base of gene regulatory networks have been 

conserved in land plants for over 400 million years. Several plant bHLH proteins are 

known to form transcription complexes with MYB proteins (Ramsay and Glover 2005). 

Although the early evolution of MYB proteins in plants has not been characterized, over 

30 MYB sequences were found in the genome of C. reinhardtii and more than 150 
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sequences in P. patens (data not shown). Given the large number of both bHLH and MYB 

proteins in mosses, it is appealing to hypothesize that the bHLH-MYB complex had 

evolved early in land plant evolution. 

The body plan of plants has dramatically changed since the colonization of land, 

with the increase in complexity of the sporophyte generation and the invention of 

innovative structures such as vasculature, leaves, seeds and flowers. Since a similar set 

of developmental regulators have been continually used throughout land plant history, 

it can be concluded that the evolution of land plants occurred largely through the 

reusing and recycling of very ancient gene regulatory networks. 

Today’s availability of whole genome sequences from different plant species 

opens many doors for understanding the evolution of gene regulatory networks in land 

plants. The picture that is starting to emerge is that much of the complex regulatory 

machinery that is currently being dissected in ‘higher’ plants was actually invented by 

very ‘simple’ ones, early in land plant evolution. The recent reappraisal of algae, 

bryophytes and lycophytes as experimental organisms will be an excellent tool to clarify 

the molecular and biological foundations of many of these processes. 

 



50 

 

 

 

 

 

Chapter 3 

 

Evolution of RSL class II genes 



Chapter 3: Evolution of RSL class II genes 

51 

3.1. Introduction 

Root hairs are tubular projections from root epidermal cells that increase the 

area available for nutrient absorption and help roots to penetrate into the substrate.  In 

Arabidopsis, the initiation of root hair development is controlled by a bHLH transcription 

factor called AtRHD6: in Atrhd6 mutant plants very few root hairs develop, and these 

often have polarity defects (Masucci and Schiefelbein 1994; Menand et al. 2007b). The 

Arabidopsis genome also encodes a duplicated gene (AtRSL1), which is redundantly 

required for root hair development with AtRHD6: root hair development in Atrhd6 Atrsl1 

double mutant plants is completely abolished (Menand et al. 2007b). AtRHD6 and 

AtRSL1 are the only two Arabidopsis members of the bHLH subfamily VIIIc(1) and will 

hereafter be denominated RSL class I genes. 

The mechanism of root hair initiation controlled by RSL class I proteins is a key 

step in root hair development. The Atrhd6 mutation is epistatic to several mutations 

affecting root hair development (Parker et al. 2000), indicating that AtRHD6 acts 

upstream of major events that mediate root hair development. Accordingly, AtRHD6 and 

AtRSL1 are expressed in root hair cells between the root meristem and elongation zone, 

and the expression disappears before the emergence of root hairs. Furthermore, the 

expression of AtRHD6 and AtRSL1 is controlled by the epidermal patterning genes GL2, 

TTG, WER and CPC (Menand et al. 2007b). This indicates that RSL class I genes form a 

link between the epidermal patterning mechanism and the formation of root hairs. 

RSL class I proteins positively regulate the transcription of all four members of 

their sister bHLH subfamily: the VIIIc(2) bHLH subfamily (Yi 2008). This subfamily 

(composed of AtRSL2, AtRSL3, AtRSL4 and AtRSL5) will hereafter be denominated as RSL 

class II. In WT plants, RSL class II genes are expressed in hair cells around the initiation 

zone and during root hair elongation. In Atrhd6 Atrsl1 double mutant plants, however, 

the expression level of these genes is highly decreased. Analyses of single, double and 

triple mutants and of plants overexpressing these genes showed that all RSL class II 

proteins are involved in root hair tip growth (Yi 2008; Yi et al. 2010). Atrsl2 and Atrsl4, in 

particular, show clear defects in root hair growth, and an Atrsl2 Atrsl4 double mutant is 

completely hairless (although it can form very small bulges, indicating that root hair 

initiation is not defective). 
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Figure 3.1 – Model of the RSL network that regulates root hair development in Arabidopsis. 

The left picture is an SEM picture of the Arabidopsis primary root, with root hair cells marked in blue and 

non-hair cells marked in orange. The red and green bar indicates the region where RSL class I and RSL class II 

genes are expressed, respectively. The overlap between the two bars indicates an overlapping in expression. 

The diagram on the right indicates the genetic relationships between the different genes. Adapted from Yi 

(2008). 
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Auxin and ethylene, which are important regulators of root hair development, can 

bypass RSL class I genes and regulate root hair initiation by positively regulating AtRSL4 

(Yi et al. 2010). Auxin and ethylene can also modulate the expression of the other RSL 

class II genes, suggesting the existence of a transcriptional network with positive and 

negative feedback mechanisms (Yi 2008). 

These observations suggested the existence of a multi-level transcriptional 

regulatory cascade that controls the development of root hairs in Arabidopsis (Yi 2008; 

Fig. 3.1). RSL class I proteins, whose expression is controlled by epidermal patterning 

genes, control the initiation of root hair development and positively regulate the 

expression of RSL class II genes: AtRSL4 is directly regulated by AtRHD6, AtRSL2 and 

AtRSL3 are indirectly regulated by AtRHD6, and AtRSL5 is regulated by the other RSL 

class II proteins. Although AtRSL4 is also involved in root hair initiation, the overarching 

function of RSL class II proteins is to modulate root hair tip growth. Endogenous and 

exogenous factors, (auxin, ethylene and phosphate stress) modulate this pathway 

primarily by regulating the transcription of RSL class II genes. 

When and how has the RSL network that control the development of root hairs 

appeared during plant evolution? The moss Physcomitrella patens has RSL class I and 

RSL class II genes indicating that these bHLH subfamilies were present in early land 

plants (see Chapter 2). A functional analysis of the Physcomitrella RSL class I genes 

showed that they are redundant and required for the development of caulonema and 

rhizoid filaments (Menand et al. 2007b). Root hairs, rhizoids and caulonemata are 

structures that fulfil similar rooting functions. There are, however, fundamental 

differences between these cell types: root hairs are tubular projections from epidermal 

cells of the root in the sporophytic life cycle stage, whereas rhizoids and caulonemata 

are filamentous structures that grow in the gametophytic life cycle stage. This suggests 

that RSL class I genes controlled the development of rooting filaments in the 

gametophytes of early land plants and that, during the explosive radiation of vascular 

plants during the Devonian Period, RSL class I genes were recruited to the sporophyte 

generation, where they control the development of rhizoids  and root hairs. 

In summary, RSL class I and RSL class II proteins are two ancient subfamilies of 

bHLH transcriptions factors. In the moss Physcomitrella patens, RSL class I proteins 

regulate the development of caulonema and rhizoid cells.  In Arabidopsis thaliana, RSL 

class I genes form a transcriptional network with RSL class II genes that regulate the 

development of root hairs. Was the RSL class I and class II network that controls root 
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hair formation in Arabidopsis also present in the early land plants? If so, it would be 

expected that RSL class I and class II proteins would form a mechanism that controls 

caulonema and rhizoid development in mosses. The aim of the work described in this 

chapter is to test this hypothesis, define the function of RSL class II proteins in 

Physcomitrella and understand the evolution of the RSL mechanisms of control of 

rooting cells development in land plants. 
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3.2. Methods 

3.2.1. Sequence retrieval and phylogenetic analyses 

An initial alignment of conserved amino acid sequences from RSL class I and RSL 

class II proteins (bHLH subfamilies VIIIc(1) and VIIIc(2), respectively) was used to build an 

RSL specific pHMM (Supplementary File 7) with the program hmmbuild (Eddy 1998). 

This pHMM was used to identify RSL coding sequences with the program hmmsearch 

(Eddy 1998) in the gene model databases of Brachypodium distachyon (The International 

Brachypodium Initiative 2010), Mimulus guttatus v1.0, Physcomitrella patens (Rensing et 

al. 2008), Populus trichocarpa v1.1 (Tuskan et al. 2006), Sorghum bicolor (Paterson et al. 

2009) and Selaginella moellendorffii v1.0 from the DOE Joint Genome Institute 

(http://www.jgi.doe.gov/); Arabidopsis lyrata, Cucumis sativus, Glycine max (Schmutz et 

al. 2010) and Manihot esculenta v1.1 from Phytozome 5.0 

(http://www.phytozome.net/); Arabidopsis thaliana from The Arabidopsis Information 

Resource (http://www.arabidopsis.org/); Oryza sativa 6.1 from the Rice Genome 

Annotation Project (http://rice.plantbiology.msu.edu/) and Zea mays from the Maize 

Genome Sequencing Project (http://www.maizesequence.org/). BLAST searches were 

made against the EST database of GenBank (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

The amino acid sequences were manually aligned and conserved domains used 

for phylogenetic analyses. ML analyses were done with the program PhyML version 

3.0.1 (Guindon and Gascuel 2003) using the JTT model of amino acid substitution, an 

estimated gamma distribution parameter and a SH-like aLRT. The Bayesian analysis was 

performed with MrBayes version 3.1.2 (http://mrbayes.csit.fsu.edu/): 2 independent 

runs were computed until the standard deviation of split frequencies was less than 0.01; 

one tree was saved every 1000 generations and 75% of the trees from each run were 

summarized to give rise to the final tree. Trees were visualised using the program 

Figtree (http://tree.bio.ed.ac.uk/software/figtree/). A logo of the alignment of amino 

acid sequences was created with WebLogo (http://weblogo.berkeley.edu/). The 

similarities between amino acid alignments were calculated using a BLOSUM62 matrix. 
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3.2.2. Plant growth conditions 

The Gransden wild type strain of Physcomitrella patens (Hedw.) Bruch and 

Schimp (Ashton and Cove 1977) was used in this study. Moss sporophytes were surface 

sterilised in 5% (v/v) sodium hypochlorite for 10 minutes, rinsed five times with sterile 

distilled water and crushed to release the spores into the water. Sterile spore 

suspensions were kept at 4°C in darkness for several months. The minimal medium used 

for spore germination and phenotypical analysis (based in the recipe described in 

Ashton et al. (1979)) contained 800mg Ca(NO3)2, 250mg MgSO4.7H2O, 12.5mg 

FeSO4.7H20, 1ml KH2PO4 buffer pH 7, 1ml trace element solution and 8g agar 

(Formedium cat#AGA03) per litre. The KH2PO4/KOH buffer contained 25g KH2PO4 per 

100ml; pH 7.0 was obtained by titrating with 4M KOH. Trace element solution contained 

55mg CuSO4.5H20, 55mg ZnSO4.7H20, 614mg H3BO3, 389mg MnCl2.4H20, 55mg 

CoCl2.6H2O, 28mg KI, 25mg Na2MoO4.2H20 per litre. 35ml media was poured in 90mm 

plastic plates and overlaid with autoclaved cellophane disks (AA packaging, UK). 1ml of 

sterile spore suspension was inoculated onto each plate; plates were closed with 

Micropore tape. Plants were grown at 25°C in plant growth cabinets (Sanyo MLR-351), 

illuminated with a light regime of 16h light / 8h darkness. For the production of 

chloronema-rich tissue for DNA extractions and protoplast isolation, minimal medium 

was supplemented with 500mg ammonium tartrate and 5g glucose; protonema tissue 

was blended with a homogenizer (PowerGen 500, Fisher Scientific). Chloronema cultures 

were subcultured every 5-7 days. For the NAA treatments, spores were grown in 

minimal medium overlaid with cellophane disks for two weeks. The cellophane disks 

with protonema colonies were then transferred to fresh minimal media supplemented 

with NAA and incubated for a further week. 

Arabidopsis thaliana seeds were surface sterilised in 5% (v/v) sodium 

hypochlorite for 10 minutes and rinsed four times with sterile distilled water. Seeds 

were then stratified at 4°C in darkness for three days and sown on Murashige and Skoog 

medium (pH 5.8) supplemented with 1% (w/v) sucrose and 0.5% (w/v) phytagel. The 

plants were grown vertically ay 25°C and illuminated with a light regime of 16h light / 8h 

darkness. The roots were observed 4-6 days after sowing. 
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3.2.3. Constructs for plant transformation 

For the PpRSL4-ko construct, a 734bp fragment upstream and a 987bp fragment 

downstream of the PpRSL4 coding sequence were amplified from genomic DNA by PCR 

and cloned into the XbaI-XhoI and SpeI-MluI sites of pBNRF (confers resistance to 

G418)(Menand et al. 2007b), respectively, yielding a 6515bp plasmid. For the PpRSL5-ko 

construct, a 698bp fragment upstream and a 710bp fragment downstream of the 

PpRSL5 coding sequence were amplified from genomic DNA by PCR and cloned into the 

SalI-BamHI and SpeI-MluI sites of pBHSNR (confers resistance to hygromycin) (Menand 

et al. 2007b), respectively, yielding a 6567bp plasmid. For the PpRSL6-ko construct, a 

712bp fragment upstream and a 602bp fragment downstream of the PpRSL6 coding 

sequence were amplified from genomic DNA by PCR and cloned into the SalI-HindIII and 

MluI-NsiI sites of pBZRF (confers resistance to zeocin) (gift from Fabien Nogue, 

Versailles), respectively, yielding a 6393bp plasmid. Pprsl3 knockout plants had been 

previously generated by Benoît Menand (John Innes Centre, UK), using a pBHRF-based 

plasmid that confers resistance to hygromycin. 

For the overexpression of genes in Arabidopsis, the coding sequences of PpRSL3, 

PpRSL4, PpRSL5 and PpRSL6 were amplified by RT-PCR (from RNA extracted from 25 

days old plants grown in minimal medium) and subcloned in pGEM®-T Easy (Promega 

cat#A1360), generating pPpRSL3, pPpRSL4, pPpRSL5 and pPpRSL6, respectively. A SmaI-

XhoI pPpRSL3 fragment was cloned into the EcoICRI-SalI sites of a modified 

pCambia1300 plasmid (Yi et al. 2010), generating the binary vector p35S::PpRSL3. A 

KpnI-SalI pPpRSL4 fragment, a BamHI-SalI PpRSL5 fragment and a KpnI-PstI pPpRSL6 

fragment were cloned into the respective sites in the modified pCambia1300, generating 

the binary vectors p35S::PpRSL4, p35S::PpRSL5 and p35S::PpRSL6, respectively. 

For the overexpression of genes in Physcomitrella, a 2973bp fragment from 

pGWB2 (Tsuyoshi Nakagawa, Japan), carrying a 35S promoter-attR1-CmR-ccdB-attR2 

cassette, was amplified by PCR and cloned into the NotI-SpeI sites of p108-lox-35Snpt-

lox, a plasmid based in pBNRF that carries the ‘108 locus’ of Physcomitrella (gift from 

Prof. Pierre Goloubinoff, Lausanne, Switzerland), generating the moss transformation 

vector p108GW35S (9976bp). The coding sequences of PpRSL3, PpRSL4, PpRSL5 and 

PpRSL6 were amplified from the pPpRSL(3-6) plasmids and subcloned into 

pCR8/GW/TOPO-TA (Invitrogen cat#K250020). The resulting clones were cloned by LR 

reaction using the Gateway LR Clonase II enzyme mix (Invitrogen cat#11791-020) into 
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p108GW35S, generating the moss transformation constructs p108oxRSL3, p108oxRSL4, 

p108oxRSL5 and p108oxRSL6. 

The two artificial microRNA precursors were generated according to the protocol 

described in http://wmd2.weigelworld.org/themes/amiRNA/pics/Cloning_of_artificial_ 

microRNAs.pdf, using the plasmid pRS300 as a template. The PCR products with the two 

amiRNA precursor fragments were subcloned into pCR8/GW/TOPO-TA (Invitrogen 

cat#K2500-20), and then cloned by LR reaction (Invitrogen cat#11791-020) into 

p108GW35S, generating the moss transformation constructs pAmiRNAa and pAmiRNAb. 

3.2.4. Plant transformation 

All the binary vectors were transferred into the Agrobacterium strain GV3101. 

Arabidopsis plants were transformed using a modified version of the floral dip method 

(Clough and Bent 1998): Agrobacterium transformed with a binary vector were grown in 

50 ml liquid LB medium with kanamycin (50 μg/ml) and incubated overnight at 28°C; 40 

ml of this culture was used to inoculate 500 ml of fresh LB media (with kanamycin) and 

incubated overnight at 28°C; cells were pelleted by centrifugation and resuspended in 

200 ml 5% (w/v) sucrose supplemented with 0.05% (v/v) Silwet L-77 (Vac-in-Stuff, Lehle 

Seeds); Arabidopsis plants were dipped into the bacterial suspension for 10-20 seconds, 

laid on their sides and covered with a dome for 24 hours to maintain humidity. Plants 

were returned to normal greenhouse conditions for seed harvesting. Transformants 

were selected on 25 μg.ml-1 hygromycin. The expression of the construct was confirmed 

by RT-PCR, pictures were taken from T2 plants and the phenotypes were confirmed in 

the T3 generation. 

Physcomitrella was transformed by PEG-mediated direct DNA transfer into 

protoplasts, as described in Schaefer and Zrÿd (1997). Selection for antibiotic-resistant 

colonies was done using 50 μg.ml-1 G418 disulfate, 25 μg.ml-1 hygromycin B or 50 μg.ml-1 

zeocin (Invitrogen cat#R250-01). Stable transformants were confirmed by PCR and 

Southern blot. 

3.2.5. DNA extractions and Southern blots 

For large scale DNA extraction from Physcomitrella, the Nucleon Phytopure 

Genomic DNA Extraction Kit (GE Healthcare cat#RPN8511) was used; three to four 6 
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days old chloronema cultures were used for each extraction. For small scale DNA 

extraction, a modified CTAB protocol was used (http://biology4.wustl.edu/moss 

/DNA.pdf). DNA extraction from Arabidopsis was performed as described previously 

(Edwards et al. 1991). 

For Southern blots analysis, 1μg genomic DNA was digested overnight with 100U 

of the appropriate restriction enzyme. After electrophoresis, the DNA was transferred to 

a positively charged nylon membrane (Roche cat#11666657001). Hybridization and 

detection were performed as described in the Roche DIG Application Manual using DIG 

Easy Hyb Granules (Roche cat#11796895001), DIG Luminescent Detection Kit (Roche 

cat#11363514910) and the Lumi-Film Chemiluminescent Detection Film (Roche 

cat#11666657001). DIG-labeled hybridization probes for detection of the selection 

cassette were prepared by PCR labelling using the PCR DIG Probe Synthesis Kit (Roche 

cat#11636090910). 

3.2.6. RNA extraction, cDNA synthesis and qRT-PCR analysis 

Total RNA was isolated from frozen plant tissue with the RNeasy Plant Mini Kit 

(Qiagen cat#74904), with a DNase (Qiagen cat#79254) treatment step on the RNeasy 

spin column. Total RNA from moss sporophytes was first isolated using Trizol (Invitrogen 

cat#15596-018) and then treated with DNase on an RNeasy spin column. RNA was 

quantified on a NanoDrop ND1000 spectrophotometer (Thermo Fisher Scientific, USA). 

For cDNA synthesis, RNA was reverse transcribed with the SuperScript III First-Strand 

Synthesis System for RT-PCR using oligo(dT) (Invitrogen cat#18080-051). qRT-PCR 

analysis was performed with the SYBR Green PCR Master Mix (Applied Biosystems 

cat#4364344) in the Applied Biosystems 7300 Real-Time PCR System. Cycle conditions 

were as follows: 10 minutes incubation at 95°C followed by 40 cycles of 15 seconds 

incubation at 95°C and 1 minute at 60°C; a data collection step was performed at the 

end of each cycle. A dissociation stage was performed at the end of the run to confirm 

the amplification of specific amplicons. Relative expression levels were calculated using 

the ΔΔCt method, using the GAPDH (PHYPADRAFT_226280) and Elongation Factor 1α 

(PHYPADRAFT_158916) transcripts for normalization. 



Chapter 3: Evolution of RSL class II genes 

60 

3.2.7. Microscopy and statistical analysis 

Protonema, gametophores and roots were imaged with a Leica DFC310 FX 

camera mounted on a Leica M165 FC stereo microscope. For the visualization of 

individual protonema cells, protonema filaments were dissected from 21 days old 

protonema colonies (growing on minimal media overlaid with cellophane disks) and 

mounted on a 100 μg.ml-1 Calcofluor White solution (Sigma cat#F3543); epifluorescent 

imaging was performed with a Retiga EXi CCD camera (Qimaging) mounted on a 

Olympus BX50 microscope, with an excitation filter of 330-385nm and a barrier filter of 

420-385nm. Images were post-processed with ImageJ (http://rsb.info.nih.gov/ij/) and 

Adobe Photoshop. 

All measurements were performed in ImageJ; protonema colony diameter was 

determined as the mean of the end-to-end distance in the X-axis and in the Y-axis. 

Microsoft Excel and GraphPad Prism were used for statistical analysis; multiple 

comparison tests were calculated by ANOVA using Dunnett's post-test, as implemented 

in GraphPad Prism. 
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3.3. Results 

3.3.1. RSL class I and class II genes are conserved in land plants 

RSL class I and RSL class II genes are present in Physcomitrella 

In the previous chapter it was shown that RSL class I (bHLH subfamily VIIIc(1)) 

and RSL class II (bHLH subfamily VIIIc(2)) genes are present in Physcomitrella: searches 

using pHMM on the predicted gene models of P. patens found two RSL class I genes 

(PpRSL1/PpbHLH043 and PpRSL2/PpbHLH033) and four RSL class II genes 

(PpRSL3/PpbHLH028, PpRSL4/PpbHLH083, PpRSL6/PpbHLH095 and PpRSL7/PpbHLH063). 

However, when the raw P. patens genomic sequences were searched using tBLASTn, a 

fifth RSL class II gene was found4 (PpRSL5) (Appendix 2). 

To confirm the expression and predicted coding sequences of the Physcomitrella 

RSL class II genes, RNA was extracted from protonema tissue. PpRSL3, PpRSL4, PpRSL5 

and PpRSL6 expression was detected by RT-PCR, but the putative PpRSL7 transcript 

could not be detected. The full predicted coding sequence plus the 5’ and 3’ UTR of the 

PpRSL3, PpRSL4, PpRSL5 and PpRSL6 transcripts were amplified by RT-PCR and 

sequenced. The correct start codon of the proteins was identified as the first ATG codon 

after a STOP codon (in-frame with the bHLH coding sequence). Likewise, the correct 

STOP codon was identified as the first in-frame STOP codon after the bHLH sequence. 

This way an incorrect splicing junction of the gene model of PpbHLH083 (PpRSL4) was 

found and corrected. The aligned full coding sequences of PpRSL3-6 are represented in 

Appendix 3. The coding sequence of PpRSL1 and PpRSL2 had been determined 

previously (Menand et al. 2007b). 

All Arabidopsis and Physcomitrella RSL class I and class II genes have two 

conserved intron positions in the bHLH coding region (Fig. 3.2B). A third intron located in 

the bHLH region is present in roughly half of the RSL genes, but this does not correlate 

with the phylogenetic position of the respective genes. Apart from 1) this intron, 2) a 

                                                           
4
 This gene was not added to the bHLH sequence dataset used in Chapter 2: that was 

done based only in published gene models. 
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fourth intron located C-terminal to the bHLH region in PpRSL3 and PpRSL4 and 3) a 

truncation in the N-terminus of PpRSL2, the intron-exon structure of the Arabidopsis and 

Physcomitrella RSL genes is well conserved and quite characteristic. In contrast, AtIND, a 

member of the VIIIb bHLH subfamily (which is the sister clade to the RSL class I + RSL 

class II clade), has no introns. 

RSL genes are conserved across land plants 

The extended alignment of the RSL amino acid sequences (bHLH + RSL conserved 

domains; Fig. 3.2A) was used to build a pHMM specific to the RSL genes (Supplementary 

File 7). This pHMM was then used to retrieve RSL genes from genomic databases of 

species for which a whole genome sequence is available. In addition, tBLASTn was used 

to identify RSL genes from EST sequences. A total of 92 RSL sequences were identified 

this way (Appendix 2; Supplementary File 8). These sequences were then sorted 

according to the characteristic conserved RSL domain C-terminal to the bHLH into 34 RSL 

class I and 58 RSL class II proteins. Different phylogenetic analyses confirmed the 

classification of each protein as RSL class I or II (data not shown). 

The genomes of these different species have a similar number of RSL genes: 

usually 1-3 RSL class I genes and 4-7 RSL class II genes per genome. The conservation of 

the number of RSL genes, despite the occurrence of several gene duplications and 

losses, suggests that there is an evolutionary constraint to maintain a constant number 

of RSL genes per genome. Interestingly, the number of RSL class II genes is usually twice 

the number of RSL class I in any given species. It is tempting to speculate that this ratio is 

important for the biological function of these proteins. 

The conserved amino acid regions of the RSL proteins (in the C-terminus) were 

manually aligned (Appendix 4 and 5; Supplementary Files 9 and 10). A feature of RSL 

class I and RSL class II proteins (also shared with the bHLH subfamilies VIIIa and VIIIc) is 

the presence of the conserved amino acid motif Q5-A9-R13 in the DNA-binding region of 

the bHLH domain. Most bHLH proteins have a H5-E9-R13 motif instead, which has been 

shown to be crucial for the recognition and binding of E-box hexanucleotide sequences 

(see Chapter 2). This raises three alternative scenarios: 1) Q5-A9-R13 containing proteins 

bind a novel DNA sequence; 2) act as negative regulators of DNA transcription; 3) or 

modulate the DNA-binding activity of other proteins, but do not bind DNA themselves. 
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Figure 3.2 – RSL class I and class II genes in Arabidopsis and Physcomitrella. 

A Alignment of the amino acid residues of the Arabidopsis and Physcomitrella N-terminus of RSL proteins. 

The bHLH domain is highlighted in grey. Immediately N-terminal to the bHLH there is a stretch of amino 

acids that is highly characteristic of RSL class I or RSL class II proteins (red and green lines, respectively). 

There is also a conserved region common to both RSL classes immediately C-terminal to the bHLH (shown in 

a red and green dashed line). B ML tree showing the phylogenetic relationship of the Arabidopsis and 

Physcomitrella RSL genes; the tree was rooted with AtIND (bHLH subfamily VIIIb). C Representation of the 

intron-exon structures of the RSL genes; the bHLH region is shown in dark. 
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The RSL class II protein AtRSL4 has a D-box (Yi 2008), an amino acid motif that 

has been implicated in the degradation of a human bHLH protein involved in axon 

growth (Lasorella et al. 2006). The canonical D-box motif R**L***N was found in 

SmRSL3, SmRSL4, SbRSL6, CsRSL3, AlRSL4 and AtRSL4. A slightly different version of the 

motif, R**L****N/D/E (Wei et al. 2004), was found in PpRSL6, SmRSL1, SmRSL2, ZmRSL2 

and ZmRSL5. The lack of consistent phylogenetic prevalence of the D-box and the 

relative simplicity of its amino acid motif suggest that the AtRSL4 D-box motif, although 

conserved in Arabidopsis lyrata, has evolved several times and is not a conserved 

feature derived from ancient RSL proteins. 

Several residues are characteristic of each of the two RSL subfamilies and can be 

used to easily distinguish them. The most conspicuous is the presence, in the C-terminal 

RSL conserved region, of the residues WP in RSL class I and WMYA in RSL class II proteins 

(position 123 in Appendix 4; position 78 in Appendix 5). Another obvious distinction of 

the two RSL classes is the presence, in the 7th amino acid of the second helix, of a basic 

amino acid (usually K) in class I proteins and an acidic amino acid (usually E) in RSL class 

II proteins (position 102 in Appendix 4; position 52 in Appendix 5). A few other residues 

are characteristic to each of the two RSL classes. 

To determine the evolutionary relationships between the different RSL proteins, 

the alignments shown in Appendix 4 and Appendix 5 were used for phylogenetic 

analyses. Fig. 3.3 shows a ML tree of the RSL class I proteins. The two Physcomitrella 

genes are clustered at the base of the RSL class I subfamily tree, indicating that they 

derived from a recent genome duplication (the ancestor of Physcomitrella underwent a 

whole-genome duplication 30-60 million years ago (Rensing et al. 2007). Three pairs of 

highly similar Selaginella moellendorffii proteins separate the mosses from the 

angiosperms. The high similarity of the amino acid sequences makes it difficult to 

unambiguously define the evolutionary relationships of the angiosperm RSL genes. All 

the monocot RSL class I proteins seem to derive from a common ancestral protein; 

AtRHD6 and AtRSL1 separated before the divergence of Arabidopsis lyrata and 

Arabidopsis thaliana. There is a high degree of duplications of these proteins – this is 

clearly manifested in Glycine max, whose four RSL class I proteins shared a recent 

common ancestral. 
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Figure 3.3 – ML phylogenetic tree of RSL class I proteins. 

The tree was calculated using the alignment shown in Appendix 4 and rooted with the bHLH subfamily VIIIb 

clade (AtIND and OsLAX). Two RSL class II proteins (AtRSL2 and AtRSL4) are also shown. aLRT support values 

are indicated in the nodes ( * > 0.8;  ** > 0.9). 
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Figure 3.4 – ML phylogenetic tree of RSL class II proteins. 

The tree was calculated using the alignment shown in Appendix 5 and rooted with two RSL class I proteins 

(PpRSL1 and AtRHD6). aLRT support values are indicated in the nodes ( * > 0.8;  ** > 0.9). 
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Figure 3.5 – Bayesian phylogenetic tree of RSL class II proteins. 

The tree was calculated using the alignment shown in Appendix 5 and rooted with two RSL class I proteins 

(PpRSL1 and AtRHD6). Posterior probability values are indicated in the nodes ( * > 0.8;  ** > 0.9). 



Chapter 3: Evolution of RSL class II genes 

68 

The RSL class II alignment was used to calculate ML (Fig. 3.4) and Bayesian trees 

(Fig. 3.5). Again, the five Physcomitrella RSL class II proteins cluster together at the base 

of the tree, and are clearly separated from the angiosperm RSLs by the Selaginella 

moellendorffii proteins. The resolution of the phylogenetic relationships of the 

angiosperm RSL class II proteins is problematic: branches have low support values in the 

ML tree and are highly unresolved in the Bayesian tree. However, it is clear that the four 

Arabidopsis thaliana genes have evolved by genome duplications before the divergence 

of Arabidopsis thaliana and Arabidopsis lyrata. There are two monophyletic groups of 

monocot RSL class II proteins. Unfortunately, the existence of very long branches in one 

of these complicates the phylogenetic analysis, and it is not possible to determine if they 

diverged after of before the divergence of monocots from other angiosperms. 

In conclusion, RSL class I and class II are distinct bHLH subfamilies that evolved 

before the divergence of mosses from other land plants, over 443 million years ago. 

There are many similarities between the two classes, and an RSL class I + RSL class II 

clade is clearly monophyletic. These proteins are present throughout land plants, and 

the number of RSL genes per genome is quite constant. However, apart from the very 

high degree of conservation in the bHLH domain and adjacent regions, most of the 

protein primary structure is not well conserved. 

3.3.2. The molecular function of RSL class II proteins is conserved between 

mosses and angiosperms 

Despite the low similarity of the amino acid sequences of RSL proteins outside 

the highly conserved bHLH and adjacent amino acids, the function of RSL class I proteins 

is highly conserved between mosses and angiosperms. This was demonstrated by a 

cross-species complementation experiment: expression of PpRSL1 under the control of 

the CaMV 35S promoter in Atrhd6 plants rescues the development of root hairs 

(Menand et al. 2007b). This shows that the Physcomitrella PpRSL1 protein can substitute 

for the Arabidopsis AtRHD6, demonstrating that the molecular function of RSL class I 

genes is conserved despite having last shared an ancestral over 440 million years ago. 

To investigate if the molecular function of RSL class II genes is also conserved 

between mosses and angiosperms, the coding sequences of the four expressed 

Physcomitrella RSL class II genes were expressed in Atrsl2-1 Atrsl4-1 plants, under the 

control of the CaMV 35S promoter. Atrsl2 Atrsl4 plants do not develop root hairs (Yi 
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2008; Yi et al. 2010; Fig.3.6): the root epidermis develops small bulges, but root hair tip 

growth fails to initiate. This is caused by an additive effect of the Atrsl2 and Atrsl4 

mutations, which individually cause subtler defects in root hair initiation (Atrsl4) and tip 

growth (Atrsl2 and Atrsl4) (Yi et al. 2010; Fig. 3.6). 

All Atrsl2 Atrsl4 double mutants expressing Physcomitrella RSL class II genes 

show some degree of complementation (Fig. 3.6). The roots of Atrsl2 Atrsl4 plants 

expressing the PpRSL3 gene have well defined bulges, clearly more pronounced than the 

loose bulges of Atrsl2 Atrsl4 plants. These bulges are uniformly present across the whole 

root epidermis, but occasionally some elongate to form very short root hairs. In the 

collet (the hypocotyl-root junction) there are many short hairs, as opposed to the totally 

hairless collet of Atrsl2 Atrsl4 double mutants (Fig. 3.6B). Plants expressing PpRSL4 have 

hairless roots with some bulges but, unlike in Atrsl2 Atrsl4 double mutants, the collet 

region of these plants develop well defined bulges. Plants expressing PpRSL5 have very 

short hairs or bulges all over the root epidermis. Many of these hairs have a tip with a 

rounded hook shape, indicating a defect in the polarization of tip growth. Plants 

expressing PpRSL6 show the strongest complementation of the Atrsl2 Atrsl4 hairless 

phenotype: the root epidermis forms root hairs that are larger (66 ±29 μm)5 than in 

plants expressing PpRSL5 (36 ±12 μm), although much smaller than in the wild-type Col-

0 (325 ±161 μm). Some of these root hairs have an abnormal shape, again indicating a 

defect in growth polarization. The collet of Atrsl2 Atrsl4 double mutants expressing 

PpRSL5 or PpRSL6 shows many short root hairs. 

Interestingly, the overexpression of the native AtRSL5 gene under the control of 

the CaMV35S promoter in Atrsl2 Atrsl4 double mutants results in the formation of small 

hairs and bulges (Yi 2008) very similar to the ones present in Atrsl2 Atrsl4 double 

mutants overexpressing PpRSL5 and PpRSL6. This indicates that the divergence in 

function between the Physcomitrella and Arabidopsis RSL class II proteins is not greater 

than the divergence between the RSL class II paralogs in Arabidopsis. Together, these 

results indicate that the molecular function of RSL class II proteins is partially conserved 

between mosses and angiosperms. 

                                                           
5
 mean ±SD n=30 
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Figure 3.6 – Expression of Physcomitrella RSL class II genes in Atrsl2 Atrsl4 Arabidopsis plants. 

A Primary roots and root epidermis of the wild type Col-0, Atrsl2-1 and Atrsl4c single mutants, Atrsl2-1 

Atrsl4c double mutants and Atrsl2-1 Atrsl4c plants expressing the Physcomitrella RSL class II genes PpRSL3, 

PpRSL4, PpRSL5 and PpRSL6 (two independent lines are shown). B Collet region in the same plants. Scale 

bars indicate 500μm in the root and collet pictures and 100μm in the close-ups of the root epidermis. 
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3.3.3. Physcomitrella RSL class II genes are expressed in protonema and 

gametophores 

To define the expression patterns of the different RSL genes during the life cycle 

of Physcomitrella, RNA was extracted at four different stages of development: 1) 14 days 

old protonema colonies, which consist only of chloronema and small caulonema cells 

(Fig. 3.7A); 2) 21 days old protonema colonies, which consists mostly of chloronema and 

highly differentiated caulonema cells (Fig. 3.7B); 3) isolated gametophores (Fig. 3.7C); 4) 

and green, immature sporophytes (Fig. 3.7D). 

RT-PCR analysis shows that RSL class I genes are expressed in all the four stages 

of development (Fig. 3.7E). This came as a slight surprise, since a previous analysis of 

PpRSL1 and PpRSL2 promoter-GUS fusions failed to detect GUS staining in young 

sporophytes (Benoît Menand, data not published). A possible explanation for this 

inconsistency is that the steady state levels of RSL class I mRNAs are lower in 

sporophytes than in gametophores and protonema. RT-PCR is more sensitive to low 

amounts of transcript than GUS staining, so it could detect a weak expression of PpRSL1 

and PpRSL2 in the sporophytes. Supporting this observation is the fact that PpRSL1 and 

PpRSL2 transcripts were recently found in a cDNA library derived from green 

sporophytes (NCBI Accessions DC929769 and DC944304). 

Unlike RSL class I, the expression of RSL class II genes is restricted to the 

protonema and gametophores (Fig. 3.7E). PpRSL3 is expressed in mature protonema and 

gametophores; PpRSL4 is predominantly expressed in mature protonema colonies; while 

PpRSL5 and PpRSL6 are expressed in gametophores and throughout protonema 

development. The transcript of PpRSL7 was not detected in any of the four stages. 

Although RT-PCR should not be strictly considered as semi-quantitative (the 35 

cycles used result in a saturation of amplification for some of the reactions), it is possible 

to draw some conclusions regarding the expression levels for some of the genes. PpRSL3 

has higher steady state levels in gametophores than in 21 days old protonema; PpRSL4 

has a very faint expression in gametophores; PpRSL5 and PpRSL6 have a peak of 

expression in 21 days old protonema. These results also suggest that the steady state 

levels of PpRSL3 and PpRSL6 are higher than other RSL class II genes. 
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Figure 3.7 – Expression of RSL class I and RSL class II genes throughout the life cycle of Physcomitrella. 

RNA was extracted from 14 days old (A) and 21 days old (B) protonema colonies growing on cellophane 

disks, gametophores isolated from 28 days old plants (C) and immature sporophytes, isolated from plants 32 

days after the beginning of the 3-week 17°C gametangia induction period (D). 200ng total RNA from each 

sample was reverse transcribed and used for PCR amplification using 35 cycles (E). Scale bars indicate 1mm 

in A-C and 200μm in D. 
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The expression of RSL class I genes is not only more widespread throughout the life 

cycle, but it also seems to occur at a higher level that RSL class II genes. A non-orthodox 

corroboration of this hypothesis is that the NCBI database contains more ESTs of RSL 

class I than RSL class II genes. In other words, the transcripts of PpRSL1 and PpRSL2 have 

been detected in more cDNA libraries (about 10 EST sequences each) than those of 

PpRSL3 and PpRSL5 (only one EST) or PpRSL4, PpRSL6 and PpRSL7 (no EST sequences). 

In summary, RSL class II genes are expressed only in the gametophyte of 

Physcomitrella; their peak of expression occurs either in mature protonema or in 

gametophores. In contrast, RSL class I genes are expressed throughout the different 

stages of Physcomitrella life cycle, and at a higher level. 

3.3.4. RSL class II proteins redundantly control protonema development 

Strategy and generation of mutants 

To determine the function of RSL class II genes in Physcomitrella, single and 

double mutants were generated using double homologous recombination. This 

technique allows the precise replacement of a genomic locus with a foreign DNA 

sequence that confers resistance to an antibiotic (Schaefer 2001). The constructs for 

Physcomitrella transformation were built using a genomic fragment upstream of the 

start codon and a genomic fragment downstream of the stop codon as the target 

sequences for the homologous recombination. Each transformed line was initially 

screened (twice) for antibiotic resistance, then by a series of PCR reactions (Fig. 3.8) that 

verified: 1) the absence of the targeted locus 2) the correct integration of the 5’ border 

of the antibiotic resistance construct 3) and the correct integration of the 3’ border of 

the antibiotic resistance construct. Finally, the number of unspecific integration events 

was examined by Southern blot (Fig. 3.8). 

Three independent Pprsl3 plants had previously been generated (Benoît 

Menand). Two independent Pprsl4 lines, one Pprsl5 line and three Pprsl6 lines were then 

generated and selected for phenotypical analysis. Since the full transcript of PpRSL7 

could never be amplified (due to its very low/absent expression), no knockout construct 

was generated. Given the possibility that PpRSL3 and PpRSL4 are redundant duplicated 

genes (see Figs. 3.4, 3.5 and Appendix 3; PpRSL3 and PpRSL4 have 92% similarity in the  
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Figure 3.8 – Construction of knockout lines by double homologous recombination. 

The structure of each locus is indicated. The dark boxes correspond to exons, with the grey boxes indicating 

the position of the bHLH domain; the white box indicates the cassette that confers resistance to 

hygromycin, G418 or zeocin. The dashed region indicates the position of the genomic region used for the 

homologous recombination. The harpoons indicate the location of the primers (p1-p6) used in the PCRs to 

confirm the recombination events. The black bar indicates the location of the probe used in the Southern 

blots to confirm the number of integrations in the genome. The location of the corresponding restriction 

sites is indicated by a dashed arrow. 
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Figure 3.9 – Generation and characterisation of amiRNA lines. 

A Design of two 21bp constructs targeting a conserved nucleotide sequence in the bHLH coding region of 

RSL class II transcripts. The grey boxes in the intron-exon diagram indicate the position of the bHLH coding 

region; the dots in the alignment represent identical nucleotides. B Expression of RSL class II genes in the 

amiRNA lines generated, determined by qRT-PCR. The Y-axis represents fold change in expression relative to 

WT. C 21 days old protonema colonies grown on minimal media without cellophane disks. D Diameter of 21 

days old colonies (mean ±SD, n=23); the dark green bars indicate the inner denser protonema and the light 

green bars indicate the full diameter (see Fig 3.11). Means are not significantly different from WT (p<0.01). E 

Micrograph of the edge of 21 days old colonies. Scale bars indicate 1mm in C and 500μm in E. 
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bHLH domain and 61% in the whole protein), Pprsl3 Pprsl4 double mutants were 

generated. The Pprsl3-1 Pprsl4-4 and Pprsl3-1 Pprsl4-5 lines show multiple integrations 

of the G418 resistance cassette, probably caused by a concatenation of the targeting 

construct prior to the integration (Kamisugi et al. 2006). The Hyg probe also detected 

non-specific bands in the Pprsl3-1 Pprsl4-5 line, possibly the result of an occurrence of 

homologous recombination between the neomycin resistance construct and the 

hygromycin resistance cassette already present in the Pprsl3-1 line (the hygromycin and 

G418 resistant cassettes have high similarity over 60% of the sequence). Nevertheless, 

the phenotype of the two independent Pprsl3 Pprsl4 lines is identical. Pprsl5 Pprsl6 

mutants were also generated (PpRSL5 and PpRSL6 have 100% similarity in the bHLH 

domain and 74% in the whole protein). One of the lines (Pprsl5-1 Pprsl6-5) shows a non-

specific integration of the hygromycin resistance construct, but these plants are 

undistinguishable from Pprsl5-1 Pprsl6-4 and Pprsl5-1 Pprsl6-6 double mutants. 

In order to try to down-regulate the expression levels of more than two RSL 

genes at the same time, two amiRNA constructs targeting a conserved nucleotide region 

of four class II RSL genes were designed (Fig. 3.9A). Several plants transformed with the 

amiRNA precursor were generated. However, a qRT-PCR analysis showed that the 

expression levels of PpRSL3, PpRSL4, PpRSL5 and PpRSL6 were not significantly affected 

(Fig. 3.9B). Accordingly, these plants were undistinguishable from WT (Fig. 3.9C-E). 

All the knockout lines generated were grown until completion of the life cycle, so 

that spores could be collected and used to start cultures for the phenotypical analyses. 

Protonema, gametophores, sporophytes and viable spores could be easily obtained for 

all the different lines, indicating that no critical defects were caused by the knockout of 

these genes.  

Pprsl3 Pprsl4 plants have smaller and denser protonema colonies 

In order to characterise protonema development in the mutant lines, spores 

were germinated on minimal media and the development of the protonema colonies 

was followed for 4 weeks. WT plants develop an inner region of denser protonema, 

composed predominantly of cells with chloronema characteristics (small and filled with 

many chloroplasts), growing predominantly on the surface of the media (Fig. 3.10). 
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Figure 3.11 – Diameter of Pprsl3, Pprsl4 and Pprsl3 Pprsl4 protonema colonies. 

Spores were germinated on minimal media without cellophane disks; the diameters of the protonema 

colonies (light green bars) and of the inner denser protonema region (dark green bars) were measured after 

14, 21 and 28 days. Error bars indicate SD, n=23 (14 days), n=21 (21 days), n=11 (28 days). Asterisks indicate 

values that are statistically significantly different from WT (p<0.001). 
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Figure 3.10 – Pprsl3, Pprsl4 and Pprsl3 Pprsl4 protonema colonies. 

Spores were germinated on minimal media without cellophane disks. Pictures were taken after 14, 21 and 

28 days. Scale bars indicate 1mm. 
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Figure 3.13 – Diameter of Pprsl5, Pprsl6 and Pprsl5 Pprsl6 protonema colonies. 

Spores were germinated on minimal media without cellophane disks; the diameters of the protonema 

colonies (light green bars) and of the inner denser protonema region (dark green bars) were measured after 

14, 21 and 28 days. Error bars indicate SD, n=25 (14 days), n=27 (21 days), n=27 (28 days). Asterisks indicate 

values that are statistically significantly different from WT (p<0.001). 

 

 

 

 

(previous page) 

Figure 3.12 – Pprsl5, Pprsl6 and Pprsl5 Pprsl6 protonema colonies. 

Spores were germinated on minimal media without cellophane disks. Pictures were taken after 14, 21 and 

28 days. Scale bars indicate 1mm. 
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At the edges of the colony, longer filaments grow away from the centre, often 

penetrating into the agar; these filaments are composed of cells with predominantly 

caulonema characteristics (long and with few chloroplasts). In Pprsl3 and Pprsl3 Pprsl4 

plants (and occasionally in Pprsl4), the inner denser protonema region is larger and 

more conspicuous than in WT colonies (Fig. 3.10 and Fig. 3.11). This is already apparent 

in 2 week-old plants, and it continues to be a visible trait in older plants. The total 

diameter of Pprsl3 Pprsl4 colonies is also consistently reduced when compared with 

either WT or the single mutant lines. 

Due to the large number of lines involved, Pprsl5, Pprsl6 and Pprsl5 Pprsl6 plants 

were grown separately from Pprsl3, Pprsl4 and Pprsl3 Pprsl4. Fig. 3.12 shows the 

phenotypes of these typical protonema colonies at 14, 21 and 28 days. Unlike the Pprsl3 

and Pprsl3 Pprsl4 double mutants, the Pprsl5 single, Pprsl6 single and Pprsl5 Pprsl6 

double mutants are undistinguishable from WT colonies (Fig. 3.12 and Fig. 3.13). Pprsl5-

1 mutant colonies were smaller than WT colonies, but this phenotype was not 

reproducible. Unfortunately, another Pprsl5 line (Pprsl5-2) was lost due to an 

irreversible bacterial contamination, so there is no independent way to verify the Pprsl5 

phenotype. However, the most logical interpretation is that Pprsl5 has no defects in 

protonema development and the differences observed in Fig. 3.12 occurred by chance. 

Protonema branching 

The edges of Pprsl3, Pprsl4 and Pprsl3 Pprsl4 protonema colonies were 

indistinguishable from WT: a main axis of long (caulonema) cells with side-branches 

developing behind the first subapical cells (Fig. 3.14A-H). In WT, the different lengths 

and cell cycle duration of caulonema and chloronema cells result in different branching 

patterns in these two cell types: the first branch of a caulonema filament typically 

initiates further away from the filament tip than does the first branch of a chloronema 

filament. To determine if there is a different branching pattern in any of the knockout 

lines, the distance between the tip of filaments protruding from the edge of protonema 

colonies and their first side-branch was measured (Fig. 3.14I). Interestingly, the first 

side-branch develops further away from the tip in WT than in any of the Pprsl3 single, 

Pprsl4 single and Pprsl3 Pprsl4 double mutants. This suggests that the branching in these 

lines is less caulonema-like than in WT, supporting the hypothesis that PpRSL3 and 

PpRSL4 positively regulate caulonema development. Pprsl5, Pprsl6 and Pprsl5 Pprsl6 
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filaments, however, have a similar branching pattern to WT (Fig. 3.15) and the edge of 

these protonema colonies appears normal. 

Cell size is not controlled by RSL class II genes 

The Pprsl3 Pprsl4 phenotype suggests that there is a defect in the transition from 

chloronema to caulonema. To confirm that the different knockout lines differentiate 

both caulonema and chloronema cells, protruding filaments were isolated from 21 days-

old plants and stained with Calcofluor White, a fluorescent dye that stains cellulose in 

the cell walls. 

In WT plants, a typical filament is formed by a tip-growing caulonema apical cell 

that divides regularly (and obliquely to the transverse plane), leaving behind it an axis of 

long caulonema cells with characteristic oblique cross cell walls. The third / fourth cell of 

a filament then forms a lateral side-branch cell that also starts growing by tip-growth; 

regular spaced divisions leave behind it a secondary axis of short chloronema cells with 

characteristic perpendicular cross cell walls. As the filament grows larger, the side-

branch apical cell starts to differentiate caulonema characteristics, and the newly 

formed subapical cells start to display typical caulonema oblique cross cell walls (Fig. 

3.16B). All the Pprsl3, Pprsl4, Pprsl5, Pprsl6, Pprsl3 Pprsl4 and Pprsl5 Pprsl6 lines follow 

the same development pattern as a WT filament (Fig. 3.16Aand Fig. 3.17A). To confirm 

that there are no differences in the length of caulonema cells and chloronema cells, 1) 

the length of the first subapical cell of protruding filaments and 2) the length of the 

second proximal cell of side-branches with more than three cells, respectively, were 

measured (Fig. 3.16Band Fig. 3.17B). No significant differences between the WT and any 

of the knockout mutants were found. Together, this data indicates that Pprsl3, Pprsl4, 

Pprsl5, Pprsl6, Pprsl3 Pprsl4 and Pprsl5 Pprsl6 plants are able to differentiate caulonema 

and chloronema cells. 

Single and double mutants of RSL class II genes differentiate rhizoids 

Protonema colonies growing on minimal media start to differentiate 

gametophores 3-4 weeks after spore germination. The number and size of 

gametophores is similar in the different lines. Unlike Pprsl1 Pprsl2 plants, which have 

few and small rhizoids (Menand et al. 2010b), all single and double mutants of RSL class  
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Figure 3.14 – Close up of the edges of Pprsl3, Pprsl4 and Pprsl3 Pprsl4 protonema colonies. 

A WT; B Pprsl3-1; C Pprsl3-2; D Pprsl3-3; E Pprsl4-1; F Pprsl4-2; G Pprsl3-1 Pprsl4-3; H Pprsl3-1 Pprsl4-4. The 

plants were grown for 21 days in minimal media overlaid with cellophane disks. The scale bar indicates 

500μm. I Distance from the tip of a filament to the first branch; error bars indicate SD, n=52. Asterisks 

indicate values that are statistically significantly different from WT (p<0.001). 
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Figure 3.15 – Close up of the edges of Pprsl5, Pprsl6 and Pprsl5 Pprsl6 protonema colonies. 

A WT; B Pprsl5-1; C Pprsl6-1; D Pprsl6-2; E Pprsl6-3; F Pprsl5-1 Pprsl6-4; G Pprsl5-1 Pprsl6-5; H Pprsl5-1 

Pprsl6-6. The plants were grown for 21 days in minimal media overlaid with cellophane disks. The scale bar 

indicates 500μm. I Distance from the tip of a filament to the first branch; error bars indicate SD, n=47. None 

of the lines is significantly different from WT (p<0.05). 
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Figure 3.16 – Protonema cell size in Pprsl3, Pprsl4 and Pprsl3 Pprsl4 plants. 

A Filaments protruding from 21 days old protonema colonies grown on minimal media overlaid with 

cellophane disks were isolated, stained with Calcofluor White and observed in an epifluorescence 

microscope. B Lengths of the first subapical cell of a long (>10 cells) filament (light grey bars) and the length 

of the second proximal cell of a side-branch with ≥3 cells (dark grey bars). Error bars indicate SD, n=15 

(subapical), n=37 (side-branch). Asterisks indicate values that are statistically significantly different from WT 

(p<0.01). Scale bars indicate 200μm. 
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Figure 3.17 – Protonema cell size in Pprsl5, Pprsl6 and Pprsl5 Pprsl6 plants. 

A Filaments protruding from 21 days old protonema colonies grown on minimal media overlaid with 

cellophane disks were isolated, stained with Calcofluor White and observed in an epifluorescence 

microscope. B Lengths of the first subapical cell of a long (>10 cells) filament (light grey bars) and the length 

of the second proximal cell of a side-branch with ≥3 cells (dark grey bars). Error bars indicate SD, n=8 

(subapical), n=48 (side-branch). Asterisks indicate values that are statistically significantly different from WT 

(p<0.01). Scale bars indicate 200μm. 
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II genes differentiate normal rhizoids (Fig. 3.18A and Fig. 3.19A). To further visualise the 

rhizoids, 4 week-old protonema colonies were grown for a further 2 weeks in a vertical 

orientation (Fig. 3.18B and Fig. 3.19B). This causes the rhizoids to grow downwards and 

away from the protonema centre. Colonies grown this way again confirm that rhizoid 

development in Pprsl3, Pprsl4, Pprsl5, Pprsl6, Pprsl3 Pprsl4 and Pprsl5 Pprsl6 plants is 

similar to WT. A similar experiment where the vertical incubation was done in the dark 

(which causes the rhizoids to grow upwards) also showed no difference between these 

lines (data not shown). 

Phenotypical variability 

The growth of protonema filaments is extremely sensitive to environmental 

factors such as light and nutrient conditions. Additionally, stochastic differences play a 

major role in the patterning of protonema filaments. This creates a very large variability 

of shapes and sizes in protonema colonies that can easily mask quantitative differences 

in the differentiation of caulonema and chloronema cells.  

The mean of colony diameters and cell lengths (and its statistical significance) 

changed considerably between individual experiments (e.g. Fig. 3.11 vs. Fig. 3.13).This 

was probably caused by minute differences in the media dryness or composition. 

Another important source of variation comes from individual plates: again, this may be 

caused by differences in the media dryness. There is also, occasionally, small variation 

between colonies growing in different regions of a same 90mm plate, perhaps explained 

by differential access to the light sources. These external sources were superimposed on 

endogenous natural protonema variability, further complicating the phenotypical and 

statistical analyses. 

Nevertheless, the denser smaller protonema colonies of Pprsl3 Pprsl4 were a 

clear and highly reproducible phenotype. It remains a possibility that some of the other 

knockout lines also have subtler defects in protonema development, but these could not 

be detected using the experimental systems described here. 
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Figure 3.18 – Rhizoids with gametophores in Pprsl3, Pprsl4 and Pprsl3 Pprsl4 plants. 

A Gametophores isolated from 28 days old protonema colonies growing in minimal media overlaid with 

cellophane disks. B 6-week old colonies, first grown for 28 days horizontally in minimal media overlaid with 

cellophane disks, and then transferred into fresh plates (minimal media without cellophane disks) and 

incubated vertically for further 14 days. Scale bars indicate 1mm. 
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Figure 3.19 – Rhizoids with gametophores in Pprsl5, Pprsl6 and Pprsl5 Pprsl6 plants. 

A Gametophores isolated from 28 days old protonema colonies growing in minimal media overlaid with 

cellophane disks. B 7-week old colonies, first grown for 28 days horizontally in minimal media overlaid with 

cellophane disks, and then transferred into fresh plates (minimal media without cellophane disks) and 

incubated vertically for further 20 days. Scale bars indicate 1mm. 

 



Chapter 3: Evolution of RSL class II genes 

90 

3.3.5. Overexpression of PpRSL4 causes defective caulonema differentiation 

To investigate the effect of constitutively expressing the Physcomitrella RSL class 

II genes, the coding sequences of PpRSL3 and PpRSL4 were cloned in front of the CaMV 

35S promoter and these constructs were used to transform WT plants. Two 35S::PpRSL3 

and six 35S::PpRSL4 lines were obtained, and the respective increase in the steady state 

levels of PpRSL3 and PpRSL4 transcripts were confirmed by qRT-PCR (Fig. 3.20A). 

The two 35S::PpRSL3 lines showed no differences from WT plants: protonema 

colonies (Fig. 3.20B-C), filaments (Fig. 3.20D), gametophores (Fig. 3.21A) and rhizoids 

(Fig. 3.21B) were all undistinguishable from WT. The 35S::PpRSL4 lines, in contrast, 

showed considerable differences from WT plants. The three lines examined had smaller 

and denser protonema colonies (Fig. 3.20B-C). This was more pronounced in the 

35S::PpRSL4-1 and 35S::PpRSL4-3 lines, which is consistent with these lines having a 

higher increase in the levels of the PpRSL4 transcript (Fig. 3.20A). These plants have a 

very dense and green protonema composed mostly of chloronema cells and are slightly 

reminiscent of Pprsl1 Pprsl2 double mutant colonies (which do not differentiate 

caulonema cells) (Menand et al. 2010b). However, unlike these RSL class I double 

mutants, 35S::PpRSL4 plants develop occasional WT-like caulonema filaments (Fig. 

3.20D). Rhizoid development in 35S::PpRSL4 was indistinguishable from WT plants (Fig. 

3.21). 

These results show that disrupting the pattern and level of PpRSL4 expression 

causes defects in caulonema differentiation. Interestingly, both the loss of function 

Pprsl3 Pprsl4 mutant and the overexpression of PpRSL4 suppress caulonema 

differentiation. This suggests that a mechanism requiring a correct balance of the 

PpRSL4 protein level is required for caulonema differentiation. 
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Figure 3.20 – Protonema colonies of plants constitutively expressing PpRSL3 and PpRSL4. 

A qPCR showing the expression levels of PpRSL3 and PpRSL4 in the overexpression lines, relative to the 

expression level of WT plants. B Protonema colony diameters at 14, 21 and 28 days. Error bars indicate SD, 

n=25 (14 days), n=17 (21 days), n=15 (28 days). C 21 days old protonema colonies grown on minimal media 

overlaid with cellophane. D Close-ups of the protonema edges. Scale bars indicate 2mm in C and 500μm in 

D. 
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Figure 3.21 – Rhizoids with gametophores in 35S::PpRSL3 and 35S::Pprsl4 plants 

A Gametophores isolated from 28 days old protonema colonies growing in minimal media overlaid with 

cellophane disks. B 6-week old colonies, first grown for 28 days horizontally in minimal media overlaid with 

cellophane disks, and then transferred into fresh plates (minimal media without cellophane disks) and 

incubated vertically for further 14 days. Scale bars indicate 1mm. 
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3.3.6. The transcriptional network of RSL genes is different in Physcomitrella 

and in Arabidopsis 

Physcomitrella RSL class II genes are not regulated by RSL class I genes. 

In Arabidopsis, the RSL genes form a transcriptional network in which RSL class I 

proteins positively regulate the transcription of RSL class II genes. Accordingly, RSL class 

II genes are not expressed on Atrhd6 Atrsl1 plants (Yi 2008). In order to verify if a similar 

transcriptional network is present in Physcomitrella, the expression level of RSL class II 

genes in 3 weeks old Pprsl1 Pprsl2 plants was determined by qRT-PCR (Fig. 3.22A). 

PpRSL3, PpRSL4 and PpRSL5 expression levels in Pprsl1 Pprsl2 plants fall within 0.6-1.6x 

of their expression levels in WT, indicating that they are not regulated by RSL class I 

genes. However, PpRSL6 is slightly upregulated (4x the expression level in the WT), 

suggesting that its transcription in WT is partially inhibited (directly or indirectly) by RSL 

class I genes. 

The expression of the different RSL genes is independent of RSL class II genes 

Although RSL class I proteins do not play a major role in regulating the 

expression of RSL class II genes in Physcomitrella, it is possible that RSL class II genes 

themselves regulate the transcription of other RSLs. In order to further dissect these 

putative transcriptional regulations, the expression level of PpRSL1-PpRSL6 in the Pprsl3 

Pprsl4 and in the Pprsl5 Pprsl6 double mutant lines was examined by qRT-PCR (Fig. 

3.22B-C). The expression level of PpRSL1-PpRSL6 in these plants falls within 0.8-1.7x of 

the WT levels, indicating that their transcription is independent of RSL class II genes. 

These results indicate that in Physcomitrella, unlike Arabidopsis, the expression 

of RSL genes is mostly independent of the other RSL proteins. The only exception seems 

to be PpRSL6, whose expression is slightly inhibited by RSL class I proteins in WT plants. 

This indicates that the topology of the transcriptional interactions between RSL class I 

and RSL class II genes is substantially different between Arabidopsis and Physcomitrella. 
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Figure 3.22 – Expression level of RSL genes in different rsl double mutants. 

RNA was extracted from 21 days old Pprsl1 Pprsl2 (A), Pprsl3 Pprsl4 (B) and Pprsl5 Pprsl6 (C) colonies 

growing on minimal media overlaid with cellophane disks. The expression levels were determined by qRT-

PCR: each value corresponds to the expression level relative to WT. The mean and SD of three biological 

replicates are indicated.  
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3.3.7. RSL class I proteins negatively regulate the response of RSL class II genes 

to auxin 

In Arabidopsis, a key player in the RSL transcriptional network is auxin: 

exogenous NAA positively regulates the expression of AtRSL4 and AtRSL5 and negatively 

regulates AtRSL2 and AtRSL3, although it does not play a role in the regulation of RSL 

class I genes (Yi 2008). Interestingly, treatment of the hairless Atrhd6 Atrsl1 plants with 

NAA can rescue the development of root hairs by bypassing RSL class I genes and 

directly activating AtRSL4 (Yi et al. 2010). In Physcomitrella, auxin positively regulates 

the differentiation of caulonema and rhizoid filaments (Johri and Desai 1973; Ashton et 

al. 1979; Sakakibara et al. 2003). Together, this strongly suggests that auxin may play an 

important role in the transcriptional regulation of RSL genes in Physcomitrella. 

RSL class II genes are differentially regulated by NAA 

In order to this hypothesis, two-week old WT Physcomitrella plants were 

incubated for one week on minimal media supplemented with different concentrations 

of NAA. The expression level of RSL class II genes was then determined by qRT-PCR (Fig. 

3.23). The results show that PpRSL3 is negatively regulated by NAA, PpRSL6 is positively 

regulated, and the expression levels of PpRSL4 and PpRSL5 are not significantly affected. 

Furthermore, the increase in the transcription of these RSL class II genes caused by NAA 

is concentration-dependent. Despite the fact that Physcomitrella and Arabidopsis RSL 

class II family members have radiated independently through numerous gene 

duplication and gene losses (Fig. 3.4 and Fig. 3.5), the differential regulation of RSL class 

II genes by NAA (i.e. both positive and negative regulation) in both species suggests that 

there was an evolutionary convergence of their regulatory mechanisms. 

The auxin regulation of RSL class II transcription is repressed by RSL class I 

proteins 

The transcription of the two Physcomitrella RSL class I genes (PpRSL1 and 

PpRSL2) is positively regulated by NAA (Geupil Jang and Liam Dolan, unpublished). This 

raises the possibility that the effects of NAA in RSL class II transcription are mediated by 

PpRSL1 and PpRSL2. In order to test this hypothesis, the expression level of RSL class II 
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genes in Pprsl1 Pprsl2 double mutants incubated with NAA was determined by qRT-PCR 

(Fig. 3.23). 

In Pprsl1 Pprsl2 plants, PpRSL5 and PpRSL6 are up-regulated, PpRSL3 was down-

regulated, and PpRSL4 was not affected. This means that, with the exception of PpRSL5, 

the qualitative effects of a treatment with NAA are similar in WT and in RSL class I 

mutant plants. However, RSL class II genes are much more sensitive to NAA in Pprsl1 

Pprsl2 plants than in WT: significant changes in the expression levels (both positive or 

negative regulations) are quite clear at low NAA concentrations (0.1 and 1μM), in 

contrast with WT plants, where only 10μM NAA causes clear changes in expression 

levels. These results suggest that PpRSL1 and PpRSL2 negatively regulate the response of 

RSL class II genes to NAA. In other words, the effect of NAA on the transcription of RSL 

class II genes is inhibited, directly or indirectly, by RSL class I proteins. In a Pprsl1 Pprsl2 

background, the inhibition of the NAA response is removed and the transcription of RSL 

class II genes respond more readily to NAA (either positively or negatively). 
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Figure 3.23 – Expression level of RSL class II genes in NAA treated plants. 

Protonema colonies grown on minimal media for two weeks were transferred to fresh minimal media 

supplemented with different concentrations of NAA and incubated for one week. The expression levels 

were determined by qRT-PCR: each value corresponds to the expression level relative to plants grown 

without NAA. The mean and SE of three replicates are indicated. 
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3.4. Discussion 

In Arabidopsis, RSL class I and RSL class II genes form a transcriptional network 

that controls the development of root hairs (Yi 2008). Root hairs are epidermal 

projections from the roots of vascular plants that evolved in the Devonian or Silurian 

Period (Raven and Edwards 2001), but the RSL genes originated in or before the late 

Ordovician Period (Chapter 2). This implies that the RSL developmental mechanism 

evolved long before the appearance of root hairs. A functional characterization of RSL 

class I genes showed that they control the differentiation of rhizoid and caulonema 

filaments in mosses (Menand et al. 2007b). This suggests that the development of 

rooting cells in early land plants was controlled by a network of RSL class I and class II 

genes, and that this network has been used to control the development of cells with a 

rooting function in land plants. The analyses presented in this chapter support this 

hypothesis, and show that the transcriptional regulatory interactions of the RSL 

regulatory network have changed considerably during land plant evolution. 

The RSL class I and RSL class II families are highly conserved in land plants. All the 

land plant genomes examined have RSL class I and class II genes and each of these 

genomes has a similar number of paralogues (Appendix 2). The bHLH and adjacent RSL-

specific domain of the 92 identified RSL proteins is extremely well conserved (Appendix 

4 and 5). This suggests that the molecular function of the RSL proteins is conserved, a 

hypothesis that is further supported by cross-species complementation experiments in 

which the Physcomitrella RSL class I and RSL class II genes were shown to rescue (or 

partially rescue) the development of root hairs in RSL class I (Menand et al. 2007b) and 

RSL class II Arabidopsis mutants (Fig. 3.6), respectively. 

If a differentiation mechanism involving RSL class I and RSL class II genes 

controlled the development of rooting cells in early land plants, then it would be 

expected that RSL class II proteins would (as do RSL class I proteins) also control the 

development of rhizoids and caulonemata in mosses. RSL class II genes are preferentially 

expressed in mature protonema and gametophores of Physcomitrella (Fig. 3.7), giving 

support to this hypothesis. Intriguingly, RSL class I genes (but not RSL class II) were found 

to be expressed in the sporophyte, although Pprsl1 Pprsl2 plants do not show defects in 

sporophyte development and their expression cannot be detected using promoter:GUS 

constructs (Benoît Menand and Liam Dolan, unpublished). A possible explanation for 
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this discrepancy is that there is only a residual expression of PpRSL1 and PpRSL2 in the 

sporophyte. However, a role of RSL class I genes in the Physcomitrella sporophyte 

cannot be completely excluded. 

The analyses of knockout mutants of RSL class II genes shows that there is a high 

degree of redundancy between them. As with many other genes in Physcomitrella 

(including PpRSL1 and PpRSL2), single mutants are undistinguishable from WT plants. 

The main reason for this is probably the fact that there was a whole-genome duplication 

in Physcomitrella 30-60 million years ago (Rensing et al. 2007). However, Pprsl5 Pprsl6 

double mutants are also undistinguishable from WT. Only Pprsl3 Pprsl4 plants appear 

consistently distinct from WT plants, showing an inhibition of the differentiation of 

caulonema filaments (Figs. 3.10, 3.11 and 3.14). However, no defects in rhizoids 

development could be detected for any of the RSL class II mutants (Figs. 3.18 and 3.19). 

The high protein sequence similarities and the subtle / absent phenotypes of Pprsl3 

Pprsl4 and Pprsl5 Pprsl6 double mutants suggest that there is a high degree of 

redundancy between the RSL class II proteins; it would be interesting to examine the 

phenotype of a quadruple Pprsl3 Pprsl4 Pprsl5 Pprsl6 mutant (no RSL class II function), 

but this was not available at the time of the writing of this thesis. 

The defective caulonema differentiation caused by the overexpression of PpRSL4 

(Fig. 3.20) supports its hypothesised role in protonema development. Interestingly, both 

the Pprsl3 Pprsl4 double mutant and plants overexpressing PpRSL4 show an inhibition of 

caulonema development. A simple scenario that can explain these apparently 

contradictory results is that chloronema development is the basic ‘state’ during 

protonemal growth; for caulonema caulonema differentiation to occur, a balanced level 

of RSL class I, PpRSL3 and PpRSL4 proteins would be required. Interfering with this 

balance would cause disrupt the development of caulonema cells. 

In Arabidopsis, a regulatory cascade involving a positive regulation of RSL class II 

genes by RSL class I proteins forms a backbone of the RSL network that controls root hair 

development (Yi 2008; Fig. 3.24). However, such a topology of transcriptional 

interactions is not present in Physcomitrella: apart from a subtle inhibition of PpRSL6 

expression by RSL class I proteins, the transcription of RSL class I and class II genes is 

independent of each other (Fig. 3.22 and 3.24). However, Physcomitrella RSL class I 

proteins negatively regulate the response of RSL class II genes to auxin (Fig. 3.23 and 

3.24). This suggests that a regulatory mechanism involving auxin, RSL class I and RSL 

class II genes is present in Physcomitrella. Auxin is a key regulator of the differentiation
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Figure 3.24 – Models of the RSL regulatory network in Physcomitrella and in Arabidopsis. 

The transcriptional interactions between auxin, RSL class I and RSL class II genes are indicated. [+: posi ve 

regula ons  *   ]: negative regulations. 
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of rooting cells in both mosses and angiosperms. In Arabidopsis, auxin positively 

regulates the RSL class II gene AtRSL4, bypassing the requirement for RSL class I genes 

for root hair development (Yi et al. 2010; Fig. 3.24). Importantly, auxin is not a regulator 

of RSL class I expression in Arabidopsis. The topology of these interactions is 

substantially different in Physcomitrella: auxin is a positive regulator of RSL class I 

expression (Geupil Jang and Liam Dolan, unpublished), and the application of exogenous 

auxin cannot rescue the development of caulonemata and rhizoids in the Pprsl1 Pprsl2 

mutant, indicating that auxin acts upstream of RSL class I genes. The expression of the 

RSL class II genes PpRSL3, PpRSL5 and PpRSL6 is also regulated by auxin (Fig. 3.23), 

suggesting that auxin regulates caulonema and rhizoid formation by modulating the 

levels of both RSL class I and RSL class II genes (Fig. 3.24). Accordingly, preliminary 

results (data not shown) suggest that the induction of caulonema and rhizoid 

development by exogenous auxin is incomplete in the Pprsl3 Pprsl4 mutant, indicating 

that RSL class II genes are required to mediate the auxin response.  

Together, these results suggest that an ancient differentiation mechanism 

involving auxin, RSL class I and RSL class II genes controlled the differentiation of rooting 

structures in the first land plants. During land plant evolution, this regulatory network 

was recruited to control the development of root hairs. Significantly, the topology of the 

transcriptional interactions between RSL class I and RSL class II genes have changed 

during plant evolution. The recruitment of the RSL regulatory network to organise the 

differentiation of root hairs points to a possibly widespread evolutionary mechanism: 

the reutilisation of ancient gene regulatory networks that evolved in green algal or in 

the very first land plants. However, the fine tuning of such networks (and their spatial 

and temporal location) will have changed considerably during plant evolution. These 

smaller regulatory differences probably underlie the huge morphological and 

physiological diversity found in land plants. 
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Biologists say that two structures are ‘homologous’ if they are derived by a series of 
evolutionary transformations from the same structure in a common ancestor. In this sense, 
human arms and bird wings are homologous, but insect and vertebrate eyes are usually 
thought not to be. Two genes are said to be homologous if they are derived by replication 
from the same gene in a common ancestor: homology of genes is deduced from similarity of 
base sequence. Can we deduce that two structures are homologous if they are induced by 
homologous genes? The example of eyes suggests that we cannot. But surely a common 
genetic mechanism must count as evidence in favour of homology? This is one of the many 
unanswered question raised by recent work in developmental genetics. 

John Maynard Smith (1999) Shaping Life: genes, embryos and evolution 

 

 

The evolution of plants on land was characterised by a complex series of 

morphological transformations that included a transition from a gametophyte-dominant 

life cycle to a diploid-dominant one. The marked differences between the bodies of 

modern angiosperm plants and the bodies of early land plants indicates that virtually 

every morphological structure that occurs in angiosperms had its origin sometime during 

the last 450 million years. Very little was known regarding the evolution of the molecular 

mechanisms that directed these changes until different genome sequencing projects 

revealed that most families of developmental regulators were present in lycophytes, 

mosses and even in unicellular chlorophyte algae. These surprising discoveries imply 

that a conserved set of proteins is responsible for the development of extremely 

divergent body plans. 

How could such plasticity be achieved? One possibility is that ancient gene 

regulatory networks have been recruited multiple times during plant evolution to 

control the development of different structures. This was shown to be the case for the 

RSL class I bHLH transcription factors: they control the development of filamentous cells 

with a rooting function in mosses (and probably in early land plants), but were also 

recruited to control the development of root hairs in the sporophyte of vascular plants 

(Menand et al. 2007b). This suggests that an ancient regulatory mechanism was 

recruited from the gametophyte to the sporophyte generation during the explosion of 

sporophyte morphologies that occurred in the Devonian period. In Arabidopsis, RSL class 

I proteins regulate the transcription of a related group of bHLH transcription factors, the 

RSL class II genes. Since homologues of RSL class II genes are also present in 
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Physcomitrella, this suggested that the development of rooting cells in early land plants 

was also controlled by a network of RSL class I and RSL class II genes. 

Testing this hypothesis requires a correct delineation of the phylogenetic 

relationships of bHLH proteins in land plants. The phylogenetic analyses presented in 

Chapter 2 demonstrate that bHLH proteins underwent a radiation in the streptophyte 

lineage. Furthermore, the existence of 20 bHLH subfamilies in the common ancestral of 

mosses and vascular plants, and at least six subfamilies in the common ancestor of 

Zygnematales and more derived streptophytes, indicates that there was a large 

radiation of the bHLH family in charophytes, before the appearance of the first land 

plants. This suggests that a main driver of the bHLH radiation was the evolution of 

multicellularity. Significantly, the bHLH families formed this early in plant evolution have 

been highly conserved ever since. Several small amino acid domains (some of which 

previously shown to be involved in protein-protein interactions) are conserved across 

the plant bHLH subfamilies. This suggests that many present-day bHLH interactions 

already occurred in early land plants and have been conserved in the major plant 

groups. Since these protein-protein interactions are central to the activity of complex 

regulatory networks, it is likely that these networks have been partially conserved for 

more than 450 million years. 

Was a regulatory network involving RSL class I and class II genes present in early 

land plants? This hypothesis was explored in Chapter 3 and supported by the finding 

that the Physcomitrella loss-of-function Pprs3 Pprsl4 double mutants and plants 

overexpressing PpRSL4 show defects in the differentiation of caulonema cells. Despite a 

high degree of redundancy (which perhaps explains the lack of defects in rhizoid 

development) these phenotypes implicate these RSL class II genes in the control of the 

same developmental process as RSL class I genes: the chloronema to caulonema 

transition. Furthermore, RSL class I genes were found to modulate the response of RSL 

class II genes to auxin. Physcomitrella RSL class I and RSL class II genes can complement 

the respective homologues in Arabidopsis, indicating that the molecular function of 

these proteins is conserved, despite the more than 440 million years since they last 

shared an ancestral. These results suggests that an ancient differentiation mechanism 

involving auxin, RSL class I and RSL class II genes controlled the differentiation of rooting 

structures in the first land plants. During plant evolution, this regulatory network was 

recruited to the sporophyte generation to control the development of root hairs. 
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Does this imply that root hairs and rhizoids are homologous structures? The 

excerpt that opened this chapter was taken written a few years after the discovery that 

transgenic expression of the mouse transcription factor Pax6 in Drosophila caused the 

development of ectopic eyes in the fly. Pax6 controls the differentiation of vertebrate 

camera-type eyes in mouse, whereas its homologue in Drosophila, eyeless, had been 

found to control the development of its compound-type eyes (Halder et al. 1995). The 

functional conservation of Pax6/eyeless implied that the gene regulatory mechanisms 

driving the differentiation of these analogous eye types were homologous. In other 

words, that there was a clear dissociation between morphological and genetic 

homology. 

There are now many examples in which the development of seemingly unrelated 

structures in distantly related species is controlled by homologous regulatory genes. 

Some of these now ‘classic’ examples include the discovery that the development of a 

variety of non-homologous animal appendages is controlled by Distal-less/Dlx 

homeoproteins (Panganiban et al. 1997), the development of the different types of eyes 

is controlled by an array of homologous transcription factors including Pax6 (reviewed in 

Vopalensky and Kozmik 2009), a late phase of Hoxd expression occurs in the distal fin 

buds of fishes and during digit specification in tetrapods (reviewed in Shubin et al. 2009) 

and the development of different types of hearts is governed by a set of homologous 

transcription factors in different animals (reviewed in Olson 2006). This has led to the 

proposal of the concept of ‘deep homology’: morphologically disparate organs whose 

formation (and evolution) depends on homologous genetic regulatory circuits (Shubin et 

al. 1997, 2009). Despite its powerful meaning, the concept of deep homology is actually 

quite subtle: it reflects the fact that homology depends on the hierarchical level which is 

being compared (for example, the wings of birds and bats are not homologous as wings, 

because wings evolved independently in the two lineages, but they are homologous as 

tetrapod forelimbs). Similarly, two structures may be analogous in a morphological 

context, but (deeply) homologous at a genetic level (Shubin et al. 1997; Scotland 2010). 

The RSL regulatory network represents a clear example of deep homology. The 

root hair cells of Arabidopsis and the rhizoids/caulonema filaments of Physcomitrella are 

analogous structures with no structural correspondence. However, the RSL regulatory 

network that controls the development of these rooting structures is homologous, since 

it likely controlled the development of rooting structures in the common ancestral of 

mosses and vascular plants. There are other known cases of deep homologies in plants. 
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Two clear examples are the formation of boundary domains that delimit the leaflets of 

compound leaves being promoted by NAM/CUC3 genes in several eudicots, despite the 

multiple origins of compound leaves (Blein et al. 2008), and the KNOX-ARP mechanism 

that operates during both microphyll development in lycophytes and macrophyll 

development in angiosperms (Chapter 1; Harrison et al. 2005). Another example is the 

control of petal differentiation by AP3/PI genes, given the many independent origins of a 

differentiated perianth in angiosperms (Irish 2009); however, Scotland (2010) argues 

that the function of AP3/PI is not homologous, and therefore this example does not 

represent a true deep homology. 

These examples point to a recurring reutilisation of ancient genetic networks to 

control the development of novel structures during evolution. This has been one of the 

major insights of the field of evolutionary developmental biology: form evolves largely 

by altering the expression of functionally conserved proteins, usually through mutations 

in the cis-regulatory regions of developmental regulatory genes and their target genes 

(Carroll et al. 2008). This is clearly exemplified in plants by the RSL network, an ancient 

and originally gametophytic mechanism that was later recruited to a different life cycle 

context (roots in the sporophyte generation), concomitantly with a change in the 

direction of the regulatory interactions between auxin, RSL class I and RSL class II genes. 
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Appendix 1 – Primers sequences 

qRT-PCR primers 
 
PpRSL1 
GTGTCCTATTCCGAGGACCA 

CAACCTTGAGGTCCCAAAAA 

PpRSL2 
AGGATAAGTGAGCGGCTGAA 

CCTTGGGCCAGATAGAATCA 

PpRSL3 
AACGAGCGCTTGAAGACATT 

TTCAACAGCGTCACTTGGAG 

PpRSL4 
CGACTGATCCGCAGAGTGTA 

GGTTACGATGTCCACCTTCC 

PpRSL5 
GCAACCGATCCTCAGAGTGT 

TCAACCTTGGCTCCATTAGG 

PpRSL6 
AAATCTCGTGCCAAATGGAG 

CATCCAGAACTCGTCGGATT 

PpGAPDH 
CTTGAGAAGCCTGCCTCCTA 

TGCTGTCGGTAATGAAGTCG 

PpEF1a 
GGATCTTGTCGGGGTTGTAA 

TTTCACCTTGGGAGTGAAGC 

 
Construction of plasmids for knockouts 

 
PpRSL4 – 5’ homologous region 
gcctctagaTCGTGGCTTTCTTTCAGGTG 

ggctcgagTCTTCTCAACGGGTGCTTCA 

PpRSL4 – 3’ homologous region 
cggactagtGGTACCGCCGAAATCTACCA 

ccgacgcgtTCAGCAGTGCAAACTTTGGTT 

PpRSL5 – 5’ homologous region 
cgccgtcgacATTCCATTTTCTGGCGCTTG 

ccggatccTGCTGTCACATGAAATGAGTTG 

PpRSL5 – 3’ homologous region 
gcctctagaAACCACGCCGCTCATAATTT 

ccgacgcgtTGTTGCCTCTTGTCGTGTGT 

PpRSL6 – 5’ homologous region 
cttGGTAACGTGGACAGCTCGAT 

gacGCTACTCTGCGGTTAGTCAGG 

PpRSL6 – 3’ homologous region 
cgtGTGTAACAGCCCCACCAG 

catCAACCAAAATGTATTTCAATGG 

 
Genotyping Physcomitrella knockouts 

 
Pprsl3 
p1 AGTCGCCTTCCTCTCCTCTC 

p2 CGGTGAGTTCAGGCTTTTTC 

p3 TCCGAGGGCAAAGAAATAGA 

p4 TCAGTTGCCTTCTTGTGTGC 

p5 CGACTGATCCGCAGAGTGTA 

p6 AATGTCTTCAAGCGCTCGTT 
  
Pprsl4 
p1 ATGGATGGCTGAGGTGTTGT 

p2 TTGCTTTGAAGACGTGGTTG 

p3 CTTCGACGGATCTCGACCT 
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p4 GGCATGAGCTACCAAAAGGTG 

p5 TCTTCGGGGATCTAGCTGTC 

p6 TGGCGTACATCCAATACTCG 
  
Pprsl5 
p1 CAAAGAATCTGAACGGCTCAA 

p2 GGTGGAGCTCGGTACCATAA 

p3 CCGGCCAGATCTATAACTTCG 

p4 GTGGAGCTAGCCGCAGATG 

p5 TCATGCATCGAAACCTCGTC 

p6 TCTCCTCAAGTTCAAGAGGGTGT 
  
Pprsl6 
p1 ACAGCTTCGGCCTTTCACTA 

p2 CGTGGGATCCTCTAGAGTCG 
p3 GCCGGCCAGATCTATAACTTC 

p4 TTTTATCTCCGATTCTTATGTCTAAGT 

p5 GCGGTCCTACTTCCATTCTG 

p6 ATGCCGTTGTAGTTGTGTGG 
 

Construction of DIG probes 
 
Hyg probe 
ATCCGGTCGGCATCTACTCT 

TGTAGGAGGGCGTGGATATG 

NptII probe 
TGAATGAACTGCAGGACGAG 

AATATCACGGGTAGCCAACG 

Zeo probe 
GACTAAACCTGGAGCCCAGAC 

GAACTAGTGGATCCCCGTCA 

 
Cloning coding sequences 

 
PpRSL3 
cccgggATGACCGATCTAAATTCGAGC 

ctcgagCTACGCACTGGACTGCAGTCTCT 

PpRSL4 
ggtaccATGACCGATCTGATTTCGATCT 

gtcgacTCAGTTGTTCTCGCCGGGA 

PpRSL5 
ggatccATGGTGCAGTTATACATGTCCTC 

gtcgacTCACGCACGTGACTCCAG 

PpRSL6 
ggtaccATGGTGCGGTTTAACTACATG 

ctgcagCTAAATATTCGACTCCAGCTCCG 

 
Amplification of pGWB2 fragment 

ccgcggccgcGTTGAATGTCGCCCTTTTGT 

gcactagtCGGAAATTCCTCTCCTGTCA 

 
Construction of amiRNA precursors 

 
amiRNAa 
I GATCGTCTAGCATGGTTACTATGTCTCTCTTTTGTATTCC 

II GACATAGTAACCATGCTAGACGATCAAAGAGAATCAATGA 

III GACACAGTAACCATGGTAGACGTTCACAGGTCGTGATATG 

IV GAACGTCTACCATGGTTACTGTGTCTACATATATATTCCT 
 
amiRNAb 
I GATCGTCTAGCATGGTTACAATGTCTCTCTTTTGTATTCC 

II GACATTGTAACCATGCTAGACGATCAAAGAGAATCAATGA 

III GACACTGTAACCATGGTAGACGTTCACAGGTCGTGATATG 

IV GAACGTCTACCATGGTTACAGTGTCTACATATATATTCCT 
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Appendix 2 – RSL genes identified in different plant species 

Species Name RSL Class Retrieved from Name in original database bHLH numberf 

Arabidopsis lyrata 

AlRSL1 I 

Phytozome 5.0 

jgi|Araly1|894298|scaffold_201372.1  

AlRSL2 I jgi|Araly1|493759|fgenesh2_kg.7__3192__AT5G37800.1  

AlRSL3 II jgi|Araly1|480366|fgenesh2_kg.3__3067__AT2G14760.1  

AlRSL4 II jgi|Araly1|472979|fgenesh2_kg.1__2933__AT1G27740.1  

AlRSL5 II jgi|Araly1|494687|fgenesh2_kg.8__503__AT5G43175.1  

AlRSL6 II jgi|Araly1|491291|fgenesh2_kg.7__724__AT4G33880.1  

AlRSL7 II jgi|Araly1|855794|Al_scaffold_0797_1  

Arabidopsis thaliana 

AtIND not RSLd 

The Arabidopsis 
Information 

Resource (TAIR) 

AT4G00120  AtbHLH040 

AtRHD6 I AT1G66470  AtbHLH083 

AtRSL1 I AT5G37800  AtbHLH086 

AtRSL2 II AT4G33880  AtbHLH085 

AtRSL3 II AT2G14760  AtbHLH084 

AtRSL4 II AT1G27740  AtbHLH054 

AtRSL5 II AT5G43175  AtbHLH139 

Brachypodium 
distachyon 

BdRSL1 I 

DOE Joint Genome 
Institute 

Bradi2g01000.1 chr02_pseudomolecule brac version0 634132-632405 BestGuessCds  

BdRSL2 I Bradi3g53060.1 chr03_pseudomolecule brac version0 53840035-53841056 BestGuessCds  

BdRSL3 I Bradi1g42440.1 chr01_pseudomolecule brac version0 39524292-39525456 BestGuessCds  

BdRSL4 II Bradi1g14600.1 chr01_pseudomolecule brac version0 11561477-11562837 BestGuessCds  

BdRSL5 II Bradi1g22960.1 chr01_pseudomolecule brac version0 18442319-18443680 BestGuessCds  

BdRSL6 II Bradi1g70860.1 chr01_pseudomolecule brac version0 69006335-69007839 BestGuessCds  

BdRSL7 II Bradi4g03070.1 chr04_pseudomolecule brac version0 2417289-2418632 BestGuessCds  

BdRSL8 II not annotated e  

Saccharum sp. CA145633 I NCBI SCSGRT2066E06.g RT2 Saccharum hybrid cultivar SP80-3280 cDNA clone  

Triticum aestivum CA654295 I NCBI wre1n.pk164.d12 wre1n Triticum aestivum cDNA clone wre1n.pk164.d12  

Cucumis sativus 

CsRSL1 I 

Phytozome 5.0 

Cucsa.006340.1   

CsRSL2 II Cucsa.097490.1   

CsRSL3 II Cucsa.219180.1   

CsRSL4 II Cucsa.352750.1   

Hordeum vulgare EX574671 II NCBI HDP18P23w HDP Hordeum vulgare subsp. vulgare cDNA clone HDP18P23,  

Panicum virgatum 
FL939126 I 

NCBI 
CCGP9527.g1 CCGP Panicum virgatum root (L) Panicum virgatum cDNA  

FL998279 II CCHY25227.b1 CCHY Panicum virgatum callus (N) Panicum virgatum cDNA  

Glycine max 

GmRSL1 I 

Phytozome 5.0 

Glyma02g41370.1  

GmRSL2 I Glyma18g04420.1  

GmRSL3 I Glyma11g33840.1  
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GmRSL4 I Glyma14g07590.1  

GmRSL5 II Glyma04g04800.1  

GmRSL6 II Glyma06g04880.1  

GmRSL7 II Glyma10g40360.1  

GmRSL8 II Glyma14g09770.1  

GmRSL9 II Glyma17g35420.1  

GmRSL10 II Glyma20g26980.1  

Manihot esculenta 

MeRSL1 I 

Phytozome 5.0 

cassava10199.m1  

MeRSL2 II cassava38950.m1  

MeRSL3 II cassava25589.m1  

MeRSL4 II cassava20440.m1  

MeRSL5 II cassava14986.m1  

Mimulus guttatus 

MgRSL1 I 

DOE Joint Genome 
Institute 

mgf025678m  

MgRSL2 II mgf019332m  

MgRSL3 II mgf024863m  

MgRSL4 II mgf018282m  

MgRSL5 IIc mgf022238m  

Oryza sativa 

OsLAX not RSLd 

Rice 
Genome Annotation 

Project 

LOC_Os01g61480 OsbHLH123 

OsRSL1 I LOC_Os01g02110 OsbHLH125 

OsRSL2 I LOC_Os02g48060 OsbHLH126 

OsRSL3 I LOC_Os06g30090 OsbHLH127 

OsRSL4 II LOC_Os03g10770 OsbHLH129 

OsRSL5 II LOC_Os03g42100 OsbHLH131 

OsRSL6 II LOC_Os07g39940 OsbHLH128 

OsRSL7 II LOC_Os11g41640 OsbHLH132 

OsRSL8 II LOC_Os12g32400 OsbHLH133 

OsRSL9 II LOC_Os12g39850 OsbHLH130 

OsRSL10 IIc LOC_Os03g55550 OsbHLH134 

Physcomitrella patens 

PpRSL1a I 

DOE Joint Genome 
Institute 

jgi|Phypa1_1|167487|estExt_fgenesh1_pg.C_1470079 PpbHLH043 

PpRSL2a I jgi|Phypa1_1|165193|estExt_fgenesh1_pg.C_840011 PpbHLH033 

PpRSL3 II jgi|Phypa1_1|163809|estExt_fgenesh1_pg.C_600113 PpbHLH028 

PpRSL4b II jgi|Phypa1_1|65387|fgenesh1_pg.scaffold_6000069 PpbHLH083 

PpRSL5 II not annotated e  

PpRSL6 II jgi|Phypa1_1|88041|fgenesh1_pg.scaffold_164000047 PpbHLH095 

PpRSL7 II jgi|Phypa1_1|231841|fgenesh2_pg.scaffold_140000014 PpbHLH063 

Populus trichocarpa 

PtRSL1 I 
DOE Joint Genome 

Institute 

jgi|Poptr1_1|756089|fgenesh4_pg.C_LG_II002269  

PtRSL2 I jgi|Poptr1_1|759048|fgenesh4_pg.C_LG_IV000676  

PtRSL3 II jgi|Poptr1_1|754916|fgenesh4_pg.C_LG_II001096  



 

112 

PtRSL4 II jgi|Poptr1_1|767688|fgenesh4_pg.C_LG_IX000739  

PtRSL5 II jgi|Poptr1_1|798077|fgenesh4_pm.C_LG_I001080  

Sorghum bicolor 

SbRSL1 I 

DOE Joint Genome 
Institute 

jgi|Sorbi1|5035419|Sb03g008290  

SbRSL2 I jgi|Sorbi1|5038869|Sb04g030230  

SbRSL3 II jgi|Sorbi1|5028258|Sb01g007160  

SbRSL4 II jgi|Sorbi1|5028668|Sb01g014580  

SbRSL5 II jgi|Sorbi1|5034588|Sb02g037990  

SbRSL6 II jgi|Sorbi1|5040921|Sb05g025230  

SbRSL7 II jgi|Sorbi1|5045388|Sb08g019780  

Selaginella 
moellendorffii 

SmRSL1 I 

DOE Joint Genome 
Institute 

jgi|Selmo1|413232|fgenesh2_pg.C_scaffold_20000093 SmbHLH003 

SmRSL2 I jgi|Selmo1|426794|fgenesh2_pg.C_scaffold_86000063 SmbHLH004 

SmRSL3 I jgi|Selmo1|409967|fgenesh2_pg.C_scaffold_11000350 SmbHLH005 

SmRSL4 I jgi|Selmo1|414414|fgenesh2_pg.C_scaffold_23000278 SmbHLH006 

SmRSL5 I jgi|Selmo1|418491|fgenesh2_pg.C_scaffold_38000089 SmbHLH101 

SmRSL6 I jgi|Selmo1|423809|fgenesh2_pg.C_scaffold_63000123 SmbHLH103 

SmRSL7 II jgi|Selmo1|404767|fgenesh2_pg.C_scaffold_2000755 SmbHLH018 

SmRSL8 II jgi|Selmo1|419388|fgenesh2_pg.C_scaffold_42000088 SmbHLH042 

Zea mays 

ZmRSL1 I 

Maize Genome 
Sequencing Project 

AC216731.3_FGT001_seq=cdna;_coord=5:201012621..201013822:1;_parent_gene=AC216731.3_FG001  

ZmRSL2 I GRMZM2G066057_T01_seq=cdna;_coord=8:8532281..8534158:-1;_parent_gene=GRMZM2G066057  

ZmRSL3 II GRMZM2G057260_T01_seq=cdna;_coord=7:156447257..156452969:-
1;_parent_gene=GRMZM2G057260 

 

ZmRSL4 II GRMZM2G383841_T01_seq=cdna;_coord=2:205690389..205691689:-
1;_parent_gene=GRMZM2G383841 

 

ZmRSL5 II AC198518.3_FGT005_seq=cdna;_coord=3:87821662..87823007:1;_parent_gene=AC198518.3_FG005  
a
 The JGI annotated version of PpRSL1 and PpRSL2 have a longer N-terminus than the published sequences (Menand et al. 2007b). 

b
 The JGI annotated version of PpRSL4 has an incorrect splicing prediction in the C-terminus. 

c
 The sequences of MgRSL5 and OsRSL10 appear to have incorrect splicing predictions. They were not used in the alignments and phylogenetic analyses. 

d
 AtIND and OxLAX were used as outgroups in the phylogenetic analyses. 

e
 These sequences are not annotated. They were found by a BLAST search on the available genomic sequences. 

f
 See Chapter 2. 
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Appendix 3 – Physcomitrella RSL class II proteins 

 

                 10        20        30        40        50        60        70        80 

        ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

PpRSL3  -----------------MTDLNSSLESPGSSVEETP--AAANSVATSCEAMMWEAWSTQPSTGDEASTSKLD--LLPELV  

PpRSL4  -----------------MTDLISILESSGSSREEMCPVAVPSSVASSCERLIWEGWTAQPSPVEESTTSKLLPKLLPELE  

PpRSL5  MVQL-YMSSVEEQRETMVQPYVSSMDSGSTSGRQTPSCVVQQGSNTFETSNLWEEWTQASNGDDTVSTSNFL----PEIS  

PpRSL6  MVRFNYMYPVQEQLEAMTDQHTPSMDSVSSAGEKTSSCIVQQGGNASETSNLWEEWTQGSNGDDSVSTSNFL----PELN  

 

                 90       100       110       120       130       140       150       160 

        ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

PpRSL3  SSSNSRLSFQQSDLLSNMLSSFHPLSQHSSAGFELSHNRGGSEHSPEFLQEGSSEAD---TETSSFGDLYINRQTSRNSF  

PpRSL4  TSSYSALTLQQPDALSSILSVLHPFSHYSSASLELARNPDWSLKSSNPLRESSSEAG---IRTSSFEGLYSGQHTTKKIH  

PpRSL5  SFTSSRLSFQQSDSLTTWMSGFPPLSQ-TALSPDLSHSSDPVDHPPAFMQEGLGPGDSILDYSPALTEMYP-KSSSKHNS  

PpRSL6  SSTSSRLAFHQSDILSTWISGYHPLSQ-SSLSSEFSHTSDRENHPPAFMQEGLIPSGLILDSDPALTDIYT-RSSS----  

 

                170       180       190       200       210       220       230       240 

        ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

PpRSL3  LGSIACPLPSNHSDSGKNIRREDLSNQLGAKSSAPLQLWQSLGPESPSSPLAYHNIGYRHSHGEKWETGSQSHSPWPTVS  

PpRSL4  LGVIPYHLSEDQRQCAVSPP-ENECRLLSANSSGSLHWWHSIGPESPSSTLAFHNIGIQHSTFEKCEPRGQSHSSWPAAS  

PpRSL5  SDCLPYPAASAPDKKMTDHELGSAISLAYDRGTVSRQLLRALGPLSPSSPLALQN-GLQNPLGDPWDASP-SAMPWPMAT  

PpRSL6  SDSLPYPTARIMDKALTDHELESAVPLAYEKGCVPPQVLRNLGPLSPSSPLAFQN-GLLNPLRDPWDSCP-SALPWSNVT  

 

                250       260       270       280       290       300       310       320 

        ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

PpRSL3  NTSSTIQLLGGRAAENEVIQVLKSNDSEISKSLATLQQYGDHGRQLNLN-HSSTTNHPEVIYSSKFGPKPSASSHTDVLM  

PpRSL4  GTSPTVQYFHAHSADNEGVEVVKQDDSQISKALATYQPHGDHSLVLNSDRIASTTSHSEDPCGPKPGRRPAASYDTEMIL  

PpRSL5  TG-HAYGPGATRTSIPDHLANAINHLEGIAPSSASH---------------ASKPRHTDIFIAPNGTFDSTPGGWTPQYY  

PpRSL6  TASQTYGQVTTRTFIPDHSASAIDKLEAVATITAGYG--------------ASKPQHTDVFIEPNGTFQSTPAGWAPQFY  

 

                330       340       350       360       370       380       390       400 

        ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

PpRSL3  SSTNSSFLSIPTAWSTPEYSMSGPSTRSEQFMNFVRIAQEQNSVPISGPSPILGSYVG-CSNRSKSGISRVVSQETPTAK  

PpRSL4  SPS-ESFLTTPNMLSTLECVISGASNISDQYMNFVREPQEQRLSSISDLSLIPDSHADPHSIGFISGTFRTDSHGTGIRK  

PpRSL5  DGSVTTDESVKAMKLIASLREAG---HAEATIGFCTESKPSFLRGGDRTTSPVDSFFG-KCVGAKTSIKQACSGKHPLEL  

PpRSL6  DGSEATGLLVKPMRAIASLGEAG---CGEATSEFCTKTKPGLLKGGDTITSPVGSLLG-DCKKAESSMKQVWPGKHRLEL  

 

                410       420       430       440       450       460       470       480 

        ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

PpRSL3  NRLLACEGSSGPAPKRPS-YAAHSDSHADQAAAMWSSPNLRRSSFPSIL---TSQAMEIYAIGPALNTNGKPRARRGSAT  

PpRSL4  NRIFLSDEESDFLPKKRSKYTVRGDFQMDRFDAVWGNTGLRGSSCPGNS---VSQMMAIYEFGPALNRNGRPRVQRGSAT  

PpRSL5  EEIVDSENSELNPTQLKRSKLFENHPNALWSDQSMNGRELRSYSHLVGSSLTASQPMDIIAIGPALNTDGKPRAKRGSAT  

PpRSL6  VELVDGEDTKSSPTQLKRPKHSTDYANVLLSDHILKGAELRSYFHSGDVGLNASQAMDIIVIGPALNTNGKPRAKRGSAT  

 

                490       500       510       520       530       540       550       560 

        ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

PpRSL3  DPQSVYARHRREKINERLKTLQHLVPNGAKVDIVTMLDEAIHYVQFLQLQVTLLKSDEYWMYATPNTYKG-IDLTNSPPQ  

PpRSL4  DPQSVHARARREKIAERLRKLQHLIPNGGKVDIVTMLDEAVHYVQFLKRQVTLLKSDEYWMYATPTSYRSKFDDCSLVPG  

PpRSL5  DPQSVYARHRREKINERLKSLQNLVPNGAKVDIVTMLDEAIHYVKFLQNQVELLKSDELWIYATPNKYNG-MDISDLSDM  

PpRSL6  DPQSVYARHRREKINERLKNLQNLVPNGAKVDIVTMLDEAIHYVKFLQTQVELLKSDEFWMFANPHNYNG-IDISDPSSM  

 

                570  

        ....|....| 

PpRSL3  TQRLQSSA*-  

PpRSL4  ENN*------  

PpRSL5  YLQELESRA*  

PpRSL6  HSPELESNI*  
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Appendix 4 – Alignment of the C-terminus of RSL class I proteins 

                     10        20        30        40        50        60        70        80        90       100       110       120       130       140   

            ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|.. 

AlRSL1      SPKSAGNKRSQT-GESTQ---------PS-KKPNSGVTGKA-KPK-----------PTTSPKD-PQSLAAKNRRERISERLKILQELVPNGTKVDLVTMLEKAISYVKFLQVQVKVLATDEFWPAQGGKAPDISQVKDAIDAILSSS  

AlRSL2      SPKLAGNKRPFT-GDNTH---------LS-KKPSSGTNGEA-KPK-----------ATTSPKD-PQSLAAKNRRERISERLKVLQELVPNGTKVDLVTMLEKAIGYVKFLQVQVKVLAADEFWPAQGGKAPDISQVKEAIDAILSST  

AtRHD6      SPKSAGNKRSHT-GESTQ---------PS-KKLSSGVTGKT-KPK-----------PTTSPKD-PQSLAAKNRRERISERLKILQELVPNGTKVDLVTMLEKAISYVKFLQVQVKVLATDEFWPAQGGKAPDISQVKDAIDAILSSS  

AtRSL1      SPKLAGNKRPFT-GENTQ---------LS-KKPSSGTNGKI-KPK-----------ATTSPKD-PQSLAAKNRRERISERLKVLQELVPNGTKVDLVTMLEKAIGYVKFLQVQVKVLAADEFWPAQGGKAPDISQVKEAIDAILSSS  

BdRSL1      PPAKMAQKRACQGGETQAAA----------KKQCGGSKK-S-KAK------------AAPAKD-PQSAVAKVRRERISERLKVLQDLVPNGTKVDMVTMLEKAITYVKFLQLQVKVLATDDFWPVQGGKAPELSQVKDALDAILSSQ  

BdRSL2      RPFRAPVPERVRDAEPR-AS----------KKQCGASRKTTAKAKSPAPA-------ITSPKD-PQSLAAKNRREKISERLRTLQEMVPNGTKVDMVTMLEKAISYVKFLQLQVKVLATDEFWPAQGGMAPEISQVKEALDAILSSQ  

BdRSL3      ATVPASYKRPRAHVQPQQEAEEQESITPNPKKQCGDGKVVI-KSSAAATG-------TSPRKE-PQSQAAKSRRERIGERLRALQELVPNGSKVDMVTMLDKAITYVKFMQLQLTVLETDAFWPAQGGAAPEISQVKAALDAIILSS  

CA145633    ----------------------------------GGARK-S-KANAA----------PAPTKD-PHMVTAKVRREKIAEKLKVLQDLVPNGTKVDLVTMLEKAITYVKFLQLQVKVLAADEFWPAQGGKAPELSQVKDALDAILSSQ  

CA654295    -----------------------------------------------------------------------VRRERISERLKVLQDLVPNGTKVDMVTMLEKAITYVKFLQLQVKVLATDEFWPVQGGKAPELSQVKTALDAILSSQ  

CsRSL1      QEIVPNHKRSHTTGESSGSVC---------KKQCTAAPKKQ-KPK------------SATAKD-PQSIAAKNRRERISERLKILQELVPNGSKVDLVTMLEKAISYVKFLQLQVKILATDEFWPVQGGKAPDISQVKEAIDVILSSQ  

FL939126    APVRASQKRTYVGVESPAAV-------SP-KKHCGAGRKATSKAKSA---------PTVPTKD-PQSLAAKNRRERISERLRTLQELVPNGTKVDLVTMLEKAISYVKFLQLQVKVLATDEFWPAQGGKAPEISQVREALDAILSSA  

GmRSL1      AQELVLTKRSSM-GENMQAT--------NAKKPCTSASKAA-KPK------------LNPFKD-PQSVAAKNRRERISERLKILQELVPNGSKVDLVTMLEKAISYVKFLQLQVKVLAADEFWPVQGGKAPDISQVRQAIDAILSSQ  

GmRSL2      AQESVLQKRPSM-GENMKAA----------KKQCSTESKTP-KHK------------SSPSKD-PQSVAAKNRRERISERLKILQELVPNGSKVDLVTMLEKAISYVKFLQLQVKVLATDEFWPVQGGKPPEISQVKEVIDVILSSQ  

GmRSL3      AQESVLQKRPFM-GESMKAA----------KKQCSIESKTT-KHN------------SSPSKD-PQSVAAKNRRERISERLKILQELVPNGSKVDLVTMLEKAISYVKFLQLQVKVLATDEFWPVQGGKPPDISQVKEVIDTILSSQ  

GmRSL4      AQELVLKKRSFM-GENMQ-V-------TNAKKPCTSASKAA-KPK------------SNPSQD-PQSVAAKNRRERISERLKILQELVPNGSKVDLVTMLEKAISYVKFLQLQVKVLAADEFWPVQGGKAPDISQVRQAIDAILSSQ  

MeRSL1      TQDVNFHKRPNL-GESMQAL----------KKPCNGATRKP-KPK------------SSPSKD-PQSIAAKNRRERISERLKVLQELVPNGSKVDLVTMLEKAISYVKFLQLQVKVLATDEFWPAQGGKAPDISQVKEAIDAILSSQ  

MgRSL1      SPLSLYH------GENVQAM----------KKQCVGSSSDSKKP------------------D-PQSVAAKNRRERISERLKILQELVPNGSKVDLVTMLEKAISYVKFLQLQVKVLAADEFWPAQGGKAPDLSQVREAIDAILASQ  

OsRSL1      PPPPAAKKRACPSGEARAAG----------KKQCRKGSKPN-KAASASSPSPSPSPSPSPNKEQPQSAAAKVRRERISERLKVLQDLVPNGTKVDLVTMLEKAINYVKFLQLQVKVLATDEFWPAQGGKAPELSQVKDALDAILSSQ  

OsRSL2      PAPRGSQKRAH--AESSQAM------SPS-KKQCGAGRKAG-KAKSA---------PTTPTKD-PQSLAAKNRRERISERLRILQELVPNGTKVDLVTMLEKAISYVKFLQLQVKVLATDEFWPAQGGKAPEISQVKEALDAILSSS  

OsRSL3      AAASGSQRRARPPPSPLQGSELHEY---S-KKQ----RANN--------------------KE-TQSSAAKSRRERISERLRALQELVPSGGKVDMVTMLDRAISYVKFMQMQLRVLETDAFWPASDGATPDISRVKDALDAIILSS  

PpRSL1      ----------------------------------------NLKPRAR----------QGSAND-PQSIAARVRRERISERLKVLQALIPNGDKVDMVTMLEKAISYVQCLEFQIKMLKNDSLWPKALGPLPNTLQELLELAGPEFAG  

PpRSL2      ------------------------------GRALGPALNTNLKPRAR----------QGSAND-PQSIAARVRRERISERLKVLQALIPNGDKVDMVTMLEKAITYVQCLELQIKMLKNDSIWPKALGPLPNTLQELLELAGPEFSG  

PtRSL1      PDASSFHKRPNM-GESMQAL----------KKQRDSATKKP-KPKSA-----------GPAKD-PQSIAAKNRRERISERLKMLQDLVPNGSKVDLVTMLEKAISYVKFLQLQVKVLATDEFWPVQGGKAPDISQVKGAIDATLSSQ  

PtRSL2      PDASSFHKRPNM-GESMQAL----------KKQCNNATKKP-KPKSA----------AGPAKD-LQSIAAKNRRERISERLKVLQDLVPNGSKVDLVTMLEKAISYVKFLQLQVKVLATDELWPVQGGKAPDISQVKEAIDALLSSQ  

SbRSL1      LPAKPPHKRARRDGE-VQAAAA--------KKQCGGGARKS-KAKAA----------PAPTKD-PQSVAAKVRREKIAEKLKVLQDLVPNGTKVDLVTMLEKAITYVKFLQLQVKVLAADEFWPAQGGKAPELSQVKDALDAILSSQ  

SbRSL2      PVRRAPQKRTYVSAEPQ-AV-------SP-KKHCGAGRKAS-KAKSP---------STTPTKD-PQSLAAKNRRERISERLRTLQELVPNGTKVDLVTMLEKAISYVKFLQLQVKVLATDEFWPAQGGKAPEISQVREALDAILSSA  

SmRSL1      ------------------------------KAPRVPALNTNFKPRAR----------QGSAND-PQSIAARHRRERISDRLKILQELVPNSTKVDLVTMLEKAINYVKFLQLQVKVLTSDDYWP-SGATWQNSSKADTAL-------  

SmRSL2      ------------------------------KAPRVPALNTNFKPRAR----------QGSAND-PQSIAARHRRERISDRLKILQELVPNSTKVDLVTMLEKAINYVKFLQLQVKVGAS----------------------------  

SmRSL3      ------------------------------SHKREPALNTNLKPRAK----------QGCAND-PQSIAARQRRERISDRLKILQELIPNGSKVDLVTMLEKAINYVKFLQLQVKVLMNDEYWPPKGDGEEDYPVSQKYLFLSKIS-  

SmRSL4      ------------------------------SHKREPALNTNLKPRAK----------QGCAND-PQSIAARQRRERISDRLKILQELIPNGSKVDLVTMLEKAINYVKFLQLQVKVLMNDEYWPPKGDGEEDYPMSQKYLFMSKIS-  

SmRSL5      ---------------------------------CTTALNTNLKPRSR----------QGTAND-PQSIAARQRRERISQRLKILQDLVPNGSKVDLVTMLEKAINYVKFMQLQLQASVVD---------------------------  

SmRSL6      ---------------------------------CTTALNTNLKPRSR----------QGTAND-PQSIAARQRRERISQRLKILQDLVPNGSKVDLVTMLEKAINYVKFMQLQLQASVVD---------------------------  

ZmRSL1      APVRVPQKRTYLSAEPQ-AV------SPN-KKHCGAGRKAS-KAKLA---------STAPTKD-PQSLAAKNRRERISERLRALQELVPNGTKVDLVTMLEKAISYVKFLQLQVKVLATDEFWPAQGGKAPEISQVREALDAILSSA  

ZmRSL2      PAKAPPHKRARRDGDQVQAAAAA-------KKQCGGVGARM-KSKQAKLAA------PAPTKD-PQSVAAKVRREKIAEKLKVLQDLVPNGTKVDLVTMLEKAITYVKFLQLQVKVLAADEFWPAQGGKAPDLSQVKDALDAILSSS  

AtRSL2      ---------------------------------PSKALNLNGKTRAS----------RGAATD-PQSLYARKRRERINERLRILQNLVPNGTKVDISTMLEEAVHYVKFLQLQIKLLSSDDLWMYAPIAFNGMDIGLSSPR------  

AtRSL4      ---------------------------------KASVTSVKGKTRAT----------KGTATD-PQSLYARKRREKINERLKTLQNLVPNGTKVDISTMLEEAVHYVKFLQLQIKLLSSDDLWMYAPLAYNGLDMGFHHNL------  

AtIND       ------------------------------------PATVPKPNRRN----------VRISDD-PQTVVARRRRERISEKIRILKRIVPGGAKMDTASMLDEAIRYTKFLKRQVRILQ-----------------------------  

OsLAX       ------------------------------------RMRGGGRRRPG----------AKLSTD-PQSVAARERRHRISDRFRVLRSLVPGGSKMDTVSMLEQAIHYVKFLKAQVTLHQ-----------------------------  
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Alignment used for the phylogenetic analysis of RSL class I proteins. 

Conserved amino acid regions of 34 RSL class I proteins were manually aligned. The RSL class II proteins 

AtRSL2 and AtRSL4 and the bHLH subfamily VIIIb proteins AtIND and OsLAX were used as outgroups. The 

sequence logo shown below the alignment was generated using WebLogo; the red line indicates the 

location of the bHLH domain. Sequence names are indicated in Appendix 2; a FASTA format version of this 

alignment is given in Supplementary File 9. 
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Appendix 5 – Alignment of the C-terminus of RSL class II proteins 

                     10        20        30        40        50        60        70        80        90    

            ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

AlRSL3      ALNLNGKTRASRGAATD-PQSLYAR-KRRERINERLRILQHLVPNGTKVHISTMLEEAVQYVKFLQLQIKLLSSDDLWMYAPIAYNGMDIG-LDL  

AlRSL4      VTSVKGKTRATKGTATD-PQSLYAR-KRREKINERLKTLQNLVPNGTKVDISTMLEEAVHYVKFLQLQIKLLSSDDLWMYAPLAYNGLDMG-FHH  

AlRSL5      SKSLKRKAKSNKGIASD-PQSLYAR-KRRERINDRLKTLQSLVPNGTKVDISTMLEDAVHYVKFLQLQIKLLSSDDLWMYALLAHNGLNMG-LHH  

AlRSL6      ALNLNGKTRASRGAATD-PQSLYAR-KRRERINERLRILQNLVPNGTKVDISTMLEEAVHYVKFLQLQIKLLSSDDLWMYAPIAFNGMDIG-LSS  

AlRSL7      SKSLKRKAKSNKGIASD-PQSLYAR-KRRERINDRLKTLQSLVPNGTKVDISTMLEDAVHYVKFLQLQIKLLSSDDLWMYALLAHNGLNMG-LHH  

AtRSL2      ALNLNGKTRASRGAATD-PQSLYAR-KRRERINERLRILQNLVPNGTKVDISTMLEEAVHYVKFLQLQIKLLSSDDLWMYAPIAFNGMDIG-LSS  

AtRSL3      ALNLNGKTRASRGAATD-PQSLYAR-KRRERINERLRILQHLVPNGTKVDISTMLEEAVQYVKFLQLQIKLLSSDDLWMYAPIAYNGMDIG-LDL  

AtRSL4      VTSVKGKTRATKGTATD-PQSLYAR-KRREKINERLKTLQNLVPNGTKVDISTMLEEAVHYVKFLQLQIKLLSSDDLWMYAPLAYNGLDMG-FHH  

AtRSL5      SKSLKRKAKANRGIASD-PQSLYAR-KRRERINDRLKTLQSLVPNGTKVDISTMLEDAVHYVKFLQLQIKLLSSEDLWMYAPLAHNGLNMG-LHH  

BdRSL4      SPVAANPSGKGRQSTTD-PQSLYAR-KRRERINERLKVLQNLVPNGTKVDISTMLEEAVQYVKFLQLQIKLLSSDDMWMYAPIAYNGMNIG-VDL  

BdRSL5      SCSKKTGTRASRGAATD-PQSLYAR-KRRERINERLKILQNLVPNGTKVDISTMLEEAVEYVKFMQLQIKLLSSDDTWMYAPLAYNGMNVGSFDL  

BdRSL6      SSRGGAKARAGRGAATD-PQSLYAR-KRREKINERLKVLQNLVPNGTKVDISTMLEEAVHYIKFMQLQIKLLSSDDMWMFAPIAYNGFNVG-LDL  

BdRSL7      GVCPKGKARAARGASTD-PQSLYARQKRRERINERLKTLQTLVPNGTKVDMSTMLEEAVHYVKFLQLQIKVLSSDDMWMYAPLAYNGMNIG-LDL  

BdRSL8      VANQSDNTSGCKRPSKN-MQSLYAK-KRRERINEKLRVLQQLIPNGTKVDISTMLEEAVQYVKFLQLQIKVLSSDETWMYAPLAYNGMDIG-LTL  

CsRSL2      SSTSNGKPRASRGSATD-PQSLYAR-KRRERINERLRILQSLVPNGTKVDISTMLEEAVQYVKFLQLQIKLLSSDDLWMYAPIAYNGMDIG-LNL  

CsRSL3      SLNGANKSRASRGSATD-PQSLYAR-KRRERINERLRILQTLVPNGTKVDISTMLEEAVQYVKFLQLQIKLLSSDDLWMYAPIAYNGMDIG-LNP  

CsRSL4      NASPKPKTRATRGSATD-PQSLYAR-KRRERINERLRILQKLVPNGTKVDISTMLEEAVHYVKFLQLQIKLLSSDDLWMYAPIAYNGMDIG-LQQ  

EX574671    GVTPKGKARAGRGAATD-PQSLYAR-KRRERINERLKTLQTLVPNGTKVDMSTMLEEAVQYVKFLQLQIKVLSSDEMWMYAPIAYNGMNIG-LDL  

FL998279    -------------SSKN-SQSLYAK-KRRERINERLKTLQQLIPNGTKVDMSTMLEEAVQYVKFLQLQIKLLSSDETWMYAPQPLEH--------  

GmRSL10     PPNLDRKSRATTSAAAD-PQSLYAR-KRRERINERLRILQNLVPNGTKVDISTMLEEAVQYVKFLQLQIKLLSSEDLWMYAPIVYNGINIG-LDL  

GmRSL5      ALNFKGKTKASKGSATD-PQSLYAR-KRRERIDDRLRILQNLVPNGTKVDISTMLEEAVQYVKFLQLQNKLLSSDDLWMYAPIAYNGLDLV-LNL  

GmRSL6      -------TKVSRGSATD-PQSLYAR-KRRLRINERLRILQNLVPNGTKVDRSSMLEEAVQYMKFLQLQIKLLSSDDLWMYAPIAYNGLDL-----  

GmRSL7      PPNLHRKSRATTGAATD-PQSLYAR-KRRERINERLRILQNLVPNGTKVDISTMLEEAVQYVKFLQLQIKLLSSDDLWMYAPIAYNGINIG-LDL  

GmRSL8      ALNSNGKTRASRGSATD-PQSLYAR-KRRERINERLRILQNLVPNGTKVDISTMLEEAVNYVKFLQLQIKLLSSDDLWMYAPLAYNGLDIG-LNL  

GmRSL9      ALNSNGKTRASRGSATD-PQSLYAR-KRRERINERLRILQNLVPNGTKVDISTMLEEAVNYVKFLQLQIKLLSSDDLWMYAPFAHNGLDIG-LNL  

MeRSL2      TLNSNGKTRASRGSATD-PQSLYAR-KRRERINERLRILQNLVPNGTKVDISTMLEEAVHYVKFLQLQIKLLSSDDLWMYAPIAYNGMDIG-LNQ  

MeRSL3      AQKSNGKARTSRGSATD-PQSLYAR-KRRERINERLRILQNLVPNGTKVDISTMLEEAVHYVKFLQLQIKLLSSDDLWMYAPIAYNGMDIS-KLI  

MeRSL4      ALNLNGRTRASRGAATD-PQSLYAR-KRRERINERLKILQNLVPNGTKVDISTMLEEAVNYVKFLQLQIKLLSSDDLWMYAPIAYNGMDIG-LDL  

MeRSL5      ILNSNGRTRASRGAATD-PQSLYAR-KRRERINERLRILQNLVPNGTKVDISTMLEEAVHYVKFLQLQIKLLSSDDLWMYAPIAYNGMDIG-LT-  

MgRSL2      KSASNGKAKVGKGTATD-PQSLYAR-KRREKINERLRILQNLVPNGTKVDISTMLEEAVQYVKFLQLQIKLLSSDEMWMYAPIAYNGMDMG-LYQ  

MgRSL3      ALNLDGKTRASRGSATD-PQSLYAR-KRRERINERLRILQNLVPNGTKVDISTMLEEAVEYVKFLQLQIKLLSSDDLWMYSPIAYNGMDIG-LDL  

MgRSL4      LKSLNGKAKANRGSATD-PQSLYAR-KRRERINERLKILQNLVPNGTKVDISTMLEEAVQYVKFLQLQIKLLSSDDLWMYAPIAYNGMDIG-I--  

OsRSL4      TGHGGAKARAGRGAATD-PQSLYAR-KRRERINERLKILQNLIPNGTKVDISTMLEEAVHYVKFLQLQIKLLSSDDMWMFAPIAYNGVNVG-LDL  

OsRSL5      AAKSNGKAQSGHRSATD-PQSLYAR-KRRERINERLKILQNLVPNGTKVDISTMLEEAMHYVKFLQLQIKLLSSDEMWMYAPIAYNGMNIG-IDL  

OsRSL6      PSSKKMGTRANRGAATD-PQSLYAR-KRRERINERLRILQNLVPNGTKVDISTMLEEAVQYVKFLQLQIKLLSSDDTWMYAPIAYNGVNISNIDL  

OsRSL7      VLKQSDNSRGHKQCSKD-TQSLYAK-RRRERINERLRILQQLVPNGTKVDISTMLEEAVQYVKFLQLQIKLLSSDDTWMFAPLAYNGMNMD-LGH  

OsRSL8      RTKMSVSKACKHSVSAESSQSYYAK-NRRQRINERLRILQELIPNGTKVDISTMLEEAIQYVKFLHLQIKLLSSDEMWMYAPLAFDSGNNR-LYQ  

OsRSL9      GATSKGKSRAGRGAATD-PQSLYAR-KRRERINERLKTLQNLVPNGTKVDISTMLEEAVHYVKFLQLQIKLLSSDEMWMYAPIAYNGMNIG-LDL  

PpRSL3      ALNTNGKPRARRGSATD-PQSVYAR-HRREKINERLKTLQHLVPNGAKVDIVTMLDEAIHYVQFLQLQVTLLKSDEYWMYATPNTYKGIDL-TNS  

PpRSL4      ALNRNGRPRVQRGSATD-PQSVHAR-ARREKIAERLRKLQHLIPNGGKVDIVTMLDEAVHYVQFLKRQVTLLKSDEYWMYATPTSYRSKFD-DCS  

PpRSL5      ALNTDGKPRAKRGSATD-PQSVYAR-HRREKINERLKSLQNLVPNGAKVDIVTMLDEAIHYVKFLQNQVELLKSDELWIYATPNKYNGMDI-SDL  

PpRSL6      ALNTNGKPRAKRGSATD-PQSVYAR-HRREKINERLKNLQNLVPNGAKVDIVTMLDEAIHYVKFLQTQVELLKSDEFWMFANPHNYNGIDI-SDP  

PpRSL7      ALNTNGRPRAKRGSATD-PQSVYAR-HRREKINERLKTLQRLVPNGEQVDIVTMLEEAIHFVKFLEFQLELLRSDDRWMFADPFIYNGMDI-TGS  

PtRSL3      VLNSNGKTRATRGAATD-PQSLYAR-KRRERINERLKILQNLVPNGTKVDISTMLEEAVHYVNFLQLQIKLLSSDDLWMYAPLAYNGIDIG-LNQ  

PtRSL4      TLNSSGKTRASRGAATD-PQSLYAR-KRRERINERLRILQTLVPNGTKVDISTMLEEAVQYVKFLQLQIKLLSSEDLWMYAPIAYNGMDIG-LDH  

PtRSL5      TLNSSGKTRASKGAATD-PQSLYAR-KRRERINERLRILQNLVPNGTKVDISTMLEEAVQYVKFLQLQIKLLSSEDLWMYAPIAYNGMDIG-LDH  

SbRSL3      GSGGNAKAQAAKGSATD-PQSLYAR-RRRERINERLKILQKLVPNGTKVDISTMLEEAVHYVRFLQQQIKMLSSDEMWMYAPIAYNGMSLG-IDM  

SbRSL4      SDNLGGKAKADRRSATE-SQSLYAR-KRRERINERLRILQNLVPNGTKVDISTMLEEAVEYVKFLQLQIKLLSSDEMWMYAPIAYNGMNIG-IDL  

SbRSL5      SSTKKAYTRASRGAATD-PQSLYAR-KRRERINERLRILQKLVPNGTKVDISTMLEEAAQYVKFLQLQIKLLSSDDTWMYAPIAYNGINISNVDL  

SbRSL6      VLKQSTSSRGRSRSSKD-LQSLYAK-RRRERINERLRTLQQLIPNGTKVDMSTMLEEAVQYVKFLQLQIKLLSSEDTWMYAPLAYNHMSMD-VSQ  

SbRSL7      ARRPKGKGRAGRSATTE-PQSIYAR-KRRERINERLKILQNLVPNGTKVDISTMLEEAVHYVKFLQLQIRLLSSDDTWMYAPIAYNGMNIG-IGI  

SmRSL7      ALNTNGKPRAKRGSATD-PQSVYAR-HRRERINERLKTLQHLVPNGAKVDIVTMLEEAIHYVKFLQLQVNMLSSDEYWTYAPTTYNGPETP-LGL  

SmRSL8      ALNTDGKPRAKRGSATD-PQSIYAR-QRRERINERLRALQGLVPNGAKVDIVTMLEEAINYVKFLQLQ--LLSSDEYWMYAPTNYNGMNIS-LGM  

ZmRSL3      SSAKKTCTRASRGGATD-PQSLYAR-KRRERINERLRILQNLVPNGTKVDISTMLEEAAQYVKFLQLQIKLLSSDDMWMYAPIAYNGINISNVDL  

ZmRSL4      SSSKKTCARASRGAATE-PQSLYAR-KRRERINERLRILQNLVPNGTKVDISTMLEEAAQYVKFLQLQIKLLSCDDTWMYAPIAYNGINIGNVDL  

ZmRSL5      ARAAGRGAAAATTTTAE-PQSIYAR-KRRERINERLKVLQSLVPNGTKVDMSTMLEEAVHYVKFLQLQIRLLSSDDTWMYAPIAYNGMGIG-IDL  

AtRHD6      GVTGKTKPKPTT-SPKD-PQSLAAK-NRRERISERLKILQELVPNGTKVDLVTMLEKAISYVKFLQVQVKVLATDEFWPAQGGKAPDISQV-KDA  

PpRSL1      ALNTNLKPRARQGSAND-PQSIAAR-VRRERISERLKVLQALIPNGDKVDMVTMLEKAISYVQCLEFQIKMLKNDSLWPKALGPLPNTLQELLEL  

 

                     

 

 

 

Alignment used for the phylogenetic analyses of RSL class II proteins. 

Conserved amino acid regions of 56 RSL class II proteins were manually aligned. The RSL class I proteins 

AtRHD6 and PpRSL1 were used as outgroups. The sequence logo shown below the alignment was generated 

using WebLogo; the red line indicates the location of the bHLH domain. Sequence names are indicated in 

Appendix 2 (MgRSL5 and OsbHLH10 are not shown due to presumably incorrect splicing predictions); a 

FASTA format version of this alignment is given in Supplementary File 10. 
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