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Abstract 

 

Crowd simulations are implemented across a vast range of applications, from scientific 

demonstrations, to video games, to films, and as such, the demand for greater realism in 

their aesthetics and the amount of agents involved, is always growing. A successful real-

time Crowd Simulation must find the optimal processing balance between the quality of 

the environment, the quality of the graphical agent representation, and the intelligence 

depth of the AI controlling the agents. These choices must be carefully made so that the 

result is appropriate to the intended context of the simulation. When deciding how best to 

control the agent, a simulation architect is presented with many possible steering and 

collision resolution methods to choose from. Many studies present these methods 

individually, depicting their strengths and weaknesses, but few compare multiple methods 

in an effort to present the best solution. This thesis attempts to address this by 

implementing and comparing two popular methods of high level steering path generation, 

and two low level collision detection methods. These are measured on the merits of their 

computational efficiency, and their level of realism through user testing, to acquire which 

combination of low and high level methods complement each other best as an ideal, 

reusable solution.  
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1 Introduction 

 

1.1 Crowd Simulation 

With ever increasing computer power available to the modern day programmer, the 

simulation of virtual agents, both individually and in crowds, is a field where the state of 

the art is constantly changing. Crowd simulations are implemented across a vast range of 

applications, from scientific demonstrations to video games, and as such, the demand for 

greater realism in their aesthetics and the amount of agents involved, is always growing. 

Crowd simulations contain two main competitors for the allocated processing time; the 

behaviour and path finding of the crowds, and the graphical representation of the agents. 

In some simulations, it could be argued that a third aspect can be considered, in that of 

the crowd‟s surroundings and environment. The optimal output of a successful simulation 

is one that can achieve a balanced mix of graphical quality and behaviour, and apply it to 

the desired number of agents. 

 

To move agents in a crowd simulation, a steering algorithm is implemented that suits the 

requirements of the scene to be navigated. This is a set of rules and decisions laid out by 

the designer that describes how an agent is to move from one location to another and 

what to interact with along the way, if necessary. These concepts of large scale 

movement and local interactions are described as high level and low level steering, and 

will form the basis of the comparison described in this thesis. High level steering typically 

implements a path finding system to move an agent around a scene, avoiding impassable 

terrain or obstacles. A high level steering algorithm is aware of the scene on a macro 

scale, and is tasked with giving the agent purpose in its motion. Low level steering 

methods are intended to stipulate how an agent handles interactions with other agents, 

and how to deal with interruptions from their intended route. Commonly, a method of 

collision detection is implemented, with a number of outcomes defined as resolutions 

depending on factors such as the direction, speed, or type of interaction encountered. 

 

The aim of any simulation is to offer a sufficient level of realism, either visual, behavioural 

or both, that fulfils the purpose of that scenario. Evacuation simulations rely heavily on the 

behaviour of the agents being as accurate as possible, while the population of a virtual 

heritage site might concentrate more on the visual quality of the inhabitants, as a trade off 

for density or intelligence. Any crowd representation that does not focus on the 

fundamental requirements of the application to which it is to be applied, risks its 

usefulness becoming nominal. Humans are able to view any virtual representation of 

movement, from flocks of birds or the movement of groups of agents, and gauge from 
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personal experience if what they are seeing appears realistic looking. It is the task of the 

researcher to identify what rules define the realism in the chosen type of movement, and 

apply that multiple times across all of the objects involved. In many cases, the context of 

the simulation defines the expected behaviour of the individuals involved, and therefore 

what the person viewing the scene subconsciously expects to see. In one of the first 

commercial uses of agent flocking, Disney created a stampede of wildebeest using 

computer animation driven by artificial intelligence (AI) that was based on Reynolds 

flocking model [Reynolds, 1987]. This was used in their animated film „The Lion King‟. The 

diversity of the different wildebeest animation used was limited, however due to the scale 

of the scene, and the way in which the animals moved, the viewer is successfully satisfied 

that the stampede looks realistic. 

 

The majority of published studies on crowd simulation aim to focus on adapting an 

existing steering algorithm or method, and perfect it for use with the intended scenario. 

Studies that emphasise intelligence over graphical rendering may also amalgamate a low 

level steering technique with a high level method, but few compare a selection of steering 

methods. This thesis will present a comparison of two popularly implemented low level 

steering methods, coupled with two high level path creation techniques. A Voronoi Graph 

and a Visibility Matrix, both navigated by Dijkstra‟s shortest path algorithm, will represent 

the high level methods of scene navigation. A grid based Cellular Automaton Model and a 

proximity testing method will be compared as competing low level steering techniques. 

Research into these methods is described in greater detail in the planning and design 

chapters, with implementation explained subsequently. Finally, each combination of 

methods are measured on their computational complexity at runtime, their ability to be 

scaled to larger and more densely populated crowds, and their level of aesthetic realism, 

through user testing. Conclusions and findings are presented at the end of the thesis. 

 

1.2 Objectives 

To be able to measure the success of each approach presented in this thesis, the choice 

of simulation methods needs to be implemented in a comparable fashion, and in a similar 

environment. The focus will be on the steering of agents, with environment and agent 

representation as secondary considerations, to allow maximum processing to be devoted 

to the steering methods. While moving the agents from point to point is a fairly simple 

exercise in itself, the difference between each implemented method will be how it deals 

with agent to agent interaction and the avoidance of obstacles. For this thesis to be 

effective, this needs to be a primary objective for each steering method. Additionally, each 

method will require the same amount of agents and period of runtime; therefore each 
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simulation must be designed in a way that can be run for an indefinite amount of time, to 

allow for fair and correct analysis. 

 

It is important that the simulation attempts to recreate steering methods specified in 

existing publications as accurately as possible. The aim is to implement the chosen 

steering methods within the scale of the designated environment, and therefore each 

method needs to be applicable to the size of the implemented scene. Hopefully, by fixing 

such factors, each method will be sufficiently diverse to make for clear results when 

comparing their effectiveness. It is from this analysis that a conclusion can be drawn to 

propose which combination of low and high level methods are most effective, or which 

components could be combined to create an optimised solution. 

 

While it is beyond the scope of this project to create a „lifelike‟ representation of human 

movement, its objective is to present the best possible implementation as put forward by 

other publications, to which the grounds for such an objective could be built, on the 

hardware available, and in real-time. 

 

1.3 Glossary of Terms 

Throughout this thesis, these terms are used, and are listed here with appropriate 

definitions. 

 

Agent – A virtual member of a simulation, normally the representation of a person. 

AI – Artificial Intelligence. 

Boid – A “bird-like object”, as defined by Craig Reynolds in [Reynolds, 1987]. Commonly 

used to reference members of a flock or group of agents. 

CUDA – Compute Unified Device Architecture. Nvidia‟s programming language for 

controlling calculations on their graphics cards. 

FOV – Field of view. 

FPS – Frames per Second. Used for measuring the frame rate of graphics rendering. 

Game Engine – The combination of rendering, physics, AI, and system code, which 

together produces a foundation for a graphical program. 

GLSL – OpenGL Shading Language. 

GPU – Graphical Processing Unit. The chip found on a video card for processing 

graphical data. This is usually accompanied by VRAM. 

LOD – Level of detail. 

LOS – Line of sight. 
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Texture – A graphical representation that is drawn on top of a graphical model to alter its 

appearance. This is commonly used in building modelling to make a single structural 

design look like many different buildings. 

VRAM – High speed RAM that is found on a video card and is used as storage for the 

GPU‟s processes. It also holds geometrical data such as textures, and the framebuffer.
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2 Crowd Steering 

This chapter covers an overview of what components make a crowd simulation, and 

explores each one in detail. The latter parts of the chapter more formally explore the main 

subject of this thesis, looking deeply into steering methods and the algorithms behind 

them. This contains research and observations gathered from various existing 

publications. 

 

2.1 Agents 

Agents are the population of a virtual simulation which form together to make crowds. 

They can take any given form, such as a 3D representation of a human, or a more 

simplistic representation in 2D. How the agent is drawn is determined by the requirements 

of the scenario. Broadly speaking, the quality of the agents is determined by the focus of 

the simulation and the computational power available (assuming it is real-time). For 

example, evacuation and disaster modelling simulations focus very heavily on path finding 

and physiological effects on the agents, and as a consequence, de-prioritise the quality of 

the agent models, normally settling for basic 3D representation, or even a 2D equivalent 

using a top down viewpoint. In Figure 1, an example of this is shown with a scene 

consisting of flat 2D buildings, and populated by many agents represented with simple 

green arrows. In contrast, urban simulations focus more on realism of the city and the 

inhabitants, leading to more animated agents represented in higher polygon counts. 

Figure 2 shows an example of high quality human models used in this fashion. In this 

context, their aim is to help create a more realistic looking scene, as shown by the quality 

of the accompanying buildings. Further detail can be administered to agents in a 3D 

scene by utilizing a variety of animations. Many pedestrian simulations disregard 

differences among individuals that make up a scene and use the same animation for all 

agents. This is generally true for large scale simulations in a move to lessen the 

computational complexity of running in real-time. Smaller, more detailed scenarios or 

those with plenty of processing power available, may implement a wide variety of 

animations to give the members of the scene a more lifelike and individual appearance. 

Again, this depends entirely on the purpose of the simulation and objectives of the 

designers. Simulations that utilise a selection of individual animations often use 

environmental or circumstantial triggers to make agents perform these animations. 

Examples in an urban environment include pedestrians stopping to look at shop windows, 

or picking up objects from the floor. Such events must be implemented with the correct 

frequency, proportional to the density of the agents, to reflect the likelihood of these 

actions in the real world. 
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Figure 1. Symbolic representation of agents is  Figure 2. High quality representations of 

often used when visual quality is not as important humans, seen in a virtual city simulation. 

as the AI of agents, thus saving resources. 

 

Most 3D agents will have their models covered with a texture to vary their appearance 

without needing to redesign their structure. The correct variety of textures evenly 

distributed within a crowd can give the illusion that every agent is individual, but with the 

added benefit of using very low computer resources (comparatively to extra animations, or 

different character models). As the quality of a texture increases, so too does the texture 

memory that is required to store the texture in the VRAM, so a simulation designer must 

find a balance between quality and resources. 

 

Detailed textures can give a relatively simple agent model the look of a high polygon 

equivalent. For example, some of the agents shown in Figure 2 are seen to be wearing 

suits and shirts. A graphical artist that wished to create a very high detail model for a film 

or single artistic render might approach each item of clothing separately to the person‟s 

model, and create the suit jacket and trousers entirely in their own 3D structure. These 

would then be placed around the human model in a like for like fashion (comparing the 

real world to the virtual equivalent). This approach is ideal when one wishes to control the 

intricacies of an agent and his attire, but for a crowd simulation, this amount of processing 

would be crippling when used for many agents. Instead, agent designers for simulations 

commonly create a simple character base model and, use a texture to draw on what is not 

there in the structure. The problem with this approach is that it not possible for the clothes 

to behave as clothes; as they cannot bend or crease as the human moves [Ryder, 2005]. 

By using textures, physical attributes such as facial features where the nose and ears 

would require many extra polygons to model, can be represented with far less 

computational expense. 

 

Further to this, many simulations utilize a LOD mechanic that increases or decreases the 

quality of the agents in relation to the viewpoint of the user. Multiple representations of the 

same agent type are prepared and then swapped in, as the distance from the viewpoint 
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increases. The theory is that as the distance increases, the user will not notice the less 

detailed character model or texture, therefore maintaining little noticeable degradation in 

overall viewing quality in the simulation. Techniques such as alpha blending help to merge 

the higher and lower representations together, in an attempt to swap them seamlessly 

when a transition is necessary. D. Pearce et al. [Pearce, 2004] combine LOD with view 

frustum culling, algorithmically removing agent geometry before the graphics pipeline can 

apply Hidden Surface Removal to the scene. LOD methods can also be applied to 

animations, with some simulations reducing the quality and frequency of complex 

animations when the agent is at an arbitrary distance from the viewer. Silva et al. [Silva, 

2008] use a similar method to [Pearce, 2004], but also exclude AI flocking calculations 

outside of the agent LOS. This improves the Boids model presented by Reynolds in 

[Reynolds, 1987] by up to three times, using the same methodology, but with occlusion 

applied. 

 

2.2 Virtual Environments 

The virtual environment is the realm in which simulated agents navigate, giving them 

context and purpose. Similarly to the agents themselves, it can be represented on the 

most basic level in 2D, or as a far more complex example, such as a photo realistic city. 

Depending on the purpose of the simulation, the virtual environment can either 

complement the agents within it, or use agents to complement itself. 

 

As previously described, the virtual environment is one of the three main consumers of 

computational resources in a simulation. Design parameters such as draw distance and 

LOD factor greatly into how detailed a virtual environment can be with the resources 

available. Some designers [Low, 2007] choose pre-made environments for their 

simulations, such as the freely available Unreal Tournament 2 (UT2) game engine. These 

are supplied with the environment, lighting, and agent quality already in balance, allowing 

a scene to be engineered as required far more rapidly. An example of this is shown by 

Low et al. [Low, 2007], where their crowd AI uses the UT2 engine for visualisation. In the 

same way as an agent is made to look more complicated than its 3D model actually is; 

virtual environments utilize textures greatly. For example; a simple square polygon can be 

made to appear as a row of shops with the application of an appropriate texture. LOD and 

FOV methods allow fewer resources to be used on buildings that are far away from the 

viewer, either reducing their render quality, or culling the buildings completely from the 

viewpoint at an appropriate position in relation to the camera. When this concept is 

expanded and improved, entire cities can be generated that closely represent their real 

world counterparts. Figure 3 is a large scale example of this, showing multiple buildings 
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and individual textures. The quality of such simulations is sometimes in excess of what 

can be rendered by the available hardware. In such circumstances, footage of the scene 

may need to be created „offline‟ by processing pre-rendered images. 

 

 

Figure 3. A very detailed simulation of a city displaying the impact that high quality textures can 

have on appearance. 

 

Building modelling can be taken much further to the extent of using satellite data to 

generate a cityscape. Flight simulations are most common place for such implementation, 

with Ubisoft‟s „H.A.W.X‟ using GeoEye‟s commercial-use satellite imagery to accurately 

depict the look, structure, and height of buildings in major cities. Figure 4 shows Rio de 

Janeiro represented within this game, as a prime example of this technique. Although the 

wide scale would not be appropriate for most crowd simulations, the principle can be 

scaled to suit. 
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Figure 4. Rio de Janeiro, represented in Ubisoft‟s „H.A.W.X‟, is an impressive example of satellite 

topography used for cityscape mapping. 

 

The environment that agents populate is not solely for the purpose of aesthetics. Many 

demonstrations utilize aspects of the virtual environment as focus points for the agents, 

triggering behavioural responses. An example used earlier was that of an agent stopping 

to view a shop window, therefore adding implied realism to the scene. 

 

2.3 Steering 

Steering is the control behind the movement of agents in a virtual environment. It is the 

process that defines their decisions for collision avoidance and path finding, with the aim 

of simulating that of their human counterparts. Defining behaviour in scientific terms is 

incredibly difficult, and consequently, there are many different approaches that have been 

presented for the steering of agents. A steering method is designed or chosen based on 

the requirements of that simulation and will aim to capture the essence of the human 

behaviour perceived appropriate in the given environment. 

 

2.3.1 High Level Steering 

Path finding is the highest level of steering and controls the agent‟s routing from one point 

to another. Routing methods can be based on pre-computed locations or calculated on 

the fly, depending on the type of path finding. Some pre-computed examples follow a 

routing table that defines the relationship between predetermined points in an 

environment, and can be used to calculate the navigation required to get from one point to 

another via the shortest path. The routing tables, or graphs, used in many steering 

methods will often be computed using Voronoi graphs, Delaunay Triangulation, or a 
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Visibility Matrix [Hoff, 2000], [Choset, 1995], [Arikan, 2001]. Other methods of path finding 

choose a target for the agent to reach and attempt to navigate him there in the most 

efficient way, while keeping to an „ideal path‟. Methods such as this put a greater 

emphasis on collision avoidance, requiring checks for both fixed and moving obstacles. 

The advantage of using pre-computed routing data generated from static obstacles (such 

as buildings) at pre-processor time, is that these obstacles are already accounted for 

before runtime, and factored into the accessibility of routes in the scene. This lowers the 

stress upon low level steering techniques, requiring them only to deal with the avoidance 

of dynamic obstacles such as other agents. 

 

2.3.1.1 Voronoi Tessellation 

The Voronoi diagram is a method used to decompose the space S into regions around 

each point P named as the Voronoi site, such as all the points in the region around point P 

are closer to P than any other point in the space S [Champagne, 2005]. Voronoi diagrams 

are used to divide up an area containing obstacles to avoid, known as Sites, with lines 

that are as far as possible from each of these points. These lines are called Edges, and 

are very useful in the context of a crowd simulation as they can be used as paths to 

navigate a scene, while keeping a maximum distance from surrounding obstacles. The 

points that join the path edges are known as Nodes, and can be conveniently used as 

waypoints for agents to navigate to. Figure 5 shows a section of a Voronoi graph, with 

these key elements highlighted. The implementation described in this thesis will aim to 

use the centre of each building as the Voronoi site, meaning that the graph will generate 

paths furthest from each building. This will be described in more detail during Chapter 5. 

 

 

Figure 5. Voronoi diagram. Displaying Sites as the points from which a Voronoi graph is calculated, 

Nodes as the intersections between Voronoi regions, and Edges as the boundaries of these 

regions. 
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Voronoi diagrams are commonly used for agent steering in various presentations for 

global path finding and goal seeking, although the ways in which they are implemented 

can vary somewhat. A majority of implementations use Voronoi segments calculated from 

static obstacles to compute safe paths of maximal clearance for navigation [Hoff, 2000], 

[Choset, 1995]. In these examples, Voronoi diagrams are created based on a fixed set of 

points around the environment, and navigated with a path finding method. Hoff et al. [Hoff, 

2000] choose an end point in the environment for a robot to navigate to. The closest 

Voronoi node in the graph to the robot‟s current position is determined, and then moved 

towards using a potential-field method. Once on the Voronoi graph, the robot is moved 

between each node via the shortest graph edge, until the target is reached, although it is 

not specified which path finding algorithm is used for this purpose. The potential-field 

approach for governing movement imposes a repulsive force upon the robot or agent 

calculated based on the distance from surrounding obstacles. The closer the obstacle, the 

greater the force towards an opposite direction is. In Choset et al. [Choset, 1995], the 

Voronoi graph is created on an ad hoc basis by exploring an environment with a robot. 

This robot is equipped with a sonar ring consisting of multiple sensors which can return 

the distances of obstacles in the robot‟s vicinity. It moves around an unmapped scene 

using the algorithmic rules that define a Voronoi graph, maintaining equidistance from all 

obstacles within its line of sight. The graph produced is a robust representation of a static 

scene Voronoi graph, and with modification, the algorithm used to construct the graph 

could be adapted for procedural generation within a program, instead of using a sonar 

equipped robot. 

 

In contrast, Champagne et al. [Champagne, 2005] compute Voronoi diagrams based 

around the centre of each group of agents, using these regions to determine the 

boundaries the members of that group can populate. This causes varied degrees of agent 

flocking, ranging from tight to sparse, depending on how small the region allocated to that 

group is at that given time. In this simulation, each group of agents moves around a scene 

using a FOV of 120 degrees, checking for possible collisions at 3 set distances in front of 

this FOV. Collisions with other flocks are avoided at long distance by adjusting the 

direction of both groups to a trajectory parallel to the tangent of the intersect point of the 

bounding circles. This keeps the groups moving, while maintaining sufficient distance 

between them to allow free movement of the individual agents. Pending collisions with 

several groups, or collisions that are detected close by, can provoke the flock to adjust 

their speed or even stop completely until the conditions are met that allow them to 

proceed. The ability for a crowd to halt entirely is often overlooked or not implemented in a 

majority of simulations. Similarly, A.Sud et al. [Sud, 2007] use dynamic first and second 

order Voronoi diagrams to create the paths for virtual agents to follow. These are 
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calculated per frame by their MaNG Engine (Multi-agent Navigation Graph), but in 

contrast to the method used in [Champagne, 2005], the MaNG is calculated on the GPU, 

allowing for greater performance due to faster processing. 

 

2.3.1.2 Visibility Matrix 

Another method for dividing up a given space for use by a path finding algorithm, is to use 

a Visibility Matrix. This requires the space to be defined by the vertices of the obstacles 

within it, each representing a node within the Visibility Matrix. The relationship of each 

node with every other node in the matrix is tested to measure whether a path can be 

drawn between them without intersecting an obstacle. The results of this are recorded 

within the matrix, creating an array detailing the paths between every pair of nodes. To 

enable common path finding algorithms to be run against this matrix, the lengths of each 

successful path can also be recorded. The strength of the Visibility Matrix is that it can be 

run against any free space with fixed obstacles defined by simple polygons, and create 

paths without requiring manual selection of path nodes, or any further intervention. 

Additionally, it can be used as a pre-computed matrix, so the complexity or number of 

nodes does not affect the runtime performance. Arikan et al. [Arikan, 2001] use a Visibility 

Matrix constructed in this way. This study computes the shortest paths between each pair 

of vertices at compile time, and navigates the matrix at runtime using Dijkstra‟s shortest 

path algorithm. Figure 6 shows a diagram used to display this method. Their reasoning for 

using a Visibility Matrix for path creation is that it does not involve segmenting the 

environment with landmarks, and therefore, does not suffer from issues such as local 

abnormalities which may be created from procedurally generated landmarks or waypoints. 

In contrast, Byszewski [Byszewski, 2009] uses waypoints set manually within a scene 

editor, allowing for full customisation. This does not, however, offer the speed and 

Automaton required by a majority of studies, nor by the aims of this simulation. The 

requirement for steering agents through paths is generally due to the need to avoid 

obstacles, which the Visibility Matrix method does in a logical fashion by using the edges 

of the obstacles themselves as waypoints. 
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Figure 6. A visibility graph constructed from the nodes shown in red, and then navigated from A to 

B via the shortest path. Adapted from [Arikan, 2001]. 

 

Mitchell [Mitchell, 2000], and Hershberger [Hershberger, 1989], both describe methods of 

extending the edges of polygons created by Visibility Matrix algorithms, if certain 

circumstances arise. Examples arise at scene edges where large open spaces can occur 

due to vertices only being present along the borders of more centrally located obstacles. 

By extending path edges outwardly from outlying obstacle edges, to meet the bounding 

scene border, the previously open space is dissected into smaller triangular sections. 

These are both easier to navigate and reduce the chance of bottlenecking by offering 

fewer paths towards the same goals. 

 

2.3.1.3 Dijkstra’s Algorithm 

Dijkstra‟s path finding algorithm is used to find the path with the lowest cost between a 

given node in a graph, and every other node in that graph. This is known as finding the 

shortest path. It is normally applied to a graph or tree consisting of multiple nodes and the 

path distances between each node, known as the path weight. The algorithm expands 

outwards from a starting node, navigating through the graph, searching for the next 

shortest path, until its target is located. The list of nodes traversed towards the target can 

then be read back as a complete route, and used as the optimal method of reaching the 

given destination. The algorithm‟s procedure can be best described as follows (adapted 

from [Dijkstra, 2011]): 

1. Set the initial source node a distance value of zero, and assign every node an 

infinite distance. 

2. Mark all nodes as unvisited. Set initial node as the current node. 
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3. For the current node, consider all its unvisited neighbours and calculate their 

distances from the initial node. For example: if the current node x has a distance of 

8, and an edge connecting it with another node y is 5, the distance from y to x will 

be 8+5=13. If this distance is less than the previously recorded distance from the 

initial node, overwrite the current route distance. 

4. When we are done considering all neighbours of the current node, mark it as 

visited. A visited node will not be checked again; its distance recorded now is final 

and minimal. 

5. If all nodes have been visited, or if the target node is reached, finish the algorithm. 

Otherwise, set the unvisited node with the smallest distance from the initial node, 

as the next current node and continue from step 3. 

 

Figure 7 shows two identical layouts and their waypoints, as interpreted by a Voronoi 

Graph and a Visibility Matrix. The first two diagrams display the entire graph, with example 

path distances. These are displayed on the Voronoi, but for ease of display, are omitted 

from the Visibility graph. The second pair of diagrams display the same scenes but with 

two paths chosen by Dijkstra shortest path algorithm, displaying how the algorithm 

described above, decides upon the final route. 
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Figure 7. This diagram shows how Dijkstra shortest path algorithm chooses a path from a waypoint 

matrix created by a Voronoi Graph or a Visibility matrix, based on the cost of each waypoint. 

Shortest paths are shown in blue, with a longer red path given as a contrasting example. 

 

Dijkstra‟s algorithm is commonly used in crowd simulations for agent path finding due to 

its ease of implementation and the accuracy of its output. As described previously, Arikan 
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et al. [Arikan, 2001] use Dijkstra‟s algorithm against a Visibility Matrix for agent routing. In 

this study, all possible paths are pre-computed before runtime and stored within an array, 

to be called upon when an agent requires a new path. Using this method, the runtime 

overheads of path finding are negligible as Dijkstra‟s algorithm is never run again. The 

problem with using stored routes is that it does not allow for dynamic route changing, such 

as that seen in Pelechano et al. [Pelechano, 2007]. This study concerns evacuation 

simulations, and proposes circumstances where a path may become permanently blocked 

or temporarily impassable. Such situations could not be dealt with in a simulation that 

uses only precompiled routes from each node. Haciomeroglu [Haciomeroglu, 2009] uses 

two versions of Dijkstra‟s shortest path finding algorithm at multiple stages when 

navigating agents. The first is for global path calculation on a city wide, free space map, 

and the second is to navigate sub-paths between global paths. At points where an agent 

enters a large area of free space between two global nodes, an agent may be presented 

with the possibility of reaching the next global node via several sub-paths. This is where 

the second Dijkstra‟s algorithm is applied, and navigates using the current population 

density of each sub-path to represent the path weighting. This evens out the population 

preventing overcrowding. Mitchell [Mitchell, 2000] describes a variation of the standard 

shortest path algorithm called the Continuous Dijkstra Method. In this, he describes a 

technique that propagates wave fronts equidistant from a source, that span out to discover 

obstacle vertices. This essentially builds a visibility graph on the fly while seeking the 

target node, and is effective in scenarios where the scene cannot be first mapped at pre-

computation time. 

 

2.3.2 Low Level Steering 

As with global path finding techniques, there are many methods of collision avoidance that 

can be used to aid the navigation of the agent around a scene. These are categorised as 

low level steering techniques, and can be complementary when paired appropriately to 

certain high level counterparts. The complexity of the collision avoidance required 

depends on how comprehensive the path finding may be. Pre-routed path finding methods 

may only require the agent to be aware of, and avoid, other agents; while on the fly 

routing will require a heavy reliance on collision detection and avoidance to navigate the 

agent around both agents and obstacles. 

 

2.3.2.1 Grid Methodologies 

One approach to dealing with inter-agent relationships is to divide a given space into 

equally sized cells, basing AI decision on the state of each cell when populated by an 

agent. This is known as a Cellular Automaton Model, and is described in a study by 
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Dijkstra et al. [Dijkstra, 2000]. This method of scene subdivision models a physical system 

as a mathematical representation, assigning each cell within it a finite set of states. 

Traditionally these consist of two states, either populated or empty, and can be used to 

represent both static and dynamic obstacles, depending on the desired application. Figure 

8 shows a building represented in a Cellular Automaton Model. 

 

 

Figure 8. A structure represented by a Cellular Automaton Model, with black squares signifying 

impassable grids. Adapted from [Pelechano, 2007]. 

 

A Cellular Automaton Model will use a fixed resolution to interpret the scene, which will be 

specified by the size of the uniform grid of cells applied to the space. As agents navigate a 

scene, their presence within the grid cell must be tracked and updated, allowing the global 

grid to maintain a track of all obstacles contained within it. This offers a favourable ability 

to check for collisions between agents with very low computational overheads, as the 

agent need only request the status of a grid square from the global grid. As seen in other 

methods, a proximity check would normally be conducted to discover neighbouring agents 

or potential future collisions. Assuming an agent is not navigating along the edge of a 

scene, there are only eight potential directions an agent can take from a given location, 

further reducing the computational complexities associated to other navigation methods. 

However, this factor, and others present potential disadvantages with the Cellular 

Automaton Model as observed by in Pelechano et al. [Pelechano, 2007]. Due to the 

resolution of the cells within the grid, the densities allowed within each area of a given 

space are usually less than that which would be allowed in real equivalents. This is 

apparent when a section of geometry or an agent overlaps multiple grid cells. If all partially 

populated grid cells are marked as occupied, the space allotted to that agent or obstacle 

is likely to be much greater than that of its actual size. This also can create flow issues, 

with agents lining up behind one another if densely populated, but with unrealistic 

amounts of free space between them. Alternatively, if only one grid cell is assigned to an 

agent at once, based upon whichever cell is populated as a majority, problems can occur 

when passing between cells. In circumstances where a section of space is densely 
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populated, graphical collisions may occur between agents that overlap grid cells, even 

though the collision detection intelligence deems them to primarily populate adjacent cells. 

 

2.3.2.2 Proximity Detection Technique 

An alternative approach to coping with agent interactions is to use traditional geometric 

intersection tests to determine when collisions are likely to take place. This can be 

achieved using bounding spheres or bounding boxes around agents, or groups of agents 

to break down collision testing into segments. For example, a complex model such as one 

representing a human can consist of many polygons. When testing for collisions against 

this model, it would be computationally time consuming to test each individual polygon 

face with that of the colliding model. On a macro scale simulation, determining which part 

of an agent has collided is inconsequential, rather the fact that the agent has collided, or is 

about to collide, is more relevant. By wrapping the model in a virtual bounding sphere or 

box, the complex representation is simplified to a single primitive polygon that can be 

easily tested against. Various forms of bounding volumes can be used to catch potential 

collisions before they occur at longer ranges from the agent being tested. As proximity 

methods are more flexible than the grid based method presented previously, better 

realism can be achieved more easily during collision resolution. As Foudil et al. [Foudil, 

2006] notes; in real life, people will prefer to pass each other with least deviation from their 

path. Provided a bounding box is large enough to detect collisions at an early stage, acute 

adjustments to an agent‟s path will cause head on collisions to pass accurately, with little 

noticeable difference to trajectory. In contrast, grid based methods do not generally allow 

for such minute adjustments. 

 

2.3.3 Other Steering Factors 

Further to the steering and movement of the agents, are the sociological and 

psychological considerations of the crowd. Most simulations, by design, disregard the 

behavioural differences between individuals that you would expect in the real world. A 

behaviour engine will aim to address the missing „human‟ components of a simulation by 

considering extra traits of each agent in the steering AI. This can affect factors such as the 

speed of the agent, or the routes he chooses. This can also be enhanced by implementing 

a variety of different agent animations, and associating these with specific scenarios. 

When certain environmental or personal variables are met, these animations can be 

executed, giving diversity to the scene. An industrial example of this is the program 

Massive Prime, which can generate behaviour for tens of thousands of agents with an 

overall objective. When used for rendering battle scenes for the film industry, each 

combatant has their own customizable responses for specific situations, some showing 
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fear and fleeing, while others are running towards the opposing force. Although entirely 

pre-rendered, these simulations implement high qualities of behavioural AI, with large 

crowds displaying emergent behaviours such as flocking. 

 

As complexities of simulations increase, and with developments in processing breaking 

new boundaries, some simulations are being optimised to run on multiple GPUs or CPUs. 

For example, Reynolds [Reynolds, 2006] describes that during his research for Sony 

Computer Entertainment, US R&D, he is able to create very large crowds, rendered in 

real-time using the multi-cell architecture of the Playstation 3 CPU. Yilmaz et al. [Yilmaz, 

2009] were able to create a real-time simulation tracking over one million agents by using 

Nvidia‟s CUDA libraries. These allow developers to use the powerful GPU found in most 

modern high end PC‟s for parallel processing. This creates impressive results that would 

be near impossible to achieve by regular means without switching from real-time to pre-

rendered implementation. As similar research in this field is undertaken, the potential for 

the overall complexity of steering methods being produced is likely to increase allowing 

more lifelike and accurate representations of the real world. 
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3 Design and Planning of Implementation 

Considerations for how the scene will be displayed and presented are discussed within 

this chapter, along with flowcharts of how the AI decisions will be made. Finally, criteria for 

measuring the success of the simulation will be laid out. These will concern factors such 

as realism, computational efficiency, and scalability to other scenarios. 

 

3.1 Scene Visualization 

Displaying the scene and agents to the user is essential in providing an interface for 

qualitative measurement of the realism. While the behaviour of the agents and their 

movements could be tracked and reported upon from a command line based interface, 

this could only be used to measure computational efficiencies of the implemented 

algorithms. The visualisation of the scene needs to be easily navigated and manipulated 

to show movements and behaviour of agents from various angles. It will also need to be 

designed to fit the context of the behaviour, while not being too overly complex or dense 

as to take away processing cycles or attention from the agents themselves. 

 

3.1.1 Environment Context, Design, and Display 

In keeping with virtual environment and crowd research being undertaken in the 

department of computer science at UEA, the context of the scene will be an urban city 

environment. This offers scope for a variety of building shapes and sizes, with the option 

to add areas of open space, which should give the steering methods implemented 

sufficient diversity for a fair test. The scene will need to be large enough to accommodate 

a fairly dense population for stress testing each steering method, with sections large 

enough to show multiple agents meeting along the same path, and resolving such 

encounters successfully. Graphically, the buildings will require textures to improve the 

aesthetics of the scene, but as this is a behaviour orientated simulation, complex building 

models and textures will not be necessary. 

 

3.1.2 Camera Control 

Paramount to the analysis of the simulation will be the ability to navigate the scene in real-

time, and to have full control over the movement of the camera. To make the camera 

movement as intuitive as possible, axis rotation will be controlled using the mouse, while 

acceleration forward or backwards will be tied to keyboard commands. Additionally, it may 

be beneficial to program pre-set camera locations that can be snapped to with keyboard 

controls, further improving the navigation of the scene. It will be necessary to allow the 
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camera to leave the proximity of the scene, and not to be bound to any area of it. This will 

be to allow aerial views encompassing the whole scene to enable analysis of macro crowd 

movement. This could pose potential issues with graphical rendering, due to the amount 

of data being drawn in the viewpoint, and will require investigation at the time of 

implementation. 

 

3.1.3 Population 

The most essential part of the scene will be the agents themselves, and therefore their 

representation is the primary graphical focus. As discussed, agent density is more 

important than graphical quality, so a balance will need to be met when the optimal 

quantity of agents is calculated. If a low quality representation of an agent is implemented 

initially, it can be used to decide how many agents the scene and the AI can support. At 

this point, the agent‟s graphical representation can be scaled up progressively in quality 

until a sufficient rendering level is reached that is aesthetically acceptable, without being 

detrimental to the frame rate. 

 

Establishing the optimal number of agents that the scene can support, (disregarding 

graphics as a factor), will be dependent on four main factors: the number of  vertices 

available to visit in the steering method‟s matrix, the amount of free space between these 

points, the size of the agent avatars, and the complexity of the local collision avoidance 

algorithms. For example, if a scene consisted of just two sites to navigate agents 

between, a real-world equivalent of 20 meters apart, a population of 1000 agents would 

be unmanageable within very few frames. Deadlock would occur between agents 

competing for space, but constantly registering local collisions. Inevitably in this scenario, 

clipping of agent avatars would also be likely, potentially causing parts of their models to 

pass through one another. This is the most undesirable side effect as it shows the limits of 

the collision avoidance code to have been surpassed. The complexity of the AI will need 

to be high enough so that clipping of agents is kept to a minimum, but not too processor 

intensive that it causes frame loss. As with every other element of this simulation, a 

balance of speed to complexity will need to be met. Once the main simulation components 

are in place, the ideal number of agents can be established, and the behaviour or 

environment can be adjusted if required. 

 

3.2 Intelligence and Behaviour 

The method used for high level navigation of the scene will be Dijkstra‟s shortest path 

algorithm. This will navigate agents across two sets of paths generated by a visibility 

graph, and the Voronoi algorithm. The difference between the two arrays of path vertices 
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will be inconsequential to Dijkstra‟s as both will produce a set of points for the algorithm to 

compute paths, at runtime. No additional parameters should be required for either 

method. When implemented, the main difference between the methods will be the way in 

which they direct the flow of the agents. The visibility graph will be built on the surrounding 

points of structures, and will therefore manifest as showing agents moving close to the 

buildings, and crossing open areas to corners of structures. In stark contrast, Voronoi will 

funnel the agents to the furthest possible points from the structures, potentially using less 

path vertices, but also increasing the density of agents on a given path. 

 

The visibility method for calculating paths, will establish which points have a line of sight to 

other points in the scene. This will be calculated by drawing straight lines from one point 

to every other point in the scene sequentially, and checking whether these are intersected 

by structural lines of buildings. The results of this will be stored in a matrix and then 

referenced by Dijkstra‟s shortest path algorithm. Implementing this calculation so that it 

can be completed before the scene begins in real-time, will prevent the need to evaluate 

these details per frame. This should greatly reduce the demand on the computer 

hardware. Ideally, the method for calculating this should be dynamic and reusable so that 

new points can be added and included into the scene without changes to the algorithm‟s 

structure. In terms of pre-run time calculation, the Voronoi method will be similar and 

should allow the heavy weight computing to be completed before the graphics of the 

scene begins. Given the same selection of structure points, the Voronoi method will return 

a set of resultant paths that will include passages through building centres. This will 

require a second round of processing, testing all path lines against building lines to 

remove any failures, in the same way as planned for the Visibility method. Because of 

this, it is expected that this method will be the longest to compute. 

 

When an agent requires a new path, Dijkstra‟s shortest path algorithm will be used to 

query the path matrix (calculated by either of the steering methods), and then the agent 

will set off towards the first location in that path. By storing the results of this calculation as 

a sequence of path nodes, it will not be necessary to call on the Dijkstra‟s algorithm again 

until the agent has completed the entire path. In theory, calling the algorithm at every 

node in the path would render the same path result (minus previous destinations), just 

with a far greater use of processing power. 

 

Once an agent is travelling on a path calculated by Dijkstra‟s algorithm, collisions will be 

handled by the proximity or grid methods of collision resolution. These will only detect and 

resolve collisions with other agents as the high level steering methods will have ensured 

that an agent should not choose a path that would cause a collision with a building. By 



34 
 

removing the need to check against structures in the scene, the requirement for complex 

line intersection code is eliminated, drastically cutting down the calculations required per 

frame. 

 

The proximity detection method will require the agent to test whether any other agents are 

within their „personal space‟, and if so act upon this. The size of this personal area will 

need to be established through testing, to determine ideal parameters. If it is too small, 

agent models may overlap one another before detection takes place, which is detrimental 

to visual realism. An overly large detection space may cause the agents to space out far 

too widely and collide with buildings, or cause issues with larger density crowds. 

Resolution will be conducted by the agent that detected the collision, moving either to the 

left or right of the detected obstacle, depending on their incoming angle. Theoretically, if 

this movement is enough to clear the other offending agent, then that agent will not need 

to conduct any collision resolution at all, cutting down on processing. At worse, both 

agents will determine that a collision is imminent and shear either side of each other, as 

shown in Figure 9. Once the collision is resolved, an agent will need to be placed back 

onto its original path, only further deviating if another collision is detected. 

 

 

Figure 9. The stages of collision avoidance, showing agents shearing past one another. Adapted 

from [Champagne, 2005]. 

 

The grid method of collision detection will test on a far more short sighted range, checking 

whether the grid that the agent wishes to travel to is free to enter. This grid will be a virtual 

representation of the scene that only the AI will interact with, therefore some pre-

processing will be required to translate visual elements into the grid, for example; grid 

locations that are populated by buildings. This can be calculated in a pre-processing step, 

and will prepare the grid with static obstacles that cannot be entered. As each agent 

moves around, their grid location will update, setting their currently occupied grid cell as 

an impassable location. Other agents will check this grid map as they move between grid 
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locations, to ensure they can pass freely into their next cell. This has a benefit over the 

proximity detection method, in that the agents will be aware of building locations, although 

as previously discussed, they should not pass near buildings during their route. For local 

collision detection, agents need only check adjacent squares and not the location of other 

agents as in the proximity method. This should be a much more efficient method. 

 

Flowcharts covering the AI decision trees for Dijkstra‟s shortest path algorithm, and the 

collision avoidance methods, are covered in the following section. They will be used as a 

guide for programming the AI functions during the implementation, and represent the 

preferred order that decisions should be made in.  
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3.2.1 Steering Flowchart 
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Figure 10. Flowchart of high level steering AI. 
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3.2.2 Avoidance Flowcharts 
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Figure 11. Flowchart of the Proximity collision detection and resolution method. 
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Figure 12. Flowchart of the grid collision detection and resolution method.  
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3.3 Measurement of Results 

As described in the objectives of this thesis, the aim is to measure which combination of 

both high and low level steering is superior based on a number of quantitative and 

qualitative factors. To achieve this, both computer and human methods will be used to 

measure the success of the implementation, and a conclusion will be drawn from these 

findings. As stated in the objectives, each simulation test will be run for an equal amount 

of time, with the same number of agents, although this number will need to be established 

post-implementation, and is dependent on how many agents the engine can effectively 

render and control. The test machine will consist of an AMD Phenom II 3.34Ghz 6 core 

processor, with 6Gb of RAM, and a GeForce GT250, running in Windows 7 Ultimate 

64Bit. 

 

Quantitative measurement will encompass the computational side of the result analysis. 

This will consist of measuring each method (and combination of methods), for speed of 

pre-processing, overall memory requirements, and runtime frames per second. Each test 

will be repeated 10 times on a system running only essential background processes and 

programs, and the mean of each test will be established from these results. Processing 

speed will be measured by placing timers within the code at the beginning and end of the 

pre-processing classes, and outputting this to a file or the console for recording. Memory 

measurement will be achieved via the Windows Task Manager which can be configured to 

give a comprehensive display of paged and unpaged memory use per program, including 

total memory consumption. Finally, the FPS at runtime will be measured using a free-ware 

application called Fraps which is commonly used within the computer graphics 

community. 

 

Qualitative measurement will require human testers to provide feedback on which 

methods they think look the most accurate based purely on visual preference of 

behaviour. For this purpose it will be important to ensure that the range of individuals 

selected are from varying backgrounds of technical expertise, as to only test Computer 

Science scholars, for example, could give a potentially construed set of results and 

opinions, as their insight into the subject could influence their decisions or opinions.  Each 

combination of methods will be presented in a video captured from a real-time rendering 

of the scene. The most efficient way to record the data from these demonstrations will be 

to request ratings of each method combination, so as to create a set of results that can be 

statistically analysed. 
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3.4 Code Practices and Methodologies 

Throughout the planning and analysis sections of this thesis, it has been established and 

stated that efficiency is one of the highest factors of a simulation‟s success, and this can 

only be achieved through well designed code. To achieve this, each section of the 

simulation will be separated into its own class containing public methods that other 

classes can interact with. Using this design model will allow high reusability of code, for 

example, a Crowd class could hold an array of Person‟s (another class), allowing for that 

Person and its attributes to only be described once in the code, but reused multiple times. 

Making each section modular in this way will allow the different methods of steering and 

collision detection to be switched between while still using the same core components 

such as lighting and rendering classes. This project will be coded using Visual Studio 

2010 Ultimate, in C++ with OpenGL, using Team Foundation Server 2010 for source 

control. 
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4 Framework Creation 

The implementation of creating the scene is set out in this chapter. Processes for creating 

buildings, landscape and a camera system to navigate them are described, along with the 

lighting methods used. This chapter will also cover the graphical implementation of the 

agents, describing how best to represent them within the scene depending on the density 

of the crowd being displayed. 

 

4.1 Buildings 

The primary objectives of the structures in the scene are to give the agents context for 

their movements, and act as obstacles to steer around. As previously discussed, the 

simulation theme will be an urban city environment, consisting of various buildings of 

different sizes and shapes, so as to create diverse paths for the agents to follow. The 

complexity of the scene will have a direct impact on both the visibility and Voronoi steering 

methods, as both algorithms will be run against the vertices of the buildings. 

 

4.1.1 Building Location and Design 

To ensure that the agents can move relatively freely between locations, all buildings 

should be spaced so that at least four agents could pass through a space in a line 

formation, at a minimum. Although none of the proposed steering methods would create 

any direct situation where agents would be deployed in this manner, it will allow for 

avoidance to take place in densely populated situations and theoretically prevent bottle 

necks from occurring. As described, if the scene becomes overpopulated, this situation 

will no doubt become unavoidable anyway, but the scene must be designed with the 

„model‟ situation in mind. Buildings consisting of curved walls will not be used as they 

pose two problems for the program. Foremost, they are vastly more complex to render, 

consisting of many more vertices and therefore polygons. As there is a finite amount of 

per second rendering ability available on the test machine, it would seem more logical to 

allocate as much of this as possible to the rendering of agents, and to maintain an optimal 

rendering quality with an acceptable amount of FPS. Secondly, as both path creation 

algorithms calculate results based on the structure vertices, a curved wall would create a 

dense number of path points in a small area of space, leading to problems with agent 

guidance. In an example where a curved wall consists of 10 segments, that wall section 

would contain 11 vertices. The complexity of computing a Visibility Matrix increases by 

O(n2), and is therefore around 100 times slower to compute. Additionally, Dijkstra‟s 

algorithm will interpret these as 11 different destination locations, and could potentially 

(worst case) send an agent on various different routes between these points, seeing them 

all as individual potential targets. The solution to this is to approximate the group of points 
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into a few or one point, however, this would either need to be done via a separate 

algorithm (which is unlikely to work in all scenarios), or manually. Scaled up to a very 

large scenario, manual setting of points would soon become very impractical. In 

simulations representing real life scenes, building artists will take such factors into 

account, assuming the scene is manually drawn. Procedurally drawn scenes may undergo 

post processing by algorithms to identify and simplify curved edges. 

 

To offer variation in building shape, the scene will contain two irregular buildings, one of 

which is very large consisting of many points. This will offer the scene variety that is 

desired and complex routes for the agents to navigate. The remainder of the scene will 

consist of six buildings of varying sizes, with four vertices each, laid equally apart. The 

border of the scene will be impassable, containing all of the agents within it, so a 

perimeter wall will be added to the top and bottom of the scene. The side boundaries will 

not be drawn for the ease of navigation and visualization by the viewer; however this will 

still be impassable by agents as if a virtual wall was in place. 

 

Figure 13 shows the design for the planned scene in 2D top down format. It contains 46 

vertices (including the bounding perimeter corners), and offers a range of small and large 

open spaces. This should allow plenty of opportunity to see a full range of behaviours 

displayed from the planned steering and collision avoidance implementations.  

 

 

Figure 13. A top down view of the planned layout of the scene for use in this simulation. 
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4.1.2 Scalable Wall Creation Algorithm 

With the building layout finalised and building vertex coordinates stored in an array, the 

scene required the walls to be constructed. To draw the scene as shown in Figure 13, as 

simply as possible, 45 single faced polygon quads would be needed, including one for the 

floor. This presents an issue in that the two shading models in OpenGL (Smooth and 

Flat), show particular weakness across large single polygon faces. The Flat shading 

model uses the normal calculated light to shade the entire polygon face. This would be the 

equivalent of lighting one end of a long wall, but seeing the entire length of it brighten up 

equally. Smooth shading illuminates the face based on the light level at each of a 

polygon‟s vertices, meaning that a large single face lit centrally will evenly lit across the 

face. Neither of these lighting models offer realistic results used on a simple building 

structure, so to achieve acceptable visual appearance, each wall would need to be 

created from a multitude of polygons. Per pixel lighting utilizing Phong Illumination is 

another method that could be used, and would only require walls consisting of a single 

polygon. This uses GLSL, and was deemed too complex for this implementation due to 

the processing overheads that would be incurred. As polygon normal calculations are best 

run against triangular polygons, it was decided to create a wall constructed of matched 

triangle pairs, creating a square structure. To do this efficiently and accurately, an 

algorithm was created (Algorithm 1) that could be reused for each wall structure in the 

scene. 
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Algorithm 1. The wall creation algorithm for creating shaded walls consisting of multiple segments. 

 

By accepting the parameters of length, height, the number of horizontal segments, and 

the number of vertical segments, the algorithm could create a wall of any desired size, 

and subdivide it equally, as specified. Passing in values of 1 for segmentation would 

create a wall consisting of one segment, constructed with two triangles. Briefly 

summarised, the function takes a distance (Xsize), and divides that by the quantity of 

segments (Xsegments), to give a segment size (Xseg). This is repeated for the height 

parameter (Zsize), resulting in the total size for a segment (Xseg x Zseg). As shown in the 

code listed here, a loop is then entered in which a segment (pairing of two triangles) is 

drawn, and the normals of both triangles computed (by passing the triangle parameters 

into another function). The loop ends and is restarted with Zseg added to the drawing 

coordinates, which begins the drawing of the next segment layer, continuing until the 

desired wall height is reached (Zsize). This is repeated per row (Xseg), while the columns 

are drawn bottom to top (Zseg distance apart), hence the nested loop required to perform 
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this operation. Also laced into this code are texture bindings for texturing the structures at 

a later stage of development. 

 

Overall this produces a far superior wall model compared with using a single faced 

polygon. By setting the desired x and y segment amount high enough, a smooth wall 

could even be drawn using the Flat shading model. This does however require a large 

quantity of segments, and an equally effective result was achieved by using far less 

segments with Smooth shading enabled. Testing showed that the number of segments 

required per wall, was the length or height, divided by 10. For example, a wall that was 

1700x by 300z would be constructed from 170 x 30 segments. This gave acceptable 

levels of shading across the wall‟s face while maintaining as low a polygon count as 

possible. It was also still considered computationally cheaper than implementing per pixel 

lighting. Using more densely packed segments offered little extra improvement in quality 

while directly increasing the computation required, however, less segments than this 

began to clearly show visible borders for each segment. The amount of segments used for 

the floor was reduced slightly as the viewing proximity will be such that the level of 

shading will not be so noticeable.  A comparison of using Smooth shading against Flat 

shading, combined with a basic test light source, can be seen in Figure 14. Each wall was 

created in this fashion, and then moved into place using translation and rotation, relative 

to the centre of the scene. 

 

 

Figure 14. A comparison of OpenGL Flat and Smooth shading models. Mach Bands can be clearly 

seen on the Flat shading picture (left). 

 

With all structures in place, the next stage of development was to add textures to the walls 

and floor. While not necessary in the context of the aims for the project, it should assist 

the qualitative testing as it will improve the visual appearance of the scene. Due to the 
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way in which the walls are constructed, a texture would need to be mapped per segment, 

and repeated across the surface. Further to this, each triangle in a segment requires one 

half of a texture to be mapped to it, meaning that the total times the texture is mapped is 

the number of segments multiplied by two. To reduce the number of texture binding calls, 

which can slow down frame processing, all structures were drawn sequentially after 

having the wall texture selected. Drawing buildings between agents drawing calls, for 

example, would require a greater frequency of texture binding. Finally, a suitable wall 

texture was chosen and applied. 

 

4.1.3 Roofing the Structures 

To add roof tops to the scene, a derivative of the wall creation algorithm was used that 

would create one quarter of a peaked roof. In the version used for wall creation, the 

algorithm composed of two right angle triangles, attached by their hypotenuse, to create a 

square. For roof creation, the modified algorithm was altered to draw both triangles in 

reverse of each other to create an isosceles triangle. The parameters fed into the function 

were altered to supply the desired width of the roof section, and the depth of the centre 

point. The height of the roof was fixed so that the buildings looked uniform across the 

scene, as shown in Figure 15. Because the roofing algorithm was a derivative of the wall 

algorithm, it was already set up to calculate lighting normals and attach textures. 

 

 

Figure 15. The completed scene displaying buildings with roof tops and textures. 
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The completed algorithm allowed a roof to be added at the same time as a corresponding 

wall section, providing the width of the wall as the roof width. The roof length (distance 

into the centre of the roof) was taken by using the centre point of the target building. This 

created well shaped symmetrical roofs for square structures. 

 

To improve run time efficiency of rendering the environment, the code for the walls and 

the roof tops were added to a Display List. This allowed for all of the scene‟s vertex and 

pixel data to be cached during program initialisation, and placed into a compiled state in 

memory. Each time a frame is redrawn to the screen, OpenGL can call the Display List for 

the buildings, without needing to recalculate lighting normals, or texture bindings. This 

allows far more computational power to be freed for drawing the agents, which are after 

all, the main focus in the scene. The only disadvantage in the use of Display Lists is that 

the geometry data within the List cannot be manipulated during run time, having been 

compiled during the initialisation of the application. Due to the buildings being part of a 

fixed scene, this is a low risk issue, as the buildings are neither animated nor changed for 

the duration of the simulation. 

 

4.2 Camera System 

To enable complete realisation of the scene, the viewer must be able to navigate it 

intuitively, allowing for any given angle to be attained. To achieve this best, a First Person 

style camera was used. This style of camera uses the position of the viewpoint as the 

centre axis, meaning that any movements to the scene are calculated relative to the 

viewer. This is the closest representation of what a human would see if they were in the 

scene, with camera manipulation showing scene translation that would be expected in a 

real world equivalent. It is common for this style of camera to use the mouse to represent 

head movement (scene rotation), and keyboard bindings to control position movement 

around the scene. 

 

4.2.1 Quaternion Camera Implementation 

For the purposes of this simulation, it was decided that Quaternion‟s could offer the best 

solution to create the desired camera system. OpenGL does not have a camera system 

that can be manipulated to move around a scene. Instead, the scene perspective is 

changed by moving the scene around the viewpoint. To use Quaternion‟s for this, the 

scene geometry needs to be multiplied by the matrix created from the Quaternion, before 

being rendered per frame. By placing a call to the Quaternion code in the OpenGL Display 

Loop, before any other drawing takes place, all structures and objects in the scene are 

translated by the Quaternion matrix, relative to one another. 
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An Implementation of a Quaternion camera system was obtained [OpenGL, 2011] for 

integration into the simulation framework. After various changes to bring it in line with the 

project‟s code methodologies, it was apparent that the camera rotation control was not 

compatible and would need rewriting. The Quaternion class translates mouse movement 

into camera rotation by analysing the movement of a mouse cursor within the window, per 

frame. This was converted from a DirectX implementation into an OpenGL equivalent. For 

movement around the scene, the W and S keys were assigned to forward and reverse 

motion, completing the camera implementation. As specified in the design, and to speed 

up scene navigation, some pre-set fixed camera locations were needed that could be 

reached with keyboard commands. To establish these coordinates, the chosen locations 

were navigated to manually, and their coordinates recorded. 

 

4.3 Lighting 

As displayed during the building implementation, all structures and scene elements thus 

far were designed to respond to light sources. This helps the viewer grasp a level of scene 

depth, making the scene seem less 2D when viewed. To best achieve this, a level of low 

ambient light was applied to all objects, bringing their material brightness up to an 

acceptable minimum level. A single light source was then added to the location of the 

viewpoint, meaning that as the scene was navigated, the light source would move with the 

view. This would ensure that proper lighting was present from every viewpoint, removing 

the risk of unlit areas creating poor visibility, and removing the need to implement multiple 

lights in the scene. 

 

4.4 Agent Rendering 

 

4.4.1 Spherical Representation 

To assist with the implementation and debugging of the AI, a temporary representation of 

the agents was required. Since the focus of the simulation is on the intelligence of the 

agents, the final character models were chosen after the implementation of the steering 

methods was complete; so their impact upon the run time computational power of the 

simulation was measurable. Applying models in this way ensured the AI was unrestricted 

and allowed for the best possible agent models to be selected. 

 

The temporary representation of the agents was chosen to be a standard Sphere from the 

GLUT library. This is an inbuilt primitive that has precompiled normals, and can be 
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invoked with a single line of code. Their diameter was set to be equal to the intended 

human model size, in proportion to the implemented structures. With low graphical 

overhead, the inbuilt sphere proved to be a perfect three dimensional representation for 

designing and adjusting the behaviour. Due to this ease of rendering, the total quantity of 

spheres that could be drawn at once, was reaching, or surpassing the upper limits of what 

the AI could cope with, in terms of agent density. Figure 16 shows a screen shot from an 

early design stage, in which the density of the agents is at a level where individual paths 

are becoming too tightly populated, and collision resolution methods would be under 

extreme pressure to resolve all collisions while maintaining an acceptable level of 

performance and a smooth progression of agents along their paths. The sphere model is 

essential in this example, as this would not be realisable with high polygon, full rendered 

human models on the test hardware available. 

 

 

Figure 16. A basic building scene hosts 2000 agents moving along paths generated by high level 

steering. Without hardware greatly in excess of that used in this project, this scene would be 

difficult to render with full scale realistic human models, while still running in real-time. 

 

4.4.2 Human Representation 

As discussed, to gain full appreciation of the scene during qualitative testing, realistic 

human models needed to be integrated into the scene. Models were kindly donated by the 

Computer Science Department of UEA. These had been purchased for similar 

departmental projects from AXYZ-Design, and were supplied in the form of component 
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files representing; the three dimensional model, the character texture (clothing, skin), and 

the animation for movement.  These required assimilating into C++ for use in the scene, 

using character loading code. This was kindly donated by Ruben Galvao of UEA, and 

required some integrating into the existing framework. In total there are 48 unique people 

that can be rendered by the loader code, all of which can have multiple instances in the 

scene at once, the limit therefore, is on the graphical hardware of the test system. Figure 

17 shows the layout of the simulation using human models, from a similar view to that 

seen in Figure 16. 

 

 

Figure 17. A bird‟s eye view of the scene shows 96 human agents following their paths. Each 

model is repeated twice as there are 48 unique characters. 

 

The computational requirements of the graphics hardware to render the human models is 

roughly 40 times that of rendering the spheres used during testing (comparing polygon 

triangle proportions of 225 for spheres, to ~9000 for the human models). Therefore it can 

be deduced that on the test machine used in this project, the density of agents in the 

scene is unlikely to reach a critical level, when using the human model. A critical or 

overpopulated density would be akin to the situation described previously in which the AI 

is unable to handle the quantity of agents in the scene. 

 

To counteract a drop in FPS when adding more agents to the scene, other visual frame 

dependent factors can be increased. To better explain this, the effect of low FPS will be 

described in the context of this scene. The main implications are: slow camera movement 
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as the changes in mouse position are being checked and acted upon much less; slow 

avatar movement, as their position is being updated less per real-time second, slow 

animation is most noticeable due to the animation speed not being frame rate 

independent. This can be compensated if all of these features are adjusted, such as 

increasing the animation speed and the amount of camera movement per second which 

would make the drop in FPS less noticeable. The potential issue in doing this is the drop 

in frequency of the AI decisions. Fewer frames are being processed but the distance 

travelled by agents has remained the same, therefore collisions will be detected much 

later then at a higher frame rate, and could result in being resolved too late, or not at all in 

extreme cases. With these factors considered, spherical models should replace human 

agents for crowd densities that drop the frame rate below 25 FPS, provided this is 

preferable over reducing the number of agents. This will ensure that the behaviour of the 

agents is kept as the primary focus of the simulation, with graphics as a secondary 

computational priority.  
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5 AI Design 

This final implementation chapter will cover the most important section of the thesis, 

describing the creation of the agent AI by utilizing steering algorithms set out in chapter 2. 

The chapter is split into two halves; one covering high level steering and the second 

describing local, low level techniques. 

 

5.1 Steering and Macro Control 

The first stage of the AI development was to get the agents moving around the scene from 

a location to a target. Dijkstra‟s shortest path algorithm was to be used for this path 

finding, but the points themselves needed to be generated first. In a scene of this size, 

points could be selected manually and entered into an array for the algorithm to work 

against; however the aims of this thesis stipulate that the methods presented should be 

scalable for use on different and potentially larger scenes, with as little manual 

intervention as possible. The visibility graph is the first implemented method, and is 

generated from the vertices of each of the building‟s corners, meaning that paths will run 

tightly and efficiently around buildings. Applying this to any scene requires a list of building 

corner co-ordinates, making this method easily scaled up to other implementations, 

provided the building vertices can be easily fed into the algorithm. Voronoi graphs 

generate routes that represent the furthest point from an impassable area. These sites are 

represented by single points in the middle of the obstacle to be processed. Due to this, 

different locations would need to be generated for use by the Voronoi graph algorithm, as 

building corner vertices were not appropriate. If the algorithm was run against these 

vertices, paths would be generated between building corner points and therefore through 

the centre of buildings. Using all of a building‟s co-ordinates to calculate the middle point 

for a structure, supplies the Voronoi algorithm a central location to avoid, while still 

providing an easily adaptable system should more buildings be added to the scenario. 

 

5.1.1 Visibility Graph 

The building edge visibility graph is required to supply Dijkstra‟s shortest path algorithm 

with an array of locations that can be navigated to by agents. Each point should be tested 

for its ability to reach another point, unhindered by structural obstacles, with the result of 

this recorded within the array. Every set of points that proves viable has the distance 

between them recorded, so that Dijkstra‟s can determine the appropriate path to take to a 

target, when multiple possibilities present themselves. These results are entered into a 

Visibility Matrix which is a two dimensional array that represents every point on the scene, 

and its relationship with the other points. When the array size is considered in terms of x 

and y, the distance of a point can be obtained by returning the data held at matrix[x][y] or 
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matrix[y][x]. If a path is impassable, an „infinite‟ distance value will be returned, therefore 

causing Dijkstra‟s algorithm to select another target. 

 

Implementation of this method began with the creation of the algorithm to process path 

points. As described previously, the points used were those of the building corners, 

meaning that they could be read from the existing array of structure coordinates. The 

algorithm needs to assess each possible path for structural collisions, looping through one 

starting point at a time. It begins by getting the first point, a, and drawing a line between 

this and the next point in the array, b.  The second program loop is then entered into 

which processes each structure wall in turn, and checks for an intersection between the 

wall line and the proposed path line a-b. Using the equation of each line (y = mx + c) for 

intersection calculation means that each line is drawn infinitely, meaning any collisions 

detected must then be checked to ensure that the intersection is between the two path 

points. Once the test against a single wall line is complete, a-b is tested against the next 

structure line, until a genuine collision is found or the array reaches an end, and no 

building lines remain. If an intersection is detected, the test is halted and the line a-b is 

marked as impassable in the Visibility Matrix. Alternatively, if the test reaches the end 

successfully, the distance between the points a, and b, is recorded in the matrix, signifying 

a valid route. The algorithm then moves onto the line a-c, and restarts the test against all 

structure walls. This sequence continues until the test for the last path a-n (n representing 

the final path point), is complete, meaning that all possible destinations from the point a 

have been calculated. The entire process is repeated for the next point in the path array, 

until all paths from point to point have been considered. 

 

With the algorithm complete, the paths were rendered as two dimensional lines onto the 

scene for visual error checking. Initially it was clear that there were three problems that 

needed addressing. Firstly, due to the path calculation using the corners of buildings for 

navigation points, many paths ran exactly along the walls of structures. This would cause 

graphical collision (clipping), as agents are either to be represented by spheres or human 

models, neither of which are equal to one pixel in width. For example, a sphere moving 

along one such path would display as half-in, half-out of the building, with the wall dividing 

the centre of the sphere, and the centre representing the position of the sphere as set by 

the path finding algorithm. To solve this issue, all path points were increased in a direction 

away from the building, by the equivalent of one rendered person‟s width. The second 

issue was a mathematical one, and was due to an oversight in the calculation of line 

intersections. Where lines between sets of path points could be drawn between the 

corners of structures, the Visibility Matrix had recorded a positive path result, despite the 

fact that the route passed through a structure. This had occurred because the visibility 
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testing algorithm had determined that although the lines intersected, the intersection did 

not occur within the building line. The line did intersect the point itself, although this was 

not counted. An adjustment was made to the algorithm to account for this. Lastly, the 

remaining issue was regarding empty space in the scene. Along edges of the scene, 

where no buildings were present, much of the space was unused as paths would not pass 

through these areas. In a scene of a greater size with many more buildings, or buildings 

that were spread out more, this would not present such an issue, as the focal point would 

be the denser, central sections of the scene. In this scene, due to its size, it was decided 

to manually add fourteen extra locations, around the edges of the map. This would space 

out the agents allowing larger amounts to be rendered while avoiding bottlenecks caused 

by density issues. Due to the dynamic design of the Visibility Matrix algorithm, these 

points were easily assimilated into the calculation, resulting in a final matrix of 60 points. 

 

 

Figure 18. Lines rendered between points in the Visibility Matrix show all possible path routes that 

can be chosen by an agent when moving from goal to goal. 

 

To calculate the matrix, the algorithm must test paths from all 60 points to one another, 

against every building wall in the scene, of which there are 32. This gives a maximum 

possible number of 113280 line intersection tests, although many tests are skipped if an 

intersection has already been detected for a line. The calculation of the matrix is 

completed in the pre-processor section of the simulation, before the rendering of graphics 
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begins, and need only be run once. This will prevent any detriment to the run time quality 

of the scene, and allows for more points to be added without consequence. 

 

5.1.2 Voronoi Graph 

The second path generation method to be implemented is the Voronoi graph. There are 

three main algorithms commonly used for generating Voronoi graphs; Bowyer–Watson 

algorithm, Fortune's algorithm, and Lloyd's algorithm. Bowyer–Watson is used for 

generating a Voronoi in multidimensional space by adding each new point sequentially, 

which modifies the graph accordingly. Lloyd's is a multi pass algorithm that reprocesses 

its output to adjust the locations of the sites, as to centralise them in the initially generated 

Voronoi segments. Fortune‟s is a plane sweep algorithm, meaning that it assesses points 

as they are encountered, by sweeping a line across a two dimensional Euclidean space, 

conventionally from left to right, although this can be set to process from any direction. 

Fortune‟s is the algorithm chosen for this thesis as it offers the most efficient and simplistic 

method to reach the required output graph. An implementation of Fortune‟s was sourced 

from [Fortune, 2011], and adjusted as required to work within the existing codebase. 

Before it could be run, sites for it to process needed to be selected. As discussed 

previously, these would be points representing the centre of each building. Fortune‟s 

algorithm would work upon these and create surrounding segments, the boundaries of 

which would produce the paths for the agents to follow. In a similar fashion to testing of 

the Visibility Matrix, the processed Voronoi graph was rendered onto the scene as white 

lines to display the output paths. The first display of the graph showed that using one point 

in the centre of the large rightmost building, and the large middle building, would not be 

sufficient as the Voronoi segments surrounding them were not large enough to 

encompass the structures. To solve this, three points were used for the right, and two for 

the centre building, evenly spaced throughout. As Figure 19 shows, this caused an 

inevitable problem, with path lines moving through the building. By further processing this 

output using the building wall intersection testing code that was used in the Visibility 

Matrix generation, these lines were removed programmatically, leaving  single Voronoi 

segments that encompassed the structures. While this does not strictly adhere to a true 

Voronoi implementation, it is considered close enough for the purposes of this 

comparison. 
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Figure 19. An initial implementation of the Voronoi graph, with multiple sites used for the large 

centre and right building. 

 

The last remaining issue with the graph is one that is shared with the Visibility Matrix 

implementation. Due to the nature of the scene‟s design, the open edges surrounding the 

buildings do not contain any points or paths for agents to follow. The Voronoi segment 

boundaries that pass out of the scene converge into infinite lines, as no points are present 

for the algorithm to consider. As discussed in Chapter 5.1.1, a larger scale scene could 

potentially disregard the boundaries of the simulation, as the viewer‟s focus would be on 

the high density centre of the scene. In such a situation, agents could be removed when 

leaving the scene and be repopulated at another edge or position in the scene. However, 

in this simulation, as with the Visibility Matrix implementation, agents are required to 

remain inside the scene, so the decision was made to add a perimeter line around the 

Voronoi graph, to close up the existing segments and keep them inside of the scene‟s 

boundaries. The result of this can be seen in Figure 20. All trailing segments edges were 

ignored, and the final points and paths entered into a graph that could be read by 

Dijkstra‟s in the same format as the Visibility Matrix. 
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Figure 20. Capping Voronoi segments at the boundaries of the scene provides a close system for 

agents to navigate. 

 

5.1.3 Dijkstra’s Algorithm 

With both the Visibility and Voronoi routing arrays complete, the framework was ready to 

have Dijkstra‟s shortest path algorithm applied to navigate paths for the agents. Given a 

starting and target node from the array in use, the algorithm determines which set of 

points provide the most efficient route between these locations, and returns this as a 

sequential sequence of numbers. Vectors are calculated by using the agent‟s current 

location and the coordinates of the next location in the path list. Once the agent has 

reached its location, the next path point is selected and the vectors are recalculated for 

this new path. This continues until the final node is reached, at which point a new target is 

selected, and the cycle is restarted with a new list of calculated path points. A detailed 

flowchart of this is shown in Chapter 3.2.1, Figure 10. 

 

The algorithm code was sourced from [Dijkstra, 2006]. As with the Voronoi source code, it 

required some adjustment to fit into the existing framework, to use the pre-generated path 

matrices as input parameters. The class controlling the agents calls the algorithm, passing 

in a start and end node. This returns an array containing points that represent the steps in 

the path. This is assigned to the current agent requesting a new route. Caching the path in 

this fashion means that the algorithm is called only when a new path is required, and not 

as each node is reached, which removes unnecessary computational overhead at 
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runtime. The complexity of the algorithm is defined by the number of points or vertices V, 

and the number of edges E joining these points, and as such, its running time is O(E+V). 

In very large scenes, navigating a worst case path between the two furthest nodes could 

begin to make a measureable difference upon runtime efficiency. This would be especially 

noticeable in a densely populated scene in which many agents require new paths per 

frame. As described in Chapter 2, a proposed method to counter this would be to pre-

cache all possible paths at compile time. If Dijkstra‟s shortest path algorithm is used to 

calculate every plausible route given a pair of start and end nodes, these path results 

could be stored in a corresponding array. At runtime, when an agent requests a route 

between two nodes, the pre-calculated path could be returned by querying the array of 

routes. The runtime overheads of this would be the time required to query the route array, 

which would be substantially less than calculating the route from scratch. Compile time 

would be increased substantially however, and memory requirements to store the routes 

could become an issue if the routing array was larger than the system memory available 

to the program. Provided resources were sufficient, this could be a valid method of 

counteracting the increased complexity posed by larger scenes of routing paths at 

runtime. In this simulation, such measures are not required due to the number of path 

nodes and edges, and all paths will be generated as required by the agents. 

 

5.2 Collision Avoidance 

At this stage of the implementation, agents were moving between locations, along the 

paths specified in either the Visibility or Voronoi Matrix. Many agents occupy the same 

paths, and inevitably the same position as they pass. The next stage of path finding was 

to create low level steering to move the agents out of each other‟s paths. These interrupt 

the high level steering trajectories and manoeuvre the agents on a new path until the 

collision is avoided. From here the agent is placed back onto a path towards their next 

target. 

 

5.2.1 Proximity Detection 

The proximity detection method requires an agent to have an area of „awareness‟ around 

them that is used to trigger a collision detection response. This area is represented by a 

circle around the agent, with the circle‟s radius approximately twice the diameter of an 

agent model. Detections are performed between each agent‟s circle of awareness by 

comparing whether they intersect each other. If an intersection is detected, the agent 

being tested deviates from its assigned path to avoid the agent that is about to collide with 

him. At the next frame, the collision is retested and depending on the result, the agent is 
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either kept on an avoidance path, or redirected back towards its original target. Figure 11, 

in Chapter 3.2.2 explains this dataflow fully. 

 

Implementation began with creating a collision detection class that could be passed the 

locations of two agents and return a collision status. The difference in x and y between the 

two locations is separately calculated, with the result of each squared, and then added 

together to produce a Comparison Range. This value is compared to that of the minimum 

collision range, squared. By comparing the squares of both values, the need to square 

root each answer is removed, reducing the computational complexity of the class. If the 

result of the Comparison Range is less than that of the test range, a collision has 

occurred. Once a frame, each agent is tested against every other agent in turn. If a 

collision is detected between the agent being tested, agent a, and another, agent b, the 

testing halts and enters into an avoidance stage. Initially, there is no indication of the 

direction to the collision only that it has happened within the predefined range. To 

calculate this, the dot product of the two agents is equated, giving the angle in radians of 

agent b in relation to agent a. It can now be determined whether the approaching agent b 

is to the front, side or rear of agent a. In this simulation, all agents will be moving at the 

same rate, which allows assumptions to be made about which collision detections are 

likely to culminate in a collision, if left unchecked. Rear and side detections should resolve 

themselves without the need to adjust either agent‟s trajectory. These will be due to 

sections of the scene that contain crossing paths, or when agents are following each other 

closely on the same path. In a real world situation, a human would not respond to 

somebody approaching in these directions as they would not be within their FOV. A 

preliminary test supporting this involved two agents walking in the same direction, just 

within detection range. The leading agent reported the collision in each frame, and 

attempted to enter the resolution phase. Had he ignored the trailing agent, the pair would 

have carried on without incident, proving that resolution was not required. By ignoring all 

detections that occur outside of an 80 Degree arc in front of the agent, the response 

system is greatly streamlined and represents a more realistic approach to the solution. 

 

Assuming that a collision is likely, the angle of approach needs to be calculated so that 

the avoiding agent can move appropriately for the situation. This is done using the cross 

product of the two agents‟ path vectors, with the result indicating whether the collision is to 

the left or right of the agent a. Collision avoidance is only performed by agent a, as he is 

the agent being tested. Depending on the direction of agent b, a is calculated a new path 

that is 20 degrees left or right of its current path, and is instructed to follow this when the 

function to move all agents is executed later in the frame process. When agent b is tested 

for collisions, it too will calculate a route away from a, meaning that both agents should 
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pass each other successfully. At the end of the frame execution, all agents‟ collision 

statuses are reset, and any that were forced to avoid a collision have their trajectories 

calculated back towards their original goal. In the next frame, if the collision is still not 

resolved based on their new vector, the collision avoidance routine is started again. By 

resolving collisions in this way, all agents are assured of only moving as much as 

necessary to avoid a collision, and do not end up following long avoidance paths despite 

having potentially moved away from danger. Again, this approach attempts to simulate 

real life as much as possible, assuming that people will generally only deviate enough 

from their current path as necessary to avoid another person. 

 

When tested with this level of implementation, agents were observed to bump off of an 

invisible space around each other, and only move from their path when there was very 

little space between the models. Similar behaviour has been observed on large scale 

implementations by other institutions, and can appear unrealistic on smaller, more 

detailed scenes. Increasing the size of the collision detection boundary around the agent 

would be an inefficient solution to this issue, as many more erroneous side and rear 

collisions would be registered in a densely populated situation. Instead, projected future 

positions of each agent are calculated and stored at each frame, simulating the location of 

the agent in 40 frames time. This allowed potential collisions to be avoided long before 

they were due to occur, with agents adjusting their course less aggressively and passing 

each other side by side. This shearing effect of agent movement gave a considerably 

better look of realism, as agents passed each other without appearing to have adjusted 

their path at all, due to only requiring minor path adjustments. The proximity detection 

code was adjusted so that agents checked for collisions both on their „future self‟ and on 

their current locations, so any close range collisions that occurred due to path crossings or 

corners were still dealt with as originally designed. Some agent „bumping‟ was still 

occasionally occurring on sharp corners (90 Degree or more). As two agents met on a 

corner in different directions, they would enter immediate collision resolution for close 

range detections. This was deemed acceptable as in real life scenarios, people cannot 

see through corners either, and are likely to have a close passing in a similar fashion, or 

even bump into each other. 

 

5.2.2 Grid Method 

The grid method requires the scene to be divided up into equal sections that represent the 

scene in a lower resolution, digital style format. Each cell is the size of an agent and can 

be one of two states; either occupied or empty. As agents move around the scene on 

routes set by the Dijkstra‟s path finding algorithm, they assign the grid location they 



61 
 

currently reside in as occupied, and continue changing the status of each grid space as 

they enter or leave them. An agent need only check if the grid cell he plans to occupy is 

free, and choose another if not. 

 

Much of the calculation for the Grid method was abstracted out to the pre-processing 

section of the simulation, allowing for lower overheads at runtime. The main portion of this 

consisted of creating the grid and pre-populating the cells that contained buildings, with an 

occupied status. The grid itself is a two dimensional array, equal to the width and height of 

the scene, divided by the width of an agent, which produces over 900 cells. By using 

coordinates of the grid‟s first point (top left of the scene), and using the width of each cell, 

any given scene location, supplied in the form of x y, can be translated into a 

corresponding grid point. Using this methodology, the structures in the scene were 

translated into the grid so that they could be considered in collision avoidance calculations 

later on. By querying each cell in turn and testing its location with that of the scene‟s 

building structure lines, the cells were assigned occupied or empty statuses, to produce a 

grid ready for use with the agents. This is shown in Figure 21. As the grid preparation is 

calculated in the pre-processor, it ensures that the method is scalable for larger 

simulations, having no direct effect on runtime FPS. 

 

 

Figure 21. The simulation translated into grid cells and rendered with spheres to represent the 

status of each cell. A single agent travels through the scene, setting the status of its currently 

occupied cell as it moves. 
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Using a similar method to populating the scene with the building locations, a function was 

created that could return a grid location when passed a set of scene coordinates. At each 

frame, an agent calls this method to return its current grid location. With this obtained, the 

agent can update the grid with its location, marking it as occupied, and clearing any 

previous grid cells for that agent. As seen in Figure 21, the animation of the agent is 

accompanied by a red square, showing its location in the grid. In place of the proximity 

collision detection system, each agent checks the cell they are planning to move to within 

that frame. Using this method, no checks are required against other agents, as the grid 

keeps track of all agent and structural locations on a macro scale, meaning that collision 

detection is significantly faster than that of the proximity method. If the cell to be entered is 

occupied, the agent checks the left and right adjacent cells. If these are also occupied, the 

cells to the left and right of the agent are checked, followed by those behind him until a 

free cell is found. Reversing the coordinate to grid method described previously, a function 

was created that could return the coordinates for the centre of a chosen grid cell. Once an 

agent has found an empty cell during collision avoidance, this method is called and a 

route is calculated towards the centre of that cell. When the agent has moved to avoid the 

collision in the cell ahead of it, its path is calculated back towards its original route target 

that was supplied by Dijkstra‟s algorithm. 

 

When executed, the reoccurring problem encountered when testing the proximity method 

was once again apparent, with agents aggressively changing route, or stopping suddenly 

in front of one another. This was calmed by detecting collisions both further ahead of the 

agent (four cells worth of distance), and directly in front of it, similar to the solution used 

previously. This allowed for any unforeseen collisions created by a change of direction or 

the crossing of paths to be dealt with, while providing a more foresighted approach for 

future dangers. Some sharp changes in direction were still observed, and were concluded 

to be due to the nature of the grid method, and because the scene was being handled in a 

lower resolution to that of the proximity method. As buildings were included into the grid‟s 

calculation at compile time, agents were able to make more informed avoidance decisions 

when posed with a potential collision. Another drawback observed was the algorithm‟s 

difficulty in dealing with dense build ups of agents, and was especially noticeable when 

applied with the Voronoi graph. This is again due to the low resolution of the scene, being 

represented by fixed state cells, allowing fewer agents to populate a set area of space. 

This will be further analysed within the Results Chapter of this thesis. 
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6 Results 

This results chapter will measure each steering method for computational efficiency, and 

visual quality of realism, to ascertain the best combination of high and low level 

techniques. This is achieved in part through user testing, where a selection of individuals 

were asked to choose combinations of behaviours that they deemed the most realistic in 

appearance. 

 

6.1 Efficiency of Methods 

With each high and low level steering method programmed in isolation within its own 

class, the simulation allowed for simple, clean measurement of each feature, without the 

danger of cross contamination by other classes. As specified in the objectives of this 

thesis, each implementation would be compared by its use of computer resources during 

the pre-processor start up of the simulation, and during runtime, where inefficiency would 

take a toll upon frame rate. As stipulated previously, the primary goal of this simulation is 

the behaviour of agents, and consequently, the graphical element of the final 

implementation has not been focused on as much as the agent steering. To factor this into 

the testing, each method was tested both with, and without a graphical element being 

rendered. In tests without rendering, agents are moving and interacting on a purely 

mathematical plane. The strength of the graphics hardware in the test machine is no 

longer a consideration, and the test can be described as purely AI focused. It is accepted 

that certain features of the program framework could still affect the test results, such as 

object handling or memory control techniques, but as these will remain constant for all 

tests, they can be disregarded as not having an effect upon any singular method. 

 

6.1.1 Frame Rate Analysis of Low Level Steering 

The freeware program Fraps was used to measure frame rates of rendered scenes, but 

was unable to measure the calculation speed of non-rendered tests. These were 

measured by placing system timers within the code at the entry points of the section to be 

tested, and comparing the value recorded with a similar timestamp taken at the end of the 

function. Unrestricted by graphical bottlenecks, the times to compute each frame were 

almost immeasurably small by conventional methods of recording, on the test hardware. 

The smallest denomination of measurement for the timeGetTime() function is milliseconds 

(ms), so each test was repeated 1000 times allowing for a larger, more meaningful value 

to be obtained. This was then divided by 1000 and then converted back to milliseconds. 

As stipulated in the objectives, each test was repeated ten times so that an average could 

be obtained, and were conducted against five densities of agents; 100, 500, 1000, 5000, 
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and 10000. The results of each individual test are supplied in the Appendixes, and are 

summarised in Figure 22. 

 

 

Figure 22. This graph shows the relationship between the number of agents in a scene and the 

time taken to process one complete frame (without rendering). 

 

As shown in the graph, the proximity method drastically depreciates in efficiency when the 

agent total rises above 1000, reducing to processing a little over three frames a second 

with 10,000 agents. In the observations described in Chapter 4.4.2, the simulation must 

optimally aim to maintain a minimum of 25 frames per second, or risk detrimental effects 

to the AI due to the drop in sample rate for collision testing. Using the results displayed in 

Figure 22, this is reached with approximately ~1600 agents. The Grid method is almost 

unaffected by the rise in agent quantity, showing an increase of 3 ms between the lowest 

and highest densities, compared with the 295 ms increase of the Proximity method. 

 

It should be noted that the theoretical maximum number of agents that the simulation can 

handle using the Grid technique is equal to the number of empty cells. This is determined 

by the size of the uniform grid used to divide the scene, minus the locations occupied by 

buildings, which approximates to ~4800 cells. However, a scene with this many agents 

would require every space to be populated, and the AI would come to a standstill as a 

collision resolution would not be achievable without free grid space to move agent into. 

For the purposes of these tests, collision resolution was deactivated, leaving only 
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detection testing, allowing for five and ten thousand agents to be measured using the Grid 

method. 

 

Memory usage was found to be comparable between each method, resulting in the 

decision to disregard it as a measurable factor during testing. The only rises that were 

observed were when agent densities were increased, or when human models were used 

to represent agents. These were both due to the extra class objects that are created in 

processing these tasks and were not due to the methods of steering being used. Memory 

use during runtime was also constant across all implementations, with no rise in the 

initially reserved quantity. This signifies that no memory leaks were present, and all 

methods could be run indefinitely on the test hardware, from a resource perspective. 

 

Fraps frame rate testing was conducted with both spherical, and human model 

representations of agents measured separately. The upper limits of the graphical 

hardware were first established by running the simulation with collision detection and 

resolution removed, leaving only path finding to move agents between global path nodes. 

Once again, the optimal frame rate of 25 fps was targeted, and each method was adjusted 

until this was reached. The values attained were 1500 agents using the spherical 

representation, and 37 using human models. Removing the scene‟s buildings had no 

measurable effect upon fps, which was expected as their combined polygon count 

equated to less than 5 spherical agents. Applying the Grid and Proximity methods to 

human models had no discernable effect, corroborated by Figure 22 which shows that 

they have very little impact on processing time when controlling such a small density of 

agents. As expected from the non rendered test results, the Grid method had no effect 

upon a scene using spherical agents either, but the proximity method lowered the fps by 

26%. This equated to a drop of 400 agents to reach the 25fps target, leaving a final 

achievable total of 1100 agents when using the proximity method with spherical agents. 

 

6.1.2 Pre-processor Analysis of High Level Graphs 

Both the Visibility and Voronoi graphs are constructed entirely in the pre-processing 

section of the application. Although this means that neither has an effect on runtime speed 

of the simulation, they were still timed and measured so that they may be discussed within 

the context of scalability to different scenarios. As seen within the Appendix (Table 1 and 

2), both graphs compute the entire scene in less than 10 ms, with the Voronoi method 

computing the fastest at less than 1ms. These results show that either method could 

potentially be integrated into a runtime scenario with a small impact upon performance. 

Many other studies described in Chapter 2 use these methods in this way, such as 
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Champagne et al. [Champagne, 2005] who use Voronoi graphs that are generated per 

frame for spacing groups of agents. These will be further discussed in the Conclusion of 

this thesis. 

 

The average cost of Dijkstra‟s path finding algorithm was 0.028 ms when used against the 

Voronoi Graph, and 0.030 using the Visibility Matrix. This is a very low computational 

overhead; even in a worst case scenario where every agent could request a new, long 

distance path, simultaneously. As expected, requests using the Voronoi graph were 

nominally less as it contains far less edges and path nodes compared to the Visibility 

Matrix. 

 

6.2 Comparisons of Local and Global Steering Methods through User 

Testing 

The second stage of testing involved quantifying each steering method based on a visual 

comparison to a real life scenario. The aim was to determine which high level and low 

level steering techniques looked best when combined. To measure this fairly and 

accurately, a selection of testers were asked to view short video clips of the simulation, 

rating them in order of how realistic they thought each looked. Four videos were created, 

each displaying a different combination of the two high level, and two low level steering 

methods. These simulation videos were accompanied by a fifth consisting of real people 

moving through a local shopping centre. This film was taken from a position overlooking a 

walkway that was roughly 4 meters wide, and of medium population density. Traffic can 

be seen flowing into and out of the scene from the top and bottom of the camera shot, 

causing opposite streams of people to navigate around each other on the way to their 

destinations. The conditions of the location, and the quantity of people meant that the 

steering behaviour exhibited in the pedestrians was an ideal comparison for the simulated 

videos. After being shown the video of real people, testers were presented with each of 

the simulation videos in a random order that differed between each test. This was to 

remove any influence one video may have had upon another‟s appearance due to display 

order. Once all videos were complete, the testers were asked to give comments on the 

methods in addition to ratings. 

 

6.2.1 Rating Scores 

Twenty individuals were shown the video selection, with their scores recorded and 

summarised in Figure 23. A breakdown of each score by person is available in the 

appendix. As the results show, the preference towards the visibility graph was significantly 

higher than that of the Voronoi. Combined, the Voronoi method scored 63 against 137 for 
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the Visibility Matrix. The difference between low level steering was less profound but still 

clear, showing the proximity method as the favourite. 

 

 

Figure 23. Results of user testing, ordered by ratings of realistic appearance 

 

The order that each video was shown, appeared not to have affected the scores, with no 

discernable patterns arising. Users were asked not to concentrate upon any specific 

behaviour, but requested to give scores based upon the overall appearance and flow of 

the agents in the scene, while thinking about the real life equivalent. It was stipulated that 

the demonstration was targeting realistic looking macro movement of agents, not the 

interactions between them. It should be noted that users were not told how each method 

worked as this could have made the strengths or weaknesses of certain methods more 

obvious and influenced the result. 

 

6.2.2 User Comments 

As anticipated, testers were quick to note the lack of human interaction between agents, 

showing a natural expectation of more detailed behaviour, with many comments revolving 

around this subject. As discussed, human interaction is not a focus of this study, although 

it is a logical step forward from this research and will be further covered within the 

Conclusion Chapter. Other generalised comments mentioned that no agents were seen to 

stop or slow down, therefore becoming obstacles themselves within the scene. A lack of 

obvious targets was noted by some testers with one liking it to observations from free 

roaming city based video games, such as Grand Theft Auto IV. He described that in such 

titles, pedestrians appeared to walk with purpose but without embarking from, or arriving 

at any specific destination. If agents were seen to emerge from and disappear into certain 
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buildings from the scene, with more noticeable quantities of people visiting these locations 

than others, it would improve the overall scene aesthetic. 

 

Testers were asked to describe why they had chosen one method over another, putting 

their answer in the context of a comparison to real life. With regards to the Visibility Matrix, 

preference was generally shown due to the wider spread of people, and the better use of 

the scene‟s space. Many testers noted that when they wanted to move from one location 

to another while navigating a course of buildings, they would attempt to take the shortest 

path around each obstacle, in a similar fashion to the way in which the Visibility Matrix 

method steered agents tightly around buildings and corners. It was with this reasoning 

that the Voronoi method was looked upon less favourably, due to the wide berth that 

agents were affording each building. Additionally, the Voronoi method was noted for 

having fewer paths, and showing tighter agent groupings, however one user noted that 

this gave the agents an appearance of moving with a common purpose as if travelling 

towards a destination of shared interest. Other notable comments regarded the bunching 

of agents observed at waypoints, which affected both methods. 

 

When asked to differentiate between low level steering methods, answers were less 

forthcoming, as people had been more drawn to the movement of the agents as a whole. 

Repeated observations did highlight that agents using the grid method appeared to bump 

into each other more frequently, and seemed more mechanical in their movement due to 

last minute collision avoidance. Some testers did notice that in areas of high density, the 

occasional flanking agents appeared to move through walls while avoiding each other 

(graphical clipping). This was not noticed on the Grid demonstrations, as agents using this 

method are aware of buildings when dealing with collision resolution. It was also 

suggested that to better impersonate real life, and especially in more dense areas of the 

scene, agents should slow down when avoiding multiple collisions. 

 

6.3 Summary of Findings 

Computational analysis and qualitative user testing present very different results to the 

question of which methods are best suited for crowd steering. It is clear from user testing 

that the strongest combination is the Visibility Matrix and the Proximity method; however 

this displayed crippling computational cost when scaled for use on large crowd densities. 

The underlying reason for this inefficiency is because of a decision to have each agent 

check every other agent per frame, for collision proximity. Even with optimisation, the 

Proximity method would not be as efficient as the Grid collision detection, which was 

consistently fast despite vast increases of agents. However, as described, testers did not 
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look as favourably towards the grid method due to its blocky appearance when dealing 

with collision resolution. When dividing a scene into grid cells and making agents adhere 

to these, the level of motion smoothness found with analogue methods such as the 

proximity test will not be achievable in a comparable fashion. 

 

Both high level path creation techniques were well suited to Dijkstra‟s algorithm, and 

shared similarly fast navigation times. Neither was noticeably preferable based on 

processing time alone, but as qualitative testing proved, the Visibility Matrix created a 

more realistic path map of the scene. This was mainly due to the spread of routes, and 

their quantity, creating a scene that was evenly populated, while still showing areas of 

increased traffic. The limited paths created with the Voronoi method, and their distance 

from each structure, gave a crowded and unrealistic look to the scene, suggesting that a 

less dense population may have better suited this method. Consequently, the increased 

flow of agents per route gave an increase in the number of collision avoidance 

calculations per frame, which in itself is an undesirable outcome. 

 

 

Figure 24. The final implementation showing agents (represented by spheres) following the paths 

created by the Visibility Matrix method. 
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Figure 25. The final implementation showing agents (represented by spheres) following the paths 

created by the Voronoi Graph method. 

 

 

Figure 26. Agents navigating the scene using paths created by the Visibility Matrix method. 
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7 Conclusion 

This chapter will discuss the success of the project, and areas for possible future work will 

be outlined. 

 

The aim of this thesis was to present a comparison of two popular high level, and low level 

steering methods, in an attempt to suggest the ideal combination for a reusable solution. 

Each method offers its own pro‟s and con‟s over its counterpart which became clear 

during implementation and testing. Of the two high level steering techniques compared, 

the Visibility Matrix was more favourable over that of the Voronoi graph. The greater 

amount of paths generated by the Visibility Matrix allowed for a much more even spread 

of agents around the scene, as opposed to the densely populated and sparse spread of 

paths generated by the Voronoi method. This offered advantages in both the visual 

realism of the overall movement and flow of agents, and the lesser amount of collision 

detection testing required due to the greater spread of agents. The Proximity method of 

collision detection proved to be a more effective low level steering method than that of the 

Grid based method in this implementation. Failures in the Grid method were apparent if 

collisions occurred simultaneously with agents migrating from one cell to the next, with the 

problem worsening at path nodes where many agents were moving to a common goal. 

Although the detection and avoidance of the Proximity method was superior, it suffered 

great computational drawbacks when applied to larger crowds, an issue that is addressed 

in the following section of this Chapter regarding improvements. As presented in the 

Results Chapter, the combination of high and low methods that complimented each other 

best were that of the Visibility Matrix and the Proximity Method. The results gave clear 

indicators that although methods can be praiseworthy from a computational standpoint, 

they can still lack the detail and realism required when measured qualitatively. 

 

7.1 Improvements and Further Work 

Further research and expansion on the work presented in this thesis would allow scope to 

compare more methods of high and low level steering presented by other papers. 

Although this thesis was limited by a finite selection of methods, many of the papers 

referenced present their own solutions that would complement the research already 

undertaken here. Some researchers appear to be moving to use the A* path finding 

algorithm for high level steering as an alternative to Dijkstra‟s. Generally, the 

computational cost of the A* algorithm is less then Dijkstra‟s while achieving the same 

result in a similar time. This is achieved by using a heuristic estimate of the final path 

length to steer the algorithm in its choice of nodes to search. However, in complex cases 

Dijkstra‟s path finding algorithm is more effective at locating the target node. Applying A* 
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to the implementation presented here may offer better computational results, or worse 

depending on the circumstance, and therefore it would be a worthwhile further 

investigation. Similarly, the method of 2nd order Voronoi segmentation described by Sud et 

al. [Sud, 2007], could be used to better segment the scene for high level path f inding. 

Alternatively it could be used in conjunction with the research presented by Champagne et 

al. [Champagne, 2005], to steer the crowds on a low level as collision detection and 

avoidance. This was also described previously in Chapter 2 during the literature review. 

 

Following on from the computational results presented in Chapter 6, it is clear that 

optimisation is needed for the Proximity Method to be considered as a viable solution for 

large simulations. Had a method of area segmentation been implemented to overlay the 

scene and divide agents into groups of local neighbours, collision tests would have only 

been needed between individuals in these local groups. The cost of each frame 

computation would be dramatically decreased using this method, allowing for a higher 

number of total agents. To add this feature to the existing implementation, area 

segmentation could be achieved either by division of the scene into zones containing 

many paths, or by using the paths themselves as the method of subdivision. 

 

Dividing the scene into arbitrary sections is best done procedurally to maintain a scalable 

crowd solution that does not require manual input. This can be done using the Voronoi 

solution already implemented in this thesis, but with the focus of interest changed from the 

edges and nodes to the Voronoi segments. Figure 24 reuses the example of a Visibility 

Matrix and a Voronoi Graph displayed in Figure 7, but overlays the two to display how the 

Voronoi can be used to subdivide the scene into segments. Using this method, tests for 

collisions between agents can be restricted to those that share the same Voronoi 

segment. 
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Figure 27. Using a Voronoi Graph to subdivide a given scene that already contains waypoints for 

agent navigation. 

 

The drawback of this is during the transition of agents between segments there is the 

possibility of agents being within a close proximity of one another, but classed as within 

different Voronoi segments. This is clearly noticeable in Figure 24 where the centre of the 

pink, yellow, brown, and green segments join. This also happens to be a busy waypoint 

crossover, meaning that the chance of it being densely populated by agents is quite high. 

To overcome this shortfall, collision detection areas could be expanded to include 

adjacent segments to that which the agent currently populates, allowing for the passing of 

segment borders to no longer be a concern. As this would increase the quantity of agents 

to test, thus lowering the efficiency once more, it would require that the segments were 

decreased in size. As discussed in Chapter 2, Sud et al. [Sud, 2007] uses second order 

Voronoi diagrams to further segment the scene, creating a Voronoi graph where each 

segment is closer to one of a pair of sites than to any other site. Figure 25 shows the 

example given in Sud‟s paper. 
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Figure 28. Further processing a Voronoi Graph so that the second order is calculated, returns a 

greater amount of segments that can be used for scene subdivision in collision avoidance. Adapted 

from [Sud, 2007]. 

 

The alternative method of scene division is to use a similar principle on the waypoint 

paths, testing only against agents that share the same path, or adjacent paths. This 

ensures that agents approaching a waypoint will be aware of other agents arriving on a 

different path. This is displayed in Figure 26, showing the path that the agent currently 

occupies, and the adjacent paths that would be tested for collisions. Further efficiency 

improvement could be achieved by dividing the paths into sections, negating the need to 

test against agents at opposite ends of long paths. This could also be extended to reduce 

redundant testing against agents on adjacent paths that are great distances from each 

other in terms of a potential collision risk. 

 

 

Figure 29. Proximity testing can be made more efficient by restricting collision tests to the path that 

an agent is on, and adjacent paths jointed by path nodes. The agent is represented as a red dot, 

with the paths to be considered in testing coloured green. Paths to be ignored are blue. 
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An improvement that would benefit all high level steering methods is the way in which 

waypoints are dealt with during agent navigation. Although more noticeable when using a 

Voronoi Matrix due to the low number of paths, agents are seen encountering difficulty 

when approaching densely populated waypoints. This is due to a conflict of instructions; 

collision avoidance is steering the agent away from or around the local mass of agents, 

but as soon as the collision is cleared, they are returning back towards these agents, in an 

attempt to reach the waypoint and mark their path as complete. If larger waypoint areas 

could be used that the agent need only get within range of, it may reduce the pressure on 

the agent to reach a smaller target.  

 

One of the main observations by users during testing was the lack of agent animations 

depicting interactions between them. Key suggestions involved variations to the way in 

which agents pass one another. Users noted that in tight spaces, real life people will tip 

their body towards or away from a passing person, reducing their width temporarily to fit 

through the space. It appears from testing, that a logical progression of the solutions 

presented in this thesis would be to implement a number of complementary animations 

such as this, if the increase to realism was worth the extra computation overhead. 

 

One last improvement to the decision making of the agents concerns the way in which 

agents choose targets. As discussed in Chapter 6, one user noted that agents did not 

appear to travel from or too any singular location specifically, instead, agents moved 

continually around the scene in a mindless fashion. A solution to this could be to relocate 

certain waypoints to centre on building walls, representing doorways. As agents reach 

these waypoints, they could be withdrawn from the simulation temporarily, signifying that 

they have entered into the structure, only to return later after an arbitrary time. By 

weighing these waypoints more favourably when Dijkstra‟s shortest path algorithm is 

choosing a target location, the flow of agents targeted to these building entrances could 

be set at a desired level, showing a common interest across the crowd as a whole. By 

removing or changing between favoured locations during runtime, in a similar fashion to 

that seen in [Pelechano, 2007], the flow of agents would maintain a level of variation 

across the scene.  

 

To improve the scene structure layout, it has been considered that the building wall and 

roof creation algorithms presented in Chapter 4 could be further extended to generate 

randomly sized structures procedurally. This would allow new and diverse scenes to be 

created in a fraction of the time manual design takes, and would offer an impressive 

showcase to further test the scalability of each steering method. 
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9 Appendix 

 

  Computation to process Visibility graph (x1000) 

Test 1 6345 

Test 2 6361 

Test 3 6435 

Test 4 6393 

Test 5 6408 

Test 6 6354 

Test 7 6341 

Test 8 6417 

Test 9 6367 

Test 10 6394 

Average (ms) 6381.5 

Per Execution (ms) 6.3815 

Per Execution (s) 0.0063815 

Table 1. Results of the visibility graph creation test. 

 

  Computation to process Voronoi graph (x1000) 

Test 1 166 

Test 2 154 

Test 3 153 

Test 4 152 

Test 5 159 

Test 6 154 

Test 7 160 

Test 8 156 

Test 9 155 

Test 10 165 

Average (ms) 157.4 

Per Execution (ms) 0.1574 

Per Execution (s) 0.0001574 

Table 2. Results of the Voronoi graph creation test. 
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  Computation to process Proximity collision (x1000) 100 people 

Test 1 268 

Test 2 266 

Test 3 264 

Test 4 266 

Test 5 265 

Test 6 262 

Test 7 261 

Test 8 267 

Test 9 266 

Test 10 267 

Average (ms) 265.2 

Per Execution (ms) 0.2652 

Per Person (ms) 0.002652 

Per Execution (s) 0.0002652 

Table 3. Results of the Proximity collision test for 100 agents. 

 

  Computation to process Proximity collision (x1000) 500 people 

Test 1 4883 

Test 2 4820 

Test 3 4767 

Test 4 4810 

Test 5 4762 

Test 6 4759 

Test 7 4886 

Test 8 4677 

Test 9 4767 

Test 10 4671 

Average (ms) 4780.2 

Per Execution (ms) 4.7802 

Per Person (ms) 0.0095604 

Per Execution (s) 0.0047802 

Table 4. Results of the Proximity collision test for 500 agents. 

 



81 
 

  Computation to process Proximity collision (x1000) 1000 people 

Test 1 14589 

Test 2 14469 

Test 3 14334 

Test 4 13997 

Test 5 14308 

Test 6 14699 

Test 7 14550 

Test 8 14780 

Test 9 14233 

Test 10 14471 

Average (ms) 14443 

Per Execution (ms) 14.443 

Per Person (ms) 0.014443 

Per Execution (s) 0.014443 

Table 5. Results of the Proximity collision test for 1000 agents. 

 

  Computation to process Proximity collision (x1000) 5000 people 

Test 1 128058 

Test 2 126525 

Test 3 130793 

Test 4 129350 

Test 5 129265 

Test 6 129151 

Test 7 133508 

Test 8 131548 

Test 9 128882 

Test 10 128677 

Average (ms) 129575.7 

Per Execution (ms) 129.5757 

Per Person (ms) 0.02591514 

Per Execution (s) 0.1295757 

Table 6. Results of the Proximity collision test for 5000 agents. 
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  Computation to process Proximity collision (x1000) 10000 people 

Test 1 290744 

Test 2 292371 

Test 3 297471 

Test 4 295821 

Test 5 295232 

Test 6 295715 

Test 7 305544 

Test 8 293489 

Test 9 290993 

Test 10 295245 

Average (ms) 295262.5 

Per Execution (ms) 295.2625 

Per Person (ms) 0.02952625 

Per Execution (s) 0.2952625 

Table 7. Results of the Proximity collision test for 10000 agents. 

 

  Computation to process Grid collision (x1000) 100 people 

Test 1 17 

Test 2 16 

Test 3 17 

Test 4 17 

Test 5 16 

Test 6 17 

Test 7 17 

Test 8 17 

Test 9 17 

Test 10 16 

Average (ms) 16.7 

Per Execution (ms) 0.0167 

Per Person (ms) 0.000167 

Per Execution (s) 0.0000167 

Table 8. Results of the Grid collision test for 100 agents. 
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  Computation to process Grid collision (x1000) 500 people 

Test 1 91 

Test 2 93 

Test 3 92 

Test 4 92 

Test 5 90 

Test 6 94 

Test 7 93 

Test 8 92 

Test 9 93 

Test 10 93 

Average (ms) 92.3 

Per Execution (ms) 0.0923 

Per Person (ms) 0.0001846 

Per Execution (s) 0.0000923 

Table 9. Results of the Grid collision test for 500 agents. 

 

  Computation to process Grid collision (x1000) 1000 people 

Test 1 235 

Test 2 238 

Test 3 231 

Test 4 229 

Test 5 235 

Test 6 235 

Test 7 230 

Test 8 232 

Test 9 231 

Test 10 231 

Average (ms) 232.7 

Per Execution (ms) 0.2327 

Per Person (ms) 0.0002327 

Per Execution (s) 0.0002327 

Table 10. Results of the Grid collision test for 1000 agents. 
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  Computation to process Grid collision (x1000) 5000 people 

Test 1 1539 

Test 2 1582 

Test 3 1591 

Test 4 1585 

Test 5 1589 

Test 6 1601 

Test 7 1609 

Test 8 1397 

Test 9 1420 

Test 10 1496 

Average (ms) 1540.9 

Per Execution (ms) 1.5409 

Per Person (ms) 0.00030818 

Per Execution (s) 0.0015409 

Table 11. Results of the Grid collision test for 5000 agents. 

 

  Computation to process Grid collision (x1000) 10000 people 

Test 1 3152 

Test 2 2944 

Test 3 3197 

Test 4 3213 

Test 5 3221 

Test 6 2967 

Test 7 2790 

Test 8 3060 

Test 9 3144 

Test 10 3197 

Average (ms) 3088.5 

Per Execution (ms) 3.0885 

Per Person (ms) 0.00030885 

Per Execution (s) 0.0030885 

Table 12. Results of the Grid collision test for 10000 agents. 
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Tester Visibility Matrix Voronoi Matrix 

First Surname Grid Proximity Grid Proximity 

Glyn Cotton 3 4 2 1 

Isaac Wilder 3 4 1 2 

Anthony Collison 4 3 1 2 

Stephen Howlett 2 4 1 3 

Simon Tovey 3 4 2 1 

James Maclean 3 4 1 2 

Alex Pooley 4 3 1 2 

Craig Scott 3 4 2 1 

Mike Neale 3 4 1 2 

Ben Ravenhill 3 4 1 2 

Lorna Ravenhill 3 4 2 1 

James Moore 4 3 2 1 

Michael Green 3 4 1 2 

Ashley Peters 2 4 1 3 

James Fenwick 2 4 1 3 

Daniel Wybrow 3 4 2 1 

Nick Richards 4 3 1 2 

Michael Price 3 4 1 2 

Charlene Mitchell 3 4 2 1 

Simon Whitley 3 4 1 2 

Totals 61 76 27 36 

Rating 3 4 1 2 

Table 13. Results of User Qualitative Testing by tester. 

 


