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Abstract

In this thesis, we thoroughly investigate a simple Instance Based Learning (IBL)

classifier known as Sphere Cover. We propose a simple Randomized Sphere Cover

Classifier (αRSC) and use several datasets in order to evaluate the classification

performance of the αRSC classifier. In addition, we analyse the generalization

error of the proposed classifier using bias/variance decomposition.

A Sphere Cover Classifier may be described from the compression scheme which

stipulates data compression as the reason for high generalization performance. We

investigate the compression capacity of αRSC using a sample compression bound.

The Compression Scheme prompted us to search new compressibility methods for

αRSC. As such, we used a Gaussian kernel to investigate further data compression.

Combining the predictions of a set of classifiers has been vastly successful in classi-

fication because of their high classification accuracy. Bagging and Boosting are two

popular combination methods known as Meta-learners. That is, they are used to

combine predictions of various classifiers. Yet, a large family of IBL classifiers are

incapable to use them. We introduce an algorithm that combines several sphere

cover classifiers, where each member of the ensemble builds random data-dependent

covers. We show this algorithm yield ensembles that are more accurate than a sin-

gle classifier. We analyse the generalization error of the proposed ensemble using

bias/variance decomposition.

We propose a novel subspace method for constructing ensemble of αRSC classi-

fiers. We carry out experiments with several datasets and use the bias/variance

decomposition as part of the analysis. We investigate the classifiers proposed in

this thesis using three attributes ranking methods on six gene expression datasets,

and finally we give a conclusion and discuss future research.
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Chapter 1

Introduction

1.1 Learning from Data

The classification problem is an important and non-trivial problem in machine learning re-

search. It is important because data is now generated and stored in huge quantities, requiring

researchers to build decision making machines that are both efficient and effective. In clas-

sification, this machine is presented with labelled examples and is required to learn to

differentiate between them. Learning, in this case, means finding a way to represent the ex-

amples as input and their categories as labels, and to generates a hypothesis or a classifier

that maps inputs to desired outputs. In addition, it is required for this machine accurately

predict unseen examples. This is a fundamental problem in classification which is known as

generalisation. The machine is called a learning algorithm and the field is known as

supervised learning.

In this section we define the classification problem from a mathematical perspective and

give some important concepts used in supervised learning research. We first present the general

notion of learning in classification problem. Let X be the set of all examples x, which we might

call the input data. Let C be a finite set of target classes that we call the output. The

classification for a binary class problem is to learn some decision rule distinguishing between

objects belonging to one of two classes, based on a set of m training examples D = {(xi, yi)}
m
i=1,

xi ∈ X ⊂ R
d, d is the number of attributes, yi ∈ {1,−1}, where xi represents a vector of

measurements describing the ith example, and yi indicates the class to which the ith example

belongs, with yi = +1 representing class C1 and yi = −1 representing class C2. An important

assumption to make about D is that the sample is drawn identically and independently from
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an unknown but fixed probability distribution PD.

In multi-class classification setting we are given n training examples x = (x1, ...,xn) ∈ X

with the corresponding class labels y = (y1, ..., yn) ∈ C. This training sample is defined as

(x, y) = ((x1, y1), ..., (xn, yn)) ∈ (X×C). The learning problem in classification is defined as:

Definition 1.1.1 (Learning problem)[56] The learning is to find the unknown (functional)

relationship f ∈ R between example x ∈ X and target y ∈ C based solely on a sample (x, y) =

((x1, y1), ..., (xn, yn)) ∈ (X × C)n of size n ∈ N drawn iid from an unknown distribution PXC .

Definition 1.1.1 describes the learning of a function on the sample space, which is also

called the hypothesis, and gives a value for each point in the sample space.

As an example we are given a number of water samples from different wells for analysis.

After producing a bacteriological and chemical analysis of the samples each tube is labelled

with +1 if drinkable and -1 otherwise, that is y = {−1,+1} is the class label. The analysis

results are stored in a database, such that future water samples are checked against the values

in the database to decide whether the water is drinkable or not. Let suppose that d analysis

were made and each result is a real value describing the quantity of a given bacterial or chemical

substance in the water. Each water sample is then represented by a vector xi = {a1, ..., ad}

which we call the attribute vector. The collected database is divided into a training set

that we can use to train a learning algorithm. We normally select a small subset of these

training set for the validation task, this set is called the validation set. The remaining part

of the database called the test set is used to predict the label, hence the performance of the

classifier.

A learning algorithm is defined as:

Definition 1.1.2 (Learning algorithm)[56] Given an example space X, an output space C and

a fixed set F ⊂ RX of functions mapping X to R, a learning algorithm A for the hypothesis

space F is a mapping

A :

∞
⋃

n=1

(X × C)n → F

Assuming that we have an infinity of examples to choose from then the learning algorithm

A of definition 1.1.2 finds all the mappings (functions or hypotheses) in the fixed set F . If we

know the probability distribution PD, the classifier that minimizes the misclassification risk

given this probability distribution is the Bayes classifier, and in this case, the classification

problem becomes trivial. However, as our water example shows, we only have access to a
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finite number of samples to use in learning the hypothesis. We evaluate the performance of

the hypothesis with some mathematical quantities such as the empirical risk as defined below.

The loss function for the classification problem is defined as:

L0/1(f(x), y)
def
= If(x)6=y

I is the identity function with I(true) = 1 and I(false) = 0,

L(f(x), y) being the 0/1 loss function which is a measure of cost when making a prediction

at an example x is f(x) but the true class is y. The L0/1 function is the most commonly

used type of loss function in classification. Therefore, the empirical risk Remp of a function f ,

f ∈ F ⊆ R, F being the function class, and given a training set D is:

Remp[f,D]
def
=

1

m

m
∑

i=1

L(f(xi), yi),

It is well known that if the function class is too complex then overfitting happens which

results in a depreciation of the expected risk R[f ] defined as:

R[f ]
def
= Ex[L(f(x), y)],

The above defines the mathematical quantities for the classification problem. The main

task in classification is to find the hypothesis that minimizes the expected or true risk over

the given samples. We need to use the empirical risk to assess the quality of this hypothesis

then hope that this extrapolates to the true risk.

1.2 Thesis Objectives

1. To propose a simple Randomized Sphere Cover Classifier and to explore it as a base

classifier for ensemble methods.

2. To examine pruning (i.e. removing spheres using a threshold value) as α regularization

parameter to penalize complex covers, and to investigate whether pruning low cardinality

spheres improves the generalization performance of unpruned Randomized Sphere Cover

Classifier.

3. To compare the accuracy of the Randomized Sphere Cover Classifier with some of the

more commonly used classifiers.

3
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4. To investigate the contribution of bias and the variance to the prediction error in the

Randomized Sphere Cover Classifier.

5. To examine the complexity-accuracy trade-off of the Randomized Sphere Cover Classifier

using compression scheme [38, 82, 134].

6. To investigate whether using the kernel method will reduce further the number of pro-

totypes (spheres) and whether the generalization error of the kernel Randomized Sphere

Cover Classifier will decrease.

7. To investigate a new combination method for the Randomized Class Cover Classifiers

based on sampling. This combination method uses a new parameter as part of perturbing

covers for generating diversity.

8. To investigate the bias and variance decomposition of the proposed ensemble and com-

pares the results with those of a single Randomized Sphere Cover Classifier.

9. To investigate the proposed ensemble in the subspaces. This is done using random

attribute subsets to build covers for the ensemble. It also investigate the contribution of

the bias and the variance to the prediction error.

10. To examine the usefulness of the proposed ensembles on real world gene expression

datasets.

1.3 Thesis Organization

Chapter 2 Introduce various ensemble methods, and describe the bias variance decomposition

as an analytical tool for the proposed algorithms.

Chapter 3 Describes the class cover problem as the source for various class cover algorithms

in which the Randomized Sphere Cover Classifier is derived. A quantitative analysis of a Ran-

domized Sphere Cover Classifier is carried out. This chapter also considers the bias/variance

decomposition to study the effect pruning has in the prediction error.

Chapter 4 Considers the compression scheme as a new tool to analyse sphere cover algorithms

and proposes a new sphere cover classifier using Kernel method.
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Chapter 5 Describes a new ensemble based on Randomized Sphere Cover Classifiers and

studies its performance using bias/variance decomposition. It also describes a new subspace

method based on the ensemble and examines its performance using bias/variance decomposi-

tion.

Chapter 6 Evaluates the proposed classifiers on gene expression datasets and study its per-

formance using three attribute ranking methods.

Chapter 7 Conclusions and Future research.

1.4 Benchmark Datasets

To evaluate the performance of the proposed classifiers, we used twenty four datasets from both

UCI data repository [39], and boosting repository (http://ida.first.gmd.de/raetsch/data/benchmarks.htm).

These datasets are summarized in table 1.1. They were selected because they vary in the

numbers of training examples, classes and attributes and thus provide a diverse testbed. In

addition, they all have only continuous attributes.

Table 1.1: Benchmark datasets used for the empirical evaluations

Dataset Examples Attributes Classes Dataset Examples Attributes Classes

Sonar 208 60 2 Vehicle 846 18 4

Glass6 214 9 6 Vowel 990 10 11

Glass2 214 9 2 German 1000 20 2

Thyroid 215 5 2 Concentric 2000 2 2

Heart 270 13 2 Image 2310 18 2

Haberman 306 3 2 Abalone 4177 8 3

Cancer 315 13 2 Clouds 5000 2 2

Ecoli 336 7 8 Waveforme 5000 40 3

Ionosphere 351 34 2 Ringnorm 7400 20 2

wdbc 569 30 2 Twonorm 7400 20 2

Winsconsin 699 9 2 Pendigitis 10991 14 10

Diabetes 768 8 2 Magic 19020 2 10

Yeast 1484 8 10 Satimage 6435 36 6

1.5 Software Package used in this Thesis

• The sphere cover algorithms were implemented in C++.
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• The CCCD program described in by Marchette 1 written in R then integrate it in our

C++ program.

• The bias/variance decomposition C++ code of Domingos [34] was integrated with our

program.

• We build the compression bound in C++ using the approximation (Stirling’s Series) that

is used to compute the binomial coefficients in the multiple bounds program written in

C++ by Kääriäinen and Langford [69].

• WEKA software was used to compare our results with those of other learning algorithms.

• We used gist toolbox for the kernel transformation 2. The transformed distance matrix

is then used with our program.

• We run the entire experiments using Cluster1 and EScluster provided by the EScience

department at UEA.

1http://cran.r-project.org/web/packages/cccd/
2http://bioinformatics.ubc.ca/gist/index.html
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Chapter 2

Background

A vast number of classification algorithms are commonly used for many applications. A full

description of these algorithms and their applications can be found in Maimon and Rokach

data mining book [86]. In this section, we give a general description of several IBL classifiers

in order to make a direct connection to classifiers we describe in chapter 3. In addition, we

review similar sphere cover algorithms using different architectures

2.1 Instance Based Classifiers

2.1.1 The (K) Nearest Neighbour Algorithm

The Nearest Neighbour (NN) classifier has been described as the “simplest and most intuitive

pattern recognition paradigm” [79]. NN uses the Euclidean distance function to classify an

example according to the class of its nearest neighbour in a training set. This choice of distance

metric is straightforward for continuous attributes although scale and variance are obviously

issues. However, nominal and mixed attributes can be a problem for NN classifier which

requires the modification of the distance metric [1]. The classification rule of the NN classifier

is depicted in figure 2.1 using a Voronoi diagram. In Voronoi diagrams the Euclidean space is

decomposed into regions around each example, such that all the examples in the region around

a given examples x are closer to x than any other examples. Finding the nearest neighbour of

x is equivalent to determining which cell in the Voronoi diagram contains x. The K nearest

neighbour algorithm (K-NN) considers K training examples nearest to a test example and

classifies it as the class label of the majority. K-NN was shown to be more robust to noisy

datasets in comparison to the NN classifier [140].
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The primary problem with NN classifier is the computational and data storage load, since

a distance matrix of the entire training set is calculated. kd-tree is a binary tree that partitions

the data into rectangular regions in order to facilitate the search to the closest example [1]. A

possible solution to data storage is to reduce the number of training examples. This has been

a major focus of attention in the machine learning literature [17, 70, 142].

Figure 2.1: A Voronoi diagram for the nearest neighbour showing piecewise linear decision boundaries. Black

dots represent examples and cells delimit its neighbourhood

We can review two techniques that remove examples from the training set: editing and

condensing [79]. The outcome of editing methods on noisy datasets is smooth decision bound-

aries since they concentrate on close border cases, eliminating a possible overlap between class

regions [2]. Alternatively, condensing methods select a small subset of examples without a

significant degradation in the classification accuracy [79]. The main concern of data reduction

classifiers is to search and select the best set of examples for each class to keep for classification.

Examples retained for classification are called prototypes. Using multiple prototypes allows

defining a variety of class regions shapes making prototype-based (also known as instance-based

and exemplar-based) methods powerful classifiers [10, 11, 79].

2.1.2 Nested Generalised Exemplars Algorithm

The Nested Generalised Exemplars algorithm (NGE) is an instance-based learning classifiers

that uses hyper-rectangles [115]. The main idea is to cover examples using hyper-rectangles

allowing these to nest or overlap. Hyper-rectangles are represented as a class value and the

bounds on each attribute that define its borders. For continuous attributes, the maximum

8
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and minimum attribute-values are stored. These maximum and minimum values describe the

range of values covered by the hyper-rectangle. In general, hyper-rectangle based algorithms

are prone to overfitting [139]. Wettschereck and Dietterich [139] showed that NGE performed

badly using various datasets blaming nesting and overlapping as the main cause. Wettschereck

[137] attempt to solve this using a hybrid of Nearest-Neighbor and Hyper-rectangle Algo-

rithm. In the other hand, Martin [92] used an algorithm that disallows overlaps by pruning

hyper-rectangles that conflicted with a new examples. The non-nested Generalised exemplars

(NNGE) extend the boundary of existing hyper-rectangles for each new data. For continuous

attributes, the maximum value is increased, or minimum decreased until the new example is

covered by the hyper-rectangle. The performance of this algorithm matches that of the deci-

sion tree C4.5 [108] but does poorly on noisy datasets [92]. Recently, the NNGE algorithm

has been revisited using an improved classification rule [45] which showed better performance

in comparison to previous results. A rectangle based classifier with its respective decision

boundaries is shown in figure 2.2.

Figure 2.2: A NNGE classifier on a binary toy data (◦ = class1 , • = class 2). Rectangles represent the

geometrical generalization of the input space.

2.1.3 The Class Cover Problem (CCP)

In this section, we discuss the CCP which is the source of a variety of sphere cover algorithms

used for classification, notably the Class Cover Catch Digraph (CCCD). The CCP is to find

the smallest set of covering spheres, the union of these spheres are termed a cover. The

class cover problem (CCP) was first introduced in [23]. For a given class C1, a sphere Bi, with

centre ci and radius ri is defined as the set of data Bi = {x ∈ X : d(x, ci)<ri}. A dissimilarity

measure d on X is a function d : X × X → R+ such that ∀x1,x2 ∈ X, d(x1,x1) = 0 and

d(x1,x2) = d(x2,x1) ≥ 0. Therefore, a sphere Bi covers a number of examples xi from only

9
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one class C1. The radius of the sphere Bi is defined as the distance from the centre to the closest

example from class C2, xj i.e. ri = d(ci,xj) where xj ∈ C2 such that d(ci,xj) ≤ d(ci,xk),

∀xk = C2 s.t yk = C2. The union of the spheres that contain all of the examples of one class

and does not contain any of the other class is called a pure and proper cover. The class

cover problem for two class problems is to find the pure and proper cover for one class with

the minimum number of spheres. Each class is dealt with separately. The CCP can be easily

extended to multi-class problem.

Figure 2.3: A data dependent Class Cover terminology which shows a pure and no-proper cover. Pure because

no examples from different class are allowed in the cover and no-proper because two example are uncovered. The

singleton circle is defined as the circle that has only a data example for its centre.

A number of variations of the CCP are possible. The CCP that uses spheres that have

centres from the training set and have the same radius is called constrained and homoge-

neous CCP [107]. The CCP that uses spheres that have centres from the training set but can

have different radii is called constrained and inhomogeneous CCP. The constrained CCP is

also referred to as data-dependent CCP [21]. The CCP can easily be turned into a classifier

by observing whether an example is interior to one of the spheres of a given class. Various

10

ThesisFigs/classcover1.eps
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modifications to this simple class cover classifier have been explored in [107]. A CCP classifier

is related to IBL classifiers in that they choose a subset as representatives or prototypes.

2.1.3.1 The Class Cover Catch Digraph

The class cover of a training examples D = {(xi, yi)}
l
i=1 is normally defined by the collection of

all the spheres that cover class C1 but none of the class C2 such that for each example xi ∈ D

there is a sphere Bi centred at xi . This is a highly redundant cover which requires a reduction

in the number of spheres, and the CCP involves finding the optimal sphere reduction.

Selecting the smallest subset of spheres whilst preserving the class cover improves classifi-

cation by avoiding overfitting [21]. The standard approach to solving the CCP is to consider

it as a graph-theoretic problem [30, 31]. Priebe et al [29] proposed the Class Cover Catch

Digraph (CCCD). A CCCD is a special type of directed graph or digraph that has several

properties which could be useful for the class cover problem [30].

A digraph D = (V,E) consists of a vertex set V = {v1, ..., vn} and an edge set E =

{{vi, vj}} ⊂ V × V . e = (v,w) denotes and edge between v and w if there is a unique edge e

associated with the ordered pair (v,w) of vertices. A directed graph is shown in Figure 2.4.

The directed edges are indicated by arrows. Edge e4 is associated with the ordered pair (v3, v4)

Figure 2.4: Directed graph (digraph) with vertex set V = {v1, v2, v3, v4} and edges set E = {e1, e2, e3, e4, e5}

represented by arrows.

of vertices, and edge e1 is associated with the ordered pair (v3, v1).

A Euclidean Class Cover Catch Digraph is a CCCD where the sets are spheres and

the examples are the sphere centres (also called a sphere diagraph). The spheres define

regions of neighbourhood and examples inside these regions are connected via edges. The
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Figure 2.5: A sphere digraph showing the sphere set S = {S1, S2, S3, S4, S5} and edges represented by arrows.

The edges are connect only if the vertex is inside a sphere. The vertex of the sphere S1 is linked to vertices S2, S3,

and S5. The vertex of sphere S2 is linked to vertices S1 and S4. Accordingly, this sphere digraph shows that sphere

S3, S4 and S5 are redundant.

examples corresponding to the centres will be from a different class than those that define

the radii. This will allow the building of sphere digraphs whose underlying spheres cover the

observations from one of the classes, at the exclusion of the examples from the other class. An

example of a sphere digraph for a two class toy problem is shown in Figure 2.5.

The open neighbourhood of a vertex S1 ∈ V of Figure 2.5, denoted N(S1), is the set

of vertices with edges from S1, thus N(S1) = {w ∈ V \ {S1, w} ∈ E} which are {S2, S3, S5}.

The closed neighbourhood is N [S1] = N(S1) ∪ {S1}. Thus, the closed neighbourhood of

the sphere S1 is the set of spheres {S1, S2, S3, S5}.

A dominating set of a sphere digraph is a subset D of the vertices such that every vertex

v ∈ V is either in D or there exits a w ∈ D with {w, v} ∈ D. It is said that such vertex is

dominated by w. Thus, D is any set of vertices such that
⋃

w∈D
N [w] = V . The domination

number λ is the number of vertices in D. The CCCD dominating set with minimum cardinality

of Figure 2.6 is the set D = {S1, S2}. The decision surface of a CCCD, which is the surface

used by a CCCD for classification, is shown in Figure 2.7

Finding a minimum dominating set of a CCCD is NP-Hard [21, 22]. An approximation
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Figure 2.6: A sphere digraph showing the minimal dominating set D = {S1, S2} required to cover all the

vertices (examples). The domination number λ = 2.

is possible using a greedy method [29]. A greedy CCCD algorithm (see Algorithm 1) selects

a sphere (vertex) from the training set that covers the largest number of examples (vertices).

This selection is repeated to include only the examples (vertices) which cover the largest

number of uncovered examples not encountered yet.

The greedy CCCD algorithm 1 finds an approximate dominating set which is not unique

since it is not specified how to select among equivalent vertices in step 2(a). In general,

a random selection between several size spheres is sufficient. In some special cases a more

elaborate technique is used [91]. Finding the minimum dominating set is possible for small

datasets. However, an algorithm that was proposed in [see 91, algorithm 3.3 in page 134] is

unusable in practice.

We can identify the CCP and the CCCD with data reduction methods [18, 99, 141, 142].

Data reduction methods specific purpose is to improve classification and reduce memory load

by choosing a specific subset from the training set [17, 142]. Similarly, the CCCD chooses

representative or prototypes as covers for the entire class. In the process, the number of

training examples stored for classification is reduced. It is possible to build a cover for one

class, use a CCCD to find a dominating set for that class, then use the same process for the
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(a) An example of a CCCD dominating cover (b) The decision surface of the dominating cover

Figure 2.7: A toy dataset showing a CCCD with a dominating decision surface

Algorithm 1 A Greedy CCCD

1: Set C ′ = ⊘, V = ⊘.

2: While C ′ 6= V do:

• (a) Select a vertex covering the largest number of uncovered vertices

v ∈ arg maxv∈V \D |N [v] \ C ′|

• (b) Set D = D ∪ {v} and C ′ = C ′ ∪ N [v]

5: Return the dominating set D
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remaining classes. Naturally, this is done at the expense of further running time. Normally,

the greedy algorithm requires O(n2) operations where n is the number of examples in the

training set. Marchette [28] showed that for data sizes of many real problems O(n2) digraph

algorithms are not feasible for multiple class problem; this is because we need to calculate the

distance matrix of the whole training set for each class. Therefore, further approximation is

required at the expense of finding a small dominating set. In addition, a major problem with

a pure and proper cover is overfitting [29]. The next section describes two parameters for the

CCCD that allow a trade-off between complexity and accuracy [29].

2.1.3.2 (α, β) parameters for the Class Cover

The complexity of the discriminant surface relates to the number of examples chosen to make

up the cover (See Figure 2.7). A classifier with the minimum number of spheres should have

superior generalisation performance. α and β are two parameters used in the class cover to

regularize complex covers [29]. The α parameter is used to prune spheres that are below

cardinality threshold α. Removing low cardinality spheres may improve the generalisation

performance on noisy data sets. Conversely, β is used to control outliers. In this case, it may

be better to allow some spheres to include examples from a different target class. Thus, the β

parameter allows the sphere to cover β examples from different class. In other words, β is the

parameter that is used to “contaminate” a pure sphere. Increasing α and β results in cover

reduction which can lead to better generalisation and reduced data storage (we address the

compression issue in chapter 4).

Selecting α values is straightforward and can be tuned using the standard cross validation

technique [29]. In [29], a small scale empirical evaluation showed the difficulty of setting β

values. It was argued that as β is an outliers filter it would always require small values.

Consequently, they proposed a method that chooses a small value of β at the beginning then

increments it gradually. In chapter 5, we investigate the β parameter as part of randomizing

covers in ensembles and propose an automatic selection process.

A simple illustration of the role of α and β parameters is shown in figures 2.8. These

figures correspond to a single cover of a positive and negative class toy data set. The posi-

tive class is represented by points (·) and the negative class is represented by stars (∗). In

Figure (a), α is equal to 1 and β is equal to 0 which results in a pure and proper cover. In

Figure (b), α = 2. This will remove spheres that cover only a single examples (singletons).
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(a) Pure and proper cover, α = 1. (b) Pure and not proper cover, α = 2.

(c) A “contaminated” sphere, β = 2, the sphere of previous

cover is represent in dotted lines.

Figure 2.8: The role of α and β.

16

ThesisFigs/unprunedcover1.eps
ThesisFigs/prunedalphacover1.eps
ThesisFigs/prunedbetacover1.eps


2.2 The Restricted Coulomb Energy

In Figure (c), two examples from the negative class are covered by one of the spheres (i.e.

“contaminated” sphere).

2.2 The Restricted Coulomb Energy

The Restricted Coulomb Energy (RCE) is an incremental artificial neural network that uses

spheres as localized units called receptive regions, whereby the sphere is modelled using as

centre the weights and a user defined radius fine tuned during learning [105] (Figure 2.9). The

RCE architecture has three layers of nodes. The first layer is the input layer since this is where

the inputs are applied. The second layer is called the category representation layer. Training

of an RCE, as in any neural network, involves compressing the input space into categories.

Consequently, a category is a compressed representation of a group of examples resulting in

a generalization of the input space. The number of nodes in the second layer is determined

by the training phase. This number increments as training progresses and stabilizes at some

value at the end of the training phase. The third layer is the output layer that represents the

number of target classes.

Figure 2.9: An RCE architecture with its three layers. Wjk represents the weights of the category representation

layer, while wji represents the weights of the input layer. i is the size of input, j is the size of the spheres found by

the network, and k is the number of class label of the dataset

In the training phase, the RCE algorithm requires an initial large fixed radius chosen by

the user. New examples are presented to the algorithm in order to modify the radii to ensure
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that no spheres from other classes contain the example. An example falls inside the sphere

(receptive region) if the distance between an example and a category is less than or equal to

the radius. A new sphere is created if no sphere covers the newly presented example. We give

a general description of the original RCE, disregarding any architectural details, as follows:

• The algorithm keeps a set of spheres with centres from examples it was presented with

during learning (called prototypes), so that there is exactly one sphere centred around

each prototype

• The radius of a sphere is assigned a large value, called the initial radius.

• The radii of the containing spheres are reduced if a new example presented to the algo-

rithm is contained in some spheres of inappropriate classes, so that none of the spheres

contains examples of different class.

• Learning is achieved by presenting examples to the algorithm in order to cover the entire

class. These training examples are discarded when they are contained in any existing

sphere.

• If an example is not contained in any sphere, a new sphere is created using this example

as centre and provided with an initial radius.

• The algorithm does not allow spheres of different class to overlap, whilst this is permis-

sible if they are of the same class.

• The algorithm classifies a new examples using the class of the sphere. Any test example

that falls outside a sphere is simply rejected (i.e not classified by the algorithm).

Critics of RCE have found that the learning rule it uses is not well suited for real problems

[68]. The reason is that it creates many spheres in the overlapping class region, and therefore

does not generalize but merely memorizes the input space. In order to rectify this shortcoming,

many variations of RCE have been proposed in the literature [4, 63, and references therein].

2.3 The Radial Basis Function Neural Network

Another popular algorithm that can use spherical shapes is the Radial Basis Function Neu-

ral Network (RBFN) [98]. The RBFN uses localized units as spheres, whereby the sphere is
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modelled using Gaussian functions (Figure 2.10(a)). These Gaussian functions are combined

linearly with associated weights to approximate an unknown function. The radial basis trans-

fer function is continuous, in contrast to the Heaviside step function employed in the RCE

algorithm.

h(x) = exp

(

−
(x− c)2

σ2

)

(2.1)

σ, in equation 2.1, is the width of the radial basis function. The centre c of the radial basis

function is harder to find. In general, the K-mean clustering algorithm [100], self-organised

maps (SMO) [98] and other clustering techniques [87] are used.

(a) Radial Basis transfer function (b) RBF architecture

Figure 2.10: Radial Basis Neural Network.

In order to find the minimum of the loss function, the RBNF algorithms must accomplish

the following steps:

1. select a search space.

2. select starting examples in the space.

3. search for the minimum.

An RBFN is completely specified by choosing the following parameters: the number of

radial basis functions N , the centres c, the distance function d, and the weights wi for each

connection between the Gaussian function and the class label (n > N) (Figure 2.10(b)). The

number N of radial functions is a critical choice and depending on the approach can be made
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a priori or determined incrementally. RBFN size depends on the number of basis functions:

a small number might underfit the data while a large number overfits it. An algorithm that

starts with a fixed number of radial basis functions determined a priori is known as static, and

an algorithm that is able to modify the number of the basis functions is known as dynamic.

2.4 Ensemble Learning

An ensemble of classifiers (also known as committee of classifiers, committee of learners, mix-

ture of experts, classifier ensembles, multiple classifier system) is a set of classifiers whose

individual decisions are combined in some way to classify new examples [32, 95, 103]. In view

of the fact that combining the same classifier would be irrelevant, several methods are proposed

to generate different hypotheses (or base classifiers) [27, 32, 41, 47, 48, 54, 96, 103, 116].

Various empirical results have shown ensembles often improve on the accuracy of these base

classifiers [6, 32, 40].

Ensembles that combine classifiers by randomising the training set are called randomised

ensemble methods [35, 47, 130]. This randomisation is seen as a way to introduce diversity

in the ensembles. Diversity can be defined as the variability between base classifiers and is

a very important concept in ensemble methods [74]. However, the use of diversity is still an

open problem in ensemble design [74, 125]. The main reason for this is the weak relation

between accuracy and diversity [74]. Nevertheless, many researchers have investigated several

diversity measures and assessed their link to ensemble accuracy [19, 101, 123].

Diversity can be generated using a range of parameter initialization. If the learning algo-

rithms is deterministic, it can be run several times, each time with a different partition of the

training samples. In ensemble methods such randomisation is an essential factor. Dune et al

[71] outline several possible ways to combine base classifiers. These include:

1. Probabilistically selecting subsets of the training set [Section 2.4.1 and 2.4.2].

2. Introducing artificial examples to the training set to train a base classifier (also known

as noise injection or randomness injection) [Section 2.4.3].

3. Randomly selecting subsets from the attribute set [Section 2.4.4].

4. Combining different types of classifiers (also known as heterogeneous ensemble learning).

5. Using different combination schemes.
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2.4 Ensemble Learning

In order to combine label outputs of several classifiers, we employ some sort of fusion. A

popular fusion method is the majority vote which combines a number of predictions whereby,

as the name suggests, the majority wins [73]. Ties are resolved arbitrarily. Various alternative

methods have been proposed and investigated in [75]. Fusion of label outputs is a research

area in its own right producing several techniques [77].

We can review a variety of randomised algorithms that combine different classifiers: Noise

injection artificially created examples from the training set to train different classifiers in an

ensemble; Subset attributes selection employs random selection of attributes whereas each

subset is used to build a single classifier for the ensemble; Bagging uses sampling to randomize

the input to a classifier; Boosting employs an iterative weighting method to sample or re-weight

examples. In the next sections, we describe in more details several of these major algorithms.

2.4.1 Bagging

Bagging is a simple but effective ensemble proposed by Breiman [13]. Bagging is run several

times on training samples. On each run, it produces replicates of the original training set by

sampling with replacement the same number of examples as the original training set. Some

training samples may appear in the produced samples while others may not. Such a training

set is called a bootstrap replicate of the original training set, and this technique is called

Bootstrap Aggregating. Each bootstrap reproduces, on the average, 63.2% of the original

training samples [13]. Individual classifiers are then used to classify each example in the test

set based on majority vote. Algorithm 2 describes Bagging.

Algorithm 2 Bagging Algorithm

1: Input : D = [(x1, y1), ..., (xm, ym)]

2: A learning algorithm A

3: A number of base classifiers (or iterations T )

4: Output: The final hypothesis hfin

5: for t = 1 to T do

6: Dt = Bootstrap replicate(D)

7: ht = A(Dt)

8: end for

9: hfin(x) = argmaxy∈C
∑T

t=1 |ht(x) = y|

Given a learning algorithm A and training set D with m examples, bagging makes Dt
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Bootstrap replicates from D. Training a classifier on Dt produces a hypothesis ht. The final

hypothesis hfin(x) is the majority vote of all these predictions.

A variation of Bagging called half&half bagging was also proposed by Brieman [15]. The

basic idea is to sample randomly from the training set to form new training sets that comprises

of half examples misclassified by previous classifiers, and half of correctly classified examples.

The size of the training sets constructed this way is set by the user. An important criteria of

half&half bagging is that a misclassified example e would not have been used in any previous

sets that trained the classifiers. The example e is labelled using the majority vote of all the

classifiers thus far that did not have e in their training set. If the true label of e does not

matches the majority vote prediction then it is selected in the misclassified set. This method

of labelling and testing examples is termed out-of-bag error. Examples that persist after many

draws are shown to be hard to classify. Breiman used the words hard boundary examples

and showed empirically their significance in classification.

Bagging has shown to work well for unstable learning algorithms [13]. Unstable learning

algorithms are those whose output predictions change in response to a small change in the

training sample [13].

2.4.2 Boosting

The Boosting method was first proposed by Schapire [117], and was followed by an algorithm

called AdaBoost (Adaptive Boosting) [42]. AdaBoost has become the most commonly used

algorithm in ensemble methods. Like Halfhalf Bagging, Boosting involves iteratively reweight-

ing the sampling distribution over the training data. The most astonishing characteristic of

boosting method is that any weak learning algorithm can be turned into a strong learning

algorithm. Boosting was introduced from Probably Approximately Correct (PAC) learning

theory (PAC-Boosting). The standard definition of a weak learning algorithms in the PAC-

Boosting setting is that it returns a hypothesis h from a fixed set of hypotheses H that is

slightly better than random guessing on any training set. Just like bagging, AdaBoost also

manipulates the training examples to generate diverse hypotheses. Algorithm 3 show the steps

taken by a generic AdaBoost.

Adaboost use a weighting scheme on each example of the training set. A non-negative

weighting d(t) = (d
(t)
1 , . . . , d

(t)
m ) is assigned to the data at step t, and a weak learner ht is

constructed based on d(t) which is the weight vector distributed over the training samples. At

each iteration t the weights are updated according to the weighted error incurred by the weak
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2.4 Ensemble Learning

Algorithm 3 AdaBoost Algorithm

1: Input : D = [(x1, y1), ..., (xm, ym)] where xi ∈ X, X is the set of all examples x, y ∈ C =

{−1,+1}

2: Initialize d
(1)
n = 1/m for all n = 1, ...,m

3: Set ǫ = 0

4: for t = 1 to T do

5: Train classifier A with respect to the weighted sample set {D,d(t)} and obtain hypothesis

ht : x → {−1,+1}, i.e. ht = A{D,d(t)}

6: Calculate the weighted training error ǫt of ht

ǫt =

m
∑

n=1

d(t)
n I(yn 6= ht(xn))

7: set:

ϕt =
1

2
log

1 − ǫt

ǫt

8: Update weights:

d(t+1)
n =

{d
(t)
n exp(−ϕtynht(xn))}

Zt

where Zt is a normalized factor chosen so that
∑m

n=1 d
(t+1)
n = 1.

9: Break (i.e. do not use the actual classifier) if ǫ = 0 or ǫ ≥ 1/2 and set T = t − 1.

10: end for

11: Output: HT (x) =
∑T

t=1
ϕt

∑T
r=1

ϕr
ht(x)

learner A in the last iteration. The base learner is then applied to produce a classifier ht. The

error rate of this classifier on the training samples is computed

ǫt =

m
∑

n=1

d(t)
n I(yn 6= ht(xn)) (2.2)

and is used to adjust the probability distribution on the training samples using the hy-

pothesis weight ϕt,

ϕt =
1

2
log

1 − ǫt

ǫt
. (2.3)

AdaBoost seeks to minimise the loss function:
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G(ϕ) =
m

∑

n=1

exp{−yn(ϕht(xn) + Ht−1(xn))}, (2.4)

where Ht−1 is the combined hypothesis of the previous iteration given by

Ht−1(xn) =

t−1
∑

r=1

ϕrhr(xn). (2.5)

In order to analyse AdaBoost, Shapire et al [117] developed a theoretical tool using the

margin theory. In large margin classifiers, the main idea is to enlarge the margin of a linear

classifier to obtain good performance [124]. For this reason, margin theory was developed as

the main tool of analysis. It is rather surprising to find a link between large margin classifiers

and boosting methods. However, boosting uses the notion of hypothesis-margin as opposed to

example-margin used in large margin classifiers. The hypothesis-margin is defined as [24]:

... a distance measure on the hypothesis class. Therefore, the margin of an hy-

pothesis with respect to an example is the distance between the hypothesis and

the closest hypothesis that assigns alternative label to the given example.

The margin Mrg of an example x with a target class y is calculated as follows:

Mrg(x, y) =
y

∑

t ϕtht(x)
∑

t ϕt
. (2.6)

The margin of a training example is a number between -1 and +1 that can be interpreted

as a measure of the classifier’s confidence on this particular example. The choice of ϕt was

the critical topic to find out whether maximizing the margin directly has any influence in

reducing the generalization error. Early empirical studies showed that AdaBoost achieves

large margins[109]. This issue as to whether AdaBoost is a large margin classifier developed

into an intense debate for many years [110, 114]. It was only after using a new analytical

tool, capturing in the process AdaBoost’s dynamic behaviour, that it was possible to study

AdaBoost margin. The unique study in [113] showed that AdaBoost does not automatically

maximize the margin but asymptotically reaches the maximum margin. Similarly to large

margin classifiers, searching for this maximum margin is the main focus of maximum margin

boosting [95, 110]. Advances in boosting methods are an example of a continuing growth in

interest in this field making boosting methods an exiting research area to study.
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2.4 Ensemble Learning

2.4.3 Noise Injection

In Noise Injection (NJ), the goal is to explicitly promote classifier diversity by altering the

training data. This method differs from Bagging and Boosting in that instead of sampling

examples, NJ creates examples from an existing training set. In the past, noise injection has

been a popular choice to reduce overfitting in neural networks [48, 121]. In ensemble methods,

Raviv and Intrator [111] used bootstrap sampling with noise injection to train neural network

classifiers. Liu et al [84] train neural networks in an ensemble using a correlation penalty term

in their error functions. Later, this method is referred to as Negative Correlation Learning

[20] which became a popular research area in neural network ensembles.

A recent algorithm, called DECORATE, can use either decision trees or neural networks

as base classifiers with noise injection to build ensembles [96]. Like boosting, DECORATE

is a sequential learning algorithm generating each base classifier iteratively. In DECORATE,

decision tree classifiers are trained on the original training data combined with some artificial

data generated from the same distribution. The goal, as stated by the authors, is to create

diverse classifiers in the ensemble. This is done by keeping the training accuracy of the

ensemble high while encouraging diversity. The construction of the artificial data and their

labels follow a simple principle: choose labels as to differ maximally from the current ensemble’s

predictions. At each iteration a classifier will only be accepted in the ensemble if the overall

accuracy is increased. This rejection method is prohibitive for large datasets. Experimental

results shows that some improvement is made on several datasets when compared to both

bagging and AdaBoost.

2.4.4 Subset Attribute Selection in Ensembles

In contrast to the above methods, an effective approach for generating diverse base classifiers is

to use different subsets of attributes [102]. Choosing random subsets of attributes is also called

Random Subspace method. The main goal of subset attribute selection is to generate diversity

in the ensemble [128], since varying attribute subsets will generate different base classifiers. In

general, the task of an ensemble generated using an attribute selection algorithm is to: (1) use

classifiers generated in different subspaces, and (2) to integrate the predictions in such way

to improve generalization. One of the first approaches combined nearest neighbour classifiers

(K-NN) through multiple feature subsets (MFS) [7]. MFS was among the first methods to try
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answering whether less accurate individual classifiers as a whole could achieve high accuracy

[7].

Traditionally, finding a set of attributes is known as attribute selection with the main goal

of finding the best attribute subset to use for selected learning algorithms [51, 97]. In ensemble

methods, the problem is to find the best set of subsets of attributes to maximise diversity. The

Filtered Attribute Subspace based Bagging with Injected Randomness (FASBIR) algorithm

uses Information Gain (IG) as the search criterion [146] . FASBIR first measures the IG of

each attribute then removes all the attributes with information gain less than some threshold.

Experimental evaluation showed that a substantial improvement is made in generalisation

performance [146].

Using decision trees and nearest neighbour in the subspaces to build ensemble has been

shown to be useful in several papers [16, 58, 59]. For example, the random subspace [58]

constructs a decision tree based classifier that maintains highest accuracy on training data

and improves on generalization accuracy as it grows in complexity. The ensemble consists

of multiple trees constructed in randomly chosen subspaces. The popular Random Forests

algorithm [16] builds a tree using a bootstrap replica of the learning sample, and a decision

tree without pruning. At each test node the optimal split is derived by searching a random

subset of size K of candidate attributes selected without replacement from the candidate

attributes. Random forest combines randomization with bootstrap sampling. The Random

Subspace method is used in a number of ensemble attribute selection strategies. Tsymbal et al

[128] survey describes several of these methods which are open for further explorations. This

survey is also an indication of the interest given to such stimulating field of research.

2.5 Bias and Variance Decomposition

In general, we can survey three research directions taken in order to analyse the generalization

error in ensemble methods. The first research direction is known as the Bias/Variance decom-

position which has a rich history in machine learning research [44, 66, 126]. It is the tool we

choose to use throughout this thesis. The second research direction is known as the margin

theory which is heavily linked to Boosting methods (See section 2.4.2). The third research

direction is known as diversity measure [74]. This area has recently been very popular as it

was suggested that “diversity” is the missing link for building strong ensemble methods [78].

Research in diversity measures aims at discovering the best way to quantify differences in the
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base classifiers (i.e diversity) in order to use it in ensemble design [125]. However, it was shown

that using some diversity metrics to directly build ensembles is harder than first thought and

Kuncheva calls it the “Elusive Diversity” [76].

In general, the bias/variance theory has been used successfully to analyse the error rates of

ensemble methods [6, 14, 131]. The main characteristic of the bias and variance decomposition

is its simplicity. It is also an appropriate experimental tool used to study the generalization er-

ror of any classifier based on a large family of error functions [53, 65]. In fact, the margin theory

and diversity in ensembles have all been linked to the bias/variance decomposition [34, 125].

The bias/variance decomposition essentially consists of decomposing the generalization error

into two components: bias and variance. Historically, the bias/variance decomposition was

used for regression problems, using squared-error as loss function [46]. A general description

of the challenging issues to translate the bias and variance decomposition from regression to

classification can be found in [65]. In the last decade, a race has taken place to find the best

way to achieve bias/variance decompositions for classification where the 0/1 loss function is

used [33, 43, 72, 127]. Each proposed method was shown to hold its assumptions and have its

shortcomings. In this section, we discuss in more details bias/variance decomposition using

Domingos framework [34]. The bias and variance, as defined by Domingos, is for arbitrary loss

function but it holds also for the 0/1 loss function [34].

The classical problem in supervised learning is related to both the hypothesis space and

the training sample. Figure 2.11 shows three possible hypotheses with their different outcome

on a training sample. The dotted black line allows for few mistakes while the hypothesis

represented by the non-dotted (green) line shows consistency. The third hypothesis of figure

2.11 shows a simple structure using a linear function. Intuitively, a classifier that performs well

on the training set should perform well on unseen data. Bias/variance decomposition shows

that this intuition is wrong. Complex hypotheses such as the consistent one in figure 2.11 will

have a large variance on unseen data. This is because it fits the data perfectly which makes it

prone to small changes in data and may overfit. In figure 2.11, we see that a linear model is far

too simple. Simple hypotheses tend to have large bias and often underfit the data (i.e. exhibit

bias). An increase in complexity may help reduce bias. In addition, a strong bias in a learning

algorithm will mean it is less likely to overfit as it is less dependent on the training sample. The

main issue for these algorithms is that an increase in data will not improve the performance

since it will not overcome the bias. Alternatively algorithms that are too dependent on the
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Figure 2.11: Too complex versus simple hypothesis

training sample will have high variance. Overfitting algorithms are known to be unstable and

it has been shown that their performance can be greatly improved using ensembles [14, 35].

Figure 2.12: Bias/variance trade-off

The aim of any classifier is to find the best fitting hypothesis that decreases the general-

ization error. This can also be seen as a search to reduce bias and variance. However, this is

possible only as a trade-off between bias and variance. This trade-off may be achieved using

the parameters of a learning algorithm. Other methods are possible such as restricting the
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hypotheses space, and even use some prior knowledge to restrict the search space [47]. Figure

2.12 [86] shows the best fitting hypothesis is the one that finds the optimum bias/variance

trade-off (optimal fitting). In summary we may say:

Generalization error = Bias + V ariance

In this section, we discuss briefly the bias/variance decomposition for the 0/1 loss function

using Domingos framework [34].

The bias is attributed to the systematic part of the error, while variance to the stochastic

part of the error [34]. It is commonly recognised that:

1. Bias arises when the classifier cannot represent the true function. That is, the classifier

underfits the data.

2. Variance arises when the classifier overfits the data.

3. There is often a trade-off between bias and variance.

In practice, the bias and variance are computed by running the algorithm several times on

different training sets. To this end, we need to sample repeatedly from a set U in order to make

s training datasets {Di}
s
i=1. Each bootstrap Di is made of l training examples Di = {xj , yj}

l
i=1,

where each point is a pair (xj , yj), yj ∈ C, x ∈ R
n, n ∈ N, and C is the set of class labels. Di

can be considered as a random variable. A learning algorithm A produces a hypothesis fDi

using a training set Di such as fDi
= A(Di). For each point x ∈ R

n the hypothesis produces

a prediction fDi
(x) = p, and L(y, p) represents the 0/1 loss, if p = y then L(y, p) = 0, else

L(y, p) = 1. The goal of our learning algorithm A consists in minimizing the expected loss EL.

Thus, the expected loss at point x can be written as: EL(A,x) = EDi[Ey[L(y, fDi
(x)]], EDi[.]

indicates the expected value with respect to the distribution of Di. Ey[.] is the expectation

with respect to y since the randomness in y due to the choice of a particular test point (x, y).

The two important variables are the optimal prediction p∗ and the main prediction (also

known as central tendency) pc. Both p∗ and pc are evaluated using 0/1 loss function and

without considering noise (Noise is only considered for theoretical analysis as it is impossible

to calculate in practice) [34].

Definition 2.5.1 (Optimal prediction p∗ [34])

An optimal prediction p∗ is the prediction of the optimal classification algorithm (which is the

prediction obtained by the Bayes classifier).
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In practice we cannot compute this optimal prediction p∗ so instead we replace it with y the

target value.

Definition 2.5.2 (Main prediction pc [34])

The main prediction pc for the example (x, y) is the class most often predicted.

To compute pc for an example (x, y) of the test set, we need to get all the fDi
(x) predictions

for that example from different hypotheses, and then find the prediction that appears most

often, this will be pc.

The bias B(x) is the loss of the main prediction relative to the optimal prediction p∗.

Bias measures how far the predictions of a learning algorithm, given an example (x, y), are

from the optimal prediction p∗. For the 0/1 loss, the bias is always 0 or 1. Thus, it is said

that the learning algorithm A is biased at point x, if B(x) = 1. The bias B(x) is:

B(x) = L(p∗, pc) (2.7)

Definition 2.5.3 ( Net Variance V (x) [34])

The net variance V (x) is the average loss of the predictions relative to the main prediction.

Net variance measures how the choice of the training set affects the predictions of the learning

algorithm. In our case, it measures how the predictions of a learning algorithm for a specific

example, derived from the Di different training sets, fluctuate around the most often prediction

pc associated with that example.

The net variance V (x) is:

V (x) = EDi[L(pc, fDi
(x))] (2.8)

The biased variance Vb and the unbiased variance Vu constitute the two components of the

net variance. The unbiased variance corresponds to the variance of incorrect predictions for

the case where the main prediction is correct (pc = p∗). Thus, unbiased variance captures the

extents to which the learner deviates from the correct prediction pc. In this case, the unbiased

variance is added to the error. On the other hand, the biased variance corresponds to the

variance of correct predictions for the case where the main prediction is incorrect (pc 6= p∗).

Thus, biased variance captures the extents to which the learner deviates from the incorrect

prediction pc. As a consequence, the net variance is the difference of the two: V = Vu − Vb.

This means that variance hurts on unbiased examples while it helps on biased examples.
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The b/v decomposition is:

EL(A,x) = c1N(x) + B(x) + c2V (x)

The noise part c1N(x) is disregarded simplifying the decomposition to

EL(A,x) = B(x) + c2V (x)

c2 is +1 if B(x) = 0 and −1 if B(x)) = 1.

Thus, the average loss Ex[EL(A,x)] for a learning algorithm A on all the examples is

calculated using the average bias, variance (unbiased, biased and net variance), averaged over

the entire set of the examples of the test set is:

Ex[EL(A,x)] = Ex[B(x)] + Ex[Vu(x)] − Ex[Vb(x)] (2.9)

= Ex[B(x)] + Ex[(1 − 2B(x))V (x)]

To give a simple interpretation, we use a similar illustration presented in [135]. Let (x, y),

be an example where y ∈ C = {a, b, c} is the target value of an example x.

Table 2.1: Table showing an example of BV calculation

Case1 Case2 Case3

Correct class a b c

Prediction 1 a a a

Prediction 2 a a b

Prediction 3 a a c

Prediction 4 a a c

Prediction 5 b a c

Prediction 6 b a c

Prediction 7 b b c

Prediction 8 c b c

Prediction 9 c b c

Prediction 10 c b c

Main prediction a a c

Bias 0 1 0

Variance 0.6 0.4 0.2

Error 0.6 0.6 0.2

Let say that an algorithm is run 10 times on different training sets. For each example (x, y),

we get a prediction, for a total of 10 predictions as shown in table 2.1. The main prediction
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for an example (x, y) is the class most often predicted. For the 0/1 loss, the bias is always

0 or 1. The contribution of bias to error depends on the loss of the main prediction relative

to the optimal prediction. The contribution of variance to error depends on the average loss

of the predictions relative to the main prediction. Thus, the error in Domingos bias/variance

decomposition is:

Case 1 : Ex[B(x)] + Ex[(1 − 2B(x))V (x)] = 0 + ((1 − 0) ∗ 0.6) = 0.6

Case 2 : Ex[B(x)] + Ex[(1 − 2B(x))V (x)] = 1 + ((1 − 2) ∗ 0.4) = 0.6

Case 3 : Ex[B(x)] + Ex[(1 − 2B(x))V (x)] = 0 + ((1 − 0) ∗ 0.2) = 0.2

In the second case, the error comes from both bias and variance, whereas in the two

other cases, the error comes from variance only. As stated above, the interesting point about

Domingos decomposition is that reducing unbiased variance in case 1 will help reduce variance.

Hence, the overall error is reduced. In the other hand, reducing the biased variance of case 3

will increase the overall error. It becomes clear that in order to reduce the overall error, it is

required that both bias (B(x)) and unbiased variance (Vu(x)) are reduced.

32



Chapter 3

The Randomized Sphere Cover

Classifier (αRSC)

3.1 Introduction

In this chapter, we propose a new randomised sphere cover classifier (αRSC), based on both

the CCP and CCCD characteristics, described in Section 2.1.3, which is fast in both learning

and classification. The objective of our endeavour is to investigate the proposed classifier

in order to use it in ensemble design. To this end, we empirically test the performance of

αRSC and compare it against alternative classifiers. We show the αRSC performs comparably

with, or better, than five other classifiers on 24 data sets. Furthermore, we use bias/variance

decomposition to analyse the generalisation error of αRSC. Finally, a number of issues are

discussed and possible solutions to tackle in future.

In Chapter 2, we described a family of classifiers called Instance-Based Learning (IBL).

Even though these classifiers are well established in the machine learning literature, employ-

ing them as base classifiers for ensembles has not been straightforward [119]. Instance based

learning techniques operate by keeping a typical sample of the training data then classifying

new examples based on their similarity to the retained sample. Instance based learning algo-

rithms are defined by three characteristics: a similarity function that specifies the closeness

of two examples, a selection function that selects the samples to be kept by the algorithm,

and a classification function that decides on the class of unseen examples. The simplest and

most popular IBL algorithm is the nearest neighbour (NN) algorithm which retains the entire

training set. Although surprisingly effective, one well documented problem with NN classi-

33



3. THE RANDOMIZED SPHERE COVER CLASSIFIER (αRSC)

fier is that classifying a new example requires a distance calculation for each example in the

training set. Data reduction algorithms have been studied in great depth [10, 11, 17, 70, 142].

In general, these algorithms search the training data for a subset of cases and/or attributes

with which to classify new examples with the objective of achieving the maximum compression

with the minimum reduction in accuracy. In this chapter, we propose a simple and fast ran-

domised data reduction algorithm (αRSC) that creates spheres around a subset of examples,

then bases classification on distance to spheres rather than examples.

The reason for designing the αRSC algorithm was to develop an instance based classifier to

use in ensembles. Ensemble performance depends on many factors present in the base classi-

fier. Notably, the stability of the classifier [12, 37], and on their general geometrical properties

[60, 62]. In addition, various empirical results showed that the choice of a base classifier in

ensembles can have a significant effect in accuracy [3, 8, 120, 129]. Hence our design criteria

were that the base classifier should be randomised (to allow for diversity) and fast (to mitigate

against the inevitable overhead of ensembles) and comprehensible (to help produce meaningful

interpretations from the models produced).

The research presented in this chapter was published in the 11th International Conference

on Intelligent Data Engineering and Automated Learning (IDEAL 2010) and Int. J. of Data

Mining, Modelling and Management [144, 145].

3.2 A Randomized Sphere Cover Classifier (αRSC)

The CCCD described in Section 2.1.3 uses a greedy method which requires O[(n2 + nm)d +

γ(n+m)] [28], where γ is the size of the resulting dominating set, n is the number of examples

from class C1, m represents the number of examples from class C2 and d is the number of

attributes of an example x. The dominant term [O(n2+nm)d] comes from the distance matrix

calculation and the second term γ(n + m) comes from the selection of the dominating set. A

greedy CCCD requires two searches of a training set. The first search is to determine the

radius of each sphere that make up the entire training data for the chosen class. The second

search is to find examples that are covered by each sphere. This is clearly an issue for complex

and large data sets. The search for an approximation has been the main focus of its inventors

[22].
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A fast randomized algorithm that selects an approximate dominating set for the CCCD

which does not require the explicit calculation of graphs is described in [28]. The randomized

algorithm builds a sphere around centres randomly selected from the training set. The ran-

domized algorithm has an O[γ′(n + m)d], where γ′ is the size of the resulting dominating set

of the randomized algorithm and (γ′ ≥ γ) (i.e. γ′ is far bigger in size in comparison to γ). The

randomized algorithm is faster than a greedy algorithm but may return a larger dominating

set than the greedy approach, especially for data sets that have high class overlap [28]. It has

been shown that the computational complexity would be the same for both algorithms, and

it may be better to use the greedy approach, if the data set is small [28]. We are particularly

interested in the randomised algorithm for three main reasons:

1. The algorithm is fast to cover the training set which drives the training error to zero.

However, the speed to cover the entire training set depends on the attribute distributions

for each class, i.e. dense and well separated data sets will be much easier to cover [28].

2. We wish to exploit this randomization to build covers for ensemble methods since one

objective is the design of ensemble methods is to diversify the members (more details in

Chapter 5).

3. It would be fast to build ensembles using a relatively large number of these randomised

classifiers.

Consequently, we shift our focus from the problem of searching and selecting the best set

of spheres for a cover, to a random search and selection problem for ensemble design.

The fast randomized algorithm described here is not a classifier. To make the fast ran-

domized cover a suitable classifier, two important factors are taken into consideration:

1. The choice of regularization parameters.

2. The classification rules.

The αRSC algorithm has a single integer parameter, α, that specifies the minimum size for

any sphere. Informally, for any given α, αRSC works as follows.

1. Repeat until all data are covered

(a) Randomly select a data example and add it to the set of covered cases.
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(b) Create a new sphere centred at this example.

(c) Find the closest case in the training set of a different class to the one selected as a

centre.

(d) Set the radius of the sphere to be the distance to this case.

(e) Find all cases in the training set within the radius of this sphere.

(f) If the number of cases in the sphere is greater than α, add all cases in the sphere

to the set of covered cases and save the sphere details (centre, class and radius).

A more formal algorithmic description is given in Algorithm 4. For all our experiments

we use the Euclidean distance metric, although the algorithm can work with any distance

function.

Algorithm 4 A Randomized Sphere Cover Classifier (αRSC)

1: Input: Examples D = {(x1, y1), . . . , (xn, yn)}, distance function d(xi,xj) parameter α.

2: Output: Set of spheres B

3: Let A = ⊘ (A being the set of covered cases)

4: while D 6= A do

5: Select a random element (xi, yi) ∈ D − A

6: Copy (xi, yi) to A

7: Find min(xj ,yj)∈D d(xi, xj) such that yi 6= yj

8: Let ri = d(xi, xj)

9: Create a Bi with a centre ci = xi, radius ri

and target class yi

10: Find all the cases in Bi and store in temporary set T

11: if |T | ≥ α then

12: A = A
⋃

T

13: Store the sphere Bi in B

14: end if

15: end while

Algorithm 4 randomly selects an example from the training set without replacement. That

is, once an example is selected as a potential centre for a sphere, it is not reconsidered. The

radius of a sphere is defined as the distance to the closest example of different target class which

is called the border example. Each sphere is assigned one border example. The classification

rule is described as follow:
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1. Rule 1. A test example that is covered by a sphere takes the target class of the sphere.

If there is more than one sphere of different target classes covering the test example, the

classifier takes the target class of the sphere with the closest centre.

2. Rule 2. In the case where a test example is not covered by a sphere, the classifier

selects the closest spherical edge to the test example and uses that sphere class label as

the prediction.

A case covered by Rule 2 will generally be an outlier or at the boundary of the class

distribution. Therefore, it may be preferable not to have spheres over covering areas where

such cases may occur. These areas are either close to the decision boundary where there is

high overlap between classes (an illustration is given in Figure 3.1 (a)), or in areas where

noisy cases are within dense areas of examples of different target class. The αRSC method of

compressing through sphere covering and smoothing via boundary setting provides a robust

simple classifier that is competitive with other commonly used classifiers. In general:

• Spheres that have big radii and cover large number of examples have centres selected

from examples far away from the decision boundary.

• Spheres that have big radii and cover very small number of examples may be outliers.

• Small spheres are either close to the decision boundary or they are noise found in dense

area of a different target class.

We show the reason this characterisation of spheres using the proposed classifier is important

in our ensemble method described in Chapter 5.

We described, in the previous Section 2.1.3, that pruning spheres is the regularization

parameter of choice. A further illustration is shown in Figure 3.1 (b). Removing singleton

spheres from a cover may result in good surface separation. The authors that proposed the

second regularisation parameter β [29] (see Section 2.1.3.2) showed no clear evidence for its

efficiency. Although it is clear that removing some outliers will certainly reduce the number

of spheres in a cover, it is also clear that no rule of thumb exists to choose values for β. In

practice, this makes it rather difficult to use β, since β should be a “local”parameter that

may require a different value for each sphere. Therefore, at this point we avoid using the β

parameter. However, It may be helpful if we can develop a strategy to automatically select

values for β. This strategy will be investigated in Chapter 5 as part of a new ensemble method
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(a) Pure and proper cover showing complex decision

boundaries

(b) The same cover with α = 1 resulting in simpler deci-

sion boundaries

Figure 3.1: An example of complex versus simple cover (both being target class)

(we also test, in the same chapter, our hypothesis that automating β may generate more cover

diversity).

Marchette [91] proposed a variety of ways to make classifiers from the class cover problem.

As far as we know, very limited experimental evaluation was carried out to study their per-

formance as most of them are impractical for large and complex data sets. To the best of our

knowledge, the proposed randomized sphere cover classifier has never been investigated nor

has it been implemented as used in this thesis. In addition, no bias/variance decomposition

has ever been employed to study any class (sphere) cover classifier.

3.3 Experimental Evaluation of the αRSC

In this Section, we investigate the accuracy and generalisation performance of αRSC on 24

benchmark datasets of table 1.1 in Section 1.4. Section 3.3.2 explores the simple version of the

proposed classifier with fixed α and compares the accuracy results against those of the nearest

neighbour classifier. In Section 3.3.4.1, we look at the learning curve of αRSC in relation to

the pruning parameter α. Section 3.3.4.2 investigates the bias/variance trade-off of αRSC,
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and the role of bias and variance in the reduction of the generalisation error. Section 3.3.5

compares the accuracy results of αRSC with variable α against those of other well known

classifiers.

3.3.1 Experimental Setup

For the experiments in Section 3.3.2 we use 2/3 of the data set for training and tested. We use

the training for model selection and report the best classification on test set alone. For the

experiments in Section 3.3.4 we used a stratified ten-fold cross validation (CV). In Section 3.3.5

we run the algorithms using 30 random splits of the training and testing sets. For comparison

purposes we used K-NN, the Non Nested Generalized Exemplar (NNge) [92], C4.5, Naive

Bayes and NBTree. K-NN and NNge are the most relevant for comparison purposes, the other

three are included for completeness. WEKA [143] implementations are used for the standard

classifiers, except our implementation for αRSC.

The accuracy results provided in Section 3.3.5 are based on an independent test set drawn

randomly from the data set. We use 2/3 of the data set for training and tested the classifiers

on the same remaining data. However, given the randomisation nature of αRSC, we choose

to use the average of 30 runs in order to make a fair comparison. Tuning the parameters for

both α and K, in Section 3.3.5, is based on 10 CV using the training set alone and the average

of 15 experiments. NNge was trained based on the best parameters suggested by its authors.

The decision tree (J48) is unpruned and it was trained using the default parameters in WEKA

[108], which are also suggested by its inventor. Naive bayes has no parameters.

We are primarily interested in the relative performance of the classifiers over the range of

data sets. In order to compare the algorithms over all datasets, we use Friedman ranks sum

test [67]. This test ranks the classifiers over each dataset (with the best performing algorithm

getting the Rank of 1, the second best rank 2, etc.). Let rij be the rank of the jth of k

algorithms on the ith of N data sets. The average rank of classifier, Rj = 1
N

∑

i rij gives a

non-parametric summary of the relative performance over all the data sets, and it has been

shown that the ranking themselves provide a fair comparison of the algorithms [67].

The Friedman test checks whether the measured average ranks are significantly different

from the expected ranks under the null hypothesis. The null-hypothesis states that all al-

gorithms are equivalent and their ranks should be equal on average. If the null hypothesis

is rejected we proceed to post-hoc pairewise test [67] such as the Nemenyi test [104]. The

Friedman statistic is distributed according to the Chi square with k − 1 degrees of freedom,
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when N and k are big enough (N > 10 and k > 5). For smaller values an exact critical value

can be computed.

χ2
F =

12N

k(k + 1)





∑

j

R2j −
(k(k + 1)2

4



 (3.1)

The Friedman test checks whether the measured average ranks are significantly different

from the mean rank. The hypotheses are:

• Ho: There is no difference in mean ranks for repeated measures.

• Ha: A difference exists in the mean ranks for repeated measures.

3.3.2 Experiment 1: Compare αRSC and Greedy CCCD

Our first experiment compares the accuracies produced by the randomised sphere cover classi-

fier to those produced by the greedy CCCD. Instead of using the randomised method to select

the set of spheres, we use the greedy method and keep the same parameter and classification

rules of algorithm 4. We used the binary class datasets of table 1.1. The results in table 3.1

indicate that no advantage is gained using the greedy CCCD. In fact, αRSC performs slightly

better. These experiments also shows that the greedy CCCD has no advantage over αRSC

on data compression rate as shown in table 3.1. Data reduction is calculated as follow:

Comp (%) = 100 ×
|B|

|S|
(3.2)

In some cases data reduction in the greedy method is better than αRSC but we expected

a systematic win of the greedy CCCD on all the dataset since the greedy method retains the

smallest subset. The main advantage is the randomisation can reduce the training time since

no computation is required for the graphs to find the dominating set. It is also interesting to

note that α on both classifiers varies but with not large difference.

3.3.3 Experiment 2: Evaluation of the Basic αRSC

Our second experiment demonstrates that even by using the most basic form of RSC with α =

1 we can massively compress the data without significantly reducing the accuracy compared

to an instance based learner using the full data set. We ran a tenfold cross validation on each
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of our 24 data sets. Table 3.2 shows the accuracy on the test data. Table 3.2 also shows the

average compression rate achieved for each data set.

The average compression rate for unpruned RSC is 75%. These experiments clearly show

that by using the simplest form of αRSC we can discard a large proportion of the data

whilst maintaining the same level of accuracy. In order to verify the compression rate and the

accuracy of the pruned RSC (αRSC), we compared it against Drop3, IB3 and Explore. Drop3

was shown to be the best reduction algorithm in terms of reduction and accuracy in comparison

to 14 other data reduction algorithms [142]. IB3 is an algorithm which was proposed to rectify

shortcomings of the famous IB1 and IB2 [142]. Explore was shown to produce very good

reduction without too much deterioration in accuracy [142]. The results produced in Table

3.3 shows the best accuracy produced by K-NN and αRSC trained over a range of parameter

values while the reduction algorithms use internal tuning to produce the best results.

The results shown in Table 3.3 demonstrate once more the good performance of αRSC in

comparison of state of the art data reduction algorithms. In addition, the average accuracy is

comparable to that of K-NN.
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Table 3.1: Classification accuracy of αRSC and Greedy CCCD using the same train/test splits. Only binary

class datasets are used and the classifiers are run once. Data reduction (Comp %) is also shown

Dataset αRSC Comp % α Greedy CCCD Comp % α

banana 89.08 96.77 7 89.02 97.48 7

cancer 78.49 96.20 7 77.42 96.20 7

clouds 88.48 94.27 4 88.00 92.44 5

concentric 98.44 97.12 2 98.20 98.74 0

diabetes 76.17 92.19 5 77.34 87.30 5

german 76.05 81.53 2 75.15 88.14 3

glass2 97.22 90.85 2 95.83 95.77 3

haberman 74.51 88.56 3 75.49 88.56 2

heart 86.67 92.78 8 87.78 94.44 9

ionosphere 91.45 67.09 0 94.02 74.36 0

liver 63.48 89.57 3 64.35 87.83 3

phoneme 88.68 74.96 0 88.68 82.15 0

ringnorm 96.35 80.84 1 96.88 85.16 1

segment 96.75 91.82 2 96.62 93.83 1

sonar 78.57 73.19 1 78.57 77.54 1

thyroid 97.22 83.22 0 95.83 58.74 0

twonorm 96.68 99.94 600 97.28 98.58 300

wdbc 96.32 92.61 6 95.26 91.56 2

wins 98.28 94.85 7 98.28 92.70 8

Table 3.2: 10 fold Cross-Validation classification accuracy (in%) and standard deviation over the folds. The

final column gives the rounded average compression rate (Comp) for unpruned RSC (in%). 1-NN stands for the

Nearst Neighbour. Comp for the compression rate.

Data Set 1-NN unpruned RSC Comp % Data Set 1-NN unpruned RSC Comp %

vehicle 69.61 (4.62) 68.13 (4.75) 50 glass6 70.30 (8.96) 69.00 (9.49) 52

segment 97.14 (1.07) 96.10 (1.21) 89 cancer 67.65 (7.80) 68.08 (7.76) 52

abalone 50.13 (2.25) 49.46 (2.02) 32 breastw 95.67 (2.48) 95.36 (2.42) 90

waveform 85.88 (1.57) 85.41 (1.55) 73 concentric 98.54 (0.79) 98.21 (0.82) 97

ringnorm 72.59 (0.53) 95.16 (0.49) 63 clouds 84.64 (1.68) 84.75 (1.48) 76

magic 80.16 (0.32) 79.95 (0.35) 68 wdbc 94.01 (2.95) 95.38 (2.65) 88

pendigits 98.95 (0.10) 97.72 (0.25) 93 thyroid 96.80 (3.33) 95.40 (4.44) 88

vowel 98.90 (1.05) 95.70 (2.34) 77 german 70.70 (4.34) 70.30 (3.86) 52

twonorm 94.51 (0.29) 93.78 (0.34) 83 diabetes 70.62 (4.67) 68.87 (5.02) 51

glass2 94.25 (4.72) 93.86 (5.67) 87 ionosphere 87.10 (5.12) 92.80 (3.75) 69

ecoli 80.66 (6.16) 81.75 (6.26) 66 heart 75.78 (7.34) 75.26 (8.98) 60

haberman 65.77 (6.92) 68.58 (7.38) 53 sonar 86.23 (7.41) 82.80 (8.48) 61
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Table 3.3: 10 fold Cross-Validation classification accuracy (in%). The Comp columns give the average compres-

sion rate (Comp) for αRSC (in %).

Dataset K-NN αRSC Comp % IB3 Comp % Drop3 Comp % Explore Comp %

sonar 87.02 81.22 80.28 76.57 83.07 80.38 79.49 77.45 98.88

glass2 94.37 94.76 90.50 93.42 88.42 94.83 92.16 92.99 98.96

glass6 72.42 70.44 75.65 64.03 67.97 67.34 76.12 67.81 96.57

tyroid 95.76 94.26 95.32 91.65 91.27 93.94 89.20 92.90 98.50

heart 83.33 82.81 99.09 58.89 93.21 81.85 80.16 83.33 99.18

haberman 73.56 74.89 91.41 26.48 98.98 73.88 91.65 73.19 99.56

cancer 74.11 74.40 93.09 39.48 95.92 74.50 90.69 68.36 99.48

ecoli 84.84 85.09 81.29 81.86 70.08 84.24 81.25 83.03 98.08

iono 85.75 93.40 78.74 85.49 86.17 86.03 92.97 79.77 99.02

wdbc 96.31 96.26 92.91 93.50 90.57 95.60 89.87 95.78 99.61

wins 96.57 97.03 95.97 96.28 93.96 96.28 95.55 96.43 99.68

diabetes 73.70 74.63 82.29 70.30 90.26 75.66 82.15 74.48 99.71

vehicle 71.26 66.23 83.84 65.48 72.60 68.79 75.85 47.87 99.29

vowel 99.09 93.16 79.01 93.94 79.28 94.65 70.38 71.01 93.29

german 75.30 73.87 89.30 70.50 90.19 73.60 83.60 69.40 99.78

conc 98.68 98.64 98.33 97.00 93.00 98.28 91.11 63.16 99.96

image 97.71 96.20 89.96 94.42 93.11 95.76 91.39 87.75 99.59

abalone 53.77 54.44 92.16 53.05 80.37 54.78 82.86 53.00 99.92

clouds 88.52 88.81 95.26 87.26 95.37 88.10 93.10 77.94 99.96

waveform 88.80 89.56 99.44 86.26 96.83 89.28 87.20 85.36 99.96

ringnorm 72.45 95.60 81.37 86.18 85.58 91.69 92.88 86.19 99.46

twonorm 97.24 96.59 98.98 95.72 96.82 96.77 90.69 95.92 99.95

pendigitis 99.07 97.83 94.24 97.39 94.80 97.85 94.13 95.27 98.89

magic 83.53 83.12 89.48 80.10 95.44 83.70 89.06 76.50 79.88

average 85.13 85.55 89.50 78.55 88.47 84.91 86.81 78.95 98.22
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3.3.4 Experiment 3: Model Selection for αRSC

3.3.4.1 Learning Curves of αRSC

The main factor discussed in this Section is the different methods for choosing values for α.

Figure 3.2 shows the learning curves of αRSC in relation to the pruning parameters α (The

10 CV classification error averaged across 100 runs). The curves in Figure 3.2 show that

small pruning values may give significant difference in error, as shown for curves (a) and (b)

of Figure 3.2. We also notice for the same curves a sharp increase in error for α > 5 and

α > 2. The exception is shown for curve (c) of Figure 3.2, since Heart dataset is small, it

required large α value which may be the source of high class overlap (noise). For large data

sets, selecting α values share the same difficulty. In some cases larger values may be needed

such as the one shown for curve 3.2(d). The choice of α is clearly data dependent. In addition,

we notice that further pruning in some cases stabilizes up to a certain value, and then the

increase in error is sharp. By looking at these curves, it becomes evident that pruning depends

on the geometrical properties of the data sets. The geometrical properties of dataset might be

analysed using the geometrical complexity analysis [61] which gives estimates of the degree of

noise, and it also gives an analysis of the structure’s complexity in datasets. Most importantly,

if the class distribution is unbalanced it may require different α values for each class.

Choosing the right values for the pruning parameter should therefore consider the size and

noise level of a data set. In general, pruning a large training set may require large α values (as

long as the data set is not too noisy), and small data sets should require small α values. In

this chapter, we employed 10 fold cross validation for selecting a value for α for each dataset.

We first split the dataset into an independent training and test sets. The cross validation is

employed only on the training set. Finally, the chosen α value is the one that gave the best

10 CV classification result on the training set.

We also notice in Figure 3.2 a common U-like curve. This trend explains the overfitting

issue we explained earlier. Unpruned covers result in complex decision surfaces. As spheres

are removed from the cover better generalisation is achieved. Pruning works better for data

sets that are complex in nature. In classification, complex datasets have noisy examples and

could have high class overlap. Conversely, the generalisation performance deteriorates if it is

severely pruned. We will investigate some of these cases from a bias and variance perspective

to give us a better understanding of the overfitting and underfitting issues of αRSC.
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(a) Learning curve of αRSC on the German data set
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(b) Learning curve of αRSC on the Glass6 data set
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(c) Learning curve of αRSC on the Heart data set
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(d) Learning curve of αRSC on the Waveform data set
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(e) Learning curve of αRSC on the Yeast data set
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(f) Learning curve of αRSC on the Cancer data set

Figure 3.2: Learning curves evolution of αRSC classifier in relation to α
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3.3.4.2 The Bias and Variance Decomposition of the Error for αRSC

The aim of this section is to study the generalisation error of αRSC using bias/variance

decomposition. For these experiments, we employ ten different data sets, four synthetic and

the remaining data sets are taken from the UCI repository. Clouds and Concentric are synthetic

two dimensional two-class data set. Both of these data sets are taken from Elena project1.

Table 3.4 summarizes the main features of the data sets used in the experiments.

In bias/variance decomposition, small training set and large test sets are used to perform

the evaluation of bias and variance. For both synthetic and real data sets we used bootstrap-

ping to replicate the data. In both cases we compute the main prediction, bias, unbiased and

biased variance, and net-variance (as explained in Section 2.5). We followed a similar exper-

imental framework found in [131]. The data is divided into a training Tr and a test Ts sets.

The ratio of the training and test sets are shown in table 3.4. The training bootstrap samples

are much smaller than |Ts|. That is, 200 data sets are made from Tr, each one consisting of

200 examples uniformly drawn with replacement from Tr. Except for two data sets Twonorm

and Waveform, we used 300 training data sets each made of 300 examples.

Table 3.4: data sets used for the bias/variance decomposition of the error. (# of attr.) stands for the attribute

size. (# of class.) stands for the number of classes. (# of Tr .) stands for the number of training sets (bootstraps).

(# of examples.) stands for the number of examples used for each training set (bootstrap). (Test set ratio.) stands

for the proportion of the test set in relation to the whole set

Data set # of # of # of Tr # of Test set

attr. class. sets. examples. ratio.

Twonorm 20 2 300 300 1/2

Ringnorm 20 2 300 300 1/2

Concentric 2 2 200 200 2/3

Clouds 2 2 200 200 2/3

Waveform 21 2 300 300 1/2

Pendigitis 16 10 200 200 1/2

Magic 2 10 200 200 1/2

Yeast 8 10 200 200 2/3

Diabetes 8 2 200 200 2/3

Heart 13 2 200 200 2/3

wdbc 30 2 200 200 2/3

Image 18 2 200 200 2/3

Satimage 36 6 200 200 2/3

Figure 3.3 shows the bias and variance curves of αRSC in relation to α. We notice that

increasing the values of α above 1 and up to the optimal value decreases the net variance.

1www.elena.com
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We also notice the same decrease of unbiased variance. For biased variance, we notice both

decrease and increase. As we learned from Domingos bias and variance decomposition in

Chapter 2, high biased variance helps increase the overall error. Net variance may increases

for higher values of α which result in a substantial increase in average loss. We conclude that

pruning has a stronger influence reducing unbiased variance than biased variance. Increasing

the values of α from 1 and to the optimal value may increases bias. For both Diabetes data

set, bias decreases in relation to α. However, the bias on Diabetes data set increases for higher

α values.

We conclude from these curves that pruning reduces unbiased variance resulting in a sharp

decrease in overall error. On the other hand, pruning has limited influence in bias reduction.

In fact, we notice a very high increase in bias for higher α values. This is not surprising, since

pruning lowers the complexity of the decision boundary results in underfiting the data.

Figures 3.4 and 3.5 show the best results of the net variance and bias using unpruned

versus pruned randomized sphere cover classifier on various data sets. We notice that pruning

reduces significantly the net variance in comparison to unpruned classifier. This is not the

case for bias, as we see a small decrease on only two data sets, Diabetes and Heart data sets,

and small increase on the remaining data sets.

A closer look at the best pruned bias and variance results in comparison to unpruned

results are shown in table 3.5, including unbiased and biased variance.

The results in table 3.5 show a pattern on the bias and variance performance of αRSC classifier:

1. If pruning improves performance, which it does for the majority of cases in our exper-

iment, we notice a substantial decrease in net variance. However, for these cases there

are two trends in relation to bias.

• Increase in bias is shown on Clouds (8.04%), Waveform (2.89%), Magic (10.62%),

and wdbc (39.25%). However, unbiased variance is significantly decreased, as shown

on Cloud (51.11%), Waveform (30.78%), Magic (57.16%), and wdbc (52.59%),

which explains the decrease in average error.

• Decrease in bias is shown on Diabetes (5.32%), Heart (9.06%), Twonorm (2.20%),

and Yeast (0.43%). In all these cases both unbiased and biased variance is decreased.

2. If pruning degrades performance, then we notice an increase in bias. This is shown on

Pendigitis data set with 15.92% increase in average error for α = 2, and a substantial
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(a) Average error and bias curves of αRSC on Diabetes
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(b) Variance curves of αRSC on Diabetes data set
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(c) Average error and bias curves of αRSC on Concen-

tric data set
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(d) Variance curves of αRSC on Concentric data set
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(e) Average error and bias curves of αRSC on the

Clouds data set
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(f) Variance curves of αRSC on Clouds data set

Figure 3.3: Average error, Bias and Variance graphs of αRSC classifier in relation to α. The down arrows show

the lowest error.
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3.3 Experimental Evaluation of the αRSC

Figure 3.4: Comparing best net variance results of αRSC on various data sets. Pruning results are shown on

the right hand side, and unpruned results are shown on the left hand side

Figure 3.5: Comparing best bias results of αRSC on various data sets. Pruning results are shown on the right

hand side, and unpruned results are shown on the left hand side
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Table 3.5: Comparing best bias and variance results of αRSC on various data sets. Var. unb. and Var. bias.

stand for unbiased and biased variance. Diff stands for the percentage difference between the pruned and unpruned

values. The up arrow ↑ means an increase while a down arrow ↓ means a decrease.

Dataset Avg Error Bias Net Var Var. Unb. Var. bias.

Diabetes

α = 0 0.3124 0.2500 0.0624 0.1374 0.0750

α = 3 0.2780 0.2367 0.0413 0.1006 0.0594

Diff % ↓ 11.01 ↓ 5.32 ↓ 33.81 ↓ 26.78 ↓ 20.80

Heart

α = 0 0.2599 0.1833 0.0765 0.1274 0.0509

α = 7 0.2138 0.1667 0.0471 0.0872 0.0400

Diff % ↓ 17.74 ↓ 9.06 ↓ 38.43 ↓ 31.55 ↓ 21.41

Clouds

α = 0 0.1613 0.1107 0.0507 0.0812 0.0306

α = 3 0.1354 0.1196 0.0158 0.0397 0.0240

Diff % ↓ 16.06 ↑ 8.04 ↓ 68.84 ↓ 51.11 ↓ 21.57

Waveform

α = 0 0.1626 0.0934 0.0692 0.1043 0.0352

α = 11 0.1387 0.0961 0.0426 0.0722 0.0296

Diff % ↓ 14.70 ↑ 2.89 ↓ 38.44 ↓ 30.78 ↓ 15.91

Concentric

α = 0 0.0616 0.0131 0.0485 0.0544 0.0059

α = 5 0.0630 0.0295 0.0335 0.0453 0.0118

Diff % ↑ 2.27 ↑ 125.19 ↓ 30.93 ↓ 16.73 ↑ 100

Twonorm

α = 0 0.0730 0.0227 0.0504 0.0586 0.0082

α = 10 0.0515 0.0222 0.0293 0.0366 0.0073

Diff % ↓ 29.45 ↓ 2.20 ↓ 41.86 ↓ 37.54 ↓ 10.97

Pendigitis

α = 0 0.1206 0.0355 0.0850 0.0956 0.0106

α = 1 0.1398 0.0652 0.0745 0.0913 0.0167

Diff % ↑ 15.92 ↑ 83.66 ↓ 12.35 ↓ 4.50 ↑ 100

Magic

α = 0 0.2510 0.1751 0.0759 0.1298 0.0539

α = 4 0.2151 0.1937 0.0215 0.0556 0.0341

Diff % ↓ 14.30 ↑ 10.62 ↓ 71.67 ↓ 57.16 ↓ 36.73

Yeast

α = 0 0.5360 0.4170 0.1190 0.2045 0.0855

α = 1 0.5159 0.4152 0.1007 0.1776 0.0768

Diff % ↓ 3.75 ↓ 0.43 ↓ 15.38 ↓ 10.17 ↓ 10.01

wdbc

α = 0 0.0978 0.0563 0.0415 0.0580 0.0165

α = 8 0.0898 0.0784 0.0114 0.0275 0.0161

Diff % ↓ 8.18 ↑ 39.25 ↓ 72.53 ↓ 52.59 ↓ 2.42
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increase in bias (83.66%). Pruning, for this data set, has also increased substantially

the biased variance (100%). Similarly, Concentric data set shows an increase in average

error (2.27%) and a massive increase in bias (125.10%). We notice also a big increase

for biased variance (100%). This should not be a surprise because Concentric data set is

rather unusual, removing spheres that are close to the decision boundary will significantly

underfit the data because no seperation exist between the two classes. As for Pendigitis

data set, it is made of 10 classes which could be an issue for chosing the same α values

for each class. Obviously, for both Concentric and Pendigitis data sets we see a decrease

in net variance caused by the decrease in unbiased variance which emphasises the role of

pruning in reducing the net variance.

The important observation that can be made from the bias/variance results is that pruning

significantly reduces unbiased variance. However, in only few cases do we notice a small

decrease in bias. Therefore, the decrease of αRSC average error in caused mainly by the

decrease of unbiased variance.

3.3.5 Experiment 4: Comparing Classifier Accuracy Results

Table 3.6 shows the results of classification experiments using train/test split. Table 3.6 shows

that αRSC has the second highest average rank of the five classifiers tested. KNN has the

highest number of top ranks but on some datasets it performed relatively badly. These results

suggest that αRSC can perform well on a variety of datasets in comparison to other classifiers,

and that the smoothing process reduces the tendency of αRSC to perform very badly on some

data sets. This is consistent with our observation that pruning decreases the unbiased variance.

Further statistical tests performed on the Friedman averages showed that our first hypothesis

that the classifiers average ranks are equal H0 is rejected which prompted us to perform post-

hoc tests on pairs of classifiers. The post-hoc results showed that αRSC performs statistically

better than decision trees and NNge. However, KNN showed no significant difference to αRSC.

The post-hoc analysis demonstrate that αRSC is a promising classifier that can be used for

many real world applications. The decrease of the generalisation error of αRSC is mainly

attributed to the decrease of unbiased variance as it was fully explored in the bias/variance

decomposition of Section 3.3.4.2.
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Table 3.6: Classification accuracy (in %) and standard deviation of five classifiers in comparison with αRSC.

Average Ranks stands for Friedman average ranks and Ranks stands for Friendam ranks.

data sets αRSC DT K-NN NB NBT NNge

sonar 83.43 ± 5.37 73.52 ± 5.63 85.57 ± 4.11 73.38 ± 4.91 74.14 ± 3.96 58.29 ± 4.48

heart 78.85 ± 3.62 77.19 ± 5.52 81.56 ± 2.75 85.11 ± 3.12 80.48 ± 3.70 78.74 ± 3.66

Haberman 73.37 ± 0.72 70.98 ± 4.19 74.44 ± 2.62 73.95 ± 2.32 72.61 ± 3.27 67.25 ± 3.91

cancer 70.93 ± 1.89 69.82 ± 6.76 74.77 ± 3.22 75.05 ± 3.25 74.52 ± 3.16 68.03 ± 5.15

ecoli 71.13 ± 2.50 81.28 ± 3.30 85.80 ± 2.78 85.33 ± 2.91 81.96 ± 2.76 83.78 ± 2.96

liver 60.90 ± 4.44 63.88 ± 4.37 62.32 ± 3.83 64.41 ± 4.01 63.71 ± 4.14 61.48 ± 5.01

iono 93.19 ± 1.46 75.05 ± 2.45 86.87 ± 2.58 91.99 ± 2.17 89.52 ± 1.72 91.23 ± 2.98

wdbc 92.33 ± 1.93 93.49 ± 2.05 95.11 ± 1.74 89.33 ± 5.52 93.79 ± 1.63 91.96 ± 2.91

wins 96.65 ± 1.10 94.03 ± 1.22 96.49 ± 0.57 97.18 ± 0.77 96.14 ± 1.08 96.01 ± 1.16

diabetes 74.09 ± 2.40 72.77 ± 2.55 74.66 ± 1.95 75.55 ± 1.88 73.87 ± 2.29 72.79 ± 2.28

vehicle 67.32 ± 1.93 70.91 ± 2.94 68.44 ± 1.50 58.96 ± 2.56 68.00 ± 2.06 61.81 ± 4.86

vowel 76.32 ± 1.60 74.54 ± 2.06 97.45 ± 1.09 66.37 ± 3.11 75.63 ± 3.06 83.40 ± 2.68

german 72.29 ± 1.70 70.68 ± 1.97 74.72 ± 1.64 71.16 ± 1.06 72.48 ± 2.32 63.29 ± 9.09

yeast 55.82 ± 2.52 53.44 ± 1.52 57.01 ± 1.78 57.95 ± 2.16 56.33 ± 1.92 52.77 ± 2.93

image 95.48 ± 0.66 93.94 ± 0.86 96.99 ± 0.54 78.40 ± 1.84 93.37 ± 0.94 86.46 ± 2.65

concentric 98.01 ± 0.57 98.42 ± 0.31 98.51 ± 0.32 98.19 ± 0.27 98.51 ± 0.27 89.72 ± 7.90

abalone 53.86 ± 1.09 51.67 ± 1.39 54.20 ± 1.16 52.13 ± 0.99 53.73 ± 1.44 50.51 ± 1.75

Clouds 88.50 ± 0.75 88.29 ± 0.56 88.62 ± 0.50 86.24 ± 0.51 88.51 ± 0.59 83.22 ± 1.02

waveform 89.31 ± 0.62 84.93 ± 0.64 89.64 ± 0.54 85.19 ± 0.65 88.12 ± 0.93 78.44 ± 3.73

banana 89.93 ± 0.43 88.78 ± 0.64 89.83 ± 0.66 72.51 ± 0.95 88.82 ± 0.76 82.67 ± 5.53

phono 87.35 ± 0.63 85.58 ± 0.80 88.86 ± 0.45 78.29 ± 0.74 84.20 ± 1.09 81.81 ± 1.60

satimage 90.21 ± 0.52 85.60 ± 0.62 90.55 ± 0.40 82.00 ± 0.69 82.43 ± 1.48 86.75 ± 0.90

twonorm 96.67 ± 0.46 84.35 ± 0.74 97.27 ± 0.31 97.53 ± 0.32 93.74 ± 1.63 79.04 ± 1.47

ringnorm 95.41 ± 0.40 90.82 ± 0.51 73.94 ± 0.62 98.44 ± 0.19 96.77 ± 0.66 91.62 ± 1.18

pend 98.19 ± 0.20 95.71 ± 0.30 99.08 ± 0.16 85.41 ± 0.46 94.34 ± 0.58 95.69 ± 0.65

magic 83.63 ± 0.37 84.63 ± 0.38 83.56 ± 0.34 75.80 ± 0.42 85.09 ± 0.33 81.60 ± 0.59

Average Ranks 3.04 4.23 1.94 3.62 3.21 4.96

Ranks 2 5 1 4 3 6
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3.4 Chapter Summary

The sphere cover algorithm has been frequently proposed as a classifier [4, 63, and references

therein]. The main research issue relates to the construction of spheres and their positioning

to cover the training set. Indeed, this still the main focus for many researchers using the

popular kernel methods [49, 50, 83, 136]. However, our first inquiry leads us to revise various

sphere cover algorithms in order to find the best way to make them usable for ensemble

methods. Our first investigation resulted in the randomized sphere cover classifier (αRSC).

We investigated pruning and demonstrated with several data sets that it improves significantly

the performance of this simple classifier. Using our pruning method, we showed that αRSC

compares favorably with several known classifiers on many data sets. The second factor we

looked at is the influence bias and variance have on the generalisation error of αRSC classifier.

Our experimentations with the bias/variance decomposition of the error showed that pruning

indeed reduce the average overall error. This reduction was mainly caused by the reduction

of unbiased variance.

We summarize below the factors behind the choice of the sphere cover classifier as base

classifier for our proposed ensemble methods of Chapter 5:

1. The geometrical property: spheres approximate the decision boundary by finding locally

the boundary examples of each class. This approximation could potentially help us build

diverse classifiers needed for the ensemble.

2. The training accuracy: Learning in classification depends on the capacity of the learner

to produce a good hypothesis. Covering the entire training set will always result in a

consistent hypothesis i.e. no training errors.

3. The low number of free parameters: the accuracy-complexity trade-off is regulated by a

single parameter which takes a non-continuous values. This is a desirable property, since

in classification a good hypothesis depends on the number of parameters used.

4. The flexibility of approximating the decision boundary: the sphere cover is flexible

enough through its local spherical edges which should approximate various shapes of

data set distribution.

Future research, will include an investigation into the possible use of a geometrical com-

plexity analysis [61] of the data set prior to model selection for αRSC which may help giving
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rough estimates. There is no straight forward way to choose α in advance. However, in general,

two factors should be considered for a good estimate:

1. The choice of the training set size. Large data set may require large pruning values.

However, this is also dependent on the noise level.

2. The size and class overlap of the training set. Low class overlap may require small values

for α and vice versa.
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Chapter 4

Compression Scheme

4.1 Introduction

In this chapter, we analyse the proposed Randomized Sphere Cover classifier (αRSC) using

compression scheme 1. We verify that αRSC is a compression algorithm in order to use a

data-dependent theoretical bound to analyse the components of αRSC that most influence its

generalisation error. These components are the parameter α, errors made on the training set

and the cardinality of a cover. The outcome of the compression scheme analysis prompted us

to investigate whether reducing covering can be achieved better using a kernel method. To

this end, in Section 4.3.3.1 we use two different datasets to evaluate αRSC with a Gaussian

kernel.

From a machine learning perspective, analysing supervised learning algorithms is a very

active research field with very long ramifications in statistical and mathematical theory [25, 36].

For example, in large margin classifiers statistical learning theory is repeatedly employed as a

tool to explain their success [9, 56, 124]. In statistical learning theory, a classifier’s performance

on the training set (or test set) and the complexity of the hypothesis class are employed in

probabilistic bounds [21, 133]. These probabilistic bounds are used to predict future errors

of a learning algorithm, and they are called generalization error bounds (also known as risk

bounds). Risk bounds basically provide upper (and possibly lower) ranges of the true error.

Compression scheme [38, 82] has been proposed to explain the generalization performance

of sparse algorithms. In general, algorithms are called sparse because they keep a subset

1 Note that compression scheme in classification is different to data compression theory. Compression

scheme only interest is the reconstruction of labels. Conversely, the data compression theory is concerned with

the reconstruction of the data itself.
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from the training set as part of their learning process. A large number of algorithms fall in this

category, such as Support Vector Machines (SVM) [56]. The SVM is an example of a sparse

algorithm because the resultant classifier, the maximum-margin linear discrimination, depends

uniquely on certain examples called support vectors. The liner function of an SVM can be

reconstructed using only the support vectors without the need of the remaining data. The first

to investigate the compression scheme was Littlestone and Warmuth using simple bounds [82].

Their findings explain that algorithms that possess these data compression characteristics alone

are sufficient to guarantee learnability. However, it was not until 1995 that an extensive study

was carried out by Floyd [38] which explored various bounds under the compression scheme

with the intention of proving their effectiveness (also known as computational complexity

analysis). In practice, compression bounds have been used for model selection instead of the

cross validation technique [88, 89, 134].

Compression bounds make it clear that the answer to a good generalization performance

of a classifier is data compression. However, data compression alone does not make necessarily

an algorithm a compression algorithm. In Section 4.2 we define the compression scheme, and

we show that αRSC is a compression algorithm. In chapter 3, we argued α controls the size

of a cover as well as being the regularization parameter of choice. We also showed that α in

most cases improves the classification error. Here, we examine the relationships between α,

the accuracy and the cardinality of a cover using probabilistic bound based on the compression

scheme. We show that manipulating these three quantities in the bound will result in accurate

prediction of the true error. In addition, we investigate whether further compression is better

achieved using kernel method.

4.2 The Compression Scheme

Littlestone and Warmuth [82] observed that for many algorithms only a subset of the training

set is retained for classification. The basic idea is to have a compression algorithm that returns

a subset of examples. A compression scheme for a concept class that consists of two functions

comprises:

1. a compression function C; and

2. a reconstruction function R.
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3. a message σ̂ of additional information which is specific to the compression algorithm (we

will give an example below of how to select σ̂ for αRSC)

Therefore, the compression function takes as input a finite sample (set of examples) and

outputs a subset of these examples. This subset is known as the compression set. The task

of the reconstruction function is to use this compression set and (re)construct the hypothesis

for the target concept to be learned.

Two important concepts used to study bounds in Statistical Learning Theory are Probably

Approximately Correct (PAC) learning and Vapnik-Chervonenkis (VC) space dimension [56].

PAC learning was first introduced by Valiant [132] to show that learning of some unknown

target concept, using a given hypothesis, requires an approximately correct answer with high

probability in polynomial amount of time. This was shown as a relationship between the

concept to learn, the size of the sample and the efficiency of the learning algorithm. The

VC dimension of hypothesis space H, is defined to be the maximum number d of examples

that can be labelled as positive and negative examples in all 2d possible ways, such that each

labelling is consistent with some hypothesis in H [38, 55, 133]. Therefore, the VC framework

uses VC-dimension as a measure of the complexity of the hypothesis space.

PAC Compression bounds are guarantees that for most training trials (draws of random

training samples) the classification error of a classifier does not exceed an error threshold. A

generalized theorem used for the compression algorithms in the PAC setting is described in

[56]. A major aspect of this bound is that we can calculate the prediction bound of any data-

dependent classifier [56]. It was shown in the past the difficulty of using theoretical bounds

based on VC dimension for experimental evaluation [21, 106]. This is precisely the case for the

sphere cover algorithm [21]. Cannon [21] explored an alternative approach in order to link it to

non-compression data-dependent bounds with complicated and limited results. A full review

of these bounds and their possible inter-links can be found in [106]. However, a much more

straightforward method may be used based on the compression scheme which we describe here.

Compression risk bounds found in the literature are too loose to be of any practical use, except

that they show the desired relationship between sparse solution and generalization. A more

general and tighter bound is proposed in [90] which is of practical use in our case. Before we

move to the risk bound of described in [90], we need to show αRSC qualifies as a compression

algorithm.
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4.2.1 αRSC as a Compression Algorithm

The Class Cover Algorithms are a data compression since it is required that only a subset is

kept for classification. αRSC algorithm can reconstruct the hypothesis (classifier) formed from

the whole training set by using just a subset. Recall, a sphere is made of a (data-dependent)

centre. Thus, the compression set will comprise centre examples. However, this will not give

us the full information to get a specific sphere from a set of spheres with identical radii. We

require to store either an information based on the radius of a sphere or store the border point

in addition to the centre point. If we choose a method that requires us to identify spheres with

their radii then we need to devise a method to differentiate between spheres with same radii.

We will not use such method in this chapter as we show a simpler method may be employed

since identifying a particular sphere requires just a centre and a border point. Therefore σ̂

could be used in the bound below that reflect such choice. In both methods, the reconstruction

function R simply consists of re-running the same αRSC algorithm with the compression set

which consists of centre and border points and the additional information σ̂ that identify each

sphere. We obtain the same classifier as the one using the whole training set in S.

In the αRSC classifier, the entire compression set (centres + borders) is classified correctly

as long as no pruning is performed (α = 1). For classifiers that use the pruning parameter

α > 1, we include the examples that are mislabelled in order for the reconstruction to work.

In this case, the compression set comprises centres and some uncovered border examples. It

is required to include the information that this compression set admits some errors because

of these uncovered border examples, since error are made on uncovered examples only. This

method, however, will partially reconstruct the classifier. To fully reconstruct the classifier we

require to explicitly state the uncovered examples which are not border examples. Thus, using

solely information returned by the classifier on centres, borders and uncovered examples, we

are able to reconstruct any hypothesis (lossless and lossy) in αRSC.

It is not required in the bound to specifically code the classifier and σ̂. However, the bound

will work only for compression algorithms as defined by the compression scheme.

4.2.2 A Sample Compression Risk Bound

An example z
def
= (x, y) is input output pair where x ∈ X and y ∈ C. The compression

algorithms have the following property. Given a training set S = (z1, ..., zm), containing m

examples where m ∈ N. A learning algorithm A(S) which learns by compressing the data

58



4.2 The Compression Scheme

returns a classifier h that is identifiable by a subset zi of S which is the compression set and a

message σ̂ of additional information which is specific to the compression algorithm and needed

to obtain a classifier from the compression set zi (we will give an example below of how to

select σ̂ for αRSC). Given a training set S, the compression set zi is defined by a vector i of

indices:

i
def
= (i1, i2, ..., i|i|) (4.1)

with : ij ∈ (1, ...,m) ∀j and : i1 < i2 < ... < i|i|,

and where |i| denotes the number of indices present in i. Hence, zi denotes the ith example of

S whereas zi denotes the subset of examples of S that are pointed by the vector of indices i

defined above. To complete this notation we may have a set of indices ī not present in i such

as S = zi ∪ z̄i. Therefore, the fact that any classifier returned by algorithm A is described

by a compression set and message string implies that there exists a reconstruction function R,

associated with A, that output a classifier R(σ̂, zi) when given an arbitrary compression set

zi ⊆ S and message string σ̂ chosen from the set M(σ̂) of all distinct messages that can be

supplied to R with the compression set zi. It is only when such a R exists that the classifier

returned by A(S) is always identified by a compression set zi and a message string σ̂.

Therefore, a compression function C associated to A such as for every sample S = (z1, ..., zm) ∈

X we have (σ̂, zi) = C(z1, ..., zm); and there exist a reconstruction function R which gives the

classifier A(S) from (σ̂, zi), i.e., R(σ̂, zi); such that:

A(S) = R(C(S)) ∀ S

The risk bounds1 4.3 and 4.4 are for arbitrary reconstruction functions that holds uniformly

for all compression sets and message strings under the PAC settings. That is, each example z

is drawn according to a fixed, but unknown, probability distribution P on X, and the risk R(h)

of any classifier h is defined as the possibility that is mislabelled an example drawn according

to P.

We need to specify M(σ̂). We restrict the set M of possible messages σ̂ to be a finite set

which is dependent of the size of the compression set zi. The compression set size zi will

always be less or equal to the training set size S, and |zi| must be far smaller than |S| for the

bounds to work.

1A full proof is given in [90]
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M(σ̂) =
|zi|

|S|
∀σ̂ ∈ M (4.2)

For any given value to δ, which is between 0 and 1 (δ is normally chosen in order to give high

probability), the error ǫ is less or equal the true risk R of compression learning algorithm with

a reconstruction function R using both the compression set zi and the addition information

σ̂. The error ǫ is calculated for a specific choice of |i|, |j|,and δ. |j| represents the number of

errors made on the examples that do not belong to the compression set.

ǫ(|i| , δ) ≤
1

m − |i|
+

[

ln

(

m

|i|

)

+ ln

(

M(σ̂)

δ

)

+ ln(m + 1)

]

for |j| = 0 (4.3)

ǫ(|i| , |j| , δ) ≤
1

m − |i| − |j|

[

ln

(

m

|i|

)

+ ln

(

m − |i|

|j|

)

+ ln

(

M(σ̂)

δ

)

+2 ln(m + 1)

]

for |j| ≥ 0

(4.4)

The risk bounds 4.3 and 4.4 may be used for αRSC error predictions. The important

aspect of equations 4.3 and 4.4, as described by its authors, is the risk bound increases when

the amount |j| increases. |j|, on the other hand, is independent of the amount of errors made on

the compression set. The risk bound will generally be smaller for sample-compression learning

algorithms that always return a classifier making no errors on the compression set (i.e. makes

no error in the compression set |i|). However, this constraint might force the learner to produce

classifiers with larger compression sets. Thus, the best classifiers are those that will have small

error on |j|, the training examples not in the compression set, have small compression set |i|

and having small M(σ̂).

Various experiments are carried out to examine data compression, training error, and

pruning values of αRSC classifier. These are the quantities manipulated in the compression

bounds 4.3 and 4.4 to predict the lowest classification error.

4.2.3 Data Compression, Accuracy and Uncovered Examples

For the risk bounds to hold, the size of a compression set must be far smaller than the size

of the training set. Table 4.1 shows the averaged compression sizes in percentage of the best

classification accuracy based on 10 runs using 10 fold Cross Validation (i.e 10x10CV) and 2
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4.2 The Compression Scheme

fold Cross Validation (i.e 10x2CV for Ringnorm, Twonorm, Magic, Satimage, and Pendigitis).

Data compression (as calculated in Equation 3.2) takes into consideration only centre examples

(The additional information needed to be stored is the border point or the radii, see Algorithm

4).

Table 4.1, shows the data compression is above 90% on 12 datasets and is above 80%

on four datasets. These are a substantial decrease in comparison to the Nearset Neighbor

classifier which stores the entire training set. In addition, we showed the standard deviation

to demonstrate the degree of variations between experiments (classifiers). Indeed, we notice

that αRSC consistently compresses the training set.

Table 4.1: αRSC best data compression in (%) of the best average classification accuracy results using 10x10CV

and 10x2CV for Ringnorm, Twonorm, Magic, Satimage, and Pendigitis.

Dataset Comp % Std dev Dataset Comp % Std dev

Winsconsin 95.97 0.46 Clouds 95.26 0.19

Cancer 93.09 0.80 Waveform 99.44 0.08

Ecoli 81.29 1.46 Image 89.96 0.36

Glass2 90.50 1.03 Vehicle 83.84 0.71

Glass6 75.65 1.42 Concentric 98.33 0.13

Haberman 91.41 0.82 Abalone 92.16 0.23

Heart 99.09 0.18 Yeast 90.86 0.37

Ionosphere 78.74 1.18 Vowel 79.01 0.55

Sonar 80.28 1.35 Twonorm 98.98 0.15

Thyroid 95.32 0.91 Magic 89.48 0.23

wdbc 92.91 0.90 Ringnorm 81.37 0.49

Diabetes 82.29 0.84 Satimage 92.33 0.30

German 89.30 0.57 Pendigits 94.24 0.20

Risk bounds derived from the compression scheme show that low generalization error is

achieved for small compression set and low training errors. The training accuracy in the case

of a pure and proper cover is 100%. However, as shown in the previous chapter, overfitting

is most likely to happen in this case. This is confirmed once more in Table 4.2 where each

result shows the average training accuracy of the best classification accuracy using 10x10CV.

As expected, we notice a big variation between datasets. Severely noisy datasets would require

more pruning than low noise datasets. For instance, Yeast dataset is known to be very noisy

and hence requires severe pruning as shown from the averaged training accuracy (52.25%).

These results indicate that for a classifier to return the best classification accuracy some

examples will be mislabled. As explained earlier, the risk bound that returns the lowest error

must have the lowest number of training errors possible that are not in the compression set.
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4. COMPRESSION SCHEME

That is, the bound seeks a trade-off between a small compression set and low training errors

of examples not in the compression set.

Table 4.2: αRSC Training accuracy in (%) of the best average classification accuracy results using 10x10CV

and 10x2CV for Ringnorm, Twonorm, Magic, Satimage, and Pendigitis.

Dataset Training accuracy Std dev Dataset Training accuracy Std dev

Winsconsin 97.10 0.79 Clouds 88.72 0.48

Cancer 75.13 3.74 Waveform 77.45 1.19

Concentric 99.16 0.34 Glass6 85.54 2.71

Ecoli 88.66 1.75 Image 99.25 0.39

Glass2 98.75 0.47 Vehicle 73.27 4.89

Haberman 76.56 1.55 Abalone 52.12 6.15

Heart 68.51 6.55 Yeast 52.25 7.61

Ionosphere 95.43 3.19 Vowel 93.16 2.26

Sonar 90.47 3.46 Twonorm 88.40 1.6

Thyroid 93.91 1.98 Magic 86.85 1.78

wdbc 98.17 0.48 Ringnorm 88.11 4.09

Diabetes 85.32 1.35 Satimage 89.51 1.45

German 78.98 1.39 Pendigits 99.20 0.15

The average percentages of uncovered examples using the best classification accuracy re-

sults of αRSC are shown in Table 4.3. As we have shown the result of best 10x10CV accuracies

in the previous tables, we show the same returned results for the percentage number of un-

covered examples. We notice again substantial variations between datasets. For example,

Concentric dataset has the lowest result while Liver dataset has the highest result. The most

noticeable dataset is Heart dataset which can be compressed up to 2.21 spheres on average of

10 runs, and shows 156.46 uncovered examples out of 243 training examples. A similar result

is reported for liver. Results of Table 4.3 show that some datasets require severe pruning in

order to get the best classification accuracy. In general, highly overlapping class distributions

will results in higher number of spheres while well separated datasets will not. Similarly, a

skewed class distribution which is overlapping a more compact dataset will result in severely

pruned class over the other. In this case, pruning occurs more often for one class, which results

in under representation of one class over the other. This is a possible explanation given for

the reasons pruning varies greatly from dataset to dataset. In order to minimize the error on

examples not in the compression set, αRSC is required to closely differentiate the decision

boundary of each class.

We plotted the errors of the risk bounds of Equation 4.3 for α = 0 and Equation 4.4 for

α > 0. That is, instead of using the 10th partition for testing, we only use the prior information
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4.3 A Kernel Method for αRSC

as returned by each αRSC classifier for various α values. These are the |j| quantity, the size

of the compression set zi and M(σ̂) as defined in Equation 4.2. The curves based on the

risk bound (bound error) are shown on the right hand side of Figure 4.1 and 4.2 while the

curves based on 10CV error (test error) are shown on the left hand side of Figure 4.1 and

4.2. It is interesting to note that the curves based on risk bounds are very similar to 10CV

classification error. These experiments indicate that the information used in the risk bounds

predict accurately the classification error as found by the 10CV.

4.2.4 Discussion

The generalization performance of αRSC classifier can be explained by the compression scheme

framework. As we experimentally demonstrated, three factors in αRSC classifier are used in a

compression bound to accurately predict the classification error. These three factors are: the

compression set, which is the set of retained examples for classification; the pruning parameter

which removes specific spheres from the cover; and the accuracy of the training set. We showed

that these quantities can be used with the compression bounds described in Marchand and

Sokolova [90] with no changes. The risk bound generated for set of α values are very similar

to the 10-fold cross validation error on the same set of α values. This indicates that a model

selection using the compression scheme is a valuable alternative to the common 10-fold cross

validation as it is faster to execute. However, some important issues relating to compression

risk bounds are not yet resolved. In fact, while writing this thesis, Hussain et al [64] outlined

a number of drawbacks on many existing sample compression bounds for imbalanced dataset.

Another area that we have not investigated has grown enormously in recent years is the study

of PAC-Bayesian bounds [93, 94]. It has been shown that using the “Bayesian”approach

to the already existing PAC bounds can tighten further the bounds. In addition, various

existing Bayesian bounds have been all linked to a single compression lemma which proves the

generality of the compression bounds [5]. This shows that compression bounds are an area of

research that is constantly growing and could have a large application-base [81].

4.3 A Kernel Method for αRSC

The previous experiments showed that a compression set can be represented with centre and

border examples. The compression sets that have the lowest cardinality with fewest errors

are preferred over larger consistent compression sets. In this case, if errors on examples not
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Alpha (Pruning #)
0 10 20 30 40 50 60

E
rr

or
-b

ou
nd

0.33

0.38

0.43

0.48
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(e) αRSC test error curve of the Cloud dataset
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(f) αRSC bounds error curve of the Cloud dataset

Figure 4.1: Learning curves based on 10CV classification error (on the left hand side) and the bounds error

(on the right hand side) for αRSC classifier. We notice very similar curves for both 10CV and classification errors

based on the compression bound indicating the compression bound gives very accurate estimate of the classification

error.
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(a) αRSC test error curve of the Heart dataset using

10CV
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(c) αRSC test error curve of the Waveform dataset
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(d) αRSC bounds error curve of the Waveform dataset

Alpha (Pruning #)
0 2 4 6 8 10

er
ro

r

0.00

0.10

0.20

0.30

0.40

0.50

(e) αRSC test error curve of the Vowel dataset
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(f) αRSC bounds error curve of the Vowel dataset

Figure 4.2: Learning curves based on 10CV classification error (on the left hand side) and the bounds error (on

the right hand side) for αRSC classifier. We notice very similar curves for both 10 CV and errors based on the

compression bound indicating the risk bound gives very accurate estimate of the 10 CV error.
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4. COMPRESSION SCHEME

included in the compression set are kept low we should end up with a very good classifier.

The obvious next question is: Is it possible to improve this representation further in order to

find the sparsest compression set with as low training error? In this section, we investigate

one such possibility using Kernel methods.

(a) The feature Space (b) The Kernel Space after Transfor-

mation

Figure 4.3

4.3.1 A Useful Kernel Transformation

In this section, we take advantage of the easy transformation of a kernel matrix to an Euclidean

distance matrix in order to run αRSC with minimum changes. The first step is to use a kernel

function in order to get the kernel matrix. The Kernel methods [56, 124] map the data into

some high-dimensional feature space (possibly infinite) F using:

φ : X → F x → φ(x)

The advantage of such transformation is to have a separable dataset in the kernel space

(called feature space) while it is not separable in the original space.

k(x,x′) =
〈

φ(x), φ(x′)
〉

.
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4.3 A Kernel Method for αRSC

k : X×X → R. The main advantage of the Kernel trick is the possibility of doing inner product

calculation in the feature space without worrying about the actual form of φ [56]. This mapping

using the kernel function k is required to be positive definite (pd) [118]. Kernel matrix can be

turned into a generalized distance measure using a simple transformation [118]. The distance

||φ(x)− φ(x′)||2 in the feature space associated with a pd kernel k can be computed using the

kernel trick as k(x, x) + k(x′, x′) − 2k(x, x′). This allows the distance to be expresses only by

using the kernel, without explicitly performing the mapping. In this case, we get an Euclidean

distance matrix from the mapping then simply construct αRSC classifiers.

Figure 4.4: Two-dimensional toy example. The transformed input space using the kernel trick. An αRSC

classifier constructed on kernel mapping may require a smaller compression set.

We keep the same parameter α in the kernalised αRSC (αKRSC). We showed earlier

that pruning reduces further the compression set and regularises complex hypothesis on noisy

datasets. Therefore we are required to simply search the best mapping of the data into the

feature space, with the chosen kernel function, which support the following arguments:

1. Small compression set |i|.

2. Small error on |j|, the training examples not in the compression set.

The reformulation of αRSC classifier can be described by two main criteria: a Kernel

function with its set of parameters, and αRSC with the pruning parameter α. As shown in

Figure 4.4, the class distribution of the transformed space could be well separated and nicely

clustered which should help covering using fewer spheres than in the original space. In this

case, the Kernel trick might solve both problems we outlined above. Our main goal is to

search for a hypothesis that gives us the best trade-off between the compression set and the
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training error in the spirit of the compression scheme. The different steps of αKRSC are

shown in Figure 4.5. To validate this proposition, we setup an experimental evaluation in the

next section.

Figure 4.5: The different steps in αKRSC. In the first step we get a kernel matrix with is then transformed

into an Euclidean distance matrix

4.3.2 Experimental Setup

We showed in the previous sections that αRSC compression set consists of two subsets: each

subset contains centre and border examples. In these experiments we wish to find out whether

any of the two subsets (i.e. the centre set and border set) is reduced in size after the ker-

nel transformation, and whether doing so improves or degrade classification error. For this

empirical evaluation, we use the popular Gaussian RBF kernel:

k(x, x′) = exp

(

−||x − x′||2

σ

)

(4.5)

for varying values of the width parameters σ of the kernel

σ ∈ {0.01, 0.02, 0.1, 0.2, 0.3, 0.5, 1, 2, 5, 10, 15, 20, 50}
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4.3 A Kernel Method for αRSC

Depending of the choice of the kernel’s width, we might either reduce the number of centre

examples, the number of border examples or both. In order to verify this intuition, we employ

the Concentric and Image dataset of Table 1.1. These two datasets are interesting for two dif-

ferent reasons. First, concentric dataset (1579 positive cases, 921 negative cases) is an artificial

datasets that looks like two rings with no overlap between classes and no gap either, similar

to figure 4.4. In the other hand, the Image dataset (1320 positives cases, 990 negative cases)

requires a full cover in αRSC. Thus, increasing α degrades αRSC classification performance.

We wish to find whether it will be “improved” by the Kernel transformation. We only show

the best returned results from the above set of σ values. In addition, we use the compression

bounds in order to verify whether it can select the optimal values.

4.3.3 Experimental Results

4.3.3.1 The Compression Factor in the Risk Bound

Table 4.4 shows the generalisation error results of αKRSC on the Concentric dataset for

different Gaussian σ values. The aim is to find out whether the the lowest error achieved is

on the most compressed set. In addition, we use the bound error to find out whether the

compression risk bound of Section 4.2.2 can find this error in comparison to the 10CV error.

The results in Table 4.4 are from the average of 10 runs using 10 fold Cross Validation.

The question we asked previously whether the kernel transformation helps to reduce the com-

pression set is answered positively. The reduction in compression size is shown by comparing

the original result in Table 4.4 (Concentric dataset), and the ones in the row where σ = 1.

We notice the reduction of the size of the compression set comes from the reduction of both

centre and border examples. A reduction from 75.37 1 to 63.17 for the centers, and from 36.31

to 30.48 for the borders. The number of mislabled examples is is also reduced from 3.97 in

the original result, to 3.88 for the Gaussian kernel. In the case where σ = 2, we notice a

further reduction in both centers and border examples but at the expense of a slight increase

in error. This reduction is from 75.37 to 57.89 for centers, and from 36.31 to 28.29 for border

examples with a very small increase in mislabled examples, from 3.98 to 4.49 (about one or

two misslabled examples for 100 experiments). Indeed, these results show that the kernel

transformation works well for this dataset.

1We notice that this figure gives us a data reduction of 96.65% which is slightly higher than the value

reported in Table 4.1 because α = 7 for the selected risk bound.
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Table 4.3: αRSC uncovered examples in % of the best average classification accuracy results using 10x10CV

and 10x2CV for Ringnorm, Twonorm, Magic, Satimage, and Pendigitis.

Dataset % Uncovered examples Std dev Dataset % Uncovered examples Std dev

Winsconsin 5.33 0.82 Concentric 1.56 0.33

Cancer 54.59 3.15 Waveform 41.65 1.29

Clouds 22.57 0.55 Glass6 18.88 1.81

Ecoli 13.51 1.26 Image 1.44 0.14

Glass2 2.47 0.69 Vehicle 31.77 1.12

Haberman 45.42 3.35 Abalone 64.87 0.77

Heart 64.39 4.67 Yeast 59.69 1.08

Ionosphere 6.91 0.72 Vowel 1.72 0.39

Sonar 17.85 1.82 Twonorm 22.19 2.58

Thyroid 9.62 1.93 Magic 23.49 0.94

wdbc 3.35 0.55 Ringnorm 13.33 0.63

Diabetes 27.67 1.28 Satimage 12.47 0.59

German 38.85 1.40 Pendigits 0.89 0.13

Table 4.4: Comparing best results using the Gaussian kernel on Concentric dataset. (error) stands for 10

CV error; (bound) stands for error found using the compression bounds; (centres) and (borders) are the number

of centres and border examples that make up the compression set; (# incor) tr and (# incor) ts stands for the

number of training and testing examples incorrectly labeled. (Org) stands for best results of αRSC (without kernel

transformation).

α 7 5 9 17 8 14 18 16

Gaussian σ Org 0.01 0.02 0.1 0.5 1 2 5

error 1.5919 2.504 2.0162 3.9795 1.56 1.55 1.79 3.5679

bound 0.199 0.4873 0.2896 0.1979 0.1987 0.1981 0.208 0.2618

centres 75.37 275.42 125.21 60.33 72.67 63.17 57.89 59.23

borders 36.31 36.9 39.85 29.18 34.82 30.48 28.29 29.92

# incor tr 15.399 19.0305 19.791 3.9795 17.19 24.2595 33.5205 60.54975

# incor ts 3.97975 6.26 5.0405 3.9795 3.91075 3.88025 4.49 8.91975
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Table 4.5 shows the generalisation error results of αKRSC on the Image dataset for differ-

ent Gaussian σ values. The aim is to find out whether the the lowest error achieved is on the

most compressed set. In addition, we use the bound error to find out whether the compression

risk bound of Section 4.2.2 can find this error in comparison to the 10CV error. The first two

rows show the Gaussian parameter σ with two pruning values. Note that this dataset does

not require pruning (α = 1) to achieve lowest test error.

Table 4.5: Comparing best error results using the Gaussian kernels on Image dataset. (error) stands for 10 CV

error; (bound) stands for error as found using the compression bounds; (centres) and (borders) are the number of

centres and border examples that make up the compression set; (# incor) tr and (# incor) ts stands for the number

of training and testing examples incorrectly labelled.

Gaussian σ 5 1 10 15

α 1 7 1 5 1 7 1 8

error 4.4026 6.4113 4.3377 5.7359 3.8009 5.9913 3.7576 6.329

bound 0.5774 0.5445 0.5823 0.554 0.5786 0.5457 0.58 0.543

centers 373.84 214.93 377.85 232.07 374.81 201.63 375.94 200.96

borders 174.94 101.81 170.04 109.75 176.27 95.78 176.66 95.59

# incor tr 0 64.939644 0 57.249423 0 88.180785 0 73.989531

# incor ts 10.170006 14.810103 10.020087 13.249929 8.780079 13.839903 8.680056 14.61999

The results in Table 4.5 are from the average of 10 runs using 10 fold Cross Validation.

From Table 4.5 (Image dataset), we notice some mixed results. That is, the Gaussian kernel

transformation reduces the compression set. Yet, the bound fails to pick up the degradation

found by the 10CV results. It is shown by comparing results for α = 1 and where the bounds

return the lowest error. For instance, for σ = 15, the reduction of the compression set is for

both the centre and border examples. A reduction from 375.94 to 200.96 for the centres, and

from 176.66 to 95.59 for the borders. The number of mislabelled examples is significant though

8.68 for the non pruned result and 14.62 for α = 8. In this case, the bound returns the lowest

value for α = 8. However, for σ = 1, we notice a reduction in both centres and border examples

but with a slight increase in error. This reduction is from 377.85 to 232.07 for centres, and

from 170.04 to 109.75 for border examples with a very small increase in mislabelled examples,

from 10.02 to 13.25.
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4.4 Chapter Summary

In this Chapter, we described theoretical bounds and used them to analyse αRSC classifier.

We answered several questions asked in this chapter. Section 4.2, demonstrates αRSC can be

considered a compression algorithm following the compression scheme. In addition, we showed

that α parameter plays a dual role in regularization and compression. Using the number of

errors made on the training set, the size of compression set and some additional information

to differentiate between classifiers, we showed how a risk bound can faithfully pinpoint the

optimum value(s) for the pruning parameter α in the same fashion used for the 10 fold Cross

Validation (CV) experiments. Thus, compression bounds can be a good alternative for model

selection as it is substantially faster.

From the compression scheme perspective, we proposed a novel method using the kernel

trick to manipulate the data rather than the spheres. This method is simplified by the way

the Euclidean distance matrix is derived from the kernel matrix. In that case, we can build

the classifier using the derived Euclidean matrix of the transformed space directly. The aim

was to find a data distribution that gives us the sparsest possible set of spheres. Our initial

experiments gave us mixed results. In the first case, we showed that our method reduces further

the compression set, tightening in the process the compression bound. In the second case, the

bound fails to pick up the best results. We believe the way α is used in αRSC classifier is at

fault. That is, it does not take explicitly into consideration unbalanced datasets. It may be

better to find different values for α on each class. This way we get a fair pruning strategy that

will not over-prune or under-prune one class over the other. Nonetheless, for both dataset

used in our kernel experimentation, we notice an improvement in reduction of the compression

set (center and border examples).

For future research, we plan to find better representation of the compression bounds. In

addition, time complexity analysis is required to find out whether a loss in learning speed is

shown by building classifiers in the kernel space.
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Chapter 5

Randomized Sphere Cover

Ensembles

5.1 Introduction

In this chapter, we propose three ensemble methods for the Randomized Sphere Cover Classifier

(αRSC). The first algorithm simply aggregates αRSC classifiers. The second algorithm, uses

the β parameter, described in Chapter 2, to generate diverse covers for ensembles of αRSC

classifiers. The final algorithm diversifies the ensemble by employing a random attribute

selection for αRSC base classifiers.

Good ensemble design requires classifiers that are diverse. This is the key for improving

classification accuracy [47, 74, 78, 125]. One way of diversifying αRSC ensembles is to allow

spheres to cover a small number of examples from the opposite target class. In Chapter 2,

Section 2.1.3.2 we described how in previous research, a parameter β representing the number

of misclassified cases in a sphere has been used to make a sphere based classifier more robust

by filtering outliers. In this Chapter, we empirically test whether we can use β parameter to

diversify ensembles. In the CCP, both α and β parameters are chosen in advance, but β is

harder to set, since ideally there should be a separate value for each sphere. However, it is

generally infeasible to choose one value for each sphere in a single classifier. Here, we propose

an automatic procedure as part of the proposed Randomized Sphere Ensemble (αβRSE)

which selects different values for β for different base classifiers. Thus, the aim of αβRSE

is to perturb and aggregate covers while keeping accurate base classifiers. Optimal cover

perturbation becomes essentially the action of tuning both α and β. We assess whether the
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proposed ensemble method αβRSE is different to an ensemble of αRSC classifiers without

using β which we call it αRSE. In addition, we empirically compare the classification accuracy

of both αβRSE and αRSE to those of several known ensemble methods.

In real world applications we are faced with large datasets in high dimensional space. For

example, web mining, text categorization, financial forecasting, and gene expression profiling

are some examples of domains in which huge amounts of information have to be employed. As

such, classifying, understanding or compressing this information becomes a very difficult task.

A solution that has been a very active research topic for many decades is called attribute

selection1 [97]. Attribute selection is recognized as an important process in data analysis

because it speeds up the learning, improves the data quality, and increases the accuracy of

the resulting model [52, 86, 138]. Furthermore, it is well established that many classification

algorithms suffer from redundant, irrelevant or noisy attributes, specifically instance based

learning using distance metrics [1, 77]. Attribute selection for ensemble learning is an active

area with promising results [112, 128]. We described several methods in chapter 2. However,

ensemble methods that randomly select attributes have been shown to work particularly well

for several base classifiers and especially for nearest neighbour classifier (K-NN) [16, 59, 122].

Working with random subsets of attributes is termed the random subspace method [58]. In

this chapter, we investigate using αRSC using random subsets of attributes. We call this third

type of ensembles the Randomized Subspace Sphere Cover (αRSSE).

It has been shown that aggregating classifiers essentially decreases variance [47]. This was

shown for ensembles of decision trees [14, 47], SVM [131] and neural networks [46]. We showed,

in chapter 3, that the pruning parameter α reduces the variance of the αRSC classifier resulting

in overall loss reduction. Conversely, bias was not substantially decreased, and in some cases

we observed an increase. Section 5.3.2.3 continues with the bias/variance experimentations on

αβRSE and αRSSE in order to assess the generalization error of the different ensembles. We

seek to answer the following question: Does an ensemble of randomised sphere cover classifiers

reduce both bias and variance, or variance only? In addition, we explore the bias and variance

terms of αRSSE in order to gain further insight into the classification error of αRSSE.

1It is also known as feature selection, we choose not to use feature as it maybe confused with feature space

of the kernel method
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5.2 Ensemble Algorithms

5.2.1 αRSE

One of the basic design criteria for αRSC was to randomize the cover mechanism so that we

could create diversity in an ensemble. Hence our first ensemble algorithm, αRSE, is simply

a majority voting ensemble of αRSC classifiers. With all ensembles we denote the number of

classifiers in the ensemble as L. We fix α for all members of the ensemble. Each classifier

is built using the algorithm described in Algorithm 4 using the entire training data. The

basic question we experimentally assess is whether the inherent randomness of αRSC provides

enough implicit diversity to make the ensemble robust.

5.2.2 αβRSE

Finding “bad” examples in order to avoid over-training (or overfitting) is not trivial. Noisy

examples are not known in advance and this makes the classification problem difficult. In

classification, border examples are essential for approximating a decision boundary [15, 57, 61].

In most cases, the border examples are near the decision boundary except for those which may

be outliers [26, 80]. We showed in Chapter 3 that the αRSC classifier uses the α parameter in

order to find an approximately optimal decision boundary by using model selection. Generally,

overfitting is avoided by choosing α > 0 which may leave examples near the decision boundary

uncovered. In overlapped datasets, some of the uncovered examples are noise. Identifying

these noisy examples during learning should enhance the ensemble classification performance.

αβRSE uses border and uncovered examples in order to further randomize (perturb) cov-

ers. The aim of the αβRSE is to create diverse and accurate base classifiers. αβRSE uses

the following process: To simplify the description of a training set from an αRSC point of

view, we divide the training sample into three sets. Border examples are stored in set E,

uncovered examples are stored in set F , and mislabelled examples are stored in set G. Recall,

border example is defined as the example which is the closest to a sphere of different target

class. Obviously, these sets are not mutually exclusive. The remaining examples that are not

in any of these three sets are just called “data”. A first base classifier is trained on a data set.

Border, uncovered and mislabelled examples are identified. The second classifier is trained on

a new training set with border examples in set E removed and replaced with randomly and

uniformly sampled with replacement from set E ∪ F ∪G. Consequently, fewer examples from

the original training set might be mislabelled because omitting border examples allow spheres

75



5. RANDOMIZED SPHERE COVER ENSEMBLES

to grow into zones of different target class (an illustration is given in Figure 5.1). The process

selects automatically values for β parameter which may be different for different spheres. β

examples are the mislabelled examples stored in set G in addition to the mislabelled uncovered

examples. The training process is repeated to create diverse base classifiers in the ensemble.

The first cover (classifier)

(a) A two class toy problem to illustrate the auto-

matic selection of β in αβRSE.

(b) The decision surface is the union of circles.

The second cover (classifier)

(c) A Border point is omitted in training resulting in β = 1

for this circle. Dotted cirlces represent previous cover.

(d) The new decision surface is the union of these circles.

Figure 5.1: An illustration showing a cover modification with β parameter on a binary class toy dataset.

The αβRSE algorithm use a predefined number of αRSC base classifiers, which have

a single user defined integer parameter, α, that specifies the minimum size for any sphere.

The ensemble also uses the parameter β, which is selected automatically during training and
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specifies the number of examples inside any such sphere of opposite target class. Informally,

for any given α, αβRSE works as follows.

1. Repeat for a specific number of iterations (building classifiers for the ensemble)

(a) Build a base classifier (cover) using the training set D.

(b) Find the border points and store in set E.

(c) Find the uncovered examples and store in set F .

(d) Find the misclassified examples on the training set D and store in set G.

(e) Classify the test examples and store the predictions.

(f) Create set U = E ∪ F ∪ G.

(g) Replace border points E in D by sampling from U randomly and uniformly.

2. Use the majority vote on stored prediction for each test example to get the ensemble

prediction

In summary, αβRSE uses a uniform random sampling in order to replace border examples

with mislabelled and uncovered examples of the previous classifier, thus taking advantage of

the geometrical properties of the base classifier to select values for β parameter and randomize

further the cover. An illustration is given, in Figure 5.1 (b), by the original decision boundary,

and in Figure (d) by a newly and different created decision boundary. As such, the proposed

ensemble method diversifies members and keeps accurate classifiers, and in the process should

improve performance. In the next section we verify this assumption with an experimental

evaluation. Note there may be overlap between the sets E, F and G but we do now allow

duplicates in the training set.

A formal description is given in Algorithm 5. New cases are then classified by a majority

vote of the L classifiers. The principle idea is that we replace the training data by removing

border cases at every iteration of the ensemble construction. The data driven iterative ap-

proach adopted has strong analogies to constructive algorithms such as boosting, described in

Section 2.4.2.
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5.2.3 A Random Subspace Sphere Cover Ensemble, αRSSE

The Random Subspace Sphere Cover (αRSSE) Algorithm 6 builds base classifiers using ran-

dom subsets of attributes by sampling without replacement from the original full attribute set.

κ attributes are selected in the subset to train a base classifier. The same attribute might be

selected again by another specific base classifier in the ensemble. Random covers in the sub-

space is the same as selecting examples with attributes that have no-zeros contribution to the

Euclidean distance d. Each time a classifier is added to the ensemble, a subset of attributes is

computed by randomly and uniformly selecting without replacement κ attributes from the full

set of attributes. The ensemble generates base classifiers in the same subspaces using the same

number of κ attributes. A test example x uses the same set of attributes for classification.

Therefore, αRSSE combines outputs from multiple classifiers each having access only to a

random subset of attributes. The majority vote is employed for classification.

The αRSSE ensemble can be compared with existing subspace methods. The random

subspace ensemble constructs decision tree based classifiers that maintains highest accuracy on

training data and improves on generalization accuracy as it grows in complexity. The ensemble

consists of multiple trees constructed in randomly chosen subspaces. The popular Random

Forests algorithm builds a tree using a bootstrap replica of the learning sample, and a decision

tree without pruning. At each test node the optimal split is derived by searching a random

subset of candidate attributes selected without replacement from the candidate attributes.

Random forest combines randomization with bootstrap sampling. As explained earlier, base

classifiers generated based on a permutation of attributes may have both distinct subsets of

attributes that forms random cover, and randomized covers based on selecting random centres

from the subset of attributes already selected but in different order. Therefore, our double

randomization method might be compared usefully to random forest.

5.3 Experimental Evaluation

The accuracy results provided in this section are based on an independent test set drawn

randomly from the data set. We use 2/3 of the data set for training and tested the classifiers

on the same remaining test sets. We choose to use the average of 30 runs in order to make

a fair comparison. We employ the same previous α values of Section 3.3.1 in αRSE and

αβRSE. For αRSSE we use 5 average runs on the training set alone to select the best set

of parameters (α and κ). For comparison purposes we used Adaboost, Bagging, Random
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Algorithm 5 A Randomised Sphere Cover Ensemble (αβRSE)

Input: Cases D = {(x1, y1), . . . , (xn, yn)}, distance function d(xi,xj) parameters α, L.

Output: L random sphere cover classifiers B1, . . . , BL

1: D = D1

2: for j = 1 to L do

3: Bj =buildRSC(Dj , α).

4: E =borderCases(Bj,Dj)

5: F =uncoveredCases(Bj ,Dj)

6: G =misclassifiedCases(Bj ,Dj)

7: U = E
⋃

F
⋃

G

8: Dj+1 = Dj − E

9: for m = 1 to |E| do

10: C =randomSample(F )

11: Dj+1 = Dj+1
⋃

C

12: end for

13: end for

Algorithm 6 A Random Subspace Sphere Cover Ensemble (αRSSE)

Input: Cases D = {(x1, y1), . . . , (xn, yn)}, distance function d(xi,xj) parameters α, L, κ.

Output: L random sphere cover classifiers B1, . . . , BL and associated attribute sets

K1, . . . ,KL.

1: for j = 1 to L do

2: Kj = randomAttributes(D,κ)

3: Bj =buildRSC(Dj , α)

4: end for
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Committee and Multiboost. Adaboost and Bagging use C4.5 decision trees without pruning.

Random Committee create a committee of random classifiers. The base classifier that forms

the committee members is the random tree classifier which construct a tree that considers K

randomly chosen attributes at each node. MultiBoosting [135] can be viewed as combining

AdaBoost with wagging. Wagging can be considered as Bagging with allocation of weights

from the Poisson distribution. MultiBoost uses the C4.5 classifier as the base learner. WEKA

[143] implementations are used for the standard classifiers, bespoke implementation for our

proposed ensembles which is in C++. The WEKA ensembles are trained using the default

parameters in WEKA [108]. The ensemble sizes are 25 for the first set of experiments and

100 for the second set of experiments. Experiment 1 compares the accuracy of our proposed

ensembles. Experiment 2 is the analysis of the proposed ensembles using the bias/variance

decomposition. Experiment 3 compares classifiers accuracy results.

We use the Friedman test described in Chapter 3. Friedman test checks whether the

measured average ranks are significantly different from the average rank. The null-hypothesis

states that all algorithms are equivalent and their ranks should be equal. If the null hypothesis

is rejected we proceed to a post-hoc pairwise test [67].

5.3.1 Experiment 1: Proposed Sphere Cover Ensembles

Table 5.1: Classification accuracy (in %) and standard deviation of αβRSE, αRSE, αRSSE, using average

results of 30 different runs on the same independent train/test splits. Ensembles are trained using 25 base classifiers.

Data Set αRSE αβRSE αRSSE

Abalone 54.25 ± 0.94 54.89 ± 1.02 54.77 ± 1.28

waveform 90.40 ± 0.67 90.68 ± 0.65 90.21 ± 0.51

satimage 90.90 ± 0.41 90.90 ± 0.41 91.71 ± 0.47

ringnorm 96.71 ± 0.38 97.17 ± 0.30 98.29 ± 0.26

twonorm 97.32 ± 0.26 97.41 ± 0.26 97.03 ± 0.30

image 96.87 ± 0.50 96.87 ± 0.51 97.39 ± 0.65

german 73.21 ± 1.76 74.00 ± 1.69 74.59 ± 1.47

wdbc 93.21 ± 1.47 93.86 ± 1.52 94.67 ± 1.33

yeast 56.34 ± 2.09 58.22 ± 1.24 58.80 ± 1.90

diabetes 74.52 ± 1.78 75.01 ± 1.79 76.17 ± 2.25

iono 93.48 ± 2.05 93.39 ± 2.25 94.53 ± 1.79

sonar 84.67 ± 4.17 84.43 ± 3.66 84.52 ± 4.49

heart 78.85 ± 3.60 80.74 ± 3.26 82.74 ± 4.02

cancer 69.46 ± 2.97 70.07 ± 3.62 76.27 ± 2.96

winsc 95.53 ± 1.34 95.67 ± 1.33 97.21 ± 0.95

ecoli 85.36 ± 2.78 85.51 ± 2.64 85.00 ± 2.07
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The average classification results and standard deviation for αβRSE, αRSE, and αRSSE

using a size of 25 classifiers are summarized in Table 5.1.

Table 5.2: Classification accuracy (in %) and standard deviation of αβRSC, αRSE, αRSSE, using average

results of 30 different runs on the same independent train/test splits. Ensembles are trained using 100 base classifiers.

Data Set αRSE αβRSE αRSSE

Abalone 54.36 ± 1.16 54.48 ± 1.23 54.91 ± 0.98

waveform 90.56 ± 0.70 90.32 ± 0.66 90.73 ± 0.53

satimage 90.91 ± 0.38 91.12 ± 0.44 91.92 ± 0.54

ringnorm 96.88 ± 0.37 97.54 ± 0.31 98.43 ± 0.27

twonorm 97.36 ± 0.28 97.49 ± 0.22 97.39 ± 0.28

image 96.77 ± 0.50 96.80 ± 0.56 97.83 ± 0.53

german 73.23 ± 1.82 74.16 ± 1.58 74.28 ± 1.56

wdbc 93.39 ± 1.56 93.91 ± 1.57 95.00 ± 1.44

yeast 57.26 ± 1.44 58.41 ± 1.36 59.43 ± 1.93

diabetes 74.53 ± 1.84 75.04 ± 2.57 76.25 ± 2.21

iono 93.56 ± 2.06 93.53 ± 1.96 94.76 ± 1.68

sonar 84.86 ± 4.23 85.00 ± 3.72 85.24 ± 5.39

heart 79.26 ± 3.40 80.67 ± 3.10 84.00 ± 3.43

cancer 69.53 ± 3.29 69.58 ± 3.32 76.16 ± 2.75

winsc 95.54 ± 1.33 95.71 ± 1.33 97.42 ± 0.91

ecoli 85.54 ± 2.96 85.86 ± 2.65 85.71 ± 2.36

We also count a total increase in accuracy for αβRSE on 12 datasets in comparison to αRSE.

Comparing αRSSE with αβRSE shows a total increase in accuracy on 11 datasets. αRSSE

shows considerable improvements in comparison with both αRSE and αβRSE when the

ensemble size is increased to 100 as shown in table 5.2. The result shows that the best results

are achieved with αRSSE. αβRSC is the second best.

It is not clear whether αRSSE achieves high accuracy on the training set. Our intuition,

by looking at our previous results, is high training accuracies should depend on the chosen

values given to α. Covering the entire subspace will still produce 100% accuracy. However,

pruning also applies for the subspaces which should regularize complex hypothesis. Looking

at Table 5.3, we notice that pruning was required on most datasets in order to achieve the

best classification accuracy. It demonstrates that pruning is necessary for complex hypotheses

built in the subspaces.

In addition, Table 5.3 shows the average training accuracy, the average classification ac-

curacy, the ensemble training accuracy and the standard deviations for the 25 classifiers that

are used to train αRSSE. The maximum training accuracy for the base classifier and the

ensemble is achieved on 4 datasets. The remaining datasets show varied training accuracies
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with the exception of Thyroid which achieved the maximum training accuracy with pruning.

We notice a high average training accuracy, except for Yeast (45.52%) and Abalone (61.24%),

which suggest that the base classifiers achieve high training accuracy in the subspace. The

same table shows the average classification accuracies of the 25 base classifiers in order to

compare them with those of a single αRSC classifier trained on the full attribute set. We

notice that the classification accuracy of the base classifiers in αRSSE are not as accurate as

those of a single αRSC classifier except for Glass2 and Ionosphere datasets. Therefore, we

conclude that αRSSE requires relatively accurate base classifiers in order to while “boost” the

classification accuracy of the ensemble.

Table 5.3: αRSSE Accuracy and standard deviation results in % using 25 base classifiers. (Avg Tr Acc)

stands for average training accuracy, (Avg Ts Acc) stands for average test accuracy, and (Ens Tr Acc) stands for

Ensemble Training Accuracy. These results are for those ensembles that returned the best classification accuracy

using 10 fold Cross validation for the average of 10 runs (i.e.average of 100 accuracy results (10x10CV)) and 2 fold

Cross-Validation for Twonorm, Ringnorm and Satimage (i.e.average of 20 accuracy results (10x2CV))

Dataset Avg Tr Acc Std dev Avg Ts Acc Std dev Ens Tr Accu αRSC

Image 100 0 94.64 1.96 100 96.1

Yeast 45.52 8.7 51.33 4.95 72.73 57.48

Abalone 61.24 5.09 53.52 1.85 76.04 54.44

Waveform 95.34 0.59 83.9 1.9 99.79 89.56

Twonorm 97.69 0.25 90.2 0.46 99.98 96.59

Satimage 99.99 0.01 84.58 1.33 100 88.95

Ringnorm 100 0 92.48 0.42 100 95.6

Ecoli 87.63 2.09 82.21 4.05 91.59 85.09

Cancer 77.21 6.42 72.38 5.59 80.11 74.4

Wins 84.54 18.84 93.92 2.77 99.36 97.03

wdbc 98.92 0.47 95.29 2.09 99.65 96.26

German 83.93 2.26 72.65 2.86 84.43 73.87

Diabetes 77.09 2.6 73.48 4.08 77.95 74.63

Ionosphere 100 0 92.01 3.5 100 93.4

Heart 80.94 3.53 75.43 7.19 94.67 82.81

Sonar 100 0 75.48 8.83 100 82.8

5.3.2 Experiment 2: Analysis of αβRSE and αRSSE

5.3.2.1 Learning Curves of αβRSE and αRSSE

Figure 5.2 and 5.3 show the graphs of the classification accuracy of αβRSE in relation to

pruning parameter α for four different datasets. The learning curves are for ensembles made

of 25 base classifiers (the classification average accuracy of 10 different runs). Furthermore, we

show, in the same figures, the accuracy curves of the 25 averaged classifiers using the same 10

82



5.3 Experimental Evaluation

runs. We notice a common result on each dataset. That is, the ensemble 10CV classification

accuracies are better than those of the 25 averaged classifiers. These results confirm that the

proposed ensemble improves the classification accuracy of single classifiers. In addition, we

notice both curves follow a similar evolution in relation to α. That is, α values that returned

the best classification accuracy for αβRSE are similar to those of a single classifier. However,

we notice that αβRSE is less sensitive to α parameter indicating members of the ensemble

complement each other. An example is given in Figure 5.4. Two learning curves representing

the classification error of a single αRSC and αβRSE in relation to α. The ensemble curve

show a slow decline in generalization error for larger pruning values. This is an indication of

the robustness of the ensemble in relation to over-pruning when compared to a single classifier.

From these experiments we made the following observations concerning the evolution of the

ensemble classification accuracy in relation to α:

1. The average accuracy of individual classifiers is significantly lower than ensemble accu-

racy.

2. Pruning works in the same way for the ensemble as in single classifiers with lesser sharp

influence for large values of α.

It is clear from the graphs of Figure 5.2 that we require an accurate classifier in order to

use αβRSE since a weak classifier is the one that is severely pruned. It seems that severely

pruned covers under-represent regions from the training sample which may cause the ensemble

to wrongly estimate the decision boundary.

5.3.2.2 β evolution in αβRSE

In this section, we investigate the evolution of β curves in αβRSE. Here, β is looked at from a

“global” perspective, as it would be infeasible to evaluate each sphere separately. We use the

25 base classifiers to evaluate β and α. Therefore, we call it “total average” since it is based

on the totality of all examples for each base classifier averaged over 25 base classifiers (we are

not showing the standard deviation because the difference between classifiers are negligible).

It is not clear how β values are chosen by the ensemble since the procedure is automatically

completed by the sampling process. However, the intuition behind the evolution of β curves

in relation to α should be descending. Recall from chapter 3, the characteristics of a Sphere

Cover is described as follows:
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• Spheres that cover large number of examples have centres selected from examples far

away from the decision boundary.

• Low cardinality spheres are either close to the decision boundary or they are noise within

a dense area of different class label.

Therefore, the number of examples covered from the opposite class depends on the number

of spheres in the cover. That is, fewer spheres means covering fewer examples of a different

target class. In this case, we will notice more errors that are caused by α as fewer examples

are covered. The β parameter plays a further regularization role in regards to noisy examples

uncovered by α parameter. Searching for the best values for both parameters is the important

step to achieve optimal classification accuracy.

The graphs of Figure 5.2 and 5.3 show the total average percentage of examples covered

using β, and the total average percentage of examples uncovered using α1. The total averages

are based on 25 classifiers per ensemble using the same experimental setup above. With

the exception of graph (e) in Figure 5.2 (Pendigitis dataset), we notice downward curves in

relation to α parameter indicating pruning interferes directly with β estimates. We believe the

exception shown on Pendigitis dataset relates to the distribution of the ten different classes.

Therefore, increasing α in Pendigitis uncovers more examples which are then covered by spheres

of opposite class. This observation might indicate that Pendigitis has large overlap between

the ten classes. In these same graphs, we notice, for α = 1, a small percentage of uncovered

examples. This may be surprising since we know that a pure and proper cover means the

entire training set is covered. However, the covers in the ensemble are altered (perturbed)

after each run which eventually uncovers some examples. Furthermore, we notice the two

curves in Figure 5.2 evolves in opposite directions (with the exception of curves in graph (e)

of Figure 5.2). Indeed, this is an indication that, for small α values, spheres that are removed

are the ones that are close to the decision boundary. Uncovered examples are then used in the

sampling process to select values for β.

Lastly, we showed that examples with high likelihood of being noise and outliers are being

most often involved in the αβRSE sampling process. We conclude that in order to diversify the

ensemble, we may use the optimal pruning values of a single classifier, then use the proposed

sampling in order to automatically estimate values for β. Although, both of these parameters

are used for regularization, we hypothesized that β might have a further role in diversifying

1Note, uncovered examples are on a logarithmic scale for better visualization
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(a) Covered and uncovered curves as a function of α on

Clouds dataset
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(b) Accuracy as a function of α on Clouds dataset
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(c) Covered and uncovered curves as a function of α on

Magic dataset
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(d) Accuracy as a function of α on Magic dataset
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(e) Covered and uncovered curves as a function of α on

Pendigitis dataset
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(f) Accuracy as a function of α on Pendigitis dataset

Figure 5.2: Evolution of covered and uncovered curves and, ensemble and averaged classification accuracies in

αβRSE.
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(a) Covered and uncovered curves as a function of α on

Waveform dataset
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(b) Accuracy as a function of α on Waveform dataset
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(c) Covered and uncovered curves as a function of α on

Twonorm dataset
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(d) Accuracy as a function of α on Twonorm dataset
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(e) Covered and uncovered curves as a function of α on

Ringnorm dataset
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(f) Accuracy as a function of α on Ringnorm dataset

Figure 5.3: Evolution of covered and uncovered curves and, ensemble and averaged classification accuracies in

αβRSE.
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the ensemble in order to improve on the αRSE algorithm. This is indeed the case as shown

by comparing αβRSE results with those of αRSE in Table 5.1.

Alpha (Pruning #)
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ro
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Ensemble

Figure 5.4: Slow decline of generalization error of αβRSE on Cloud dataset

5.3.2.3 Bias and Variance Decomposition of αβRSE

For these experiments, we employ the same datasets used in chapter 3. In order to show the

ensemble on bias. We also add Image to make it 11 different datasets. We refer the reader to

Table 3.4, in chapter 3, which summarizes the main features of the datasets used here.

We showed, in the bias and variance results of chapter 3, that pruning reduced the un-

biased variance of αRSC classifier which resulted in overall loss reduction. We also showed

that only in a few cases that pruning reduced bias. However, we noticed that the influence

pruning parameter has on bias reduction is weak. Here, we continue with the bias and variance

decomposition in order to answer the two questions we asked in the introduction part of this

chapter. That is, which is the most affected by the ensemble, bias or variance? Looking at

the results in Table 5.4, we notice that αβRSE reduces the net variance on all the datasets.

However, we notice a very small increase in bias for only 4 datasets. A significant decrease in

bias is shown on 3 datasets and very small decrease in bias on 5 datasets. From these results,

we can produce three groups that are separated according to their bias and variance results.
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5. RANDOMIZED SPHERE COVER ENSEMBLES

Furthermore, these groups will give us further insight into the generalization decomposition of

the ensemble.

1. The first group is made of Diabetes, Cloud, and Magic datasets as we notice only a small

decrease in bias in comparison to a single classifier.

2. The second group is made of Heart, Pendigitis, Twonorm, Image and Waveform datasets

where we observe a small increase in bias in comparison to a single classifier.

3. The third group is made of wdbc, Ringnorm, and Concentric datasets where we see a

significant decrease in bias in comparison to a single classifier.

Recall, Bias and variance decomposition tells us that decreasing either the bias or unbiased

variance decreases the overall error. However, decreasing biased variance increases the overall

error. The summary bias and variance results are shown in Table 5.4. For the first group,

we notice that the average error of the ensemble is decreased in comparison with a single

classifier for the reason that unbiased variance is decreased. We also notice that the bias

of the ensemble has marginally decreased in comparison with a single classifier while biased

variance shows significant decrease. Therefore, the significant decrease in net variance in the

ensemble caused the decrease in average error.

The second group shows slight decrease in bias for the ensemble in comparison with a

single classifier. However, we notice a significant decrease in average error which is caused

by a very significant decrease in net variance. Unbiased variance is significantly decreased in

the ensemble in comparison with a single classifier whilst biased variance show a smaller but

significant increase. The exception is shown for Image dataset (3.11%), and very small increase

for Pendigitis dataset (0.94%). The overall average error decreases for the same reason as the

group one. That is, the net variance is significantly decreased because the unbiased variance

is also decreased.

The third group shows substantial decrease in bias and net variance for the ensemble in

comparison with a single classifier. However, wdbc shows small decrease in net variance for

the ensemble (5.26%) which is proportional to the decrease of unbiased (7.27%) and biased

variance (8.69%). This decrease also explains the average error reduction for the ensemble. In

addition, the significant decrease in both bias and net variance is the reason both Ringnorm

and Concentric datasets show significant decrease in average error.

We summarize the bias/variance decomposition of the above experiments as we notice a

pattern of behaviour for the datasets used:
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Table 5.4: Comparing best results of αβRSE and αRSC on various datasets using bias and variance decom-

position. (Var. unb.) and (Var. bias.) stand for unbiased and biased variance. (Diff) stands for the percentage

difference between the two algorithms. The up arrow ↑ means an increase while a down arrow ↓ means a decrease.

Dataset / Algorithms Avg Error Bias Net Var Var. Unb. Var. bias.

Diabetes

(1)αβRSE α = 3 0.2685 0.2359 0.0326 0.0847 0.0521

(2)αRSC α = 3 0.2780 0.2367 0.0413 0.1006 0.0594

Diff (1) vs (2) % ↓ 3.41 ↓ 0.33 ↓ 21.06 ↓ 15.80 ↓ 12.29

Clouds

(1)αβRSE α = 3 0.1297 0.1186 0.0111 0.0320 0.0209

(2)αRSC α = 3 0.1354 0.1196 0.0158 0.0397 0.0240

Diff (1) vs (2) % ↓ 4.20 ↓ 0.83 ↓ 29.74 ↓ 19.39 ↓ 12.91

Magic

(1)αβRSE α = 4 0.2039 0.1900 0.0139 0.0417 0.0277

(2)αRSC α = 4 0.2151 0.1937 0.0215 0.0556 0.0341

Diff (1) vs (2) % ↓ 5.20 ↓ 1.91 ↓ 35.34 ↓ 25.00 ↓ 18.76

Image

(1)αβRSE α = 0 0.1050 0.0665 0.0385 0.0603 0.0218

(2)αRSC α = 0 0.1184 0.0650 0.0534 0.0759 0.0225

Diff (1) vs (2) % ↓ 11.31 ↑ 2.30 ↓ 27.90 ↓ 20.55 ↓ 3.11

Pendigitis

(1)αβRSE α = 0 0.0958 0.0369 0.0589 0.0697 0.0107

(2)αRSC α = 0 0.1206 0.0355 0.0850 0.0956 0.0106

Diff (1) vs (2) % ↓ 20.56 ↑ 3.94 ↓ 30.70 ↓ 27.09 ↑ 0.94

Twonorm

(1)αβRSE α = 10 0.0345 0.0224 0.0121 0.0179 0.0058

(2)αRSC α = 10 0.0515 0.0222 0.0293 0.0366 0.0073

Diff (1) vs (2)% ↓ 33.01 ↑ 0.90 ↓ 58.70 ↓ 51.09 ↓ 20.54

Waveform

(1)αβRSE α = 10 0.1223 0.0976 0.0247 0.0500 0.0254

(2)αRSC α = 11 0.1387 0.0961 0.0426 0.0722 0.0296

Diff (1) vs (2) % ↓ 11.82 ↑ 1.56 ↓ 42.01 ↓ 30.74 ↓ 14.18

Heart

(1)αβRSE α = 10 0.1896 0.1756 0.0140 0.0431 0.0290

(2)αRSC α = 7 0.2138 0.1667 0.0471 0.0872 0.0400

Diff (1) vs (2) % ↓ 11.31 ↑ 5.33 ↓ 70.27 ↓ 50.57 ↓ 27.5

wdbc

(1)αβRSE α = 2 0.0771 0.0663 0.0108 0.0255 0.0147

(2)αRSC α = 8 0.0898 0.0784 0.0114 0.0275 0.0161

Diff (1) vs (2) % ↓ 14.14 ↓ 15.43 ↓ 5.26 ↓ 7.27 ↓ 8.69

Ringnorm

(1)αβRSE α = 0 0.0527 0.0208 0.0320 0.0377 0.0058

(2)αRSC α = 0 0.1183 0.0596 0.0587 0.0783 0.0196

Diff (1) vs (2) % ↓ 55.45 ↓ 65.10 ↓ 45.48 ↓ 51.85 ↓ 70.40

Concentric

(1)αβRSE α = 0 0.0346 0.0121 0.0225 0.0275 0.0049

(2)αRSC α = 0 0.0616 0.0131 0.0485 0.0544 0.0059

Diff (1) vs (2) % ↓ 43.83 ↓ 7.63 ↓ 53.60 ↓ 49.44 ↓ 16.94
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1. The ensemble shows better average error in comparison to a single classifier because of

a substantial decrease in net variance. However, there is a slight increase in bias.

2. The ensemble shows better average error in comparison to a single classifier because of

a significant decrease in bias.

3. The ensemble shows better average error in comparison to a single classifier because of

a significant decrease in both bias and net variance.

We conclude from the above results that αβRSE, in most cases, reduces the net variance in

comparison with a single classifier because of a decrease in unbiased variance. However, it is not

straightforward in relation to bias. It might be that bias reduction depends on the geometrical

complexity of the sample (complex structures require complex decision boundaries), the chosen

values for the pruning parameter α, and the interaction between α and β (as shown in section

5.3.2.2). In that case, finding a method that systematically reduces bias while keeping unbiased

variance low will further reduce the ensemble average error.

5.3.2.4 Bias and Variance Decomposition of αRSSE

In this section, we show the results of the bias and variance decomposition error of αRSSE.

We followed the same experimental format in the previous section in order to make direct

comparisons. The curves showing both bias and variance in relation to κ is depicted in Figures

5.5. We notice a strong relationship between averaged error and bias. This is shown on all the

datasets with the exception of Twonorm dataset where bias does not show the same strong

decrease. This first observation is an indication that αRSSE reduces bias by increasing κ. We

notice from the same graphs that each time κ increases, net variance decreases in a significant

way with the exception of Diabetes. For this dataset, average error is decreased solely by the

decrease in bias, since both unbiased and biased variance increase with increasing κ. For Yeast

dataset, we notice an inexplicable increase of unbiased variance for κ = 3 then a decrease up

to κ = 5 followed by an increase again. The same trend is noticed for net variance since biased

variance shows a continuous decrease. For the remaining datasets, unbiased variance decrease

in “U” shape form whilst this is not the case for biased variance. Increasing κ seems to have

a higher influence on unbiased variance reduction than biased variance. However, to be able

to find out whether there is bias decrease in comparison with αRSC and αRSE, we need to

make specific assessment as shown in Table 5.5.
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(a) αRSSE Average error and bias decomposition of

the Diabetes dataset
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(b) αRSSE Variances decomposition of the diabetes

dataset
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(c) αRSSE Average error and bias decomposition of

the Heart dataset
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(d) αRSSE Variances decomposition of the heart

dataset
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(e) αRSSE Average error and bias decomposition of

the Yeast dataset
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(f) αRSSE Variances decomposition of the Yeast

dataset

Figure 5.5: The Bias/Variance Decomposition of the αRSSE classifier
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(a) αRSSE Average error and bias decomposition of

the Image dataset
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(c) αRSSE Average error and bias decomposition of

the Waveform dataset
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(e) αRSSE Average error and bias decomposition of

the Pendigitis dataset
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Figure 5.6: The Bias/Variance Decomposition of the αRSSE classifier
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Table 5.5 shows the bias/variance decomposition of αRSSE, αβRSE and αRSC. A closer

look at the values in Table 5.5 shows decrease in bias on all the datasets with the exception

of Twonorm dataset where the bias has slightly increased. We also notice a slight increase on

Pendigitis in comparison with αRSSE and αRSC. Both results are insignificant in comparison

to the overwhelming decrease in bias noticed on all the remaining datasets. This is clearly an

indication that αRSSE reduce bias. As for αRSSE variance, we notice substantial decrease

in unbiased variance with the exception of Heart dataset where it shows an increase. A slight

increase is also shown on wdbc dataset. We can conclude that the overall average errors

decrease for the reason that both bias and unbiased variances are decreased. This explains the

performance of αRSSE in comparison with αRSC and αβRSE.

5.3.3 Experiment 3: Comparing Classifiers Accuracy Results

5.3.3.1 Comparing αRSE and αβRSE Accuracies against Other Ensembles

Table 5.6 shows the classification accuracy of αRSE and αRSSE accuracies against those of

Adaboost, Bagging, and Multiboost trained on 25 base classifiers.

Friedman ranks αβRSE and αRSE 1th and 5th respectively, whilst AdaBoost and Bagging

are ranked 3th and 4th respectively. Multiboost ranked 2nd. These results demonstrate that

αβRSE performance is better than AdaBoost and Bagging using 25 base classifiers. αRSE

results are similar to those of AdaBoost and Bagging which explains the similarity of average

ranks.

In general, ensembles perform better when the size of the ensemble is large. Table 5.7

shows the classification performance for ensemble size based on 100 base classifiers. αβRSE

ranked 1th whilst αRSE lost it 3rd position to Adaboost. The average ranks show that αRSE

performed similarly to Bagging, and αβRSE to Multiboost. These experiments indicate that

αβRSE performs well for these datasets.

5.3.3.2 Comparing αRSSE Accuracy against Other Subspace Ensembles

Table 5.8 shows the classification accuracy of αRSSE accuracy against those of Rotation

Forest, Random SubSpace, Random Forest, and Random Committee based on 25 classifiers.

Friedman ranks αRSSE 2nd, whilst Rotation Forest is ranked 1st. However, the average

ranks of both algorithms are very similar. Random Subspaces ranked last whilst Random

Forest and Random Committee are ranked 3rd and 4th respectively. These results demonstrate
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Table 5.5: Comparing Bias/variance of αRSSE,αβRSE and αRSC on various datasets using bias and variance.

(Var. unb.) and (Var. bias.) stand for unbiased and biased variance. (Diff) stands for the percentage difference

between the algorithms. The up arrow ↑ means an increase while a down arrow ↓ means a decrease.

Dataset Avg Error Bias Net Var Var. Unb. Var. bias.

Diabetes

(1)αRSSE, α = 2, κ = 5 0.2603 0.2332 0.0271 0.0741 0.0469

(2)αβRSE, α = 3 0.2685 0.2359 0.0326 0.0847 0.0521

(3)αRSC, α = 3 0.2780 0.2367 0.0413 0.1006 0.0594

Diff (1) vs (2) % ↓ 3.05 ↓ 1.14 ↓ 16.87 ↓ 12.51 ↓ 9.98

Diff (1) vs (3) % ↓ 6.37 ↓ 1.48 ↓ 34.38 ↓ 26.34 ↓ 21.04

Heart

(1)αRSSE, α = 2, κ = 5 0.1814 0.1533 0.0281 0.0568 0.0287

(2)αβRSE, α = 10 0.1896 0.1756 0.0140 0.0431 0.0290

(3)αRSC, α = 7 0.2138 0.1667 0.0471 0.0872 0.0400

Diff (1) vs (2) % ↓ 4.32 ↓ 12.70 ↑ 100.71 ↑ 31.79 ↓ 1.034

Diff (1) vs (3) % ↓ 15.15 ↓ 8.04 ↓ 40.34 ↓ 34.86 ↓ 28.25

wdbc

(1)αRSSE, α = 0, κ = 13 0.0698 0.0553 0.0145 0.0258 0.0112

(2)αβRSE, α = 2 0.0771 0.0663 0.0108 0.0255 0.0147

(3)αRSC, α = 8 0.0898 0.0784 0.0114 0.0275 0.0161

Diff (1) vs (2) % ↓ 9.46 ↓ 16.59 ↑ 34.25 ↑ 1.17 ↓ 23.80

Diff (1) vs (3) % ↓ 22.27 ↓ 29.46 ↑ 27.19 ↓ 6.18 ↓ 30.43

Image

(1)αRSSE, α = 0, κ = 10 0.0873 0.0495 0.0378 0.0541 0.0163

(2)αβRSE, α = 0 0.1050 0.0665 0.0385 0.0603 0.0218

(3)αRSC, α = 0 0.1184 0.0650 0.0534 0.0759 0.0225

Diff (1) vs (2) % ↓ 16.85 ↓ 25.56 ↓ 1.81 ↓ 10.28 ↓ 25.22

Diff (1) vs (3) % ↓ 26.26 ↓ 23.84 ↓ 29.21 ↓ 28.72 ↓ 27.55

Pendigitis

(1)αRSSE, α = 0, κ = 9 0.0849 0.0356 0.0493 0.0596 0.0102

(2)αβRSE, α = 0 0.0958 0.0369 0.0589 0.0697 0.0107

(3)αRSC, α = 0 0.1206 0.0355 0.0850 0.0956 0.0106

Diff (1) vs (2) % ↓ 11.37 ↓ 3.52 ↓ 16.29 ↓ 14.49 ↓ 4.67

Diff (1) vs (3) % ↓ 29.60 ↑ 0.28 ↓ 42.00 ↓ 37.65 ↓ 3.77

Twonorm

(1)αRSSE, α = 2, κ = 13 0.0328 0.0225 0.0103 0.0159 0.0057

(2)αβRSE, α = 10 0.0345 0.0224 0.0121 0.0179 0.0058

(3)αRSC, α = 10 0.0515 0.0222 0.0293 0.0366 0.0073

Diff (1) vs (2)% ↓ 4.92 ↑ 0.44 ↓ 14.87 ↓ 11.17 ↓ 1.72

Diff (1) vs (3)% ↓ 36.31 ↑ 1.35 ↓ 64.84 ↓ 56.55 ↓ 21.91

Waveform

(1)αRSSE, α = 2, κ = 11 0.1141 0.0906 0.0235 0.0472 0.0237

(2)αβRSE, α = 10 0.1223 0.0976 0.0247 0.0500 0.0254

(3)αRSC, α = 11 0.1387 0.0961 0.0426 0.0722 0.0296

Diff (1) vs (2) % ↓ 6.70 ↓ 7.17 ↓ 4.85 ↓ 5.60 ↓ 6.69

Diff (1) vs (3) % ↓ 17.73 ↓ 5.72 ↓ 44.83 ↓ 34.62 ↓ 19.93

Ringnorm

(1)αRSSE α = 0, κ = 10 0.0288 0.0167 0.0121 0.0166 0.0045

(2)αβRSE, α = 0 0.0527 0.0208 0.032 0.0377 0.0058

(3)αRSC, α = 0 0.1183 0.0596 0.0587 0.0783 0.0783

Diff (1) vs (2) % ↓ 45.35 ↓ 19.71 ↓ 62.18 ↓ 55.96 ↓ 22.41

Diff (1) vs (3) % ↓ 75.65 ↓ 71.97 ↓ 79.38 ↓ 78.79 ↓ 94.25
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Table 5.6: Classification accuracy (in %) and standard deviation of αβRSE, αRSE, αRSSE, Adaboost, Bagging,

and Multiboost using average results of 30 different runs on independent train/test splits. The ensembles use 25

base classifier. Average Ranks stands for Friedman average ranks and Ranks stands for Friendam ranks.

Data Set αRSE αβRSE Adaboost Bagging MultiBoost

Abalone 54.25 ± 0.94 54.89 ± 1.02 52.30 ± 1.20 53.98 ± 0.91 53.04 ± 1.47

waveform 90.40 ± 0.67 90.68 ± 0.65 89.60 ± 0.69 88.71 ± 0.58 89.63 ± 0.56

satimage 90.90 ± 0.41 90.90 ± 0.41 91.21 ± 0.45 89.82 ± 0.69 90.94 ± 0.57

ringnorm 96.71 ± 0.38 97.17 ± 0.30 97.26 ± 0.33 95.01 ± 0.50 97.12 ± 0.31

twonorm 97.32 ± 0.26 97.41 ± 0.26 96.43 ± 0.32 95.58 ± 0.46 96.41 ± 0.37

image 96.87 ± 0.50 96.87 ± 0.51 97.77 ± 0.64 95.78 ± 0.90 97.32 ± 0.75

german 73.21 ± 1.76 74.00 ± 1.69 74.52 ± 1.76 75.24 ± 1.36 75.09 ± 2.51

wdbc 93.21 ± 1.47 93.86 ± 1.52 96.79 ± 1.26 95.19 ± 1.38 96.61 ± 1.22

yeast 56.34 ± 2.09 58.22 ± 1.24 58.23 ± 1.59 60.65 ± 1.57 58.65 ± 1.77

diabetes 74.52 ± 1.78 75.01 ± 1.79 73.54 ± 1.88 75.94 ± 2.00 74.74 ± 2.34

iono 93.48 ± 2.05 93.39 ± 2.25 92.85 ± 2.20 92.31 ± 2.60 93.25 ± 2.05

sonar 84.67 ± 4.17 84.43 ± 3.66 81.38 ± 4.21 76.33 ± 5.66 80.76 ± 4.57

heart 78.85 ± 3.60 80.74 ± 3.26 80.41 ± 3.11 81.26 ± 3.66 81.22 ± 2.87

cancer 69.46 ± 2.97 70.07 ± 3.62 69.07 ± 4.36 73.44 ± 2.87 69.35 ± 4.71

winsc 95.53 ± 1.34 95.67 ± 1.33 96.21 ± 0.84 96.01 ± 0.97 96.49 ± 0.71

ecoli 85.36 ± 2.78 85.51 ± 2.64 83.07 ± 2.75 83.45 ± 3.58 83.45 ± 2.73

Average Ranks 3.31 2.50 3.13 3.28 2.78

Ranks 5 1 3 4 2

that αRSSE performance is as good as Rotation Forest, and better than state of the art

Random subspaces, Random Forest, and Random Committee using 25 base classifiers. This is

also shown in Table 5.7 for ensemble size of 100 base classifiers. αRSSE still ranked 2nd and

the average ranks show both Rotation Forest and αRSSE performed similarly for ensemble

size of 100 base classifiers. These experiments indicate that αβRSE performs well for these

datasets.

5.3.4 Experiment 5: On the Performance of Various αRSSE Sizes

Table 5.10 shows the classification accuracy of αRSSE for various sizes varying from 15 to

500 base classifiers using 10CV. In general, ensembles perform much better when the size of

the ensemble is large. However, over training often degrades performance for many ensemble

methods. It is interesting to note that αRSSE improves its classification performance for

ensemble size that are above 100 base classifiers. We notice from Table 5.10, 8 improvements

are made for ensembles made of 500 base classifiers and 7 for ensembles made of 250 base

classifiers.
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Table 5.7: Classification accuracy (in %) and standard deviation of αβRSE, αRSE, αRSSE, Adaboost, Bagging,

and Multiboost using average results of 30 different runs on independent train/test splits. The ensembles use 100

base classifier. Average Ranks stands for Friedman average ranks and Ranks stands for Friendam ranks.

Data Set αRSE αβRSE Adaboost Bagging MultiBoost

Abalone 54.36 ± 1.16 54.48 ± 1.23 52.82 ± 0.99 54.1 ± 0.91 54.22 ± 1.47

waveform 90.56 ± 0.70 90.32 ± 0.66 90.27 ± 0.58 89.08 ± 0.84 90.20 ± 0.93

satimage 90.91 ± 0.38 91.12 ± 0.44 92.00 ± 0.39 90.47 ± 0.55 91.11 ± 0.60

ringnorm 96.88 ± 0.37 97.54 ± 0.31 97.75 ± 0.29 95.23 ± 0.52 97.05 ± 0.52

twonorm 97.36 ± 0.28 97.49 ± 0.22 97.13 ± 0.26 96.35 ± 0.38 96.95 ± 0.27

image 96.77 ± 0.50 96.8 ± 0.56 97.98 ± 0.56 96.23 ± 0.80 96.71 ± 0.34

german 73.23 ± 1.82 74.16 ± 1.58 74.46 ± 1.54 74.91 ± 1.85 74.70 ± 0.64

wdbc 93.39 ± 1.56 93.91 ± 1.57 96.91 ± 1.55 96.33 ± 1.35 96.47 ± 1.07

yeast 57.26 ± 1.44 58.41 ± 1.36 58.13 ± 1.62 60.08 ± 1.56 59.57 ± 1.22

diabetes 74.53 ± 1.84 75.04 ± 2.57 73.53 ± 2.20 75.68 ± 2.57 74.54 ± 1.28

iono 93.56 ± 2.06 93.53 ± 1.96 92.99 ± 2.29 91.20 ± 3.01 92.39 ± 2.25

sonar 84.86 ± 4.23 85.00 ± 3.72 82.71 ± 5.14 78.57 ± 5.86 82.71 ± 2.21

heart 79.26 ± 3.40 80.67 ± 3.10 81.19 ± 2.88 81.56 ± 3.59 82.33 ± 4.20

cancer 69.53 ± 3.29 69.58 ± 3.32 68.82 ± 5.07 73.19 ± 3.34 71.33 ± 3.51

winsc 95.54 ± 1.33 95.71 ± 1.33 96.48 ± 0.88 96.09 ± 0.94 97.00 ± 4.31

ecoli 85.54 ± 2.96 85.86 ± 2.65 83.07 ± 2.75 83.45 ± 3.58 84.82 ± 0.75

Average Ranks 3.38 2.38 3.03 3.44 2.78

Ranks 4 1 3 5 2

Table 5.8: Classification accuracy (in %) and standard deviation of αRSSE, Rotation Forest, Random SubSpace,

RandomForest and Random Committee using average results of 30 different runs on independent train/test splits.

The ensembles use 25 base classifier. Average Ranks stands for Friedman average ranks and Ranks stands for

Friendam ranks.

Data Set αRSSE Rotation Forest Random SubSpace Random Forest Random Committee

Abalone 54.77 ± 1.28 55.56 ± 1.04 54.62 ± 1.09 54.05 ± 1.16 53.56 ± 1.19

Waveform 90.21 ± 0.51 90.72 ± 0.77 89.35 ± 0.73 89.51 ± 0.61 89.32 ± 0.61

Satimage 91.71 ± 0.47 91.03 ± 0.50 90.79 ± 0.54 90.80 ± 0.52 90.24 ± 0.44

Ringnorm 98.29 ± 0.26 97.57 ± 0.23 96.82 ± 0.35 95.49 ± 0.38 96.6 ± 0.30

Twonorm 97.03 ± 0.30 97.42 ± 0.27 95.88 ± 0.33 96.02 ± 0.37 96.18 ± 0.35

Image 97.39 ± 0.65 98.04 ± 0.51 96.42 ± 0.73 97.27 ± 0.63 96.08 ± 0.58

German 74.59 ± 1.47 76.26 ± 1.63 72.28 ± 1.53 74.85 ± 1.46 73.65 ± 1.77

wdbc 94.67 ± 1.33 96.40 ± 1.03 95.35 ± 1.31 95.30 ± 1.42 96.04 ± 1.26

Yeast 58.80 ± 1.90 61.06 ± 1.82 57.38 ± 2.45 58.96 ± 1.69 60.26 ± 1.75

Diabetes 76.17 ± 2.25 76.25 ± 2.30 74.48 ± 1.98 75.43 ± 1.92 74.78 ± 1.51

Iono 94.53 ± 1.79 93.50 ± 1.79 92.68 ± 2.40 93.05 ± 1.86 93.13 ± 2.33

Sonar 84.52 ± 4.49 82.86 ± 4.50 79.57 ± 5.24 81 ± 4.68 82.19 ± 3.99

Heart 82.74 ± 4.02 82.74 ± 3.32 83.30 ± 3.55 81.67 ± 3.17 81.00 ± 3.62

Cancer 76.27 ± 2.96 73.87 ± 3.29 74.73 ± 2.81 71.18 ± 3.74 70.93 ± 4.29

Winsc 97.21 ± 0.95 97.18 ± 0.83 96.35 ± 1.01 96.48 ± 0.72 97.00 ± 0.84

Ecoli 85.00 ± 2.07 87.41 ± 2.44 84.02 ± 3.13 85.33 ± 2.76 84.82 ± 2.62

Average Ranks 2.09 1.53 4.00 3.50 3.88

Ranks 2 1 5 3 4
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Table 5.9: Classification accuracy (in %) and standard deviation of αRSSE, Rotation Forest, Random SubSpace,

RandomForest and Random Committee using average results of 30 different runs on independent train/test splits.

The ensembles use 100 base classifier. Average Ranks stands for Friedman average ranks and Ranks stands for

Friendam ranks.

Data Set αRSSE Rotation Forest Random SubSpace Random Forest Random Committee

Abalone 54.91 ± 0.98 56.04 ± 1.04 54.79 ± 1.02 54.47 ± 0.86 52.83 ± 0.95

waveform 90.73 ± 0.53 91.07 ± 0.77 89.68 ± 0.62 89.97 ± 0.62 90.36 ± 0.63

satimage 91.92 ± 0.54 91.70 ± 0.50 91.28 ± 0.55 91.59 ± 0.46 91.82 ± 0.46

ringnorm 98.43 ± 0.27 97.77 ± 0.23 97.22 ± 0.35 95.66 ± 0.43 97.70 ± 0.26

twonorm 97.39 ± 0.28 97.53 ± 0.27 96.24 ± 0.51 96.38 ± 0.50 97.22 ± 0.27

image 97.83 ± 0.53 98.16 ± 0.51 96.78 ± 0.62 97.45 ± 0.62 97.93 ± 0.56

german 74.28 ± 1.56 75.69 ± 1.63 72.37 ± 1.06 75.63 ± 0.64 74.79 ± 1.86

wdbc 95.00 ± 1.44 96.75 ± 1.03 96.35 ± 1.49 96.95 ± 1.17 97.11 ± 1.32

yeast 59.43 ± 1.93 61.65 ± 1.82 58.94 ± 1.84 60.03 ± 1.31 58.22 ± 1.57

diabetes 76.25 ± 2.21 76.12 ± 2.30 74.84 ± 2.07 75.14 ± 2.04 74.00 ± 2.02

iono 94.76 ± 1.68 94.19 ± 1.79 92.74 ± 1.80 92.39 ± 1.77 93.33 ± 1.94

sonar 85.24 ± 5.39 84.43 ± 4.50 79.62 ± 5.62 82.05 ± 4.44 82.24 ± 4.63

heart 84.00 ± 3.43 83.30 ± 3.15 83.41 ± 3.92 82.70 ± 3.35 81.22 ± 4.50

cancer 76.16 ± 2.75 74.12 ± 3.29 75.30 ± 2.85 71.36 ± 4.41 68.82 ± 5.07

winsc 97.42 ± 0.91 97.38 ± 0.83 96.60 ± 0.98 96.71 ± 0.90 96.47 ± 0.78

ecoli 85.71 ± 2.36 87.41 ± 2.44 84.02 ± 3.13 85.33 ± 2.76 83.45 ± 2.73

Average Ranks 1.94 1.69 4.06 3.50 3.81

Ranks 2 1 5 3 4

Table 5.10: αRSSE 10CV accuracy using various ensemble sizes

Dataset/ensemble size (15) (25) (50) (100) (250) (500)

wins 97.08 97.34 97.24 97.40 97.38 97.33

Cancer 75.54 75.88 76.05 77.06 76.93 77.30

Diabetes 76.89 76.95 76.96 77.03 77.21 76.96

German 74.77 75.43 75.52 75.47 75.52 75.66

Ecoli 86.17 86.45 86.57 86.15 86.62 86.60

Glass2 95.76 96.76 96.43 96.33 96.29 96.67

Sonar 86.85 87.81 88.30 88.69 88.03 88.47

Iono 95.09 95.37 95.23 95.11 95.46 95.43

Glass6 76.96 77.39 77.71 79.08 79.14 78.43

Heart 81.74 84.26 83.85 83.63 83.81 83.96

wdbc 97.27 97.45 97.75 97.68 97.99 97.98

Vowel 98.60 98.79 98.83 98.72 98.87 98.85

Yeast 59.02 59.79 59.56 59.58 59.86 59.94

Image 97.44 97.80 97.92 97.87 98.01 98.03

Pendigits 98.92 98.99 99.03 99.07 99.06 99.09

Waveform 89.87 90.38 90.72 90.85 91.21 90.97

Magic 84.42 84.89 85.10 85.13 85.28 85.34

Twonorm 96.79 97.20 97.39 97.49 97.63 97.64

Ringnorm 97.97 98.14 98.27 98.31 98.37 98.39
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5. RANDOMIZED SPHERE COVER ENSEMBLES

5.4 Chapter Summary

This chapter proposed three ensemble algorithms based on Randomized Sphere Cover classi-

fiers. The main issue we faced, for using a sphere cover algorithm in an ensemble, is the way

in which a cover is selected. Searching for the minimum cover will reduce the diversity in the

ensemble. Therefore, we select random covers and built an ensemble based on the geometrical

property of αRSC classifier. The main idea is to capture the decision boundary via αRSC

local spherical edges. We employed two different ways for generating divers covers for both

αRSE and αβRSE. The first method performs a random selection of centres and the sec-

ond method employs β parameter in order to further randomise the selected covers. In order

to keep accurate base classifiers, the sampling process is used on border examples as found

by the base classifiers. Consequently, reducing the effect of “complete” random covers which

might produce weak classifiers. We showed that αβRSE performs well on various datasets in

comparison with various well known ensemble methods. Good generalization performance of

αβRSE is mainly caused by the reduction in net variance. Furthermore, we showed that ag-

gregating αRSC by simple voting can also improve the classification performance over a single

classifier. In general, the sampling method used to generate values for β in αβRSE improved

the overall classification accuracy in comparison with αRSE. We believe that other sampling

methods could be devised in order to improve further αβRSE performance. The experiments

conducted in this chapter indicate that ensembles based on αRSC classifiers performs better

in the subspaces. We used bias and variance decomposition on a variety of datasets to in-

vestigate the reasons of such improvement. The experiments showed that the decrease of the

classification error was mainly due to bias and unbiased variance reduction.
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Chapter 6

Application to Gene Expression

Classification

6.1 Introduction

Finally, we explore our proposed subspace algorithm αRSSE using various experiments on

gene expression datasets. We use three attribute ranking methods on these gene expression

datasets in order to verify the usefulness of the sphere cover algorithms proposed in this theses.

Gene expression profiling helps to identify a set of genes that are responsible for cancerous

tissue. In the last decade, microarray gene expression cancer diagnosis showed promising

results using various classification algorithm. Among those successful algorithms are SVM,

and decision forest. In this section we test the performance of αSCC algorithm on seven gene

expression datasets.

In supervised learning, the attribute selection problem is defined as: given a set of candidate

attributes select a subset defined by one of three approaches [97]:

1. The subset with a specified size that optimizes an evaluation measure.

2. The subset of smaller size that satisfies a certain restriction.

3. The subset with the best commitment among its size and the value of its evaluation

measure (general case).

From a supervised learning perspective, the relevance of an attributes with respect to noise

reduction and consequently better class separation is the objective that is looked for. Molina
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6. APPLICATION TO GENE EXPRESSION CLASSIFICATION

et al [97], surveyed and tested different domains on a large repertoire of attribute selection

methods exposing in detail their merits and failings. Another exhaustive survey describes the

relative difficulty in choosing a specific attribute selection method, hence giving some guidance

on how to choose a method specific to a particular domain based on several criteria [51].

Ranking attributes according to a specific statistical evaluation method are popular because

of their simplicity, scalability, and good empirical success[97]. Ranking methods showed to

perform particularly well For gene expression datasets [85]. Genes, which are represented

as attributes, are ranked according to their prediction power and their contribution to class

separability. We will use two ranking methods in this section in order to evaluate the proposed

classifiers of previous chapters with gene expression datasets. These two popular methods

rank best attributes according to the χ2 statistics and Information Gain (IF). Guyon and

Elisseeff [51], outlined important points concerning ranking methods based on evaluating single

attributes separately, below we enumerate their main conclusion.

1. Perfectly correlated variables are truly redundant in the sense that no additional infor-

mation is gained by adding them.

2. Very high variable correlation (or anti-correlation) does not mean absence of variable

complementarity.

3. a variable that is completely useless by itself can provide a significant performance im-

provement when taken with others.

4. Two variables that are useless by themselves can be useful together.

5. A variable useless by itself can be useful together with others.

This is clearly an issue for ranking methods, for that reason many methods that evaluates

subsets of attributes together have been proposed in the literature[51, 97]. In Guyon and

Elisseeff [51], they divided the attribute selection methods into three types: wrappers, filters,

and embedded methods. ”Wrappers utilize the learning machine of interest as a black box to

score subsets of variable according to their predictive power. Filters select subsets of variables

as a pre-processing step, independently of the chosen predictor. Embedded methods perform

variable selection in the process of training and are usually specific to given learning machines.”

However, it is always an issue choosing between selecting subsets of attributes that together

have good predictive power, as opposed to ranking attributes according to their individual
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predictive power. In addition, several issues are found in wrapper and embedded methods

such as computation complexity and overfitting. However, using the predictive machine as

black box is appealing in terms of simplicity of use. As part of testing the proposed algorithms

on gene expression datasets, we use another popular attribute selection algorithm called Relief

[51, 97].

6.2 Gene Expression Datasets

This section gives a brief description of gene expression datasets used in our empirical evalu-

ation.

1. Breast Cancer

This dataset is made of patients outcome prediction for breast cancer. The original

file is made of a training and testing datasets. The training data contains 78 patient

samples, 34 of which are from patients who had developed distance metastases within 5

years (labelled as ”relapse”), the rest 44 samples are from patients who remained healthy

from the disease after their initial diagnosis for interval of at least 5 years (labelled as

”non-relapse”). Correspondingly, there are 12 relapse and 7 non-relapse samples in the

testing data set. The number of genes is 24481.

2. Central Nervous System

Patients outcome prediction for central nervous system embryonal tumor. Survivors

are patients who are alive after treatment whiles the failures are those who succumbed

to their disease. The data set contains 60 patient samples, 21 are survivors (labelled as

”Class1”) and 39 are failures (labelled as ”Class0”). There are 7129 genes in the dataset.

3. Colon Tumor

Contains 62 samples collected from colon-cancer patients. Among them, 40 tumor biop-

sies are from tumors (labelled as ”negative”) and 22 normal (labelled as ”positive”)

biopsies are from healthy parts of the colons of the same patients. Two thousand out
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6. APPLICATION TO GENE EXPRESSION CLASSIFICATION

of around 6500 genes were selected based on the confidence in the measured expression

levels.

4. Lung Cancer (Dana-Farber Cancer Institute, Harvard Medical School)

A total of 203 snap-frozen lung tumors and normal lung were analysized. The 203 spec-

iments include 139 samples of lung adenocarcinomas (labelled as ADEN), 21 samples of

squamous cell lung carcinomas (labelled as SQUA), 20 samples of pulmonary carcinoids

(labelled as COID), 6 samples of small-cell lung carcinomas (labelled as SCLC) and 17

normal lung samples (labelled as NORMAL). Each sample is described by 12600 genes.

5. Ovarian Cancer (NCI PBSII Data)

The goal of this experiment is to identify proteomic patterns in serum that distinguish

ovarian cancer from non-cancer. This study is significant to women who have a high risk

of ovarian cancer due to family or personal history of cancer. The proteomic spectra were

generated by mass spectroscopy and the data set provided here is 6-19-02, which includes

91 controls (Normal) and 162 ovarian cancers. The raw spectral data of each sample

contains the relative amplitude of the intensity at each molecular mass / charge (M/Z)

identity. There are total 15154 M/Z identities. The intensity values were normalized

according to the formula: NV = (V-Min)/(Max-Min), where NV is the normalized value,

V the raw value, Min the minimum intensity and Max the maximum intensity. The

normalization is done over all the 253 samples for all 15154 M/Z identities. After the

normalization, each intensity value is to fall within the range of 0 to 1.

6. Prostate Cancer

(A) Tumor versus Normal classification: training set (from (1)) contains 52 prostate

tumor samples and 50 non-tumor (labelled as ”Normal”) prostate samples with around

12600 genes. An independent set of testing samples from (2) is also prepared, which

is from a different experiment and has a nearly 10-fold difference in overall microarray

intensity from the training data. Besides, we have removed extra genes contained in

the testing samples. In the above publication, the testing set is indicated to have 27

tumor and 8 normal samples. However, from our extraction, there are 25 tumor and 9

normal samples. (B) Prediction of clinical outcome: in this data set, 21 patients were
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evaluable with respect to recurrence following surgery with 8 patients having relapsed

and 13 patients having remained relapse free (”non-relapse”) for at least 4 years.

Some datasets are given in two separate files as training and testing sets. We simply

concatenated the training and testing files then use random train/test splits in the experiments.

6.3 Experimental Setup

In Section 6.4.1, we use six benchmark gene expression datasets in order to evaluate the

usefulness on the proposed algorithm in real world application. The three attribute filtering

methods are implemented in WEKA. We evaluate the five classifiers on the first 5, 10, 20 30, 40

and 50 best ranked attributes. For these experiments we divide the datasets into a training set

and a testing set. We use a stratified 10 fold Cross Validation (10CV) on the training set only

to select the best values for α based on the average accuracy results of 15 experiments (model

selection) for αRSC. The average classification accuracy of 30 experiments is calculated on

each test set. For the comparison purpose, we continue with a single Decision tree (DT),

NaiveBayes (NB), K nearest Neighbour (K-NN), Naive Bayes tree (NBtree) and non nested

hyper-rectangle generalisation algorithm (NNge). For the ensembles, In Section 6.4.2, We use

a stratified 10 fold Cross Validation (10CV) on the training set only to select the best values

for α and κ based on the average accuracy results of 5 experiments (model selection). For

comparison, we use Adabbost, Bagging, Random Comittee, Multiboost, Random Subspaces,

Random Forest and Rotation Forest. All the ensembles use 100 classifiers. For the decision

tree in the ensembles we keep the same default parameter as found in the WEKA package. The

same applies for both Adaboost and Bagging. Random Subspaces uses half of the attributes

of each dataset as suggested by its authors. In Random Forest we apply
√

(k) rounded for the

number of attributes which is 10.

In the next two sections we assesses the usefulness of the αRSC and αRSSE on a real

gene expression dataset using the three attribute selection methods.
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Figure 6.1: αSCC Learning Curves on various Gene Expression datasets
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6.4 Evaluation of Six Gene Expression Datasets with Three Attribute Filtering
Methods

6.4 Evaluation of Six Gene Expression Datasets with Three

Attribute Filtering Methods

6.4.1 Performance of αRSC using χ2, relief and Information Gain Ranked

Attributes

The experiments produced 648 accuracy results over the 6 gene expression datasets using the

6 classifiers each on three attribute filtering methods (χ2, Information Gain and Relief). In

order to collate the results into a single table we calculated the Friedman ranking. Tables 6.1

shows the best performing classifier for each attribute filtering method. It is interesting to

note that αRSC has ranked first on each attribute filtering method and, in most cases, has

not ranked below third place. NNge and the Decision tree classifiers performed very badly in

comparison to other classifier. These results suggest that αRSC performed very well over the

6 gene expression datasets on all the three attribute filtering methods.

The best results for each dataset regardless of cut-off points are shown in Tables 6.2, 6.3

and 6.4. In these tables we want to show which is the best performing classifier for each dataset

since each classifier may perform badly on some cut-off while better on others. In addition,

the main target of any classifiers is to find the best accuracy over a set of cut-offs. We also

show Friedman average ranks for each attribute filtering method. The tables show that αRSC

ranked 1st for the χ2, 2nd for Relief and 3rd for the Information gain filtering methods.

The overall ranking results of the three attribute filtering methods is calculated by summing

the average ranks of the three tables as shown in Table 6.5. αRSC has ranked first while K-

NN ranked 2nd. These results show that αRSC is a good classifier for these gene expression

datasets, and that it works well with attribute filters.

6.4.2 Performance of αRSSE using χ2, Relief and Information Gain Ranked

Attributes

We trained the αRSSE ensemble on the gene expression datasets using the full attribute sets.

Figure 6.1 shows the 5CV learning curves which also shows the degree of difficulty of each

dataset.

Tables 6.6, 6.7 and 6.8 show the best performing classifier for each attribute filtering

method. It is interesting to note that αRSSE has ranked first on two attribute filtering

methods (χ2 and IF) and ranked third place for Relief filtering method. Random Subspaces,
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Table 6.1: The ranking based on classification accuracy of six datasets of αRSC, K-Nearest neighbour (K-NN),

Decision tree (J48), Naive Bayes tree (NBT), NaiveBayes (NB) and Non-nested Generalised Hyper-rectangle (NNge)

using average results of 30 different runs on χ2, Information Gain (IG) and Relief.

Algorithms αRSC DT K-NN NB Nbtree NNge

ranked all dataset χ2

top5 3 5 6 4 1 2

top10 1 6 2 5 3 4

top20 3 6 4 1 2 5

top30 3 6 2 1 5 4

top40 3 6 1 2 4 5

top50 2 6 1 4 3 5

Avg 2.5 5.83 2.67 2.83 3 4.17

Total ranks 1 6 2 3 4 5

ranked all dataset IG

top5 2 6 5 4 1 3

top10 2 6 1 4 3 5

top20 3 6 1 4 2 5

top30 5 6 1 2 3 4

top40 4 6 1 5 3 2

top50 1 6 2 5 3 4

Avg 2.83 6 1.83 4 2.5 3.83

Total ranks 3.5 6 1 5 2 3.5

ranked all dataset Relief

top5 2 6 4 5 5 3

top10 1 6 3 2 5 4

top20 1 6 3 2 5 4

top30 1 6 3 2 4 5

top40 2 6 3 1 5 4

top50 3 6 1.50 1.50 4 5

Avg 1.67 6 2.92 2.25 4.67 4.17

Total ranks 1 6 3 2 5 4

Table 6.2: The best test set accuracy (in %) of αRSC, K-Nearest neighbour (K-NN), Decision tree (J48), Naive

Bayes tree (NBT), NaiveBayes (NB) and Non-nested Generalised Hyper-rectangle (NNge) using average results of

30 different runs on χ2. Average Ranks stands for Friedman average ranks and Ranks stands for Friendam ranks.

Dataset αRSC NBTree K-NN NB NNge DT

Breast Cancer 77.58 76.16 75.35 71.11 71.01 72.42

Prostate 91.01 90.87 94.35 70.00 89.35 90.22

Lung Cancer 99.13 99.23 99.07 100.00 99.95 95.63

Ovarian 98.86 97.96 99.33 98.59 98.55 97.10

Colon Tumor 85.24 88.10 84.29 87.46 84.29 83.81

Central Nervous 80.33 80.67 78.83 78.17 74.00 76.67

Average Rank 2.33 2.50 2.92 3.50 4.58 5.17

ranks 1 2 3 4 5 6
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Table 6.3: The best test set accuracy (in %) of αRSC, K-Nearest neighbour (K-NN), Decision tree (J48), Naive

Bayes tree (NBT), NaiveBayes (NB) and Non-nested Generalised Hyper-rectangle (NNge) using average results of

30 different runs on Relief (RL). Average Ranks stands for Friedman average ranks and Ranks stands for Friendam

ranks.

Dataset NB αRSC K-NN NNge NBTree DT

Breast Cancer 81.62 77.37 80.40 73.84 74.65 71.52

Prostate 76.09 91.96 95.07 87.75 89.13 89.71

Lung Cancer 99.29 99.23 98.31 99.07 98.69 95.96

Ovarian 98.78 97.88 99.18 98.59 97.84 97.10

Colon Tumor 85.08 86.03 80.79 82.7 82.86 79.68

Central Nervous 78.33 77.17 76.83 70.83 70.67 71.17

Average Rank 2.17 2.33 2.83 4.17 4.33 5.17

Ranks 1 2 3 4 5 6

Table 6.4: The best test set accuracy (in %) of αRSC, K-Nearest neighbour (K-NN), Decision tree (J48), Naive

Bayes tree (NBT), NaiveBayes (NB) and Non-nested Generalised Hyper-rectangle (NNge) using average results of

30 different runs on Information Gain (IG). Average Ranks stands for Friedman average ranks and Ranks stands

for Friendam ranks.

Dataset K-NN Nbtree αRSC NNge NB DT

Breast Cancer 75.35 76.87 78.38 69.90 69.9 72.63

Prostate 90.51 88.99 89.49 87.61 67.25 89.71

Lung Cancer 99.18 99.67 99.34 100.00 100.00 95.63

Ovarian 99.53 98.04 98.90 98.59 98.59 97.06

Colon Tumor 85.40 86.51 85.87 84.92 84.44 82.22

Central Nervous 77.83 82.83 74.00 75.33 75.67 74.50

Average Ranks 2.50 2.67 3.00 3.75 3.92 5.17

Ranks 1 2 3 4 5 6

Table 6.5: All Ranks over the three attribute filtering methods

Classifiers Sum Ranks All Ranks

αRSC 7.00 1

K-NN 7.50 2

Nbtree 8.75 3

NB 11.42 4

NNge 12.83 5

DT 15.50 6
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Adaboost and BAgging performed badly in comparison to other classifier. These results sug-

gest that αRSSE performed very well over the 6 gene expression datasets on all the three

attribute filtering methods.

The best results for each dataset regardless of the filtering methods are shown in Tables

6.9. In this tables we want to show which is the best performing classifier for each dataset

since each classifier may perform badly on some filtering method but better on others. We

also show Friedman average ranks for each attribute filtering method. The tables show that

αRSSE ranked 1st, Random Forest 2nd and Rotation Forest 3rd. Both Random Forest and

αRSSE have similar average ranks. These experiments show that αRSSE performed very

well on these gene expression datasets and produced similar results to those of Rotation Forest

and Random Forest.

Table 6.6: The best test set accuracy (in %) of αRSSE, Rotation Forest (RotF), Random Subspace (RandS),

Random Forest (RandF), Adaboost, bagging and MultiBoostAB (Multi) using average results of 30 different runs

on χ2. Average Ranks stands for Friedman average ranks and Ranks stands for Friendam ranks.

Dataset αRSSE RotF RandS RandF Adaboost Bagging Multi

Breast Cancer 82.93 79.60 76.26 80.91 79.19 78.99 78.79

Central Nervous 77.83 76.83 74.33 80.33 76.33 76.17 76.50

Colon Tumor 85.87 86.19 83.49 84.13 82.38 83.65 82.86

Lung Cancer 99.34 99.34 95.03 99.34 97.81 97.21 97.87

Ovarian 99.18 99.80 97.88 98.98 97.73 97.84 97.73

Prostate 94.13 93.70 91.30 94.57 91.23 91.38 91.09

Average Ranks 6.17 5.83 2.17 6.00 2.42 3.00 2.42

Ranks 1 3 7 2 5.5 4 5.5

Table 6.7: The best test set accuracy (in %) of αRSSE, Rotation Forest (RotF), Random Subspace (RandS),

Random Forest (RandF), Adaboost, bagging and MultiBoostAB (Multi) using average results of 30 different runs

on Information Gain.

Dataset αRSSE RotF RandS RandF Adaboost Bagging Multi

Breast Cancer 85.15 79.39 77.47 83.94 79.49 80.10 79.80

Central Nervous 79.17 76.50 73.50 80.00 75.67 76.17 76.00

Colon Tumor 86.98 84.76 82.54 84.44 82.70 82.54 82.38

Lung Cancer 99.34 99.34 94.75 99.34 97.76 97.16 97.81

Ovarian 99.25 99.76 98.00 98.86 97.73 97.88 97.73

Prostate 93.77 93.48 91.74 93.62 91.09 92.32 90.80

Average Ranks 6.50 5.17 2.08 5.83 2.58 3.42 2.42

Ranks 1 3 7 2 5 4 6
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Methods

Table 6.8: The best test set accuracy (in %) of αRSSE, Rotation Forest (RotF), Random Subspace (RandS),

Random Forest (RandF), Adaboost, bagging and MultiBoostAB (Multi) using average results of 30 different runs

on Relief. Average Ranks stands for Friedman average ranks and Ranks stands for Friendam ranks.

Dataset αRSSE RotF RandS RandF Adaboost Bagging Multi

Breast Cancer 80.20 79.19 72.42 78.18 73.74 74.85 73.23

Central Nervous 76.00 75.50 72.17 76.00 74.00 72.00 73.33

Colon Tumor 83.65 84.76 80.63 83.33 79.37 83.17 79.68

Lung Cancer 99.34 99.23 94.75 98.91 97.43 96.61 97.49

Ovarian 98.43 99.37 98.04 98.90 97.61 97.69 97.61

Prostate 89.13 93.33 91.67 93.62 93.41 89.71 93.26

Average Ranks 5.42 6.00 2.33 5.75 3.08 2.67 2.75

Ranks 3 1 7 2 4 6 5

Table 6.9: The best test set accuracy (in %) of αRSSE, Rotation Forest (RotF), Random Subspace (RandS),

Random Forest (RandF), Adaboost, bagging and MultiBoostAB (Multi) of the three attribute ranking methods.

Average Ranks stands for Friedman average ranks and Ranks stands for Friendam ranks.

Dataset αRSSE RotF RandS RandF Adaboost Bagging Multi

Breast Cancer 84.04 79.60 77.47 83.94 79.49 80.10 79.80

Central Nervous 79.17 76.83 74.33 80.33 76.33 76.17 76.5

Colon Tumor 86.98 86.19 83.49 84.44 82.70 83.65 82.86

Lung Cancer 99.34 99.34 95.03 99.34 97.81 97.21 97.87

Ovarian 99.18 99.76 98.00 98.98 97.73 97.88 97.73

Prostate 94.13 93.70 91.74 94.57 93.41 92.32 93.26

Average Ranks 6.33 5.33 1.83 6.00 2.42 3.00 3.08

Ranks 1 3 7 2 6 5 4
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6. APPLICATION TO GENE EXPRESSION CLASSIFICATION

6.5 Chapter Summary and Future Research

In this chapter, we used six gene expression datasets to evaluate the proposed classifiers.

We showed that αRSC performs as good as various popular classifiers using three ranking

methods. We also showed that αRSSE performs as good as Rotation Forest and Random

Forest, and better than Random Subspace.
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Chapter 7

Conclusion

7.1 Main Investigations and Findings of this Thesis

This thesis evaluated the sphere cover in supervised learning. In the first part of our investiga-

tion, we randomised covers produced by a sphere cover and introduced a simple classifier which

we called αRSC. We studied the relationships between classification accuracy and pruning

parameter. We used various benchmark datasets in order to assess the classification accuracy

of αRSC classifier. We found that searching for the best pruning value produced classification

accuracy that are similar to those of K-NN. In order to understand the generalization error of

the Randomized Sphere Cover classifier, we used bias/variance decomposition.

In particular, we studied the αRSC classifier using the compression scheme. The results

produced from this study shows an intrinsic relationships between training accuracy, com-

pression set, and some other specific information about the classifier. These three factors are

combined in a PAC compression bound to estimate the lowest generalization error in relation

to the pruning parameter α. The compression scheme study prompted us to investigate other

methods that produce the smallest compression set. We used a Gaussian kernel function with

the αRSC classifier. We used two datasets to evaluate the proposed method. The results

showed a smaller compression set may be produced using a kernel method.

Next, we introduced an ensemble method for the αRSC classifier. Two issues are discussed

for this inquiry. First, what is the best method that randomize (perturb) covers while keeping

accurate classifiers (αRSE)? Second, what is the best way to further randomise classifiers using

an ensemble method (αβRSE)? We used various benchmark datasets in order to evaluate the

classification accuracy of the proposed ensembles. We compared the results to those of known
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7. CONCLUSION

ensemble methods. We continued with the bias/variance analysis in order to compare the

results with those of a single Randomized Sphere Cover classifier. The bias/variance results

showed that the proposed ensemble method reduces mainly the variance.

Finally, we introduced a Subspace Randomized Sphere Cover ensemble (αRSSE). The

ensemble builds covers using random subsets of attributes. We used twenty five datasets in

order to evaluate the proposed subspace method. We showed that the classification accuracies

of our subspace method are competitive with those of Random Forest and Rotation Forest. We

also found the classification accuracies of the proposed subspace method are superior to those

of Bagging, Adaboost and Random Subspace. We showed the bias/variance decomposition of

the error and made a comparative analysis with a single Randomized Sphere Cover classifier

and our ensemble method. We showed that bias and unbiased variance was the main reason

for the overall reduction in classification error of αRSSE.

In order to verify the good performance of our proposed classifiers, we used six real gene

expression datasets. We used three attribute ranking methods on these gene expression dataset

in order to assess the classifiers proposed in this thesis. We showed that the αRSC classifier

produced results similar to those of K-NN and Naive Bayes Trees. We showed that our classier

shows consistent results over the three ranking methods while producing high classification

accuracy in comparison with other classifiers. We also showed that the αRSSE classifier

produced results similar to those of Rotation Forest and Random Forest. We showed that our

ensemble method shows consistent results over the three ranking methods while producing

high classification accuracy in comparison with other ensemble methods.

7.2 Limitations of this Thesis

In Chapter 3, we produced no comparative study that includes the bias/variance decompo-

sition. It would have been interesting to employ a direct comparison using bias/variance

decomposition with other classification algorithms, for instance, nearest neighbour classifier

and decision trees. In Chapter 4, we discussed the limitations of the existing sample com-

pression bounds. However, we investigated a simple way to represent the message string (the

added information of a classifier). Searching a better way that represent the added information

might give much tighter bound. In Chapter 5, the limitations consists of lack of comparisons

with ensemble methods that use base classifiers other than decision trees. Indeed, a compar-

ison with ensemble methods that employ Nearest Neighbour, Neural Networks and SVM as
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7.3 Summary of Contributions

base classifiers would have given us a better evaluation. In addition, other sampling method

could have been used based on the margins of examples and some diversity measures. Indeed,

diversity measures may have helped in selecting the most diverse classifiers for the ensemble.

In Chapter 6, we only used the classification accuracy on gene expression datasets for the

comparisons. Receiver Operating Characteristic (ROC) gives better performance evaluation

for medical datasets.

7.3 Summary of Contributions

• Chapter 3: We proposed a Randomized Sphere Cover Classifier using a single regulariza-

tion parameter. We investigated its classification performance and made a comparison

with several known classifiers. We used the bias/variance decomposition in order to

analyze the generalization error of the proposed classifier.

• Chapter 4: We investigated the Randomized Sphere Cover Classifier using the compres-

sion scheme, and proposed a new method for generating covers using the kernel trick.

• Chapter 5: We proposed an ensemble of Randomized Sphere Cover Classifier taking into

consideration the geometrical property of the base classifier. We used thirty dataset to

evaluate the ensemble classification accuracy and compared the results to those of known

ensemble methods. We compared the bias/variance decomposition results to those of a

single Randomized Sphere Cover Classifier. We proposed an ensemble build in the sub-

spaces using the Randomized Sphere Cover Classifier. We investigated the classification

accuracy of the proposed subspace ensemble on real gene expression datasets. We stud-

ied the bias/variance decomposition in order to make a comparison with the previous

proposed classifiers.

• Chapter 6: Finally, we used three attribute ranking methods on six gene expression

datasets in order to evaluate and compare the classifiers proposed in this thesis with

other well known classifiers and ensemble methods.

7.4 Future Considerations

For the ensemble methods produced we used the majority vote. Other combination methods

showed to work better than majority vote and may improve our results. We used several
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7. CONCLUSION

diversity measures during the course of this research with the ensemble proposed in Chapter

5. In future research diversity measures will be employed to select base classifier according

to their dissimilarity with other members of the ensemble. We would have liked to compare

αRSSE results with those of FASBIR and SFS which we will be left for future research.
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