
NMR-Studies of multi component solids

Author:

Frederik Klama

Supervisor:

Dr. Nigel Clayden

M.Sc. by Research

University of East Anglia
School of Chemistry and Pharmacy

November 2010

©2010 Frederik Klama

The copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise

that its copyright rests with the author and that no quotation from the thesis, nor any information derived

therefrom, may be published without the author’s prior, written consent.

Abstract: Particle size determination through relaxation time measurements by

Inversion Recovery, Saturation Recovery and Spin-lock measurements using Etravirine

and Felodipin as samples. 31P and 13C CP-MAS studies of InP nanoparticles using

cross-polarisation dynamics to help with structure determination. TLM diffusion

simulation as a method to simulate spin-diffusion systems and comparison of this

simulation system to an analytical solution and measured data of such systems.

Spin-diffusion Experiments combining spin- and solid-echo with spin-diffusion pulse

sequences.

4

Contents

1 Introduction 11

2 NMR Methods 13

2.1 Measuring methods for T1 and T1ρ . 13

2.1.1 Spin relaxation and domain size . 13

2.1.2 Inversion Recovery . 16

2.1.3 Saturation Recovery . 17

2.1.4 T1ρ Spin-lock . 17

2.2 Echo and Spin Diffusion Pulse Sequences . 18

2.2.1 Echo Pulse Sequences . 18

2.2.2 Spin Diffusion Pulse Sequence . 19

2.2.3 Pulse Sequence for Spin Diffusion with Spin-Echo 19

2.3 High resolution Solid-Sate NMR . 20

2.3.1 Magic Angle Spinning . 20

2.3.2 Cross polarization . 22

3 InP Nanoparticles 25

3.1 Introduction . 25

3.2 Samples . 25

3.3 Results . 26

3.3.1 Surface passivation with zinc carboxylates 26

3.3.2 Fatty acid concentration and its influence on the particles 27

3.3.3 Fatty amine concentration and its influence on the particles 27

3.4 Spectra . 27

3.4.1 31P spectra of InP Nanoparticles without added zinc 27

3.4.2 31P spectra of InP Nanoparticles with added zinc 29

3.4.3 31P spectra of ZnP particles . 30

3.4.4 Spectra of InPZn nanoparticles with fatty amine 31

3.5 Conclusion . 32

3.5.1 Phosphorus-zinc bonding and its implication on 31P-NMR 32

4 Pharmaceuticals 35

4.1 Etravirine . 35

4.1.1 Samples . 35

4.1.2 Results . 36

4.2 Felodipin . 38

5

4.2.1 Samples . 38

4.2.2 Results . 39

4.2.3 Spectra . 40

5 TLM Model 47

5.1 Introduction . 47

5.2 Theory . 47

5.2.1 The TLM algorithm for a one dimensional system 48

5.2.2 Boundaries . 50

5.2.3 Inputs . 52

5.2.4 Going to the second and third dimension 53

5.3 Effects of different Parameters on simulated output 57

5.3.1 Dimensionality . 57

5.3.2 Different Box Sizes . 58

5.3.3 Differences between Link-Line and Link-Resistor simulations 59

5.3.4 Simulation of different geometric shapes 59

5.3.5 Comparing the Simulation Results with Analytical Solutions 61

5.4 Experimental . 68

5.4.1 Extracting the magnetization components from the FID 69

5.4.2 Experimental complications with the real-life samples 70

5.4.3 Plotting the amplitudes against diffusion time 71

5.5 Comparison between provided Spin Diffusion data

and simulations . 72

5.6 Possible further studies . 73

A Bibliography 75

B Data Fitting 79

B.1 Least Squares Method . 79

B.1.1 Least Squares . 79

B.1.2 Gaussian Elimination . 80

B.1.3 Shift-cutting . 82

B.1.4 Marquardt parameter . 82

B.2 Simplex Algorithm . 83

B.2.1 The Simplex . 83

B.2.2 How to construct the simplex for the Simplex Algorithm 83

B.3 Regression Analysis . 85

C Software 87

C.1 Software capabilities and limitations . 87

C.1.1 Choice of programming languages . 87

C.1.2 Curve Fitting . 87

C.1.3 TLM Simulator . 87

C.1.4 TLM helper tools . 88

C.2 Software usage . 89

C.2.1 TLM Simulator . 89

6

D Floating Point Accuracy Problems 91

D.1 Introduction . 91

D.2 Floating Point and Precision . 92

D.3 Rounding and Accuracy Problems . 93

D.4 Arbitrary-Precision Arithmetic . 95

D.5 Relevance to this work . 96

E Simulation Parameters 97

F Acquisition Data 103

G Source Code 113

G.1 Line Fitting . 113

G.1.1 OptSimp.m . 113

G.1.2 SpinDiff.m . 115

G.2 TLM-Simulator . 116

G.2.1 TLM-Sim.c . 116

G.2.2 common.h . 121

G.2.3 StringTools.h . 122

G.2.4 StringTools.c . 123

G.2.5 dataStruct.h . 124

G.2.6 dataStruct.c . 125

G.2.7 fillBoxMag.h . 127

G.2.8 fillBoxMag.c . 128

G.2.9 output.h . 130

G.2.10 output.c . 131

G.2.11 parser.h . 137

G.2.12 parser.c . 137

G.2.13 worker.h . 141

G.2.14 worker.c . 143

G.2.15 Makefile . 175

G.3 TLM helper tools . 175

G.3.1 table2conf.pl . 175

G.3.2 confGen.pl . 180

7

Acknowledgment

I would like to thank my supervisor Dr. Nigel J. Clayden for taking me

in as a Master student, for helping me with my thesis and administrative

difficulties encountered during this time; my mother Manuela Klama for

finding the opportunity to do the Master by Research in Norwich and

my girlfriend Sandra Kröger for encouraging me, helping me through

difficult parts of writing this thesis and for proofreading.

I would also like to thank the following people for their various con-

tributions to this thesis and the work it is about: Simona Chessa, Sheng

Qi, Shu Xu, Prof. Dr. Claudia Schmidt.

PLACEHOLDER

Chapter 1: Introduction 11

Chapter 1

Introduction

As part of this thesis several different experiments were performed for several

different groups within the Department of Chemistry and Pharmacy. Different

NMR Methods were applied to these tasks.

All NMR Measurements were taken at the University of East Anglia using a

Bruker NMR spectrometer with a proton frequency of 300 MHz using a 4 mm

double resonance MAS probe. The probes proton channel is capable of frequen-

cies between 289.67 MHz and 309.333 MHz whereas the second channel has three

settings each with a different frequency range and intended nucleus. The fre-

quency range of the low-setting is 28.813 MHz – 37.733 MHz with 15N as the

intended nucleus. The frequency range of the medium-setting is 41.270 MHz –

107.493MHz with 13C as the intended nucleus. Lastly the frequency range of the

high-setting is 51.58 MHz – 134.76 MHz with 31P as the intended nucleus.

As part of this thesis the author worked on three different projects. The

author worked with InP nanoparticles prepared by Shu Xu to see if insights into

the makeup of the particles could be gained by using NMR Techniques. He

also worked with Sheng Qi to use NMR to determine the size of crystallites in

pharmaceutical samples. The third project discussed in this work is the use of

Transmission-Line-Matrix Modeling to simulate spin-diffusion which was done

alone with some help by Dr. Clayden.

In the course of this thesis several different NMR Techniques were used. 13C

and 31P CP-MAS [1], which is actually the combination of two techniques, Cross

Polarization and Magic-Angle-Spinning.

Magic-Angle-Spinning is a technique where the sample is spun at a specific

angle to the magnetic field to reduce the problems due to molecular orientation

by averaging the orientation of the molecules over time. However spinning a solid

sample is usually only possible when it is in the form of a powder since even a

minute unbalance in the rotor will lead to tumbling.

Cross-Polarization is used to overcome the low abundance and receptivity of

certain nuclei (such as 13C by exiting an abundant and highly receptive nuclei

(such as protons) and then transferring the magnetization to the nuclei to be

observed. This is done by sending two pulses simultaneously to the frequencies of

the two nuclei and setting the amplitude of these pulses so that the Hartmann-

12

Hahn condition is met. This techniques has the advantage of a shorter delay

between experiments, a stronger signal to better magnetization and thus faster

experiment times. However since the amount of magnetization transferred is

proportional to the distance to the excited nucleus, peaks from nuclei that are

further away from the excited nuclei are weaker. This effect can be used to

estimate the average distance of nuclei to the protons in the sample for example.

The echo pulse sequences Spin-Echo and Solid-Echo [1] were used to reduce

the effects of dipole-dipole as well as quadrupole couplings and to be able to

record a whole FID if part of it has been cut off by the receiver dead time.

Inversion- [2] and Saturation-Recovery were used to measure T1 times and

Spin-Lock experiments [2] were used to measure T1ρ-times. Both the T1- and

T1ρ-times were used to determine crystallite sizes in pharmaceutical samples.

Spin-Diffusion experiments were conducted to try and measure the diffusion

of magnetization from one polymer phase into another. However either because

the sample behaves slightly different in a 300MHz-Field than in a 200MHz-

Field, or because the sample was degraded when the measurements were made,

no quantifiable spin-diffusion could be observed by the author.

Several 13C and 31P cross-polarization MAS-NMR spectra, as well as regular
31P (with and without decoupling) were recorded in order to help determine the

structure of several samples of InP nanoparticles.

T1 and T1ρ proton measurements were made of the preprepared hot melt

extrusions of Felodipin and the polymer Eudragit. The measurements were used

to get some idea of the phases present in the hot melt extrusions.

As part of the spin-diffusion simulation a model usually used to describe dif-

fusion of electrical charge in resistor-capacitor networks is used to simulate spin-

diffusion [3]. To do this, a simulation software was written by the author to

facilitate the simulation of spin diffusion using the Transmission-Line-Matrix - or

in short TLM-Model.

It was tried (although not very successfully) to get some spin-diffusion data

using polymer samples, provided by Dr. Clayden, to be able to compare the

simulations to real life data. However the separation of the signal of the polymer

into two signals made this task very difficult and although it can be concluded

from the spectra that some form of spin diffusion took place, it was not possible

to prepare the spectra for numerical analysis. Some old spin-diffusion data was

provided by Dr. Clayden to compare the simulations against.

Since only data from one spin-diffusion experiment was available for compari-

son, the simulations were compared to an analytical solution[4] of a spin diffusion

system.

Chapter 2: NMR Methods 13

Chapter 2

NMR Methods

2.1 Measuring methods for T1 and T1ρ

2.1.1 Spin relaxation and domain size

Spin-lattice relaxation time

The nuclei of the sample are held within a lattice structure, and are in constant

vibrational and rotational motion. The complex magnetic field cause by this

thermal motion is called the lattice field. When the lattice fields, of two nuclei

in different energy states, interact, the energy is distributed among them. This

effect causes the energy, which was gained from the RF pulse, to be dissipated as

increased rotation and vibration increasing the temperature of the sample. The

T1 time is a measure of how fast this process occurs.

The longitudal component of the magnetization vector recovers towards the

equilibrium state as a result of the dissipation of the magnetic energy. T1 de-

scribes the time it takes for the FID signal to recover to 1 − e−1 (≈ 63.21%) of

its maximum value. The longitudal component of the magnetization vector is

described in equation 2.1.

Mz(t) = Mz,eq(1 − e
− t

T1) (2.1)

The value of T1 is dependent on the gyromagnetic ratio γ of the nucleus in

question and the mobility of the lattice. As the mobility of the lattice increases,

the value of T1 decreases1. The high values of T1 sometimes encountered in

solid-state NMR can be a problem, due to the long time it takes for the sample

to return to the equilibrium magnetization.

Whereas in liquids cross magnetization can lead to nuclear Overhauser en-

hancements (NOEs) or magnetization transfers, this plays hardly any role in

solids since it masked by proton spin-diffusion which is a much more efficient

energy transfer method among protons in solids[5].

In heterogeneous systems one can use the relaxation times of the different

phases to estimate their size[6][7][8]. If one assumes that the process of exchange

1Except for highly mobile samples where the T1 time can actually increase with mobility

14 2.1: Measuring methods for T1 and T1ρ

does not occur by matter diffusion, (a valid assumption in solid state) but only

by spin diffusion, the following equation is valid[8]:

2
√

2
A2

π2D
|∆γ| > 1 (2.2)

A represents the smallest dimension over which diffusion takes place, D represents

the spin diffusion coefficient and |∆γ| is calculated using the relaxation rates of

the separated phases:

∆γ =
1

TA

− 1

TB

(2.3)

Spin-spin relaxation time

The spin-spin relaxation time, or T2, is a measure of how fast the magnitude of

the transversal part Mxy of the magnetization vector decays. It is the time it

takes for Mxy to reach 1
e

(≈ 36.79%) of its initial value after flipping into the

transversal plane. Equation 2.4 describes the relaxation of Mxy over time. When

dealing with liquids or solids with some small internal molecular motions, we use

the following equation to describe T2

Mxy(t) = Mxy(0)e
− t

T2 (2.4)

T2 is generally faster than T1 relaxation. It corresponds to the decoherence

of the transverse nuclear spin magnetization. Since the local magnetic field is

not constant throughout the sample, the instantaneous precession frequency of

the spins differs slightly. Thus the initial phase coherence of the nuclear spins

is lost and eventually the phases shift so much that there is no more net xy-

magnetization.

This effect is reduced by high mobility, due to the fact that the environment

of each single nucleus changes quickly as it moves randomly through the sample.

Thus the nuclei have a very similar average precession rate over time. In the

case of a solid, like used for this work, the nuclei are unable to move and thus

dephase much more quickly. The fact that the precession frequency is already

different for differently oriented crystallites makes transverse relaxation a much

bigger limiting factor in solid-state NMR than it is in liquid-state NMR. To

overcome these problems, which are typical for solid-state NMR, refocusing echo

pulse sequences can be used. This is discussed in more detail in chapter 2.2.1.

Equation 2.4 does not apply in such crystalline solids. In a solid the relaxation

is not defined by a single exponential process T2. Various functional forms can

be used to describe the lineshape and hence the T2 time. In solids the following

equations are most commonly used:

Gaussian function: M(t) = e−
1
2
τ2t2 (2.5)

Abragam function: M(t) =
sin(θt)

θt
e−

1
2
τ2t2 (2.6)

Pakes doublet: M(t) = cos(θt) e−
1
2
τ2t2 (2.7)

Chapter 2: NMR Methods 15

It is obvious that although the decay itself is not exponential anymore, it can

still be defined using a single time constant. These equations are used in chapter 5

to describe the FIDs generated by the spin-diffusion experiments.

Effects of field inhomogeneities

In an idealized system the field B0 is perfectly homogeneous. In reality however

the magnetic field is never perfect. By shimming the magnet it is possible to

compensate for inhomogeneities to a certain degree, but it is never possible to

get a perfectly homogeneous field all over the sample. This effect adds to the

fluctuations in the local field for the spins resulting in even stronger dephasing.

The relaxation time taking this into account as well is T∗
2 and is usually signifi-

cantly larger than T2. The relation between T∗
2 and T2 is described in equation

2.8.

1

T ∗
2

=
1

T2

+
1

Tinhom

=
1

T2

+ γ∆B0 (2.8)

MAS compensates for this partially by physically rotating the whole sample

and thus averaging the magnetic field inhomogeneities over space. Since the local

environment of the nuclei is not changed though, the T2 values in liquid-state

NMR are still higher.

Spin Temperature

In a crystal without any net motion, there is a tight coupling between the nuclear

spins. This means that the whole system of spins has to be taken into account.

To do this, one usually considers the spin temperature TS which is defined as:

p+

p−
= exp

(
+
γ~H
2kTS

)
[9] (2.9)

The relationship between spin temperature and magnetization is easily de-

scribed as

MZ =
CH

TS

(2.10)

MZ = Nγ~
∑
m

pmm [9] (2.11)

in which we sum over all energy levels, which are denoted by m.

When introducing an RF-pulse to this system, we can see that after a 90◦-

pulse, the spin temperature is infinite. We can even reach negative temperatures

when we apply a 180◦-pulse. Note however that a negative spin-temperature is

actually hotter than an infinite spin-temperature.

One can define T1 in terms of the time it takes for the spin-temperature to

cool down to the lattice temperature:

dMZ

dt
=
M0 −MZ

T1

[9] (2.12)

where M0 denotes the spin-temperature at equilibrium.

16 2.1: Measuring methods for T1 and T1ρ

However directly after an RF-pulse, the system has transverse magnetiza-

tion, which are incompatible with the description of the spin system by a spin-

temperature. While these transverse components of the magnetization exist, this

description of spin-temperature does not properly describe the state the system

is in.

The lifetime of this transverse magnetization is loosely defined at T2.

Relaxation in the rotating frame

Whereas T1 and T2 are relaxations in the laboratory frame when only the field

B0 is present. There is another relaxation when considering the field B1 which is

present during the RF-pulse.

The spin-lattice relaxation time in the rotating frame, or T1ρ, is the time the

longitudal magnetization relative to the B1 field takes to relax. Small values of

T1ρ are very problematic, since T1ρ always has to be larger than the length of the

pulse. Otherwise the pulse is ineffective, because the magnetization has decayed

before it is turned into the xy-plane.

2.1.2 Inversion Recovery

There are actually quite a few methods to measure T1. One of the simplest to

understand is the inversion recovery method [2, ch 12.1]. Here the time it takes to

recover from a full spin inversion is measured. To do this a 180◦-pulse is applied,

and after an increasing delay a 90◦-pulse is used to acquire the signal. A visual

representation of the pulse program can be seen in figure 2.1.

τ

90
◦

180
◦

Figure 2.1: Inversion Recovery Pulse Sequence

To estimate T1 from the data generated by this kind of experiment, it is

necessary to make several measurements with different delays. The amplitude of

the signal is a function of the delay τ .

a(τ) =
1

2
B
(
1 − 2e

− τ
T1

)
(2.13)

Since all we are interested in is T1, it is not absolutely necessary to know the

factor B to determine T1. Because only the amplitude of the signal is described

by equation 2.13 it is dimensionless.

B =
~γB0

kBT
(2.14)

For a regular NMR experiment, B is a constant factor called the Boltzmann

factor that is described by equation 2.14.

Chapter 2: NMR Methods 17

The acquired signal is fitted using equation 2.13, which then yields T1. It

should be noted that equation 2.15 can be used to quickly estimate the value of

T1 for simple systems.

τ ≈ T1 ln 2 for S = 0 (2.15)

This can be useful to get a quick estimate of T1 using a calculator. It is

inherently inaccurate since it only uses a single data point and thus does not

benefit of averaging out signal noise like a fit using several data points does.

The only problem with the inversion-recovery method is that a sufficiently long

recycle delay has to be chosen to make sure that the sample is fully recovered

before the next step of the experiment. This may lead to very long experiment

times when the value of T1 is expected to be large, or unusable data when the

recycle delay chosen is too small.

2.1.3 Saturation Recovery

Another, quicker, method to determine T1-times is saturation-recovery. In this

sequence multiple 90◦ pulses are applied with decreasing delays between the pulses

to dephase and saturate the spins. A pulse program for such an experiment might

look like the example in Figure 2.2. Nevertheless care must be taken since a too

regular pulse sequence often does not properly saturate the spins.

τ

90
◦

90
◦

90
◦

90
◦

90
◦

90
◦

90
◦

Figure 2.2: Alternate gradient free Saturation Recovery Pulse Sequence

To calculate the T1-value from data recorded by saturation recovery, a slightly

different function must be used to fit the data:

S = A · e−
τ

T1 (2.16)

Where the factor A represents the maximum amplitude.

2.1.4 T1ρ Spin-lock

τ

90
◦
X Y

Figure 2.3: T1ρ Pulse Sequence

To determine the T1ρ [10], a pulse sequence in which the spins are spin-locked

for a variable time (τ), is used. The spin-lock is achieved using a low power pulse

phase shifted by 90◦ against the exciting pulse. So when the spins are excited by

18 2.2: Echo and Spin Diffusion Pulse Sequences

a pulse along the x-plane (as in Figure 2.3), a low power pulse along the y-plane

is used to spin-lock them.

It is also possible to use a spin-echo pulse sequence to determine T1ρ [2, ch

12.2]. However all measurements of T1ρ in this work were done using the spin-lock

method [2, ch 12.3].

To fit this data to determine T1ρ, a function similar to Equation 2.16 is used:

S = A · e−
τ

T1ρ (2.17)

2.2 Echo and Spin Diffusion Pulse Sequences

2.2.1 Echo Pulse Sequences

In solid state NMR broad signals are encountered quite often. Since the spins of

such broad signals dephase very quickly, there is only a short time for observation.

In these cases, the dead time of the receiver can become a problem. However an

echo pulse sequence can be used to rephase the spins to overcome this problem.

The dead time is necessary, since the power of a pulse is approximately 109

to 1012 times stronger than the signal being observed. The pulse, or the residual

signal from the pulse ringing down in the coil, could easily destroy the sensitive

receiver circuits. Usually the receiver circuit is only put onto the line a short time

(about 1µs) after the last pulse.

τ

90
◦

180
◦

(a) Spin Echo

τ

90
◦

X
90

◦

Y

(b) Solid Echo

Figure 2.4: Echo sequences

The solution to the problem of short FID, due to broad spectral lines, is to

use an echo pulse sequence [1, pp110–113]. One such echo pulse sequence is the

spin-echo (or hahn-echo) which consists of a simple 90◦ pulse followed by a 180◦

pulse (see Figure 2.4-a). The two pulses are separated by a time τ 2. After another

time τ coming after the average time of the 180◦ pulse, the normal FID starts.

But in the time between a mirror image of the normal FID can be seen.

The spin-echo sequence is most useful where spectral line broadening is due to

chemical shift anisotropy or heteronuclear dipole-dipole coupling. Another echo

sequence, called the solid-echo sequence (or quadrupole-echo) differs only in the

length of the second pulse. The pulse length is shorter, so that it is a 90◦ pulse

instead a 180◦ pulse (see Figure 2.4-b). Here the phase of the second pulse, which

has to be perpendicular to the first, is more important than in the spin-echo

sequence. The solid-echo sequence is most useful where spectral line broadening

is due to quadrupole coupling or homonuclear dipole-dipole coupling.

2Notice that the middle of the pulse, not the edges, are used as a time reference. This is the average time of

the pulse

Chapter 2: NMR Methods 19

2.2.2 Spin Diffusion Pulse Sequence

An ideal spin diffusion sequence would just excite the spins of one phase of the

sample. However this is usually not possible. Therefore a way to excite just one

of the phases is needed. In this work, the difference in relaxation time of the two

phases is exploited to select one of the phases.

τselect τmix

X -X X

Figure 2.5: Simple Spin Diffusion Pulse Sequence

In the real world it is not possible to directly excite one phase of the sample

while leaving the other untouched. However, one of the phases usually decays

significantly faster than the other. With a little timing it is possible to have one

of the phases decayed close to equilibrium, while the other still has significant

magnetization. The pulse sequence to do this is called the Goldman-Shen pulse

sequence [11].

The aim of the experiment was do characterize the size of the domains by

measuring the spin diffusion [12]. To do this a spin diffusion pulse sequence (as

depicted in Figure 2.5) was used. After initial magnetization, a selection delay

τselect, which allows the phase with the shorter T1-time to decay, the magneti-

zation is stored along the z-axis using a 90◦ pulse (refer to Figure 2.5). After a

mixing time τmix, during which spin diffusion is allowed to occur, the magnetiza-

tion is brought back into the detection plane by another 90◦ pulse.

The experiment is repeated several times with increasing τmix. The short lived

phase should reappear with increasing strength as τmix increases.

2.2.3 Pulse Sequence for Spin Diffusion with Spin-Echo

When dealing with solid samples, the spin diffusion pulse sequence can be im-

proved by introducing a spin-echo at the end of the sequence (see Figure 2.6).

The added pulse refocuses the magnetization and creates an echo of the original

FID which was partially obscured by the receiver dead-time, thus enabling the

operator to record the full FID. Using this technique the amplitudes, calculated

by the fitting of the decay functions to the data, will be much more accurate.

τselect τmix τecho

X -X X 180
◦

Figure 2.6: Spin diffusion pulse sequence with spin-echo

20 2.3: High resolution Solid-Sate NMR

2.3 High resolution Solid-Sate NMR

Compared to NMR with liquids, solid-state NMR is faced with many problems

that don’t even exist when dealing with liquid samples. Most of these problems

arise from the fact that most samples are analyzed in a powdered form. The

crystallites that make up the powder are oriented randomly over space. Since

chemical shift, dipole-dipole coupling and quadrupole coupling are dependent

on crystallite orientation, a typical powder spectrum is the result. A powder

spectrum usually consists of very weak and very broad signals. Since the signals

are usually so broad that they overlap, powder spectra are usually very difficult

or just about impossible to interpret.

This is why several methods have to be used to overcome these problems.

2.3.1 Magic Angle Spinning

Magic Angle Spinning (or MAS) is a method in which the powdered sample is

spun at high speed on an axis with an angle of ∼ 54.74◦ to the main magnetic field.

It reduces the effects described earlier, since the orientation of the crystallites are

effectively averaged if the sample is spun fast enough.

In liquid phase the molecular motion, which is very fast in an NMR time

scale, effectively averages the molecular orientation over time. Thus every nucleus

is equivalent to one in the same position in every molecule in the sample and

therefore resonates at the same frequency.

The dipolar coupling in a strong magnetic field depends on the angle of the

inter-nuclear vector to the magnetic field as described in formula 2.18.

D ∝ 3 cos2 θ − 1 (2.18)

This means that D will become zero when cos2 θ = 1
3
, which occurs exactly at

a value of θ = cos−1 1√
3
≃ 54.74◦.

applied field

B0

θR

spinning axis

principal z-axis of
shielding tensor

α

β

Figure 2.7: MAS coordinate space [1, p61]

Referring to figure 2.7 we see that, for the shielding tensor at an angle β to the

rotor axis, being rotated at an angle θR relative to a magnetic field B0, the angle

of the shielding tensor relative to the magnetic field (α) will vary between θR −β

Chapter 2: NMR Methods 21

and θR + β. Over time this averages as θR. This means that when the rotation

speed is fast relative to the time scales of the experiment, the broadening effect

of dipolar coupling is effectively eliminated.

Figure 2.8: Rotational side-bands at different rotation speeds [1, p63]

However usually it is not possible to spin fast enough for a complete averaging

of the shielding tensors. The result are spinning side bands. Spinning side bands

can occur at fpeak ± n · frotation, and are generally weaker the higher the rotation

frequency of the rotor is. Examples of spinning side bands at different rotational

frequencies can be seen in figure 2.8. One has to remember that the strongest

signal is not necessarily the main signal, but may be a spinning side band. The

only sure way to discriminate between the signal and its spinning side bands in

a simple MAS spectrum is to compare different spectra recorded with different

rotational speeds. The peaks that appear in both spectra are the real signals,

while the spinning side bands will have shifted.

The TOSS (Total Suppression of Sidebands) [1, pp67–72] can be used to sup-

press the sidebands. A series of precisely timed 180◦ pulses are applied prior

to acquisition. These 180◦ pulses effectively randomizes the phases of the side-

band magnetization from the different crystallite orientations removing or at least

reducing the amplitude of the spinning-sidebands.

A very elegant method of sideband removal is the method known as 2D-PASS

(Phase Adjusted Spinning S idebands) [1, pp143–145]. After initial magnetization

22 2.3: High resolution Solid-Sate NMR

via a 90◦-pulse, a set of five 180◦-pulses is used to select the order of the spinning-

sideband. The set of five 180◦-pulses is changed in such a way that for each

iteration into the second dimension a different order of side bands is selected.

The result is a set of spectra each recording a different sideband order. The

spectrum of the order 0 is the spectrum with the sidebands completely removed.

2.3.2 Cross polarization

When studying rare nuclei such as 13C, the low natural abundance of the isotope

results in two problems. The most obvious is that only a fraction of all carbon

nuclei can be exited, since most of the carbon nuclei are 12C, resulting in a weak

signal. Secondly the relaxation time of a nucleus is inversely proportional to its

concentration in the sample, resulting in long relaxation times. Both of these

factors combined mean that many acquisitions are needed and the time between

acquisitions has to be quite long. Thus acquiring a 13C-Spectrum can take several

hours or days when done by by direct excitation.

The solution to this problem is cross polarization (often abbreviated with CP).

In a CP-Experiment one uses a highly abundant nucleus in the sample to excite

the target nuclei. To do this the abundant nuclei (protons are often used) are

exited directly using a 90◦-pulse. Then a low power pulse is sent on the proton-

and the carbon-channel. The power of the two pulses is selected in such a way

that the transition energy between the two energy bands is the same for both

nuclei (Hartmann-Hahn condition). This causes the energy to be transferred

from the excited abundant nuclei to the target nuclei.

A typical pulse program to achieve this is shown in diagram 2.9. Notice that

the phase of contact of the pulse is perpendicular to the initial excitation pulse.

The proton decoupling during acquisition is not essential but is often added to

remove the influence of proton coupling.

1
H

X

90◦
X

−Y −Y

contact pulse

decoupling

Figure 2.9: Cross polarization pulse program

At the start of the contact pulse (left hand side in diagram 2.10) the proton

spins are excited and the carbon spins (marked by an X) are in equilibrium. The

proton spins behave as expected and decay towards equilibrium. But since the

Hartmann-Hahn condition is met, the energy is transferred onto the carbon spins

which are excited.

The magnetic field applied during the contact time, B1(
1H) and B1(X) splits

the spins into two energy levels (α∗ and β∗) parallel to the B1-fields. The am-

plitude of the two fields is selected in such a way that ω1(
1H) = ω1(X). This

Chapter 2: NMR Methods 23

is called the Hartmann-Hahn condition and can be described by the following

formula.

γHB1(
1H) = γXB1(X) (2.19)

Since the values of γH and γX are known, it is possible to calculate the relation
B1(1H)
B1(X)

. It is usually not possible to directly set the effective field strength due

to signal loss in the cables and due to imperfect tuning. Thus the attenuation

of the amplifiers for the two channels is usually set to the calculated ratio and

adjusted until a signal maximum is reached. For carbon the sample used to

adjust the signal attenuations to meet the Hartmann-Hahn condition is usually

Adamantane. This highly symmetric molecule only has two different carbon and

hydrogen environments and the molecules are able to rotate even in solid-state,

thus even MAS is not needed.

At the beginning of the pulse sequence the 1H-spins are rotated into the y-

plane by the 90◦-x-pulse. They are then held there by the B1(
1H)-field. Since the

B0-field is much stronger than the B1(
1H)-field, the magnetization slowly decays

towards equilibrium. This means that the spins move from the α∗
H to the β∗

H

energy state to equalize the population in both bands.

Since the Hartmann-Hahn condition is met, the energy gap between the α∗

and β∗ bands is the same for both nuclei. There is a dipolar coupling between the
1H- and the X-nuclei which takes the usual form of the heteronuclear interaction:

ĤHX = −
∑

i

di(3 cos2 θi − 1)ÎH
iz Ŝ

C
z . (2.20)

Here di represents the dipolar coupling constant for the interaction between the
1H- and X-spins. The operator is not affected by transformations in the doubly

rotating coordinate system, since it only contains z-components. Therefore the

dipole-dipole interaction can not change the overall energy of the system. This is

because the energy of the system is defined by the energy levels which are split

by the B1 fields which lie in the x-y-plane.

Since energy as well as angular momentum are conserved, X-spins move from

β∗
X to α∗

X while the 1H-spins decay towards equilibrium from α∗
H to β∗

H . The end

result of this process is the excitation of the X-spins into the x-y-plane.

A ramp on the X-pulse during contact time is often used to reduce the sen-

sitivity of the pulse program against a slightly off Hartmann-Hahn condition.

Thus the signal intensity of the spectrum is less susceptible to slight errors in the

Hartmann-Hahn condition over the course of the experiment.

Since CP-experiments are sensitive to deviations of the rotation angle from the

magic angle, it is recommended to adjust the magic angle using a KBr sample

prior to an experiment.

To set the magic angle one measures 79Br spectra of a KBr sample [1, ch

2.2.4]. If the acquisition frequency is set to the bromine resonance of the KBr,

small peaks on top of the normal simple decaying FID signal. In the frequency

domain spinning side-bands can be seen. To adjust the magic angle to the optimal

setting, one tries to maximize the amount of peaks seen in the FID.

24 2.3: High resolution Solid-Sate NMR

γXB1(X)
= ω1(X)

β∗

X

α∗

X

z

-y

B1(X)

X-spin
magnetisation

β∗

X

α∗

X

z

-y

B1(X)

X-spin
magnetisation

γHB1(
1H)

= ω1(
1H)

β∗

H

α∗

H

z

-y

B1(
1H)

1H-spin
magnetisation

β∗

H

α∗

H

z

-y

B1(
1H)

1H-spin
magnetisation

Figure 2.10: Spins during cross polarization [1, p99]

Chapter 3: InP Nanoparticles 25

Chapter 3

InP Nanoparticles

3.1 Introduction

InP nanoparticles have physical and chemical properties highly dependent on

their surface capping. We study the environment of the phosphorus nuclei using
31P-NMR to determine the amount of surface defects.

31P spectra using a simple 90◦ pulse are used, both with and without high

power proton decoupling. 31P cross polarization spectra using protons as the

abundant nuclei in the organic coating of the particles were recorded. 13C-CP

spectra were also recorded.

The goal was to study the effect of zinc and different ligands on the physical

properties of the InP nanoparticles.

The following chemicals were used in particles synthesis: Octadecene, Stearic

acid, Hexadecylamine, Tris(trimethylsilyl)phosphine, zinc undecylenate, indium

chloride, indium acetate, zinc diethyldithiocarbamate and cyclohexylisothiocyanate.

A common problem when synthesizing InP nanoparticles (especially those pre-

pared in an indium rich environment), is that there are many dangling indium

bonds on the surface of the particles dominating the optical properties. Synthesis

in a phosphorus rich environment reduces these effects, however the size distribu-

tion of the particles gets broader. The zinc, which replaces excess indium atoms,

reduces these surface defects nearly completely.

Please refer to the paper [13] written as part of this work on InP nanoparticles.

3.2 Samples

The InP particles were provided and prepared by Shu Xu. They were prepared in

a wet chemical process with organic stabilizers used for the coordinating environ-

ment for crystal growth. Organic capping ligands consisting of stearic acid and

hexadecylamine coat the particles, providing a proton rich shell which is used in

the cross polarization experiments.

Some of the samples had zinc compounds added during the synthesis, with the

aim of creating a shell of ZnS around a InP particle core.

The samples were analyzed using UV/Vis spectrometry, photoluminescence

26 3.3: Results

spectrometry, mass spectrometry, Fourier-transform infrared spectroscopy and

energy dispersive X-ray spectroscopy as well as 13C and 31P NMR spectrometry.

Only the NMR-spectra were made by the author of this thesis.

The samples were dissolved in chloroform for the optical measurements and

then dried in an oven before the NMR measurements. Since the amount of the

samples was very small, the samples were mixed with zinc oxide before being

placed in a rotor for MAS measurements. The rotor was prepacked with zinc

oxide and after the sample was filled in, it was capped with more zinc oxide.

This was done to make sure that the actual sample is concentrated in the center

of the rotor, where the probe is most sensitive. zinc oxide was chosen, because

neither natural zinc nor Oxygen isotopes interfere with 13C-, 31P- or proton-

NMR. zinc oxide powder is also insoluble in most solvents, making extraction of

the nanoparticles possible if needed. It also has the added benefit of being very

safe to handle, since it is not toxic or poses any other hazard.

The tiny amounts of the samples that were available made it necessary to fill

most of the rotor with zinc oxide powder to get the samples to spin. Since only

about 5 – 30% of the rotor was filled with the sample, signal acquisition was made

quite difficult due to the small amount of sample. For the carbon spectra this

difficulty was made worse by the low natural abundance of 13C. Cross-polarization

as well as many acquisitions, often making an experiment last for 12 – 60 hours,

made it possible to get a reasonable signal to noise ratio.

A detailed description of the synthesis and preperation of the InP-nanoparticles

used in this chapter is detailed in the paper written by Shu Xu[13].

3.3 Results

3.3.1 Surface passivation with zinc carboxylates

The zinc carboxylates were chosen for several useful properties. Their long chains

to support nucleation and growth reaction, a stable valence state so that they

have weak oxidizing and reducing ability and their solubility in the solvents used

and their low toxicity. A low affinity for lattice doping in InP and a low melting

point, below the crystal growth temperature and weak reactivity with phosphorus,

making a reaction with the phosphorus precursors difficult, especially under the

conditions used in the synthesis of InP.

The addition of the zinc carboxylates significantly reduced the amount of de-

fects measured spectrographically. Additionally a shift at the blue end of the

spectrum was observed with increasing zinc concentration, indicating that the

zinc carboxylates are preventing the reaction between the InP surfaces and free

monomers in the solution. Thus high concentrations of zinc carboxylates result in

stable capping layers and prevent crystal growth, while low concentrations only

give incomplete surface capping of the particles surfaces but enable faster particle

growth.

The best ratio of zinc compared to the indium concentration was dependent

on the solvent used in the synthesis and can be 1:1 or 2:1.

Chapter 3: InP Nanoparticles 27

3.3.2 Fatty acid concentration and its influence on the particles

The effect of the concentration of stearic acid was also investigated. The stearic

acid was very effective at fostering nucleation, and caused rapid crystal growth

for several seconds at the beginning of the process. Later in the synthesis the

stearic acid served as a capping agent, slowing crystal growth.

The stearic acid acts as a protic agent, thus accelerating the release of H3P,

which causes the nucleation burst. However, since indium as well as phosphorus

are sensitive to oxidizing agents, the fatty acids will react with the InP and

oxidize the InP nanocrystals to amorphous In2O3 particles over time. Thus the

concentration must be limited, so that all excess stearic acid can be consumed by

the excess trimethylindium and (TMS)3P.

3.3.3 Fatty amine concentration and its influence on the particles

Since hexadecylamine is less reactive than zinc carboxylate and stearic acid, and

only weakly reducing, it can be added over a wider concentration range. Once

the particles are formed, it is very difficult to reduce them with hexadecylamine.

Hexadecylamine slowed crystal growth considerably though. It also lead to diffi-

culties in the growing of ZnS shells on the amine capped InP surfaces, due to its

higher coordination with indium. Thus the best concentration is the minimum

required to give a soluble indium complex. A molar concentration corresponding

to the amount of indium and zinc was shown to be optimal.

3.4 Spectra

3.4.1 31P spectra of InP Nanoparticles without added zinc

The main features in the 31P spectra of the InP nanoparticles are the wide peak

between -100ppm and -300ppm and the three peaks at about 10ppm, 30ppm and

50ppm.

Figure 3.1: 31P CP-spectrum of InP nanoparticles with an In:P ratio of 1:1

Acquisition parameters in table F.1

28 3.4: Spectra

The wide peak centering at about 200ppm can be seen best in the non-CP

spectra (Figures 3.3 and 3.4). They are much weaker in the spectra were cross

polarization was used (Figures 3.1 and 3.2) because this resonance is due to the

phosphorus in the nanoparticle itself. Since there are no protons in the particle

itself, but only on the surface as the shell of the particle, the resonance for the

CP-spectrum only shows the phosphorus close to the shell which is able to receive

the magnetization from the protons.

Figure 3.2: 31P CP-spectrum of InP nanoparticles with an In:P ratio of 1:2

Acquisition parameters in table F.2

There are several possible explanations for the resonances at 10ppm, 30ppm

and 50ppm. One possible explanation is that they are due to phosphorus on the

surface of the particles and that the 10ppm resonance it a phosphorus with one

dangling bond, the 30ppm resonance a phosphorus with two dangling bonds and

the 50ppm resonance one with three dangling bonds. This would explain that

there is a significantly stronger 10ppm signal than 30ppm signal.

Figure 3.3: 31P high-power proton-decoupled spectrum of InP nanoparticles with an In:P ratio

of 1:1

Acquisition parameters in table F.3

If the resonances at 10ppm, 30ppm and 50ppm are from the surface of the par-

Chapter 3: InP Nanoparticles 29

ticles, the phosphorus would be bonded to indium. Since indium is a quadrupolar

nucleus with spin-9
2

it could lead to a widening of the phosphorus signal into a

powder pattern. It is difficult to tell if this is the case, since there are two to

three different signals in close vicinity. So the shape observed could be from

two to three different regular signals partially overlapping, or from two powder

patterns, possibly with a third signal mixed in.

It should be noted that the resonance at approximately 50ppm is weak or

absent in phosphorus rich environments.

Figure 3.4: 31P high-power proton-decoupled spectrum of InP nanoparticles with an In:P ratio

of 1:2

Acquisition parameters in table F.4

To get some more data several CP-experiments with different contact times

were made to get an idea of how far the different phosphorus resonances were

from the protons in the shell.

The result was that all three resonances had a peak roughly at the same

contact time, only the wide resonance between -100ppm and -300ppm had a peak

at much higher contact times, conclusive with the previous interpretation that

this resonance is due to the InP near the surface of the nanoparticle.

3.4.2 31P spectra of InP Nanoparticles with added zinc

The main resonances in the spectra of the InP nanoparticles with added zinc are

basically the same. Only the CP-spectra are shown here, because except for the

stronger wide particle resonance and the higher signal to noise ratio due to the

higher recycling delay, the high-power proton-decoupled spectra are essentially

the same.

One feature that can be noticed most prominently in Figure 3.5 are the two

small peaks at approximately 95ppm and -90ppm. However these are not addi-

tional peaks but spinning sidebands of the 10ppm peak. This has been confirmed

by changing the rotation frequency upon which these two peaks shifted too.

They can also be observed in Figures 3.1 and 3.7 although much less prominent.

Nothing significant was observed when comparing the 31P-spectra of InP nanopar-

ticles with or without added zinc.

30 3.4: Spectra

Figure 3.5: 31P CP-spectrum of InP nanoparticles with added zinc undecylenate with an In:P:Zn

ratio of 1:1:1

Acquisition parameters in table F.5

Figure 3.6: 31P CP-spectrum of InP nanoparticles with added zinc diethyldithiocarbamate with

an In:P:Zn ratio of 1:1:1

Acquisition parameters in table F.6

The low signal to noise ratio in Figure 3.7 is due to the extremely small amount

of sample that was available. It was partially compensated by increasing the

amount of acquisitions.

3.4.3 31P spectra of ZnP particles

The spectrum of the ZnP particles, which were synthesized without any indium

present show the same resonances at approximately 10ppm and 30ppm. A third

resonance at 50ppm might also be present, but is not strong enough to rise sig-

nificantly out of the background noise.

One spinning sideband at approximately -90ppm is clearly visible while the

one at approximately 95ppm can barely be seen.

The theory that the peaks between 10ppm and 60ppm might be due to inter-

action with the quadrupole nucleus indium can be neither confirmed nor denied,

since when taking into account equation 3.4 and plugging in the known values

Chapter 3: InP Nanoparticles 31

Figure 3.7: 31P CP-spectrum of InP nanoparticles with added zinc diethyldithiocarbamate with

an In:P:Zn ratio of 2:1:1

Acquisition parameters in table F.7

Figure 3.8: 31P CP-spectrum of ZnP particles

Acquisition parameters in table F.8

for the quadrupole moment and larmor frequency of indium and zinc, the result-

ing values are of similar magnitude. This would mean that the line widening

due to the interaction with zinc or indium would have approximately the same

magnitude as well.

3.4.4 Spectra of InPZn nanoparticles with fatty amine

Only one sample prepared using the fatty amine synthesis method was investi-

gated by NMR. This sample is a InP nanoparticle with added zinc with a In:P:Zn

ratio of 1:1:1.

In the 31P-spectrum (Figure 3.9) of this sample one difference to the other
31P-spectra of InP nanoparticles can be seen. The three resonances that occurred

at about 10ppm, 30ppm and 50ppm in the other spectra have shifted to the right

and now occur at about -10ppm, 18ppm and 40ppm.

This could be due to the possible different oxidation states of the phosphorus

waste generated during the reaction, or due to the different environment in the

32 3.5: Conclusion

Figure 3.9: 31P CP-spectrum of InP particles with added zinc synthesized using fatty amine

shell around the particles shifting the whole peak if the resonances are from the

surface of the particles.

3.5 Conclusion

The wide signal between -100ppm and -300ppm, which is only observed in the InP

containing samples and which is weaker in the CP-experiments is easily explained

as a resonance resulting from the InP nanoparticle itself. In the CP-experiments

only the outer layer of the actual InP particle is excited by energy transfer from

the surrounding organic coating.

The three signals at approximately 10ppm, 30ppm and 50ppm remain more

difficult to explain with any certainty. It is highly probable that these resonances

are caused by phosphates. But whether these phosphates are from surface oxi-

dization of the InP particle, or from reaction byproducts can not be assessed from

the available data.

If the three resonances are from surface oxidation of the InP particle, they

would probably represent different degrees of oxidation of surface phosphorus.

This theory could be tested by synthesizing an indium phosphate complex and

measuring its chemical shift.

Another possibility would be that some phosphorus environments, bonded to

zinc, are in that region. This can not be the only explanation though, since the

signals also occur in the zinc free samples. In theory it might be possible to

investigate this using NMR.

3.5.1 Phosphorus-zinc bonding and its implication on 31P-NMR

Since when a quadrupolar nucleus such a 67Zn (spin-5
2

[14]) is dipolar coupled

with a spin 1
2

nucleus, the Hamiltonian in the rotating frame is:

Ĥ∗(t) = (ω0,S − ω0,I)Ŝz + Ĥ∗
IS(t) + Ĥ∗

Q(t) (3.1)

In this formula (formula 3.1 [1, p253, (5.26)]) which describes the Hamiltonian

Chapter 3: InP Nanoparticles 33

of a spin-1
2

nucleus (I) dipolar coupled with a quadrupolar nucleus (S). It can

clearly be seen that there is a quadrupolar term in there (Ĥ∗
Q(t)).

Ĥ
(0)
IS = ΛIST̂ IS (3.2)

For the first order Hamiltonian (indicated by (0)) the whole thing reduces to

the pure dipolar coupling (see equation 3.2 [1, p254, (5.28)]). However the second

order Hamiltonian has a clear quadrupolar term as seen in equation 3.3 [1, p254,

(5.30)].

H̄(1) = − iπ

2ω0,I

+2∑
q=−2

ΛQ
2−qΛ

dd
2q

[
T̂Q

2q, T̂
dd
2−q

]
(3.3)

The products of ΛQ
2−qΛ

dd
2q form equation 3.3 can also be expressed as a linear

combination of new spherical tensors of rank 4, 2, and 0 and order zero.

The rotating frame Hamiltonian to the second order for a 1
2
-spin nucleus dipo-

lar coupled with a quadrupolar nucleus is thus dependent on the spatial orienta-

tion. It is expressed by spatial tensors of rank 0, 2 and 4 which have a magnitude

of the order of

d ·
e2qQ

4I(2I−1)

ω0,I

. (3.4)

Here d represents the dipolar coupling constant for the dipolar coupling be-

tween spins I and S. Even if the dipolar coupling is small, if the quadrupole

coupling is large this term is quite non-negligible.

Thus there would be powder patterns with widths of the order described by

equation 3.4.

However nice the theory is, there are many problems with this in reality. First

there is the natural abundance for the two isotopes. 67Zn has an abundance of

only 4.1% [14], meaning that even though 31P has an abundance of 100% [15]

only 4.1% of the bonds between phosphorus and zinc would actually be affected

by this, even though the nuclear quadrupole moment of relatively large with

150 ± 15mb (1.50.15 × 10−29 m2). Thus it is quite unlikely that any significant

line broadening into a powder pattern in the 31P-spectrum would be observed.

If a sample, enriched in 67Zn, would be prepared, one might see such a powder

pattern in the 31P-spectrum. However while the presence of such powder patterns

in the 31P-spectrum would prove bonding to a quadrupolar nucleus, the lack of

powder pattern would not prove lack of phosphorus-zinc bonding.

Even if such a powder pattern was present, it would more probably come from
115In which is a 9

2
-spin nucleus with 95.7% abundance [16] and an even higher

quadrupole moment of 770± 8mb [16]. Even 113In, which makes up the rest, is a
9
2
-spin nucleus with a similar quadrupole moment.

34 3.5: Conclusion

Chapter 4: Pharmaceuticals 35

Chapter 4

Pharmaceuticals

Low resolution solid-state NMR can be useful in understanding the physical state

a sample is in. Since different phases inside a sample redistribute magnetization

at different rates, it is possible to get some insight into these phases by measuring

T1 and T1ρ.

The two drugs that were used in these experiments, Etravirine and Felodipin,

both can not be absorbed well by the human body when they are in a crystalline

state.

Felodipin was mixed with a methacrylate copolymer and hot melt extrudates

were made. Solid-state relaxation measurements were used to evaluate different

ratios of Felodipin and copolymer for their crystallinity.

Etravirine needs to be mixed with hydroxypropyl methylcellulose for it to be

absorbed by the human body. Here too crystallites of Etravirine would decrease

the availability of the drug for the human body, so the different samples were

investigated using relaxation measurements.

4.1 Etravirine

4.1.1 Samples

The aim was to find the proportion of amorphous and crystalline TMC inside

several samples. Pure crystalline TMC-125 (the name used during the exper-

iments for Etravirine) and specially milled, supposedly amorphous, TMC-125

were provided as reference.

Etravirine is an anti-viral drug used in the treatment of HIV. It is a non-

nucleotide reverse transcriptase inhibitor and is marketed by Tibotec, a subsidiary

of Johnson & Johnson.

Proton and 13C-MAS spectra were recorded as well as T1 and T1ρ measure-

ments were conducted on pure Etravirine, hydroxypropyl-methylcellulose and

mixtures of these two.

36 4.1: Etravirine

4.1.2 Results

The samples provided, containing the Etravirine, were numbered. T1, T1ρ and

CP measurements were done for Experiments 9719 – 9721, as well as HPMC and

crystalline and amorphous Etravirine.

Since the data from the proton T1 and T1ρ measurements often had more than

one T1 or T1ρ component, a nonlinear regression was utilized to find the T1 and

T1ρ values for the different components.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (s)

S
ig

n
a
l
In

te
n
si

ty Measured data

Fit to measured data

Component exponents

Error

Figure 4.1: T1 data for Exp9719 with fit and component fit

0 0.01 0.02 0.03 0.04 0.05

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

S
ig

n
a
l
In

te
n
si

ty

Measured data

Fit to measured data

Component exponents

Error

Figure 4.2: T1ρ data for Exp9719 with fit and component fit

In graphs 4.1 and 4.2 an example for a multicomponent T1 and T1ρ fit for the

sample Exp9719 can be seen respectively. Note that the measured data-points

Chapter 4: Pharmaceuticals 37

are represented by dots, the fit by a solid line, the separate components of the fit

by a dashed line, and the error of the fit by a dotted line which can be seen at

the bottom near the axis.

9719 9720 9721 HPMC TMCam TMCcry

Amp. 0.88 1.00 0.78 1.00 0.35 0.49

0.12 0.22 0.65 0.51

Time Const. ×10−1s 8.27 11.8 10.9 8.56 6.05 6.77

9.37 19.2 2.28 18.1

Table 4.1: Fitting results for Etravirine saturation recovery experiments

When fitting curves to this data we expect to see one exponential decay for

each of the phases present in the sample. This would give us the T1 and T1ρ times

for these phases from the time constants of the decay functions and the amount

of each phase from the amplitude of each phase. However since the might be

spin-diffusion occurring between the phases in such a sample, it is possible that

the amplitudes of the curves do not provide phase composition information about

the sample.

It can clearly be seen that there are two components for each the amorphous

(milled) and crystalline Etravirine samples. The longer of the two components

behaves as expected and is significantly longer with 18.1 s for the crystalline

sample compared with the milled sample with 2.28 s T1 time (see table 4.1).

The fact that there are actually two components for both the crystalline and

amorphous samples can lead to two conclusions. Either the samples are not pure

and actually a mixture of amorphous and crystalline Etravirine, or Etravirine

exists in two or more polymorphs which are remarkably different in their dy-

namics. CP-MAS spectra with long and short recycle times appear very similar,

suggesting that the two components are indeed chemically the same material.

It can also be deduced from the long 19.2 s long T1 component in sample

Exp9721 that there is clearly crystalline Etravirine present in the sample. Whereas

the 9.37 s T1 component in sample Exp9719 is clearly longer than in the milled

sample but shorter than the crystalline sample. This could indicate that small

crystallites have formed in the sample.

The single component in sample Exp9720 could indicate that the T1 times of

both components are not different enough to differentiate between them. Since

the short component in the other samples, that is probably due to the HPMC, is

in the range of 0.8 – 1.1 s, and the milled Etravirines long component has a T1 of

2.28 s, it is very probable that it is just not possible to differentiate between two

T1 components that only differ by a factor of 2. This would also suggest that this

sample has the least crystalline Etravirine, or at least the smallest crystallites.

When looking at table 4.2, unfortunately the picture is not so clear. The

difference in T1ρ times between the crystalline and amorphous (milled) sample is

very clear, but other than that the data does not speak as clearly as the T1 data

does.

38 4.2: Felodipin

9719 9720 9721 HPMC TMCam TMCcry

0.19 0.12 0.08 0.15 0.06 0.06

Amp. 0.32 0.70 0.29 0.62 0.26 0.28

0.49 0.18 0.63 0.23 0.68 0.66

×10−4s 2.69 14.4 13.2 12.0 8.04 8.28

Time Const. ×10−3s 3.02 7.01 6.77 6.39 5.48 5.88

×10−2s 1.27 6.77 1.81 1.74 8.54 31.4

Table 4.2: Fitting results for Etravirine T1ρ spin-lock experiments

However the fact that the 7.01 ms component of sample Exp9720 makes up 70%

of the signal hints at the fact that there is indeed very little crystalline Etravirine

present in that sample. Nonetheless this sample has the longest component of

the three samples.

Since the the length scales, calculated using equation 2.2, for T1ρ are in the

low nanometre scale instead of the hundreds of nanometre scale for T1, it is likely

that some of the components observed in the T1ρ data might actually be due

to water. Due to the fact that the selective 13C experiments result in the same

spectra when all but the longest T1ρ- component is filtered out, it is very likely

that theses shorter T1ρ- components are due to something not containing any

carbon at all. The most likely candidate would be water.

Since the Felodipin samples were provided as brittle rods and it was not pos-

sible to get the rods to spin, even when using an inert material as filler, regular

MAS-spectra were only made for the Etravirine samples.

4.2 Felodipin

4.2.1 Samples

Felodipin is a calcium channel blocker intended as a high blood pressure medica-

tion. The samples were short rods of a mixture of Felodipin and the methacrylate

copolymer Eudragit prepared using hot melt extrusion (HME).

Since the samples could not be ground up, due to the oxygen sensitivity of the

Felodipin, a rod of a diameter slightly smaller than the rotor was selected and

broken of, so that it would fit into a rotor. The unbalance of the rotor was not a

problem, since the T1 and T1ρ experiments do not require any rotation.

The samples were also analyzed (although not by me) using scanning electron

microscopy and differential scanning calorimetry. Heat capacity measurements

were also made.

The purpose of all these measurements was to find the miscibility of the

Felodipin with the polymer. Where the T1 and T1ρ measurements allowed for

an estimation of the size of the phase domains within the sample as well as the

approximate proportions of (protons in) the phases.

Chapter 4: Pharmaceuticals 39

4.2.2 Results

One of the first things that can be noticed when looking at the T1 fitting results

(Table 4.3), is that there is only one component for the 10% and the 20% samples

with a time constant of about 0.6 s. Whereas the 30%, 50% and 70% samples

have an additional component with a time constant of about 1 s. Since crystalline

substances are known to have a long T1, it is reasonable to assume that the

component with the ≈ 1 s relaxation time is due to phase separated crystalline

Felodipin.

It can also be noted that the percentage of the slow decaying component

increases with drug loading.

10:90 20:80 30:70 50:50 70:30

Amp. 1.00 1.00 0.67 0.49 0.43

0.33 0.51 0.57

Time Const. s 0.598 0.60 0.549 0.543 0.575

s 0.994 0.953 1.060

Table 4.3: Felodipin T1 fitting results

In the heat capacity measurements a clear melting of a crystalline phase can

be detected in the 70% sample only. This suggests that the size of the crystals in

the 30% and 50% samples is significantly smaller than in the 70% sample, leading

to fast dissolution of the sub-micron crystals during heating.

Although the 10% and 20% samples appear as only one component for the

T1 measurements, they have two components for the T1ρ measurements (Table

4.4). This suggests that there is some phase separation even in the 10% and 20%

samples. The most likely reason why these phases were not detected in the T1

measurements is the difference in time scales of T1 and T1ρ.

10:90 20:80 30:70 50:50 70:30

Amp. 0.16 0.15 0.33 0.25 0.24

0.84 0.85 0.67 0.75 0.76

Time Const. ×10−3s 1.05 1.16 2.62 1.28 2.70

×10−2s 1.34 1.30 1.32 1.19 1.96

Table 4.4: Felodipin T1ρ fitting results

For a heterogeneous system the relaxation times can be used to estimate the

dimension of the separated phases. Since we are dealing with a solid it can safely

be assumed that the exchange in these time-scales is not by matter diffusion but

spin diffusion. Therefore the following relationship[8] is valid:

2
√

2
A2

π2D
|∆γ| > 1 (4.1)

Here A is the smallest dimension (between the separated domains) over which

diffusion takes place. D is the spin-diffusion coefficient which in polymeric sys-

40 4.2: Felodipin

tems has a typical value of 10−16 m2s−1[17, p52–78] and |∆γ| is calculated from

the relaxation rates of the separated phases as follows:

∆γ =
1

TA

− 1

TB

(4.2)

where T1,A represents the longer of the two relaxation times and T1,B the

shorter.

Plugging the numbers of the fitting results into formula 4.1 gives a diffusive

path length between the neighboring domains in the T1 experiments of no smaller

than ≈ 22 nm, and of no smaller than ≈ 5.6 nm for the T1ρ experiments.

These numbers suggest that the mixing of the drug and polymer in the 10%

and 20% samples is between 5.6 nm and 22 nm. However it should be noted that

these dimensions are not an accurate size measurement but only an estimation.

4.2.3 Spectra

Testing T1- and T1ρ-selective CP experiments using a mixture of Adamantane and

Glycine

The main interest of the spectra was to determine if the different phases seen

in the T1 and T1ρ experiments had different compositions. Different line widths

would also reflect the amount of disorder in the different phases. To prove that

it was possible and to see how well the methods of pre-saturating the sample to

exclude signals from phases with low T1, and spin-locking the sample prior to

acquisition to exclude signals with low T1ρ, worked a mixture of Adamantane

and Glycine was selected.

Adamantane has a short T1 but a long T1ρ compared to Glycine. The fact

that these two components are readily available, stable and both give nice and

easy to acquire 13C spectra made them the ideal sample to test this method.

The regular 13C-CP-MAS-spectrum of the mixture can be seen in Figure 4.3.

The two signals of Adamantane at 28.6ppm and 38.0ppm can clearly be seen

in this spectrum. The two signals originating from Glycine at 44.2ppm and

173.3ppm are also easily identified.

For both of the selective experiments, the selection was done through the

proton channel. This means that the protons were pre-saturated or that there was

an additional spin-lock, between the 90◦-pulse and the contact phase, introduced

on the proton channel to the regular CP experiment. This results in a cross-

polarization selectively in either Glycine or Adamantane.

When comparing this to the pre-saturated spectrum (Figure 4.4), where the

sample was saturated and left standing for 0.2s prior to each acquisition to remove

the Adamantane signal (which has a measured T1 of 0.669s), it can clearly be

seen that although the Adamantane signals were not completely removed, their

intensity is clearly reduced. All the while there is no effect on the intensity of the

Glycine signal.

The spectrum in Figure 4.5 was acquired by adding a 100ms spin-lock in

between the 90◦ pulse and the contact between the proton and carbon. This

Chapter 4: Pharmaceuticals 41

Figure 4.3: 13C CP-MAS-spectrum of a mixture of Adamantane and Glycine

Acquisition parameters in table F.10

Figure 4.4: pre-saturated 13C-spectrum of a mixture of Adamantane and Glycine with a 0.2s

delay between pre-saturation and acquisition

Acquisition parameters in table F.11

Figure 4.5: 13C-spectrum, with 100ms spin-lock prior acquisition, of a mixture of Adamantane

and Glycine

Acquisition parameters in table F.12

42 4.2: Felodipin

should remove any signals with a T1ρ significantly lower than this value but retain

any higher than it. It can easily be seen that even though the signal to noise ratio

is clearly lowered by this method, the Adamantane signal now has significantly

more intensity compared to the Glycine signal. This method was not successful

at removing the Glycine signal, but it successfully reduced its intensity resulting

in a stronger Adamantane signal. The relative intensity scale can be slightly

misleading, since more acquisitions were made for the spin-locked spectrum than

the other two to compensate for reduced signal to noise.

T1- and T1ρ-selective CP experiments of Etravirine samples

The T1- and T1ρ-selective CP experiments that were tested using a Adamantane-

Glycine mixture were done on the samples Exp9719 and Exp9720.

A regular CP-MAS-spectrum as well as a pre-saturated CP-MAS-spectrum

and a CP-MAS-spectrum with added spin-lock was made for the samples Exp9719

and Exp9720 as well as a sample of pure Etravirine. A CP-MAS-spectrum for

HPMC was made for comparison.

Figure 4.6: 13C-CP-MAS spectrum of samples Exp9720, 9720 and crystalline Etravirine

Acquisition data in table F.13

When comparing the regular CP-MAS-spectra of Exp9719 (Figure 4.6) and

Exp9720 (Figure 4.6) and taking into account the signals from the Etravirine

sample (Figure 4.6) and the HPMC (Figure 4.7) one notices that the signals in

the two mixtures are broader and less detailed. This can be an effect of the

intimate but random mixture of the two compounds. Since the mixture is not

ordered on a molecular level, each molecule of Etravirine or HPMC can encounter

a slightly different environment broadening the signals.

When comparing just the two mixtures Exp9719, which is a 1:3 mixture of

Etravirine and HPMC, and Exp9720, which is a 1:1 mixture, it can clearly be

seen that this different Etravirine content is results in different intensities of the

peaks between 110ppm and 170ppm as well as the peak at 20ppm.

Chapter 4: Pharmaceuticals 43

When comparing this with the Etravirine spectrum (Figure 4.6) where most

peaks occur between 110ppm and 180ppm and an additional peak at about 35ppm

this fits quite well with the exception of the 35ppm peak which is shifted upfield

by 15ppm. This could be due to interactions with HPMC near the corresponding

carbon nucleus.

Comparing the regular CP-MAS-spectrum of Exp9719 (Figure 4.6) with the

pre-saturated CP-MAS-spectrum (Figure 4.8) or the CP-MAS-spectrum with

spin-lock (Figure 4.9), one notices that they are nearly identical.

The same can be noticed when comparing the regular CP-MAS-spectrum of

Exp9720 (Figure 4.6) with the corresponding pre-saturated (Figure 4.10) and

spin-locked (Figure 4.11) version.

This leads to the conclusion that the different phases observed through the T1

and T1ρ measurements have the same composition chemically. The phases can

only have a slight difference in composition, because any significant difference

in composition between the phases would be readily noticeable by an increase

or decrease of the corresponding peaks in either the spin-locked or pre-saturated

spectra compared to the regular CP-MAS-spectra.

The difference in the phases is therefore most probably physical in nature,

with the proportions of Etravirine and HPMC being very similar if not the same

in these different phases.

44 4.2: Felodipin

Figure 4.7: 13C-CP-MAS spectrum of HPMC

Acquisition data in table F.14

Figure 4.8: 13C-CP-MAS spectrum of sample Exp9719 with a 2s delay between pre-saturation

and regular CP-acquisition

Acquisition data in table F.15

Figure 4.9: 13C-CP-MAS spectrum of sample Exp9719 with a 10ms spin-lock between the

proton pulse and proton-carbon contact

Acquisition parameters in table F.16

Chapter 4: Pharmaceuticals 45

Figure 4.10: 13C-CP-MAS spectrum of sample Exp9720 with a 2s delay between pre-saturation

and regular CP-acquisition

Acquisition parameters in table F.17

Figure 4.11: 13C-CP-MAS spectrum of sample Exp9720 with a 25ms spin-lock between the

proton pulse and proton-carbon contact

Acquisition parameters in table F.18

46 4.2: Felodipin

Chapter 5: TLM Model 47

Chapter 5

TLM Model

5.1 Introduction

Diffusion occurs in many different systems in physics. The one we are interested

in, spin diffusion, behaves similar to many other types of diffusion. When trying

to simulate spin diffusion, different diffusion coefficients for different phases within

the material as well as the possibility for different concentrations of active nuclei

have to be taken into account.

When looking for a system that could be used to simulate this, attention fell to

the field of electronics. In a grid of capacitors connected by resistors, the charge

will diffuse through the grid. The useful thing for these kind of systems is that

there is a model available to describe the behavior of these systems. The system

is conveniently quantized, since each cell consists of one capacitor connected to

its neighbors through resistors, it is easy to calculate the charge of each capacitor

in such a system over time.

The TLM Model [3] can be nicely applied to spin diffusion and is quite easy to

implement as a computer program. The resistance between the cells can be used

to model different diffusion coefficients between the different materials, while the

capacitance could be used to model different active nucleus concentrations, and

thus different capacities for energy stored in excited spins, in the different phases.

It should be noted that the TLM Model itself was taken from the literature

[3] while its application to spin diffusion and the programming of the software to

do the simulations to simulate spin diffusion using this model are the work of the

author.

5.2 Theory

A program to simulate Spin Diffusion was written, using an algorithm which orig-

inally comes from the field of Electronics. The algorithm is designed to calculate

the behavior of a network of resistors with capacitors to ground at each junction.

One of two possible systems can be used, the only significant difference between

them is the measurement point. Either the measurement is undertaken across the

plates of the capacitors, or between the center of the resistors and ground. The

48 5.2: Theory

former is called a link-resistor TLM node, while the latter is called link-line TLM

node.

x − 1 x x + 1

Figure 5.1: A network of link-line nodes [3]

v

v
ϕ

?

6R RZ

Figure 5.2: A single link-line node [3]

Figure 5.3: A network of link-resistor nodes [3]

v

v
ϕ

?

6Z ZR

Figure 5.4: A single link-resistor node [3]

A network of link-line nodes (Figure 5.1) consists of several separate link-line

nodes (Figure 5.2). Each node is connected over the resistor to its neighbor, while

ϕ is measured over the capacitance.

In a network of link-resistor nodes (Figure 5.3) on the other hand, the nodes

(Figure 5.4) are connected over the capacitor and ϕ is measured over the resis-

tance.

TLM-nodes and spin diffusion

When keeping in mind we are actually modeling spin diffusion, it is clear that

the capacitor would represent the nuclear spins themselves and their capacity to

store energy by being excited to a higher magnetic energy level. The resistors

would represent the spin-spin coupling, allowing energy to be transferred from

one spin to the other.

5.2.1 The TLM algorithm for a one dimensional system

Link-Line Node

When a voltage impulse is entering a link-line node, it encounters a discontinuity,

ZT = R +R + Z. At this discontinuity part of the impulse is reflected back and

only a fraction is transmitted. The reflection coefficient is

ρ = ZT−Z
ZT +Z

= R
R+Z

. (5.1)

Therefore the transmission coefficient is described by

τ =
Z

R + Z
. (5.2)

Chapter 5: TLM Model 49

Consider two Incident (I) pulses (VIL k(x) and VIR k(x)) are approaching the

resistors at the center of node x from Left and Right respectively. The voltage

at the measurement point at the center of the node is therefore

ϕk(x) =
2 VIL k(x) (R + Z)

2R + 2Z +
2 VIR k(x) (R + Z)

2R + 2Z (5.3)

= VIL k(x) + VIR k(x). (5.4)

The Scattering (S) (reflection and transmission) due to these incident pulses

is described by

VSL k(x) = ρ VIL k(x) + τ VIR k(x) (5.5)

VSR k(x) = τ VIL k(x) + ρ VIR k(x)

or

(
VL(x)
VR(x)

)S

k
=

(
ρ τ

τ ρ

) (
VL(x)
VR(x)

)I

k
. (5.6)

Each scattered pulse now takes half a time unit to travel to the boundaries of

the nodes, and after another half time unit they become incident pulses at the

adjacent nodes:

VIL k+1(x) = VSR k(x− 1) (5.7)

VIR k+1(x) = VSL k(x+ 1)

Repeating the steps (5.3), (5.5) and (5.7) for each unit of time (∆t) now

constitutes the algorithm.

Link-Resistor Node

For a Link-Resistor Node the algorithm calculates the potentials at the interface

between the nodes. This is simply the sum of the left and right going pulses from

the nodes at x− 1, x and x+1. The pulse at x− 1 traveling left and the pulse at

x+ 1 traveling right are not relevant to the node at x, therefore we are left with

VSR k(x − 1), VSL k(x), VSR k(x) and VSL k(x + 1). These pulses travel for a time ∆t
2

before they are scattered at the resistors, they then become incident on x from

left and right:

VIL k+1(x) = ρ VSL k(x) + τ VSR k(x− 1) (5.8)

VIR k+1(x) = ρ VSR k(x) + τ VSL k(x+ 1)

The pulses sum to give the potential

ϕ(x)k+1 = VIL k+1(x) + VIR k+1(x). (5.9)

50 5.2: Theory

Once the pulses continue one should redesignate them for the next iteration:

VSR k+1(x) = VIL k+1(x) (5.10)

VSL k+1(x) = VIR k+1(x)

The complete algorithm for the Link-Resistor model consists of the three sets

of equations (5.8), (5.9) and (5.10).

5.2.2 Boundaries

Traditionally boundaries are placed at the interface between two nodes.

Insulating Boundary

An insulating boundary will reflect all pulses. This can easily be modeled by

setting ρ = 1 for the pulses that would otherwise travel out of the boundaries of

the simulation.

This can also be used to exploit symmetries in the system. Any planes of

symmetry (σ) can help reduce the area to be simulated considerably by only

simulating a fraction of the system and replacing the planes of symmetry with

insulating boundaries.

When relating this to spin diffusion, an insulating boundary can be used to

model a symmetric system. Since all pulses are reflected back, a system with

a mirror symmetry could be halved and an insulating boundary placed on the

mirror plane. Thus large uniform systems can be simulated by simulating only a

single unit cell of the system, since all unit cells should behave exactly the same.

Perfect Heat-Sink Boundary

A perfect heat-sink boundary is a boundary that will act as a perfect energy sink.

This boundary has to be modeled slightly different for link-line and link-resistor

models.

In the link-line model, the pulse will be half way along a transmission line

when it sees a termination ZT = 0. The reflection coefficient is thus ρ = −1.

For a normal node in the the link-resistor model the load impedance a pulse

sees when it reaches the end-of-line is R + R + Z. A short circuit condition is

described in such a way that the short is located immediately outside the node.

Therefore the line terminating impedance is ZT = R, which then gives a reflection

coefficient of

ρ =
R− Z

R + Z
. (5.11)

In a spin diffusion system a heat-sink boundary would occur at the edges of

the sample. However even a small amount of sample would be so huge on the

scale at which spin diffusion occurs, that it usually does not influence the sample

significantly.

Chapter 5: TLM Model 51

Constant temperature boundaries

In the link-line model the transmission line touches the boundary which is held

at a constant value (VC). This can easily be modeled by assuming there is a ghost

node outside the boundary which has a source and a transmission line.

v

v
ϕk(1)

?

6 ZR

��
��
Pseudo
Source

VC

VI
L k+1 VS

L k�-

Figure 5.5: Constant temperature boundary show-

ing the ghost node for a link-line system [3]

This leads to a constant potential at the boundary. The sum of the pulse

incident from node 1 at the new time step and the pulse scattered from node 1

the previous time step is always constant. Since VSL k(1) is known, VIL k+1(1) can

be calculated using the following equation:

VIL k+1(1) + VSL k(1) = VC (5.12)

With a link-resistor model the situation at the boundary is quite different.

Here a resistor touches the boundary. For the node touching this boundary one

has to consider two separate things. Firstly the input from the source which is

now placed directly at the boundary, and secondly the history of the pulse which

is scattered from node 1 and now approaches the boundary.

����
VC

R

Z

Figure 5.6: The network as

seen from the source [3]

v

v
R Z

�VS
L k

Figure 5.7: The situation for the pulse scattered

towards the boundary [3]

The pulse scattered left sees a short-circuit, while the source sees a resistor in

series with an impedance. The incidence from the left for node 1 can therefore

be calculated as the sum of these two contributions:

VIL k+1(1) = Z
R+Z

VC + R−Z
R+Z

VSL k(1) (5.13)

= ρ VC + (ρ− τ) VSL k(1)

For spin diffusion, a constant temperature boundary could theoretically be

used to model a case where a phase, surrounding the simulated system, is cur-

52 5.2: Theory

rently being subjected to a long low power RF pulse tuned to its resonant fre-

quency.

5.2.3 Inputs

Single shot injection

A single shot injection will ultimately lead to a Gaussian distribution of energy. It

is basically a voltage of current source which is switched across a node during the

first iteration of the simulation. This injected signal sees a junction with equal

impedance to all directions. Thus the current divides equally in all directions.

When considering a one dimensional system where 100 units of energy are

injected, the initial conditions are: VIL k=0 = 50 and VIR k=0 = 50.

For a link-line model this kind of injection reveals a curiosity. With a link-line

model the propagation of such a single shot injection on only one node will result

in singularities, so that for k = 1 the values of ϕ(x− 1) and ϕ(x+ 1) will have a

value > 0 while ϕ(x) will be zero. The pulses scattered from ϕ(x−1) and ϕ(x+1)

are then scattered so that at k = 2 the values for ϕ(x− 2), ϕ(x) and ϕ(x+2) will

have values > 0 but ϕ(x− 1) and ϕ(x+ 1) will be zero.

These singularities, which are obviously unphysical, will propagate in such a

way that each node will be undefined at every other time-step. These singularities

are not observed with the link-resistor model, and can be avoided by moving the

excitation point to the boundary between two nodes. An injection of VI between

two nodes (x and x+ 1) can be realized as follows:

VIR k=0(x) = VI

2
(5.14)

VIR k=0(x+ 1) = VI

2

A single shot injection would be the ideal case for an NMR pulse as one would

like it for a perfect spin diffusion experiment. A pulse, infinitely short, which

excites only the nuclei of one of the phases. Sadly in reality such a perfect pulse

does not exist. However it is useful since it allows for an uncomplicated modeling

of just the spin diffusion process.

Multiple injections into bulk material

Energy sources can be realized that inject a constant (or even time variable)

energy into the bulk material. It is possible to realize this injection of energy at

just about any point in every step of the iteration.

The most convenient point of adding a pulse (IEX) is often immediately after

the incidence step. Equation 5.3 or Equation 5.9 (depending on which model is

used) is expanded like:

Chapter 5: TLM Model 53

ϕk(x) =

(
2 VIL k(x)

R + Z

)
+

(
2 VIR k(x)

R + Z

)
+ IEX(

2

R + Z

) (5.15)

= VIL k(x) + VIR k(x) + 2IEX

R+Z

for the link-line model and

ϕk+1(x) = VI k+1
L (x) + VIR k+1(x) +

2IEX

R + Z
(5.16)

for the link-resistor model.

Since this will only change the displayed values of ϕk+1(x), the scattered pulses

also need to take the injected energy into consideration. For the link-line model

we modify Equation 5.5 in incorporate VEX :

VSL k(x) = ρ VIL k(x) + τ VIR k(x) + VEX

2
(5.17)

VSR k(x) = τ VIL k(x) + ρ VIR k(x) + VEX

2

For the link-resistor model we modify Equation 5.10:

VSR k+1(x) = VIL k+1(x) + VEX

2
(5.18)

VSL k+1(x) = VIR k+1(x) + VEX

2

This would be a much more realistic modeling of a phase selective RF-pulse,

since an RF-pulse as used in solid state NMR is of significant duration that it

often can not be reduced to an infinitely short pulse.

5.2.4 Going to the second and third dimension

Taking the TLM-algorithm to the second dimension is not very complicated.

The only thing one really has to mind is managing the sheer amount of data and

connections.

Two- and three-dimensional link-line nodes

The pulse in Figure 5.8 coming from the north sees an impedance consisting

of one resistor in series with three parallel impedances (R + Z). The reflection

coefficient for this arrangement is therefore:

ρ =
3R +R + Z − 3Z

3R +R + Z + 3Z
(5.19)

=
R− 1

2
Z

R + Z

The transmitted component (τ) in the other three directions is therefore 3τ =

1 − ρ.

54 5.2: Theory

S

N

W Ex
?VI
N k(x)

R Z

Figure 5.8: A two dimensional link-line node with an incident pulse from the north [3]

Since we have to account pulses from every direction, the potential is thus

calculated as:

ϕk(x, y) =

(
2 VIN k(x,y)

R+Z
+ 2 VIE k(x,y)

R+Z
+ 2 VIS k(x,y)

R+Z
+ 2 VIW k(x,y)

R+Z

)
(

4
R+Z

) (5.20)

=
VIN k(x, y) + VIE k(x, y) + VIS k(x, y) + VIW k(x, y)

2

The pulses scattered are calculated:
VS N

VS E

VS S

VS W

k

=

ρ τ τ τ

τ ρ τ τ

τ τ ρ τ

τ τ τ ρ

VI N

VI E

VI S

VI W

k

(5.21)

The connection process is also just like in two dimensions, just for four variables

instead of two:

VIN k+1(x, y) = VSS k(x, y + 1)

VIE k+1(x, y) = VSW k(x− 1, y) (5.22)

VIS k+1(x, y) = VSN k(x, y − 1)

VIW k+1(x, y) = VSE k(x+ 1, y)

Four now the directional identifiers N , E, S and W have been used to make

the maths easier to understand. It is of great benefit to use direction numbers

instead for higher order models, since then the mathematical formulae can be

expressed in a much more condensed fashion.

The nodal voltage in the three dimensional link-line system can thus be ex-

pressed in a very simple expression which is nonetheless equivalent to equation

5.20:

Chapter 5: TLM Model 55

ϕk(x, y, z) =
1

3

6∑
j=1

VIj k(x, y, z) (5.23)

The reflection coefficient can be derived similar to equation 5.19:

ρ =
3R− 2Z

3R + 3Z
with 5τ = 1 − ρ (5.24)

The scattering process described in equation 5.21 can also easily be extended:

VS 1

VS 2

VS 3

VS 4

VS 5

VS 6

k

=

ρ τ τ τ τ τ

τ ρ τ τ τ τ

τ τ ρ τ τ τ

τ τ τ ρ τ τ

τ τ τ τ ρ τ

τ τ τ τ τ ρ

VI 1

VI 2

VI 3

VI 4

VI 5

VI 6

k

(5.25)

The connection process is the point where direction is important again. It

does not matter how they are assigned, as long it is consistent. In this document

1 and 2 are assigned to the x-axis, 3 and 4 to the y-axis and 5 and 6 to the

z-axis. The lower number is in the negative and the higher towards the positive

direction. Thus we get:

VI1 k+1(x, y, z) = VS2 k(x− 1, y, z)

VI2 k+1(x, y, z) = VS1 k(x+ 1, y, z)

VI3 k+1(x, y, z) = VS4 k(x, y − 1, z) (5.26)

VI4 k+1(x, y, z) = VS3 k(x, y + 1, z)

VI5 k+1(x, y, z) = VS6 k(x, y, z − 1)

VI6 k+1(x, y, z) = VS5 k(x, y, z + 1)

Two- and three-dimensional link-resistor nodes

The scattering in a two dimensional link-resistor node can be easily described as:

VS 1

VS 2

VS 3

VS 4

k+1

=
1

2

−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

VI 1

VI 2

VI 3

VI 4

k+1

(5.27)

This equation can easily be extended to three dimensions:

56 5.2: Theory

VS 1

VS 2

VS 3

VS 4

VS 5

VS 6

k+1

=
1

3

−2 1 1 1 1 1

1 −2 1 1 1 1

1 1 −2 1 1 1

1 1 1 −2 1 1

1 1 1 1 −2 1

1 1 1 1 1 −2

VI 1

VI 2

VI 3

VI 4

VI 5

VI 6

k+1

(5.28)

The linking for the two dimensional link-resistor system is described by the

following set of equations:

VI1 k+1(x, y) = ρ VS1 k(x, y) + τ VS2 k(x− 1, y)

VI2 k+1(x, y) = ρ VS2 k(x, y) + τ VS1 k(x+ 1, y) (5.29)

VI3 k+1(x, y) = ρ VS3 k(x, y) + τ VS4 k(x, y − 1)

VI4 k+1(x, y) = ρ VS4 k(x, y) + τ VS3 k(x, y + 1)

In the previous and the three dimensional linking equation (Equation 5.31, ρ

and τ are defined as follows:

ρ = R
R+Z

(5.30)

τ = Z
R+Z

The three dimensional linking equation is very similar to the two dimensional

version (Equation 5.29):

VI1 k+1(x, y, z) = ρ VS1 k(x, y, z) + τ VS2 k(x− 1, y, z)

VI2 k+1(x, y, z) = ρ VS2 k(x, y, z) + τ VS1 k(x+ 1, y, z)

VI3 k+1(x, y, z) = ρ VS3 k(x, y, z) + τ VS4 k(x, y − 1, z) (5.31)

VI4 k+1(x, y, z) = ρ VS4 k(x, y, z) + τ VS3 k(x, y + 1, z)

VI5 k+1(x, y, z) = ρ VS5 k(x, y, z) + τ VS6 k(x, y, z − 1)

VI6 k+1(x, y, z) = ρ VS6 k(x, y, z) + τ VS5 k(x, y, z + 1)

The two- and three-dimensional equations for the nodal potential are thus:

ϕk+1(x, y) =
1

2

4∑
j=1

VIj k+1(x, y) (5.32)

and

ϕk+1(x, y, z) =
1

3

6∑
j=1

VIj k+1(x, y, z) (5.33)

Chapter 5: TLM Model 57

5.3 Effects of different Parameters on simulated output

5.3.1 Dimensionality

The dimensionality has a profound impact on the shape of the generated curve.

Since a different formula is used to describe each of the possible dimensionalities

of a spin diffusion system, the shape of the curve is characteristic. The simulated

system also follows this nicely (see Figure 5.9). Due to the fact that the limiting

signal intensity is determined by the ratio of the two phases, and the fact that an

even sided shape was simulated, it was not possible to make the limiting signal

intensity the same for the three dimensionalities, due to the fact that only integers

may be chosen as the sizes of the system and the maximum system size is limited

by the computers memory.

0 100 200 300 400 500 600 700 800 900 1000

0

10

20

30

40

50

60

1D Simulation Steps

S
ig

n
a
l
In

te
n
si

ty
(%

)

1D

2D

3D

Figure 5.9: Effect of different dimensionality on simulated diffusion behavior. Parameters in

Table E.1.

In Figure 5.9 one can see the energy of the spins of the material the energy is

diffusing into.

Magnetization

x

A B A B A B A

Figure 5.10: Diagram showing an example of a 1D lattice

The material is sitting in one corner/edge of the simulated system. All simu-

58 5.3: Effects of different Parameters on simulated output

lation parameters used to generate this graph are listed in Appendix E.

5.3.2 Different Box Sizes

Using different box sizes when simulating will result in different behavior. To

date only squares and cubes have been simulated as region B. A summary for 1D

systems can be found in Figure 5.11.

The volume percentage of region A nuclei has the most obvious effect on the

maximum amplitude of the simulated signal. But it also has an effect on the

time it takes to reach that maximum, which occurs when the system is close to

equilibrium.

The size of the Box, which contains the region B cells we are interested in, is

a convenient size in terms of the simulation software. However, the percentage of

the whole simulated “volume” is different depending on the dimensionality of the

simulated system. The relation between region B partial volume VB, side length

of the simulated system lTotal (if all sides are the same length) and the side length

of the Box lBox (if all sides are the same length) for an n-dimensional system is:

VB =
lnTotal

lnBox

. (5.34)

The volume percentage for different box sizes for 1D, 2D and 3D systems in a

simulated system of the size 50 can be seen in Table 5.1.

The graphs for 2D and 3D systems can be found in Figure 5.12 and Figure

5.13 respectively.

Box Size 1D 2D 3D

5 10% 1% 0.1%

10 20% 4% 0.8%

15 30% 9% 2.7%

25 50% 25% 12.5%

35 70% 49% 34.3%

40 80% 64% 51.2%

45 90% 81% 72.9%

Table 5.1: Box sizes and volume percentages for different dimensionalities.

It can clearly be seen that when the volume of the region B phase decreases,

the time needed for the diffusion increases. This is because the resistance value

in region A is set to 100 whereas the resistance value of the region B phase

is set to 10. A high resistance will lead to a slower equilibration within the

region resulting in greater inhomogeneity, whereas a lower resistance will result

in quicker equilibration within that region. This means that since region A has

a high resistance, and region B has a low resistance, the magnetization from

the edge of region A is quickly siphoned of and spread over region B. The slow

diffusion within region A to the edge now becomes the significant factor on the

time needed to reach total equilibrium.

Chapter 5: TLM Model 59

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

10

20

30

40

50

60

70

80

90

100

Simulation Steps

S
ig

n
a
l
In

te
n
si

ty
(%

)

45

35

25

15

Figure 5.11: Effect of different box sizes on diffusion behavior in single dimensional systems.

Parameters in Table E.2

5.3.3 Differences between Link-Line and Link-Resistor simulations

Even though simulation using link-line- or link-resistor nodes is in its imple-

mentation quite different, the results are remarkably similar if enough steps are

simulated.

In terms of spin diffusion, a link-line node is centered on the nucleus and the

magnetization stored within it. A link-resistor node is centered on the dipole-

dipole interaction and the the magnetization contained within the field between

the nuclei around it. In my humble opinion a link-line node is a more intuitive

representation of a spin diffusion system, because in the NMR context the elevated

magnetization of the nuclei is being measured, not the magnetic field between

them.

5.3.4 Simulation of different geometric shapes

Circle vs. Square

In this set of simulations a 200×200 sized two dimensional system was simulated.

The capacitance was set to 100 for every cell, and the resistance to 100 for the

bulk material (region A) and 10 for the material in region B. The square was

placed in one corner and had a size of 141 filling approximately 49.7% of the

simulated system.

The aim was a filling of approximately 50%, that would mean that the size of

each side would have to be 141.421. But since only integer values are allowed as

box sizes, a value of 141 was chosen since it was closest.

For the distance from the origin is calculated by Pythagoras (equation 5.35)

60 5.3: Effects of different Parameters on simulated output

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

10

20

30

40

50

60

70

80

Simulation Steps

S
ig

n
a
l
In

te
n
si

ty
(%

)

45x45

40x40

35x35

25x25

Figure 5.12: Effect of different box sizes on diffusion behavior in two dimensional systems.

Parameters in Table E.3

d =
√
x2 + y2 (5.35)

and any cell which has a distance smaller or equal to a set radius is included

in the region B material, each other cell is bulk material. The value of the radius

has been chosen so that the area covered is equal to that of the square. To do

this equation 5.36 was used.

r =

√
4x2

π
(5.36)

The size of the simulated system was chosen to be quite large, since then the

approximation of the circle in the square geometry of the simulated system is

closer to a real sphere than in a smaller system.

The results show that there is little difference between the square and circular

phase geometries. It can however be seen that there is actually a small difference.

The difference between the two curves tends towards zero as the two systems tend

towards equilibrium.

In the square system the diffusion is slightly faster at first. This is consistent,

since the corners of the square reach further into the bulk material allowing a

little more energy to diffuse into it at first. Over time however this difference

gets smaller, because the systems would be the same at equilibrium.

Sphere vs. Cube

These simulations were done using a 100 × 100 × 100 system. This size was

chosen as a compromise between high simulation resolution and the amount of

time needed to run a set of simulations. The capacitance was again 100 for the

Chapter 5: TLM Model 61

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

10

20

30

40

50

60

70

80

90

Simulation Steps

S
ig

n
a
l
In

te
n
si

ty
(%

)

45x45x45

40x40x40

35x35x35

25x25x25

Figure 5.13: Effect of different box sizes on diffusion behavior in three dimensional systems.

Parameters in Table E.4

whole system and the resistance was set to 100 for the bulk material and 10 for

region B.

The size of an edge of the cube was chosen as 79, since it is closest to the

≈ 79.370 that would be needed for a 50% filling. The radius of the sphere was

set (using equation 5.37)so that two systems have the same volume and was set

to 98.015.

r =
3

√
6x3

π
(5.37)

The results as seen in figure 5.15 are slightly more spectacular than for the

circle and square system, since the difference of the two curves is a bit more

pronounced. But other than the slower diffusion and the slightly different base

curve shape, the results are very similar to the circle and square system.

5.3.5 Comparing the Simulation Results with Analytical Solutions

The Analytical Solution

When solving spin diffusion analytically, one needs to consider the diffusion equa-

tion for z-magnetization M(r, tm):

62 5.3: Effects of different Parameters on simulated output

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

0

10

20

30

40

50

60

Simulation Steps

S
ig

n
a
l
In

te
n
si

ty
(%

)

Circle

Square

Difference

Figure 5.14: Effect of different geometries in two dimensional systems. Parameters in Table E.5

∂M(r, tm)

∂tm
= ∇ · {D(r)∇M(r, tm)}

=
∂

∂x

{
D(r)

∂

∂x
M(r, tm)

}
+

∂

∂y

{
D(r)

∂

∂y
M(r, tm)

}
+

∂

∂z

{
D(r)

∂

∂z
M(r, tm)

}
(5.38)

The aim is to solve this equation for certain initial conditions (as in [4, ch

13.3.2]). The initial conditions used for demonstration purposes are a constant

diffusivity D(r) = D and a simple periodic lamellar morphology. Since only

the direction perpendicular to the lamellae is relevant, the result in an initial

magnetization as depicted in Figure 5.16 and only a one-dimensional equation

that needs to be solved.

The boxes in the periodic array of boxes described in Figure 5.16 have a width

dA and height M0. This array can be described by the superposition of spatial δ-

functions. The initial magnetization of a single lamella of width dA and centered

around x = 0 can thus be described with:

Mn=0(x, tm = 0) = M0

1/2 dA∫
−1/2 dA

dx̃ δ(x̃− x) (5.39)

which changes over time into

Chapter 5: TLM Model 63

0 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000

0

10

20

30

40

Simulation Steps

S
ig

n
a
l
In

te
n
si

ty
(%

)

Sphere

Cube

Difference

Figure 5.15: Effect of different geometries in three dimensional systems. Parameters in Table

E.6

M(x, t = 0)

dA dB
dr x

A B A B A B A

Figure 5.16: The initial magnetization for a lamellar morphology [4]

Mn=0(x, tm) =
M0√

4πDtm

1/2 dA∫
−1/2 dA

dx̃ e−
(x̃−x)2

4Dtm . (5.40)

For the nth lamella, centered on the lamella and the integration limits as

ndr − 1
2
dA and ndr + 1

2
dA the integral gives:

Mn(x, tm) =
M0

2

{
erfc

(
ndr − 1/2 dA − x√

4Dtm

)
− erfc

(
ndr + 1/2 dA − x√

4Dtm

)}
(5.41)

erfc(x) is the complement of the error function erf(x) as defined in Table 5.2.

The error function is the integral of the Gaussian function.

Since the magnetization behaves the same for each unit cell of size dr, it is

sufficient to consider only a single one. For region B we chose the region from
1
2
dA to 1

2
dA + dB:

64 5.3: Effects of different Parameters on simulated output

erf(x) :=
2√
π

x∫
0

e−x̃2
dx̃ erf(x) =

−1 : x = −∞

0 : x = 0

+1 : x = ∞

erf(−x) = − erf(x)

erfc(x) := 1 − erf(x) erfc(x) =

2 : x = −∞

1 : x = 0

0 : x = ∞

=
2√
π

∞∫
x

e−x̃2
dx̃ erfc(−x) = 1 + erf(x) = 2 − erfc(x)

ierfc(x) :=

∞∫
x

erfc(x̃) dx̃ ierfc(x) =

≈ −2x : x < −3

1√
π

: x = 0

0 : x = ∞

=
1√
π

e−x2
− x erfc(x)

Table 5.2: Definition of the error function erf(x) and related functions

IB(tm) =

1/2 dA∫
1/2 dA+dB

N∑
n=−N

Mn(x, tm) dx

=
M0

2

N∑
n=1

√
4Dtm

{
− ierfc

(
ndr − dA√

4Dtm

)
+ ierfc

(
ndr√
4Dtm

)
+ ierfc

(
(n− 1)dr√

4Dtm

)
− ierfc

(
ndr − dB√

4Dtm

)}
. (5.42)

In this equation we exploit the symmetry about x = 1/2 dr to restrict the sum

to n ≥ 1.

For most practical purposes only the first terms of the near infinite sum (5.42)

contribute to any real significance. Each term of the sum represents the contri-

bution of a lamella a distance ndr away from the detection region. Terms with

large n only become relevant after a very long time has passed.

Terms with n > nc can be approximated as a semi-infinite region with an

initial magnetization density of M0
dA

dr
separated from the detection region by a

distance xc = ncdr. When using the solution erfc(x√
4Dtm

) for a semi-infinite source

we get:

Chapter 5: TLM Model 65

IB,n>nc ≃ M0
dA

dr

xc+dB∫
xc

dx erfc

(
x√

4Dtm

)
(5.43)

= M0
dA

dr

√
4Dtm

{
ierfc

(
xc√
4Dtm

)
− ierfc

(
xc + dB√

4Dtm

)}
.

Using the terms n = 0, . . . , 4 from (5.42) and the correction term (5.44) for

a nc = 4 good results are apparently obtained for arbitrary tm according to [4,

p419].

In the higher dimensional systems that are now introduced, this correctional

term is left out for simplicity sake. If N is chosen high enough it is not absolutely

necessary if very high values of tm are not of interest.

From this point onward the mathematics differs slightly from the formulae pre-

sented in Multidimensional Solid-State NMR and Polymers [4]. This is because

the attempt to plot the curves using the formulae in the book resulted in regular

curves when setting the variables to the ones used in the text, but something very

different when trying to change some of these parameters.

It was decided by the author that solving the equations himself was a better

way to acquire the formulae for an analytical solution to spin diffusion. The result

is still quite close to what is presented in the book and is based quite substantially

on it.

However it is not practical to transfer the bounds used for the integral (1
2
dA ⇒

1
2
dA + dB) to higher dimensions, thus we now subtract an integral over area dB

from an integral over area dr:

I(tm) = M0

 +1/2 dr∫
−1/2 dr

M(x, tm) dx−
+1/2 dA∫

−1/2 dA

M(x, tm) dx

=

M0

dr

√
4Dtm

N∑
n=−N

[{
ierfc

(
ndr − 1/2 dA − 1/2 dr√

4Dtm

)
− ierfc

(
ndr − 1/2 dA + 1/2 dr√

4Dtm

)
− ierfc

(
ndr + 1/2 dA − 1/2 dr√

4Dtm

)
+ ierfc

(
ndr + 1/2 dA + 1/2 dr√

4Dtm

)}
−

{
ierfc

(
ndr − dA√

4Dtm

)
− 2 ierfc

(
ndr√
4Dtm

)
+ ierfc

(
ndr + dA√

4Dtm

)}]
(5.44)

To take this into the second dimension and subsequently into the third, we

will just write the integral. The magnetic field for a ϵ-dimensional system would

be:

66 5.3: Effects of different Parameters on simulated output

M(r, tm) =
1

dr

N∑
n=−N

{
erfc

(
ndr − 1/2 dA − r√

4Dtm

)
− erfc

(
ndr + 1/2 dA − r√

4Dtm

)}
.

(5.45)

To extend this equation in ϵ dimensions all we have to do is raising it to the

power of ϵ like this:

I(tm) = M0

 +1/2 dr∫
−1/2 dr

M(x, tm) dx

ϵ

−M0

 +1/2 dA∫
−1/2 dA

M(x, tm) dx

ϵ

(5.46)

This is now the generic analytical solution and for limN → ∞ this solution is

true even at arbitrarily high tm. However on the time-scales used in the simulated

cases in this work, N = 4 is quite sufficient.

However keep in mind that equation 5.46 was derived by the author after

finding that there must be an error in the equations 13.21 and 13.22 from [4,

p419].

A different approach to the analytical solution

Cheung et al. describe a different approach to the analytical solution in their

paper [18]. Instead of using an infinite space filled with regular lamellae, they

use a space with length L and without any magnetization transfer outside the

system.

However instead of regularly spaced lamellae, they assume that the spacing

between the lamellae is random and follows a Poisson distribution (eq. 5.47).

P (b) = 1/b e
− b/̄b (5.47)

With such a distribution of lamellae they get the following equation to describe

the magnetization in area A:

φ(t) = exp

(
Dt

b
2

)
erfc

(√
Dt

b
2

)
(5.48)

To describe area B, they simply use IB(t) = 1 − φ(t). The system can be

extended to higher dimensional cases just as easily by multiplying several one

dimensional equations yielding

IB,ϵ = 1 − φx(t)φy(t)φz(t) (5.49)

for the three dimensional case, with

φα(t) = exp

(
Dt

bα
2

)
erfc

(√
Dt

bα
2

)
for α = x, y, z. (5.50)

However the solution acquired using this equation is not very comparable to

the solutions offered by equation 5.46 or the simulations. This is mainly due to

Chapter 5: TLM Model 67

the random spacing of the lamellae. If one really wanted to use the analytical

solution described by equation 5.46 to model infinite lamellae spaced randomly

following a Poisson distribution, one would have to do something like this:

∞∫
0

P (dB)I(tm) ddB (5.51)

Plotting both analytical solutions we can clearly see the profound difference

between the two with dA = dB = 1, D = .1, M0 = 1 and b = 1
3

and scaling elation

5.50 by multiplying it by 3
4

to make sure that both equations reach the same value

at lim t→ ∞, we get figure 5.17. Showing clearly the difference between the two

analytical solutions.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time(s)

S
ig

n
a
l
In

te
n
si

ty

Even spacing

Random P (b) spacing

Figure 5.17: Comparison of the two analytical models

Calibration of the software using the analytical solution

The software was calibrated using the formulae from the analytical solution. The

relation of the parameters was found to be:

Cd2
r = RPD∆t (5.52)

with C = 2.5 × 10−3. Where dr represents the size of one simulated cell in

meters, not the size of the simulation area. Since the walls of the simulated area

are reflecting, the size of the simulated area is often not equal to dr. R represents

the ratio R
Z

of the two simulations parameters R and Z; P represents the number

of points used to represent dr; ∆t represents the duration in seconds for one

simulation step and D represents the diffusion coefficient in m2s−1.

Equation 5.52 is able to predict one of the unknowns dr, ∆t or R if the following

conditions are met:

1. The simulated area has the same diffusion coefficient over its whole area

2. The dimensions of the simulated area (dr) are equal

68 5.4: Experimental

3. The dimensions of area A are equal

in all other cases it may only be useful as a rough guideline. Since the analytical

solution used is limited by these constraints, it was not possible to formulate a

calibration function for any arbitrary system.

To archive optimal simulation conditions the fraction R
Z

should be neither too

big nor too small. If it is too small . 0.1, the diffusion happens too quickly pulses

are running back and forth between the boundaries resulting in a low frequency

oscillation in the simulated output. If it is too big & 1, a high frequency oscillation

which occurs at the interface can be found in the simulated output.

Comparing the Analytical Solution with the Simulations

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

Time(µs)

S
ig

n
a
l
In

te
n
si

ty

Simulated Data
Analytical Solution

Error

Figure 5.18: Comparison of a 1D analytical solution for spin diffusion with the simulation.

Simulation parameters in Table E.7, analytical parameters in Table E.8

Comparing the 1D analytical solution with a link-line TLM-simulation yields

a very high similarity in the curves. As seen in Figures 5.18, 5.19 and 5.20 the

simulated curves and the analytical solutions fit so well that they nearly overlap

completely.

This proves that the analytical solution in Formula 5.46 describes the simulated

data nicely. Due to the lack of measured data it is not possible to be entirely

sure that this describes real spin diffusion systems nicely, it does however hint

towards this since two different ways to obtain this data agree very nicely.

5.4 Experimental

As a first step of the spin diffusion experiment a solid-echo spectrum is made

to evaluate the decay-time of the two different signals. This is done to choose a

selection-delay which makes it possible to have one phase magnetized, while the

magnetization of the other phase has already decayed.

Chapter 5: TLM Model 69

0 20 40 60 80 100 120 140
0

10

20

30

Time(µs)

S
ig

n
a
l
In

te
n
si

ty

Simulated Data
Analytical Solution

Error

Figure 5.19: Comparison of a 2D analytical solution for spin diffusion with the simulation

Parameters in Table E.9, analytical parameters in Table E.10

Since the two phases of the sample have different decay rates, it is possible

to selectively have one of them decay before applying a pulse which turns the

magnetization back into the z-plane.

After a short delay (the diffusion time), which is increased slightly for each

iteration of the experiment, the magnetization is brought back into the observable

plane, and the amplitudes of the two components are compared by fitting a

function to the resulting FID.

This experimental procedure ideally requires that the spectrum of the sample

only has one symmetric peak, and that the two phases are both present in this one

peak, at the same frequency. The receiver is then tuned to the exact frequency

of this signal, so that the FID resembles an exponential decay curve.

The amplitudes of the two components are then plotted against diffusion time.

5.4.1 Extracting the magnetization components from the FID

The following formula describes a basic (amorphous) free induction decay for the

solid-echo assuming a standard Gaussian decay:

σ = e−
τ2t2

2 (5.53)

Where τ is the decay constant and t is the passage of time.

When fitting using this function we have two unknowns. The amplitude of the

signal and the decay constant. These two unknowns have been designated A and

B respectively.

σ = Ae−
B2·t2

2 (5.54)

When dealing with the phases, the resulting signal is the sum of two exponen-

tial decays, each with a different decay are constant. Such a sum of two signals

would be described as

70 5.4: Experimental

0 5 10 15 20 25 30
0

5

10

15

Time(µs)

S
ig

n
a
l
In

te
n
si

ty

Simulated Data
Analytical Solution

Error

Figure 5.20: Comparison of a 3D analytical solution for spin diffusion with the simulation

Parameters in Table E.11, analytical parameters in Table E.12

σ = A1e
−B2

1 ·t2

2 + A2e
−B2

2 ·t2

2 . (5.55)

When the signal is normalized against the maximum amplitude, A1 + A2 = 1

holds true at the point of maximum amplitude. This can only hold true if the

beginning of the signal is very close to the maximum of the echo. Assuming this

is the case, then the previously four dimensional problem can be reduced to a

three dimensional problem:

σ = Ae−
B2

1 ·t2

2 + (1 − A)e−
B2

2 ·t2

2 (5.56)

5.4.2 Experimental complications with the real-life samples

In the real-life samples the spectrum was not a single symmetric peak. This

resulted in a free induction decay which had a small frequency component. Some

crystalline phases phases display such a behavior. The decay of such crystalline

phases can be described with one of two formulae [19]:

σ = ωe−
τ2t2

2 (5.57)

ω ∈
[

sin(θt)
θt

, cos(θt)
]

(5.58)

with the first is called the Abragam function[9] and the second the Pakes

doublet. Thus with one amorphous and one crystalline component, the equation

to be fitted would be

ψ = A1e
−B2

1 ·τ2

2 + A2
sin(Cτ)

Cτ
e−

B2
2 ·τ2

2 (5.59)

or

ψ = A1e
−B2

1 ·τ2

2 + A2 cos(Cτ) e−
B2

2 ·τ2

2 . (5.60)

Chapter 5: TLM Model 71

Both are five dimensional problems, which are more difficult to fit. Especially

considering that the phase of the frequency component ω is only correct if τ is

placed exactly on the maximum of the echo signal. If this is not the case, τ must

be offset to compensate this phase difference, or an additional phase parameter

must be introduced. Both measures would increase the problems dimensionality

to six dimensions.

This does not necessarily have to be the case for the sample though. There

could be two different signals occurring naturally within the sample. With a lower

B0 field these two signals would not be resolved and appear as one single signal

and thus appear as a single signal.

Due to the small changes that need to be made to large variables (due to the

huge impact on the sum of squares), there is a problem concerning the computer

hardware. Modern computers are quite limited when it comes to high precision

mathematics. This problem is further discussed in Appendix A.

Also nonlinear fitting over a multidimensional surface with many local minima

is a very difficult problem if one is seeking for a global minimum. The algorithm

is very likely to find one of the local minima and home in on it. So finding a

global minimum is more a case of luck in finding the right starting values that

lead to a slope going to the global minimum.

Additionally to this the phase of the receiver is also a factor. If the phase of

the receiver is not optimal, the FID would have to be rephased in order to make

the equations fit again.

5.4.3 Plotting the amplitudes against diffusion time

The amplitudes resulting from the FIDs are plotted against diffusion time to give

a plot of the diffusion of magnetization from one phase to another. The exact

shape of the resulting curve is characteristic of the dimensionality of the phases

in the sample.

Phase dimensionality

The phase dimensionality depends on how the phases are aligned to one another.

In a one dimensional sample the phases are flat planes going all through the bulk

of the sample. Different phases are only encountered if one moves perpendicular

to the planes. When moving in the other two dimensions the phase will always

stay the same. Please refer to Figure 5.21 as an example.

A one dimensional sample does not necessarily need to repeat the phases like in

the example, instead it could be two slaps joined through one plane or one phase

sandwiched between others. The exact arrangement of the phases can have subtle

effects, but the basic lineshape is the same for all one dimensional samples.

For a two dimensional system, phases change for movement in two out of three

dimensions, but stay the same for movement in the third. A prominent example

of this are rods of material inside another. Refer to Figure 5.22 as an example.

The rods could be square, hexagonal, triangular or round. As long as they

only vary in two dimensions.

72
5.5: Comparison between provided Spin Diffusion data

and simulations

Figure 5.21: A one di-

mensional sample

Figure 5.22: A two di-

mensional sample

Figure 5.23: A three di-

mensional sample

A three dimensional sample is one in which the phases can change in any

direction. This could be tiny grains inside a medium, a three dimensional grid of

rods or just about any other distribution of phases throughout the sample. Refer

to Figure 5.23 as an example.

One thing that might be counterintuitive is that large structures are not taken

into account. For example a large sphere coated with a material of different phase

would be a one dimensional system. This is because locally it is not distinguish-

able from a one dimensional system. Much like the fact that the earth might

seem to be flat to the casual observer.

The real world can be more complicated

In the samples that were examined there was a complicated phase behavior, for

the spin diffusion experiments, which made extracting amplitude data out of the

FIDs extremely difficult or altogether impossible. This phase behavior had most

effect on the off resonance peak, but also changed the lineshape in the spectra

significantly.

Due to this anomalous behavior, very probably also due to the fact that the

spectra of the samples had multiple peaks, proper analysis of the spin diffusion

was made nearly impossible. There are some indications that there was indeed

some spin diffusion going on, however this is not enough to get any kind of

numerical data.

5.5 Comparison between provided Spin Diffusion data

and simulations

Due to the complications in acquiring spin diffusion data, previous data was

provided by Dr. Clayden. It was then attempted to overlay 2D TLM-Simulation

data over the measured data-points.

In figure 5.24 the dots and crosses represent the measured data. They are reg-

ular and spin-echo spin diffusion datapoints respectively. The curves are extracts

from a simulated 2D TLM-System. Both curves are scaled exactly the same, the

dashed curve is just shifted to the right along the x-axis.

It can clearly be seen that the regular spin diffusion datapoints fit quite well

onto the simulated curve. The spin-echo spin diffusion datapoints are significantly

more entropic and as such difficult to fit, but the shifted curve fits reasonably

Chapter 5: TLM Model 73

x x x

x

x

x

x

x
x

x
x

x
x x

x

x

x
x

0 10 20 30 40 50 60 70 80 90 100 110 120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (ms)

S
ig

n
a
l
In

te
n
si

ty

FID

xSolid Echo

Fit to FID

Fit to Solid Echo

Figure 5.24: Spin Diffusion Data with overlaid TLM-Simulation data Parameters in Table E.13

well.

Since only 2D data is available, only the 2D mode of the TLM Simulation

can be compared to real data. Unfortunately there was not enough time and too

many problems to acquire enough data for a more in depth comparison.

5.6 Possible further studies

In my opinion it would be interesting to simulate if short rods or disks in a 3D

sample. It would be interesting to see if the curve of simulated rods resembles a

2D sample, a 3D sample or something in between. With increasing ratio of rod

length to rod radius the result should resemble the result of a 2D sample more

and more.

A similar effect should occur for disks. With very extensive thin disks, the

result should resemble a 1D sample more and more.

Simulating different shapes might be interesting too, for example comparing a

square or cube to a circle or sphere.

74 5.6: Possible further studies

BIBLIOGRAPHY 75

Appendix A

Bibliography

[1] Melinda J. Duer. Solid-State NMR Spectroscopy. Wiley, 2004. ISBN 978-1-

4051-0914-7

[2] Malcom H. Levitt. Spin Dynamics. Wiley, 2nd edition, 2009. ISBN 0-321-

17385-6

[3] Donald de Cogan and Anne de Cogan. Applied Numerical Modelling Engi-

neers. Oxford University Press, 1997. ISBN 978-01-9856-437-9

[4] K. Schmidt-Rohr and H. W. Spiess. Multidimensional Solid-State NMR and

Polymers. Academic Pr Inc, 1994

[5] Klaus Schmidt-Rohr and Wolfgang Spiess. Mutidimensional Solid-State

NMR and Polymers. Academic Press, 1994. ISBN 0-12-626630-1

[6] Sheng Qi, Peter Belton, Kathrin Nollenberger, Nigel Claden, Mike Reading,

and Duncan Q. M. Craig. Characterisation and Prediction of Phase Separa-

tion in Hot-Melt Extruded Solid Dispersions: A Thermal, Microscopic and

NMR Relaxometry Study. Pharmaceutical Research, 27(9):1869–1883,

June 2010

[7] Chunli Gao, Mats Standing, Nikolaus Wellner, et al. Plasticization of a

Protein-Based Film by Glycerol: A Spectroscopic, Mechanical, and Thermal

Study. J. Agric. Food Chem., 54:4611–4616, 2006

[8] Peter S. Belton and B. P. Hills. The effects of diffusive exchange in heteroge-

neous systems on N.M.R. line shapes and relaxation processes. Molecular

Physics, 61(4):999–1018, 1987

[9] A. Abragam. The Principles of Nuclear Magnetism. Clarendon Press, 1961

[10] T. E. Bull. Prog. NMR Spctrosc., 24:377–410, 1992

[11] M. Goldman and L. Shen. Phys. Rev., 144:321, 1966

[12] J Clauss, K Schmidtrohr, and HW Spiess. Determination of Domain Sizes in

Heterogeneous Polymers by Solid-State NMR. Acta Polymerica, 44(1):1–

17, February 1993. ISSN 0323-7648

76 BIBLIOGRAPHY

[13] Shu Xu, Frederik Klama, Henrietta Ueckermann, Jurian Hoogewerff, Nigel

Clayden, and Thomas Nann. Optical and Surface Characterisation of Cap-

ping Ligands in the Preparation of InP and InP/ZnS Quantum Dots. Sci.

Adv. Mater., 1:125–137, 2009

[14] WebElements Periodic Table of the Elements — Zinc — NMR data, June

2010

URL: http://www.webelements.com/zinc/nmr.html

[15] WebElements Periodic Table of the Elements — Phosphorus — NMR data,

June 2010

URL: http://www.webelements.com/phosphorus/nmr.html

[16] WebElements Periodic Table of the Elements — Indium — NMR data, June

2010

URL: http://www.webelements.com/indium/nmr.html

[17] V. J. McBrierty and K. J. Packer. Nuclear magnetic resonance in solid

polymers. Cambridge University Press, 1993

[18] T. T. P. Cheung and B. C. Gerstein. 1H nuclear magnetic resonance stud-

ies of domain structures in polymers. J. Appl. Phys., 52(9):5517–5528,

September 1981

[19] V.D. Fedotov and H. Schneider. Structure and Dynamics of Bulk Polymers

by NMR-Methods. Spinger-Verlag Berlin, 1989

[20] Nigel J. Clayden. Lammelar Thickness of Crystallizable Ethene Runs in

Ethene-propene Copolymers by Solid State NMR. Journal of Polymer

Science: Part B: Polymer Physics, 32:2321–2327, 1994. ISSN 0887-6266

[21] Nigel J. Clayden and Gerard Smyth. Investigation of Structural Inhomo-

geneities in Soft-Block Modified Methacrylate Resins. Magnetic Reso-

nance in Chemistry, 33:710–716, 1995. ISSN 0749-1581

[22] Q Chen and K Schmidt-Rohr. Measurement of the local H-1 spin-diffusion

coefficient in polymers. Solid State Nuclear Magnetic Resonance, 29(1-

3):142–152, February 2006. ISSN 0926-2040

[23] B. Meurer and G. Weill. Measurement of spin diffusion coefficients in glassy

polymers: Failure of a simple scaling law. Macromolecular Chemistry

and Physics, 209(2):212–219, 2008

[24] Non-linear least squares - Wikipedia, the free encyclopedia, June 2010

URL: http://en.wikipedia.org/wiki/Non-linear_least_squares

[25] Gaussian Elimination - Wikipedia, the free encyclopedia, June 2010

URL: http://en.wikipedia.org/wiki/Gaussian_elimination

[26] Simplex Algorithm - Wikipedia, the free encyclopedia, June 2010

URL: http://en.wikipedia.org/wiki/Simplex_Algorithm

http://www.webelements.com/zinc/nmr.html
http://www.webelements.com/phosphorus/nmr.html
http://www.webelements.com/indium/nmr.html
http://en.wikipedia.org/wiki/Non-linear_least_squares
http://en.wikipedia.org/wiki/Gaussian_elimination
http://en.wikipedia.org/wiki/Simplex_Algorithm

BIBLIOGRAPHY 77

[27] Simplex - Wikipedia, the free encyclopedia, June 2010

URL: http://en.wikipedia.org/wiki/Simplex

[28] Regression Analysis - Wikipedia, the free encyclopedia, June 2010

URL: http://en.wikipedia.org/wiki/Regression_Analysis

[29] Arbitrary-precision arithmetic - Wikipedia, the free encyclopedia, June 2010

URL: http://en.wikipedia.org/wiki/Arbitrary_precision

http://en.wikipedia.org/wiki/Simplex
http://en.wikipedia.org/wiki/Regression_Analysis
http://en.wikipedia.org/wiki/Arbitrary_precision

78 BIBLIOGRAPHY

Appendix B: Data Fitting 79

Appendix B

Data Fitting

B.1 Least Squares Method

B.1.1 Least Squares

Since the systems measured often consist of multiple phases, one has multiple T1

and T1ρ components, which all add up in the measured data.

Since the parameters are not all linear, the parameters cannot be estimated

using linear regression. Instead an iterative, non-linear approach has to be used.

A non-linear regression [24] model with n parameters and m squared residuals

can be written as

yi = f(xi, β) + Zi (B.1)

where β is a vector consisting of the parameters, x is the independent variable

and Zi represents the statistical error.

To measure how well a set of parameters fits the data, the least-squares method

is used. Here the squared sum of the residuals is reduced to improve the fit of

the parameters.

S =
i=m∑
i=1

r2
i (B.2)

ri = (yi − f(xi, β)) (B.3)

When the gradient of S is zero, a local minimum of S has been found. Since

the model contains j parameters, there are j different gradients for S represented

by the following set of equations:

∂S

∂βj

= 2
∑

i

ri
∂ri

∂βj

(B.4)

Since ∂ri

∂βj
depends on both the independent variable and the parameters, there

is no closed solution for this. Instead a set of initial values has to be chosen for

the parameters and the parameters are then refined iteratively.

βν+1 = βν + ∆β (B.5)

80 B.1: Least Squares Method

At each step of the iteration the model is linearized by approximation to a

first-order Taylor series expansion about βν .

f(xi, β) ≈ f(xi, β
ν−1) +

∑
j

∂f(xi, β
ν−1)

∂βj

(βν−1
j − βj) = f(xi, β

ν−1) +
∑

j

Jij∆βj

(B.6)

Since the Jacobian J contains both the independent variable and the parame-

ters, it changes with each iteration. In terms of the linearized model, the Jacobian

can be written as

∂ri

∂βj

= −J (B.7)

the residuals can thus be written as

ri = ∆yi −
j=n∑
j=1

Jij∆βj (B.8)

∆yi = yi − f(xi, β
ν). (B.9)

Substituting into the gradient equations, one gets the following set of equations

− 2
i=m∑
i=1

Jij

(
∆yi −

∑
j

Jij∆βj

)
= 0 (B.10)

on rearrangement one gets a set of n linear equations, the normal equations

i=m∑
i=1

k=n∑
k=1

JijJik∆βk =
∑

i

Jij∆yi where j = ⟨1, n⟩ (B.11)

for j between 1 and n.

In matrix notation this can be written as

(JTJ)∆β = JT∆y (B.12)

B.1.2 Gaussian Elimination

The linearized equation system described in equation B.12 can be solved to get

a shift vector β which points in the direction of the local minimum.

One possible method of solving this equation system is Gaussian elimination

[25].

This method is used to solve equation systems in the form

Ax = b. (B.13)

When comparing this to our linearized equation system, we find that

A = JTJ (B.14)

x = ∆β (B.15)

b = JT∆y. (B.16)

Appendix B: Data Fitting 81

For solving in a computer one usually deals with the augmented matrix:

[A | b] (B.17)

The Gaussian elimination is now performed in two steps, first the Matrix is

put into row echelon form. The following Octave function can be used for that:

1 function A = echelon(A)

2 i = 1;

3 j = 1;

4 [m,n] = size(A);

5 while(i<=m \&\& j<=n)

6 maxi = i;

7 k = i + 1;

8 while(k<=m)

9 if(abs(A(k,j)) > abs(A(maxi,j))

10 maxi = k;

11 endif

12 k = k+1;

13 endwhile

14 if(A(maxi,j) != 0)

15 # Swap rows i and maxi

16 a = A(maxi,:);

17 A(maxi,:) = A(i,:);

18 A(i,:) = a;

19 A(i,:) = A(i,:)/A(i,j);

20 u = i + 1;

21 while(u<=m)

22 A(u,:) = A(u,:) - A(i,:)*A(u,j);

23 endwhile

24 i=i+1;

25 endif

26 j=j+1;

27 endwhile

28 endfunction

29

The resulting matrix may now be solved using back-substitution.

1 function A = backSubstitue(A)

2 [m,n] = size(A);

3 i = n-1;

4 while(i>1)

5 A(i,:) = A(i,:) * (1/A(i,i));

6 j = i - 1;

7 while(j>=1)

8 if(A(j,i)!=0)

82 B.1: Least Squares Method

9 A(j,:) = A(j,:) - A(i,:) * (1/A(j,i));

10 endif

11 j = j - 1;

12 endwhile

13 i = i - 1;

14 endwhile

15 A(1,:) = A(1,:) * (1/A(1,1));

16 endfunction

After these two steps, A = I and therefore b = x so the last column of

our augmented matrix (or b) is the solution to the linear equation system, and

therefore our new shift vector.

B.1.3 Shift-cutting

Since the linearized equation system (equation B.12) is only a local approximation

of the real system, it is possible that when divergence occurs, the fit of f(x, βν +

∆β) is actually worse than the fit of f(x, βν). To overcome this problem, the

magnitude of the step can be reduced by introducing a cutting parameter f :

βν+1 = βν + f∆β (B.18)

This parameter is usually set to 1, and halved until the fit of f(x, βν + f∆β)

is better than the fit of f(x, βν).

B.1.4 Marquardt parameter

When the shift-vector is far from the ”ideal” direction, shift-cutting becomes

quite ineffective, since the fraction f is then required to be very small to avoid

divergence. The Marquardt parameter is introduced to allow the shift vector to

be rotated towards the steepest descent. To achieve this, the normal equation is

modified to give

(JTJ + λI)∆β = JT ∆y. (B.19)

Here λ is the Marquardt parameter. When λ = 0, the new normal equation is

equivalent to the original normal equation (Equation B.12). When λ is increased

though, the direction of the shift-vector is changed towards the steepest descent,

while the length of the vector is reduced, due to the 1/λ factor in

lim
λ→∞

∆β =
1

λ
JT ∆y. (B.20)

If the new iteration is not an improvement over the last one, the value of λ

needs to be increased. It can also be reduced, if possible. When reducing the

value, it is save to set it to zero, once

λ <
1

trace(JTJ)−1
. (B.21)

Appendix B: Data Fitting 83

B.2 Simplex Algorithm

Another algorithm that can be used to move towards a solution of the normal

equations (Equation B.12), is the simplex algorithm [26].

Here n+ 1 sets of least squares with different ∆b are calculated in such a way,

that the angles between the vertices of the current point, and the current point

in parameter space are the same. For a two dimensional parameter space, one

would get an equilateral triangle when connecting all the points.

The point with the best least squares fit is carried on to the next iteration,

and using it as the new origin, another set of points is calculated.

When the origin is the best fit, the magnitudes of the shift vectors are reduced,

until one point, which is not the origin, is a better fit.

B.2.1 The Simplex

The simplex is a set of geometric structures, one for each dimensionality, which

have the property that a minimum amount of vertices are needed to define a

volume (for 3 or more dimensions) or an area (for 2 dimensions). The simplex

[27] for a 2-dimensional environment is the equilateral triangle, and for a 3-

dimensional environment it is the tetrahedron. Thus a simplex always has n+ 1

vertices, where n is the dimensionality of the simplex. A single point can be

considered the 0-dimensional simplex, while the 1-dimensional simplex is a simple

line.

B.2.2 How to construct the simplex for the Simplex Algorithm

The simplex used in a simplex algorithm needs to have the current point at its

exact center. This is needed so that the whole parameter space is covered evenly

by the simplex.

We need to construct i = D + 1 amount of vertices, each being a j = D

component vector. The coordinates of such a simplex can be represented as a i-

by-j matrix. When constructing the n+1 coordinates of a n-dimensional simplex

a few basic rules must be observed:

1. All vectors must must be unit-vectors i.e. have a magnitude of 1

2. The dot product between any pair of vectors must be −1/n

3. For the nth vector all but the first n numbers are 0

As an example we will now construct a 5-dimensional simplex. All vectors

will be represented as row-vectors in a 6x5 matrix. The first vector is easy to

choose, when making all but the first number 0, we get a 1 as the fist number

and observing rule 3 we get:

84 B.2: Simplex Algorithm

1 0 0 0 0

? ? 0 0 0

? ? ? 0 0

? ? ? ? 0

? ? ? ? ?

? ? ? ? ?

(B.22)

We then set the first coordinate of each vector to −1/n. This is done, since we

know the second coordinate of the second vector is irrelevant, since it is multiplied

by 0 when taking the dot-product with the first vector. Thus to give −1/n for a

dot product with the first vector, each first coordinate must be set to −1/n like

thus:

1 0 0 0 0

−1
5

? 0 0 0

−1
5

? ? 0 0

−1
5

? ? ? 0

−1
5

? ? ? ?

−1
5

? ? ? ?

(B.23)

When using rule 1 we can now calculate the second coordinate for the second

vector using Pythagoras (any of the two solutions is fine) and using rule 2 we

calculate the second coordinate of the other four vectors:

1 0 0 0 0

−1
5

2
5
√

6
0 0 0

−1
5

− 1
10

√
6

? 0 0

−1
5

− 1
10

√
6

? ? 0

−1
5

− 1
10

√
6

? ? ?

−1
5

− 1
10

√
6

? ? ?

(B.24)

Now it is easy to calculate the third coordinate of all vectors:

1 0 0 0 0

−1
5

2
5
√

6
0 0 0

−1
5

− 1
10

√
6

3
10

√
10

0 0

−1
5

− 1
10

√
6

− 1
10

√
10

? 0

−1
5

− 1
10

√
6

− 1
10

√
10

? ?

−1
5

− 1
10

√
6

− 1
10

√
10

? ?

(B.25)

Appendix B: Data Fitting 85

And the fourth coordinate:

1 0 0 0 0

−1
5

2
5
√

6
0 0 0

−1
5

− 1
10

√
6

3
10

√
10

0 0

−1
5

− 1
10

√
6

− 1
10

√
10

2
5
√

5
0

−1
5

− 1
10

√
6

− 1
10

√
10

− 1
5
√

5
?

−1
5

− 1
10

√
6

− 1
10

√
10

− 1
5
√

5
?

(B.26)

Now the last two numbers are easily solvable, the two possible solutions make

the two last numbers:

1 0 0 0 0

−1
5

2
5
√

6
0 0 0

−1
5

− 1
10

√
6

3
10

√
10

0 0

−1
5

− 1
10

√
6

− 1
10

√
10

2
5
√

5
0

−1
5

− 1
10

√
6

− 1
10

√
10

− 1
5
√

5
1

5
√

3
√

5

−1
5

− 1
10

√
6

− 1
10

√
10

− 1
5
√

5
− 1

5
√

3
√

5

(B.27)

This method works to construct the cartesian coordinates of any n-dimensional

simplex with its center of gravity at the origin.

B.3 Regression Analysis

When one has several possible models, with a different amount of parameters for

each, one needs a way to determine which model is best used to approximate the

data. The mathematical method of determining how well a model describes the

data is called regression analysis [28].

Considering two models, a simple one, with only a few degrees of freedom,

and a complicated one, with many degrees of freedom, which fits the data only

slightly better, then the simple model is to be preferred.

The measure used to evaluate the complexity of a model, is the number of

dimensions (or degrees of freedom) of the model, and how this relates to the

degrees of freedom of the data. The total degrees of freedom of the dataset is

equal to m− 1, while the degrees of freedom of the model is equal to the amount

of parameters n.

To evaluate how well a model explains the data, one needs to have a measure

for this. Generally a dimensionless model, the average value of the datapoints

(Ȳ), is used as a reference. The total variation from this reference, which is called

total sum of squares (SSY), is defined as

86 B.3: Regression Analysis

SSY =
n∑

i=1

(Yi − Ȳ)2. (B.28)

The residual sum of squares (SSE), which is a measure of how much the data

varies from the model (Ŷ) is defined as

SSE =
n∑

i=1

(Yi − Ŷ)2. (B.29)

The amount of variation which is explained by the model is now apparent as

n∑
i=1

(Ȳ − Ŷ)2 = SSY − SSE . (B.30)

These values by themselves are useful to evaluate a single dataset, but they are

not very useful to compare different datasets to another. To do this, one needs

values which are normalized. One thing one can do, is to calculate the fraction

of variation explained by the model:

r2 =

∑n
n=1(Ȳ − Ŷ)2∑n
n=1(Yi − Ȳ)2

=
SSY − SSE

SSY
(B.31)

Another value, which is useful to compare two different datasets, is the F-

value. This value compares the amount of variance explained by the model to

the residual variance:

F =

∑n
n=1(Ȳ − Ŷ)2∑n
n=1(Yi − Ŷ)2

(B.32)

Appendix C: Software 87

Appendix C

Software

C.1 Software capabilities and limitations

C.1.1 Choice of programming languages

The computer program used to simulate and the one to do the curve fitting for the

spin diffusion systems, were written in the programming language C. Although a

first version of the computer program to do the curve fitting was written in octave,

a programming language very similar and compatible to Mathematica but open

source, the final program was implemented in C because the program would run

very slowly in octave and use up considerable amounts of memory.

The choice fell on C as a programming language since it is possible to write

very fast and optimized software in it. The result was much faster software

(approximately six times faster).

C.1.2 Curve Fitting

For curve fitting, a function implementing the simplex algorithm was implemented

in octave. This function could then be used in octave like any other function. One

would manually read in the input data into a matrix using internal functions of

octave and then start the Simplex function on that data, feeding it a model

function and some initial parameters.

C.1.3 TLM Simulator

The TLM Simulator is capable of simulating diffusion systems with a dimension-

ality of 1 to 3. It is possible to set the R and Z values as well as the starting

values of every node. The amount of nodes simulated that can be simulated and

the amount of steps are only limited by the memory of the machine used.

Hardware and Software requirements

The TLM Simulator, as listed in Appendix G.2 on Page 116, is written for a

UNIX system with a 64bit processor. The memory requirements for the data

88 C.1: Software capabilities and limitations

Dimension Size Memory requirements (kB)

1 10 157.8

1 100 162.7

1 1000 211.9

1 10000 704.1

2 10 165.8

2 100 1’016.6

2 1000 86’094.7

2 3500 1’052’891.6

2 10000 8’593’907.2

3 10 274.4

3 100 117’344.7

3 200 937’657.2

3 208 1’054’717.2

3 250 1’831’211.9

3 1000 117’187’657.3

Table C.1: Memory usage for different sizes and

dimensionalities for 10’000 steps

depends on the dimensionality of the system simulated and the size of the edges

of the simulated system.

Mem = xd(32d+ 24) + 16s+ 1030 (C.1)

Where x represents the size of an edge, d represents the dimensionality and

s represents the amount of steps simulated. Thus the memory requirement (for

10′000 steps) is shown for different dimensions and simulation sizes in table C.1.

It is easily seen that while the amount of memory needed for 1D systems is

quite small higher dimensional systems get big very fast. When simulating 2D

systems or even 3D systems, the amount of memory needed scales unfavorably

for large systems. Where with a 2D model a size of 3500 is needed to reach a

memory usage of over 1 GiB, with a 3D model a size of only 208 is needed.

C.1.4 TLM helper tools

For the TLM helper tools a fairly recent version of Perl is needed (Perl v5.8.8 was

used), as well as the the Getopt::Long and Parallel::ForkManager Perl modules.

graphGen.pl also needs a version of gnuplot capable of producing scalable

vector graphics and texdraw output.

Appendix C: Software 89

C.2 Software usage

C.2.1 TLM Simulator

confGen.pl

The TLM-Sim program itself is quite specific in how it is supposed to be used.

It needs a special configuration file, which can be constructed by the helper

tool confGen.pl. confGen.pl works like a regular Unix command line program

and generates the text of the configuration file on STDOUT, it is therefore rec-

ommendable to redirect the output into a file. The options for confGen.pl are

summarized in Table C.2 on page 90.

A typical call of confGen.pl looks something like this:

$./confGen.pl --size=50:50:50 --steps=10000 --LL \

--box=0:24:0:24:0:24 --R=100:1000 --Z=100:10 --initVal=100:0 \

"--areas=0:24:0:24:0:24" --T1=250 > tlm.conf

and creates a file tlm.conf defining the configuration for a 50 × 50 × 50 sim-

ulation, running for 10000 steps, using the Link-Line node model, including a

25×25×25 box in one corner in which the reflection coefficient ρ = 1000 and the

transmission coefficient τ = 10. The bulk material has the coefficients ρ = 100

and τ = 100 and initial value of 100. The values of the nodes will decay with a

half-life of 250 steps.

table2conf.pl

The TLM helper tool table2conf.pl was written to allow a large number of simula-

tions to be started in bulk using only one command. The tool will create several

configuration files in a directory tree contained within a previously set directory.

Then it will start TLM-Sim within for each of these configuration files and

put the output into a file called OUTPUT in the same directory.

The configuration of table2conf.pl is done within the source code of that file by

editing some variables and lists, defining parameters similar to the ones in con-

fGen.pl. In fact table2conf.pl calls confGen.pl using every possible combination

of the values contained within these lists.

It is also necessary to set the variables $confGen, $TLM Sim and $basePath to

the locations of confGen.pl, the compiled TLM Simulator and an empty directory,

into which the configuration files and the results are written, respectively.

90 C.2: Software usage

Option Description

--size=Xsize[,Ysize[,Zsize]] Specify the size of the simulation, Ysize and Zsize

are optional, Xsize is not. The setting of Ysize

implies a 2D (or 3D) model and the setting of Zsize

implies a 3D model.

--steps=Number The number of steps the simulation is supposed

to run.

--LL | --LR Either --LL or --LR should be set, but not both!

--LL sets the simulation to Link-Line mode and

--LR sets it to Link-Resistor mode.

--box=X1:X2[:Y1:Y2[:Z1:Z2]] Define the size of the box which is observed.

Changes in this variable will only change what

is observed as Box or Bulk, not define the different

environment within that box.

--R=Rbulk:R1[:R2[,...]] Define the reflection coefficient for the bulk

material as well as the separate areas defined

with --areas.

--Z=Rbulk:R1[:R2[,...]] Define the transmission coefficient for the bulk

material as well as the separate areas defined

with --areas.

--initVal=Vbulk:V1[:V2[,...]] Defines the initial values of the nodes in the

bulk material as well as the different areas

defined with --areas.

--areas=X1:X2[:Y1:Y2[:Z1:Z2]][,...] Define the different areas, for each area there

has to be an entry in --R, --Z and --initVal.

The rest of the simulation will be defined as bulk.

--T1=[Half-Life] Switch on T1 simulation with given half life.

-v | --verbose Switch on output of nodal values for each step.

Table C.2: Options for the TLM helper tool genConf.pl

Appendix D: Floating Point Accuracy Problems 91

Appendix D

Floating Point Accuracy

Problems

D.1 Introduction

In many parts of this work, computer software was used to do curve fitting to a

set of modeled data or simulation of spin diffusion data.

For the simulation this is not a significant issue, because for values that were

used in the calculations a tiny percentage change in a number did not have a

significant impact. For some of the fitting tasks, especially when trying to fit the

complex FID from the spin diffusion measurements (5.4.2, which also contained

a wave component, this can be a significant issue.

Especially when calculating the square-sum of the fitted data, to determine

how well it fits with the data, there can be a huge difference between the values

to be added. Since even a tiny improvement in fitting can indicate a path to a

minimum and a large number of datapoints was used, the sum of all those errors

can indeed become significant.

While running these fits, debugging statements were added to the software

to extract the numbers the software was actually working on. In some cases, a

significant proportion of the numbers were close or below ϵ. ϵ is a value denoting

the smallest number that can be added to 1 for the machine to actually calculate

a sum > 1.

x = 1 + y

x =

> 1 : y ≥ ϵ

1 : y < ϵ
(D.1)

Thus, if this happens often enough, and it easily can when using many data-

points, there can be a significant amount of datapoints not considered within the

square-sum. Another point where this can be of concern is, when the amount the

parameters are varied falls close or below epsilon with significant differences in

the square sum. This would mean that even though a variation of this param-

92 D.2: Floating Point and Precision

eter would result in an improvement, the machine can not actually change the

parameter anymore.

This could be circumvented by carefully adjusting the formula and introducing

a new base term and only calculating the offset to this base term. But this would

increase the number calculations needed drastically since the changes needed to

make this possible without introducing new points where rounding errors could

ruin the result would bloat the formula significantly. It might not always be

possible to do this for every parameter.

D.2 Floating Point and Precision

When representing numbers in a computer, one has the choice between two dif-

ferent types of arithmetic (floating- and fixed-point), with advantages and disad-

vantages each.

Fixed point numbers are essentially integers with a fixed scaling factor, which

is not stored as part of the number. Thus we can represent the number 1.23 as
123
100

. With floating point numbers the scaling factor is part of the number itself.

The scaling factor is usually binary or decimal. A binary scaling factor is a

power of two, while a decimal scaling factor is a power of ten. Most commonly a

binary scaling factor is used, because rescaling can be implemented using fast bit

shifts. Binary fixed-point can represent fractional powers of two exactly, while

decimal fixed-point can only represent fractional powers of ten exactly.

In IEEE-754 1 floating point numbers a binary scaling factor is usually used.2

There are three different floating point formats defined:

Name Precision (bin) Precision (dec) Epsilon Max Exponent (2x)

binary323 23+1 bits 7.225 1.192093 × 10−7 127

binary644 52+1 bits 15.95 2.220446 × 10−16 1023

binary1285 112+1 bits 34.02 1.925930 × 10−34 16383

Since only the fractional part of the significant is stored, and the most significant bit which

would be equal to 1 is assumed to be on, the binary precision is always one digit bigger than the

amount of bits used in storage. The decimal precision is calculated using the following formula:

Pdec = log10(2
Pbin) (D.2)

where Pdec is the decimal precision and Pbin is the binary precision. The value epsilon

is defined as the difference between 1 and the next biggest representable number. It can be

calculated as follows:

ϵ = 2Pbin−1 (D.3)

Since the binary128 format is quite new (it was added in the 2008 version of IEEE-754),

most programming libraries still only use binary32 and binary64. Therefore one can not easily

1The standard most commonly used by current FPUs
2The standard does define decimal floating point formats, but the binary floating point formats are more

commonly used
3Also called single-precision
4Also called double-precision
5Also called quad-precision

Appendix D: Floating Point Accuracy Problems 93

develop software using the binary128 format, since no or only very few programming libraries

exist that support this format.

D.3 Rounding and Accuracy Problems

Since the precision of the number formats is limited, rounding must occur for every number

which can not be exactly represented. Such as π, but also 0.1 and 0.01. This rounding introduces

a small error, which can grow to be quite significant as more and more mathematical operations

are carried out with the results of each previous equation.

For example, when calculating something simple like 0.12 using binary32 floating point

numbers:

Since 0.1 can not be represented directly it is rounded to the nearest number:

0.100000001490116119384765625 exactly.

Squaring this number gives

0.010000000298023226097399174250313080847263336181640625 exactly.

Squaring it using a single precision FPU gives (after rounding):

0.010000000707805156707763671875 exactly.

But the number closest to the actual result of 0.12 is

0.009999999776482582092285156250 exactly.

This shifting rounds the number and thus reduces the accuracy.

e=5; s=1.234567 (123456.7)

+ e=3; s=9.481957 (9481.957)

e=5; s=1.234567

[e=5; s=0.09481957]

+ e=5; s=0.094820 (after shifting)

= e=5; s=1.329387

If the difference of the two numbers is greater than the significance of the number format

used, the number with smaller magnitude is effectively dropped.

e=5; s=1.234567 (123456.7)

+ e=-3; s=9.481957 (0.009481957)

e=5; s=1.234567

[e=5; s=0.00000009481957]

+ e=5; s=0.000000

= e=5; s=1.234567

94 D.3: Rounding and Accuracy Problems

When calculating the squared sum of the residuals, this can be quite significant. When the

differential is large, the square is even larger, but when the differential is small the square will

become even smaller. This means that in some conditions a significant amount of datapoints is

not taken into consideration anymore, since each one is too small after shifting to change the

sum.

A loss of significance occurs when two numbers, which are close to one another, are sub-

tracted. The closer two numbers are, the less accurate the calculated difference between them

is.

e=5; s=1.234571

- e=5; s=1.234567

= e=5; s=0.000004

e=-1; s=4.000000 (after rounding and normalisation)

A nice example is the calculation of π using Archimedes approximation by calculating the

perimeter of polygons inscribing and circumscribing a circle. The following iterative model

starts with hexagons and successively doubles the number of sides:

t0 = 1√
3

(D.4)

ti+1 =
√

t2i +1−1

ti
Original iterative step (D.5)

ti+1 = ti√
t2i +1+1

Alternate iterative step (D.6)

π ≈ 6 × 2i × ti (D.7)

Both the original and alternative iterative steps are mathematically equivalent, but when

used for computing the result they are obviously very different. In the original iterative step, 1

is subtracted from a number extremely close to 1, which leads to a very significant cancellation

error

The following table shows the calculating with the original and the alternative iterative step

using IEEE double precision arithmetic:

Appendix D: Floating Point Accuracy Problems 95

i 6 × 2i × ti original 6 × 2i × ti alternative

0 3.4641016151377543863 3.4641016151377543863

1 3.2153903091734710173 3.2153903091734723496

2 3.1596599420974940120 3.1506599420975006733

3 3.1460862151314012979 3.1460862151314352708

4 3.1427145996453136334 3.1427145996453689225

5 3.1418730499801259536 3.1418730499798241950

6 3.1416627470548084133 3.1416627470568494473

7 3.1416101765997805905 3.1416101766046906629

8 3.1415970343230776862 3.1415970343215275928

9 3.1415937488171150615 3.1415937487713536668

10 3.1415929278733740748 3.1415929273850979885

11 3.1415927256228504127 3.1415927220386148377

12 3.1415926717412858693 3.1415926707019992125

13 3.1415926189011456060 3.1415926578678454728

14 3.1415926717412858693 3.1415926546593073709

15 3.1415919358822321783 3.1415926538571730119

16 3.1415926717412858693 3.1415926536566394222

17 3.1415810075796233302 3.1415926536065061913

18 3.1415926717412858693 3.1415926535939728836

19 3.1414061547378810956 3.1415926535908393901

20 3.1405434924008406305 3.1415926535900560168

21 3.1400068646912273617 3.1415926535898608396

22 3.1349453756585929919 3.1415926535898122118

23 3.1400068646912273617 3.1415926535897995552

24 3.2245152435345525443 3.1415926535897968907

25 3.1415926535897962246

26 3.1415926535897962246

27 3.1415926535897962246

28 3.1415926535897962246

π = 3.141592653589793238462643383...

D.4 Arbitrary-Precision Arithmetic

One solution to overcome this kind of problem is arbitrary-precision arithmetic [29]. Arbitrary-

precision arithmetic is a method to do calculations with any selectable precision. The exact

precision is only limited by the amount of memory available. However there are several down-

sides. One is that special programming-libraries or programming languages are needed to

implement arbitrary-precision arithmetic. The other is that these calculations are generally

considerably slower than normal calculations using the floating point unit. With increasing

precision not only the memory requirement, but also the time needed for each calculation step

increases.

Since normal calculations on a computer are implemented in hardware, they are quite fast.

Most computers (except maybe a few specially designed for this task) however do not have any

integrated hardware solution to arbitrary-precision arithmetic, so this has to be implemented

96 D.5: Relevance to this work

entirely in software.

This implementation in software brings with it a high flexibility though. Numbers can be

stored in fixed point or floating point format with any preselected precision. However when

introducing division, a simple fraction can make perfect precision using fixed- or floating point

numbers impossible.

An example could be a simple fraction such as 4
7 . Since it has an infinitely repeating sequence

of digits, it has to be truncated at some point. Usually, with arbitrary-precision systems, the

programmer has to set a variable defining the maximum precision of the calculations. This is

first to make sure that the computer does not spend hours calculating a simple fraction to the

millionth digit, and second to to limit the amount of memory large collections of such numbers

would take up.

Some pieces of software take the mathematical approach and represent these rational num-

bers as the fractions themselves instead of fixed- or floating-point numbers. Unfortunately

mathematics with rational numbers can get quite unwieldy, as shown in this example:

1
99

− 1
100

= 1
9900 (D.8)

1
9900

+
1

101
= 10001

999900 (D.9)

The library implementing this kind of precision would have to be aware of a whole multitude

of mathematical rules. It would have to be able to simplify any mathematical representation

of a number to a shortest possible formula. Usually this kind of complexity is only available in

computer algebra software.

While software like this exists, it is quite unsuited to calculate vast amounts of data, since

the drawback of such precision is an even higher requirement for CPU cycles and memory.

Usually, owing the complexity of programming a piece of software able to solve mathematical

formulae, these kind of programs come with a high price tag.

Since neither the funds to purchase the kind of software, that would be needed to solve the

kind of highly complicated and data intensive problems involved in this work, nor the processing

power which would be needed to compute these kinds of problems to a satisfactory precision,

were available, this approach was unfeasible. At the time, at which it became apparent, that

such measures would be necessary to solve some of the problems discussed in this work, it

was no longer possible to reprogram all the software involved implementing arbitrary-precision

arithmetic.

D.5 Relevance to this work

These problems are relevant to this work in two different cases. Firstly when using nonlinear

regression, the square sum can be scewed due to rounding errors if there are a lot of points.

Most importantly however is the TLM Simulator. Since it is an iterative software, the

results from the previous step are used to calculate the next. Even though there might not

be a specific point that is more vulnerable to rounding errors, the simple fact that a minute

rounding error near the beginning of the simulation will propagate through all subsequent steps

can make this a significant factor, especially if a high number of steps are simulated.

Appendix E: Simulation Parameters 97

Appendix E

Simulation Parameters

Figure 5.9 (p57)

This 2D and 3D curves have been scaled to make them better comparable. The difference in

system size is so that for each so that for each of them about 50% of the simulated nodes were

used for area A and the other 50% were used for area B.

Dimensionality 1D 2D 3D

Model LL LL LL

Size 20 90x90 24x24x24

Steps 1500 25000 15000

Initial Val (Area A) 0 0 0

Initial Val (Area B) 100 100 100

Z (Area A & B) 100 100 100

R (Area A) 100 100 100

R (Area B) 100 100 100

Area A Coordinate 9 69,69 18,18,18

Factor x-axis 1 25 3

Factor y-axis 0 +1.05‰ +7.73‰

Table E.1: Parameters for Figure 5.9

98

Figure 5.11 (p59)

Except for the area A coordinate these graphs share the parameters listed in the table:

Dimensionality 1D

Model LL

Size 50

Steps 10000

Initial Val (Area A) 0

Initial Val (Area B) 100

Z (Area A & B) 100

R (Area A) 100

R (Area B) 1000

Table E.2: Parameters for Figure 5.11

Figure 5.12 (p60)

Except for the area A coordinate these graphs share the parameters listed in the table:

Dimensionality 2D

Model LL

Size 50

Steps 10000

Initial Val (Area A) 0

Initial Val (Area B) 100

Z (Area A & B) 100

R (Area A) 100

R (Area B) 1000

Table E.3: Parameters for Figure 5.12

Appendix E: Simulation Parameters 99

Figure 5.13 (p61)

Except for the area A coordinate these graphs share the parameters listed in the table:

Dimensionality 3D

Model LL

Size 50

Steps 10000

Initial Val (Area A) 0

Initial Val (Area B) 100

Z (Area A & B) 100

R (Area A) 100

R (Area B) 1000

Table E.4: Parameters for Figure 5.13

Figure 5.14 (p62)

The radius was chosen so that the area of area A of both simulations is exactly the same.

Shape Circle Square

Dimensionality 2D 2D

Model LL LL

Size 200 200

Steps 50000 50000

Initial Val (Area A) 0 0

Initial Val (Area B) 100 100

Z (Area A & B) 100 100

R (Area A) 100 100

R (Area B) 10 10

Area A Coordinate — 141

Radius 159.101 —

Table E.5: Parameters for Figure 5.14

100

Figure 5.15 (p63)

The radius was chosen so that the volume of area A of both simulations is exactly the same.

Shape Sphere Cube

Dimensionality 3D 3D

Model LL LL

Size 100 100

Steps 25000 25000

Initial Val (Area A) 0 0

Initial Val (Area B) 100 100

Z (Area A & B) 100 100

R (Area A) 100 100

R (Area B) 10 10

Area A Coordinate — 79

Radius 98.015 —

Table E.6: Parameters for Figure 5.15

Figure 5.18 (p68)

Dimensionality 1D

Model LL

Size 20

Steps 1000

Initial Val (Area A) 0

Initial Val (Area B) 100

Z (Area A & B) 100

R (Area A) 100

R (Area B) 100

Area A Coordinate 9

Table E.7: Simulation parameters for Figure 5.18

Dimensionality 1D

M0 100

dA 10 nm

dB 10 nm

D 1.25µm−2

∆t 20 ns

Table E.8: Parameters for analytical solution of Figure 5.18

Appendix E: Simulation Parameters 101

Figure 5.19 (p69)

Dimensionality 2D

Model LL

Size 20

Steps 2500

Initial Val (Area A) 0

Initial Val (Area B) 100

Z (Area A & B) 100

R (Area A) 100

R (Area B) 100

Area A Coordinate 9

Table E.9: Simulation parameters for Figure 5.19

Dimensionality 2D

M0 100

dA 6.4 nm

dB 6.4 nm

D 0.273 µm−2

∆t 15 ns

Table E.10: Parameters for analytical solution of Figure 5.19

Figure 5.20 (p70)

Dimensionality 3D

Model LL

Size 20

Steps 10000

Initial Val (Area A) 0

Initial Val (Area B) 100

Z (Area A & B) 100

R (Area A) 100

R (Area B) 100

Area A Coordinate 9

Table E.11: Simulation parameters for Figure 5.20

102

Dimensionality 3D

M0 100

dA 6.4 nm

dB 6.4 nm

D 0.683 µm−2

∆t 15 ns

Table E.12: Parameters for analytical solution of Figure 5.20

Figure 5.24 (p73)

Dimensionality 2D

Model LL

Size 90x90

Steps 25000

Initial Val (Area A) 0

Initial Val (Area B) 100

Z (Area A & B) 100

R (Area A) 100

R (Area B) 69,69

Area A Coordinate 9

∆t 17.5µs

y-scale 0.161

Table E.13: Simulation parameters for Figure 5.24

Appendix F: Acquisition Data 103

Appendix F

Acquisition Data

Figure 3.1 (p27)

Nucleus 31P

Frequency 121.474851MHz

CP-Nucleus 1H

CP-Frequency 300.133400MHz

Pulse Program cp

TD 3618

NS 2048

SW 250 kHz

RG 64

90◦ Pulse 4.1µs

Conctact time 1911.24 µs

Relaxation time 1 s

Table F.1: Acquisition parameters for Figure 3.1

104

Figure 3.2 (p28)

Nucleus 31P

Frequency 121.474851MHz

CP-Nucleus 1H

CP-Frequency 300.133400MHz

Pulse Program cp

TD 3618

NS 2048

SW 250 kHz

RG 64

90◦ Pulse 4.1µs

Conctact time 2000 µs

Relaxation time 1 s

Table F.2: Acquisition parameters for Figure 3.2

Figure 3.3 (p28)

Nucleus 31P

Frequency 121.474851MHz

Pulse Program hpdec

TD 3618

NS 1024

SW 250 kHz

RG 64

90◦ Pulse 3.0µs

Relaxation time 60 s

Table F.3: Acquisition parameters for Figure 3.3

Appendix F: Acquisition Data 105

Figure 3.4 (p29)

Nucleus 31P

Frequency 121.474851MHz

Pulse Program hpdec

TD 3618

NS 128

SW 250 kHz

RG 64

90◦ Pulse 3.0µs

Relaxation time 60 s

Table F.4: Acquisition parameters for Figure 3.4

Figure 3.5 (p30)

Nucleus 31P

Frequency 121.474851MHz

CP-Nucleus 1H

CP-Frequency 300.133400MHz

Pulse Program cp

TD 3618

NS 512

SW 250 kHz

RG 64

90◦ Pulse 4.1µs

Conctact time 1911.24 µs

Relaxation time 1 s

Table F.5: Acquisition parameters for Figure 3.5

106

Figure 3.6 (p30)

Nucleus 31P

Frequency 121.474851MHz

CP-Nucleus 1H

CP-Frequency 300.133400MHz

Pulse Program cp

TD 3618

NS 2048

SW 250 kHz

RG 64

90◦ Pulse 4.1µs

Conctact time 1911.24 µs

Relaxation time 1 s

Table F.6: Acquisition parameters for Figure 3.6

Figure 3.7 (p31)

Nucleus 31P

Frequency 121.474851MHz

CP-Nucleus 1H

CP-Frequency 300.133400MHz

Pulse Program cp

TD 3618

NS 512

SW 250 kHz

RG 64

90◦ Pulse 4.1µs

Conctact time 1911.24 µs

Relaxation time 1 s

Table F.7: Acquisition parameters for Figure 3.7

Appendix F: Acquisition Data 107

Figure 3.8 (p31)

Nucleus 31P

Frequency 121.474851MHz

CP-Nucleus 1H

CP-Frequency 300.133400MHz

Pulse Program cp

TD 3618

NS 512

SW 250 kHz

RG 64

90◦ Pulse 4.1µs

Conctact time 1911.24 µs

Relaxation time 1 s

Table F.8: Acquisition parameters for Figure 3.8

Figure 3.9 (p32)

Nucleus 31P

Frequency 121.474851MHz

CP-Nucleus 1H

CP-Frequency 300.133400MHz

Pulse Program cp

TD 3618

NS 2048

SW 250 kHz

RG 64

90◦ Pulse 4.1µs

Conctact time 1911.24 µs

Relaxation time 1 s

Table F.9: Acquisition parameters for Figure 3.9

108

Figure 4.3 (p41)

Nucleus 13C

Frequency 75.4752958MHz

CP-Nucleus 1H

CP-Frequency 300.133400MHz

Pulse Program cp

TD 2048

NS 32

SW 22.727273 kHz

RG 912

90◦ Pulse 3.34µs

Conctact time 2000 µs

Relaxation time 5 s

Table F.10: Acquisition parameters for Figure 4.3

Figure 4.4 (p41)

Nucleus 13C

Frequency 75.4752958MHz

CP-Nucleus 1H

CP-Frequency 300.133400 MHz

Pulse Program sat cp

TD 2048

NS 64

SW 22.727273 kHz

RG 912

90◦ Pulse 3.88µs

Conctact time 2000 µs

Relaxation time 15 s

Presaturation delay 200ms

Table F.11: Acquisition parameters for Figure 4.4

Appendix F: Acquisition Data 109

Figure 4.5 (p41)

Nucleus 13C

Frequency 75.4752958MHz

CP-Nucleus 1H

CP-Frequency 300.133400MHz

Pulse Program cp selective

TD 2048

NS 64

SW 22.727273 kHz

RG 912

90◦ Pulse 3.34µs

Conctact time 2000 µs

Relaxation time 15 s

Spinlock time 100ms

Table F.12: Acquisition parameters for Figure 4.5

Figure 4.6 (p42)

Etravirine Exp0719 Exp9720

Nucleus 13C 13C 13C

Frequency 75.4752958MHz 75.4752958MHz 75.4752958MHz

CP-Nucleus 1H

CP-Frequency 300.131500 MHz 300.131500MHz 300.131500MHz

Pulse Program cp cp cp

TD 1024 2048 2048

NS 256 256 2048

SW 50 kHz 22.727273 kHz 22.727273 kHz

RG 912 912 912

90◦ Pulse 3.34µs 3.34µs 3.34µs

Conctact time 2000 µs 2000 µs 2000µs

Relaxation time 15 s 15 s 5 s

Table F.13: Acquisition parameters for Figure 4.6

110

Figure 4.7 (p44)

Nucleus 13C

Frequency 75.4752958MHz

CP-Nucleus 1H

CP-Frequency 300.131500MHz

Pulse Program cp

TD 2048

NS 384

SW 22.727273 kHz

RG 912

90◦ Pulse 3.34µs

Conctact time 2000 µs

Relaxation time 3 s

Table F.14: Acquisition parameters for Figure 4.7

Figure 4.8 (p44)

Nucleus 13C

Frequency 75.4752958MHz

CP-Nucleus 1H

CP-Frequency 300.131500 MHz

Pulse Program sat cp

TD 2048

NS 512

SW 22.727273 kHz

RG 912

90◦ Pulse 3.88µs

Conctact time 2000 µs

Relaxation time 15 s

Presaturation delay 2 s

Table F.15: Acquisition parameters for Figure 4.8

Appendix F: Acquisition Data 111

Figure 4.9 (p44)

Nucleus 13C

Frequency 75.4752958MHz

CP-Nucleus 1H

CP-Frequency 300.131500MHz

Pulse Program cp selective

TD 2048

NS 2233

SW 22.727273 kHz

RG 912

90◦ Pulse 3.34µs

Conctact time 2000 µs

Relaxation time 5 s

Spinlock time 10ms

Table F.16: Acquisition parameters for Figure 4.9

Figure 4.10 (p45)

Nucleus 13C

Frequency 75.4752958MHz

CP-Nucleus 1H

CP-Frequency 300.131500MHz

Pulse Program sat cp

TD 2048

NS 512

SW 22.727273 kHz

RG 912

90◦ Pulse 3.88µs

Conctact time 2000 µs

Relaxation time 10 s

Presaturation delay 2 s

Table F.17: Acquisition parameters for Figure 4.10

112

Figure 4.11 (p45)

Nucleus 13C

Frequency 75.4752958MHz

CP-Nucleus 1H

CP-Frequency 300.131500MHz

Pulse Program cp selective

TD 2048

NS 2233

SW 22.727273 kHz

RG 912

90◦ Pulse 3.34µs

Conctact time 2000 µs

Relaxation time 5 s

Spinlock time 25ms

Table F.18: Acquisition parameters for Figure 4.11

Appendix G: Source Code 113

Appendix G

Source Code

G.1 Line Fitting

G.1.1 OptSimp.m

1 function [p, f_out, resid] = OptSimp(A, F, p_in, dp_in, n_max, acc, dispNum)
2 N = 0;
3 n_sum = 0;
4 p = p_in;
5 s45 = sin(pi/4);
6 x = A(:,1); data = A(:,2);
7 n=0;
8 maxDiff = 9.9e99;
9 dim = size(p)(1,1);

10 simpDim = dim+1;
11 dp = dp_in;
12 dp_diff_norm = 1; p_diff_norm = 1;
13 f = feval(F, x, p);
14 res = sum((f - data).^2);
15 P = zeros(dim, dim+1);
16 DP = zeros(dim, dim+1);
17 simplex = zeros(dim, dim+1);
18 for i = 1:simpDim
19 for j = 1:dim
20 if (j == 1 && i == 1)
21 simplex(j,i) = -1;
22 elseif (j == i)
23 simplex(j,i) = -s45;
24 elseif (j > i)
25 simplex(j,i) = 0;
26 else
27 simplex(j,i) = s45;
28 endif
29 endfor
30 endfor
31

32

33 while(n<n_max && (maxDiff>acc))
34 simRes = [];
35 p_prev = p;
36 dp_prev = dp;
37 for i = 1:simpDim
38 P(:,i) = p;
39 DP(:,i) = dp;

114 G.1: Line Fitting

40 endfor
41 P = P+(simplex.*DP);
42 for i = 1:simpDim
43 f = feval(F, x, P(:,i));
44 simRes(i,:) = sum((f - data).^2);
45 endfor
46 [minSim, minP] = min(simRes);
47

48 if (minSim < res)
49 p = p + (simplex(:,minP).*dp);
50 dp = dp * 1.01;
51 res = minSim;
52 n++;
53 else
54 dp = dp * 0.5;
55 n++;
56 endif
57 maxDiff = max(dp./p);
58 endwhile
59

60 f_out = feval(F, x, p);
61

62 p
63 n
64

65 disp("-- Degrees of Freedom --");
66 Regression = size(p)(1,1)
67 Residual = size(data)(1,1) - Regression - 1
68 Total = size(data)(1,1) - 1
69

70 disp("-- Variance (SSE & SSY) --");
71 sse = sum((f - data).^2);
72 ssy = sum((data - (sum(data)/size(data)(1,1))).^2);
73 Regression = ssy - sse
74 Residual = sse
75 Total = ssy
76

77 disp("-- Mean Squares --");
78 Regression = (ssy - sse) / size(p)(1,1)
79 Residual = sse / (size(data)(1,1) - size(p)(1,1) - 1)
80

81 F_tmp = F;
82 disp("---")
83 F = Regression / Residual
84 r_squared = (ssy-sse)/ssy
85 F = F_tmp;
86

87 resid = f_out - data;
88

89

90 if(dispNum < size(data)(1,1))
91 for i = 1:dispNum
92 Px(i) = x(i);
93 Pdata(i) = data(i);
94 Pf_out(i) = f_out(i);
95 Presid(i) = resid(i);
96 endfor
97 else

Appendix G: Source Code 115

98 Px=x;
99 Pdata=data;

100 Pf_out=f_out;
101 Presid=resid;
102 endif
103

104 plot(Px, Pdata, "-;Data;", Px, Pf_out, "-;Fit;", Px, Presid, "-;Residuals;"\
105 ,Px,zeros(size(Pdata)(1,1),1));
106

107 endfunction

G.1.2 SpinDiff.m

1 A = load("fid-1-i");
2 [A_max, A_max_pos] = max(A(:,2));
3 [A_size, dummy] = size(A);
4 i = A_max_pos;
5 j = 1;
6

7 while(i<=A_size)
8 B(j,:) = [j, A(i,2)];
9 i++;

10 j++;
11 endwhile
12

13

14 function y = f1(x,p)
15 if(p(4)>=0)
16 X = x+p(4);
17 else
18 X = x-p(4);
19 endif
20 pX = p(3)*X;
21 s = sin(pX) ./ pX;
22 y = p(1) * s .* exp(- (p(2).^2 * X.^2) / 2);
23 endfunction
24

25 function y = f2(x,p)
26 if(p(4)>=0)
27 X = x+p(4);
28 else
29 X = x-p(4);
30 endif
31 c = cos(p(3)*X);
32 y = p(1) * c .* exp(- (p(2).^2 * X.^2) / 2);
33 endfunction
34

35 function y = f3(x,p)
36 if(p(3)>=0)
37 X = x+p(3);
38 else
39 X = x-p(3);
40 endif
41 y = p(1) * exp(- (p(2).^2 * X.^2) / 2);
42 endfunction
43

44 function y = F13(x,p)
45 p1 = [p(1); p(2); p(3); p(6)];
46 p2 = [p(4); p(5); p(6)];

116 G.2: TLM-Simulator

47 y = f1(x, p1) + f3(x, p2);
48 endfunction
49

50 function y = F23(x,p) # 6 Pars
51 p1 = [p(1); p(2); p(3); p(6)];
52 p2 = [p(4); p(5); p(6)];
53 y = f2(x, p1) + f3(x, p2);
54 endfunction
55

56 function y = F33(x,p) # 5 Pars
57 p1 = [p(1); p(2); p(5)];
58 p2 = [p(3); p(4); p(5)];
59 y = f3(x, p1) + f3(x, p2);
60 endfunction

G.2 TLM-Simulator

The source code of the TLM-Simulator is also available at: http://www.fklama.de/academic/

TLM-Simulator.tar.bz2

G.2.1 TLM-Sim.c

1 /*
2 * TLM-Simulator v1.0
3 *
4 * Author: Frederik Klama
5 * Copyright 2010 Frederik Klama
6 *
7 * This program is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or

10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 *
20 *
21 * Description:
22 * This program reads all needed parameters from the configuration file
23 * ’tlm.conf’ in the directory it is called from.
24 * The configuration file can be generated using ’confGen.pl’
25 * The program then does a Transmission-Line-Matrix simulation and
26 * outputs the values of the main box and the bulk for each iteration
27 * to STDOUT.
28 * It is recommended to redirect the output into a file.
29 * Depending on the verbose-value, an additional file ’map.txt’ is
30 * generated and contains all potentials from each iteration. It is
31 * intended for debugging and demonstration purposes.
32 */
33

34 #include <stdio.h>
35 #include <string.h>

http://www.fklama.de/academic/TLM-Simulator.tar.bz2
http://www.fklama.de/academic/TLM-Simulator.tar.bz2

Appendix G: Source Code 117

36 #include <stdlib.h>
37 #include <math.h>
38 #include <unistd.h>
39 #include <errno.h>
40

41 #include "common.h"
42 #include "parser.h"
43 #include "dataStruct.h"
44 #include "output.h"
45 #include "worker.h"
46 #include "fillBoxMag.h"
47

48 // The configuration file is hardcoded here.
49 // If you would like to use a different filename,
50 // just change this constant.
51 #define CONFIG_FILE "tlm.conf"
52

53 // Hardcoded ln(2)
54 #define LN2 0.6931471806
55

56 inline char hexChar(int);
57 inline void updateFN(char*, long long);
58 inline void errOut(char*);
59 inline void die(char*);
60

61 int
62 main()
63 {
64 struct confStruct c;
65

66 FILE* configFile;
67 FILE* verbOutFile;
68

69 unsigned long n;
70

71 double* dataArray;
72 double* Vi;
73 double* Vs;
74 double* BoxIntensity;
75 double* BulkIntensity;
76 double* initPot;
77 double* R;
78 double* Z;
79

80 double sumBox, sumBulk;
81

82 int dummy;
83

84 char filename[16];
85

86 unsigned long i;
87

88 #ifdef DEBUG
89 char arrFile[16];
90 FILE* arrOutFile;
91 #endif
92

93 // Read Config

118 G.2: TLM-Simulator

94 fprintf(stderr, "Reading config:"); fflush(stderr);
95 configFile = fopen(CONFIG_FILE, "r");
96 parseConfig(&c, configFile);
97 fclose(configFile);
98 fprintf(stderr, " done\n"); fflush(stderr);
99

100 #ifdef DEBUG
101 printf("dim = %d\nXsize = %d\n", c.dim, c.Xsize);
102 printf("Ysize = %d\nZsize = %d\n", c.Ysize, c.Zsize);
103 printf("Box0 = %d\nBox1 = %d\n", c.Box0, c.Box1);
104 printf("Box2 = %d\nBox3 = %d\n", c.Box2, c.Box3);
105 printf("Box4 = %d\nBox5 = %d\n", c.Box4, c.Box5);
106 printf("steps = %d\nT1 = %d\n", c.steps, c.T1);
107 printf("verbose = %d\nboundary= %d\n", c.verbose, c.boundary);
108 printf("\nx = %d\ny = %d\nz = %d\n", c.x, c.y, c.z);
109 printf("\n==== Initialising data structure.\n");
110 fflush(stdout);
111 #endif
112

113 // Initialise data structures
114 dataArray = initDataArray(c);
115 Vi = getVi(c, dataArray);
116 Vs = getVs(c, dataArray);
117 BoxIntensity = (double*) malloc(sizeof(double) * c.steps);
118 for(i=0;i<c.steps;i++)
119 *(BoxIntensity+i) = 0.0;
120 BulkIntensity = (double*) malloc(sizeof(double) * c.steps);
121 for(i=0;i<c.steps;i++)
122 *(BulkIntensity+i) = 0.0;
123 fprintf(stderr, "Initialised datastructures.\n"); fflush(stderr);
124

125 #if DETAILED_3D_MAP == 1
126 if(c.dim==3)
127 strcpy(filename, "map00000000.txt");
128 else
129 #endif
130 strcpy(filename, "map.txt");
131 #ifdef DEBUG
132 strcpy(arrFile, "arr00000000.txt");
133 #endif
134

135 // Generate initial magnetization
136 fillBoxMag(c, Vi);
137

138 if(c.verbose>1)
139 {
140 verbOutFile = fopen(filename, "w");
141 if(verbOutFile == NULL)
142 die("Could not open file for writing.\n");
143 }
144

145 fprintf(stderr, "Starting Simulation.\n"); fflush(stderr);
146

147 // Main Iteration Loop
148 for(n=0; n<c.steps; n++)
149 {
150 // Print Progress
151 if(n%10 == 0 && c.verbose>0)

Appendix G: Source Code 119

152 {
153 fprintf(stderr, "\n%lu/%lu", n, c.steps);
154 if(n%100==0)
155 fflush(stderr);
156 }
157

158 #if DETAILED_3D_MAP == 1
159 if(c.dim==3 && c.verbose>1)
160 {
161 updateFN(filename, n);
162 verbOutFile = fopen(filename, "w");
163 if(verbOutFile == NULL)
164 die("Could not open file for writing.\n");
165 }
166 #endif
167

168 if(c.verbose>1)
169 errOut(" +");
170

171 // Calculate Phi values and save intesities
172 calcSums(c, n, Vi, &sumBox, &sumBulk, BoxIntensity, BulkIntensity);
173

174 if(c.verbose>1)
175 errOut(">");
176

177 // Generate debugging output
178 if(c.verbose>1)
179 outputDetailedData(c, verbOutFile, n, Vi, sumBox, sumBulk);
180 #if DETAILED_3D_MAP == 1
181 if(c.dim==3 && c.verbose>1)
182 {
183 dummy = fclose(verbOutFile);
184 if(dummy != 0)
185 die("Could not close file.\n");
186 }
187 #endif
188

189 if(c.verbose>1)
190 errOut("S");
191

192 /*
193 * The actual work is done here
194 * c.model==0 => Link Line
195 * c.model==1 => Link Resistor
196 */
197 if(c.model==1) {
198 LRscatter(c, Vi, Vs);
199 if(c.verbose>1)
200 errOut("C");
201 LRconnect(c, Vi, Vs);
202 } else {
203 LLscatter(c, Vi, Vs);
204 if(c.verbose>1)
205 errOut("C");
206 LLconnect(c, Vi, Vs);
207 }
208

209 // T1 decay if set

120 G.2: TLM-Simulator

210 if(c.T1>0)
211 {
212 if(c.verbose>1)
213 errOut("T");
214 T1decay(c, Vi, (LN2 / (double)c.T1));
215 }
216 #ifdef DEBUG
217 fclose(arrOutFile);
218 #endif
219

220 if(c.verbose>1)
221 errOut("=");
222

223 }
224

225 // Print intesity list
226 outputGraphData(c, BoxIntensity, BulkIntensity);
227 #if DETAILED_3D_MAP == 1
228 if(c.dim<3 && c.verbose>1)
229 #else
230 if(c.verbose>1)
231 #endif
232 fclose(verbOutFile);
233

234 // Clean up and free memory
235 free(BoxIntensity);
236 free(BulkIntensity);
237 destroyDataArray(dataArray);
238

239 }
240

241 inline void updateFN(char* filename, long long n)
242 {
243 // filename = "map00000000.txt";
244 // 0123456789a
245

246 filename[0x0a] = hexChar(n & 0x0000000f);
247 filename[0x09] = hexChar((n & 0x000000f0) >> 4);
248 filename[0x08] = hexChar((n & 0x00000f00) >> 8);
249 filename[0x07] = hexChar((n & 0x0000f000) >> 12);
250 filename[0x06] = hexChar((n & 0x000f0000) >> 16);
251 filename[0x05] = hexChar((n & 0x00f00000) >> 20);
252 filename[0x04] = hexChar((n & 0x0f000000) >> 24);
253 filename[0x03] = hexChar((n & 0xf0000000) >> 28);
254 }
255

256 inline char hexChar(int i)
257 {
258 if(i<10 && i>=0)
259 return (char) i + 0x30;
260 else if(i<16)
261 return (char) i-10 + 0x61;
262 else
263 return ’x’;
264 }
265

266 inline void errOut(char* text)
267 {

Appendix G: Source Code 121

268 fprintf(stderr, text);
269 fflush(stderr);
270 }
271

272 inline void die(char* text)
273 {
274 fprintf(stderr, text);
275 fprintf(stderr, "Error: %i\n", errno);
276 fflush(stderr);
277 exit(1);
278 }
279

280 // vim:set ts=2 sw=2:

G.2.2 common.h

1 /*
2 * File: common.h
3 *
4 * Author: Frederik Klama
5 * Copyright 2010 Frederik Klama
6 *
7 * This file is part of TLM-Simulator.
8 *
9 * TLM-Simulator is free software: you can redistribute it and/or modify

10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * TLM-Simulator is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with TLM-Simulator. If not, see <http://www.gnu.org/licenses/>.
21 *
22 */
23 #define DETAILED_3D_MAP 0
24

25 struct confStruct {
26 /*
27 * This structure is universially used to pass the
28 * simulation parameters around.
29 */
30 short dim;
31 short Xsize;
32 short Ysize;
33 short Zsize;
34 unsigned long steps;
35 unsigned long T1;
36 char verbose;
37 char model;
38 char boundary;
39 long x;
40 long y;
41 long z;
42 long Y;
43 long Z;

122 G.2: TLM-Simulator

44 short Box0;
45 short Box1;
46 short Box2;
47 short Box3;
48 short Box4;
49 short Box5;
50 double round;
51 double* initPot;
52 double* pR;
53 double* pZ;
54 };
55

56 /* 4 2
57 * \ ^
58 * \ |
59 * \|
60 * 0 <----+----> 1
61 * |\
62 * | \
63 * V \
64 * 3 5
65 */
66

67

68 // vim:set ts=2 sw=2:

G.2.3 StringTools.h

1 /*
2 * File: StringTools.h
3 *
4 * Author: Frederik Klama
5 * Copyright 2010 Frederik Klama
6 *
7 * This file is part of TLM-Simulator.
8 *
9 * TLM-Simulator is free software: you can redistribute it and/or modify

10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * TLM-Simulator is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with TLM-Simulator. If not, see <http://www.gnu.org/licenses/>.
21 *
22 */
23

24 char*
25 clipStr(
26 char*,
27 long
28);
29

30 short
31 splitEqual(

Appendix G: Source Code 123

32 char *,
33 char **,
34 char **
35);
36

37 // vim:set ts=2 sw=2:

G.2.4 StringTools.c

1 /*
2 * File: StringTools.c
3 *
4 * Author: Frederik Klama
5 * Copyright 2010 Frederik Klama
6 *
7 * This file is part of TLM-Simulator.
8 *
9 * TLM-Simulator is free software: you can redistribute it and/or modify

10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * TLM-Simulator is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with TLM-Simulator. If not, see <http://www.gnu.org/licenses/>.
21 *
22 */
23

24 #include <stdlib.h>
25 #include <string.h>
26

27 char *
28 clipStr(
29 char * in,
30 long length
31)
32 {
33 /*
34 * This function removes any whitespaces from the beginning and end
35 * of a string
36 */
37 char * in_p = in;
38 char * out;
39 char * out_p;
40 char * end_p = in + length;
41 long i;
42 long l;
43 while((*(in_p) == ’ ’ || *(in_p) == ’\t’ || *(in_p) == ’\n’ ||
44 *(in_p) == ’\r’) && (in_p-in) < length && *in_p != ’\0’)
45 in_p++;
46 while((*(end_p) == ’ ’ || *(end_p) == ’\t’ || *(end_p) == ’\n’ ||
47 *(end_p) == ’\r’) && end_p>=in)
48 end_p--;
49 l = end_p - in_p + 1;
50 out = (char *) malloc(sizeof(char) * (l+1));

124 G.2: TLM-Simulator

51 out_p = out;
52 for(i=0;i<l;i++)
53 {
54 *(out_p+i) = *(in_p+i);
55 }
56 *(out_p+l) = ’\0’;
57 return out;
58 }
59

60 short
61 splitEqual(
62 char * in,
63 char ** par,
64 char ** data
65)
66 {
67 /*
68 * This function takes a string and splits it into two substrings.
69 * One before the equals sign and another after.
70 * It uses clipStr to remove whitespaces from the beginning and
71 * end of the substrings.
72 */
73 char * in_p;
74 char * eq_p;
75 long eq_pos;
76 eq_p = in_p = in;
77 while(*(eq_p) != ’\0’ && *(eq_p) != ’=’)
78 eq_p++;
79 if(*(eq_p) == ’\0’)
80 return 0;
81 eq_pos = eq_p - in;
82 *par = clipStr(in, eq_pos-1);
83 *data = clipStr(eq_p+1,strlen(eq_p+1));
84 return 1;
85 }
86

87 // vim:set ts=2 sw=2:

G.2.5 dataStruct.h

1 /*
2 * File: dataStruct.h
3 *
4 * Author: Frederik Klama
5 * Copyright 2010 Frederik Klama
6 *
7 * This file is part of TLM-Simulator.
8 *
9 * TLM-Simulator is free software: you can redistribute it and/or modify

10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * TLM-Simulator is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License

Appendix G: Source Code 125

20 * along with TLM-Simulator. If not, see <http://www.gnu.org/licenses/>.
21 *
22 */
23

24 double*
25 initDataArray(
26 struct confStruct
27);
28

29 double*
30 getVi(
31 struct confStruct,
32 double*
33);
34

35 double*
36 getVs(
37 struct confStruct,
38 double*
39);
40

41 void
42 destroyDataArray(
43 double*
44);
45

G.2.6 dataStruct.c

1 /*
2 * File: dataStruct.c
3 *
4 * Author: Frederik Klama
5 * Copyright 2010 Frederik Klama
6 *
7 * This file is part of TLM-Simulator.
8 *
9 * TLM-Simulator is free software: you can redistribute it and/or modify

10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * TLM-Simulator is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with TLM-Simulator. If not, see <http://www.gnu.org/licenses/>.
21 *
22 */
23 #include <stdio.h>
24 #include <math.h>
25 #include <stdlib.h>
26

27 #include "common.h"
28 #include "dataStruct.h"
29

30

126 G.2: TLM-Simulator

31

32 double*
33 initDataArray(
34 struct confStruct c
35)
36 {
37 /*
38 * This function allocates the memory for and
39 * initializes the main data array
40 */
41 double* out;
42 long long size = 1;
43

44 // Determine size of data array
45 switch(c.dim)
46 {
47 case 3: size *= c.Zsize;
48 case 2: size *= c.Ysize;
49 case 1: size *= c.Xsize * (4 * c.dim);
50 }
51

52 // Allocate just a little more, to avoid segfaults
53 size += 100;
54 #ifdef DEBUG
55 printf("size = %d\n", size);
56 printf("sizeof(double) = %d\n", sizeof(double));
57 printf("Mem usage = %d\n", size * sizeof(double));
58 #endif
59

60 // Actually allocate the memory
61 out = (double*) malloc(sizeof(double) * size);
62

63 // Write every value to 0.0 to initialize array
64 long long i;
65 for(i=0; i<size; i++)
66 *(out) = 0.0;
67

68 // Return pointer to array
69 return out;
70 }
71

72 /*
73 * The next two functions split the large data array
74 * into two parts. One for incident pulses and another
75 * for scattering pulses
76 * They are given the pointer to main data array as
77 * input and return a pointer to be used for data
78 */
79

80 double*
81 getVi(
82 struct confStruct c,
83 double* in
84)
85 {
86 // Incident pulses are stored in the first half
87 #ifdef DEBUG
88 printf("Vi = 0x%x\n", in);

Appendix G: Source Code 127

89 #endif
90 return in;
91 }
92

93 double*
94 getVs(
95 struct confStruct c,
96 double* in
97)
98 {
99 // Scattering pulses in the second half

100 double* out;
101 long long offset = 1;
102

103 // Determine system size again
104 switch(c.dim)
105 {
106 case 3: offset *= c.Zsize;
107 case 2: offset *= c.Ysize;
108 case 1: offset *= c.Xsize * (2 * c.dim);
109 }
110

111 // Add a little bit of buffer space
112 offset+=50;
113

114 // Actually set the pointer for Vs by ofsetting
115 // the pointer out relative to in
116 out = in + offset;
117

118 #ifdef DEBUG
119 printf("Vs = 0x%x\n", out);
120 printf("offset = %d\n", offset);
121 printf("offset * 8 = 0x%x\n", offset*8);
122 #endif
123 return (double*) out;
124 }
125

126

127 void
128 destroyDataArray(
129 double* in
130)
131 {
132 // Simply frees the memory
133 free(in);
134 }
135

136 // vim:set ts=2 sw=2:

G.2.7 fillBoxMag.h

1 /*
2 * File: fillBoxMag.h
3 *
4 * Author: Frederik Klama
5 * Copyright 2010 Frederik Klama
6 *
7 * This file is part of TLM-Simulator.
8 *

128 G.2: TLM-Simulator

9 * TLM-Simulator is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * TLM-Simulator is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with TLM-Simulator. If not, see <http://www.gnu.org/licenses/>.
21 *
22 */
23

24 void
25 fillBoxMag(
26 struct confStruct,
27 double*
28);
29

30 // vim:set ts=2 sw=2:

G.2.8 fillBoxMag.c

1 /*
2 * File: fillBoxMag.c
3 *
4 * Author: Frederik Klama
5 * Copyright 2010 Frederik Klama
6 *
7 * This file is part of TLM-Simulator.
8 *
9 * TLM-Simulator is free software: you can redistribute it and/or modify

10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * TLM-Simulator is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with TLM-Simulator. If not, see <http://www.gnu.org/licenses/>.
21 *
22 */
23

24 #include <stdio.h>
25

26 #include "common.h"
27 #include "fillBoxMag.h"
28

29 void
30 fillBoxMag(
31 struct confStruct c,
32 double* Vi
33)
34 {

Appendix G: Source Code 129

35 /*
36 * This function generates the initial magnetization
37 * by setting the incidence pulses.
38 */
39

40 long x = c.x;
41 long y = c.y;
42 long z = c.z;
43 double *iP;
44

45 iP = c.initPot;
46

47 switch(c.dim)
48 {
49 case 1:;
50 {
51 register long long i;
52 for(i=0;i<c.Xsize;i++)
53 {
54 *(Vi + i * x) = *(iP+i);
55 *(Vi + i * x + 1) = *(iP+i);
56 }
57 }
58 break;
59 case 2:;
60 {
61 register long long i;
62 for(i=0;i<(c.Xsize * c.Ysize);i++)
63 {
64 register double *ptr;
65 ptr = Vi + i*x;
66 *ptr = *(iP+i); ++ptr;
67 *ptr = *(iP+i); ++ptr;
68 *ptr = *(iP+i); ++ptr;
69 *ptr = *(iP+i);
70

71 }
72 }
73 break;
74 case 3:;
75 {
76 long i;
77 long j;
78 long k;
79 double *ptr;
80 for(k=0;k<(c.Zsize);k++)
81 {
82 for(j=0;j<(c.Ysize);j++)
83 {
84 for(i=0;i<(c.Xsize);i++)
85 {
86 ptr = Vi + i*x + j*y + k*z;
87 *ptr = *(iP+i); ++ptr;
88 *ptr = *(iP+i); ++ptr;
89 *ptr = *(iP+i); ++ptr;
90 *ptr = *(iP+i); ++ptr;
91 *ptr = *(iP+i); ++ptr;
92 *ptr = *(iP+i);

130 G.2: TLM-Simulator

93 }
94 }
95 }
96

97 break;
98 }
99 }

100 }
101

102

103

104 // vim:set ts=2 sw=2:

G.2.9 output.h

1 /*
2 * File: output.h
3 *
4 * Author: Frederik Klama
5 * Copyright 2010 Frederik Klama
6 *
7 * This file is part of TLM-Simulator.
8 *
9 * TLM-Simulator is free software: you can redistribute it and/or modify

10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * TLM-Simulator is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with TLM-Simulator. If not, see <http://www.gnu.org/licenses/>.
21 *
22 */
23

24 void
25 outputDetailedData(
26 struct confStruct,
27 FILE*,
28 long long,
29 double*,
30 double,
31 double
32);
33

34 void
35 outputGraphData(
36 struct confStruct,
37 double*,
38 double*
39);
40

41 void
42 outputFullDataArray(
43 struct confStruct,
44 FILE*,

Appendix G: Source Code 131

45 long long,
46 double*,
47 double*
48);
49

50 // vim:set ts=2 sw=2:

G.2.10 output.c

1 /*
2 * File: output.c
3 *
4 * Author: Frederik Klama
5 * Copyright 2010 Frederik Klama
6 *
7 * This file is part of TLM-Simulator.
8 *
9 * TLM-Simulator is free software: you can redistribute it and/or modify

10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * TLM-Simulator is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with TLM-Simulator. If not, see <http://www.gnu.org/licenses/>.
21 *
22 */
23

24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27

28 #include "common.h"
29 #include "output.h"
30

31

32 double normedTotal;
33

34 void
35 outputDetailedData(
36 struct confStruct c,
37 FILE* out,
38 long long n,
39 double* Vi,
40 double sumBox,
41 double sumBulk
42)
43 {
44 /*
45 * This function prints the debugging output if debugging is
46 * switched on.
47 */
48 long x = c.x;
49 long y = c.y;
50 long z = c.z;

132 G.2: TLM-Simulator

51

52 long i;
53 long j;
54 long k;
55 switch(c.dim)
56 {
57 case 3:;
58 #if DETAILED_3D_MAP == 1
59 {
60 ///////////////////
61 // print results //
62 ///////////////////
63 //printf("i=%8d\n ",i);
64

65 // layer loop
66 for(k=0; k<c.Zsize; k++)
67 {
68 fprintf(out, "===== layer %d =====\n\n", k);
69

70 fprintf(out, " ");
71

72 // print column numbers
73

74 for(i=0; i<c.Xsize; i++)
75 {
76 if((i==c.Box0 || i==c.Box1+1) && k>=c.Box4 && k<=c.Box5)
77 fprintf(out, " ");
78 fprintf(out, "%8d", i);
79 }
80

81 fprintf(out, "\n");
82

83 // print horizontal box lines
84 for(j=0; j<c.Ysize; j++)
85 {
86 if((j==c.Box2 || j==c.Box3+1) && k>=c.Box4 && k<=c.Box5)
87 {
88 fprintf(out, " ");
89 for(i=0; i<c.Xsize; i++)
90 {
91 if(i<c.Box0 || i>c.Box1)
92 fprintf(out, " ");
93 else
94 {
95 if(i==c.Box0) fprintf(out, " +-");
96 fprintf(out, "--------");
97 if(i==c.Box1) fprintf(out, "-+ ");
98 }
99 }

100 fprintf(out, "\n");
101 }
102

103 fprintf(out, "%3d", j); // print row number
104 for(i=0; i<c.Xsize; i++)
105 {
106 if((i==c.Box0 || i==c.Box1+1) && k>=c.Box4 && k<=c.Box5)
107 {
108 if(j>=c.Box2 && j<=c.Box3)

Appendix G: Source Code 133

109 fprintf(out, " | "); // print vertical box lines
110 else
111 fprintf(out, " ");
112 }
113 double v = *(Vi+(i*x)+(j*y)+(k*z)) +\
114 *(Vi+(i*x)+(j*y)+(k*z)+1) +\
115 *(Vi+(i*x)+(j*y)+(k*z)+2) +\
116 *(Vi+(i*x)+(j*y)+(k*z)+3) +\
117 *(Vi+(i*x)+(j*y)+(k*z)+4) +\
118 *(Vi+(i*x)+(j*y)+(k*z)+5);
119 char valueString[140] = "";
120 sprintf(valueString, "%8.3e", v);
121 fprintf(out, "%s", valueString);
122 }
123 fprintf(out, "\n");
124 }
125 fprintf(out, "\n\n");
126 }
127

128 if(c.verbose>2)
129 {
130 // summation
131 long long countBox = (c.Box1 - c.Box0 + 1) * \
132 (c.Box3 - c.Box2 + 1) * \
133 (c.Box5 - c.Box4 + 1);
134 long long countBulk = (c.Xsize * c.Ysize * c.Zsize) - countBox;
135 double total = (sumBulk+sumBox)/(countBulk+countBox);
136 if(n==0) normedTotal=total;
137 fprintf(out, "\n\n");
138 fprintf(out, "+==================================+\n");
139 fprintf(out, "H S U M S H\n");
140 fprintf(out, "+==================================+\n");
141 fprintf(out, "| Bulk:Box = %8.3f :%8.3f |\n",\
142 sumBulk/countBulk, \
143 sumBox /countBox);
144 fprintf(out, "| Total = %8.3f |\n",
145 total);
146 fprintf(out, "| Normed Total = %8.6f |\n",\
147 total/normedTotal);
148 fprintf(out, "+----------------------------------+\n");
149 }
150 }
151 #else
152 fprintf(out, "+--------------------------------------+\n");
153 fprintf(out, "| n =%7li |\n",n);
154 fprintf(out, "+--------------------------------------+\n");
155 for(k=0; k<c.Zsize; k++)
156 {
157 fprintf(out, "**** n=%li, z=%li ****\n", n, k);
158 for(j=0; j<c.Ysize; j++)
159 {
160 fprintf(out, "**** n=%li, z=%li, y=%li ****\n", n, k, j);
161

162 for(i=0; i<c.Xsize; i++)
163 {
164 double v;
165 if(!(i%10))
166 fprintf(out, "%4li-%4li:", i, (i+9));

134 G.2: TLM-Simulator

167 v = *(Vi+(i*c.x)+(j*c.y)+(k*c.z));
168 v += *(Vi+(i*c.x)+(j*c.y)+(k*c.z)+1);
169 v += *(Vi+(i*c.x)+(j*c.y)+(k*c.z)+2);
170 v += *(Vi+(i*c.x)+(j*c.y)+(k*c.z)+3);
171 v += *(Vi+(i*c.x)+(j*c.y)+(k*c.z)+4);
172 v += *(Vi+(i*c.x)+(j*c.y)+(k*c.z)+5);
173 fprintf(out, "%8.3lf ", v);
174 if((i%10)==9)
175 fprintf(out, "\n");
176 }
177 }
178 }
179 #endif
180

181 break;
182

183 case 2:;
184 {
185 fprintf(out, "------{ n=%d }-----\n", n);
186

187 fprintf(out, " ");
188

189 // print column numbers
190 for(i=0; i<c.Xsize; i++)
191 {
192 if(i==c.Box0 || i==c.Box1+1) fprintf(out, " ");
193 fprintf(out, "%8d", i);
194 }
195

196 fprintf(out, "\n");
197

198 // print horizontal box lines
199 for(j=0; j<c.Ysize; j++)
200 {
201 if(j==c.Box2 || j==c.Box3+1)
202 {
203 fprintf(out, " ");
204 for(i=0; i<c.Xsize; i++)
205 {
206 if(i<c.Box0 || i>c.Box1)
207 fprintf(out, " ");
208 else
209 {
210 if(i==c.Box0) fprintf(out, " +-");
211 fprintf(out, "--------");
212 if(i==c.Box1) fprintf(out, "-+ ");
213 }
214 }
215 fprintf(out, "\n");
216 }
217

218 fprintf(out, "%3d", j); // print row number
219 for(i=0; i<c.Xsize; i++)
220 {
221 double v;
222 if(i==c.Box0 || i==c.Box1+1)
223 {
224 if(j>=c.Box2 && j<=c.Box3)

Appendix G: Source Code 135

225 fprintf(out, " | "); // print vertical box lines
226 else
227 fprintf(out, " ");
228 }
229 v = *(Vi+(i*x)+(j*y)) +
230 *(Vi+(i*x)+(j*y)+1) +
231 *(Vi+(i*x)+(j*y)+2) +
232 *(Vi+(i*x)+(j*y)+3);
233 fprintf(out, "%8.3f", v);
234 }
235 fprintf(out, "\n");
236 }
237 fprintf(out, "\n\n");
238 }
239 break;
240

241 case 1:;
242 {
243 if(n % 25 == 0)
244 {
245 fprintf(out, "\n ");
246 for(i=0; i<c.Xsize; i++)
247 {
248 if(i==c.Box0 || i==c.Box1+1)
249 fprintf(out, "| ");
250 fprintf(out, "%8d", i);
251 }
252 fprintf(out, "\n");
253 }
254 fprintf(out, "%8d: ", n);
255 for(i=0; i<c.Xsize; i++)
256 {
257 if(i==c.Box0 || i==c.Box1+1)
258 fprintf(out, "| ");
259 fprintf(out, "%8.3f", (*(Vi+(i*x))+ *(Vi+(i*x)+1)));
260 }
261 fprintf(out, "\n");
262 break;
263 }
264 }
265 }
266

267 void
268 outputGraphData(
269 struct confStruct c,
270 double* data1In,
271 double* data2In
272)
273 {
274 /*
275 * This function prints the magnetization amounts for each iteration.
276 * The main output of the simulator.
277 */
278 unsigned long i;
279 double *d1 = data1In;
280 double *d2 = data2In;
281 for(i=0;i<c.steps;i++)
282 {

136 G.2: TLM-Simulator

283 printf("%.6f\t%.6f\n", *d1, *d2);
284 ++d1; ++d2;
285 }
286 }
287

288 void
289 outputFullDataArray(
290 struct confStruct c,
291 FILE* out,
292 long long n,
293 double* Vi,
294 double* Vs
295)
296 {
297 /*
298 * This function was used to output the full data array
299 * It is currently not used anywhere, but was essential
300 * during the inital debugging of the code.
301 */
302 long i, j, k, l;
303 long x = c.x;
304 long y = c.y;
305 long z = c.z;
306 for(k=0;k<c.Zsize;k++)
307 for(j=0;j<c.Ysize;j++)
308 for(i=0;i<c.Xsize;i++)
309 {
310 long long off = i*x+j*y+k*z;
311 fprintf(out, "i=%6d \t", i);
312 fprintf(out, "j=%6d \t", j);
313 fprintf(out, "k=%6d\n", k);
314 fprintf(out, "n | Vi | Vs\n");
315 for(l=0;l<6;l++)
316 {
317 fprintf(out, "%1d", l);
318 fprintf(out, " | %8.4f | ", *(Vi+off+l));
319 fprintf(out, "%8.4f", *(Vs+off+l));
320 if(k>0 && j>0 && i>0 && i<c.Xsize-1 &&
321 j<c.Ysize-1 && k<c.Zsize-1)
322 {
323 switch(l)
324 {
325 case 0: fprintf(out, " | %8.4f\n", *(Vs+off-x+1));
326 break;
327 case 1: fprintf(out, " | %8.4f\n", *(Vs+off+x));
328 break;
329 case 2: fprintf(out, " | %8.4f\n", *(Vs+off-y+3));
330 break;
331 case 3: fprintf(out, " | %8.4f\n", *(Vs+off+y+2));
332 break;
333 case 4: fprintf(out, " | %8.4f\n", *(Vs+off-z+5));
334 break;
335 case 5: fprintf(out, " | %8.4f\n", *(Vs+off+z+4));
336 }
337 }
338 else
339 fprintf(out, "\n");
340 }

Appendix G: Source Code 137

341 fprintf(out, "=====================\n");
342 fflush(out);
343 }
344 }
345

346

347 // vim:set ts=2 sw=2:

G.2.11 parser.h

1 /*
2 * File: parser.h
3 *
4 * Author: Frederik Klama
5 * Copyright 2010 Frederik Klama
6 *
7 * This file is part of TLM-Simulator.
8 *
9 * TLM-Simulator is free software: you can redistribute it and/or modify

10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * TLM-Simulator is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with TLM-Simulator. If not, see <http://www.gnu.org/licenses/>.
21 *
22 */
23

24 void
25 parseConfig(
26 struct confStruct*,
27 FILE*
28);
29

30

31 // vim:set ts=2 sw=2:

G.2.12 parser.c

1 /*
2 * File: parser.c
3 *
4 * Author: Frederik Klama
5 * Copyright 2010 Frederik Klama
6 *
7 * This file is part of TLM-Simulator.
8 *
9 * TLM-Simulator is free software: you can redistribute it and/or modify

10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * TLM-Simulator is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of

138 G.2: TLM-Simulator

16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with TLM-Simulator. If not, see <http://www.gnu.org/licenses/>.
21 *
22 */
23

24 #include <stdio.h>
25 #include <string.h>
26 #include <math.h>
27 #include <stdlib.h>
28

29 #include "common.h"
30 #include "parser.h"
31 #include "StringTools.h"
32

33 #define FLUSH fflush(stdout)
34

35 void
36 parseConfig(
37 struct confStruct* out,
38 FILE* confFile
39)
40 {
41 /*
42 * This function parses the configuration file and sets
43 * the values in c.
44 */
45 char line[1024];
46 char* ptr;
47 char* numPtr;
48 char* par;
49 char* data;
50 char pos;
51 char numC[80];
52 double* iP;
53 double* initPot;
54 double* R;
55 double* R_orig;
56 double* Z;
57 double* Z_orig;
58 long i;
59

60 // Defaults
61 out->dim = 1;
62 out->Xsize = 4;
63 out->Ysize = 0;
64 out->Zsize = 0;
65 out->steps = 10;
66 out->T1 = 0;
67 out->model = 0;
68 out->verbose = 2;
69 out->boundary = 1;
70 out->x = 0;
71 out->y = 0;
72 out->z = 0;
73 out->Y = 0;

Appendix G: Source Code 139

74 out->Z = 0;
75 out->Box0 = 0;
76 out->Box1 = 0;
77 out->Box2 = 0;
78 out->Box3 = 0;
79 out->Box4 = 0;
80 out->Box5 = 0;
81 out->round = 0.0;
82

83 /*
84 * Fetch one line at the time with a buffer of 1024 until we
85 * encounter a line with only "{Begin Data}" on it.
86 */
87 while(fgets(line, 1024, confFile) && strcmp(line, "{Begin Data}\n"))
88 {
89 /*
90 * lines starting with ’#’ are ignored, others are split
91 * at the equals sign.
92 */
93 if(*line != ’#’ && splitEqual(line, &par, &data))
94 {
95 /*
96 * We then compare the part before the equals sign
97 * i.e. the parameter to the values we are looking
98 * for and parse the value and set the corresponding
99 * parameter.

100 */
101 if(!strcmp(par, "dim"))
102 sscanf(data, "%d", &out->dim);
103 if(!strcmp(par, "Xsize"))
104 sscanf(data, "%d", &out->Xsize);
105 if(!strcmp(par, "Ysize"))
106 sscanf(data, "%d", &out->Ysize);
107 if(!strcmp(par, "Zsize"))
108 sscanf(data, "%d", &out->Zsize);
109 if(!strcmp(par, "steps"))
110 sscanf(data, "%u", &out->steps);
111 if(!strcmp(par, "T1"))
112 sscanf(data, "%u", &out->T1);
113 if(!strcmp(par, "verbose"))
114 sscanf(data, "%d", &out->verbose);
115 if(!strcmp(par, "Box0"))
116 sscanf(data, "%d", &out->Box0);
117 if(!strcmp(par, "Box1"))
118 sscanf(data, "%d", &out->Box1);
119 if(!strcmp(par, "Box2"))
120 sscanf(data, "%d", &out->Box2);
121 if(!strcmp(par, "Box3"))
122 sscanf(data, "%d", &out->Box3);
123 if(!strcmp(par, "Box4"))
124 sscanf(data, "%d", &out->Box4);
125 if(!strcmp(par, "Box5"))
126 sscanf(data, "%d", &out->Box5);
127 if(!strcmp(par, "round"))
128 sscanf(data, "%lf", &out->round);
129 if(!strcmp(par, "model"))
130 {
131 if(!strcmp(data, "ll") || \

140 G.2: TLM-Simulator

132 !strcmp(data, "LL"))
133 out->model = 0;
134 if(!strcmp(data, "lr") || \
135 !strcmp(data, "LR"))
136 out->model = 1;
137 }
138 }
139 }
140

141 // Initialise Shift Constants
142 out->x = 2 * out->dim;
143 if(out->dim>1)
144 {
145 out->y = out->Xsize * (2 * out->dim);
146 out->Y = out->Xsize;
147 }
148 if(out->dim>2)
149 {
150 out->z = out->Xsize * out->Ysize * (2 * out->dim);
151 out->Z = out->Xsize * out->Ysize;
152 }
153

154 // Allocate initPot, R and Z
155 if(out->dim==3)
156 {
157 initPot = (double*) malloc(
158 sizeof(double) * (out->Xsize * out->Ysize * out->Zsize)+10
159);
160 R_orig = (double*) malloc(
161 sizeof(double) * (out->Xsize * out->Ysize * out->Zsize)+10
162);
163 Z_orig = (double*) malloc(
164 sizeof(double) * (out->Xsize * out->Ysize * out->Zsize)+10
165);
166 for(i=0;i<(out->Xsize * out->Ysize * out->Zsize)+10;i++)
167 {
168 *(initPot+i) = 0.0;
169 *(R_orig+i) = 0.0;
170 *(Z_orig+i) = 0.0;
171 }
172 }
173 else if(out->dim==2)
174 {
175 initPot = (double*) malloc(
176 sizeof(double) * (out->Xsize * out->Ysize)+10
177);
178 R_orig = (double*) malloc(
179 sizeof(double) * (out->Xsize * out->Ysize)+10
180);
181 Z_orig = (double*) malloc(
182 sizeof(double) * (out->Xsize * out->Ysize)+10
183);
184 for(i=0;i<(out->Xsize * out->Ysize)+10;i++)
185 {
186 *(initPot+i) = 0.0;
187 *(R_orig+i) = 0.0;
188 *(Z_orig+i) = 0.0;
189 }

Appendix G: Source Code 141

190 }
191 else // out->dim==1
192 {
193 initPot = (double*) malloc(sizeof(double) * (out->Xsize)+10);
194 R_orig = (double*) malloc(sizeof(double) * (out->Xsize)+10);
195 Z_orig = (double*) malloc(sizeof(double) * (out->Xsize)+10);
196 for(i=0;i<out->Xsize+10;i++)
197 {
198 *(initPot+i) = 0.0;
199 *(R_orig+i) = 0.0;
200 *(Z_orig+i) = 0.0;
201 }
202 }
203

204 iP = initPot;
205 R = R_orig;
206 Z = Z_orig;
207

208

209 /*
210 * Here the values for R, Z and the potential are parsed
211 * for each node.
212 */
213 while(fgets(line, 1024, confFile))
214 {
215 if(*line != ’#’ && splitEqual(line, &par, &data))
216 {
217 if(!strcmp(par, "P"))
218 sscanf(data, "%le", iP++);
219 if(!strcmp(par, "R"))
220 sscanf(data, "%le", R++);
221 if(!strcmp(par, "Z"))
222 sscanf(data, "%le", Z++);
223 }
224 }
225

226 out->initPot = initPot;
227 out->pR = R_orig;
228 out->pZ = Z_orig;
229 }
230

231 // vim:set ts=2 sw=2:

G.2.13 worker.h

1 /*
2 * File: worker.h
3 *
4 * Author: Frederik Klama
5 * Copyright 2010 Frederik Klama
6 *
7 * This file is part of TLM-Simulator.
8 *
9 * TLM-Simulator is free software: you can redistribute it and/or modify

10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * TLM-Simulator is distributed in the hope that it will be useful,

142 G.2: TLM-Simulator

15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with TLM-Simulator. If not, see <http://www.gnu.org/licenses/>.
21 *
22 */
23

24 void
25 LLconnect(
26 struct confStruct,
27 double*,
28 double*
29);
30

31 void
32 LLscatter(
33 struct confStruct,
34 double*,
35 double*
36);
37

38 void
39 LRscatter(
40 struct confStruct,
41 double*,
42 double*
43);
44

45 void
46 LRconnect(
47 struct confStruct,
48 double*,
49 double*
50);
51

52 void
53 T1decay(
54 struct confStruct,
55 double*,
56 double
57);
58

59 void
60 calcSums(
61 struct confStruct,
62 long long,
63 double*,
64 double*,
65 double*,
66 double*,
67 double*
68);
69

70 /*
71 * 4 2
72 * \ ^

Appendix G: Source Code 143

73 * \ |
74 * \|
75 * 0 <----+----> 1
76 * |\
77 * | \
78 * V \
79 * 3 5
80 */
81

82

83 // vim:set ts=2 sw=2:

G.2.14 worker.c

1 /*
2 * File: worker.c
3 *
4 * Author: Frederik Klama
5 * Copyright 2010 Frederik Klama
6 *
7 * This file is part of TLM-Simulator.
8 *
9 * TLM-Simulator is free software: you can redistribute it and/or modify

10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * TLM-Simulator is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with TLM-Simulator. If not, see <http://www.gnu.org/licenses/>.
21 *
22 */
23 #include <omp.h>
24 #include <stdio.h>
25 #include <math.h>
26

27 #include "common.h"
28 #include "worker.h"
29

30 #define FLUSH fflush(stdout)
31

32 /* 4 2
33 * \ ^
34 * \ |
35 * \|
36 * 0 <----+----> 1
37 * |\
38 * | \
39 * V \
40 * 3 5
41 */
42

43

44 /**
45 * Link Line Model *

144 G.2: TLM-Simulator

46 **
47 * Connecting in 1D, 2D and 3D. *
48 * Most of the code is for the corners, edges and *
49 * areas *
50 **/
51

52 void
53 LLconnect(
54 struct confStruct c,
55 double* Vi,
56 double* Vs
57)
58 {
59 long x = c.x;
60 long y = c.y;
61 long z = c.z;
62 long long off = 0;
63 register double *pVi;
64 double *pVs;
65

66 //// Bulk Connect
67 switch(c.dim)
68 {
69 case 1:;
70 {
71 register long i;
72 pVi = Vi+2;
73 pVs = Vs+2;
74 for(i=1; i<(c.Xsize-1); i++)
75 {
76 *(pVi) = *(pVs-x+1);
77 *(++pVi) = *(pVs+x);
78 ++pVi;
79 pVs += 2;
80 }
81 }
82 break;
83

84 case 2:;
85 {
86 register long i;
87 pVi = Vi+y;
88 pVs = Vs+y;
89 for(i=c.Xsize; i<(c.Xsize*(c.Ysize-1)); i++)
90 {
91 *(pVi) = *(pVs-x+1);
92 *(++pVi) = *(pVs+x);
93 *(++pVi) = *(pVs-y+3);
94 *(++pVi) = *(pVs+y+2);
95 ++pVi;
96 pVs += 4;
97 }
98 }
99 break;

100

101 case 3:;
102 {
103 long long i;

Appendix G: Source Code 145

104 long long ii;
105 pVi = Vi+z;
106 pVs = Vs+z;
107 #pragma omp parallel private(i,ii)
108 {
109 #pragma omp for
110 for(
111 i=(c.Xsize*c.Ysize);
112 i<(c.Xsize*c.Ysize*c.Zsize-c.Xsize*c.Ysize);
113 i++)
114 {
115 ii = i*6;
116 *(pVi + ii + 0) = *(pVs + ii -x+1);
117 *(pVi + ii + 1) = *(pVs + ii +x);
118 *(pVi + ii + 1) = *(pVs + ii -y+3);
119 *(pVi + ii + 1) = *(pVs + ii +y+2);
120 *(pVi + ii + 1) = *(pVs + ii -z+5);
121 *(pVi + ii + 1) = *(pVs + ii +z+4);
122 }
123 }
124 }
125 break;
126 } // switch
127

128 //// Reflections at the boundaries
129 switch(c.dim)
130 {
131 case 3:;
132 //// Back Frame (z=0)
133 // Top left corner (x=0, y=0)
134 pVi = Vi+4;
135 pVs = Vs+4;
136 *(pVi) = *(pVs); // 4 : 4
137 *(++pVi) = *(pVs+z); // 5 : 4
138

139 // Top right corner (x=max, y=0)
140 off = (c.Xsize-1) * x;
141 pVi += off;
142 pVs += off;
143 *(pVi) = *(pVs+z); // 5 : 4
144 *(--pVi) = *(pVs); // 4 : 4
145

146 // Bottom left corner (x=0, y=max)
147 off = (c.Ysize-1) * y;
148 pVi = Vi+off+4;
149 pVs = Vs+off+4;
150 *(pVi) = *(pVs); // 4 : 4
151 *(++pVi) = *(pVs+z); // 5 : 4
152

153 // Bottom right corner (x=max, y=max)
154 off = (c.Xsize-1) * x;
155 pVi += off;
156 pVs += off;
157 *(pVi) = *(pVs+z); // 5 : 4
158 *(--pVi) = *(pVs); // 4 : 4
159

160 {
161 register long i;

146 G.2: TLM-Simulator

162 for(i=1; i<(c.Xsize-1); i++)
163 {
164 // Top border (x=i, y=0)
165 off = i * x;
166 pVi = Vi+off+4;
167 pVs = Vs+off+4;
168 *(pVi) = *(pVs); // 4 : 4
169 *(++pVi) = *(pVs+z); // 5 : 4
170

171 // Bottom border (x=i, y=max)
172 off = (c.Ysize-1) * y;
173 pVi += off;
174 pVs += off;
175 *(pVi) = *(pVs+z); // 5 : 4
176 *(--pVi) = *(pVs); // 4 : 4
177 }
178

179 for(i=1; i<(c.Ysize-1); i++)
180 {
181 // Left border (x=0, y=i)
182 off = i * y;
183 pVi = Vi+off+4;
184 pVs = Vs+off+4;
185 *(pVi) = *(pVs); // 4 : 4
186 *(++pVi) = *(pVs+z); // 5 : 4
187

188 // Right border (x=max, y=i)
189 off = (c.Xsize-1) * x;
190 pVi += off;
191 pVs += off;
192 *(pVi) = *(pVs+z); // 5 : 4
193 *(--pVi) = *(pVs); // 4 : 4
194 }
195 }
196

197 //// Front Frame (z=max)
198 // Top left corner (x=0, y=0)
199 off = (c.Zsize-1) * z;
200 pVi = Vi+off;
201 pVs = Vs+off;
202 *(pVi) = *(pVs); // 0 : 0
203 *(++pVi) = *(pVs+x); pVs += 2; // 1 : 0
204 *(++pVi) = *(pVs); // 2 : 2
205 *(++pVi) = *(pVs+y); pVs += 3; // 3 : 2
206 *(++pVi) = *(pVs-z); // 4 : 5
207 *(++pVi) = *(pVs); // 5 : 5
208

209 // Top right corner (x=max, y=0)
210 off = (c.Xsize-1) * x;
211 pVi += off;
212 pVs += off;
213 *(pVi) = *(pVs); // 5 : 5
214 *(--pVi) = *(pVs-z); pVs -= 3; // 4 : 5
215 *(--pVi) = *(pVs+y); // 3 : 2
216 *(--pVi) = *(pVs); pVs -= 1; // 2 : 2
217 *(--pVi) = *(pVs); // 1 : 1
218 *(--pVi) = *(pVs-x); // 0 : 1
219

Appendix G: Source Code 147

220 // Bottom left corner (x=0, y=max)
221 off = (c.Ysize-1) * y + (c.Zsize-1) * z;
222 pVi = Vi+off;
223 pVs = Vs+off;
224 *(pVi) = *(pVs); // 0 : 0
225 *(++pVi) = *(pVs+x); pVs += 3; // 1 : 0
226 *(++pVi) = *(pVs-y); // 2 : 3
227 *(++pVi) = *(pVs); pVs += 2; // 3 : 3
228 *(++pVi) = *(pVs-z); // 4 : 5
229 *(++pVi) = *(pVs); // 5 : 5
230

231 // Bottom right corner (x=max, y=max)
232 off = (c.Xsize-1) * x;
233 pVi += off;
234 pVs += off;
235 *(pVi) = *(pVs); // 5 : 5
236 *(--pVi) = *(pVs-z); pVs -= 2; // 4 : 5
237 *(--pVi) = *(pVs); // 3 : 3
238 *(--pVi) = *(pVs-y); pVs -= 2; // 2 : 3
239 *(--pVi) = *(pVs); // 1 : 1
240 *(--pVi) = *(pVs-x); // 0 : 1
241

242 {
243 register long i;
244 for(i=1; i<(c.Xsize-1); i++)
245 {
246 // Top front border (x=i, y=0, z=max)
247 off = i * x + (c.Zsize-1) * z;
248 pVi = Vi+off;
249 pVs = Vs+off;
250 *(pVi) = *(pVs-x+1); // 0 : 1
251 *(++pVi) = *(pVs+x); pVs += 2; // 1 : 0
252 *(++pVi) = *(pVs); // 2 : 2
253 *(++pVi) = *(pVs+y); pVs += 3; // 3 : 2
254 *(++pVi) = *(pVs-z); // 4 : 5
255 *(++pVi) = *(pVs); // 5 : 5
256

257 // Bottom front border (x=i, y=0, z=max)
258 off = (c.Ysize-1) * y;
259 pVi += off;
260 pVs += off;
261 *(pVi) = *(pVs); // 5 : 5
262 *(--pVi) = *(pVs-z); pVs -= 2; // 4 : 5
263 *(--pVi) = *(pVs); // 3 : 3
264 *(--pVi) = *(pVs-y); pVs -= 3; // 2 : 3
265 *(--pVi) = *(pVs+x); // 1 : 0
266 *(--pVi) = *(pVs-x+1); // 0 : 1
267 }
268

269 for(i=1; i<(c.Ysize-1); i++)
270 {
271 // Left front border (x=0, y=i, z=max)
272 off = i * y + (c.Zsize-1) * z;
273 pVi = Vi+off;
274 pVs = Vs+off;
275 *(pVi) = *(pVs); // 0 : 0
276 *(++pVi) = *(pVs+x); pVs += 2; // 1 : 0
277 *(++pVi) = *(pVs-y+1); // 2 : 3

148 G.2: TLM-Simulator

278 *(++pVi) = *(pVs+y); pVs += 3; // 3 : 2
279 *(++pVi) = *(pVs-z); // 4 : 5
280 *(++pVi) = *(pVs); // 5 : 5
281

282 // Right front border (x=max, y=i, z=max)
283 off = (c.Xsize-1) * x;
284 pVi += off;
285 pVs += off;
286 *(pVi) = *(pVs); // 5 : 5
287 *(--pVi) = *(pVs-z); pVs -=3; // 4 : 5
288 *(--pVi) = *(pVs+y); // 3 : 2
289 *(--pVi) = *(pVs-y+1); --pVs; // 2 : 3
290 *(--pVi) = *(pVs); // 1 : 1
291 *(--pVi) = *(pVs-x); // 0 : 1
292 }
293

294 for(i=1; i<(c.Zsize-1); i++)
295 {
296 // Top left border (x=0, y=0, z=i)
297 off = i * z;
298 pVi = Vi+off;
299 pVs = Vs+off;
300 *(pVi) = *(pVs); // 0 : 0
301 *(++pVi) = *(pVs+x); pVs += 2; // 1 : 0
302 *(++pVi) = *(pVs); // 2 : 2
303 *(++pVi) = *(pVs+y); pVs += 2; // 3 : 2
304 *(++pVi) = *(pVs-z+1); // 4 : 5
305 *(++pVi) = *(pVs+z); // 5 : 4
306

307 // Bottom left border (x=0, y=max, z=i)
308 off = (c.Ysize-1) * y;
309 pVi += off;
310 pVs += off;
311 *(pVi) = *(pVs+z); // 5 : 4
312 *(--pVi) = *(pVs-z+1); --pVs; // 4 : 5
313 *(--pVi) = *(pVs); // 3 : 3
314 *(--pVi) = *(pVs-y); pVs-=3; // 2 : 3
315 *(--pVi) = *(pVs+x); // 1 : 0
316 *(--pVi) = *(pVs); // 0 : 0
317

318 // Top right border (x=max, y=0, z=i)
319 off = (c.Xsize-1) * x + i * z;
320 pVi = Vi+off;
321 pVs = Vs+off+1;
322 *(pVi) = *(pVs-x); // 0 : 1
323 *(++pVi) = *(pVs); ++pVs; // 1 : 1
324 *(++pVi) = *(pVs); // 2 : 2
325 *(++pVi) = *(pVs+y); pVs += 2; // 3 : 2
326 *(++pVi) = *(pVs-z+1); // 4 : 5
327 *(++pVi) = *(pVs+z); // 5 : 4
328

329 // Bottom right border (x=max, y=max, z=i)
330 off = (c.Ysize-1) * y;
331 pVi += off;
332 pVs += off;
333 *(pVi) = *(pVs+z); // 5 : 4
334 *(--pVi) = *(pVs-z+1); --pVs; // 4 : 5
335 *(--pVi) = *(pVs); // 3 : 3

Appendix G: Source Code 149

336 *(--pVi) = *(pVs-y); pVs-=2; // 2 : 3
337 *(--pVi) = *(pVs); // 1 : 1
338 *(--pVi) = *(pVs-x); // 0 : 1
339 }
340 }
341

342 //// Areas
343 {
344 register long i;
345 register long j;
346 for(i=1; i<(c.Xsize-1); i++)
347 for(j=1; j<(c.Ysize-1); j++)
348 {
349 // Back area (x=i, y=j, z=0)
350 off = x*i + y*j;
351 pVi = Vi+off;
352 pVs = Vs+off;
353 *(pVi) = *(pVs-x+1); // 0 : 1
354 *(++pVi) = *(pVs+x); pVs+=2; // 1 : 0
355 *(++pVi) = *(pVs-y+1); // 2 : 3
356 *(++pVi) = *(pVs+y); pVs+=2; // 3 : 2
357 *(++pVi) = *(pVs); // 4 : 4
358 *(++pVi) = *(pVs+z); // 5 : 4
359

360 // Front area (x=i, y=j, z=max)
361 off = z*(c.Zsize-1);
362 pVi += off;
363 pVs += off+1;
364 *(pVi) = *(pVs); // 5 : 5
365 *(--pVi) = *(pVs-z); pVs-=3; // 4 : 5
366 *(--pVi) = *(pVs+y); // 3 : 2
367 *(--pVi) = *(pVs-y+1);pVs-=2; // 2 : 3
368 *(--pVi) = *(pVs+x); // 1 : 0
369 *(--pVi) = *(pVs-x+1); // 0 : 1
370 }
371

372 for(i=1; i<(c.Xsize-1); i++)
373 for(j=1; j<(c.Zsize-1); j++)
374 {
375 // Top area (x=i, y=0, z=j)
376 off = x*i + z*j;
377 pVi = Vi+off;
378 pVs = Vs+off+1;
379 *(pVi) = *(pVs-x); // 0 : 1
380 *(++pVi) = *(pVs+x-1); pVs+=2;// 1 : 0
381 *(++pVi) = *(pVs); // 2 : 3
382 *(++pVi) = *(pVs+y); ++pVs; // 3 : 3
383 *(++pVi) = *(pVs-z+1); // 4 : 5
384 *(++pVi) = *(pVs+z); // 5 : 4
385

386 // Bottom area (x=i, y=max, z=j)
387 off = y * (c.Ysize-1);
388 pVi += off;
389 pVs += off;
390 *(pVi) = *(pVs+z); // 5 : 4
391 *(--pVi) = *(pVs-z+1); pVs-=2;// 4 : 5
392 *(--pVi) = *(pVs); // 3 : 2
393 *(--pVi) = *(pVs-y); pVs-=2;// 2 : 2

150 G.2: TLM-Simulator

394 *(--pVi) = *(pVs+x); // 1 : 0
395 *(--pVi) = *(pVs-x+1); // 0 : 1
396 }
397

398 for(i=1; i<(c.Ysize-1); i++)
399 for(j=1; j<(c.Zsize-1); j++)
400 {
401 // Left area (x=0, y=i, z=j)
402 off = y*i+z*j;
403 pVi = Vi+off;
404 pVs = Vs+off;
405 *(pVi) = *(pVs); // 0 : 0
406 *(++pVi) = *(pVs+x); pVs+=3; // 1 : 0
407 *(++pVi) = *(pVs-y); // 2 : 3
408 *(++pVi) = *(pVs+y-1); ++pVs; // 3 : 2
409 *(++pVi) = *(pVs-z+1); // 4 : 5
410 *(++pVi) = *(pVs+z-1); // 5 : 4
411

412 // Right area (x=max, y=i, z=j)
413 off = x*(c.Xsize-1);
414 pVi += off;
415 pVs += off;
416 *(pVi) = *(pVs+z); // 5 : 4
417 *(--pVi) = *(pVs-z+1); --pVs; // 4 : 5
418 *(--pVi) = *(pVs+y-1); // 3 : 2
419 *(--pVi) = *(pVs-y); pVs-=2; // 2 : 3
420 *(--pVi) = *(pVs); // 1 : 1
421 *(--pVi) = *(pVs-x); // 0 : 1
422 }
423

424 }
425

426 case 2:;
427 // Top left corner (x=0, y=0, z=0)
428 pVi = Vi+2;
429 pVs = Vs+2;
430 *(pVi) = *(pVs); // 2 : 2
431 *(++pVi) = *(pVs+y); // 3 : 2
432

433 // Top right corner (x=max, y=0, z=0)
434 off = (c.Xsize-1) * x;
435 pVi += off;
436 pVs += off;
437 *(pVi) = *(pVs+y); // 3 : 2
438 *(--pVi) = *(pVs); // 2 : 2
439

440 // Bottom left corner (x=0, y=max, z=0)
441 off = (c.Ysize-1) * y;
442 pVi = Vi+off;
443 pVs = Vs+off;
444 *(pVi) = *(pVs); // 0 : 0
445 *(++pVi) = *(pVs+x); pVs += 3; // 1 : 0
446 *(++pVi) = *(pVs-y); // 2 : 3
447 *(++pVi) = *(pVs); // 3 : 3
448

449 // Bottom right corner (x=max, y=max, z=0)
450 off = (c.Xsize-1) * x;
451 pVi += off;

Appendix G: Source Code 151

452 pVs += off;
453 *(pVi) = *(pVs); // 3 : 3
454 *(--pVi) = *(pVs-y); pVs -= 2; // 2 : 3
455 *(--pVi) = *(pVs); // 1 : 1
456 *(--pVi) = *(pVs-x); // 0 : 1
457

458 {
459 register long i;
460 for(i=1; i<(c.Xsize-1); i++)
461 {
462 // Top border (x=i, y=0, z=0)
463 long off = i * x;
464 pVi = Vi+off;
465 pVs = Vs+off;
466 *(pVi) = *(pVs-x+1); // 0 : 1
467 *(++pVi) = *(pVs+x); pVs += 2; // 1 : 0
468 *(++pVi) = *(pVs); // 2 : 2
469 *(++pVi) = *(pVs+y); // 3 : 2
470

471 // Bottom border (x=i, y=max, z=0)
472 off = (c.Ysize-1) * y;
473 pVi += off;
474 pVs += off+1;
475 *(pVi) = *(pVs); // 3 : 3
476 *(--pVi) = *(pVs-y); pVs -= 3; // 2 : 3
477 *(--pVi) = *(pVs+x); // 1 : 0
478 *(--pVi) = *(pVs-x+1); // 0 : 1
479 }
480

481 for(i=1; i<(c.Ysize-1); i++)
482 {
483 // Left border (x=0, y=i, z=0)
484 off = i * y;
485 pVi = Vi+off;
486 pVs = Vs+off;
487 *(pVi) = *(pVs); // 0 : 0
488 *(++pVi) = *(pVs+x); pVs+=2; // 1 : 0
489 *(++pVi) = *(pVs-y+1); // 2 : 3
490 *(++pVi) = *(pVs+y); // 3 : 2
491

492 // Right border (x=max, y=i, z=0)
493 off = (c.Xsize-1) * x;
494 pVi += off;
495 pVs += off;
496 *(pVi) = *(pVs+y); // 3 : 2
497 *(--pVi) = *(pVs-y+1); // 2 : 3
498 *(--pVi) = *(pVs); --pVs; // 1 : 1
499 *(--pVi) = *(pVs-x); // 0 : 1
500 }
501 }
502

503 case 1:;
504 // Left boundary reflection (x=0, y=0, z=0)
505 pVi = Vi;
506 pVs = Vs;
507 *pVi = *pVs; // 0 : 0
508 *(++pVi) = *(pVs+x); // 1 : 0
509

152 G.2: TLM-Simulator

510 // Right boundary reflection (x=max, y=0, z=0)
511 off = (c.Xsize-1) * x;
512 pVi += off-1;
513 pVs += off;
514 *(pVi) = *(pVs-x+1); // 1 : 1
515 *(++pVi) = *(pVs); // 0 : 1
516 } // switch
517

518 }
519

520

521 /**
522 * Link Line Model *
523 **
524 * Scattering in 1D, 2D and 3D. *
525 **/
526

527 void
528 LLscatter(
529 struct confStruct c,
530 double* Vi,
531 double* Vs
532)
533 {
534 double refl;
535 double trans;
536

537 long x = c.x;
538 long y = c.y;
539 long z = c.z;
540

541 double* R = c.pR;
542 double* Z = c.pZ;
543

544 switch(c.dim)
545 {
546 case 1:;
547 {
548 register long i;
549 register double *pVs;
550 double *pVi;
551 double *pR;
552 double *pZ;
553

554 pVs = Vs;
555 pVi = Vi;
556 pR = R;
557 pZ = Z;
558

559 for(i=0; i<c.Xsize; i++)
560 {
561 refl = *pR/(*pR + *pZ);
562 trans = 1-refl;
563

564 *(pVs) = *(pVi) * refl +\
565 *(pVi+1) * trans;
566 *(++pVs) = *(pVi) * trans +\
567 *(pVi+1) * refl;

Appendix G: Source Code 153

568 ++pVs;
569 ++pR; ++pZ;
570 pVi += 2;
571 }
572 }
573 break;
574

575 case 2:;
576 {
577 long i;
578 long j;
579 double *pVs;
580 double *pVi;
581 double *pR;
582 double *pZ;
583

584 pVi = Vi;
585 pVs = Vs;
586 pR = R;
587 pZ = Z;
588

589 for(i=0; i<c.Ysize; i++)
590 for(j=0; j<c.Xsize; j++)
591 {
592 refl = (*pR - (*pZ/2))/(*pR + *pZ);
593 trans = (1-refl)/3;
594 ++pR; ++pZ;
595

596 *(pVs) = *(pVi) * refl +\
597 *(pVi+1) * trans +\
598 *(pVi+2) * trans +\
599 *(pVi+3) * trans;
600 *(++pVs) = *(pVi) * trans +\
601 *(pVi+1) * refl +\
602 *(pVi+2) * trans +\
603 *(pVi+3) * trans;
604 *(++pVs) = *(pVi) * trans +\
605 *(pVi+1) * trans +\
606 *(pVi+2) * refl +\
607 *(pVi+3) * trans;
608 *(++pVs) = *(pVi) * trans +\
609 *(pVi+1) * trans +\
610 *(pVi+2) * trans +\
611 *(pVi+3) * refl;
612 ++pVs;
613 pVi+=4;
614 }
615 }
616 break;
617

618 case 3:;
619 {
620 long i;
621 long j;
622 long k;
623 double *pVs;
624 double *pVi;
625 double *pR;

154 G.2: TLM-Simulator

626 double *pZ;
627

628 pVi = Vi;
629 pVs = Vs;
630 pR = R;
631 pZ = Z;
632

633 for(i=0; i<c.Zsize; i++)
634 for(j=0; j<c.Ysize; j++)
635 for(k=0; k<c.Xsize; k++)
636 {
637 refl = (*pR - (2/3) * *pZ)/(*pR + *pZ);
638 trans = (1 - refl)/5;
639 ++pR; ++pZ;
640

641 *(pVs) = *(pVi) * refl +\
642 *(pVi+1) * trans +\
643 *(pVi+2) * trans +\
644 *(pVi+3) * trans +\
645 *(pVi+4) * trans +\
646 *(pVi+5) * trans;
647 *(++pVs) = *(pVi) * trans +\
648 *(pVi+1) * refl +\
649 *(pVi+2) * trans +\
650 *(pVi+3) * trans +\
651 *(pVi+4) * trans +\
652 *(pVi+5) * trans;
653 *(++pVs) = *(pVi) * trans +\
654 *(pVi+1) * trans +\
655 *(pVi+2) * refl +\
656 *(pVi+3) * trans +\
657 *(pVi+4) * trans +\
658 *(pVi+5) * trans;
659 *(++pVs) = *(pVi) * trans +\
660 *(pVi+1) * trans +\
661 *(pVi+2) * trans +\
662 *(pVi+3) * refl +\
663 *(pVi+4) * trans +\
664 *(pVi+5) * trans;
665 *(++pVs) = *(pVi) * trans +\
666 *(pVi+1) * trans +\
667 *(pVi+2) * trans +\
668 *(pVi+3) * trans +\
669 *(pVi+4) * refl +\
670 *(pVi+5) * trans;
671 *(++pVs) = *(pVi) * trans +\
672 *(pVi+1) * trans +\
673 *(pVi+2) * trans +\
674 *(pVi+3) * trans +\
675 *(pVi+4) * trans +\
676 *(pVi+5) * refl;
677 ++pVs;
678 pVi += 6;
679 }
680 }
681 break;
682 } // switch
683 }

Appendix G: Source Code 155

684

685

686 /**
687 * Link Resistor Model *
688 **
689 * Scattering in 1D, 2D and 3D. *
690 * Most of the code is for the corners, edges and *
691 * areas *
692 **/
693

694 void
695 LRscatter(
696 struct confStruct c,
697 double* Vi,
698 double* Vs
699)
700 {
701 register long long i;
702 register double *pVs = Vs;
703 double *pVi = Vi;
704 switch(c.dim)
705 {
706 case 1: for(i=0;i<c.Xsize;i++) {
707 *pVs = *(pVi+1);
708 *(++pVs) = *pVi;
709 ++pVs;
710 pVi += 2;
711 }
712 break;
713 case 2: for(i=0;i<(c.Xsize*c.Zsize);i++) {
714 double A;
715 double B;
716

717 A = *(pVi) + *(pVi+1);
718 B = *(pVi+2) + *(pVi+3);
719

720 *pVs = (*(pVi+1) + B - *(pVi))/2;
721 *(++pVs) = (*(pVi) + B - *(pVi+1))/2;
722 *(++pVs) = (A + *(pVi+3) - *(pVi+2))/2;
723 *(++pVs) = (A + *(pVi+2) - *(pVi+3))/2;
724 ++pVs;
725 pVi += 4;
726 }
727 break;
728 case 3: for(i=0;i<(c.Xsize*c.Ysize*c.Zsize);i++) {
729 double A;
730 double B;
731 double C;
732

733 A = *(pVi) + *(pVi+1);
734 B = *(pVi+2) + *(pVi+3);
735 C = *(pVi+4) + *(pVi+5);
736

737 {
738 double tmp1;
739 double tmp2;
740 tmp1 = A;
741 A = B + C;

156 G.2: TLM-Simulator

742 tmp2 = B;
743 B = tmp1 + C;
744 C = tmp1 + tmp2;
745 }
746

747 *pVs = (*(pVi+1) + A - *(pVi))/2;
748 *(++pVs) = (*(pVi) + A - *(pVi+1))/2;
749 *(++pVs) = (*(pVi+3) + B - *(pVi+2))/2;
750 *(++pVs) = (*(pVi+2) + B - *(pVi+3))/2;
751 *(++pVs) = (*(pVi+5) + C - *(pVi+4))/2;
752 *(++pVs) = (*(pVi+4) + C - *(pVi+5))/2;
753 ++pVs;
754 pVi += 6;
755 }
756 } // switch
757 }
758

759

760 /**
761 * Link Resistor Model *
762 **
763 * Connecting in 1D, 2D and 3D. *
764 * Most of the code is for the corners, edges and *
765 * areas *
766 **/
767

768 void
769 LRconnect(
770 struct confStruct c,
771 double* Vi,
772 double* Vs
773)
774 {
775 double* Rin = c.pR;
776 double* Zin = c.pZ;
777

778 long i, j, k;
779

780 long long offset;
781 long long Offset;
782

783 long x = c.x;
784 long y = c.y;
785 long z = c.z;
786 long Y = c.Y;
787 long Z = c.Z;
788

789 double refl;
790 double trans;
791 double *pVi;
792 double *pVs;
793 double *pR;
794 double *pZ;
795

796 //// Bulk connect
797 {
798 long long a;
799 long long A;

Appendix G: Source Code 157

800 register double *pVi;
801 short Xmax = c.Xsize-1;
802 short Ymax = c.Ysize-1;
803 short Zmax = c.Zsize-1;
804

805 switch(c.dim)
806 {
807 case 1: pVi = Vi + 2;
808 pVs = Vs + 2;
809 pR = Rin + 1;
810 pZ = Zin + 1;
811 for(i=1;i<(c.Xsize-1);i++) {
812 refl = *pR/(*pR + *pZ);
813 trans = 1-refl;
814 ++pR; ++pZ;
815

816 *pVi = refl * *pVs + \
817 trans * *(++pVs-x);
818

819 *(++pVi) = trans * *(pVs+x-1) + \
820 refl * *(pVs);
821 ++pVi; ++pVs;
822 }
823 break;
824

825 /* 4 2
826 * \ ^
827 * \ |
828 * \|
829 * 0 <----+----> 1
830 * |\
831 * | \
832 * V \
833 * 3 5
834 */
835

836 case 2: for(i=1;i<(c.Ysize-1);i++)
837 {
838 a = i*y;
839 A = i*Y;
840 pVi = Vi + a + x;
841 pVs = Vs + a + x;
842 pR = Rin + A + 1;
843 pZ = Zin + A + 1;
844

845 for(j=1;j<(c.Xsize-1);j++)
846 {
847 refl = *pR/(*pR + *pZ);
848 trans = 1-refl;
849

850 *pVi = refl * *(pVs) + trans * *(pVs-x+1);
851 *(++pVi) = refl * *(pVs+1) + trans * *(pVs+x);
852 *(++pVi) = refl * *(pVs+2) + trans * *(pVs-y+3);
853 *(++pVi) = refl * *(pVs+3) + trans * *(pVs+y+2);
854 ++pVi; pVs += 4;
855 }
856 }
857 break;

158 G.2: TLM-Simulator

858 case 3: for(i=1;i<(c.Zsize-1);i++)
859 for(j=1;j<(c.Ysize-1);j++)
860 {
861 a = i*z + j*y;
862 A = i*Z + j*Y;
863 pVi = Vi + a + x;
864 pVs = Vs + a + x;
865 pR = Rin + A + 1;
866 pZ = Zin + A + 1;
867

868 for(k=1;k<(c.Xsize-1);k++)
869 {
870 refl = *pR/(*pR + *pZ);
871 trans = 1-refl;
872

873 *pVi = refl * *(pVs) + trans * *(pVs-x+1);
874 *(++pVi) = refl * *(pVs+1) + trans * *(pVs+x);
875 *(++pVi) = refl * *(pVs+2) + trans * *(pVs-y+3);
876 *(++pVi) = refl * *(pVs+3) + trans * *(pVs+y+2);
877 *(++pVi) = refl * *(pVs+4) + trans * *(pVs-z+5);
878 *(++pVi) = refl * *(pVs+5) + trans * *(pVs+z+4);
879 ++pVi; pVs += 6;
880 }
881 }
882 } // switch
883 }
884 /* 4 2
885 * \ ^
886 * \ |
887 * \|
888 * 0 <----+----> 1
889 * |\
890 * | \
891 * V \
892 * 3 5
893 */
894

895 // Corners, Edges and Areas
896 {
897 long xmax;
898 long ymax;
899 long zmax;
900 long Xmax;
901 long Ymax;
902 long Zmax;
903

904 Xmax = c.Xsize-1;
905 Ymax = c.Ysize-1 * c.Xsize;
906 Zmax = c.Zsize-1 * c.Ysize * c.Xsize;
907 xmax = Xmax * c.dim * 2;
908 ymax = Ymax * c.dim * 2;
909 zmax = Zmax * c.dim * 2;
910

911 switch(c.dim)
912 {
913 case 3: ;
914 /******************************
915 * Corners-3D *

Appendix G: Source Code 159

916 ******************************/
917 // Top-Left-Back Corner
918 pVi = Vi;
919 pVs = Vs;
920 pR = Rin;
921 pZ = Zin;
922

923 refl = *pR/(*pR + *pZ);
924 trans = 1-refl;
925

926 *(pVi) = *(pVs);
927 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
928 *(pVi+2) = *(pVs+2);
929 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs+y+2);
930 *(pVi+4) = *(pVs+4);
931 *(pVi+5) = refl * *(pVs+5) + trans * *(pVs+z+4);
932

933 // Top-Right-Back Corner
934 pVi = Vi + xmax;
935 pVs = Vs + xmax;
936 pR = Rin + Xmax;
937 pZ = Zin + Xmax;
938

939 refl = *pR/(*pR + *pZ);
940 trans = 1-refl;
941

942 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
943 *(pVi+1) = *(pVs+1);
944 *(pVi+2) = *(pVs+2);
945 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs+y+2);
946 *(pVi+4) = *(pVs+4);
947 *(pVi+5) = refl * *(pVs+5) + trans * *(pVs+z+4);
948

949 // Bottom-Left-Back Corner
950 pVi = Vi + ymax;
951 pVs = Vs + ymax;
952 pR = Rin + Ymax;
953 pZ = Zin + Ymax;
954

955 refl = *pR/(*pR + *pZ);
956 trans = 1-refl;
957

958 *(pVi) = *(pVs);
959 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
960 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
961 *(pVi+3) = *(pVs+3);
962 *(pVi+4) = *(pVs+4);
963 *(pVi+5) = refl * *(pVs+5) + trans * *(pVs+z+4);
964

965 // Bottom-Right-Back Corner
966 pVi = Vi + xmax + ymax;
967 pVs = Vs + xmax + ymax;
968 pR = Rin + Xmax + Ymax;
969 pZ = Zin + Xmax + Ymax;
970

971 refl = *pR/(*pR + *pZ);
972 trans = 1-refl;
973

160 G.2: TLM-Simulator

974 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
975 *(pVi+1) = *(pVs+1);
976 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
977 *(pVi+3) = *(pVs+3);
978 *(pVi+4) = *(pVs+4);
979 *(pVi+5) = refl * *(pVs+5) + trans * *(pVs+z+4);
980

981 // Top-Left-Front Corner
982 pVi = Vi + zmax;
983 pVs = Vs + zmax;
984 pR = Rin + Zmax;
985 pZ = Zin + Zmax;
986

987 refl = *pR/(*pR + *pZ);
988 trans = 1-refl;
989

990 *(pVi) = *(pVs);
991 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
992 *(pVi+2) = *(pVs+2);
993 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs+y+2);
994 *(pVi+4) = refl * *(pVs+4) + trans * *(pVs-z+5);
995 *(pVi+5) = *(pVs+5);
996

997 // Top-Right-Front Corner
998 pVi = Vi + xmax + zmax;
999 pVs = Vs + xmax + zmax;

1000 pR = Rin + Xmax + Zmax;
1001 pZ = Zin + Xmax + Zmax;
1002

1003 refl = *pR/(*pR + *pZ);
1004 trans = 1-refl;
1005

1006 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
1007 *(pVi+1) = *(pVs+1);
1008 *(pVi+2) = *(pVs+2);
1009 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs+y+2);
1010 *(pVi+4) = refl * *(pVs+4) + trans * *(pVs-z+5);
1011 *(pVi+5) = *(pVs+5);
1012

1013 // Bottom-Left-Front Corner
1014 pVi = Vi + ymax + zmax;
1015 pVs = Vs + ymax + zmax;
1016 pR = Rin + Ymax + Zmax;
1017 pZ = Zin + Ymax + Zmax;
1018

1019 refl = *pR/(*pR + *pZ);
1020 trans = 1-refl;
1021

1022 *(pVi) = *(pVs);
1023 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
1024 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
1025 *(pVi+3) = *(pVs+3);
1026 *(pVi+4) = refl * *(pVs+4) + trans * *(pVs-z+5);
1027 *(pVi+5) = *(pVs+5);
1028

1029 // Bottom-Right-Front Corner
1030 pVi = Vi + xmax + ymax + zmax;
1031 pVs = Vs + xmax + ymax + zmax;

Appendix G: Source Code 161

1032 pR = Rin + Xmax + Ymax + Zmax;
1033 pZ = Zin + Xmax + Ymax + Zmax;
1034

1035 refl = *pR/(*pR + *pZ);
1036 trans = 1-refl;
1037

1038 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
1039 *(pVi+1) = *(pVs+1);
1040 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
1041 *(pVi+3) = *(pVs+3);
1042 *(pVi+4) = refl * *(pVs+4) + trans * *(pVs-z+5);
1043 *(pVi+5) = *(pVs+5);
1044

1045 /****************************
1046 * Edges-3D *
1047 ****************************/
1048 /* 4 2
1049 * \ ^
1050 * \ |
1051 * \|
1052 * 0 <----+----> 1
1053 * |\
1054 * | \
1055 * V \
1056 * 3 5
1057 */
1058

1059 // Top-Back Edge
1060 for(i=1;i<(c.Xsize-1);i++)
1061 {
1062 offset = i*x;
1063 Offset = i;
1064 pVi = Vi + offset;
1065 pVs = Vs + offset;
1066 pR = Rin + Offset;
1067 pZ = Zin + Offset;
1068

1069 refl = *pR/(*pR + *pZ);
1070 trans = 1-refl;
1071

1072 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
1073 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
1074 *(pVi+2) = *(pVs+2);
1075 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs+y+3);
1076 *(pVi+4) = *(pVs+4);
1077 *(pVi+5) = refl * *(pVs+5) + trans * *(pVs+z+4);
1078

1079 }
1080

1081 // Bottom-Back Edge
1082 for(i=1;i<(c.Xsize-1);i++)
1083 {
1084 offset = ymax + i*x;
1085 Offset = Ymax + i;
1086 pVi = Vi + offset;
1087 pVs = Vs + offset;
1088 pR = Rin + Offset;
1089 pZ = Zin + Offset;

162 G.2: TLM-Simulator

1090

1091 refl = *pR/(*pR + *pZ);
1092 trans = 1-refl;
1093

1094 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
1095 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
1096 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
1097 *(pVi+3) = *(pVs+3);
1098 *(pVi+4) = *(pVs+4);
1099 *(pVi+5) = refl * *(pVs+5) + trans * *(pVs+z+4);
1100 }
1101

1102 // Left-Back Edge
1103 for(i=1;i<(c.Ysize-1);i++)
1104 {
1105 offset = i*y;
1106 Offset = i*Y;
1107 pVi = Vi + offset;
1108 pVs = Vs + offset;
1109 pR = Rin + Offset;
1110 pZ = Zin + Offset;
1111

1112 refl = *pR/(*pR + *pZ);
1113 trans = 1-refl;
1114

1115 *(pVi) = *(pVs);
1116 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
1117 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
1118 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs+y+2);
1119 *(pVi+4) = *(pVs+4);
1120 *(pVi+5) = refl * *(pVs+5) + trans * *(pVs+z+4);
1121 }
1122

1123 // Right-Back Edge
1124 for(i=1;i<(c.Ysize-1);i++)
1125 {
1126 offset = xmax + i*y;
1127 Offset = Xmax + i*Y;
1128 pVi = Vi + offset;
1129 pVs = Vs + offset;
1130 pR = Rin + Offset;
1131 pZ = Zin + Offset;
1132

1133 refl = *pR/(*pR + *pZ);
1134 trans = 1-refl;
1135

1136 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
1137 *(pVi+1) = *(pVs+1);
1138 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
1139 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs+y+2);
1140 *(pVi+4) = *(pVs+4);
1141 *(pVi+5) = refl * *(pVs+5) + trans * *(pVs+z+4);
1142 }
1143

1144 // Top-Front Edge
1145 for(i=1;i<(c.Xsize-1);i++)
1146 {
1147 offset = i*x + zmax;

Appendix G: Source Code 163

1148 Offset = i + Zmax;
1149 pVi = Vi + offset;
1150 pVs = Vs + offset;
1151 pR = Rin + Offset;
1152 pZ = Zin + Offset;
1153

1154 refl = *pR/(*pR + *pZ);
1155 trans = 1-refl;
1156

1157 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
1158 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
1159 *(pVi+2) = *(pVs+2);
1160 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs+y+3);
1161 *(pVi+4) = refl * *(pVs+4) + trans * *(pVs-z+5);
1162 *(pVi+5) = *(pVs+5);
1163

1164 }
1165

1166 // Bottom-Front Edge
1167 for(i=1;i<(c.Xsize-1);i++)
1168 {
1169 offset = ymax + i*x + zmax;
1170 Offset = Ymax + i + Zmax;
1171 pVi = Vi + offset;
1172 pVs = Vs + offset;
1173 pR = Rin + Offset;
1174 pZ = Zin + Offset;
1175

1176 refl = *pR/(*pR + *pZ);
1177 trans = 1-refl;
1178

1179 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
1180 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
1181 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
1182 *(pVi+3) = *(pVs+3);
1183 *(pVi+4) = refl * *(pVs+4) + trans * *(pVs-z+5);
1184 *(pVi+5) = *(pVs+5);
1185 }
1186

1187 // Left-Front Edge
1188 for(i=1;i<(c.Ysize-1);i++)
1189 {
1190 offset = i*y + zmax;
1191 Offset = i*Y + Zmax;
1192 pVi = Vi + offset;
1193 pVs = Vs + offset;
1194 pR = Rin + Offset;
1195 pZ = Zin + Offset;
1196

1197 refl = *pR/(*pR + *pZ);
1198 trans = 1-refl;
1199

1200 *(pVi) = *(pVs);
1201 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
1202 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
1203 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs+y+2);
1204 *(pVi+4) = refl * *(pVs+4) + trans * *(pVs-z+5);
1205 *(pVi+5) = *(pVs+5);

164 G.2: TLM-Simulator

1206 }
1207

1208 // Right-Front Edge
1209 for(i=1;i<(c.Ysize-1);i++)
1210 {
1211 offset = xmax + i*y + zmax;
1212 Offset = Xmax + i*Y + Zmax;
1213 pVi = Vi + offset;
1214 pVs = Vs + offset;
1215 pR = Rin + Offset;
1216 pZ = Zin + Offset;
1217

1218 refl = *pR/(*pR + *pZ);
1219 trans = 1-refl;
1220

1221 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
1222 *(pVi+1) = *(pVs+1);
1223 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
1224 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs+y+2);
1225 *(pVi+4) = refl * *(pVs+4) + trans * *(pVs-z+5);
1226 *(pVi+5) = *(pVs+5);
1227 }
1228

1229 /* 4 2
1230 * \ ^
1231 * \ |
1232 * \|
1233 * 0 <----+----> 1
1234 * |\
1235 * | \
1236 * V \
1237 * 3 5
1238 */
1239

1240 // Left-Top Edge
1241 for(i=1;i<(c.Zsize-1);i++)
1242 {
1243 offset = i*z;
1244 Offset = i*Z;
1245 pVi = Vi + offset;
1246 pVs = Vs + offset;
1247 pR = Rin + Offset;
1248 pZ = Zin + Offset;
1249

1250 refl = *pR/(*pR + *pZ);
1251 trans = 1-refl;
1252

1253 *(pVi) = *(pVs);
1254 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
1255 *(pVi+2) = *(pVs+2);
1256 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs+y+2);
1257 *(pVi+4) = refl * *(pVs+4) + trans * *(pVs-z+5);
1258 *(pVi+5) = refl * *(pVs+5) + trans * *(pVs+z+4);
1259 }
1260

1261 // Right-Top Edge
1262 for(i=1;i<(c.Zsize-1);i++)
1263 {

Appendix G: Source Code 165

1264 offset = i*z + xmax;
1265 Offset = i*Z + Xmax;
1266 pVi = Vi + offset;
1267 pVs = Vs + offset;
1268 pR = Rin + Offset;
1269 pZ = Zin + Offset;
1270

1271 refl = *pR/(*pR + *pZ);
1272 trans = 1-refl;
1273

1274 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
1275 *(pVi+1) = *(pVs+1);
1276 *(pVi+2) = *(pVs+2);
1277 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs+y+2);
1278 *(pVi+4) = refl * *(pVs+4) + trans * *(pVs-z+5);
1279 *(pVi+5) = refl * *(pVs+5) + trans * *(pVs+z+4);
1280 }
1281

1282 // Left-Bottom Edge
1283 for(i=1;i<(c.Zsize-1);i++)
1284 {
1285 offset = i*z + ymax;
1286 Offset = i*Z + Ymax;
1287 pVi = Vi + offset;
1288 pVs = Vs + offset;
1289 pR = Rin + Offset;
1290 pZ = Zin + Offset;
1291

1292 refl = *pR/(*pR + *pZ);
1293 trans = 1-refl;
1294

1295 *(pVi) = *(pVs);
1296 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
1297 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
1298 *(pVi+3) = *(pVs+3);
1299 *(pVi+4) = refl * *(pVs+4) + trans * *(pVs-z+5);
1300 *(pVi+5) = refl * *(pVs+5) + trans * *(pVs+z+4);
1301 }
1302

1303 // Right-Bottom Edge
1304 for(i=1;i<(c.Zsize-1);i++)
1305 {
1306 offset = i*z + xmax + ymax;
1307 Offset = i*Z + Xmax + Ymax;
1308 pVi = Vi + offset;
1309 pVs = Vs + offset;
1310 pR = Rin + Offset;
1311 pZ = Zin + Offset;
1312

1313 refl = *pR/(*pR + *pZ);
1314 trans = 1-refl;
1315

1316 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
1317 *(pVi+1) = *(pVs+1);
1318 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
1319 *(pVi+3) = *(pVs+3);
1320 *(pVi+4) = refl * *(pVs+4) + trans * *(pVs-z+5);
1321 *(pVi+5) = refl * *(pVs+5) + trans * *(pVs+z+4);

166 G.2: TLM-Simulator

1322 }
1323

1324 /******************************
1325 * Areas-3D *
1326 ******************************/
1327

1328 // Back Area
1329 for(i=1;i<(c.Xsize-1);i++)
1330 for(j=1;j<(c.Ysize-1);i++)
1331 {
1332 offset = i*x + j*y;
1333 Offset = i + j*Y;
1334 pVi = Vi + offset;
1335 pVs = Vs + offset;
1336 pR = Rin + Offset;
1337 pZ = Zin + Offset;
1338

1339 refl = *pR/(*pR + *pZ);
1340 trans = 1-refl;
1341

1342 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
1343 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
1344 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
1345 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs+y+2);
1346 *(pVi+4) = *(pVs+4);
1347 *(pVi+5) = refl * *(pVs+5) + trans * *(pVs+z+4);
1348 }
1349

1350 // Front Area
1351 for(i=1;i<(c.Xsize-1);i++)
1352 for(j=1;j<(c.Ysize-1);i++)
1353 {
1354 offset = i*x + j*y + zmax;
1355 Offset = i + j*Y + Zmax;
1356 pVi = Vi + offset;
1357 pVs = Vs + offset;
1358 pR = Rin + Offset;
1359 pZ = Zin + Offset;
1360

1361 refl = *pR/(*pR + *pZ);
1362 trans = 1-refl;
1363

1364 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
1365 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
1366 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
1367 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs+y+2);
1368 *(pVi+4) = refl * *(pVs+4) + trans * *(pVs-z+5);
1369 *(pVi+5) = *(pVs+5);
1370 }
1371

1372 // Left Area
1373 for(i=1;i<(c.Zsize-1);i++)
1374 for(j=1;j<(c.Ysize-1);i++)
1375 {
1376 offset = i*z + j*y;
1377 Offset = i*Z + j*Y;
1378 pVi = Vi + offset;
1379 pVs = Vs + offset;

Appendix G: Source Code 167

1380 pR = Rin + Offset;
1381 pZ = Zin + Offset;
1382

1383 refl = *pR/(*pR + *pZ);
1384 trans = 1-refl;
1385

1386 *(pVi) = *(pVs);
1387 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
1388 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
1389 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs+y+2);
1390 *(pVi+4) = refl * *(pVs+4) + trans * *(pVs-z+5);
1391 *(pVi+5) = refl * *(pVs+5) + trans * *(pVs+z+4);
1392 }
1393

1394 // Right Area
1395 for(i=1;i<(c.Zsize-1);i++)
1396 for(j=1;j<(c.Ysize-1);i++)
1397 {
1398 offset = i*z + j*y + xmax;
1399 Offset = i*Z + j*Y + Xmax;
1400 pVi = Vi + offset;
1401 pVs = Vs + offset;
1402 pR = Rin + Offset;
1403 pZ = Zin + Offset;
1404

1405 refl = *pR/(*pR + *pZ);
1406 trans = 1-refl;
1407

1408 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
1409 *(pVi+1) = *(pVs+1);
1410 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
1411 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs+y+2);
1412 *(pVi+4) = refl * *(pVs+4) + trans * *(pVs-z+5);
1413 *(pVi+5) = refl * *(pVs+5) + trans * *(pVs+z+4);
1414 }
1415

1416 // Top Area
1417 for(i=1;i<(c.Xsize-1);i++)
1418 for(j=1;j<(c.Zsize-1);i++)
1419 {
1420 offset = i*x + j*z;
1421 Offset = i + j*Z;
1422 pVi = Vi + offset;
1423 pVs = Vs + offset;
1424 pR = Rin + Offset;
1425 pZ = Zin + Offset;
1426

1427 refl = *pR/(*pR + *pZ);
1428 trans = 1-refl;
1429

1430 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
1431 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
1432 *(pVi+2) = *(pVs+2);
1433 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs+y+2);
1434 *(pVi+4) = refl * *(pVs+4) + trans * *(pVs-z+5);
1435 *(pVi+5) = refl * *(pVs+5) + trans * *(pVs+z+4);
1436 }
1437

168 G.2: TLM-Simulator

1438 for(i=1;i<(c.Xsize-1);i++)
1439 for(j=1;j<(c.Zsize-1);i++)
1440 {
1441 offset = i*x + j*z;
1442 Offset = i + j*Z;
1443 pVi = Vi + offset;
1444 pVs = Vs + offset;
1445 pR = Rin + Offset;
1446 pZ = Zin + Offset;
1447

1448 refl = *pR/(*pR + *pZ);
1449 trans = 1-refl;
1450

1451 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
1452 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
1453 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
1454 *(pVi+3) = *(pVs+3);
1455 *(pVi+4) = refl * *(pVs+4) + trans * *(pVs-z+5);
1456 *(pVi+5) = refl * *(pVs+5) + trans * *(pVs+z+4);
1457 }
1458

1459

1460 break;
1461 case 2: ;
1462 /******************************
1463 * Corners-2D *
1464 ******************************/
1465

1466 // Top-Left Corner
1467 pVi = Vi;
1468 pVs = Vs;
1469 pR = Rin;
1470 pZ = Zin;
1471

1472 refl = *pR/(*pR + *pZ);
1473 trans = 1-refl;
1474

1475 *(pVi) = *(pVs);
1476 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
1477 *(pVi+2) = *(pVs+2);
1478 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs+y+2);
1479

1480 // Top-Right Corner
1481 pVi = Vi + xmax;
1482 pVs = Vs + xmax;
1483 pR = Rin + Xmax;
1484 pZ = Zin + Xmax;
1485

1486 refl = *pR/(*pR + *pZ);
1487 trans = 1-refl;
1488

1489 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
1490 *(pVi+1) = *(pVs+1);
1491 *(pVi+2) = *(pVs+2);
1492 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs+y+2);
1493

1494 // Bottom-Left Corner
1495 pVi = Vi + ymax;

Appendix G: Source Code 169

1496 pVs = Vs + ymax;
1497 pR = Rin + Ymax;
1498 pZ = Zin + Ymax;
1499

1500 refl = *pR/(*pR + *pZ);
1501 trans = 1-refl;
1502

1503 *(pVi) = *(pVs);
1504 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
1505 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
1506 *(pVi+3) = *(pVs+3);
1507

1508 // Bottom-Right Corner
1509 pVi = Vi + xmax + ymax;
1510 pVs = Vs + xmax + ymax;
1511 pR = Rin + Xmax + Ymax;
1512 pZ = Zin + Xmax + Ymax;
1513

1514 refl = *pR/(*pR + *pZ);
1515 trans = 1-refl;
1516

1517 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
1518 *(pVi+1) = *(pVs+1);
1519 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
1520 *(pVi+3) = *(pVs+3);
1521

1522 /****************************
1523 * Edges-2D *
1524 ****************************/
1525

1526 // Top-Edge
1527 for(i=1;i<(c.Xsize-1);i++)
1528 {
1529 offset = i*x;
1530 Offset = i;
1531 pVi = Vi + offset;
1532 pVs = Vs + offset;
1533 pR = Rin + Offset;
1534 pZ = Zin + Offset;
1535

1536 refl = *pR/(*pR + *pZ);
1537 trans = 1-refl;
1538

1539 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
1540 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
1541 *(pVi+2) = *(pVs+2);
1542 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs-y+3);
1543 }
1544

1545 // Bottom-Edge
1546 for(i=1;i<(c.Xsize-1);i++)
1547 {
1548 offset = ymax + i*x;
1549 Offset = Ymax + i;
1550 pVi = Vi + offset;
1551 pVs = Vs + offset;
1552 pR = Rin + Offset;
1553 pZ = Zin + Offset;

170 G.2: TLM-Simulator

1554

1555 refl = *pR/(*pR + *pZ);
1556 trans = 1-refl;
1557

1558 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
1559 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
1560 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
1561 *(pVi+3) = *(pVs+3);
1562 }
1563

1564 // Left-Edge
1565 for(i=1;i<(c.Ysize-1);i++)
1566 {
1567 offset = i*y;
1568 Offset = i*Y;
1569 pVi = Vi + offset;
1570 pVs = Vs + offset;
1571 pR = Rin + Offset;
1572 pZ = Zin + Offset;
1573

1574 refl = *pR/(*pR + *pZ);
1575 trans = 1-refl;
1576

1577 *(pVi) = *(pVs);
1578 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
1579 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
1580 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs+y+2);
1581 }
1582

1583 // Right Edge
1584 for(i=1;i<(c.Ysize-1);i++)
1585 {
1586 offset = xmax + i*y;
1587 Offset = Xmax + i*Y;
1588 pVi = Vi + offset;
1589 pVs = Vs + offset;
1590 pR = Rin + Offset;
1591 pZ = Zin + Offset;
1592

1593 refl = *pR/(*pR + *pZ);
1594 trans = 1-refl;
1595

1596 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
1597 *(pVi+1) = *(pVs+1);
1598 *(pVi+2) = refl * *(pVs+2) + trans * *(pVs-y+3);
1599 *(pVi+3) = refl * *(pVs+3) + trans * *(pVs+y+2);
1600 }
1601 break;
1602 case 1: ;
1603 // Left Corner
1604 pVi = Vi;
1605 pVs = Vs;
1606 pR = Rin;
1607 pZ = Zin;
1608

1609 refl = *pR/(*pR + *pZ);
1610 trans = 1-refl;
1611

Appendix G: Source Code 171

1612 *(pVi) = *(pVs);
1613 *(pVi+1) = refl * *(pVs+1) + trans * *(pVs+x);
1614

1615 // Right Corner
1616 pVi = Vi + xmax;
1617 pVs = Vs + xmax;
1618 pR = Rin + Xmax;
1619 pZ = Zin + Xmax;
1620

1621 refl = *pR/(*pR + *pZ);
1622 trans = 1-refl;
1623

1624 *(pVi) = refl * *(pVs) + trans * *(pVs-x+1);
1625 *(pVi+1) = *(pVs+1);
1626 break;
1627

1628 /* 4 2
1629 * \ ^
1630 * \ |
1631 * \|
1632 * 0 <----+----> 1
1633 * |\
1634 * | \
1635 * V \
1636 * 3 5
1637 */
1638

1639 } // switch
1640 }
1641 }
1642

1643 void
1644 T1decay(
1645 struct confStruct c,
1646 double* Vi,
1647 double decayConst
1648)
1649 {
1650 long long i;
1651 long long maxSize=1;
1652

1653 switch(c.dim)
1654 {
1655 case 3:
1656 maxSize *= c.Zsize;
1657 case 2:
1658 maxSize *= c.Ysize;
1659 case 1:
1660 maxSize *= c.Xsize;
1661 }
1662

1663 maxSize *= c.dim*2;
1664

1665 for(i=0;i<maxSize;i++)
1666 *(Vi+i) -= decayConst * *(Vi+i);
1667 }
1668

1669 /******************

172 G.2: TLM-Simulator

1670 * Calculate \phi *
1671 ******************/
1672 void
1673 calcSums(
1674 struct confStruct c,
1675 long long n,
1676 double* Vi,
1677 double* Box,
1678 double* Bulk,
1679 double* Intensity,
1680 double* BulkInten
1681)
1682 {
1683 long BoxSize = 1;
1684 long BulkSize = 1;
1685

1686 *Box = 0;
1687 *Bulk = 0;
1688

1689

1690 if(c.round == 0.0)
1691 {
1692 switch(c.dim)
1693 {
1694 case 3: BoxSize *= c.Box5 - c.Box4 + 1;
1695 BulkSize *= c.Zsize;
1696 case 2: BoxSize *= c.Box3 - c.Box2 + 1;
1697 BulkSize *= c.Ysize;
1698 case 1: BoxSize *= c.Box1 - c.Box0 + 1;
1699 BulkSize *= c.Xsize;
1700 }
1701

1702 BulkSize -= BoxSize;
1703

1704 // printf("===\nBoxSize=%ld\n===\n", BoxSize);
1705

1706 switch(c.dim)
1707 {
1708 case 1:;
1709 {
1710 register long i;
1711 for(i=0;i<c.Xsize;i++)
1712 {
1713 if(i>=c.Box0 && i<=c.Box1)
1714 *Box += *(Vi+(c.x * i)) + *(Vi+(c.x * i)+1);
1715 else
1716 *Bulk += *(Vi+(c.x * i)) + *(Vi+(c.x * i)+1);
1717 }
1718 }
1719 break;
1720

1721 case 2:;
1722 {
1723 long i, j;
1724 for(i=0;i<c.Ysize;i++)
1725 for(j=0;j<c.Xsize;j++)
1726 {
1727 register long off = j * c.x + i * c.y;

Appendix G: Source Code 173

1728 if(i>=c.Box2 && i<=c.Box3 && j>=c.Box0 && j<=c.Box1)
1729 *Box += *(Vi+off) + *(Vi+off+1) + *(Vi+off+2) + *(Vi+off+3);
1730 else
1731 *Bulk += *(Vi+off) + *(Vi+off+1) + *(Vi+off+2) + *(Vi+off+3);
1732 }
1733 }
1734 break;
1735 case 3:;
1736 {
1737 long i, j, k;
1738 for(i=0;i<c.Zsize;i++)
1739 for(j=0;j<c.Ysize;j++)
1740 for(k=0;k<c.Xsize;k++)
1741 {
1742 double *ptr = Vi + k * c.x + j * c.y + i * c.z;
1743

1744 // printf("\nn=%ld\n", n);
1745 // printf(" Pre: Box=%10.6lf Bulk=%10.6lf\n", *Box, *Bulk);
1746 // printf(" Pre: Box=> %p Bulk=> %p\n", Box, Bulk);
1747

1748 if(i>=c.Box4 && i<=c.Box5 && j>=c.Box2 && \
1749 j<=c.Box3 && k>=c.Box0 && k<=c.Box1)
1750 *Box += *(ptr) + *(ptr+1) + *(ptr+2) +\
1751 *(ptr+3) + *(ptr+4) + *(ptr+5);
1752 else
1753 *Bulk += *(ptr) + *(ptr+1) + *(ptr+2) +\
1754 *(ptr+3) + *(ptr+4) + *(ptr+5);
1755 // printf("Post: Box=%10.6lf Bulk=%10.6lf\n", *Box, *Bulk);
1756 // printf("Post: Box=> %p Bulk=> %p\n", Box, Bulk);
1757 }
1758 break;
1759 }
1760 }
1761

1762 *(Intensity+n) = 100 * *Box / (*Box + *Bulk);
1763 *(BulkInten+n) = 100 * *Bulk / (*Box + *Bulk);
1764 // printf("Intesnsity = %lf\n", *(Intensity+n));
1765 }
1766 else // round != 0.0
1767 {
1768 double distance;
1769 long i, j, k;
1770 BulkSize = 0;
1771 BoxSize = 0;
1772

1773 switch(c.dim)
1774 {
1775 case 3:
1776 for(k=0;k<c.Zsize;k++)
1777 for(j=0;j<c.Ysize;j++)
1778 for(i=0;i<c.Xsize;i++)
1779 {
1780 double x, y, z;
1781 x = (double) i;
1782 y = (double) j;
1783 z = (double) k;
1784 double *ptr = Vi + i * c.x + j * c.y + k * c.z;
1785 distance = sqrt(pow(x,2)+pow(y,2)+pow(z,2));

174 G.2: TLM-Simulator

1786 if(distance <= c.round)
1787 {
1788 *Box += *(ptr);
1789 *Box += *(ptr+1);
1790 *Box += *(ptr+2);
1791 *Box += *(ptr+3);
1792 *Box += *(ptr+4);
1793 *Box += *(ptr+5);
1794 ++BoxSize;
1795 }
1796 else
1797 {
1798 *Bulk += *(ptr);
1799 *Bulk += *(ptr+1);
1800 *Bulk += *(ptr+2);
1801 *Bulk += *(ptr+3);
1802 *Bulk += *(ptr+4);
1803 *Bulk += *(ptr+5);
1804 ++BulkSize;
1805 }
1806 }
1807

1808 break;
1809 case 2:
1810 for(j=0;j<c.Ysize;j++)
1811 for(i=0;i<c.Xsize;i++)
1812 {
1813 double x, y;
1814 x = (double) i;
1815 y = (double) j;
1816 distance = sqrt(pow(x,2)+pow(y,2));
1817 double *ptr = Vi + i * c.x + j * c.y;
1818 if(distance <= c.round)
1819 {
1820 *Box += *(ptr);
1821 *Box += *(ptr+1);
1822 *Box += *(ptr+2);
1823 *Box += *(ptr+3);
1824 ++BoxSize;
1825 }
1826 else
1827 {
1828 *Bulk += *(ptr);
1829 *Bulk += *(ptr+1);
1830 *Bulk += *(ptr+2);
1831 *Bulk += *(ptr+3);
1832 ++BulkSize;
1833 }
1834 }
1835 break;
1836 }
1837 *(Intensity+n) = 100 * *Box / (*Box + *Bulk);
1838 *(BulkInten+n) = 100 * *Bulk / (*Box + *Bulk);
1839 }
1840 } // calcSums
1841

1842 // vim:set ts=2 sw=2:

Appendix G: Source Code 175

G.2.15 Makefile

1 # File: Makefile
2 #
3 # Author: Frederik Klama
4 # Copyright 2010 Frederik Klama
5 #
6 # This file is part of TLM-Simulator.
7 #
8 # TLM-Simulator is free software: you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by

10 # the Free Software Foundation, either version 3 of the License, or
11 # (at your option) any later version.
12 #
13 # TLM-Simulator is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with TLM-Simulator. If not, see <http://www.gnu.org/licenses/>.
20

21 CFLAGS := -W
22

23 objects = dataStruct.o fillBoxMag.o output.o worker.o StringTools.o
24

25 default: all
26

27 verb-debug: CFLAGS := $(CFLAGS) -g -DDEBUG
28 verb-debug: all
29

30 debug: CFLAGS := $(CFLAGS) -g
31 debug: all
32

33 all: TLM-Simulator
34

35 clean:
36 rm -f TLM-Simulator
37 rm -f *.o
38

39 $(objects): %.o: %.c common.h
40 gcc -c $(CFLAGS) $< -o $@
41

42 parser.o: parser.c StringTools.h StringTools.o
43 gcc -c $(CFLAGS) $< -o $@
44

45 TLM-Sim.o: TLM-Sim.c StringTools.h dataStruct.h fillBoxMag.h output.h\
46 parser.h worker.h
47 gcc -c $(CFLAGS) $< -o $@
48

49 TLM-Simulator: TLM-Sim.o parser.o $(objects)
50 gcc $(CFLAGS) $^ -o $@

G.3 TLM helper tools

G.3.1 table2conf.pl

1 #!/usr/bin/perl

176 G.3: TLM helper tools

2 # vim:set ts=2 sw=2:
3 #
4 # File: table2conf.pl
5 #
6 # Author: Frederik Klama
7 # Copyright 2010 Frederik Klama
8 #
9 # This file is part of TLM-Simulator.

10 #
11 # TLM-Simulator is free software: you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation, either version 3 of the License, or
14 # (at your option) any later version.
15 #
16 # TLM-Simulator is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
20 #
21 # You should have received a copy of the GNU General Public License
22 # along with TLM-Simulator. If not, see <http://www.gnu.org/licenses/>.
23

24 #
25 # This program is intended for bulk simulations over a large parameter
26 # space. The parameters are defines as arrays with one or more entries
27 # and the program will automatically generate a directory structure.
28 # It will then generate a configuration file for each possible permu-
29 # tation of the parameters and put it into the fitting directory.
30 # Lastly it will run the simulation software for each of these permu-
31 # tations and even allows for paralell processing by running a pre-
32 # defined number of simulator processes.
33 # Lastly it will generate graphs, as scalable vector graphic and in
34 # TeX-format, for each simulation using gnuplot.
35 #
36

37 use strict;
38 use Parallel::ForkManager;
39

40 # The maximum number of simulation processes to run at the same time
41 my $numProcs = 2;
42

43 # Directory where TLM-Simulator is installed
44 my $BIN_DIR = "/Users/fklama/Documents/Uni/UEA/";
45 $BIN_DIR .= "FrederikNMR/TLM/TLM-Simulator";
46

47 # You should not need to modify the next two lines
48 my $confGen = "$BIN_DIR/confGen.pl";
49 my $TLM_Sim = "$BIN_DIR/TLM-Simulator";
50

51 # The directory in which the directory structure is built and
52 # into which the results are stored
53 my $basePath = "$BIN_DIR/runHere";
54

55 # Defining the parameter space
56 # Each of the parameters (@dim, @size, @boxSize, @R1, @R2, @Z, @T1 and
57 # @graphSize) must be set to either a single or multiple values
58 # Take care, the amount of simulations run is equal to the product
59 # of the number of items in each array (except @graphSize which only

Appendix G: Source Code 177

60 # causes one plot be generated for each of these sizes
61 my @dim = (1,2,3);
62 my @size = (50);
63 my @boxSize = (5,10,15,25,35,40,45);
64 my @R1 = (80,85,90,95,100,105,110);
65 my @R2 = (100);
66 my @Z = (100);
67 my @T1 = (0, 100, 250, 500, 1000);
68 my @graphSize = (300, 500, 1000, 2000, 3000, 5000, 7000, 10000);
69 my $path;
70

71 # Some single parameters
72 my $initValBulk = 0;
73 my $initValBox = 100;
74 my $LL_LR = 1; # 0 = both, 1 = LL, 2 = LR
75 my $verbose = 0;
76 my $steps = 10000;
77

78 # Variable declarations
79 my $size;
80 my $box;
81 my $R1;
82 my $R2;
83 my $R;
84 my $Z;
85 my $T1;
86 my $arg;
87 my $oArg;
88 my $dim;
89 my @dirList;
90 my @dispList;
91 my @typeList;
92 my @runList;
93 my @argList;
94 my @mkConfList;
95

96 # Subroutine to write the configuration files
97 sub writeConf {
98 unless($LL_LR == 2) { # LL
99 system("mkdir $path/LL");

100 push @mkConfList, "$confGen $arg --LL > $path/LL/tlm.conf";
101 }
102 unless($LL_LR == 1) { # LR
103 system("mkdir $path/LR");
104 push @mkConfList, "$confGen $arg --LR > $path/LR/tlm.conf";
105 }
106 }
107

108 foreach(@dim) { # 1D,2D,3D
109 $dim = $_;
110

111 # Create Directory for dimensionality
112 mkdir "$basePath/$dim"."D";
113

114 foreach(@size) { # System size
115 my $s = $_;
116

117 # Generate Size String

178 G.3: TLM helper tools

118 $size = "$s";
119 $size .= ":$s" if($dim>1);
120 $size .= ":$s" if($dim>2);
121

122 # Create Directory for Size
123 system("mkdir $basePath/$dim"."D/S$size");
124

125 foreach(@boxSize) { # Box Sizes
126 my $b = $_;
127

128 # Generate Box String
129 $b -= 1; # Start counting at 0 thus -1
130 $box = "0:$b";
131 $box .= ":0:$b" if($dim>1);
132 $box .= ":0:$b" if($dim>2);
133

134 # Create Directory for Box
135 system("mkdir $basePath/$dim"."D/S$size/B$box");
136

137 foreach(@R1) { # R Bulk
138 $R1 = $_;
139 system("mkdir $basePath/$dim"."D/S$size/B$box/R1_$R1");
140 foreach(@R2) { # R Box
141 $R2 = $_;
142 $R = "$R1:$R2";
143 system("mkdir $basePath/$dim"."D/S$size/B$box/R1_$R1/R2_$R2");
144

145 foreach(@Z) { # Z
146 $Z = "$_:$_";
147 $path = "$basePath/$dim"."D/S$size/B$box/R1_$R1/R2_$R2/Z$Z";
148 system("mkdir $path");
149 my $Path = $path;
150

151 foreach(@T1) { # T1
152 $T1 = $_;
153 $path = $Path."/T1_$T1";
154 system("mkdir $path");
155

156 # Generating directory list
157 push @dirList, "$path/LL" unless($LL_LR == 2);
158 push @dirList, "$path/LR" unless($LL_LR == 1);
159

160 # Generating the arguments for confGen.pl
161 $arg = "--T1=$T1 --size=$size ";
162 $arg .= "--steps=$steps --initVal=$initValBulk:$initValBox ";
163 $arg .= "\"--box=$box\" --R=$R --Z=$Z ";
164 $arg .= "\"--areas=0";
165 $arg .= ":$b";
166 $arg .= ":0" if($dim>1);
167 $arg .= ":$b" if($dim>1);
168 $arg .= ":0" if($dim>2);
169 $arg .= ":$b" if($dim>2);
170 $arg .= "\" ";
171 $arg .= " -v=$verbose" if($verbose);
172 $oArg = "$dim"."D Size=$s Box=".($b+1)." ";
173 $oArg .= " R=$R Z=$Z T1=$T1";
174 writeConf();
175 push @argList, "$oArg LL\n" unless($LL_LR == 2);

Appendix G: Source Code 179

176 push @argList, "$oArg LR\n" unless($LL_LR == 1);
177 }
178 }
179 }
180 }
181 }
182 }
183 }
184

185 # Defining variables for tracking configuration generation
186 my $conf = 0;
187 my $confMax = @mkConfList;
188

189 # Iterate through the list of to be generated configurations
190 while(@mkConfList) {
191

192 # Take first item out of array
193 my $run = shift @mkConfList;
194 # Increase conf-count
195 $conf++;
196 push @typeList, 0; # Type 0 is configuration
197 push @dispList, "Creating config $conf/$confMax\n";
198 push @runList, $run;
199 }
200

201 # Defining variables for tracking simulations
202 my $procMax = @runList;
203 my $proc = 0;
204

205 # Iterate through directories
206 while(@dirList) {
207 $proc++;
208 # Setting string to be displayed
209 $oArg = shift @argList;
210 push @dispList, "Starting Process $proc/$procMax:\n$oArg\n\n";
211

212 push @typeList, 1; # Type 1 is simulation
213

214 # Pushing the directories onto the runList to be forked
215 my $p = shift @dirList;
216 push @runList, $p;
217 }
218

219 my $i = -1;
220 my $manager = new Parallel::ForkManager($numProcs);
221

222 # This loop will spawn processes so that there are always $numProcs
223 # processes running if possible
224 while($i <= @runList) {
225 $i++;
226

227 # After this we are running multi-threaded
228 $manager->start and next;
229

230 # Print the text which was set earlier
231 print $dispList[$i];
232

233 # Set $p to the parameter for the current task

180 G.3: TLM helper tools

234 my $p = $runList[$i];
235

236 if($typeList[$i] == 0) { # Config
237 # $p is a command line that will generate the configuration file
238 # run it
239 system($p);
240 } else { # $typeList[$i] == 1 i.e. simulation
241 # $p is a directory in which TLM-Simulator is to be started
242 # Change to the directory
243 chdir $p;
244

245 # Start simulation
246 system("$TLM_Sim > OUTPUT");
247

248 # Call gnuplot and in write mode (i.e. write to gnuplots STDIN)
249 open GNUPLOT, "| gnuplot";
250

251 # Generate one graph per @graphSize
252 foreach my $size (@graphSize) {
253 print GNUPLOT "set terminal svg size 800,600 dynamic\n";
254 print GNUPLOT "set output \"".$size.".svg\"\n";
255 print GNUPLOT "plot [0:".$size."] \’OUTPUT\’ using 1 title \"Box\", ";
256 print GNUPLOT "\’OUTPUT\’ using 2 title \"Bulk\"\n";
257 print GNUPLOT "set terminal texdraw\n";
258 print GNUPLOT "set output \"".$size.".tex\"\n";
259 print GNUPLOT "plot [0:".$size."] \’OUTPUT\’ using 1 title \"Box\", ";
260 print GNUPLOT "\’OUTPUT\’ using 2 title \"Bulk\"\n";
261 }
262

263 # Close connection to gnuplot
264 close GNUPLOT;
265 }
266 $manager->finish;
267 }

G.3.2 confGen.pl

1 #!/usr/bin/perl
2 #
3 # File: confGen.pl
4 #
5 # Author: Frederik Klama
6 # Copyright 2010 Frederik Klama
7 #
8 # This file is part of TLM-Simulator.
9 #

10 # TLM-Simulator is free software: you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation, either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # TLM-Simulator is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with TLM-Simulator. If not, see <http://www.gnu.org/licenses/>.
22

Appendix G: Source Code 181

23 #
24 # This program is called with several command line options and outputs
25 # a configuration file for TLM-Simulator on STDOUT.
26 # It is recommended to redirect the output to ’tlm.conf’
27 #
28

29 use strict;
30

31 use Getopt::Long;
32

33 my $dim;
34 my $sizeStr;
35 my $Xsize = 0;
36 my $Ysize = 0;
37 my $Zsize = 0;
38 my $size;
39 my $helpSW;
40 my $steps = 1000;
41 my $LL_SW;
42 my $LR_SW;
43 my $model = "LL";
44 my $verboseSW;
45 my $BoxStr;
46 my @Box;
47 my $R_Str;
48 my $Z_Str;
49 my $initValStr;
50 my $areasStr;
51 my @R_vals;
52 my @Z_vals;
53 my @initVal;
54 my @areas;
55 my @R;
56 my @Z;
57 my @iV;
58 my $R;
59 my $Z;
60 my $iV;
61 my $i;
62 my $j;
63 my $k;
64 my $T1;
65 my $round;
66

67

68 my $result = GetOptions (
69 "help|h" => \$helpSW,
70 "size=s" => \$sizeStr,
71 "steps=i" => \$steps,
72 "LL" => \$LL_SW,
73 "LR" => \$LR_SW,
74 "verbose|v=i" => \$verboseSW,
75 "box=s" => \$BoxStr,
76 "R=s" => \$R_Str,
77 "Z=s" => \$Z_Str,
78 "initVal=s" => \$initValStr,
79 "areas=s" => \$areasStr,
80 "T1=i" => \$T1,

182 G.3: TLM helper tools

81 "round=f" => \$round
82);
83 # Can’t have both a box and a round area. If they are both
84 # set, abort with error message
85 die("Can not define box and round!") if($BoxStr && $round);
86

87 # Split the $sizeStr into the x,y,z-components
88 ($Xsize, $Ysize, $Zsize) = split(/:/, $sizeStr);
89

90 # Determine dimensionality by seeing which dimensions are set
91 $dim = 3;
92 $dim = 2 if($Zsize==0);
93 $dim = 1 if($Ysize==0);
94

95 # Calculate total size
96 $size = $Xsize;
97 $size *= $Ysize if($dim>1);
98 $size *= $Zsize if($dim>2);
99

100 # Split R,Z and inital magnetization values
101 # First value is Bulk, the others are the areas
102 @R_vals = split(/:/, $R_Str);
103 @Z_vals = split(/:/, $Z_Str);
104 @initVal = split(/:/, $initValStr);
105

106 # Link-Line xor Link-Resistor i.e. not both
107 die("Can not set --LL and --LR at the same time!") if($LL_SW && $LR_SW);
108

109 # Default for $model is "LL"
110 $model = "LR" if($LR_SW);
111

112

113 # Essentially two different programs from here on
114 if($round) {
115

116 # Round makes no sense with a 1D system
117 if($dim<2 || $dim>3) {
118 die("--round only makes sense for 2D or 3D systems!") ;
119 }
120

121 # Check if it is within the simulated system
122 if($Xsize<$round || $Ysize<$round || ($Zsize<$round && $dim==3)) {
123 die("--round can not be bigger than simulated system!");
124 }
125

126 # Very small numbers make no sense
127 if($round<2) {
128 die("--round has to be a positive number bigger than 2!");
129 }
130

131 # Print main part of the configuration file
132 print "dim = $dim\n";
133 print "Xsize = $Xsize\n";
134 print "Ysize = $Ysize\n" if($dim>1);
135 print "Zsize = $Zsize\n" if($dim>2);
136 print "steps = $steps\n";
137 print "verbose = ";
138 print $verboseSW."\n";

Appendix G: Source Code 183

139 print "round = $round\n";
140 print "T1 = $T1\n" if($T1>0);
141 print "model = $model\n\n";
142

143 # After the following line the potential as well as the values for Z and R
144 # are defined
145 print "{Begin Data}\n";
146

147

148 if($dim==2) {
149 for($j=0;$j<$Ysize;$j++) {
150 for($i=0;$i<$Xsize;$i++) {
151 # Calculate the distance from the origin (0,0)
152 my $dist = sqrt($i**2 + $j**2);
153

154 print "# x=$i y=$j distance=$dist\n";
155 if($dist > $round) {
156 # We are outside of the circle
157 print "P = ".($initVal[0])/($dim*2)."\n";
158 print "R = ".$R_vals[0]."\n";
159 print "Z = ".$Z_vals[0]."\n";
160 } else {
161 # We are inside the circle
162 print "P = ".($initVal[1])/($dim*2)."\n";
163 print "R = ".$R_vals[1]."\n";
164 print "Z = ".$Z_vals[1]."\n";
165 }
166 }
167 }
168 } else { # $dim==3
169 for($k=0;$k<$Zsize;$k++) {
170 for($j=0;$j<$Ysize;$j++) {
171 for($i=0;$i<$Xsize;$i++) {
172 # Calculate the distance from the origin (0,0)
173 my $dist = sqrt($i**2 + $j**2 + $k**2);
174

175 print "# x=$i y=$j z=$k distance=$dist\n";
176 if($dist > $round) {
177 # We are outside of the circle
178 print "P = ".($initVal[0])/($dim*2)."\n";
179 print "R = ".$R_vals[0]."\n";
180 print "Z = ".$Z_vals[0]."\n";
181 } else {
182 # We are inside of the circle
183 print "P = ".($initVal[1])/($dim*2)."\n";
184 print "R = ".$R_vals[1]."\n";
185 print "Z = ".$Z_vals[1]."\n";
186 }
187 }
188 }
189 }
190 }
191

192

193 } # if($round)
194 else
195 { # Box instead of round
196

184 G.3: TLM helper tools

197 # Split up the single coordinates of the box
198 @Box = split(/:/, $BoxStr);
199

200 # Split up the different areas (if there are more than one)
201 @areas = split(/,/, $areasStr);
202

203 # One coorinate pair times dimension
204 die("Box has to have two entrys per dimension!") if(@Box < $dim*2);
205

206 # Die if any dimension is smaller than 2
207 if($Xsize<2 || ($dim>1 && $Ysize<2) || ($dim>2 && $Zsize<2)) {
208 die("Dimensions have to be bigger than 1!");
209 }
210

211 # Getting the bulk values out of the arrays
212 $R = shift @R_vals;
213 $Z = shift @Z_vals;
214 $iV = (shift @initVal) / ($dim*2);
215

216 # Simply set the whole system to the bulk values
217 for($i=0; $i<$size; $i++)
218 {
219 $Z[$i] = $Z;
220 $R[$i] = $R;
221 $iV[$i] = $iV;
222 }
223

224 # Now set anything that differs from the bulk values
225 foreach my $area (@areas)
226 {
227 $R = shift @R_vals;
228 $Z = shift @Z_vals;
229 $iV = (shift @initVal) / ($dim*2);
230

231 # Split up the coordinates of this area
232 my @coords = split(/:/, $area);
233

234 # One coordinate pair time dimension
235 die("Define boxes with two corners please!") if(@coords != $dim*2);
236

237 # Split the coordinates into one array each
238 my @min;
239 my @max;
240 for(my $i=0;$i<@coords;$i++) {
241 push @min, $coords[$i] if($i % 2);
242 push @max, $coords[$i] unless($i % 2);
243 }
244

245 # Each set of coordinates should be the size of the dimensionality
246 if(@min != $dim || @max != $dim)
247 { die("The coordinates of the corners have to be ".$dim."-dimensional!"); }
248

249 # Sort the coordinates to get one pair closest and one furthest
250 # from the origin (0,0)
251 my $tmp;
252 for($i=0; $i<$dim; $i++) {
253 if($min[$i] > $max[$i]) {
254 $tmp = $min[$i];

Appendix G: Source Code 185

255 $min[$i] = $max[$i];
256 $max[$i] = $tmp;
257 }
258 }
259

260 # Write the values for this area into the array
261 if($dim == 3)
262 {
263 for($k=$min[2]; $k<=$max[2]; $k++) {
264 for($j=$min[1]; $j<=$max[1]; $j++) {
265 for($i=$min[0]; $i<=$max[0]; $i++) {
266 my $offset = ($k * $Ysize + $j) * $Xsize + $i;
267 $Z[$offset] = $Z;
268 $R[$offset] = $R;
269 $iV[$offset] = $iV;
270 }
271 }
272 }
273 }
274 elsif($dim == 2)
275 {
276 for($j=$min[1]; $j<=$max[1]; $j++) {
277 for($i=$min[0]; $i<=$max[0]; $i++) {
278 my $offset = $j * $Xsize + $i;
279 $Z[$offset] = $Z;
280 $R[$offset] = $R;
281 $iV[$offset] = $iV;
282 }
283 }
284 }
285 else # $dim == 1
286 {
287 for($i=$min[0]; $i<=$max[0]; $i++) {
288 $Z[$i] = $Z;
289 $R[$i] = $R;
290 $iV[$i] = $iV;
291 }
292 }
293 }
294

295 # Printing main part of the configuration file
296 print "dim = $dim\n";
297 print "Xsize = $Xsize\n";
298 print "Ysize = $Ysize\n" if($dim>1);
299 print "Zsize = $Zsize\n" if($dim>2);
300 print "steps = $steps\n";
301 print "verbose = ";
302 print $verboseSW."\n";
303 print "Box0 = ".$Box[0]."\n";
304 print "Box1 = ".$Box[1]."\n";
305 print "Box2 = ".$Box[2]."\n" if($dim>1);
306 print "Box3 = ".$Box[3]."\n" if($dim>1);
307 print "Box4 = ".$Box[4]."\n" if($dim>2);
308 print "Box5 = ".$Box[5]."\n" if($dim>2);
309 print "T1 = $T1\n" if($T1>0);
310 print "model = $model\n\n";
311

312 print "{Begin Data}\n";

186 G.3: TLM helper tools

313

314 # Now printing values for potential, R and Z
315 if($dim == 3) {
316 for($k=0; $k<$Zsize; $k++) {
317 for($j=0; $j<$Ysize; $j++) {
318 for($i=0; $i<$Xsize; $i++) {
319 my $offset = ($k * $Ysize + $j) * $Xsize + $i;
320 print "# x=$i y=$j z=$k offset=$offset\n";
321 print "P = ".$iV[$offset]."\n";
322 print "R = ".$R[$offset]."\n";
323 print "Z = ".$Z[$offset]."\n";
324 }
325 }
326 }
327 }
328 elsif($dim == 2) {
329 for($j=0; $j<$Ysize; $j++) {
330 for($i=0; $i<$Xsize; $i++) {
331 my $offset = $j * $Xsize + $i;
332 print "# x=$i y=$j offset=$offset\n";
333 print "P = ".$iV[$offset]."\n";
334 print "R = ".$R[$offset]."\n";
335 print "Z = ".$Z[$offset]."\n";
336 }
337 }
338 }
339 else # $dim == 1
340 {
341 for($i=0; $i<$Xsize; $i++) {
342 print "# x=$i\n";
343 print "P = ".$iV[$i]."\n";
344 print "R = ".$R[$i]."\n";
345 print "Z = ".$Z[$i]."\n";
346 }
347

348 }
349 }
350

351 # vim:set ts=2 sw=2:

	1 Introduction
	2 NMR Methods
	2.1 Measuring methods for T1 and T1
	2.1.1 Spin relaxation and domain size
	2.1.2 Inversion Recovery
	2.1.3 Saturation Recovery
	2.1.4 T1 Spin-lock

	2.2 Echo and Spin Diffusion Pulse Sequences
	2.2.1 Echo Pulse Sequences
	2.2.2 Spin Diffusion Pulse Sequence
	2.2.3 Pulse Sequence for Spin Diffusion with Spin-Echo

	2.3 High resolution Solid-Sate NMR
	2.3.1 Magic Angle Spinning
	2.3.2 Cross polarization

	3 InP Nanoparticles
	3.1 Introduction
	3.2 Samples
	3.3 Results
	3.3.1 Surface passivation with zinc carboxylates
	3.3.2 Fatty acid concentration and its influence on the particles
	3.3.3 Fatty amine concentration and its influence on the particles

	3.4 Spectra
	3.4.1 31P spectra of InP Nanoparticles without added zinc
	3.4.2 31P spectra of InP Nanoparticles with added zinc
	3.4.3 31P spectra of ZnP particles
	3.4.4 Spectra of InPZn nanoparticles with fatty amine

	3.5 Conclusion
	3.5.1 Phosphorus-zinc bonding and its implication on 31P-NMR

	4 Pharmaceuticals
	4.1 Etravirine
	4.1.1 Samples
	4.1.2 Results

	4.2 Felodipin
	4.2.1 Samples
	4.2.2 Results
	4.2.3 Spectra

	5 TLM Model
	5.1 Introduction
	5.2 Theory
	5.2.1 The TLM algorithm for a one dimensional system
	5.2.2 Boundaries
	5.2.3 Inputs
	5.2.4 Going to the second and third dimension

	5.3 Effects of different Parameters on simulated output
	5.3.1 Dimensionality
	5.3.2 Different Box Sizes
	5.3.3 99993em.5Differences between Link-Line and Link-Resistor simulations
	5.3.4 Simulation of different geometric shapes
	5.3.5 Comparing the Simulation Results with Analytical Solutions

	5.4 Experimental
	5.4.1 Extracting the magnetization components from the FID
	5.4.2 Experimental complications with the real-life samples
	5.4.3 Plotting the amplitudes against diffusion time

	5.5 Comparison between provided Spin Diffusion data and simulations
	5.6 Possible further studies

	A Bibliography
	B Data Fitting
	B.1 Least Squares Method
	B.1.1 Least Squares
	B.1.2 Gaussian Elimination
	B.1.3 Shift-cutting
	B.1.4 Marquardt parameter

	B.2 Simplex Algorithm
	B.2.1 The Simplex
	B.2.2 How to construct the simplex for the Simplex Algorithm

	B.3 Regression Analysis

	C Software
	C.1 Software capabilities and limitations
	C.1.1 Choice of programming languages
	C.1.2 Curve Fitting
	C.1.3 TLM Simulator
	C.1.4 TLM helper tools

	C.2 Software usage
	C.2.1 TLM Simulator

	D Floating Point Accuracy Problems
	D.1 Introduction
	D.2 Floating Point and Precision
	D.3 Rounding and Accuracy Problems
	D.4 Arbitrary-Precision Arithmetic
	D.5 Relevance to this work

	E Simulation Parameters
	F Acquisition Data
	G Source Code
	G.1 Line Fitting
	G.1.1 OptSimp.m
	G.1.2 SpinDiff.m

	G.2 TLM-Simulator
	G.2.1 TLM-Sim.c
	G.2.2 common.h
	G.2.3 StringTools.h
	G.2.4 StringTools.c
	G.2.5 dataStruct.h
	G.2.6 dataStruct.c
	G.2.7 fillBoxMag.h
	G.2.8 fillBoxMag.c
	G.2.9 output.h
	G.2.10 output.c
	G.2.11 parser.h
	G.2.12 parser.c
	G.2.13 worker.h
	G.2.14 worker.c
	G.2.15 Makefile

	G.3 TLM helper tools
	G.3.1 table2conf.pl
	G.3.2 confGen.pl

