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ABSTRACT 
 

Purpose: Cataracts are a key feature of type 1 myotonic dystrophy (DM1), 

however, little is known about the mechanisms which underlie their development. 

This project aims to verify the suitability of lens cell lines derived from DM1 

patients as a model for the disease and to use these to investigate the mechanisms 

which lead to cataract development.  

Methods: Experiments were conducted using four DM1 and four control cell 

lines derived by SV40 transformation of human lens epithelial cells (LECs). The 

DM1 cell lines were characterised by measuring gene expression using QRT-PCR 

and identifying foci formation of triplet repeat RNA via FISH. Activation of 

signalling pathways was analysed using Western blotting. Active signalling 

pathways were inhibited to examine their roles in cell growth, death and apoptosis 

which were measured using BCA, LDH and TUNEL assays respectively.  

Results: Human LECs expressed DMPK and transcripts formed foci in the nuclei 

of DM1 cells; however, no evidence of alternative splicing was found. DM1 LECs 

had significantly longer population doubling times and a shorter lifespan 

compared to controls. Serum deprivation led to increased levels of apoptotic cell 

death in DM1 LECs. DM1 LECs released autocrine signalling factors which 

activated the Akt pathway in the non-virally transformed lens cell line FHL124. 

Levels of pAkt and pJNK were subsequently shown to be elevated in the DM1 

cell line, DMCat1. However, levels of Akt activity declined during the culture 

period. Inhibition of the PI3K/Akt pathway in DMCat1 led to increased levels of 

apoptotic cell death. 

Conclusions: DM1 LECs require signalling via the PI3K/Akt pathway for 

survival. Sustained activation of JNK and decreasing activation of Akt could be 

responsible for the longer population doubling times and shorter lifespan of DM1 

LECs. Increased LEC death could underlie cataract formation through a loss of 

homeostatic control in DM1 lenses. 
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CHAPTER 1 

INTRODUCTION  
 

1.1 The human eye 

 

 The eye is a highly specialised organ which detects and interprets photic 

stimuli to allow us to perceive vision. The eye detects light energy and converts it 

into electrical signals which are sent to the brain and processed so that we can 

visualise our surrounding environment. The individual structures within the eye 

(see figure 1.1) are either involved in the transmission and focusing of light and 

generation of signals, or in the nourishment and support of the tissues within the 

eye (Forrester et al., 2002). 

 The adult human eye is roughly spherical with a diameter of around 24 

mm; it has an average volume of 6.5 ml and a mass of 7.5 g and is separated into 

anterior and posterior segments. The smaller anterior segment consists of the 

conjunctiva, cornea, iris, lens and aqueous humour. This segment is separated into 

the anterior and posterior chambers by the iris, but the chambers remain 

connected via the pupil. The anterior chamber is the space between the cornea and 

iris and the posterior chamber is the space between the iris and the lens; both 

chambers are filled with aqueous humour. The larger posterior segment consists 

of the sclera, choroid, retina and vitreous humour (Forrester et al., 2002).  

The outermost layer of the posterior segment is the sclera and this joins the 

transparent cornea and conjunctiva which form the outermost layer of the anterior 

segment. Together these form a layer called the fibrous coat which protects the 

eye. Beneath the fibrous coat are two further layers, the first of which is known as 

the vascular coat and is made up of the choroid, ciliary body and iris. The choroid 

is highly vascularised to nourish the outer layers of the retina and is pigmented to 

reduce light scatter within the eye. The ciliary body holds the lens in place and 

produces aqueous humour, which bathes the lens and fills the anterior segment. 

The iris is the coloured part of the eye and contains sphincter and dilator muscles 

that control the size of the pupil and therefore the amount of light that enters the 

eye. The innermost layer of the posterior segment is known as the neural coat 
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which consists of the retina. The retina has a highly complex, layered structure 

which contains the photoreceptor cells known as rods and cones. The region of the 

retina known as the macula is responsible for high visual acuity and contains a pit 

called the fovea where light rays are focused. The retina is responsible for turning 

light into electrical signals that are passed to the brain via neurones in the optic 

nerve which exits the retina at the blind spot (Forrester et al., 2002). 

 

 
 

 

Figure 1.1 – A diagrammatic representation of the human eye, showing the main structures 

and their relative positions within the eye. The eye consists of three outer coats: the fibrous 

coat (sclera and cornea); the vascular coat (choroid and iris); and neural coat (retina), which 

encase the remaining structures of the eye, including the lens. The vitreous and aqueous 

humours provide nourishment and support and maintain the shape of the eye (image from 

http://en.wikipedia.org/wiki/Eye). 

 

 

The three layers surround and house the remaining components that make 

up the eye. These include the lens, which is responsible for focusing light on to 
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the retina; the aqueous humour, which supports and nourishes the structures of the 

anterior segment of the eye; and the vitreous humour, which supports the 

structures of the posterior segment of the eye.   

 

1.1.2 The passage of light through the eye 

Light of wavelengths that are visible to the human eye is found in a 

relatively small region of the electromagnetic spectrum between 400 and 700 nm 

and corresponds to a colour range of violet to red. Light with wavelengths below 

400 nm, such as ultraviolet (UV) light, is filtered out by the cornea and lens as its 

high energy would be damaging to the retina (Yanoff & Duker, 2009). Light 

enters the eye through the conjunctiva and cornea which are the transparent 

coverings of the eye. The cornea is responsible for two-thirds of the eye’s 

refractive power, but unlike the lens its focus is fixed (Forrester et al., 2002). The 

light passes through the clear aqueous humour and the amount of light that can 

pass through the pupil is determined by the muscles of the iris. The iris contracts 

or dilates to enable more or less light to pass towards the back of the eye 

depending on lighting conditions. In low light the iris dilates to allow more light 

to enter the eye and in bright light the iris contracts to restrict the amount of light 

that enters the eye. 

Light passes through the lens which is a transparent structure responsible 

for the remaining refractive power of the eye. Unlike the cornea, the lens is 

capable of altering its shape, and therefore refractive power, in order to bring light 

from varying distances to focus on the same point of the retina. The light then 

passes into the vitreous humour, a clear gelatinous material, which fills the space 

between the lens and the retina. The vitreous humour consists mainly of water 

(over 98%) and a matrix of type II collagen fibres and hyaluronic acid, which 

increases its viscosity to 2-4 times that of water alone (Forrester et al., 2002). This 

enables it to fulfil its role of maintaining the shape of the eye.  

When focused light reaches the retina it is directed to the macula region 

and particularly the pit of the fovea. The retina is the photosensitive part of the 

eye and consists of ten distinct layers containing many different cell types (see 

figure 1.2). The retina is responsible for turning light energy into electrical signals 

which can be interpreted by the brain. Light passes through several layers of 

retinal cells before reaching the photoreceptor cells at the back of the retina. The 
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outermost layer of the retina (situated nearer the back of the eye) consists of 

retinal pigment epithelial (RPE) cells which contain pigment (melanin) and are 

responsible for capturing stray light to avoid light scatter within the eye. Other 

roles of the RPE cells include: the phagocytosis of outer segments of the 

photoreceptor cells; the turnover of vitamin A required for the production of 

photopigment; and the provision of a barrier between the blood vessels of the 

choroid and the retina.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 – A diagrammatic representation of the structure of the retina. The retina is made 

up of a pigmented epithelial cell layer and several layers of neuronal cells connected by 

synapses. The cells convert light energy into electrical signals which are passed to the brain 

via the ganglion cell axons which exit the eye at the blind spot and form the optic nerve 

(image from http://psych.hanover.edu/Presentations/VoiceFound/images/retina2.jpg). 

 

 

Most of the light that passes through the layers of the retina is captured by 

the two types of photoreceptor cell known as rods and cones. Rod cells are highly 

sensitive and can be activated by a single photon of light. For this reason they are 
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mainly used for vision in low light intensity. Cone cells are less sensitive to light 

but allow the perception of colour. There are three types of cone cell, each being 

sensitive to a different part of the visible light spectrum. The photoreceptor cells 

contain photopigments which are activated by different wavelengths of light, 

causing the closure of Na+ channels, hyperpolarisation and the reduction of tonic 

release of the neurotransmitter glutamate onto bipolar and horizontal cells. The 

bipolar cells pass the signal via a graded potential to either amacrine cells or 

directly to ganglion cells which fire action potentials when stimulated. The 

ganglion cells have long axons which exit the eye at the optic disk and form the 

optic nerve which goes to the lateral geniculate nucleus situated in the thalamus of 

the brain. The lateral geniculate nucleus is the processing centre for visual 

information and sends the signals via the optic radiation to the visual cortex where 

further analysis and interpretation occurs. 

 

1.2 The human lens 

 

 The lens is derived from surface ectoderm which overlies the optic vesicle 

and forms the lens placode during development. The mature lens is a transparent, 

avascular tissue situated behind the iris and in front of the vitreous body in the 

anterior segment of the eye. The lens has an ellipsoid, biconvex shape with the 

anterior surface being less curved than the posterior. The adult human lens is 

approximately 10 mm in diameter and has a width of around 4 mm (Forrester et 

al., 2002). It is held in place by the zonule fibres which are attached to the lens 

capsule (just in front of the equatorial line) at one end and the ciliary body at the 

other. The lens is nourished by vitreous humour on its posterior surface and 

aqueous humour on its anterior surface. As the lens does not have its own blood 

supply, all of the nutrients it receives come from the surrounding humours. 

 The function of the lens is to focus light onto the retina. In order to focus 

light from varying distances at the same point the lens is able to alter its shape by 

a process known as accommodation. When the ciliary muscle contracts, tension in 

the zonules is reduced and the lens relaxes to a more spherical shape to focus light 

from near objects. At rest (relaxed), the lens has a refractive power of 

approximately 15 dioptres, which is altered when it changes shape. When the 

ciliary muscle relaxes the converse is true and tension in the zonules increases to 
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flatten the lens enabling light from distant objects to be focused. Ciliary muscle 

contraction is activated by the parasympathetic nervous system via the oculomotor 

nerve and relaxation is under the control of the sympathetic nervous system. 

 Structurally the lens has three main components: the capsule; the anterior 

epithelium; and the fibres (see figure 1.3). All three components have a structure 

that has evolved to maintain transparency of the lens.  

 

 

 

Figure 1.3 – A diagrammatic representation of the human lens. A layer of metabolically 

active epithelial cells (blue) are found on the anterior surface of the lens. Some of these cells, 

known as the germinative cells (pink), continually divide throughout life. They elongate (red) 

and migrate, forming new fibre cells (yellow) that become part of the fibre mass. The 

original embryonic fibres form the nucleus (pale yellow) of the lens. The lens is surrounded 

by the lens capsule (grey) (image from Maidment et al. (2004)). 

 

 

1.2.1 The lens capsule  

The lens capsule is a transparent, smooth, basement membrane that 

surrounds the entire lens and protects it from infectious viruses and bacteria. The 

lens capsule acts as a reservoir of growth factors and provides epitopes for lens 

cell surface receptors which encourage cell survival, growth and migration 

(Danysh & Duncan, 2009). The membrane also acts as a selectively permeable 
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barrier to allow the movement of metabolic substrates and waste between the lens 

and the humours of the eye due to the lack of blood vessels that would usually 

perform this task. The lens epithelial cells slowly produce and turnover the matrix 

material of the thick, elastic lens capsule. The capsule is mainly composed of 

laminin and type IV collagen, but also contains nidogen and several heparan 

sulphate proteoglycans (Danysh & Duncan, 2009). The thickness of the adult lens 

capsule varies from around 2 µm at the posterior pole to around 30 µm at the 

anterior pole. 

 

1.2.2 The lens epithelium 

 The lens epithelium is a monolayer of tightly packed cuboidal epithelial 

cells which cover the anterior surface of the lens. The epithelium is divided into 

three parts: the non-dividing epithelial cells situated in the central anterior region; 

the germinative dividing cells which surround them; and the differentiating cells 

which elongate into new fibre cells at the equatorial region. The cells in the 

germinative zone grow throughout life, resulting in new fibre cells being added to 

the fibre cell mass which increases in size with age.  

 The lens epithelial cells (LECs) are responsible for maintenance of 

homeostatic control of the lens. The LECs regulate levels of ions, nutrients and 

water and maintain the osmolarity and volume of the lens. A gradient of sodium 

ions (Na+) and potassium ions (K+) exists across the lens with high levels of Na+ 

at the posterior where it enters by diffusion and high K+ at the anterior. The LECs 

contain Na+/K+ ATPase pumps which pump Na+ out into the aqueous humour and 

K+ ions in. This results in a negative resting potential which enables the cells to 

maintain their volume (Bhat, 2001). A concentration gradient of calcium ions 

(Ca2+) is also necessary for normal lens cell function with the intracellular levels 

being over 1000-fold lower than extracellular levels (Paterson & Delamere, 2004). 

The gradient is maintained via plasma membrane Ca2+-ATPase (PMCA) and 

Na+/Ca2+ exchangers (NCX), which pump Ca2+ out of the cell and 

sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pumps, which pump 

Ca2+ into the endoplasmic reticulum (ER) calcium store (Rhodes & Sanderson, 

2009). 

 LECs produce the antioxidant glutathione to protect against oxidative 

insults which can inhibit the pumps that maintain the ion gradients and therefore 
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lead to a loss of homeostasis within the lens (Delamere & Tamiya, 2004; Marian 

et al., 2007). 

 

1.2.3 The lens fibres 

 The lens fibres constitute the overwhelming bulk of the lens. Mature fibre 

cells are long and thin in shape, stretching from the anterior to the posterior pole 

of the lens, reaching up to 12 mm in length, but with a diameter of only 4-7 µm. 

The ends of mature fibre cells meet anteriorly at the lens epithelium or posteriorly 

at the capsule where they overlap at the anterior and posterior sutures, forming a 

new growth shell. The fibre cells are tightly packed in layers, called laminae, and 

linked to each other laterally by many gap junctions and channels formed by 

connexins and major intrinsic protein 26 (MIP26). The gap junctions allow rapid 

communication between the cells of the lens, allowing solute and ionic transfer 

from cell to cell. Neighbouring fibre cells are also joined by ball-and-socket 

junctions and membranous interdigitations along their lateral edges which provide 

stability and structure (Forrester et al., 2002). MIP26 acts as a water channel and 

also plays a role in the formation of gap junctions, the organisation of the lens 

protein γ-crystallin and in cell to cell adhesion to limit inter-fibre space 

(Golestaneh et al., 2004). The highly ordered arrangement of the fibre cells and 

the lack of extracellular space ensures the transparency of the lens (Forrester et al., 

2002).  

Fibre cells differentiate and elongate from the dividing LECs at the 

equator of the lens. The equatorial cells continue to divide and new fibres are 

continually added to the fibre mass, leading to an increase in lens size throughout 

life. Since all cells are retained by the lens, fibre cells laid down in the embryo 

and foetus are still found in the adult lens and form the central, denser nucleus. 

  As the fibre cells differentiate and mature they synthesise crystallins, 

water channel and gap junctional proteins and gradually dismantle their organelles 

(Rao & Maddala, 2006). The lens fibres become packed with crystallins, which 

are water soluble proteins that increase the refractive index of the lens and 

maintain transparency. The main crystallins found in the human eye are α-, β-, 

and γ-crystallins. The α-crystallins are members of the small heat shock protein 

family and also have roles as molecular chaperones, which may be of importance 
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in protecting lens proteins and preventing their precipitation during ageing 

(Andley, 2007).  

The organisation of the proteins that maintain transparency is dependent 

on the fibre cell cytoskeleton, which performs a scaffolding role. Further roles of 

the cytoskeleton include regulation of fibre cell shape, elongation and migration. 

The cytoskeleton consists of actin, vimentin and spectrin microfilaments, 

microtubules and intermediate filaments, as well as lens specific beaded filaments 

(Forrester et al., 2002; Rao & Maddala, 2006). 

 The highly ordered structure of the components of the lens is crucial to its 

transparency. Loss of homeostasis in levels of ions and water and the loss of the 

tightly packed structure of the lens fibres can lead to a loss of transparency due to 

light scatter. 

 

1.2.4 The ageing lens 

 As the human lens ages, several changes occur which can impact on vision. 

The most common changes that occur in the ageing human lens are increases in 

stiffness, colouring and light scatter (Vrensen, 2009). The refractive power of the 

lens decreases with age from 15 dioptres during youth to 6-8 at around 40 years of 

age and 2-0 at around 60 years of age (Forrester et al., 2002; Yanoff & Duker, 

2009). 

The condition presbyopia is the inability to focus on near objects, which 

arises due to a loss of elasticity of the lens with age; in particular the hardening of 

the nucleus of the lens. The decrease in lens elasticity is also accompanied by 

atrophy of the ciliary muscle fibres (Forrester et al., 2002). Reading glasses are 

then required in order to view close objects in focus. The level of α-crystallin also 

decreases with age, which coincides with an increase in stiffness. During ageing, 

the level of free α-crystallin decreases as it binds to degraded proteins to prevent 

them from precipitating. At around 40 years of age no free α-crystallin is found in 

the lens and after this point the level of stiffness in the lens increases dramatically 

(Truscott, 2009). With no free α-crystallin to act as a molecular chaperone, levels 

of insoluble proteins that cause light scatter begin to increase. 

The lens becomes increasingly yellow with age due to increased 

absorption of light at the blue end of the spectrum and increased light scattering as 

the cells begin to lose their highly ordered structure. The UV light filter, 3-
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hydroxykynurenine-3-O-β-glucoside (3-HKG), becomes covalently bound to lens 

proteins during ageing, producing a yellow pigment which contributes to 

colouration and also to the development of age-related nuclear cataract (Yanoff & 

Duker, 2009). 

The formation of both nuclear and cortical cataracts has been linked to 

ageing. The hardening of the lens could alter the flow of water, ions and anti-

oxidants through the fluid cell membranes by affecting the activity of membrane 

bound proteins involved in their transport. This could result in a loss of 

homeostasis and an increase in reactive oxygen species, leading to nuclear 

cataract. Also the hardening of the lens nucleus could result in shearing and 

ruptures between the hard nucleus and the softer cortex during attempts to focus 

and accommodate, leading to cortical cataract (Truscott, 2009). 

The density of the LEC layer decreases with age as the surface of the lens 

increases and the proliferative capacity of the germinative cells decreases. As a 

result the epithelial cells flatten to maintain coverage of the lens (Yanoff & Duker, 

2009). The LEC layer is responsible for the maintenance of homeostasis of ion 

and water levels within the lens. A thinning epithelial cell layer is likely to 

contribute to cataract formation due to a loss of homeostasis (Li et al., 1995). 

 

1.3 Cataract 

 

 Cataract is an opacity in the lens which obstructs the passage of light and 

causes light scattering (see figure 1.4). The lens becomes cloudy and opaque, 

resulting in a loss of visual acuity and contrast sensitivity. Cataract can result in 

varying degrees of visual impairment, ranging from blurred vision to blindness. 

 Cataract is the leading cause of blindness worldwide, responsible for 

almost 50% of cases, and it is estimated that 17 million people are currently 

rendered blind due to the condition (Javitt et al., 1996). In developed countries the 

prevalence of blindness due to cataract is low. In most developing countries, 

however, prevalence is much higher, as treatment is not readily available. The 

incidence of cataract increases with age and studies have shown that the risk of 

developing cataracts increases with every decade of life after 40 years of age 

(McCarty et al., 1999; Klein et al., 2002). A study by McCarty et al. (1999) 

showed that 2-3% of people tested had cataract between the ages of 40-49, which 
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increased to 100% in people tested over the age of 90. A similar study by Klein et 

al. (2002) showed that the incidence of cataract over a 10-year period between the 

ages of 43-54 was between 14-19%, compared to 84-90% of those studied over 

the age of 75. The impact of this data becomes apparent when the continual 

increase in life expectancy, and therefore an ageing population, is taken into 

account. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 – Image of a cataractous lens. Cataract is an opacity of the lens, which obstructs 

the passage of light, causing scattering. This results in a cloudy appearance to the lens which 

can be seen behind the pupil of the eye (indicated by the arrow) (image from 

http://www.aapos.org/client_data/files/182_cataract1.jpg). 

 

 

Although the greatest risk factor for developing cataract is age, many 

others have been indentified including: environmental stresses, such as exposure 

to UV light, oxidative stress and radiation; genetic changes, such as mutations in 

crystallin genes; physical trauma; toxic substances, such as selenite; and certain 

medical conditions, such as diabetes. With an ageing population the prevalence of 

cataract is increasing and with no current cure, the only treatment is surgical 

removal.  
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Figure 1.5 – A schematic diagram of the human lens, showing the relative positions of the 

various types of cataract. Nuclear cataracts (NC) are located in the nucleus of the lens. 

Cortical cataracts can either be anterior (ACC) or posterior (PCC). Posterior subcapsular 

cataracts (PSC) are located at the posterior of the lens (image from Das Gupta et al. (2004)). 

 

 

 Cataracts are classified by their position in the lens and are normally 

regarded as either nuclear, cortical, posterior subcapsular, or a mixture of these 

(see figure 1.5). Nuclear cataract affects the nucleus of the lens and is most often 

associated with oxidative damage and age-related changes, such as the 

accumulation of large high molecular weight protein aggregates. Cortical cataracts 

are also most commonly age-related and occur in the cortical fibres of the lens as 

the result of degeneration and liquefaction of the fibres. A breakdown in ion 

homeostasis leads to an influx of Ca2+ and Na+ ions, with the increase in 

intracellular Ca2+ resulting in activation of Ca-activated proteases (calpains) 

which break down the fibre cell protein. Cortical spokes form when groups of 

fibre cells are affected (Naumann et al., 2008). Posterior subcapsular cataracts 

(PSC) form near the posterior edge of the lens and lead to high levels of glare. 

PSCs are the result of the appearance of granular material and vacuoles in the lens, 

but are often associated with other types of cataract, leading to a classification of 

mixed cataract. The development of PSCs has been linked to age, diabetes 
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mellitus, intraocular inflammation, smoking and use of corticosteroids (Hodge et 

al., 1995; Delcourt et al., 2000; Hennis et al., 2004).  

 

1.3.1 Cataract surgery 

Surgical removal of cataracts is the most common operation performed by 

the National Health Service (NHS) in the UK. Around 300 000 are performed 

every year, and with each operation costing around £700 to £1200, this is an 

incredible financial burden on the NHS. 

Cataract surgery lasts around 15 minutes and is performed under local 

anaesthetic. The most common method is extra-capsular cataract extraction 

(ECCE), which removes the fibre mass, but leaves the capsular bag (lens capsule) 

in place to house an artificial intraocular lens (IOL) (see figure 1.6a and b). The 

cataract operation can be briefly described as follows: small incisions are made in 

the front of the eye to enable access to the lens and a viscoelastic substance is 

injected into the anterior chamber to maintain space and pressure during the 

procedure. A capsulorhexis is performed on the lens, where a circular piece of 

tissue is removed from the anterior surface, which contains the anterior epithelial 

cells attached to the lens capsule. A balanced salt solution is injected into the lens 

to separate the capsule from the fibres and to separate the nucleus from the cortex 

in a process known as hydrodissection and hydrolineation. Phacoemulsification is 

then performed on the fibre mass. An ultrasonic devise is inserted into the 

capsular bag to breakdown the fibres which are then aspirated. The majority of the 

lens is removed during surgery, leaving only the posterior capsule and a small 

amount of the anterior capsule. This is referred to as the capsular bag. A folded 

IOL is then inserted into the capsular bag, where it unfolds and assumes its 

position in the visual axis (Benjamin & Little, 2007). 

 

1.3.2 Posterior capsule opacification 

 A common complication of cataract surgery is the secondary loss of vision 

that occurs in a significant proportion of patients. During cataract surgery a 

portion of the anterior capsule of the lens is left as part of the capsular bag (see 

figure 1.6b). LECs attached to the lens capsule are difficult to remove during 

surgery and subsequently mount a wound healing response where they attempt to 

recover the denuded areas of the anterior capsule by multiplying and migrating. In 
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doing so, some migrate onto the surface of the IOL and also onto the previously 

cell free posterior capsule where they encroach onto the visual axis and cause 

fibrotic changes to the matrix (see figure 1.6c). Contraction of the capsule forms 

wrinkles which scatter light (Wormstone et al., 2009).  

 

 
Figure 1.6 – A diagrammatic representation of a capsular bag and the development of 

posterior capsule opacification (PCO) (a) An intraocular lens (IOL) with the supporting 

loops (haptics) which hold it in place following implantation. The dotted line indicates the 

area where the cross section seen in images b and c was taken (b) Modern cataract surgery 

forms a capsular bag which comprises of the posterior capsule and a portion of the anterior 

capsule. The capsular bag is used to house an IOL. (c) The residual LECs multiply following 

surgery and migrate onto the previously cell free posterior capsule, resulting in wrinkling 

and light scatter in a condition known as PCO (image adapted and modified from 

Wormstone (2002)). 
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The incidence of PCO is significantly higher in younger patient groups, 

most likely due to the increased growth capacity of their cells. The incidence of 

PCO in patients under 40 years of age is as high as 70%, compared to less than 

40% in patients over 60 years old (Wormstone, 2002). 

PCO is treated using a neodymium-yttrium-aluminum-garnet (Nd-YAG) 

laser which is used to remove a section of the posterior capsule to clear the visual 

axis. Nd-YAG treatment is not without risk (e.g. retinal detachment) and also 

costs the NHS a considerable amount each year. Prevention of PCO by more 

effective removal of LECs and better IOL design is the focus of current research. 

 

1.4 Myotonic Dystrophy 

 

 Myotonic dystrophy (DM, also known as dystrophia myotonica) is the 

most common form of adult muscular dystrophy, affecting around 1 in 8000 

people worldwide. It is an autosomal, dominantly inherited, neuromuscular 

disorder. DM is characterised by myotonia (a difficulty in relaxing the muscles 

following contraction), muscle weakness and atrophy (a wasting of the muscles), 

cardiac conduction defects and the development of pre-senile cataracts. Other 

symptoms include mental retardation, testicular atrophy, frontal balding and 

insulin resistance. DM is a multisystemic disease, affecting many tissues and 

organs within the body.  

 DM is a highly variable disease with the range of symptoms, age of onset 

and severity of symptoms varying from person to person (Harper, 2001). 

Symptoms can present at any time from birth to old age and vary from mild to 

severe. In its mildest form, the disease may present with only pre-senile cataract. 

In its most severe form the disease may be present at birth, causing mental 

retardation, muscle weakness and respiratory problems. DM can shorten life 

expectancy, but this is most significant in patients affected from a young age. DM 

patients have an increased risk of respiratory and cardiac diseases and of sudden 

death from heart failure (Meola, 2000).  

 

1.4.1 The history of DM 

 DM was first described as an independent disorder, distinct from other 

myotonic diseases in 1909. Hans Steinert reported nine cases of the disease, where 
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he observed a similar distribution of muscle weakness and atrophy and weak 

speech. He also described testicular atrophy in four of the cases (referred to in 

Harper, 2001). The disease was described independently in the same year by 

Frederick Batten and H.P. Gibb (Batten & Gibb, 1909).  

 In 1911 J.G. Greenfield recognised cataract as a symptom of DM after 

observing a high prevalence of cataract in a large family affected by the disease. 

The systemic nature of DM was first noted in 1912 by H. Curschmann, who 

considered cataract and testicular atrophy to be a sign of generalised endocrine 

disturbance. In 1918 B. Fleischer described cataracts in previous generations of 

patients who had otherwise appeared unaffected by the disease and was the first to 

describe the phenomenon called anticipation, where the severity of the disease 

increases from generation to generation (referred to in Harper, 2001). 

 Mental retardation and cardiac conduction defects had been linked to DM 

in numerous studies by 1950. In 1960 the congenital form of the disease and its 

maternal transmission were described by T.M. Vanier (referred to in Harper, 

2001). By this point the clinical features of DM had been well described, although 

the genetic mutation underlying the disease was still a mystery. The genetic 

mutation behind DM was discovered in 1992, however, some of the patients 

suffering from the disease were not shown to carry this mutation (Aslanidis et al., 

1992; Brook et al., 1992; Buxton et al., 1992; Mahadevan et al., 1992). In 2001, a 

rarer second mutation resulting in DM symptoms was discovered (Liquori et al., 

2001). The two forms of the disease were renamed as type 1 (DM1) (also known 

as Steinert’s disease) and type 2 (DM2) (also known as proximal myotonic 

myopathy). 

 

1.4.2 Clinical features of DM 

 The multisystemic nature of DM means that a patient can present with any 

of the symptoms associated with the disease, which can lead to difficulty in 

making a diagnosis as specialists in particular areas, such as ophthalmologists and 

cardiologists, may not be aware of the condition. A diverse range of clinical 

features are associated with DM. Many of the symptoms observed are common to 

both forms of the disease, however, some present in only one form of DM and 

many symptoms vary in severity or location. 
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Skeletal muscle weakness, wasting, myotonia and pain are common in DM, 

although the pattern of muscle involvement varies between the two forms. In 

DM1 the facial and distal limb muscles are most affected, with proximal skeletal 

muscle weakness occurring as the disease progresses. In contrast, weakness of 

proximal skeletal muscles is more prominent than distal muscles in DM2 

(Machuca-Tzili et al., 2005). In both forms, muscles of the neck and hands are 

affected and facial muscles show signs of weakness, including ptosis (drooping of 

the eyelid), albeit milder in DM2. Muscle biopsies from both DM1 and DM2 

patients show similar histological features such as fibre atrophy (some with 

pyknotic nuclear clumps), central nucleation (sometimes arranged in chains) and 

extreme variations in fibre size. Replacement of necrotic muscle tissue with 

fibrotic and adipose tissue can also be observed. In DM1 it is mainly type 1 

muscle fibres affected, compared to type 2 muscle fibres in DM2 (Wells & 

Ashizawa, 2006). Involvement of the smooth muscle is seen in DM1 but not in 

DM2 and includes dysmotility of the gastrointestinal tract resulting in, for 

example, diarrhoea, constipation and gallstones; and hypotension (Wells & 

Ashizawa, 2006). Muscle pain is also observed in both forms of the disease. 

Myotonia, which is a difficulty in relaxing the muscles due to an increase in the 

frequency of action potentials, is present in both forms of DM; however, it is more 

severe and symptomatic in DM1 patients. Myotonia is caused by spontaneous 

electrical discharges in the muscles that wax and wane (mostly waning in DM2) 

in frequency and amplitude, which is detected by electromyography (EMG) 

(Logigian et al., 2007). The abnormal electrical activity results in the inability to 

relax the muscles, causing for example the sustained grip following a handshake. 

Myotonia affects distal muscles more than proximal and can also affect facial 

muscles, tongue and bulbar muscles (which control talking, chewing and 

swallowing) (Machuca-Tzili et al., 2005; Logigian et al., 2007). Myotonia often 

improves during repetitive exercise of the affected muscles, known as the ‘warm 

up’ effect. The severity of myotonia is positively correlated with muscle weakness 

in DM1, but this is not the case in DM2 (Logigian et al., 2007). 

 The cardiac muscle is also affected by DM, resulting in cardiac 

arrhythmias, cardiomyopathy and conduction defects, which can all cause sudden 

death in DM patients. Cardiac conduction defects are diagnosed by 

electrocardiography (ECG) and are common to both forms of the disease, 
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however, around 75% of DM1 patients suffer conduction blocks, compared to 

only 20% of DM2 patients (Wells & Ashizawa, 2006).  

A key feature of DM is cataract formation, which is observed in both 

forms of the disease and in mildly affected patients it can be the only sign or 

symptom of DM. The cataract that forms is distinct in its early stages from other 

types of cataract and can be easily seen under slit-lamp examination.  

Central nervous system (CNS) abnormalities are more prominent in DM1, 

with degenerative CNS changes leading to mental retardation, depression, 

hypersomnia and anxiety disorders (Wells & Ashizawa, 2006).  

Endocrine abnormalities are common in DM. Abnormal glucose tolerance 

is present in both forms of the disease and can lead to diabetes mellitus, which is 

more common in DM2. Hypotestosteronism with elevated levels of follicle-

stimulating hormone (FSH), frontal balding and testicular atrophy are also 

common to both forms. Hyperhidrosis (excessive levels of perspiration) is found 

mainly in DM2 (Wells & Ashizawa, 2006). The occurrence of pilomatricomas, 

which are benign calcifying epitheliomas of the hair follicle, appear to be more 

common in DM1 patients than in the general public. It has also been suggested 

that DM1 is linked to certain types of cancer with cases of thymoma and 

neoplasms of the parotid gland, parathyroid and thyroid being the most commonly 

reported (Harper, 2001; Mueller et al., 2009). 

A congenital form of DM, where development of the foetus is affected and 

signs and symptoms are present from birth, is only seen in DM1. During 

pregnancy, mothers may notice reduced foetal movement and polyhydramnios 

(excess of amniotic fluid). Following birth, clinical characteristics of this form of 

the disease include hypotonia (low muscle tone resulting in being ‘floppy’ at 

birth); talipes; a tented upper lip; a high-arched palate; bilateral facial weakness; 

problems with swallowing, breathing and suckling; faecal incontinence and 

mental retardation (Machuca-Tzili et al., 2005; Schara & Schoser, 2006). 

Interestingly, neither myotonia nor cataracts are present at birth but both develop 

after the first decade of life. 

Diagnosis of DM is made after clinical examinations and tests have 

confirmed the presence of many of the clinical features described above (See table 

1.1 for a summary of the major clinical features associated with the two forms of 

the disease). Genetic tests which can identify the underlying genetic mutations are 
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also available and are commonly used to confirm the findings and differentiate 

between the two forms as variability in the presenting symptoms make a positive 

diagnosis almost impossible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Table 1.1 – A summary of the major clinical features associated with the two forms of DM.         

− = absent, ± = present to a mild degree, + = present. 
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1.4.3 The genetic mutations underlying DM 

 Two distinct mutations are known to cause DM, resulting in two forms of 

the disease. DM1 is the most prevalent form (responsible for around 98% of 

cases), although in some countries, such as Germany and Poland, the incidence of 

the two forms is approximately equal. The mutations that underlie DM are a type 

of mutation known as a repeat expansion, which are repeat sequences found 

within DNA that are unstable and of variable length. There are over 20 disorders 

caused by repeat expansions, including fragile X syndrome and the cerebellar 

ataxias. DM1 is caused by the expansion of a cytosine-thymine-guanine (CTG) 

triplet repeat located in the 3’ untranslated region (UTR) of the DMPK gene on 

chromosome 19 (Brook et al., 1992). DM2, however, results from a CCTG repeat 

located in the first intron of the ZNF9 gene on chromosome 3 (Liquori et al., 

2001). Therefore, the mutations underlying both forms of DM are located in non-

coding regions of genes, which are transcribed into RNA but are not translated 

into protein. Despite the differences in the sequence and location of the repeats 

that cause the two forms of DM, they share many of the same symptoms 

(summarised in table 1.1). Those of DM1, however, appear to be more severe than 

those of DM2. 

 The inheritance of both mutations is autosomal dominant, which means an 

affected individual will have one normal copy of the gene and one containing the 

repeat mutation. There is, therefore, a 50% chance of an affected individual 

passing the disease to their offspring, with males and females having an equal 

chance of inheriting the disease. 

 A small, stable CTG repeat in the DMPK gene is present in normal 

individuals, varying in length from 5-37 repeats. DM1 patients, however, have 

unstable repeats with lengths starting at 50 and ranging to over 1000. Repeats in 

the region of 38-50 do not result in DM1, but are considered a premutation which 

could lead to the development of the disease in future generations (Wells & 

Ashizawa, 2006). Repeat numbers in DM2 can be much larger and range from 75 

to 11 000. In normal individuals the repeat tract within the ZNF9 gene is shorter 

(≤ 26 repeats) and interrupted with GCTG and/or TCTG motifs (Liquori et al., 

2001).   

The repeat regions that cause DM are unstable and biased towards 

expansion. The repeats expand in the somatic cells of an individual during their 
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lifetime and also between generations, particularly when passed maternally. The 

number of repeats also varies depending on cell and tissue type. For example, 

cells in skeletal muscle, heart and brain have significantly larger repeat 

expansions than leukocytes (Thornton et al., 1994). This is known as somatic 

mosaicism. Expansions during the lifetime of an individual and somatic 

mosaicism are more pronounced in DM2 (Wells & Ashizawa, 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 – A family affected by DM1 showing anticipation where the severity of the disease 

increases in subsequent generations. The grandmother (right) is only mildly affected, 

whereas the mother (left) shows signs of classic adult onset DM1, such as weakened facial 

muscles. The congenitally affected child has a characteristic tented upper lip and talipes 

(image from Jorde et al. (2000)). 

 

 

In DM1 the expansion of repeats between generations results in a 

phenomenon known as anticipation, where the severity of the disease increases 
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from generation to generation due to increasing repeat numbers. There is little 

evidence of this in DM2, despite the much larger repeat numbers associated with 

this form of the disease. Anticipation results in more severe symptoms and an 

earlier onset with successive generations leading to three different forms of DM1: 

mild; adult onset; and congenital (see figure 1.7). Individuals with the mild form 

are born with between 50 and 100 repeats, those with the adult onset form have 

200 to 500 and those with the severe congenital form have over 1000 repeats 

(Harper et al., 2004).  

In DM1, the transmission of repeats from generation to generation is 

different when passed maternally or paternally. Repeats in the range of 50 to 80 

are most likely to expand when passed paternally, whereas larger repeats of more 

than 100 are most likely to expand when passed maternally (Harper et al., 2004). 

The congenital form of DM1 is almost exclusively passed on by the mother, 

suggesting that oocytes with large triplet repeats remain viable, but sperm with the 

same sized repeats are unable to produce offspring (Meola, 2000). 

 

1.4.4 Molecular diagnosis of DM 

Variability between the two forms of DM results in the requirement of 

genetic testing for an accurate diagnosis. DNA tests involve amplification across 

the repeat expansion at the DM1 or DM2 locus by polymerase chain reaction 

(PCR), which reveals either two normal sized alleles in unaffected individuals, or 

a single allele in affected individuals as alleles containing large repeats do not 

amplify. To distinguish between affected individuals and unaffected homozygotes 

(15% of the population in DM2) which also present with a single band on PCR, 

Southern blot analysis is used. Somatic mosaicism in DM2 may cause a smear 

from the expanded allele using this method and therefore requires an additional 

repeat assay where the area containing the repeat is amplified by PCR with 

reverse primers at various sites within the CCTG repeat tract and the product is 

probed with specific internal oligonucleotide probes (Wells & Ashizawa, 2006). 

 

1.5 Myotonic dystrophy type 1 

 

 DM1 is the most prevalent form of DM and has been estimated to be the 

cause of 98% of cases. The following chapters of this thesis are aimed solely at 
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describing DM1 and at elucidating the mechanisms behind the effects of the CTG 

triplet repeat expansion.  

 

1.5.1 The DM1 gene locus 

 The DM1 locus (see figure 1.8) is located in a gene rich region of 

chromosome 19q13.3 within the DMPK (dystrophia myotonica protein kinase) 

gene, which is flanked upstream by the DMWD (dystrophia myotonica-containing 

WD repeat motif) gene (formally known as gene 59) and downstream by the SIX5 

(sine oculis homeobox homolog 5) gene (formally known as DMAHP). All three 

genes are located within a region spanning only 40 kb.  

 

 

 

Figure 1.8 – A diagrammatic representation of the DM1 locus. The CTG triplet repeat is 

located within exon 15 of the DMPK gene. 

 

 

The DMPK gene is around 13 kb in length and contains 15 exons. The 

mutation is found within the final exon which encodes the 3’ UTR of the DMPK 

mRNA. The DMPK gene encodes a serine/threonine protein kinase, which 

belongs to the AGC kinase family (the collective name for cAMP-dependent 

protein kinase A, cGMP-dependent protein kinase G, and phospholipid-dependent 

protein kinase C) and is closely related to other kinases that interact with members 

of the Rho family of small GTPases (van Herpen et al., 2005). There are 6 major 

isoforms and 1 minor isoform of DMPK resulting from a combination of three 

alternative splicing events (see figure 1.9). Of the major isoforms, four encode 

proteins of around 74 kDa and the final two, which are predominantly found in 
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smooth muscle, encode proteins of around 68 kDa (Elkins et al., 2009). The 

seventh minor isoform is only found in humans and does not contain the triplet 

repeat in its 3’ UTR. The predicted sequence of DMPK shows five distinct 

domains, three of which are conserved between isoforms: a leucine-rich N-

terminus; a serine/threonine protein kinase domain; and a coiled-coil region. 

Alternative splicing controls the inclusion of the final two domains which are 

isoform specific. These are the VSGGG motif and the C terminal tail, of which 

there are three forms (the seventh isoform contains a further unique C terminal tail) 

(Elkins et al., 2009). The C terminal domain controls the subcellular localisation 

of the DMPK protein (Wansink et al., 2003; van Herpen et al., 2005). The smooth 

muscle isoforms have a short C terminal tail of only 2 amino acids, which targets 

them to the cytoplasm. Of the other two tail forms, one is hydrophobic which 

targets to the ER, and one is hydrophilic which binds to the mitochondrial outer 

membrane (Kaliman & Llagostera, 2008).  

DMPK has been shown to be expressed in detectable amounts in the eye 

and in skeletal, smooth and cardiac muscle in humans (Dunne et al., 1996; 

Winchester et al., 1999; Lam et al., 2000). More sensitive methods used to 

analyse expression in mice, have shown DMPK to also be present in brain, testis, 

thymus, pituitary, skin, lung and liver (Sarkar et al., 2004a). The function of 

DMPK is not certain but overexpression of DMPK in undifferentiated mouse 

muscle cells resulted in expression of skeletal muscle-specific genes suggesting a 

role for DMPK in the myogenic pathway (Bush et al., 1996). A study conducted 

on skeletal muscle cells from dmpk knockout mice also revealed a possible role 

for DMPK in the modulation of Ca2+ homeostasis and events of excitation-

contraction coupling (Benders et al., 1997). Overexpression studies carried out in 

human lens cells resulted in blebbing of the plasma membrane, suggesting a 

further role in reorganisation of the actin cytoskeleton and plasma membrane (Jin 

et al., 2000). The reorganisation of the cytoskeleton is an important factor in 

synaptic plasticity and studies have shown that DMPK may also play a role in this, 

which could be relevant to the cognitive impairment observed in DM1 (Schulz et 

al., 2003). Further studies have identified possible substrates for DMPK which 

include phospholemman, phospholamban and the targeting subunit of myosin 

phosphatase (Mounsey et al., 2000; Muranyi et al., 2001; Kaliman et al., 2005). 

DMPK has also been shown to phosphorylate histone H1 in vitro (Dunne et al., 
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1994). A novel heat shock protein, designated myotonic dystrophy protein kinase 

binding protein (MKBP), was shown to bind and activate DMPK in vitro. MKBP 

was found to be highly expressed in human heart and skeletal muscle (Suzuki et 

al., 1998). Recently, DMPK has been shown to bind to other heat shock proteins 

including αB-crystallin, which is predominantly expressed in the lens, heart and 

skeletal muscle, which are all tissues affected by DM1 (Forner et al., 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 – A diagrammatic representation of the protein domain organisation of DMPK 

isoforms produced by alternative splicing of the DMPK gene. DMPK A-F are the major 

isoforms, whereas DMPK G is a minor isoform only found in humans. All isoforms share a 

leucine-rich N-terminal domain, a serine/threonine protein kinase domain and a coiled-coil 

region.  Alternative splicing events lead to the presence or absence of a VSGGG motif within 

the kinase domain and the production of three different C-terminal tails, with a fourth 

unique tail exclusive to the minor G isoform (image from Wells & Ashizawa (2006)).  

 

 

Immediately downstream of the DMPK gene is the gene SIX5 which 

contains 3 exons and encodes a homeodomain containing transcription factor. 

SIX5 contains a Six domain (SD) which lies immediately N-terminal to a Six-type 

homeodomain (HD), which are both required for binding to specific DNA 
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sequences and also to transcriptional coactivators (Kawakami et al., 2000). SIX5 

can also act as a transcriptional repressor through interactions between the SD and 

Groucho family corepressors (Sato et al., 2002). SIX5 has been shown to bind to 

the Na+/K+ ATPase α1 subunit gene (ATP1A1) regulatory element (ARE) and the 

myogenic enhancing factor 3 (MEF3) consensus sequence, which regulate 

expression of genes such as ATP1A1, myogenin, aldolase A and cardiac troponin 

C (Harris et al., 2000). SIX5 is expressed in human skeletal and heart muscle, eye 

and brain (Thornton et al., 1997; Winchester et al., 1999). The mouse homologue 

has also been shown to be expressed in the testis where it is proposed to play a 

role in spermatogenic cell survival and spermiogenesis (Sarkar et al., 2004b).  

Upstream of DMPK is the gene DMWD which is around 11 kb in length 

and contains 5 exons (Jansen et al., 1995). The protein encoded by this gene has a 

proline rich N-terminal domain and contains four WD repeat units, but its 

function is unknown. DMWD is most prominently expressed in the brain and 

testis, but also in the heart, liver, kidney and spleen (Shaw et al., 1993; 

Westerlaken et al., 2003). High levels of the protein DMWD have been found in 

maturing and mature neurones, especially in the dendritic projections which 

contain many synapses, leading to speculation that it is involved in neuronal 

development (Westerlaken et al., 2003). 

 

1.5.2 How does the DNA triplet repeat cause DM1?  

Despite the discovery of the mutation that underlies DM1, the pathological 

mechanisms that lead to the wide array of symptoms seen in the disease is the 

subject of much debate. Many theories exist to explain how the expansion of a 

DNA triplet repeat could cause the multisystemic effects observed in DM1 but 

there are currently three main hypotheses to explain this: a reduction in DMPK 

expression; a reduction in expression of the neighbouring genes, SIX5 and DMWD; 

or a gain of function by the mutant DMPK mRNA. There is support for all three 

hypotheses but whether the effects seen in the patients can be attributed to only 

one or a combination of these is unknown. 

 

1.5.2.1 DMPK haploinsufficiency 

As the repeat is found within the DMPK gene, the most obvious theory for 

the cause of DM1 is an effect in cis on the DMPK gene resulting in a change in 
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the DMPK protein. As the repeat is located in a non-coding region of the DMPK 

gene, the disease is unlikely to be the result of a gain of function through the 

production of a mutant protein. However, it could be the result of a reduction in 

the expression of DMPK or a reduction in the translation of DMPK mRNA into 

protein.  

Studies have shown that mutant DMPK mRNA forms highly stable foci 

which are retained in the nucleus, however, a threshold of around 150 repeats has 

to be reached before this is observed (Taneja et al., 1995; Davis et al., 1997; 

Hamshere et al., 1997). The retention of transcripts only occurs from the affected 

allele, whereas those from the normal allele are able to pass into the cytoplasm, 

making them available for translation. Some mutant transcripts have been found 

within the cytoplasm but only as the result of the breakdown of the nuclear 

envelope during cell division, however, many of the tissues affected by DM1 are 

predominantly composed of postmitotic cells, therefore the retention of transcripts 

most likely results in haploinsufficiency of DMPK (Davis et al., 1997).  

Despite the evidence for this hypothesis it is unlikely to be sufficient to 

cause DM1 alone as no case of DM1 has ever been shown to be the result of a 

point mutation in the DMPK gene (Day & Ranum, 2005). Studies carried out in 

mice have shown that knockouts of one or both alleles of Dmpk result in only 

mild effects and development seemed unaffected (Jansen et al., 1996; Reddy et al., 

1996; Berul et al., 1999; Llagostera et al., 2007). The study by Jansen et al. (1996) 

showed only minor muscle fibre size changes in adult nullizygous (Dmpk-/-) mice, 

whereas Reddy et al. (1996) showed a progressive, late onset, skeletal myopathy, 

which was compared to the adult onset form of DM1. Berul et al. (1999) showed 

that Dmpk-/- mice develop cardiac conduction defects which are also characteristic 

of the human form of the disease. Subsequently, cardiac myocytes isolated from 

Dmpk+/- and Dmpk-/- mice were shown to display abnormalities in Na+ channel 

gating and Ca2+ cycling, both of which were implicated in the cardiac dysfunction 

observed in DM1 (Lee et al., 2003; Pall et al., 2003). A more recent study by 

Llagostera et al. (2007) showed that Dmpk-/- mice exhibit impaired insulin 

signalling and have an abnormal glucose tolerance which could be linked to the 

insulin resistance which leads to diabetes in DM1. Despite the features seen in the 

mouse models, none of the studies have shown the additional signs and symptoms 

characteristic of DM1, such as myotonia and cataract. It is therefore unlikely that 
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all of the effects seen in DM1 are the result of haploinsufficiency of DMPK, but it 

is possible that this contributes to the effects.  

 

1.5.2.2 Reduced expression of SIX5 and DMWD 

 The second hypothesis aimed at describing the cause of DM1 is a cis-

acting effect on the surrounding genes at the DM1 locus. The genes at the locus 

are so close that the 3’ terminus of the DMWD gene overlaps with the promoter of 

the DMPK gene and the 3’ terminus of the DMPK gene overlaps with the 

promoter of the SIX5 gene (Shaw et al., 1993; Boucher et al., 1995; Frisch et al., 

2001). The expansion of the CTG repeat has been suggested to result in changes 

to the higher-order structure of the DNA, resulting in changes in expression levels 

of the surrounding genes, known as the ‘field-effect’. The extended CTG repeats 

seen in DM1 have been shown to create the strongest known natural nucleosome 

positioning signal which attracts nucleosome assembly in vitro (Wang et al., 

1994). The wrapping of the CTG repeat around nucleosomes results in alterations 

to the local chromatin structure which limits the accessibility and formation of 

transcriptional complexes and could therefore limit the expression of all three 

genes at the DM1 locus.  

The promoter region of SIX5 contains an exceptionally large (around 3.5 

kb) CpG island (cytosine and guanine nucleotides joined by phosphodiester 

bonds), which is interrupted by the CTG repeat (Boucher et al., 1995). The triplet 

repeat expansion has been shown to alter the chromatin structure around the site, 

making the DNA in the region less accessible to nuclear proteins, such as DNase I 

(Otten & Tapscott, 1995). Many studies have looked at the expression levels of 

SIX5 in DM1 and the majority have shown a reduction in expression (Hamshere et 

al., 1997; Klesert et al., 1997; Thornton et al., 1997; Eriksson et al., 1999; Inukai 

et al., 2000; Frisch et al., 2001; Rhodes et al., 2006). Thornton et al. (1997) 

showed that expression of the DM1-linked allele in myoblasts of DM1 patients 

was reduced and in some cases approached complete inactivation, however, 

expression was not reduced in a DM1 patient with a small CTG expansion (< 80 

repeats) and no muscle weakness. Surprisingly, Klesert et al. (1997) and Inukai et 

al. (2000) showed that expression of SIX5 was actually reduced by more than half, 

suggesting that expression from the normal allele was also somehow affected. 

Conflicting studies by Hamshere et al. (1997) and Eriksson et al. (1999) showed 
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no difference in levels of SIX5 expression in DM1 cell lines and skeletal muscle 

samples compared to controls.  

Knock-out studies performed in mice have shown that partial (Six5+/-) or 

complete (Six5-/-) loss of Six5 results in the development of some of the signs and 

symptoms characteristic of DM1. Both Six5+/- and Six5-/- mice develop cataracts 

and the incidence and severity of lens opacities were shown to increase with 

decreasing Six5 dosage (Klesert et al., 2000; Sarkar et al., 2000). A further study 

has shown that male Six5-/- mice are sterile and suffer from testicular atrophy and 

both Six5+/- and Six5-/- mice were shown to have increased FSH levels (Sarkar et 

al., 2004b). These are all characteristic symptoms of DM1; however, it is unlikely 

that a loss of SIX5 alone could cause DM1 due to the lack of any abnormalities in 

skeletal muscle function. 

In the field-effect model, levels of DMWD expression are also predicted to 

be affected by the change in local chromatin structure. Again, a number of studies 

have looked at expression levels of DMWD and have had conflicting results 

(Hamshere et al., 1997; Alwazzan et al., 1999; Eriksson et al., 1999; Frisch et al., 

2001). Hamshere et al. (1997) and Frisch et al. (2001) showed that there was no 

difference in levels of DMWD expression between DM1 and control cell lines and 

Eriksson et al. (1999) showed considerable overlap in expression levels in skeletal 

muscle biopsies from DM1 patients and control individuals. However, Eriksson et 

al. (1999) did show that there was a strong inverse correlation between repeat size 

and DMWD expression in the patient samples. Alwazzan et al. (1999) performed 

allele-specific analysis in both nuclear and cytoplasmic compartments of DM1 

and control fibroblast cell lines. No difference was seen in levels of transcripts in 

the nuclear fraction, but a reduction in expression of 20-50% from the DM1-

linked allele was seen in the cytoplasmic fraction. No correlation was seen in this 

study between repeat size and expression levels in the cell lines. 

CNS abnormalities are common in DM1 with features such as variable 

cognitive dysfunction (including memory loss, lower IQ and mental retardation), 

somnolence, anxiety disorders and cerebral white matter lesions being associated 

with the disease (Harper, 2001). DMWD is found mainly in the brain and changes 

in DMWD expression levels could result in the CNS abnormalities observed. The 

inverse correlation between repeat size and DMWD expression in DM1 patients 

samples observed by Eriksson et al. (1999) could be used to describe why mental 
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retardation is such a prominent feature in congenital DM1 where repeat sizes are 

very large, compared to lower IQs which are seen in patients with adult onset 

DM1. There are at present no mouse models to elucidate any possible effects 

caused by a loss of DMWD. 

The field-effect hypothesis aims to describe the multisystemic effects seen 

in DM1 by the loss of multiple genes at the DM1 locus; however, there are still 

symptoms of DM1 that have not been observed in mouse models. One of the 

characteristic features of DM1 is myotonia, which has not been described by this 

theory. The theory also fails to explain how a second form of DM, DM2, can 

present with almost identical symptoms such as myotonia, cataract and cardiac 

abnormalities, without having any link to the DM1 locus or the genes within it. It 

is clear that although the field-effect model could explain some of the 

multisystemic effects observed in DM1, a further pathogenic mechanism must be 

present to explain the remaining effects.  

 

1.5.2.3 Toxic gain of function by DMPK mRNA 

The final theory to describe the cause of DM1 is the trans-acting effect of 

the repeat at the mRNA level. The DNA triplet repeat is transcribed into RNA, 

resulting in a CUG(n) repeat which is proposed to form stable secondary structures 

that sequester specific RNA binding proteins in a gain-of-function manner. The 

proteins sequestered by the CUG repeats have roles in splicing and could explain 

the altered splice patterns which are observed in DM1. The toxic gain of function 

hypothesis has the greatest support as the cause of DM and current research 

efforts are mostly focused in this area. 

 Evidence for this theory came from a study where expanded (around 250 

repeats) and non-expanded (5 repeats) repeats were inserted into a genomic 

fragment containing the human skeletal actin (HSA) gene and were expressed in 

the muscle of transgenic mice (Mankodi et al., 2000). The expanded repeats were 

inserted into the final exon of the HSA gene between the termination codon and 

polyadenylation site to mimic the situation seen in the DMPK gene, but without 

involving any of the genes that are normally associated with DM1. Mankodi et al. 

(2000) showed that the presence of long triplet repeats caused myotonia in mice 

as early as 4 weeks of age, which did not occur in short-repeat or wild-type mice. 

Myotonia was not observed in any of the previous mouse models for the disease 
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involving knock-outs of the genes at the DM1 locus. The transcripts were also 

observed to form foci and be retained in the nucleus, as is seen with the mutated 

DMPK transcripts in DM1.  

 The expanded CUG repeats have been shown to form stable hairpin 

structures where the repeat tract folds back on itself and results in double-stranded 

RNA (dsRNA) with G·C and C·G base pairs separated by U·U mismatches (Tian 

et al., 2000). The dsRNA structures have been shown to bind to and activate PKR, 

which is the dsRNA-activated protein kinase. PKR is involved in the viral 

response pathway which aims to prevent or slow viral replication through 

initiating mechanisms such as increased mRNA degradation and apoptosis (Tian 

et al., 2000). The CUG repeats have also been shown to bind to RNA-binding 

proteins from two families known as CUG-BP1 and ETR-3-like factors (CELF) 

and muscleblind-like (MBNL) proteins (Timchenko et al., 1996; Miller et al., 

2000). Both families are involved in the regulation of alternative splicing events 

during mRNA processing. The misregulation of splicing events is a characteristic 

of DM1, where the splicing patterns for a subset of transcripts revert to those 

observed during embryonic development. The MBNL proteins, MBNL1, MBNL2 

and MBNL3, bind to the dsRNA formed by the CUG repeats and have been 

shown to co-localise with the foci produced by mutant DMPK transcripts in DM1 

cells (Fardaei et al., 2001; Fardaei et al., 2002). The MBNL proteins are 

sequestered by the mutant DMPK transcripts and are unable to perform their usual 

functions. MBNL proteins regulate alternative splicing of muscle-specific 

chloride channel (ClC-1), cardiac troponin T (TNNT2), skeletal muscle troponin 

T (TNNT3), insulin receptor (IR) and Tau (τ) (Kanadia et al., 2003; Ho et al., 

2004; Jiang et al., 2004; Dansithong et al., 2005; Dhaenens et al., 2008). 

Interestingly, the Drosophila MBNL homologue, muscleblind, is essential for 

terminal differentiation of muscle and the photoreceptors of the eye, which are 

two tissues affected by DM1 in humans (Begemann et al., 1997; Artero et al., 

1998). In contrast to the MBNL proteins, CUG-binding proteins 1 and 2 (CUG-

BP1/2) are not sequestered by the CUG repeats, although a small fraction may 

localise to foci as they have been shown to bind to single-stranded RNA (ssRNA) 

at the base of the CUG repeat hairpin (Timchenko et al., 1996; Lu et al., 1999; 

Michalowski et al., 1999; Fardaei et al., 2001). In DM1, CUG-BP1/2 are 

translocated to the nucleus of DM1 cells where they have been shown to be 
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hyperphosphorylated by PKC (Timchenko et al., 1996; Roberts et al., 1997; 

Philips et al., 1998; Kuyumcu-Martinez et al., 2007). Phosphorylation of CUG-

BP1/2 increases their half life, resulting in their accumulation and therefore 

increased levels of activity. Despite the increase in activity, levels of CUG-BP1/2 

mRNA were not affected in DM1 (Timchenko et al., 2001a). CUG-BP1/2 act 

antagonistically to MBNL proteins in the splicing of TNNT2, IR and ClC-1 

(Philips et al., 1998; Savkur et al., 2001; Charlet-B et al., 2002; Ho et al., 2004; 

Dansithong et al., 2005; Paul et al., 2006). Foetal splicing patterns of these 

transcripts are observed in DM1 and may contribute to the cardiac abnormalities, 

insulin resistance and myotonia which are common features of the disease.  

Evidence for the toxic RNA theory comes from a knockout mouse model 

for Mbnl1 which was shown to develop cataracts with dust-like opacities, 

myotonia and altered regulation of mRNA splicing of transcripts for ClC-1, 

TNNT3 and TNNT2 (Kanadia et al., 2003). A knockout mouse model for Mbnl2 

has also been shown to develop myotonia, display histological features of muscle 

such as increased numbers of central nuclei and decreased fibre size and show 

altered regulation of mRNA splicing of transcripts for ClC-1 (Hao et al., 2008). 

Down-regulation of MBNL1/2 expression in normal human myoblasts using small 

interfering RNA (siRNA) resulted in abnormal IR splicing, as did overexpression 

of CUG-BP1 (Dansithong et al., 2005). In the same study it was also shown that 

MBNL1 down-regulation caused disaggregation of 70% of the foci formed in 

DM1 cells, compared to 25% following MBNL2 downregulation, suggesting that 

MBNL1 plays a key role in foci formation and maintenance (Dansithong et al., 

2005). Morpholino antisense oligonucleotides have also been used to block the 

interaction of Mbnl1 with CUG repeats in the transgenic mouse model of DM1 

where CUG repeats were inserted into the HSA gene. Nuclear foci were reduced 

and Mbnl1 was redistributed, allowing the regulation of splicing events to be 

corrected (Wheeler et al., 2009). MBNL proteins have also been shown to co-

localise with mutant transcripts in nuclear foci and have been implicated in the 

abnormal splicing of ClC-1 and IR in DM2 (Mankodi et al., 2001; Fardaei et al., 

2002; Mankodi et al., 2002; Savkur et al., 2004). The toxic gain of function model 

could therefore explain the similarities between the two forms of DM, as the 

production of foci and sequestration of MBNL proteins occur irrespective of the 

genes that are affected by the repeat mutations. 
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Interestingly, DM-like symptoms were induced in transgenic mice 

overexpressing DMPK containing a normal number of CTG repeats (11 repeats). 

DMPK transcripts were found to accumulate over time and symptoms became 

apparent in ageing mice between 11-15 months old. Symptoms included muscle 

myopathy and myotonia, hypertrophic cardiomyopathy and a reduction in the 

tolerated workload of the mice. The authors suggested that this was due to the 

accumulation of DMPK transcripts containing smaller repeats which mimicked 

the effects of those containing larger CUG repeats in DM1 (O'Cochlain et al., 

2004). A separate group have also shown that the overexpression of a normal 

DMPK 3’ UTR containing 5 CTG repeats leads to DM-like symptoms in 

transgenic mice, however, these effects were not age-dependent. This study 

showed that the transgenic mice developed myotonia as early as 2 days after the 

induction of transgene expression and sudden death due to cardiac conduction 

defects occurred after 4-6 weeks (Mahadevan et al., 2006). A subsequent study by 

the same group showed that overexpression of the normal DMPK 3’ UTR induced 

expression of the cardiac-specific transcription factor NKX2-5 which resulted in 

reduced levels of connexin 43 and connexin 40 (Yadava et al., 2008). Connexins 

are important components of gap junctions which are required for the propogation 

of electrical impulses in the heart. In the same study the level of NKX2-5 was also 

found to be greater in the hearts of human DM1 patients and it was also present in 

DM1 skeletal muscle, but not in controls (Yadava et al., 2008). Although the data 

described here appears to show that the CTG repeats are not responsible for the 

symptoms of DM1, it indicates that a gain of function by the DMPK transcripts is. 

 

1.6 The eye and myotonic dystrophy 

 

 The eye is one of the many systems affected by DM1 and a wide range of 

ocular problems can occur. Symptoms in the eye include cataract, retinal 

degeneration, low intraocular pressure, enophthalmos, ptosis, epiphora, corneal 

lesions, extraocular myotonia and muscle weakness and abnormal central control 

of eye movement (Harper, 2001). Not all of the ocular abnormalities may be 

present and many of them go unnoticed by the sufferer, but a reliable symptom 

present in the majority of patients, and even in those unaffected by the more 
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general muscle symptoms, is cataract. Cataracts result in a loss of visual acuity 

and contrast sensitivity which can make everyday tasks very difficult. 

 

1.6.1 Cataract and myotonic dystrophy 

 Cataracts were first linked to DM1 over one hundred years ago and since 

then have formed the basis of the phenomenon of anticipation in the disease. 

Cataract is a characteristic symptom of DM1 and even occurs in the adult onset 

form with minimally expanded CTG repeats, linking seemingly unaffected 

individuals to the disease (Harper et al., 2004). Cataracts are therefore often found 

in older generations of affected individuals and can be used to identify the line by 

which the disease was inherited, enabling other family members who may be 

affected by the disease to be identified. DM1 cataracts normally present at an 

earlier age than is usually associated with senile cataracts and have been seen in 

DM1 patients from their second decade of life onwards. 

 The cataract that forms in DM1 is very distinctive in its early stages and 

cataract detection using slit-lamp examination was widely used as a diagnostic 

tool before genetic tests became available. The DM1 cataract is still used to 

identify new families with DM1 through minimally affected patients (Kidd et al., 

1995). In its early stages the DM1 cataract presents with white or multicoloured 

iridescent scattered dust-like opacities (see figure 1.10a), which are mainly found 

in the posterior subcapsular region of the lens (see figure 1.5). As the cataract 

develops the opacities increase in size and number and cortical spokes (see figure 

1.10b) and star-shaped opacities form, which cloud the lens and eventually form a 

mature cataract. At this stage the cataract is indistinguishable from those of other 

causes as the iridescent opacities can no longer be seen (Harper, 2001).  

 Ultrastructural analysis of cataractous lenses from DM1 patients using 

electron microscopy revealed that the characteristic dust-like iridescent opacities 

are actually whorls of plasma membrane. The whorls of plasma membrane were 

found in fibre cells from about 10 fibres deep within the lens and contained 

cytoplasm. LECs had poorly delineated plasma membranes and were shown to 

contain nuclei with clumped chromatin, degenerating mitochondria and enlarged 

intracellular clefts or cristernae (Eshaghian et al., 1978).  
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Figure 1.10 – Slit-lamp photographs of DM1 cataracts. (a) A DM1 cataract in its early stages, 

showing the white and iridescent scattered dust-like opacities which distinguish it from most 

other types of cataract (diffuse illumination). (b) A DM1 cataract at a slightly later stage 

where cortical spokes have begun to form and the scattered opacities become less 

conspicuous (retro-illumination) (images from http://www.onjoph.com). 

  

 

The underlying cause of cataract formation in DM1 is unknown. At the 

molecular level, both DMPK and SIX5 have been shown to be expressed in the 

eye and in particular in the lens. Conflicting results exist as to whether DMPK is 

actually expressed in the lens, but studies have shown it to be expressed in human, 

bovine and mouse lenses (Dunne et al., 1996; Abe et al., 1999; Winchester et al., 

1999; Sarkar et al., 2004a; Rhodes et al., 2006). SIX5 has been implicated in the 

development of DM1 cataracts due to its role as a transcription factor in 

regulating ATP1A1 expression. If ATP1A1 expression is altered it could affect the 

ion balance in the lens and lead to cataract (Winchester et al., 1999). Two 

different studies conducted at the same time showed that Six5 knockout mouse 

models developed cataracts, however, the cataracts which formed were nuclear 

and not posterior subcapsular as is seen in DM1 in humans (Klesert et al., 2000; 

Sarkar et al., 2000). RNA extracted from the mouse models was used to analyse 

steady-state Atp1a1 mRNA levels and had conflicting results. Klesert et al. (2000) 

showed that there was no difference in steady-state levels, whereas Sarkar et al. 

(2000) showed that steady-state levels increased as a function of decreasing Six5 

a b 
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dosage. The role of SIX5 and ATP1A1 in DM cataract is therefore still the subject 

of debate. Overexpression of DMPK in lens cells has been shown to result in 

apoptotic-like blebbing and actin cytoskeleton reorganisation, resulting in 

speculation that DMPK may play a role in the breakdown of organelles during 

lens fibre differentiation (Jin et al., 2000). If this was the case then it has been 

proposed that reduced levels of DMPK could result in cataract formation due to 

the decreased removal of intracellular membranes, leading to the retention of 

organelles which can obscure vision (Jin et al., 2000). Loss of DMPK, if its 

predicted role is true, could therefore account for the observations from the 

ultrastructural studies which showed that the iridescent particles were light 

reflecting membranous structures derived from the plasma membrane (Eshaghian 

et al., 1978). If DMPK is indeed expressed in the lens then mutant RNA could 

also accumulate and sequester MBNL proteins as shown in other tissues. 

Interestingly, a Mbnl1 knockout mouse model developed cataracts which showed 

the distinctive iridescent opacities normally observed in DM (Kanadia et al., 

2003). The MBNL homologue in Drosophila, known as muscleblind, is essential 

for muscle and eye differentiation, which would indicate a role for MBNL in the 

vertebrate eye. 

At the cellular level, studies on cataracts in general have pointed at a loss 

of cells from the lens epithelium in the development of cataract due to the 

resulting loss of homeostasis in levels of ions and water (Konofsky et al., 1987; Li 

et al., 1995). Capsulorhexis samples from cataract patients were shown to have a 

significantly greater percentage of apoptotic cells compared to normal controls 

and LEC death was shown to precede cataract development in cultured rat lenses 

(Li  et al., 1995). Loss of cells from the LEC layer was shown to be particularly 

relevant in the development of subcapsular cataracts as the cell densities were 

much lower when compared to those of nuclear cataract (Konofsky et al., 1987). 

A study in DM1 lenses by Abe et al. (1999) has indeed shown that DM1 cataract 

patients have reduced LEC densities and this was more noticeable in a patient 

with an earlier onset of the disease. The LECs in DM1 patients were also shown 

to be larger and were therefore able to maintain coverage of the anterior surface of 

the lens, however, it is likely that a reduced number of LECs are unable to 

maintain the balance of ions and water which is vital to lens transparency (Abe et 

al., 1999). 
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Although cataracts are such a common feature in DM1, congenitally 

affected children do not present with cataract at birth and do not develop them 

within the first decade of life (Harper, 2001). This would indicate that the repeat 

expansion does not affect the development of the lens and must therefore exert its 

effects postnatally. A study by Abe et al. (1999) showed that DMPK mRNA 

extracted from DM1 LECs had larger repeats than that extracted from peripheral 

blood of the same patients (Abe et al., 1999). A study on cultured DM1 LECs has 

also shown that they contain large triplet repeats in the DMPK gene even in the 

earliest passage sampled, which are highly unstable and expand during culture 

(Rhodes et al., 2006). This data would indicate that the lens is subject to tissue-

specific somatic mosaicism which results in large repeat numbers. This could 

explain the sensitivity of the lens to even small repeat numbers as they could 

expand greatly compared to those found in other tissues, increasing their effects 

during the lifetime of the patient. 

  Cataract development results in a loss in visual acuity, but cataracts are 

one of the most easily treated symptoms of DM1. Despite this, the sensitivity of 

the lens to even the smallest of expansions in the triplet repeat makes it an ideal 

tissue in which to study the mechanisms behind the disease. 

 

1.7 Aims  

 

 Despite cataract being a key feature of DM1, very little is known about the 

mechanisms which underlie their development in the disease. This project aims to 

verify the suitability of lens cell lines derived from DM1 patients as a model for 

the disease and to use these cell lines to investigate the mechanisms which lead to 

cataract development.  
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CHAPTER 2 

MATERIALS AND METHODS  
 

2.1 Cell lines and culture 

 

 A number of cell lines were obtained and employed in a variety of 

experimental procedures to elucidate the effects of the DM1 triplet repeat 

mutation on cellular signalling.   

 

2.1.1 Cell lines 

 Four DM1 and four control cell lines were derived by simian virus 40 

(SV40) transformation of human LECs. Capsulorhexis specimens were obtained 

from DM1 patients immediately following cataract surgery and from non-

cataractous post mortem donor lenses. The transformations were performed by Dr 

A. R. Prescott (University of Dundee, UK) as follows: the cells on capsulorhexis 

specimens were immortalised using adenovirus 12-SV40 hybrid virus, which was 

added directly to each specimen in a 24-well microtitre plate. SV40 immortalises 

cells via the production of large T antigen which binds to and inactivates the 

tumour suppressor proteins retinoblastoma protein (pRb) and p53. Once the cells 

had migrated and covered over 50% of the well (2-3 weeks) they were trypsinised 

and transferred into a 6-well plate. Once the cells reached confluency they were 

passaged into larger flasks until a sufficient number of cells could be frozen. The 

four DM1 cell lines named DMCat1-DMCat4 were obtained from patients aged 

67, 33, 31 and 69 respectively. The four control cell lines named CCat1-CCat4 

were obtained from donors aged 28, 43, 32 and 82 years respectively.  

A further human lens cell line, FHL124 (obtained from Dr J. R. Reddan, 

Oakland University, Michigan, USA), was also used in this study. The FHL124 

cell line is a spontaneously transformed human lens cell line derived from foetal 

capsule-epithelial explants (Reddan et al., 1999).   

 



 55

2.1.2 Cell culture 

 Cells stored under liquid nitrogen were brought up from frozen and 

cultured in 75 cm2 flasks (Nunc, Roskilde, Denmark) in Eagle’s Minimum 

Essential Medium (EMEM) (Sigma-Aldrich, Poole, Dorset, UK) supplemented 

with 10% Foetal Calf Serum (FCS) (Gibco, Paisley, Renfrewshire, UK) (5% FCS 

for FHL124 cells) and 50 µg/ml gentamicin antibiotic (Sigma-Aldrich). Medium 

was changed twice per week and cultures were maintained in an incubator at 35°C 

in an atmosphere of 5% CO2. Cells were passaged weekly by rinsing with 

Dulbecco’s phosphate buffered saline (DPBS, Sigma-Aldrich), followed by 

treatment with trypsin-ethylenediaminetetraacetic acid (EDTA) (0.05% trypsin 

and 0.02% EDTA in Hank’s balanced salt solution, Sigma-Aldrich) for 2-3 

minutes to detach the cells from the flask. The trypsin was neutralised with 

EMEM supplemented with 10% FCS and the cell suspension was transferred to a 

universal tube. Cell number was estimated using a haemocytometer. The cell 

suspension was centrifuged at 1000 rpm for 5 minutes and the pellet was 

resuspended in EMEM supplemented with 10% FCS. New flasks were seeded 

with known densities of cells and growth curves showing population doublings 

were created from the cell counts. The cell suspension was also used to seed cells 

onto coverslips (VWR International, Lutterworth, Leicestershire, UK) or culture 

dishes (Corning Incorporated, Corning, NY, USA). Unless stated otherwise, all 

cells were cultured in EMEM supplemented with 10% FCS and 1 µl/ml 

gentamicin. 

 

2.1.3 Conditioned medium (CM) collection 

To obtain CM, cells in 75 cm2 flasks were rinsed three times with 20 ml of 

serum-free (SF) EMEM before incubating in 10 ml of SF EMEM for 24 hours. 

CM was collected in universal tubes and centrifuged at 1000 rpm for 5 minutes to 

remove particulates. The supernatant was either used immediately or stored at          

-20°C until required. CM was also collected from 35 mm diameter culture dishes 

by the same method.  
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2.2 Cell treatment 

 

 A range of chemical activators and inhibitors of a variety of cell signalling 

molecules were employed to study the effects of particular signalling pathways on 

cell growth and death.   

 
 

 

 

Table 2.1 – Chemical and biological activators and inhibitors of cell signalling used in cell 

growth experiments.  

 

 

2.2.1 Cell growth experiments 

 To test the effects of various compounds on the levels of cell growth and 

death, cells were seeded into 35 mm diameter culture dishes. Cells were cultured 

for up to one week until they reached 60-70% confluency. The medium was 

replaced with SF medium without phenol red (Sigma-Aldrich) for 24 hours before 

the cells were exposed to experimental conditions for 48 hours. Following this, 

the experimental culture medium was collected and stored at 4ºC and the cells 

were rinsed in Phosphate Buffered Saline (PBS, Oxoid, Basingstoke, Hampshire, 

UK) before being lysed in 1 ml of 0.1 M NaOH. The lysates were stored at 4ºC. 
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Total protein was measured using a bicinchoninic acid (BCA) assay (Pierce, 

Cramlington, Northumberland, UK) and the level of lactate dehydrogenase (LDH) 

was measured using a Cytotoxicity Detection kit (Roche, Burgess Hill, West 

Sussex, UK). Additionally, some of the dishes were lysed in Mammalian Protein 

Extraction Reagent (MPER, Pierce) for Western blot analysis as described in 

section 2.8. Compounds tested in this way are summarised in table 2.1.  

 

2.2.2 Bicinchoninic acid (BCA) protein assay 

 The protein concentration in cell lysates was determined using a BCA 

protein assay (Pierce), which is a colorimetric assay based on the reduction of 

Cu2+ to Cu1+ by protein. The assay was performed according to the manufacturer’s 

instructions described as follows: a series of standards ranging from 1-1000 µg/ml 

were prepared by diluting a 2 mg/ml Bovine Serum Albumin (BSA, Sigma-

Aldrich) stock made up in either MPER (Pierce) or 0.1 M NaOH, depending on 

the method of cell lysis. Either 10 µl of cell lysate extracted in MPER or 20 µl of 

cell lysate extracted in 0.1 M NaOH were pipetted into a 96-well microtitre plate. 

The samples were made up to 50 µl with the appropriate volume of H2O. The 

standards were tested in triplicate and the samples in duplicate. The working 

reagent was prepared by mixing Reagent A and Reagent B in a ratio of 50:1 and 

200 µl was added to each well. The plate was gently shaken for 1 minute to mix 

the samples and working reagent together and was then incubated at 37ºC for 1 

hour. The plate was allowed to cool and the absorbance at 562 nm was read on a 

Wallac 1420 VICTOR2 multilabel plate counter using WorkOut 1.5 software 

(Perkin Elmer, Waltham, MA, USA). A standard curve was constructed and the 

concentration of protein in the samples was calculated. 

 

2.2.3 Lactate dehydrogenase (LDH) assay 

 Cell death was quantified using a Cytotoxicity Detection kit (Roche) 

which is a colorimetric assay of LDH activity released from the cytosol of 

damaged cells. The assay was performed according to the manufacturer’s 

instructions described as follows: cell medium was collected in 1.5 ml 

microcentrifuge tubes and briefly vortexed before being centrifuged for 5 minutes 

at 13 000 rpm. The supernatants were collected and stored at 4°C until required. 

100 µl of each sample was added to a 96-well microtitre plate. For background 
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correction 100 µl of fresh medium, along with any compounds used, was also 

added in triplicate. The reaction mixture was prepared by mixing the catalyst 

(diaphorase/NAD+) and dye solution (iodotetrazolium chloride and sodium lactate) 

at a ratio of 1:45 and 100 µl of this was added to each sample. The plate was 

incubated in the dark for up to 30 minutes at room temperature. The reaction was 

terminated by addition of 50 µl of 1 N hydrochloric acid (HCl) to each well. The 

absorbance of the reaction product was measured at 490 nm using a Wallac 1420 

VICTOR2 multilabel plate counter and WorkOut 1.5 software (Perkin Elmer). 

 

2.2.4 Cell growth with conditioned medium (CM)  

CM was applied to FHL124 cells which had been grown in SF medium for 

24 hours. After 48 hours the cells were lysed in 1 ml of 0.1 M NaOH and protein 

levels were measured using a BCA assay (described in section 2.2.2).  

To analyse the effects of CM addition on cell signalling in the FHL124 

cells using Western blotting (described in section 2.8), cells were lysed in 400 µl 

of MPER (Pierce).  

 

2.3 TaqMan® Quantitative real time polymerase chain reaction (QRT-PCR) 

 

The technique of QRT-PCR was used to analyse gene expression levels in 

the cell lines. The TaqMan® QRT-PCR system is based on the use of a 

fluorogenic-labelled oligonucleotide probe which has a fluorescent reporter dye 

on the 5’ end and a quencher dye on the 3’ end. When intact the reporter and 

quencher dyes are in close proximity and fluorescence of the reporter dye is 

quenched via fluorescence resonance energy transfer (FRET) by the quencher dye. 

Each reaction requires gene specific primers and probes. The primers anneal to the 

cDNA and amplify the region between the primers. The probe anneals to a 

sequence within the amplified region and is cleaved by the 5’ nuclease activity of 

Taq DNA polymerase during primer extension. Cleavage of the probe results in 

separation of the quencher and reporter dyes, allowing fluorescence of the reporter 

dye. During each PCR cycle a number of probes will be cleaved and the level of 

fluorescence will increase in proportion to the amount of message present for the 

gene of interest. The fluorescent signal is recorded for a total of 40 cycles. The 

point at which the fluorescent signal increases above the background is referred to 
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as the threshold cycle (CT) value and is used as a measure of the starting template 

present in each sample. The TaqMan process is summarised in figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 – A summary diagram of the principles behind the TaqMan RT-PCR system. The 

probe anneals to the cDNA but is displaced and cleaved during primer extension. The 

quencher and reporter dyes are separated, enabling the fluorescence of the reporter dye. 

 

 

2.3.1 RNA extraction 

 Cells were seeded into 60 mm diameter culture dishes and grown for one 

week before the medium was replaced with SF medium for 24 hours. Cells were 
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exposed to experimental conditions and RNA was extracted using an RNeasy 

Mini kit (Qiagen, Crawley, West Sussex, UK) according to the manufacturer’s 

protocol described as follows: the medium was aspirated and the cell membranes 

were disrupted by addition of 600 µl of buffer RLT with 10 µl/ml β-

mercaptoethanol. The dishes were scraped and the lysates were collected in 1.5 ml 

microcentrifuge tubes. The samples were homogenised by being vortexed and 

passed through a 20-gauge needle (0.9 mm diameter) at least 5 times. An equal 

volume of 70% ethanol was added to the homogenised sample to aid the binding 

of RNA to the membrane of the spin column. The lysate was passed through the 

columns by centrifuging for 15 seconds at 10 000 rpm. The flow through was 

discarded and 350 µl of buffer RW1 was applied to the column. The column was 

centrifuged for 15 seconds at 10 000 rpm and the flow through discarded. On 

column DNase digestion was performed using an RNase-free DNase I kit 

(Qiagen). The DNase stock solution and buffer RDD were mixed in a ratio of 1:7 

and a total of 80 µl was then applied to each column and incubated for 15 minutes 

at room temperature. Following this, a further 350 µl of buffer RW1 was added 

and the column was centrifuged for 15 seconds at 10 000 rpm. The flow through 

was discarded and 500 µl of buffer RPE was added to each column and 

centrifuged for 15 seconds at 10 000 rpm. A further 500 µl of buffer RPE was 

added and the column was centrifuged for 2 minutes at 10 000 rpm followed by a 

further 1 minute in a new collection tube to dry the membrane. The column was 

transferred to an RNase free 1.5 ml microcentrifuge tube and the RNA was eluted 

in 30-50 µl of RNase free water. The column was spun for 1 minute at 10 000 rpm 

and the RNA was then stored at -80ºC. The quantity of RNA was measured using 

a NanoDrop ND-1000 spectrophotometer (NanoDrop, Wilmington, DE, USA). 

 

2.3.2 Reverse transcriptase-polymerase chain reaction (RT-PCR) 

 RNA was reverse transcribed into cDNA using a PTC-200 DNA engine 

(MJ research, Reno, NV, USA). A total of 1 µg of RNA in 10 µl of RNase-free 

water was added to a thin-walled nuclease-free microcentrifuge tube. To this, 1 µl 

of Random primers (Invitrogen, Paisley, Renfrewshire, UK) and 1 µl of 10 mM 

dNTP Mix (Bioline, London, UK) were added and mixed by flicking the tube. 

The contents were collected at the bottom of the tube by briefly centrifuging 

before heating the mixture to 65°C for 5 minutes and then quickly chilling on ice. 
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Then 4 µl of 5X First-strand buffer, 2 µl of 0.1 M Dithiothreitol (DTT) and 1 µl 

RNasin® Ribonuclease Inhibitor (Promega, Southampton, Hampshire, UK) were 

added before incubating at 25°C for 10 minutes followed by 42°C for 2 minutes. 

Following this, 1 µl of SuperScript™ II reverse transcriptase (Invitrogen) was 

added and the mixture was incubated at 42°C for 50 minutes and then at 70°C for 

15 minutes. The cDNA product was stored at -20°C.  

 

 

 

 

Table 2.2 – The genes analysed by TaqMan QRT-PCR. The assay identification numbers for 

the probes purchased from Applied Biosystems are also shown.  
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2.3.3 TaqMan® Quantitative real time PCR (QRT-PCR) 

 Gene expression levels were measured using QRT-PCR (TaqMan®) 

performed using a standard run on a 7500 Fast Real-Time PCR System (Applied 

Biosystems, Warrington, Cheshire, UK). A total of 5 ng of sample cDNA was 

loaded per well of a MicroAmp® Optical 96-Well Reaction Plate (Applied 

Biosystems), except for those of the standard curve which had varying amounts of 

cDNA and those for analysis of 18S which had 1 ng per well. Gene-specific 

primers and probes (Applied Biosystems) were used to measure expression levels 

(see table 2.2 for a list of genes assayed). The primers and probes were mixed 

with Mastermix (Applied Biosystems) containing the components necessary for 

the PCR reaction to give a total reaction volume of 25 µl. The reactions were 

performed under the following conditions: 50ºC for 2 minutes, 95ºC for 10 

minutes followed by 40 cycles consisting of 95ºC for 15 seconds and 60ºC for 1 

minute. The threshold cycle (CT) values were obtained and the results were 

normalised to the 18S expression values. 

 

2.4 Northern blot 

  

The technique of Northern blotting was used to confirm the expression 

levels of the DMPK gene previously analysed by TaqMan QRT-PCR. Gel 

electrophoresis separates RNA by size and following transfer to a blotting 

membrane the RNA of interest is detected using a radiolabelled probe 

complimentary to the target sequence. 

 

2.4.1 RNA extraction 

 RNA was extracted as previously described in section 2.3.1. 

 

2.4.2 Agarose/formaldehyde gel electrophoresis 

 A 1.2% agarose gel was made in an RNase free tank containing 6.6% 

formaldehyde and 1x MOPS (0.02 M MOPS (3-[N-morpholino]propanesulfonic 

acid) (pH 7.0), 5 mM sodium acetate and 1 mM EDTA (pH 8.0) in DEPC treated 

H2O). Once the gel had set it was immersed in running buffer (1x MOPS and 

0.74% formaldehyde in H2O with ethidium bromide). The samples (8.5 µg of 

RNA) were concentrated to a volume of (around) 5 µl by vacuum drying in a 
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Concentrator 5301 (Eppendorf, Histon, Cambridge, UK). The samples were 

mixed with a mastermix (1x MOPS, 7.4% formaldehyde, 50% formamide) and a 

denaturation reaction was performed where they were heated to 65ºC for 10 

minutes. The samples were chilled on ice for 5 minutes before being combined 

with 10% gel loading buffer (50% glycerol, 10 mM EDTA (pH 8.0) and 0.4% 

(w/v) bromophenol blue) and loaded onto the agarose gel. The gel was run at 100 

V for approximately 2½ hours until the blue dye reached the end of the gel. The 

gel was removed from the tank and washed twice in sterile distilled H2O for 45 

minutes.  

 

 

 

 

Figure 2.2 – A diagram of the capillary transfer system used to transfer RNA from the gel to 

the blotting membrane. 

  

 

2.4.3 Capillary transfer of RNA to blotting membrane 

 A capillary transfer system was set up as follows (see figure 2.2): a 

reservoir was filled with 20x saline-sodium citrate (SSC, 175.3g of NaCl, 88.2g of 

sodium citrate in 800 ml distilled H2O) and a glass plate was rested on top. A long 

piece of Whatman filter paper was soaked in 20x SSC and placed over the glass 

plate with the ends in the 20x SSC reservoir to act as a wick. The gel was turned 

upside down onto the filter paper and the surrounding areas were covered with 

clingfilm. A piece of Hybond-N membrane (GE Healthcare, Chalfont St Giles, 
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Buckinghamshire, UK) was placed on top after dipping in H2O followed by 20x 

SSC. One layer of wet Whatman filter paper was placed on top followed by two 

dry layers. Air bubbles were removed and a 5 cm thick stack of tissue paper was 

placed on top. A glass plate was placed over this and weighed down with a 1 kg 

weight. The RNA was left to transfer over night. The following day the blotting 

system was dismantled and the membrane was removed after the position of the 

wells had been marked. The membrane was surrounded in filter paper and baked 

in an incubator at 80ºC for 2 hours to cross-link the RNA to the membrane. The 

blot was stored at room temperature. 

 

2.4.4 Probe synthesis 

 Custom made primers specific to DMPK and GAPDH transcripts were 

purchased from Invitrogen with the following sequences (obtained from Krol et 

al., 2007): DMPK (forward, 5’-AGGCTTAAGGAGGTCCGACTG-3’; reverse, 

5’-GCGAAGTGCAGCTGCGTGATC-3’), GAPDH (forward, 5’-

GAAGGTGAAGGTCGGAGT-3’; reverse, 5’-GAAGATGGTGATGGGATTTC-

3’). The primer sequences were aligned with the sequences of all known transcript 

variants of DMPK and GAPDH mRNA (using ClustalW software, URL - 

www.ebi.ac.uk/clustalw/ and the NCBI nucleotide website URL - 

www.ncbi.nlm.nih.gov/sites/entrez?db=Nucleotide). The primer sequences were 

located within homologous sites of the transcript variants found.  

The probes were amplified by a PCR reaction where 1 µl containing 20 ng 

of cDNA template was added to 28.5 µl H2O, 10 µl HF 5x PCR buffer, 5 µl 10x 

dNTP (2 mM), 2.5 µl 10 µM forward primer, 2.5 µl 10 µM reverse primer and 0.5 

µl Phusion™ Taq polymerase (Finnzymes Oy, Espoo, Finland). The PCR reactions 

were performed on a PTC-200 DNA engine (MJ research). For amplification of 

the DMPK transcript probe the PCR conditions were as follows: 98ºC for 30 

seconds, 34 cycles of 98ºC for 10 seconds, 68ºC for 30 seconds and 72ºC for 1 

minute, followed by 72ºC for 5 minutes and 7ºC until the tubes were removed. For 

amplification of the GAPDH transcript probe the PCR conditions were as follows: 

98ºC for 30 seconds, followed by 34 cycles of 98ºC for 10 seconds, 60ºC for 30 

seconds and 72ºC for 1 minute, followed by 72ºC for 5 minutes and 7ºC until the 

tubes were removed. The PCR products were run on a 1% agarose gel and bands 

at the appropriate sizes were excised.  
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 The DNA product was extracted from the gel using a QIAquick gel 

extraction kit (Qiagen) according to the manufacturer’s instructions described as 

follows: for every 100 mg of gel 300 µl of buffer QG was added. The gel was 

dissolved by heating to 50ºC for 10 minutes with occasional mixing before 100 µl 

of isopropanol was added per 100 mg of gel. The sample was applied to a 

QIAquick spin column in a 2 ml collection tube which was centrifuged for 1 min. 

The flow-through was discarded and 500 µl of Buffer QG was added to the 

column and centrifuged for 1 min to remove the agarose. To wash the sample, 750 

µl of Buffer PE was added to the column and centrifuged for 1 minute. The flow-

through was discarded and the column was centrifuged for an additional 1 minute. 

The QIAquick column was placed into a clean 1.5 ml microcentrifuge tube. To 

elute the DNA, 50 µl of water was added to the centre of the membrane and 

allowed to rest for 1 minute. The column was centrifuged for 1 minute and the 

eluant was stored at -20°C. 

 To sequence the DNA, a set of reactions were set up containing 3 µl of 

DNA, 2 µl of 5x buffer, 2 µl H2O, 1 µl primer, 1 µl Big Dye v3.1 and 1 µl ½ Big 

Dye (Applied Biosystems). Two reactions were set up for both the DMPK and 

GAPDH probe amplification products, one containing the forward primer and one 

containing the reverse primer. The mixtures were heated to 96ºC for 4 minutes 

followed by 24 cycles of 96ºC for 30 seconds, 50ºC for 15 seconds and 60ºC for 4 

minutes; the samples were then chilled at 4ºC. The products were sent to the John 

Innes Centre Genome Laboratory (Colney, Norwich, Norfolk) for sequencing on 

an ABI 3730 high throughput sequencer (Applied Biosystems). The results were 

viewed on Chromas Lite software (URL - 

www.technelysium.com.au/chromas_lite.html) and the sequences obtained were 

put into BLAST (URL - www.ncbi.nlm.nih.gov/blast/). The probe sequences 

showed specificity for the RNA they were designed to anneal to. The 

concentration of DNA in the samples was measured using a Qubit Fluorometer 

(Invitrogen). 

  

2.4.5 Pre-hybridisation and probe preparation 

 The membrane was placed in a glass tube with 6 ml of ULTRAhyb®-Oligo 

hybridisation buffer (Ambion, Huntingdon, Cambridgeshire, UK) pre-

hybridisation solution and incubated at 42ºC for 3 hours rotating. The probe was 
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prepared by denaturing 50 ng of DNA in a total volume of 45 µl by heating to 

100ºC for 10 minutes. The DNA was immediately placed on ice for 3 minutes and 

then centrifuged briefly to collect the sample at the bottom of the tube. A Ready-

To-Go DNA labelling bead (GE Healthcare) containing buffer, dATP, dGTP, 

dTTP, FPLCpure™ Klenow Fragment (7-12 units) and random 

oligodeoxyribonucleotides was placed in a tube and 45 µl of denatured DNA was 

added along with 5 µl of [α-32P]dCTP. The tube was mixed by gently pipetting up 

and down and was then incubated at 37ºC for 30 minutes. The reaction was 

stopped by adding 5 µl of 0.2 M EDTA (pH 8). Unincorporated oligonucleotides 

were removed by passing the mixture through a Sephadex G-50 DNA grade 

column by centrifuging at 2000 rpm for 2 minutes.  

 

2.4.6 Hybridisation and detection 

The DNA was denatured by heating to 97ºC for 5 minutes before cooling 

on ice for 3 minutes. The probe was added directly to the pre-hybridisation buffer, 

mixed thoroughly and left to hybridise with the membrane overnight at 42ºC 

rotating. 

The following day the probe solution was removed and the blot was 

washed twice with 2x SSC with 0.1% sodium dodecyl sulphate (SDS, Sigma-

Aldrich) for 10 minutes at 42ºC, followed by two washes with 0.1x SSC with 

0.1% SDS for 15 minutes at 42ºC. The membrane was wrapped in clingfilm and 

placed in a cassette with an intensifying screen for 3 hours. The bands were 

visualised using a Molecular Imager FX Pro Plus with Quantity One 4.5.1 

software (Bio-Rad, Hemel Hempstead, Hertfordshire, UK). The intensity of the 

bands was analysed using Kodak 1D 3.5 software (Kodak, Rochester, NY, USA). 

 

2.4.7 Membrane stripping 

  The membrane was stripped to be re-probed for different transcripts by 

washing repeatedly in boiling water until no radioactivity was measured.  

 

2.5 Fluorescent In Situ Hybridisation (FISH) 

 

To detect mutant DMPK transcripts with large CUG repeats the technique 

of FISH was used. The technique involves the use of a fluorescently labelled CAG 
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probe complimentary to the CUG repeat in the DMPK transcripts (protocol as 

described by Holt et al. (2007)). The probe is applied to the cells to detect the 

transcripts and their position within the cell.  

 Cells were seeded onto 12-16 mm round glass coverslips and grown for 

one week before the medium was replaced with SF medium for 24 hours. The 

cells were exposed to experimental conditions for 24 hours. The cells were 

washed in diethylpyrocarbonate (DEPC, Sigma-Aldrich) treated PBS (100 µl 

DEPC in 100 ml PBS) before being fixed in 4% formaldehyde in DEPC treated 

PBS for 25 minutes at room temperature. The fixative was aspirated and the cells 

were washed three times for 5 minutes with DEPC treated PBS with gentle 

agitation. The coverslips were stored at 4ºC overnight.  

 Cells were permeabilised in 1 ml of 0.2% Triton X-100 in DEPC treated 

PBS for 5 minutes at room temperature. The coverslips were then rinsed twice for 

5 minutes with 2x SSC with gentle agitation. The SSC was aspirated and 500 µl 

of denaturation solution (40% formamide in 2x SSC) was applied for 10 minutes. 

The denaturation solution was aspirated and 300 µl of hybridisation solution (10% 

dextran sulphate, 40% formamide, 0.2% BSA, 0.1 mg/ml herring sperm DNA 

(Sigma-Aldrich), 0.1 mg/ml baker’s yeast transfer RNA (Sigma-Aldrich), 4 mM 

ribonucleoside vanadyl complexes (Sigma-Aldrich), 200 nM (CAG)10 Alexa 555 

labelled probe in 2xSSC) was added. A plastic coverslip was placed over the 

solution to ensure even coverage and to prevent the solution drying out. The 

coverslips were placed in a humidified chamber and incubated overnight at 37ºC 

protected from light. The following day the coverslips were rinsed three times 

with DEPC treated PBS for 5 minutes each with gentle agitation. The nuclei were 

labelled by addition of 100 µl of 4′,6-diamidino-2-phenylindole dihydrochloride 

(DAPI, 1:200) in DEPC treated PBS for 30 minutes. The coverslips were washed 

three times for 5 minutes with DEPC treated PBS and mounted onto glass slides 

using Hydromount (National Diagnostics, Hessle, Yorkshire, UK). The slides 

were dried at room temperature for 30 minutes and imaged on a charge-coupled 

device (CCD) upright Zeiss fluorescence microscope with an attached digital 

camera and Axiovision 4.7 software (Zeiss, Oberkochen, Germany). 
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2.6 PCR of the insulin receptor (IR) mRNA 

  

In order to analyse alternative splicing of IR mRNA the technique of PCR 

was used. The technique involves amplification of IR transcript cDNA. PCR 

products are separated by gel electrophoresis and the ratio of the two isoforms 

calculated (protocol as described by Savkur et al., 2001). 

 

2.6.1 RNA extraction 

 RNA was extracted from cells as previously described in section 2.3.1. 

 

2.6.2 Reverse transcriptase-polymerase chain reaction (RT-PCR) 

 RNA was reverse transcribed into cDNA as described in section 2.3.2. 

 

2.6.3 PCR of IR mRNA 

PCR was carried out to amplify a region from exons 10 to 12 of the IR 

mRNA. A total of 200 ng of cDNA (in 4 µl) was mixed with 0.5 µl each of 50 µM 

forward primer (5’-CCAAAGACAGACTCTCAGAT-3’) and reverse primer (5’-

AACATCGCCAAGGGACCTGC-3’) (Invitrogen), 0.4 µl of 100 mM dNTP mix, 

5 µl of MgCl2 free PCR reaction buffer x10, 1.5 µl of 50 mM MgCl2 and 0.25 µl 

of Taq DNA Polymerase (5 U/µl) (Bioline). The volume was made up to 50 µl 

with H2O before mixing and briefly centrifuging to collect the solution at the 

bottom of the tube. The DNA was amplified using a PTC-200 DNA engine (MJ 

research) by heating to 94ºC for 4 minutes, followed by 30 cycles of 95ºC for 30 

seconds, 60ºC for 30 seconds and 72ºC for 30 seconds, then 72ºC for 10 minutes. 

The samples were stored at -20ºC. 

 

2.6.4 Agarose gel electrophoresis 

 The PCR products were separated by electrophoresis on a 4% agarose gel 

with TAE running buffer containing ethidium bromide. A total of 10 µl of PCR 

product was mixed with 5 µl of 5x loading buffer before loading onto the gel 

alongside a Hyperladder IV 1 kB ladder (Bioline). The gel was run at 80 V until 

the bands had separated. Images were taken on a UV transiluminator and the 

intensity was analysed using Kodak 1D 3.5 scientific imaging software (Kodak). 
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2.7 Terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) 

assay 

 

 Apoptotic cells were detected and quantified using a TUNEL assay. The 

technique detects DNA fragmentation which occurs during the ordered 

breakdown of cells during apoptotic cell death. When the DNA is fragmented 3’-

OH groups are exposed to which the terminal deoxynucleotidyl transferase (TdT) 

can add fluorescein-12-dUTP. The fluorescein-12-dUTP can then be detected 

using fluorescence microscopy. 

 Cells were seeded onto glass coverslips and grown for one week until the 

medium was replaced with SF medium for 24 hours. The cells were exposed to 

experimental conditions for 24 hours and then fixed in 4% formaldehyde in PBS 

for 25 minutes at room temperature. The fixative was aspirated and the cells were 

washed three times with PBS for 5 minutes each with gentle agitation. The 

coverslips were stored at 4ºC overnight. A DeadEnd™ Fluorometric TUNEL 

System (Promega) was used to detect and quantify apoptotic cells within cell 

populations according to the manufacturer’s instructions described as follows: the 

cells were permeabilised by addition of 1 ml of 0.2% Triton X-100 in PBS for 5 

minutes at room temperature. The coverslips were washed twice with PBS for 5 

minutes each with gentle agitation. The PBS was removed and 100 µl of 

Equilibration Buffer was added to each coverslip for 5-10 minutes. The edge of 

each coverslip was blotted on tissue paper to remove the majority of the 

Equilibration Buffer before 50 µl of rTdT reaction mix was added. The rTdT 

reaction mix contained 45 µl Equilibration Buffer, 5 µl Nucleotide Mix and 1 µl 

rTdT enzyme per reaction. A plastic coverslip was placed over the solution to 

ensure even distribution of the mix. The coverslips were placed in a humidified 

chamber and incubated for 1 hour and were protected from light from this step 

onwards. The reaction was terminated by immersing the coverslips in 2x SSC for 

15 minutes at room temperature. The coverslips were washed three times with 

PBS for 5 minutes each with gentle agitation. The cell nuclei and F-actin were 

labelled by the addition of 100 µl of DAPI (1:200) and Texas Red-X phalloidin 

(1:100) diluted in PBS for 15 minutes. The coverslips were washed three times 

with PBS for 5 minutes each with gentle agitation and mounted onto glass slides 

using Hydromount. The slides were dried at room temperature for 30 minutes and 
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then imaged on a CCD upright Zeiss fluorescence microscope with an attached 

digital camera and Axiovision 4.7 software (Zeiss). 

 

2.8 Western blot 

 

 In order to detect the presence, absence and activation of particular 

proteins of interest within the lysates of cell samples, the Western blot technique 

was used. The technique is based on the binding of a primary antibody specific to 

the protein of interest and its subsequent detection by a secondary antibody. The 

Western blot gives information about the size and the relative amount of the 

protein of interest in different samples. 

 

2.8.1 Cell lysis 

 Cells were grown in 35 mm culture dishes and subjected to experimental 

conditions as previously described (see section 2.2.1). The cells were rinsed in 

ice-cold PBS and lysed in MPER with 10 µl/ml of Halt protease inhibitor cocktail, 

10 µl/ml of Halt phosphatase inhibitor cocktail and 10 µl/ml EDTA (5 mM) 

(Pierce). Dishes were scraped and lysates were collected in 1.5 ml microcentrifuge 

tubes (Eppendorf) and centrifuged at 13 000 rpm for 10 minutes at 4°C. The 

supernatant was stored at -80°C. Protein concentration was measured using a 

bicinchoninic acid (BCA) protein assay (Pierce) according to the manufacturer’s 

protocol described in section 2.2.2.  

 

2.8.2 SDS PAGE 

 Protein samples were heated to 100ºC for 5 minutes with 20% sample 

buffer (4% SDS, 0.01% bromophenol blue, 30% glycerol, 12.5% β-

mercaptoethanol and 160 mM tris pH 6.8) and loaded alongside DualVue Western 

Blotting Markers (GE Healthcare) on a 10% precast polyacrylamide protein gel 

(Pierce). Gels were subjected to electrophoresis in a Mini-PROTEAN 3 cell (Bio-

Rad) run at a constant 100 V and a current of 100 mA per gel at room temperature 

until the loading dye reached the bottom of the gel. 
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2.8.3 Protein transfer 

 The gel was removed from the tank and placed in transfer buffer solution 

(48 mM Tris, 39 mM glycine, 4% methanol and 0.0375% SDS, pH 8.3) for 15 

minutes. Proteins were transferred onto a polyvinylidene difluoride (PVDF) 

membrane (Perkin Elmer) by sandwiching the gel and the PVDF membrane 

(activated in 100% methanol), between thick filter papers. The sandwich was 

placed on a trans-blot semi-dry transfer cell (Bio-Rad) and run at a constant 15 V 

and a current of 0.3 A per gel for 30 minutes.  

 

2.8.4 Blocking and antibody incubation 

Following protein transfer the gels were discarded and the PVDF was 

rinsed three times for 5 minutes in PBS and blocked for 1 hour in PBS-T (100 ml 

PBS, 0.5 g Marvel milk powder and 50 µl Tween® 20) at room temperature with 

gentle agitation. The primary antibody made up in PBS-T was left on overnight at 

4°C with gentle agitation. The antibodies used in this study are summarised in 

table 2.3. 

The following day the membrane was allowed to return to room 

temperature before washing three times for 15 minutes in PBS-T with gentle 

agitation. The secondary antibody conjugated to horseradish peroxidase was made 

up in PBS-T at a concentration of 1:1250. The membrane was incubated in the 

secondary antibody for one hour at room temperature with gentle agitation. A 

further two 15 minute washes with PBS-T were carried out before a final wash in 

PBS with 10 µl/ml Tween® 20 (Sigma-Aldrich) for 10 minutes. 

 

2.8.5 Detection 

ECL plus western blotting detection reagents (GE Healthcare) were mixed 

at a ratio of 40:1 of solutions A and B respectively and a volume of 0.1 ml/cm2 

was pipetted onto the membrane and allowed to rest for 5 minutes at room 

temperature in the dark. The membrane was blotted onto tissue paper before being 

placed in a film cartridge. In a darkroom the membrane was exposed to 

Amersham Hyperfilm ECL photographic paper (GE Healthcare) which was then 

passed through Kodak GBX developer and replenisher solution (Kodak), SB 80 

indicator stop bath (Photosol, Basildon, Essex, UK) and Hypam fixer (Ilford, 

Mobberley, Cheshire, UK). The revealed bands were scanned and the intensity 
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T
able 2.3 – A

 sum
m

ary of the antibodies used for the detection of proteins via W
estern blots. 

was analysed densitometrically using Kodak 1D 3.5 scientific imaging software 

(Kodak). 
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2.8.6 Membrane stripping 

Membranes were stripped to be re-probed with other antibodies using Re-

blot Strong solution (Millipore, Watford, Hertfordshire, UK) which was left on 

the membrane for 20-25 minutes. The membrane was blocked by two 5 minute 

washes with PBS-T before being placed in the next primary antibody. 

 

2.9 bFGF estimation by the enzyme-linked immunosorbent assay (ELISA) 

 

 The level of bFGF in conditioned medium was measured using an ELISA. 

The technique involves the use of a primary antibody specific to the protein of 

interest which is bound to the surface of the wells of a 96-well plate. The samples 

are added to the wells and if the protein of interest is present it will bind to the 

antibody. An enzyme-linked antibody is then pipetted into the wells which also 

binds to the protein of interest. Addition of an enzyme substrate produces a colour 

change proportional to the amount of protein of interest present. 

A Quantikine® human FGF basic (bFGF) ELISA kit (R&D Systems, 

Abingdon, UK) was used to quantify the levels of bFGF released into the medium 

by the cells. Conditioned medium (CM) was collected from cells after 24 hours 

and was centrifuged at 13000 rpm for 5 minutes. The supernatant was removed 

and frozen at -20°C until required. The bFGF ELISA kit was used according to the 

manufacturer’s protocol described as follows: a 96-well microplate pre-coated 

with a monoclonal antibody specific to bFGF was supplied and 100 µl of Assay 

Diluent RD1-43 was added to each well. A series of standards with known 

concentrations of bFGF were prepared from a bFGF stock solution. Each test was 

performed in duplicate and 100 µl of the standards or samples were added to each 

well. The wells were covered with an adhesive strip and incubated for 2 hours at 

room temperature. Each well was aspirated and washed with 400 µl of wash 

buffer which was repeated three times for a total of four washes. The plate was 

blotted to remove as much wash buffer as possible before adding 200 µl of bFGF 

Conjugate to each well. The wells were covered with an adhesive strip and 

incubated for 2 hours at room temperature. The wash step was repeated before 

200 µl of Substrate Solution was added to each well. The plate was incubated for 

30 minutes at room temperature protected from light before 50 µl of Stop Solution 

was added. The absorbance was determined using a Wallac 1420 VICTOR2 
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multilabel plate counter and WorkOut 1.5 software at a wavelength of 450 nm. A 

standard curve was constructed and used to determine the levels of bFGF in the 

CM samples. 

 

2.10 Statistical analysis 

 

 Student’s T-test analysis was performed using Excel® software (Microsoft, 

Redmond, WA, USA) to determine any statistical difference between two 

experimental groups. Statistical analysis of multiple experimental groups was 

performed by one-way analysis of variance (ANOVA) with Tukey’s post-hoc 

analysis using SPSS 16.0 (SPSS Inc., Chicago, IL, USA). Significance was 

assessed using a p value of ≤ 0.05. 
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CHAPTER 3 

CHARACTERISATION OF DM1 LENS 

EPITHELIAL CELLS  
 

3.1 Introduction 

 

 Diseases can be modelled in a variety of different ways in order to study 

the mechanisms which underlie them. This includes techniques such as the 

culturing of tissues and primary cells from patients, the immortalisation of cells to 

produce cell lines and the production of animal models to mimic disease. 

Although all of these techniques are valuable to research, the availability and 

lifespan of primary cells from patients is often limited and the use of animal 

models poses an ethical dilemma as well as posing problems with differences 

between species. Therefore, in this study, cell lines have been produced from 

primary human LECs (as described in section 2.1.1) to study the mechanisms 

behind cataract development in DM1.  

The use of in vitro studies using cell lines in research has become 

commonplace due to the availability of cells, the ease with which they can be 

maintained, the speed with which results can be obtained and the relatively low 

cost of experiments. However, cell lines must be characterised in order to verify 

their origin and to show that they possess characteristics that are relevant to the 

disease they represent. 

 

3.1.1 Molecular characterisation of DM1 lens epithelial cells 

The cell lines used in this study were produced from DM1 patient samples 

and normal donor lenses. To confirm their origins a study by Rhodes et al. (2006) 

confirmed the presence and length of the expanded triplet repeat in the DM1 lens 

cell lines and showed its absence in the controls through Small Pool-PCR analysis 

of repeat length variation (see figure 3.1a). The controls were confirmed to have 

small stable normal alleles, whereas the DM1 cell lines contained large unstable 

expanded alleles even in the earliest passage sampled, suggesting that the primary 
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cells from which they were derived also contained large triplet repeats (Rhodes et 

al., 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 – Characterisation of DM1 lens epithelial cells. (a) Small Pool-PCR analysis of 

CTG repeat length at passage 10, showing 8 reactions for each cell line. No detectable 

expanded alleles were found in the control cell lines (data not shown), whereas the DM1 cell 

lines were shown to contain large triplet repeats. DMCat1 had two major alleles of 1480 and 

450 repeats, DMCat2 had three major alleles of 1440, 730 and 450 repeats, DMCat3 had a 

single major allele of 2950 repeats and DMCat4 had two major alleles of 1590 and 880 

repeats (image from Rhodes et al. (2006)). (b) QRT-PCR analysis of mRNA expression from 

CRYAA normalised to 18S expression, showing expression in all cell lines tested (Dr. J.D. 

Rhodes and Dr. L.M. Hodgkinson, unpublished data).  
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Further characterisation performed by Rhodes et al. (2006) showed that 

the DM1 lens cells expressed mRNA from DMPK, DMWD and SIX5, but only 

SIX5 was found to have reduced levels of both mRNA and protein. To confirm 

their lens cell origins, the expression of the gene CRYAA, which encodes the 

protein αA-crystallin was analysed. αA-crystallin is found in native LECs and 

expression of CRYAA was found in all of the DM1 and control cell lines tested 

(see figure 3.1b, Dr. J.D. Rhodes and Dr. L.M. Hodgkinson, unpublished data).  

 

3.1.1.1 Triplet repeat-containing DMPK transcripts form 

nuclear foci in DM1 lens epithelial cells 

Many reports have shown that DMPK transcripts accumulate in discrete 

foci in the nuclei of DM1 cells. Foci of DMPK transcripts have been found in 

cultured fibroblasts and myoblasts; in cells from heart, spinal cord, brain, gall 

bladder smooth muscle and skeletal muscle from DM1 patients; and in muscle 

cells and trophoblasts cultured from DM1 foetuses (Taneja et al., 1995; Davis et 

al., 1997; Hamshere et al., 1997; Furling et al., 2001b; Liquori et al., 2001; Jiang 

et al., 2004; Mankodi et al., 2005; Bonifazi et al., 2006; Wheeler et al., 2007a; 

Cardani et al., 2008). These studies indicate that all tissues which show symptoms 

of the disease could have foci of DMPK transcripts retained in the nuclei. As the 

lens is affected by DM1, and cataracts are a characteristic symptom of the disease, 

it would be interesting to confirm whether lens cells express DMPK and whether 

or not triplet repeat-containing DMPK transcripts accumulate in foci.  

The formation of nuclear foci in DM1 is associated with sequestration of 

the MBNL proteins (MBNL1, MBNL2 and MBNL3) and increased levels of 

CUG-BP proteins (CUG-BP1 and CUG-BP2). MBNL proteins accumulate in 

nuclear foci as they bind to the stem of the dsRNA formed by the CUG repeats in 

DMPK transcripts (Miller et al., 2000; Fardaei et al., 2001; Fardaei et al., 2002; 

Yuan et al., 2007). In humans, MBNL1 and MBNL2 show widespread expression 

in all tissues tested, including pancreas, kidney, skeletal muscle, liver, lung, 

placenta, brain and heart, but MBNL3 is almost exclusively expressed in the 

placenta (Fardaei et al., 2002). MBNL1 was shown to be expressed in the mouse 

eye but there is no data available for expression of any MBNL genes in the human 

lens (Miller et al., 2000). Unlike MBNL proteins, CUG-BP1/2 are not recruited 

into nuclear foci, despite being shown to bind to (CUG)8 repeats (Timchenko et 
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al., 1996; Lu et al., 1999; Michalowski et al., 1999; Fardaei et al., 2001). 

Interestingly, CUG-BP1 levels were actually shown to be increased in both 

cultured cells expressing CUG repeats and in DM1 heart tissue, with greater 

levels being observed with increasing repeat numbers (Timchenko et al., 2001a). 

Greater levels of CUG-BP1 have also been found in skeletal muscle tissue from 

DM1 patients and in cultured DM1 myoblasts (Savkur et al., 2001; Dansithong et 

al., 2005). Analysis of CUG-BP1 expression showed that levels of mRNA were 

not affected and instead an increase in the half-life of CUG-BP1 was shown to be 

responsible for increased protein levels (Timchenko et al., 2001a). The increased 

protein half-life was shown to result from an increase in the steady state levels of 

the protein due to hyperphosphorylation (Kuyumcu-Martinez et al., 2007). In 

humans, CUG-BP1 expression was found in all tissues tested, including liver, 

skeletal muscle and spleen, with high levels of expression in the brain and heart 

(Roberts et al., 1997). Widespread expression of CUG-BP1 was also found in 

mice (Ladd et al., 2001). In humans, CUG-BP2 is expressed predominantly in the 

heart, with low levels of expression found in the brain and skeletal muscle (Lu et 

al., 1999). In contrast, in mouse, CUG-BP2 was expressed in all tissues tested 

including heart, brain, spleen, lung, liver, skeletal muscle and testis (Lu et al., 

1999; Ladd et al., 2001). No data is available for the expression of CUG-BP1/2 in 

the eye or lens. 

If DMPK is expressed in lens cells and foci of the transcripts are shown to 

form, then it is possible that the active levels of MBNL and CUG-BP proteins will 

be disturbed if they too are expressed in the lens.  

 

3.1.1.2 Altered splicing events in DM1 

Both MBNL and CUG-BP proteins are involved in the regulation of 

splicing events, many of which are disrupted in DM1. The sequestration of 

MBNL and increased levels of CUG-BP result in the misregulation of splicing, 

where the splicing patterns of certain transcripts revert back to that observed 

during embryonic development. Alternative splicing generates protein isoforms 

with different biological properties, and embryonic isoforms are likely to have 

different levels of sensitivity and action compared to their adult counterparts. It 

has been suggested that the altered splicing patterns of certain proteins in DM1 

contributes to the observed phenotype of the disease. For example, the altered 
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splicing of ClC-1 could cause the myotonia which is a characteristic feature of 

DM1; altered splicing of IR could lead to insulin resistance and diabetes which is 

observed in the disease; and altered splicing of ryanodine receptor 1 (RYR1) 

could be involved in the myopathy associated with DM1 (Savkur et al., 2001; 

Mankodi et al., 2002; Kimura et al., 2005). If MBNL and CUG-BP proteins are 

found in the lens then it is possible that splicing patterns could be altered, leading 

to changes in the lens which could result in the development of cataract.  

 Myotonia is caused by hyperexcitability in muscle fibres leading to 

repetitive action potentials which result in involuntary after-contractions. These 

effects have been linked to impaired transmembrane conductance of either 

chloride or sodium ions (Franke et al., 1991; Charlet-B et al., 2002; Mankodi, 

2008). A number of non-dystrophic myotonias are caused by mutations in the 

CLCN1 gene, which encodes the chloride ion channel ClC-1, and the SCN4A gene 

which encodes a skeletal muscle sodium ion channel (Mankodi, 2008). A study 

using human skeletal muscle tissue from DM1 patients showed that SCN4A was 

present in membrane fractions extracted from the cells, whereas ClC-1 was absent 

or present at greatly reduced levels compared to normal skeletal muscles (Charlet-

B et al., 2002). Studies in mice and humans have shown that ClC-1 is 

alternatively spliced in DM1. In mice expressing large CUG repeats a broad 

spectrum of altered splicing events were observed, with the inclusion of a novel 

exon, designated “7a”, being the most common (Mankodi et al., 2002). In the 

same study Mankodi et al. (2002) showed that patients with both DM1 and DM2 

had a high frequency of alternative isoforms of ClC-1 and that severely affected 

DM1 patients had aberrant splicing in 100% of the cDNAs examined. The most 

common alternative splicing event was the inclusion of the 7a exon, which was 

accompanied by the inclusion of another novel exon, designated “6b” (Mankodi et 

al., 2002). Intron 2 (located between exons 2 and 3) was also shown to be retained 

in skeletal muscle tissue from DM1 patients (Charlet-B et al., 2002). In the same 

study it was shown that coexpression of CUG-BP with a ClC-1 intron 2 minigene 

in a normal fibroblast cell line resulted in retention of intron 2 (Charlet-B et al., 

2002). A Mbnl1 knockout in mice showed increased inclusion of exon 7a in ClC-1 

and myotonia (Kanadia et al., 2003). The insertion of novel exons and retention of 

intron 2 result in the insertion of premature stop codons and degradation of ClC-1 

mRNAs by nonsense-mediated decay, leading to the reduced levels of ClC-1 seen 
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in DM1 skeletal muscle (Charlet-B et al., 2002). The correction of ClC-1 splicing 

by morpholino antisense oligonucleotides in mice restored the full-length reading 

frame and increased ClC-1 expression, therefore eliminating myotonia (Wheeler 

et al., 2007b). These results strongly support a role for MBNL1 and CUG-BP1 in 

the alternative splicing of ClC-1 transcripts leading to myotonia in DM1. As the 

misregulated splicing of ClC-1 transcripts in DM1 is proposed to be the cause of 

myotonia, which is a major symptom of the disease, it would be interesting to see 

whether the mis-splicing event could be the cause of other symptoms, such as the 

development of cataract in the lens. In the lens, the level of Cl- is important for the 

maintenance of a constant cell volume and alterations in Cl- are thought to result 

in cataract development through a loss of osmotic equilibrium (Zhang & Jacob, 

1997). If ClC-1 channels are expressed in the lens and the splicing pattern is 

disturbed then this could result in disturbances in Cl- levels and cataract 

development.  

 Transcripts of the α-subunit of IR are also subject to alternative splicing 

where exon 11 can either be excluded to produce isoform A (IR-A), or included to 

produce isoform B (IR-B). The A isoform has a higher affinity for insulin, 

however, it has a lower signalling capacity and therefore it is the B isoform which 

results in an increased level of insulin sensitivity and is expressed predominantly 

in insulin responsive tissues (Savkur et al., 2001). A switch from the predominant 

IR-B in normal skeletal muscle, to IR-A in DM1 skeletal muscle was shown to 

occur and was linked to the increased steady-state levels of CUG-BP1 in the 

disease, although the same switch in isoforms was not observed in DM1 

fibroblasts (Savkur et al., 2001). A further study showed that MBNL1 and 

MBNL2 act antagonistically with CUG-BP1 in the regulation of IR exon 11 

inclusion (Dansithong et al., 2005). Down-regulation of MBNL1/2 and 

overexpression of CUG-BP1 were both shown to result in decreased inclusion of 

exon 11 in normal human myoblasts. Rescue experiments showed that loss of 

MBNL1 was the primary cause of the aberrant IR splicing with overexpression of 

CUG-BP1 playing a secondary role (Ho et al., 2004; Dansithong et al., 2005; Paul 

et al., 2006). In the rat lens, insulin plays a role in the maintenance of 

differentiation in fibre cells and activates the transcription of crystallin genes 

which maintain transparency during ageing by binding damaged proteins to 

prevent their precipitation (Leenders et al., 1997; Civil et al., 2000). In bovine 
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lens epithelial cells, insulin has been shown to activate the phosphatidylinositol 3-

kinase signalling pathway, which is involved in survival, growth and 

differentiation. Insulin receptors are also found in the human lens (Naeser, 1997). 

Insulin-like growth factor-1 (IGF-1) can also bind to IR and is present in the lens 

(Pavelic et al., 2007). Changes in signalling levels from the insulin receptor could 

therefore be linked to cataract through possible alterations in levels of the 

crystallin proteins or through disturbed cellular signalling resulting in a reduction 

in survival, growth or differentiation in LECs. For this reason, it would be 

interesting to see whether the ratio of IR isoforms is altered in DM1 lens cells. 

 A suggested cause of skeletal muscle wasting in DM1 is the altered 

splicing of RYR1, which is a Ca2+ release channel situated in the sarcoplasmic 

reticulum (SR). RYR1 is stimulated to release Ca2+ from the SR in myocytes 

following the generation of an action potential. This stimulates muscle contraction 

in a process known as excitation-contraction (EC) coupling. Two regions of 

RYR1, known as ASI and ASII, are variably spliced and developmentally 

regulated (Futatsugi et al., 1995). The ASI region is absent in the juvenile form 

and present in the adult form. In DM1 muscle the juvenile form of RYR1 is 

overexpressed and was shown to have a lower level of activity which was 

analysed by assessing the open probability of the channel (Kimura et al., 2005). 

Interestingly, voltage-activated Ca2+ release during EC coupling was shown to be 

significantly increased in myocytes expressing the juvenile form of RYR1 and it 

was suggested that the ASI region forms a regulatory module which contributes to 

EC coupling, and therefore, its absence facilitates stronger EC coupling (Kimura 

et al., 2009). Levels of Ca2+ in cultured myocytes from DM1 patients were found 

to be elevated when compared to normal controls (Jacobs et al., 1990). Alterations 

in EC coupling could result in the increased levels of Ca2+ observed in DM1 

muscle cells and could lead to muscle degeneration through increased activation 

of Ca2+ dependent proteases (Kimura et al., 2009). An increase in activation of 

Ca2+ dependent proteases could cause myopathy through the breakdown of 

proteins in the muscle cells. RYR1 is primarily expressed in skeletal muscle, but 

is also expressed in the brain and at low levels in the heart (Futatsugi et al., 1995). 

There are two further forms of ryanodine receptor, known as RYR2, which is 

mainly expressed in the heart, and RYR3, which is more widely expressed in 

tissues including the heart, brain and skeletal muscle (Dulhunty et al., 2006). A 
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study found expression of RYR1 in a human lens cell line but found greater levels 

of expression of RYR3 and showed that the receptors were involved in the 

regulation of intracellular Ca2+ levels (Qu & Zhang, 2003). Excessive levels of 

Ca2+ in the lens can lead to cataract formation also through activation of Ca2+ 

dependent proteases, such as calpains, which break down fibre cell proteins 

(Biswas et al., 2005). For this reason it would be interesting to see whether 

ryanodine receptors are present in our human lens cells and, if so, whether the 

splicing patterns are the same in DM1 and control cells. 

 

3.1.2 Cellular characterisation of DM1 lens epithelial cells 

At the cellular level, studies on cataracts in general have pointed at a loss 

of cells from the lens epithelium in the development of cataract due to the 

resulting loss of homeostasis in levels of ions and water (Konofsky et al., 1987; Li 

et al., 1995). Loss of cells from the LEC layer was shown to be particularly 

relevant in the development of subcapsular cataracts, as the cell densities were 

much lower when compared to those of nuclear cataract (Konofsky et al., 1987). 

A study by Abe et al. (1999) investigated the density of the LEC layer in native 

human lenses from DM1 patients with cataract. They showed that DM1 lenses 

contained fewer cells in the LEC layer than those from age matched control lenses 

with senile cataract (Abe et al., 1999). A significant decrease in cell density was 

observed with DM1 lenses having an average density of 2274 cells/mm2 

compared to 4627 cells/mm2 in the control lenses. The decrease in cell density 

was also shown to be more prominent in a patient with an earlier onset of the 

disease and more severe symptoms. Despite the decrease in cell density, coverage 

of the lens was maintained by an increase in cell size (Abe et al., 1999). This data 

would suggest that a reduced number of LECs may not be sufficient to maintain 

the balance of ions and water which is vital to lens transparency, therefore 

resulting in cataract formation in DM1. Rhodes et al. (2006) characterised the 

growth of most of the lens epithelial cell lines used in this study and showed that 

the DM1 cell lines had longer doubling times compared to the controls (Rhodes et 

al., 2006). The rate of growth of the DM1 cell lines also began to decline at a 

much earlier stage and continued to decline until a point was reached where there 

were not enough cells remaining to start the next passage (Rhodes et al., 2006). 

This data indicates that behaviour of the cell lines is similar to the situation seen 
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in vivo and it would be interesting to see whether the two further control cell lines 

employed in this study confirm these findings. 

The decrease in density of DM1 LECs could be due to a decrease in cell 

proliferation or an increase in cell death. Cell death can occur either via apoptosis, 

which is the orderly breakdown of the cell into apoptotic bodies which can be 

phagocytosed (also known as programmed cell death), or via necrosis, which is 

characterised by the early breakdown of the plasma membrane resulting in the 

release of the cell contents. Interestingly, capsulorhexis samples from non-DM1 

cataract patients were shown to have a significantly greater percentage of 

apoptotic cells compared to normal controls (Li et al., 1995). To elucidate 

whether apoptosis of LECs preceded cataract development or vice versa, Li et al. 

(1995) performed experiments using cultured rat lenses. Hydrogen peroxide was 

used to induce cataract formation and was shown to trigger apoptosis in the LECs 

prior to cataract development (Li et al., 1995). Rhodes et al. (2006) investigated 

whether reduced levels of cell proliferation or increased levels of cell death were 

responsible for the reduced population doublings times observed in the DM1 lens 

cell lines and found that fold stimulation of growth by 10% FCS was similar 

across the cell lines, but release of LDH was increased, indicating increased levels 

of cell death were the cause (Rhodes et al., 2006). As cell death was implicated in 

the reduced population doubling times, it would be interesting to establish the 

mode by which it occurs, i.e. apoptosis or necrosis.   

 

3.2 Aims 

 
 The aim of this chapter is to establish whether the DM1 and control cell 

lines are a valid model in which to study the disease. Expression levels of the 

genes at the DM1 locus will be analysed and a primary aim is to show whether 

DMPK is expressed in the lens cell lines and whether transcripts form foci as seen 

in other affected cell types. If foci form then splicing patterns may be altered 

within the lens and therefore these secondary effects of the triplet repeat will also 

be investigated in order to establish whether they may be the underlying cause of 

cataract formation. Cell growth, proliferation and death of the lens cell lines will 

also be investigated as these are thought to impact on cataract formation in the 

native human lens. 
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3.3 Results 

 

3.3.1 SIX5 and DMPK expression in DM1 lens epithelial cells 

QRT-PCR showed that SIX5 is expressed in human LECs, however, in 

contrast to previous reports, no difference in expression levels was observed 

between the control and DM1 cell lines (see figure 3.2, expression analysed at 

days 8, 50 and 78 of the culture period shown in figure 3.9) (Rhodes et al., 2006). 

The previous study by Rhodes et al. (2006) used only two of the control cell lines 

(CCat1 and CCat2), but recently, two further control cell lines were obtained 

(CCat3 and CCat4) and revealed that the level of SIX5 expression in the DM1 cell 

lines falls within the range of normal expression values. The mean expression 

value across the control cell lines was 5.10 ± 1.39 (arbitrary units) compared to 

3.91 ± 0.43 (arbitrary units) across the DM1 cell lines. This data would indicate 

that reduced expression of SIX5 is unlikely to be responsible for cataract 

formation in the lens as previously proposed (Winchester et al., 1999; Klesert et 

al., 2000).  

 

 

 

 

Figure 3.2 – SIX5 is expressed in DM1 lens epithelial cells. QRT-PCR analysis of mRNA 

expression from SIX5 normalised to 18S expression. SIX5 was expressed in both control and 

DM1 lens cells and no difference was observed in expression levels between the two groups 

(n = 3,  data expressed as mean ± SEM of three independent experiments). 
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Figure 3.3 – DMPK is expressed in DM1 lens epithelial cells. (a) QRT-PCR analysis of 

mRNA expression from DMPK normalised to 18S expression (n = 3, data expressed as mean 

± SEM of three independent experiments). (b) Northern blot analysis of mRNA expression 

from DMPK. Graph shows the bands analysed densitometrically and normalised to GAPDH 

mRNA levels. 
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Using both QRT-PCR and Northern blot analysis to detect DMPK mRNA, 

DMPK was shown to be expressed in human LECs (see figure 3.3). In both cases 

there was no significant difference in expression levels between DM1 and control 

LECs. Two separate probes crossing different exon boundaries were used to 

detect DMPK transcripts by QRT-PCR. Probes were selected to cross the 

boundaries of exons 2-3 and 8-9 (see table 2.2 for the assay identification 

numbers). Both probes detected similar levels of DMPK expression so the results 

are shown for only one of the probes (see figure 3.3a). The mean expression value 

across the control cell lines was 21.98 ± 1.96 (arbitrary units) compared to 26.46 ± 

1.05 (arbitrary units) across the DM1 cell lines. Using Northern blot analysis (see 

figure 3.3b), one band of the same size was observed in all of the cell lines, but 

surprisingly no larger bands were observed in the DM1 cells. A larger band, or 

smear, representing transcripts of differing length depending on the size of the 

triplet repeat, would have been expected due to the large repeats found in the 

DMPK mutant allele. The lack of this band could indicate a problem in the RNA 

extraction procedure as the mutant transcripts are possibly subjected to 

mechanical damage or it could indicate inefficient transfer of the larger RNAs to 

the membrane. From the band detected, the mean values of transcript levels across 

the control cell lines was 4.74 ± 0.14 (arbitrary units) compared to 5.74 ± 0.40 

(arbitrary units) across the DM1 cell lines. Despite not showing expression of 

mutant DMPK transcripts, both Northern blotting and QRT-PCR showed that 

DMPK was expressed in human LECs. Both techniques actually showed that 

expression of DMPK was higher in DM1 LECs, although this was not statistically 

significant. The presence of DMPK mRNA in human lens cells indicates that foci 

of transcripts may form in DM1 nuclei.  

 

 

Figure 3.4 – DMPK transcripts form nuclear foci in DM1 lens epithelial cells. Triplet repeat 

RNA was detected using fluorescence in situ hybridisation with a (CAG) 10 alexa 555 labelled 

oligonucleotide probe (red) in nuclei counterstained with DAPI (blue). No foci were observed 

in control lens cells (a) CCat1 and (b) CCat2, however, foci (indicated by white arrows) were 

detected in DM1 lens cells (c) DMCat1, (d) DMCat2, (e) DMCat3 and (f) DMCat4 (bar = 20 

µm). (g) Summary of mean number of foci (n = 2, data expressed as mean of two 

independent experiments, statistical analysis was performed by Student’s T test, ** p < 0.01 

relative to controls). 
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Figure 3.4 – see previous page for figure legend 
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3.3.2 Formation of nuclear foci of mutant DMPK transcripts in DM1 

lens epithelial cells 

 Fluorescence in situ hybridisation (FISH) of lens cells with (CAG)10 alexa 

555 labelled oligonucleotide probes revealed nuclear foci of DMPK transcripts in 

all DM1 cell lines, but these were absent in the controls (see figure 3.4). This 

confirms that the mutant DMPK allele is expressed in the DM1 cells, despite not 

being detected during Northern blot analysis of DMPK expression. In all cell lines 

a very diffuse cytoplasmic staining could be seen, however, bright and distinct 

spots of staining were found only in the nuclei of DM1 cells. Many of the foci 

were found at the very edge of the nucleus, however, attempts to produce a 3D 

image of the nuclei to visualise the position of the foci in more detail using laser 

scanning confocal microscopy failed as the signal was of insufficient intensity. 

The nuclear foci ranged in size from 0.5 to 2 µm and the number of foci ranged 

from 0 to as many as 24 per cell, with an average of 2.7 per cell (a minimum of 

153 cells were counted per cell line). 

 

3.3.3 MBNL and CUG-BP expression in DM1 lens epithelial cells 

 Both MBNL1 and MBNL2 are expressed in control and DM1 LECs and no 

difference in expression levels was observed between the two groups (see figure 

3.5). The expression level of MBNL3 was not analysed in the cell lines as its 

expression is almost exclusively limited to the placenta in humans (Fardaei et al., 

2002). The mean expression value for MBNL1 across the control cell lines was 

1.03 ± 0.08 (arbitrary units) compared to 1.17 ± 0.09 (arbitrary units) across the 

DM1 cell lines. For MBNL2, the mean expression value across the control cell 

lines was 12.01 ± 1.86 (arbitrary units) compared to 13.12 ± 0.90 (arbitrary units) 

across the DM1 cell lines.  

Both CUG-BP1 and CUG-BP2 are also expressed in control and DM1 

LECs, with no difference in expression levels between the two groups (see figure 

3.6). The mean expression value for CUG-BP1 across the control cell lines was 

24.46 ± 4.37 (arbitrary units) compared to 21.15 ± 3.28 (arbitrary units) across the 

DM1 cell lines. For CUG-BP2, the mean expression value across the control cell 

lines was 15.59 ± 6.17 (arbitrary units) compared to 10.01 ± 4.03 (arbitrary units) 

across the DM1 cell lines. Both MBNL and CUG-BP proteins are thought to be 

responsible for the altered splicing patterns of many transcripts in DM1 and their 
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expression in the lens makes it possible that alternative splicing may also play a 

role in DM1 cataract formation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 – MBNLs are expressed in DM1 lens epithelial cells. QRT-PCR showed that both 

(a) MBNL1 and (b) MBNL2 are expressed in control and DM1 lens epithelial cells. 

Expression is shown normalised to 18S expression. There is no observed difference in 

expression levels between the two groups (n = 2, data expressed as mean, representative of 

two independent experiments). 
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Figure 3.6 – CUG-BPs are expressed in DM1 lens epithelial cells. QRT-PCR showed that 

both (a) CUG-BP1 and (b) CUG-BP2 are expressed in control and DM1 lens epithelial cells. 

Expression is shown normalised to 18S expression. There is no observed difference in 

expression levels between the two groups (n = 2, data expressed as mean). 
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3.3.4 Alternative splicing in DM1 lens epithelial cells 

 A number of alternative splicing events have been characterised in DM1 

and have been shown to cause a variety of the symptoms associated with the 

disease. In order to establish whether any of these could play a role in cataract 

development, the expression of a number of affected genes were analysed using 

QRT-PCR. 

 Expression of CLCN1 was not found in any of the human lens cell lines 

employed in this study. Expression of RYR1 was found in only three of the cell 

lines (CCat2, DMCat3 and DMCat4) at very low levels (data not shown). 

Expression of two further ryanodine receptors, RYR2 and RYR3, was analysed and 

only RYR3 was found to be expressed at low levels (data not shown). No 

alternatively spliced isoforms of RYR3 have been described in DM1, however. 

 Expression of IR was found in all of the lens cell lines. QRT-PCR was 

used to analyse the expression levels of the two isoforms of IR, utilising probes 

which crossed different exon boundaries (see table 2.2 for assay identification 

numbers). As only IR-B contains exon 11, the first probe used crossed the exon 

11-12 boundary and would therefore only show expression of IR-B. The second 

probe used crossed the exon 16-17 boundary, which is not affected by the 

alternative splicing event observed in DM1 and would therefore show the total 

expression of both IR isoforms. The expression of IR (both isoforms) appears to 

be slightly lower in the DM1 LECs (see figure 3.7a), with the exception of CCat1, 

however, this is not statistically significant. The mean expression value for IR 

across the control cell lines was 18.52 ± 5.01 (arbitrary units) compared to 11.34 ± 

0.94 (arbitrary units) across the DM1 cell lines. The mean expression value for the 

IR-B isoform across the control cell lines was 3.20 ± 0.82 (arbitrary units) 

compared to 2.48 ± 0.18 (arbitrary units) across the DM1 cell lines. The 

expression of IR-B is more even across the cell lines (see figure 3.7b), and 

although it is not possible to accurately compare expression levels using different 

probes in QRT-PCR, the lower total IR expression values in DM1 cells would 

suggest that they actually express less of the IR-A isoform than the control cells. 

This is in contrast to the reports in DM1 that show that DM1 cells express more 

IR-A, leading to insulin resistance and diabetes (Savkur et al., 2001).  
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Figure 3.7 – IR is expressed in DM1 lens epithelial cells. QRT-PCR showed that (a) IR and (b) 

specifically the IR-B isoform are expressed in control and DM1 lens cells. There is no 

observed difference in expression levels between the two groups (n = 2, data expressed as 

mean, representative of four independent experiments). 
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Figure 3.8 – Insulin receptor splicing is not altered in DM1 lens epithelial cells. (a) Schematic 

of exon splicing in IR. Primers amplify IR-B (167 bp, includes exon 11) and IR-A (131 bp, 

excludes exon 11). (b) RT-PCR products of IR were electrophoretically resolved on 4% 

agarose gels. The bands were measured densitometrically and the percentage of IR-B was 

calculated and is shown in the graph as an average of the two samples. The percentage of IR-

B in the DM1 cells fell within the range of those of the control cells, indicating that IR 

splicing is not affected in the lens (n = 2, data expressed as mean). 
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To investigate the ratio of the expression of the IR-A and IR-B isoforms 

more accurately, the technique of RT-PCR was used to amplify a region of the IR 

transcripts from exon 10 to 12. Exon 11 is 36 nucleotides long and therefore the 

fragment produced from the IR-A isoform is only 131 bp long compared to that of 

IR-B which is 167 bp (see figure 3.8a). The RT-PCR products were 

electrophoretically resolved and the percentage of IR-B was calculated (see figure 

3.8b). Two of the control cell lines, CCat1 and CCat2, showed almost equal 

expression of IR-A and IR-B (a total of 42.8% and 49.1% IR-B respectively), 

whereas CCat3 and CCat4 showed much lower levels of IR-B (11.3% and 16.0% 

respectively), as did all of the DM1 cell lines. The average level of IR-B in the 

control cell lines was 29.8% ± 9.4% compared to 19.7% ± 3.3% in the DM1 cell 

lines. Due to the large spread of the levels of IR-B in the control cell lines it 

appears that IR splicing is not affected in DM1 LECs, as is the case in DM1 

fibroblasts (Savkur et al., 2001). 

 

3.3.5 Population doubling times of DM1 lens epithelial cells 

 To analyse the growth of populations of the cell lines during culture, flasks 

were seeded with a set number of cells and were passaged weekly and counted 

using a haemocytometer. Population doublings times were calculated for all of the 

human lens cell lines and confirmed the findings of Rhodes et al. (2006) (see 

figure 3.9). Passage numbers (P) of the cell lines at day 0 were as follows: CCat1 

P = 17, CCat2 P = 14, CCat3 P = 8, CCat4 P = 6 and all DM1 cell lines P = 12. At 

early passages all of the cell lines were seen to be doubling at a similar rate, 

however, after 40 days in culture a clear separation was observed between the 

control and DM1 cell lines. At this point the population doubling times of the 

DM1 cell lines began to slow and were shown to decline at later passages as fewer 

cells were harvested than seeded. After 80 days in culture three out of four DM1 

cell lines no longer had enough cells to start the next passage. The control cell line, 

CCat4, had also ceased by this point, however, this was not due to a natural 

decline in cell numbers as was seen in the DM1 cell lines, but rather because they 

had grown too fast and reached a confluent state before passaging which caused 

the cells to lift off the bottom of the culture flask. The remaining control cell lines 

continued to grow well throughout the culture period and cell counts were only 

stopped once the DM1 cell lines had all ceased to grow. The lifespan of the DM1 
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cell lines was significantly shorter than the control cell lines (CCat4 was omitted 

from this as cell growth was halted abruptly and did not reach a natural decline) (p 

< 0.01). The DM1 cell lines survived for an average of 79.5 ± 7.4 days in culture, 

whereas the controls cell lines continued to grow and were stopped after 101 days 

in culture. All four DM1 cell lines were shown to have significantly reduced 

doubling times compared to the four control cell lines (p < 0.01). The DM1 cell 

lines had an average of 1.51 ± 0.10 population doublings per week compared to 

3.52 ± 0.18 in the controls.   

 

3.3.6 Morphology of DM1 lens epithelial cells 

 Cells were seeded in 35 mm culture dishes on day 28 of the culture period 

shown in figure 3.9a. Cells were grown in medium supplemented with 10% FCS 

for 10 days before light microscope phase images of the DM1 and control cell 

lines were taken (see figure 3.10). Despite the fact that the populations of all cell 

lines at this point were shown to be growing at similar rates by analysing the 

population doubling times, there are clear differences in the density of the cells 

seen in the images. Many more cells can be seen in the images of the control cell 

lines compared to the DM1 cell lines. The control cells are closely packed 

together, forming confluent sheets or patches of cells. In contrast, the DM1 cells 

are not confluent and are less densely packed. 

 

3.3.7 Cell death in DM1 lens epithelial cells 

 Cell death in medium supplemented with 10% FCS and in SF medium was 

analysed in the DM1 and control LECs using a lactate dehydrogenase (LDH) 

assay. Greater levels of cell death were observed in DM1 cells in medium 

supplemented with 10% FCS and SF medium compared to control cells, however, 

neither was statistically significant (see figure 3.11). In both cell types, levels of 

cell death were significantly greater in SF medium compared to medium 

supplemented with 10% FCS (p < 0.05). 

 Further experiments were repeated using only CCat1 and DMCat1 cells 

and reveal that DMCat1 has significantly greater levels of cell death in both 

medium supplemented with 10% FCS and SF medium compared to the control 

CCat1 (p < 0.01). There was no significant difference in levels of cell death 

between conditions in the same cell type (see figure 3.12). 
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Figure 3.9 – Population doubling times of DM1 lens epithelial cells.  Cells were grown in 75 

cm2 flasks and counted weekly using a haemocytometer. (a) Passage numbers (P) of the cell 

lines at day 0 were as follows: CCat1 P = 17, CCat2 P = 14, CCat3 P = 8, CCat4 P = 6 and all 

DM1 cell lines P = 12. At early passages all cell lines were doubling at a similar rate, however, 

after 40 days in culture a clear separation was seen between DM1 and control cell lines. The 

population doubling times of the DM1 cell lines slowed and declined at later passages as 

fewer cells were harvested than seeded. The lifespan of DM1 cell lines was significantly 

shorter than that of the controls (statistical analysis performed by Student’s T test, p < 0.05) 

(b) The average number of population doublings per week, showing that DM1 lens cells have 

significantly reduced doubling rates compared to control lens cells (data expressed as mean ± 

SEM, statistical analysis was performed by Student’s T test, ** p < 0.01 relative to controls). 
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Figure 3.10 – Light microscope phase images of DM1 lens epithelial cells. Cells were grown 

in medium supplemented with 10% FCS and images were taken to show the density and 

morphology of the DM1 and control lens cells.  The DM1 cell lines (e) DMCat1, (f) DMCat2, 

(g) DMCat3 and (h) DMCat4 never reached a confluent state, in contrast to the control cell 

lines (a) CCat1, (b) CCat2, (c) CCat3 and (d) CCat4. 
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Figure 3.11 – Cell death in DM1 lens epithelial cells.  All control and DM1 cells were 

cultured in SF medium or medium supplemented with 10% FCS for 48 hours and levels of 

LDH were measured and normalised to total protein at T = 0. Averages across the control 

and DM1 cell lines were calculated and reveal significantly increased levels of cell death in 

SF medium in both control and DM1 cells (n = 4, data expressed as mean ± SEM of three 

independent experiments, statistical analysis was performed by Student’s T test, * p < 0.05 

relative to medium supplemented with 10% FCS).  

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.12 – Cell death in DM1 lens epithelial cells.  CCat1 and DMCat1 cells were cultured 

in SF medium or medium supplemented with 10% FCS for 48 hours and levels of LDH were 

measured and normalised to total protein at T = 0. Cell death was shown to be significantly 

increased in DMCat1 cells in both SF medium and medium supplemented with 10% FCS (n 

= 11, data expressed as mean ± SEM of eleven independent experiments, statistical analysis 

was performed by Student’s T test, ** p < 0.01 relative to CCat1).  
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Figure 3.13 – See next page for figure legend 
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Figure 3.13 – Apoptotic cell death in DM1 lens epithelial cells cultured in medium 

supplemented with 10% FCS. (a) Fluorescent micrographs of cells showing nuclei labelled 

with DAPI (blue), apoptotic cells labelled using a TUNEL assay (green) and F-actin labelled 

with Texas red-X phalloidin (red) (bar = 100 µm). (b) Analysis of TUNEL positive apoptotic 

cells (n = 2, data expressed as mean of two independent experiments). 
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under both conditions. In contrast, the DM1 cell lines had greater levels of 

apoptosis in SF medium compared to medium supplemented with 10% FCS, 

although this was also not statistically significant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.14 – See next page for figure legend 
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Figure 3.14 – Apoptotic cell death in DM1 lens epithelial cells cultured in SF medium. (a) 

Fluorescent micrographs of cells showing nuclei labelled with DAPI (blue), apoptotic cells 

labelled using a TUNEL assay (green) and F-actin labelled with Texas red-X phalloidin (red) 

(bar = 100 µm). (b) Analysis of TUNEL positive apoptotic cells (n = 2, data expressed as 

mean of two independent experiments). 

 

 

Although there is an increase in DM1 cell death via apoptosis in SF 

medium, the variability in the cell lines prevented this from being statistically 

significant. Therefore, further repeats were conducted using only the CCat1 and 

DMCat1 cell lines (see figure 3.15). CCat1 was chosen as it was typical of the 

control cell lines, showing even and consistent growth throughout the culture 

period. The DMCat1 cell line was chosen because although it had a significantly 

reduced growth rate compared to the control cell lines, it could be sustained over a 

greater number of passages than the other DM1 cell lines, enabling more 

experiments to be performed (see figure 3.9). In SF medium, DMCat1 had 

significantly greater levels of apoptotic cell death with an average of 21.1% ± 

2.1% apoptotic cells compared to only 8.8% ± 0.9% in CCat1 (p < 0.01). In 

medium supplemented with 10% FCS, DMCat1 cells had greater levels of 

apoptotic cell death, as CCat1 had an average of 7.1% ± 2.1% apoptotic cells, 

compared to 11.4% ± 1.4% apoptotic cells in DMCat1, however, the difference 

0

5

10

15

20

25

30

CCat1

CCat2

DM
Cat1

DM
Cat2

DM
Cat3

DM
Cat4

P
er

ce
nt

ag
e 

of
 a

po
pt

ot
ic

ce
lls

 in
 S

F

b 
 



 103

was not statistically significant. In CCat1 cells, no difference was observed in 

levels of apoptosis in either SF medium or medium supplemented with 10% FCS. 

However, in DMCat1 cells a significant increase in levels of apoptotic cell death 

was observed in cells cultured in SF medium compared to medium supplemented 

with 10% FCS (p < 0.01). Interestingly, this data suggests that the DM1 cells do 

not respond to stress, such as that observed during serum starvation, as well as the 

controls cells do, resulting in greater levels of apoptosis. A lack of serum, and 

therefore added growth factors, in the medium would require autocrine signalling 

in the cells in order to sustain growth. This data could therefore indicate an 

impairment in autocrine signalling in the DM1 cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 – Apoptotic cell death in DM1 lens epithelial cells. Semiquantitative analysis of 

TUNEL positive apoptotic CCat1 and DMCat1 cells cultured in SF medium and medium 

supplemented with 10% FCS. Although apoptotic cell death was greater in DMCat1 cells 

cultured in medium supplemented with 10% FCS than CCat1 cells, this was not significant, 

however in cells cultured in SF medium apoptotic cell death was significantly higher in 

DMCat1 cells compared to CCat1 cells. Apoptotic cell death was also significantly higher in 

DMCat1 cells cultured in SF medium compared to those cultured in medium supplemented 

with 10% FCS (n = 6, data expressed as mean ± SEM of six independent experiments, 

statistical analysis was performed by Student’s T test, ** p < 0.01 relative to CCat1 in SF 

medium, # # p < 0.01 relative to DMCat1 in medium supplemented with 10% FCS). 
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3.4 Discussion 

 
Many studies have investigated the role of SIX5 in the lens and have 

linked a downregulation in expression to cataract formation in DM1, adding 

weight to the theory that the triplet repeat causes changes to the local chromatin 

structure which results in downregulation of the downstream gene (Winchester et 

al., 1999; Rhodes et al., 2006). Two separate studies using SIX5 knockout mouse 

models have reported cataract formation in the lens, which appeared to confirm 

the theory, however, the cataracts seen in the mouse models did not show the 

distinctive characteristics observed in human DM1 patients (Klesert et al., 2000; 

Sarkar et al., 2000). The iridescent particles were not present and the opacity was 

located within the nucleus of the lens as opposed to the posterior subcapsular area 

where it forms in humans. Cataracts with iridescent opacities have been shown to 

form in a mouse model for DM1, however, it was the result of a Mbnl1 gene 

knockout and not Six5. In this study we have presented evidence that the level of 

SIX5 expression in DM1 lens cells is not affected by the triplet repeat (see figure 

3.2) and based on this data, we propose that although a reduction in SIX5 

expression can lead to cataract formation, it is probably not responsible for the 

formation of DM1 cataracts.  

Previous reports investigating the expression of DMPK in the human lens 

have been contradictory (Dunne et al., 1996; Winchester et al., 1999; Rhodes et 

al., 2006). Here, in support of the studies by Dunne et al. (1996) and Rhodes et al. 

(2006), we have shown by QRT-PCR, Northern blotting and FISH that DMPK 

mRNA is present in human LECs (see figures 3.3 and 3.4). The levels of DMPK 

mRNA analysed by QRT-PCR and Northern blotting showed that the triplet 

repeat had no effect on DMPK expression. Surprisingly, the technique of Northern 

blotting failed to detect the DMPK transcripts from the mutant allele, as no larger 

band or smear representing transcripts containing expanded triplet repeats was 

seen. The lack of this band is likely due to problems in extracting larger RNAs as 

the mutant transcripts are possibly subjected to increased levels of mechanical 

damage, resulting in shearing of the mutant RNAs, or it could indicate inefficient 

transfer of the larger RNAs to the membrane. However, the mutant allele was 

shown to be expressed in the DM1 LECs using the technique of FISH to detect 

the CUG repeats in the DMPK mRNA (see figure 3.4). We have shown that 
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DMPK transcripts form foci in DM1 LECs which are trapped within the nucleus. 

This is a significant finding because the formation of nuclear foci of DMPK 

transcripts is a common feature in cells affected by DM1 and is linked to the 

sequestration of MBNL proteins and the increased activation of CUG-BPs which 

are involved in the regulation of splicing events (Timchenko et al., 2001a; Fardaei 

et al., 2002). Changes in the levels of MBNLs and CUG-BPs results in the 

production of proteins with different biological properties due to disruption in the 

regulation of splicing events. The production of alternatively spliced proteins has 

been shown to be the cause of many of the symptoms associated with DM1 and 

could therefore also be the cause of cataract formation in the lens.  

The expression of two members of the muscleblind family, MNBL1 and 

MBNL2, were analysed in this study. We found expression of both genes in all of 

the cell lines and the expression levels were not found to be affected by DM1 (see 

figure 3.5). The expression of two members of the CELF family, CUG-BP1 and 

CUG-BP2, were also analysed. Again, we found expression of both genes in all 

cell lines (albeit very low for CUG-BP2 in CCat2) and the levels of expression 

were not affected by DM1 (see figure 3.6). The expression levels of the genes 

above are not expected to be altered by DM1, but the levels of active proteins 

could be; MBNL proteins are sequestered by the CUG repeats and activation of 

CUG-BPs is increased. However, the expression of these splicing regulators in 

human lens cells could indicate a role for alternative splicing events leading to 

cataract formation in DM1 lenses.  

To investigate the role of alternative splicing in cataract development, we 

looked at some of the proteins known to be affected by alternative splicing events 

in DM1 and analysed their expression in human lens epithelial cells. We found 

that expression of CLCN1 was absent in the lens cell lines and RYR1 was only 

expressed in a few of the cells lines at very low levels and therefore altered 

splicing of the protein products ClC-1 and RYR1 is unlikely to cause cataract 

formation. However, the human lens cells were shown to express IR and both of 

the alternatively spliced isoforms were shown to be present (see figures 3.7 and 

3.8). The ratio of IR isoforms in DM1 skeletal muscle was shown to shift towards 

the production of IR-A, which results in decreased insulin sensitivity (Savkur et 

al., 2001). IR has been found in the epithelial layer of human lenses and is 

interestingly absent in lenses of diabetic cataract patients, although this was 
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suggested to be due to lens degeneration caused by cataract formation (Naeser, 

1997). Insulin has been shown to increase the rate of crystallin production in the 

rat lens and therefore a reduced response to insulin signalling by production of IR-

A instead of IR-B could result in cataract formation (Leenders et al., 1997; Civil 

et al., 2000). The ratio of IR isoforms in the human lens cell lines was analysed by 

separating PCR products of the two forms of IR on agarose gels (see figure 3.8). 

Although production of IR-A was shown to be favoured in the DM1 cell lines 

with an average of only 19.7% IR-B, it was not significantly different from the 

control cell line average of 29.8%. This was due to the large spread of the data 

from the control cell lines, with two showing an almost equal expression of IR-A 

compared to IR-B (CCat1 and CCat2) and the other two showing a greater bias 

towards IR-A expression than most of the DM1 cell lines (CCat3 and CCat4). 

Therefore, the splicing pattern of IR was not shown to be affected in the DM1 

LECs. From our data it appears that splicing patterns of proteins in DM1 LECs 

are not altered, however, we did not examine the expression of these proteins in 

lens fibre cells where cataract forms and there are many proteins affected by mis-

splicing in DM1 that we have not investigated. Therefore we cannot completely 

rule out a role for alternative splicing in cataract formation in DM1.  

As no molecular cause underlying cataract formation has so far been 

elucidated, we looked at the cellular effects which could result in their 

development. Previous studies on cataracts in general have indicated that a loss of 

cells from the lens epithelium results in the development of cataract, and in 

particular subcapsular cataracts, due to the resulting loss of homeostasis in levels 

of ions and water (Konofsky et al., 1987; Li et al., 1995). A study by Abe et al. 

(1999) investigated the density of the LEC layer in native human lenses from 

DM1 patients and showed that DM1 lenses contained significantly fewer cells in 

the LEC layer than those from age matched control lenses with senile cataract. 

Despite the decrease in cell density, coverage of the lens was maintained by an 

increase in cell size (Abe et al., 1999). This data would suggest that a reduced 

number of LECs may not be sufficient to maintain the balance of ions and water 

which is vital to lens transparency, therefore resulting in cataract formation in 

DM1. Here, we have shown that DM1 LECs had longer population doubling 

times compared to controls, which confirms the data presented by Rhodes et al. 

(2006) (see figure 3.9). We showed that the growth rate of DM1 LECs was 
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significantly reduced compared to control LECs and a point was reached where 

DM1 cell populations began to slow and decline, which was not observed in 

controls. DM1 LECs were therefore shown to have a significantly shorter lifespan 

than control LECs. Li et al. (1995) showed that capsulorhexis samples from non-

DM cataract patients had a significantly greater percentage of apoptotic cells 

compared to normal controls and that apoptotic cell death occurred prior to 

cataract development. We therefore investigated the role of apoptotic cell death in 

the reduced population doubling times in DM1 LECs. We showed that under 

normal culture conditions there was no difference in levels of apoptotic cell death 

(see figures 3.13 and 3.15), however, if the cells were cultured in SF medium an 

increase in apoptosis was observed in the DM1 cells but not the controls (see 

figures 3.14 and 3.15). This is very interesting as it indicates that DM1 LECs are 

less able to withstand stress, such as serum deprivation, than normal LECs.  

Interestingly, increased susceptibility to stress has been shown in cell lines 

transfected with CTG repeats. Studies on mouse myoblasts transfected with 

DMPK containing varying numbers of CTG repeats, showed CTG repeat number-

dependent susceptibility to oxidative stress, resulting in apoptosis (Usuki et al., 

2000). Subsequently, it was shown that greater levels of reactive oxygen species 

(ROS) form in cells with larger repeats (160 repeats) and that these cells activate 

the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) pathways 

as opposed to the extracellular signal-related protein kinase (ERK) pathway which 

was activated in cells transfected with very short repeats (5 repeats) (Usuki et al., 

2008). This data is particularly relevant to lens cells as the lens is subject to 

oxidative stress from radiation (e.g. UV) and other sources and the production of 

ROS is a major contributor to age-related cataract formation (Berthoud & Beyer, 

2009).  

As DM1 LECs show a greatly reduced ability to maintain their own 

survival in the absence of added growth factors, this could indicate an impairment 

in autocrine signalling. As the lens is not innervated, vascularised or penetrated by 

lymphatic vessels, LECs in their native environment are not likely to receive 

many external signals in order to encourage growth or survival (Ishizaki et al., 

1993). Rat LECs have been shown to survive in culture, and even to divide, in the 

absence of signals from other cell types, but only when cultured at high densities. 

At low densities the cells undergo apoptosis, which suggests that they rely on 
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other LECs for their survival (Ishizaki et al., 1993). Human LECs have also been 

shown to survive in protein-free medium when cultured on the lens capsule 

(although the lens capsule has subsequently been shown to contain growth factors 

which are available to the LECs (Tholozan et al., 2007)) and proliferate and 

migrate as occurs in vivo (Wormstone et al., 1997). Lens cells are one of the few 

cell types which are capable of surviving and maintaining their phenotype in the 

absence of external signals. Chondrocytes are also capable of this, however, they 

do not actively proliferate as is observed in LECs (Ishizaki et al., 1994). Therefore, 

lens cells should be able to actively maintain their own growth and survival in SF 

medium, but the DM1 LECs have been shown to undergo significantly increased 

levels of programmed cell death. An impairment in autocrine signalling may 

result in increased levels of apoptosis, either due to the cells not releasing enough 

of their own signalling factors or an impairment in the way that they respond to 

the signalling factors which they produce. It is possible that, as is seen in mouse 

myoblasts transfected with DMPK containing large triplet repeats, the DM1 lens 

cells are activating different pathways in response to stress than the controls cells, 

resulting in increased levels of cell death (Usuki et al., 2008).  

From the data described in this chapter, it appears that the DM1 lens 

epithelial cell lines are a good model in which to study the disease. Expression of 

SIX5 was not shown to be affected by the triplet repeat, which means the focus 

can be placed on DMPK expression and the downstream affects of mutant mRNA 

production. The lens cells have been shown to express DMPK, which is also seen 

in normal human lenses (Dunne et al., 1996; Rhodes et al., 2006). The mutant 

DMPK transcripts were also shown to form distinct nuclear foci which is a 

common feature in other DM1 cell lines and patient samples (Taneja et al., 1995; 

Davis et al., 1997; Hamshere et al., 1997; Furling et al., 2001b; Liquori et al., 

2001; Jiang et al., 2004; Mankodi et al., 2005; Bonifazi et al., 2006; Wheeler et 

al., 2007a; Cardani et al., 2008). Although the characteristic splicing defects 

observed in other DM1 cell types have not been found in our cell lines, it is not 

known to what extent mis-splicing plays a role in the native human lens in DM1. 

In DM1 fibroblasts, DMPK transcripts have been shown to produce foci which 

sequester MBNL proteins in the nuclei. However, a further study showed that 

aberrant IR splicing did not occur in DM1 fibroblasts until they were transformed 

to a muscle phenotype, when they then showed a switch towards the IR-A 
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isoforms (Fardaei et al., 2001; Savkur et al., 2001; Fardaei et al., 2002). Therefore, 

it is possible that foci may normally be present in some cell types without 

observing any impact on splicing patterns. Despite the lack of an observed 

splicing defect to describe the mechanism behind cataract development in the lens, 

the presence of mutant DMPK mRNA in LECs indicates that it is likely to play a 

role in DM1 cataract formation. DM1 LECs were shown to have significantly 

reduced population doubling times and serum deprivation was shown to result in 

significantly increased levels of apoptotic cell death. This could indicate an 

impairment in autocrine signalling which requires further investigation. 
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CHAPTER 4 

AUTOCRINE SIGNALLING IN DM1 LENS 

EPITHELIAL CELLS  
 

4.1 Introduction 

 

 Cells communicate and bring about changes to their behaviour through 

cell signalling. Decisions made by a cell are the result of signalling pathways 

which are often complex and consist of signalling molecules, receptors, kinases, 

phosphatases, target proteins and more (Alberts et al., 2002). Cells communicate 

with each other through the release of signalling molecules, such as growth 

factors and hormones, which can activate receptors on the surface of other cells. 

Cells can communicate to other cell types over long distances; known as 

endocrine signalling, or short distances; known as paracrine signalling. Cells can 

also signal to other cells of the same type, or themselves, over short distances; 

known as autocrine signalling. The activation of receptors triggers a cascade of 

signalling within a cell which can bring about changes in a variety of processes 

such as cell motility, proliferation, growth, survival and death. A lack of cellular 

signalling can also have serious effects on a cell as a certain level of signalling is 

required for survival. Cells that do not receive the level of signalling required 

undergo apoptotic cell death. Cell signalling is therefore tightly controlled, 

however, disturbances in cell signalling pathways can occur and could lead to 

many different diseases ranging from cancer to neurological disorders.  

 

4.1.1 Cell signalling 

 In order for cells to respond to the signals they receive, they require 

receptors on their cell surface which can be activated by the signal molecule, 

which is also known as a ligand. The three major types of cell surface receptor are 

ion-channel-linked receptors, which are activated by neurotransmitters to alter ion 

permeability in electrically excitable cells; G protein-linked receptors, which 

regulate the activity of target enzymes or ion channels via a guanosine 

trisphosphate (GTP) binding protein (G protein); and enzyme-linked receptors, 
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which when activated function as enzymes, or are linked to enzymes, commonly 

protein kinases (Alberts et al., 2002). The enzyme-linked receptors respond to 

ligands known as growth factors, which are linked to signalling involved in the 

growth, proliferation, differentiation and survival of cells. The largest class of 

enzyme-linked receptors are the receptor tyrosine kinases (RTKs) (Alberts et al., 

2002). Binding of growth factors to their respective RTK usually results in a 

conformational change which leads to phosphorylation of tyrosine residues within 

the kinase domain of the receptor, resulting in its activation. This triggers the 

activation of a cascade of molecules involved in the transduction of the signal 

within the cell, resulting in a specific biological response. 

 

4.1.2 Cell signalling in the lens 

 A number of different growth factors and their RTKs are important for cell 

signalling within the lens. These include epidermal growth factor (EGF), acidic 

fibroblast growth factor (aFGF, or FGF-1), basic fibroblast growth factor (bFGF, 

or FGF-2), hepatocyte growth factor (HGF), insulin-like growth factor (IGF-1) 

and platelet-derived growth factor (PDGF) (Bhuyan et al., 2000; Wormstone et al., 

2000). The growth factors which act upon the lens are involved in signalling 

which results in the maintenance of growth, proliferation and survival of the lens 

cells, as well as regulating the processes of differentiation and migration. 

 

4.1.2.1 Paracrine signalling in the lens 

 Many ocular tissues secrete growth factors into the aqueous and vitreous 

humours of the eye. Paracrine signalling from these ocular tissues has been shown 

to be important in processes such as proliferation, migration and differentiation of 

LECs. PDGF was found to be expressed by the ciliary body and iris and its 

receptor PDGFR was expressed in LECs (Kok et al., 2002). Studies have 

suggested that PDGF plays a role in proliferation, migration and differentiation in 

LECs (Reneker & Overbeek, 1996; Kok et al., 2002; Xiong et al., 2010). Growth 

factors found to be present within the aqueous and vitreous humours, include IGF-

1 which was found in both the aqueous and vitreous humours from bovine eyes, 

with levels in the aqueous being twice that found in the vitreous (Arnold et al., 

1993). The growth factor EGF was also found to be present in the aqueous 

humour, but was not found in the vitreous humour (Majima, 1997). bFGF was 



 112

present in bovine aqueous and vitreous humours, with levels in the vitreous being 

greater than that found in the aqueous, however, aFGF was only present in the 

vitreous (Schulz et al., 1993).  

 The aqueous bathes the anterior of the lens which contains the LECs and 

the vitreous bathes the posterior of the lens which contains the fibre cells, 

therefore, the distribution of growth factors is likely to affect cellular responses 

and the polarity and architecture of the lens. For example, bovine vitreous humour, 

which contains high levels of bFGF, was shown to induce fibre differentiation in 

rat lens epithelial explants but aqueous humour did not (Schulz et al., 1993). 

Different levels of bFGF have been shown to have different effects on rat lens 

epithelial explants. Proliferation, migration and differentiation have been shown 

to be induced as concentrations of bFGF are increased, with half maximal 

responses for each at 0.15, 3 and 40 ng/ml respectively (McAvoy & Chamberlain, 

1989). The distribution of bFGF in the aqueous and vitreous humours results in 

increasing concentrations of bFGF from the anterior to the posterior of the lens 

and is therefore likely to play a major role in determining the spatial patterns of 

proliferation, migration and differentiation (Lovicu & McAvoy, 1993).  

 Interestingly, lens cells have been shown to survive in culture in the 

absence of paracrine signalling factors, indicating that autocrine signalling plays 

an important role in their survival (Ishizaki et al., 1993).  

 

4.1.2.2 Autocrine signalling in the lens 

 Although many growth factors are present within the aqueous and vitreous 

humours, the lens has also been shown to synthesise many of its own growth 

factors which act in an autocrine manner. The lens contains just two cell types 

(epithelial cells and fibre cells) and is not penetrated by blood vessels, lymphatic 

vessels or nerves. It is therefore not surprising that lens cells are some of the only 

cell types that do not require signals from other cells to survive. LECs from young 

rats have been shown to survive in culture for weeks in the absence of added 

serum and proteins when cultured both with and without the lens capsule. Not 

only did the cells survive, but some were also shown to divide during the culture 

period (Ishizaki et al., 1993). A subsequent study also showed that human LECs 

could grow in the absence of added serum and proteins, reaching confluency in  

95% of cultures (Wormstone et al., 1997). Human LECs cultured on the capsule 
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could be maintained in the absence of added protein and serum for over a year 

(Wormstone et al., 2001). Although the lens is surrounded by the aqueous and 

vitreous humours which contain growth factors that are available to the lens, this 

data shows that these are not necessary for LEC survival or proliferation. 

Autocrine signalling must therefore play an important role in LEC survival during 

culture. Interestingly, rat LECs only survived under protein- and serum-free 

conditions when cultured at high densities. When cultured at low densities the 

LECs underwent apoptotic cell death (Ishizaki et al., 1993). This data shows that 

although the LECs do not require signals from other cell types to survive, they do 

require signals from other LECs and it was also shown that this was not contact 

dependent, indicating that factors are being released by the cells to promote 

survival. Survival of low density cultures could be promoted by the addition of 

conditioned medium (CM) from high density cultures, which raised survival rates 

to those of the high density cultures (Ishizaki et al., 1993). The factor, or factors, 

responsible for increasing survival of LECs in culture were not identified, 

however, addition of many of the growth factors known to act on LECs, for 

example, IGF-1 and bFGF, did not increase survival, indicating that these were 

either not responsible or were at too low a concentration to have an effect. 

 A number of autocrine signalling systems have been identified in the lens. 

Human LECs cultured on the lens capsule have been shown to synthesise bFGF 

and the receptor FGFR1 when cultured under protein- and serum-free conditions, 

establishing an autocrine signalling system. When this system was blocked, a 

marked attenuation of growth was observed (Wormstone et al., 2001). Autocrine 

signalling via aFGF has also been shown to be critical to survival in bovine LECs 

(Renaud et al., 1994). EGF and HGF autocrine signalling systems have also been 

revealed in both human and rabbit lenses and in cultured LECs (Majima, 1995; 

Weng et al., 1997; Wormstone et al., 2000). Signalling via EGF and its receptor, 

EGFR, was linked to proliferation, whilst signalling via HGF and its receptor, c-

met, was shown to stimulate proliferation, protein synthesis and migration in 

cultured human LECs (Majima, 1995; Wormstone et al., 2000). Expression of c-

met was found to be upregulated following mechanical trauma, indicating a role 

for HGF signalling in wound healing (Wormstone et al., 2000). During 

development, autocrine signalling via IGF-1 and its receptor, IGFR-1, in the chick 

lens has been shown to be important for the differentiation of fibre cells (Caldes et 
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al., 1991). A role for autocrine signalling via IGF-1 is uncertain in adult lenses as 

a study in the adult rat lens failed to show expression of IGF-1 (Danias & 

Stylianopoulou, 1990). IGFR-1 is expressed in the adult human lens, but the 

expression of IGF-1 was not examined (Bhuyan et al., 2000). However, cultured 

bovine LECs were shown to express both IGFR-1 and IGF-1 and signalling via 

this pathway was shown to regulate migration, proliferation and differentiation 

(Palmade et al., 1994).  

 

4.1.2.2.1 The EGF signalling pathway 

 The growth factor EGF binds with high affinity to its receptor EGFR. 

EGFR is an RTK which consists of an extracellular ligand binding domain, a 

hydrophobic transmembrane domain and an intracellular tyrosine kinase domain. 

Binding of EGF ligands results in receptor dimerisation and autophosphorylation 

of the tyrosine kinase domains. The phosphorylated tyrosine kinase domains 

recruit substrates and docking proteins which results in the activation of signal 

transduction pathways (see figure 4.1) (Carpenter & Cohen, 1990; Lurje & Lenz, 

2009). Proteins which are recruited include: phosphatidylinositol 3-kinase (PI3K), 

which activates the PI3K/Akt signalling pathway; growth factor receptor-bound 

protein 2 (GRB2) and son of sevenless (SOS) which bind directly or via the 

adaptor molecule Src homology 2 domain containing protein (Shc), which 

activate the mitogen-activated protein kinase (MAPK)/extracellular signal related 

kinase (ERK) cascade; phospholipase Cγ (PLCγ), which results in the production 

of diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3), which activate 

protein kinase C (PKC) and Ca2+ release respectively; and Janus kinase (JAK), 

which activates signal transducers and activators of transcription (STAT) 

pathways (Carpenter & Cohen, 1990; Lurje & Lenz, 2009). 

 In serum-free conditions EGF has been shown to promote mitosis in the 

LECs of cultured rabbit lenses, revealing a role in cell proliferation (Reddan & 

Wilsondziedzic, 1983). EGF has also been shown to promote cell growth in a 

further study using rabbit LECs (Hongo et al., 1993). In cultured human LECs, 

EGF has been shown to play a role in cell migration via the MAPK/ERK and 

PI3K/Akt signalling pathways (Jiang et al., 2006). Growth of human LECs 

cultured on the lens capsule in serum-free medium has been shown to be reduced 
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in the presence of an EGFR inhibitor (Maidment et al., 2004). This data indicates 

that autocrine signalling via EGF is important for growth in LECs. 

 

 

 

Figure 4.1 – The EGF signalling pathway. The binding of EGF ligands results in 

dimerisation of EGF receptors and phosphorylation of intracellular tyrosine kinase domains. 

Various proteins can be recruited, including PI3K which activates the PI3K/Akt pathway; 

Shc, GRB2 and SOS which activate the MAPK/ERK signalling pathway; PLCγ which results 

in the activation of PKC and the release of Ca2+; and JAK which activates STAT pathways. 

 

 

4.1.2.2.2 The FGF signalling pathway 

 The FGFs are a family of 22 small polypeptide growth factors, the 

majority of which are secreted by cells and bind to heparin or heparan sulphate 

proteoglycans (HSPG) in the extracellular matrix (ECM) or on the cell surface. 

Heparin and HSPG regulate FGF binding to their RTKs, known as FGFR1-

FGFR4. The receptors contain an extracellular ligand-binding domain composed 

of three immunoglobulin-like domains, a stretch of acidic residues, known as the 
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acid box, and a positively charged region which binds to heparin. The receptors 

also contain a transmembrane domain and an intracellular domain containing a 

protein tyrosine kinase. Following ligand binding, the receptors dimerise and 

become activated through phosphorylation of the tyrosine residues within the 

tyrosine kinase domain (Powers et al., 2000; Eswarakumar et al., 2005). The 

phosphorylated tyrosine kinase domains recruit various signalling molecules, 

activating different signalling cascades (see figure 4.2). These include: PI3K, 

which activates the PI3K/Akt signalling pathway; the docking protein fibroblast 

growth factor receptor substrate 2 (FRS2), which recruits and activates GRB2 and 

SOS which activate the MAPK/ERK cascade; and PLCγ, which results in the 

production of DAG and IP3, which activate PKC and Ca2+ release respectively. 

 

 

 

 

 

Figure 4.2 – The FGF signalling pathway. The binding of FGF ligands results in dimerisation 

of FGF receptors and phosphorylation of intracellular tyrosine kinase domains. Various 

proteins can be recruited, including PI3K which activates the PI3K/Akt pathway, FRS2 

which activates the MAPK/ERK signalling pathway and PLCγ which results in the 

activation of PKC and the release of Ca2+. 
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Neither aFGF or bFGF, which have been shown to be important in lens 

cell signalling, contain a signal peptide to enable them to be secreted by cells, 

however, receptors for these growth factors are found in the plasma membrane, 

indicating that they act extracellularly. Mignatti et al. (1991) showed that 

fibroblast cells produced bFGF and their motility was inhibited by the addition of 

bFGF antibodies to the culture medium, revealing that bFGF acted extracellularly 

and in an autocrine manner to promote motility. From this data it was suggested 

that rather than being secreted by the ER-Golgi system, the growth factors are 

instead released via an exocytotic pathway (Mignatti et al., 1991). FGF has also 

been shown to be released from damaged or dead cells (D'Amore, 1990).  

Both aFGF and bFGF were found to be expressed and active in the bovine 

lens and in the surrounding aqueous and vitreous humours (Schulz et al., 1993). In 

bovine LECs, aFGF is thought to act as a survival factor, being produced at 

greater levels by serum deprived cells compared to those cultured in medium 

supplemented with serum. When antisense primers specific to aFGF were added 

to the serum deprived bovine LECs, cell viability decreased, indicating that 

autocrine signalling involving aFGF is required for survival (Renaud et al., 1994). 

The lens capsule has been proposed as a reservoir of growth factors, including 

bFGF, and release of bFGF from the ECM of the capsule by matrix 

metalloproteinase 2 (MMP-2) has also been shown to be critical for survival 

during serum deprivation in a human lens cell line cultured on bovine lens 

capsules (Tholozan et al., 2007). During serum deprivation, human LECs cultured 

on their own capsule were shown to synthesise bFGF and the receptor, FGFR1, 

enabling autocrine signalling via the FGF signalling pathway. When FGFR1 was 

blocked using a synthetic inhibitor (SU5402) growth rates and the release of 

bFGF were reduced (Wormstone et al., 2001). In a cultured human lens cell line, 

bFGF was shown to suppress apoptosis induced by serum deprivation via 

upregulation of bcl-2 expression (Wang et al., 1999). In rat LECs, bFGF has been 

shown to induce proliferation, migration and differentiation in a concentration-

dependent manner. The half maximal concentrations of bFGF shown to induce 

proliferation, migration and differentiation were 0.15, 3 and 40 ng/ml respectively 

(McAvoy & Chamberlain, 1989). bFGF induced proliferation and differentiation 

were later shown to be dependent on the MAPK/ERK pathway, although a more 

recent study showed that both the MAPK/ERK and PI3K/Akt signalling pathways 
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were required for bFGF induced lens fibre differentiation in rat LECs (Lovicu & 

McAvoy, 2001; Wang et al., 2009b). During differentiation, bFGF has also been 

shown to induce expression of the lens fibre protein MIP26 in rat lens epithelial 

explants, which is dependent on the MAPK/ERK and MAPK/JNK pathways 

(Golestaneh et al., 2004). In porcine lenses, bFGF was also shown to strongly 

activate the MAPK/ERK pathway and was shown to weakly activate the 

PI3K/Akt pathway (Zatechka & Lou, 2002a). In human LECs, both aFGF and 

bFGF increase cell proliferation and differentiation, however, much higher 

concentrations of aFGF are required to observe effects similar to those seen with 

lower concentrations of bFGF (Ibaraki et al., 1995). Overall, signalling via the 

FGF pathway, and in particular via the ligand bFGF, has been shown to be 

important for differentiation, proliferation, migration and survival of LECs, 

making it a critical signalling pathway for the function of the lens. 

 

4.1.2.2.3 The HGF signalling pathway 

 HGF is a disulphide-linked heterodimeric protein which binds with high 

affinity to its receptor, c-Met. c-Met is an RTK which consists of an extracellular 

α-subunit and a β-subunit which has an extracellular region, a membrane spanning 

segment and an intracellular tyrosine kinase domain (Ma et al., 2003). Binding of 

HGF to c-Met results in phosphorylation of the extracellular domain enabling 

homodimerisation of receptors and phosphorylation of the intracellular tyrosine 

kinase domains (Conway et al., 2006). The activated receptor recruits signalling 

proteins such as: PLCγ, which results in the production of DAG and IP3, which 

activate PKC and Ca2+ release respectively; PI3K, which activates the PI3K/Akt 

pathway; GRB2 and SOS which activate the MAPK/ERK pathway; and STAT3 

(see figure 4.3). 

 Cultured human and rabbit LECs were shown to express both HGF and c-

Met using RT-PCR. Addition of HGF to rabbit LECs resulted in increased levels 

of proliferation and the expression of crystallin proteins (Weng et al., 1997). 

LECs from porcine capsular bag models were shown to release HGF and addition 

of neutralising antibodies to the receptor, c-Met, resulted in a reduction in cell 

proliferation (Choi et al., 2004). Addition of HGF to cultured human LECs 

increased cell proliferation which was also confirmed in rat lens epithelial 

explants (Choi et al., 2004). HGF was detected in human capsular bag models 
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cultured in serum-free medium and the receptor, c-Met, was also detected in the 

epithelial cells. Following mechanical trauma the expression of the receptor 

increased in the cells which grew across the cell free areas, indicating a role in 

proliferation and/or migration. In the same study, the addition of HGF to cultured 

human LECs under serum-free conditions was shown to increase proliferation, 

protein synthesis and migration (Wormstone et al., 2000). HGF was shown to 

activate pathways that resulted in ERK, JNK and Akt activation which were 

linked to cyclin D1 expression (Choi et al., 2004). This data indicates that 

autocrine signalling via HGF plays a role in cell proliferation and also protein 

synthesis and migration. 

 

 

 

 

Figure 4.3 – The HGF signalling pathway. The binding of HGF ligands results in 

dimerisation of c-Met receptors and phosphorylation of intracellular tyrosine kinase 

domains. Various proteins can be recruited, including PI3K which activates the PI3K/Akt 

pathway; GRB2 and SOS which activate the MAPK/ERK signalling pathway; PLCγ which 

results in the activation of PKC and the release of Ca2+; and STAT3. 



 120

4.1.2.2.4 The IGF-1 signalling pathway 

The growth factor IGF-1 is similar to the hormone insulin in structure and 

function and can bind to both the IGF receptor 1 (IGFR-1) and the insulin receptor 

(IR), although it has lower affinity for IR. IGFR-1 is an RTK which consists of 

two extracellular ligand-binding α-subunits and two transmembrane tyrosine 

kinase domain containing β-subunits which are linked to each other by disulphide 

bonds. Binding of IGF-1 to IGFR-1 can be regulated by IGF binding proteins 

(IGFBPs), which either bind to IGF-1 or enhance its ability to bind to the receptor. 

Ligand binding results in autophosphorylation of the tyrosine kinase domains of 

the receptor, activating them and enabling the phosphorylation of downstream 

proteins, such as insulin receptor substrate-1 (IRS-1) and Shc (Pavelic et al., 

2007). IRS-1 activates the PI3K/Akt pathway, whereas Shc signals via GRB2 and 

SOS to activate Ras and the MAPK/ERK pathway (see figure 4.4) (Riedemann & 

Macaulay, 2006). 

 

   

 

 

Figure 4.4 – The IGF-1 signalling pathway. The binding of IGF-1 ligands to IGFR-1 causes a 

conformational change resulting in autophosphorylation of intracellular tyrosine kinase 

domains. Proteins recruited to the activated receptor include IRS-1 which activates the 

PI3K/Akt pathway and Shc which recruits GRB2 and SOS which activate the MAPK/ERK 

signalling pathway. 
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 Expression of IGF-1 was not detected in the rat lens, however mRNA for 

IGFR-1 was found (Burren et al., 1996). IGF-1 was shown to be synthesised and 

released by bovine LECs and both IGF-1 and IGFBP-2 were found in the aqueous 

and vitreous humours which surround the lens (Arnold et al., 1993; Palmade et al., 

1994). In human LECs, IGFR-1 was found in the cell membrane by Western 

blotting (Bhuyan et al., 2000). 

 In bovine, chicken and rabbit lens cells, IGF-1 has been shown to 

stimulate the PI3K/Akt pathway which was linked to proliferation and 

differentiation of LECs (Chandrasekher & Bazan, 2000; Chandrasekher & Sailaja, 

2003). In rabbit LECs, IGF-1 stimulation of the PI3K/Akt pathway was linked to 

survival and proliferation, with proliferation being linked to the activation of p70 

S6 kinase (p70S6K) found downstream of Akt, however, the p70S6K pathway 

had no effect on survival (Chandrasekher & Sailaja, 2004). In the porcine lens, 

IGF-1 has been shown to activate both the MAPK/ERK pathway and PI3K/Akt 

pathway which was linked to proliferation and survival (Zatechka & Lou, 2002a). 

In rat LECs, IGF-1 was shown to stimulate proliferation but not differentiation, 

which required addition of bFGF (Civil et al., 2000). By adding increasing levels 

of IGF-1 to the rat LECs, IGF-1 was also shown to increase the levels of β- and γ-

crystallin in relation to α-crystallin, which could predispose the lens to cataract 

(Civil  et al., 2000). In human LECs, IGF-1 was shown to stimulate cell 

proliferation and differentiation (Ibaraki et al., 1995). In serum-free conditions 

IGF-1 has been shown to promote mitosis in the LECs of cultured rabbit lenses, 

further indicating the role of IGF-1 in cell proliferation (Reddan & 

Wilsondziedzic, 1983). Signalling via the IGF-1 pathway has therefore been 

shown to influence lens cell proliferation, differentiation and survival which are 

critical to the function of the lens. 

 

4.1.3 Autocrine signalling in DM1 lens epithelial cells 

 We have shown that DM1 lens epithelial cells have significantly increased 

levels of apoptotic cell death compared to controls when cultured in protein- and 

serum-free medium. We hypothesised that this was due to an impairment in 

autocrine signalling which promotes survival. This impairment could either be 

due to the cells not releasing enough autocrine signalling factors, or not 

responding correctly to those that they do release. As autocrine signalling systems 
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involving EGF, FGF, HGF and IGF-1 have been identified in the lens, it is 

possible that an impairment in one or more of these systems could result in the 

increased levels of apoptotic cell death observed in the DM1 LECs. 

 

 4.2 Aims 

 
Under stress conditions, such as serum deprivation, autocrine signalling 

appears to be important for maintaining survival in LECs. Autocrine signalling 

may be impaired in DM1 resulting in increased levels of cell death. The role of 

autocrine signalling will be investigated further with particular emphasis on the 

FGF pathway which is a known autocrine signalling pathway established in the 

human lens that has previously been shown to increase survival.  

 

4.3 Results 

 

4.3.1 Autocrine signalling in DM1 lens epithelial cells 

 To investigate the role of autocrine signalling during conditions of serum 

deprivation, conditioned medium (CM) was collected from the control and DM1 

cell lines after 48 hours and was applied to the foetal human lens cell line, 

FHL124. After 48 hours the cells were lysed and total protein was calculated as a 

measure of cell growth (see figure 4.5a). Culturing the FHL124 cells in SF 

medium resulted in a decrease in growth, whereas, a significant increase in growth 

was observed following addition of 5% FCS (p < 0.01). CM from all of the DM1 

cell lines also caused a significant increase in growth (p < 0.05). Of the control 

cell lines, however, only CM from CCat1 caused a significant increase in growth 

(p < 0.01). This is interesting because the control cell lines were growing much 

faster than the DM1 cell lines, resulting in much higher numbers of cells in the 

flasks from which CM was collected (see table 4.1), therefore, more cells were 

available to release factors into the medium. For comparison, the growth factor 

bFGF was also applied to FHL124 cells as it is a known autocrine signalling 

factor involved in growth and survival in the human lens. Addition of bFGF (5 

ng/ml) caused a slight, but non-significant increase in cell growth. The data shows 

that the cell lines are releasing a factor into the medium which can increase 

growth and/or survival in the FHL124 cells.  
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Figure 4.5 – The effect of CM from DM1 lens epithelial cells on FHL124 cell growth. (a) The 

growth of FHL124 cells was measured by calculating total protein (µg/ml) after 48 hours in 

CM. CM from all of the DM1 cell lines caused a significant increase in growth. Of the 

control cell lines, however, only CM from CCat1 caused a significant increase in growth (n = 

4, data expressed as mean ± SEM, statistical analysis was performed by one-way ANOVA 

with Tukey’s test, * p < 0.05 and ** p < 0.01 relative to T = 0). (b) Growth was normalised to 

the number of cells from which the CM was collected and reveals that the DM1 cell lines 

increased growth in FHL124 by a significantly greater amount per cell than the controls (n = 

4, data expressed as mean ± SEM, statistical analysis was performed by Student’s T test, ** 

p < 0.01 relative to controls).  
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FHL124 cell growth was also normalised to the number of cells from 

which the conditioned medium was collected (see table 4.1 and figure 4.5b) and 

shows that the DM1 cell lines increased growth by a significantly greater amount 

per cell than the controls. This data suggests that the DM1 cells are releasing 

greater levels of factors that are responsible for increasing growth in FHL124 cells. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1 – The number of cells per flask from which CM was collected. 

 

 

4.3.2 Signalling pathways activated by CM in FHL124 cells 

To investigate the signalling pathways activated by CM from control and 

DM1 lens cell lines, CM collected over 24 hours was applied to FHL124 cells and 

protein was collected after 10 minutes. Levels of activated downstream signalling 

molecules were examined using Western blotting. The CM from both control and 

DM1 cell lines activated downstream signalling pathways in FHL124 cells 

resulting in phosphorylation of Akt and ERK1/2 (see figure 4.6). No significant 

difference was observed between the levels of activation of either Akt or ERK1/2 

following addition of control or DM1 CM.  

 

 



 125

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 – Signalling pathways activated in FHL124 cells by CM. Protein levels of (a) pAkt 

and (b) pERK were examined by Western blotting and analysed densitometrically. Graphs 

show the activated protein levels normalised to their total protein control. A β actin loading 

control was included but is not shown. Both Akt and ERK1/2 were activated in FHL124 cells 

by addition of CM for 10 minutes. No significant difference was observed between control 

and DM1 CM.  
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 The CM from DM1 cell lines significantly increased growth in FHL124 

cells, and it was therefore expected that greater levels of activation of the major 

pathways involved in growth and survival would have been observed. As this was 

not found, the CM was diluted to see whether maximal levels of activation had 

been reached, which were masking any differences that may have been seen. CM 

was diluted with SF medium to give 100%, 75%, 50%, 25% and 0% CM and was 

applied to FHL124 cells for 10 minutes. The levels of pAkt, pERK, pJNK and 

pPKC were examined by Western blotting (data from CCat1 and DMCat1 is 

shown in figure 4.7).  

  Levels of pAkt were shown to increase with increasing concentrations of 

CM, with higher levels seen following addition of CM from DM1 cell lines 

compared to control cell lines. Akt is activated to a similar level following 

addition of 100% CM from both CCat1 and DMCat1, however, it is possible that 

this represents the maximal level of Akt activation in the FHL124 cells. The 

dilutions of CM reveal that the factor responsible for causing Akt activation is 

more potent in the DMCat1 CM as the level of activation does not decrease as 

quickly as is seen with the control CM.  

Levels of pERK were also found to increase with increasing 

concentrations of CM in both control and DM1 cell lines, however, levels of 

pERK were also very high following addition of 0% CM (SF medium), which 

could either be due to the stress caused by a change of medium, or a reaction to 

the lack of growth factors present in the medium. Although levels of pERK were 

higher following addition of 100% CCat1 CM compared to DMCat1 CM, neither 

was very different from the level observed following 0% CM addition. 

 Levels of both pJNK and pPKC appeared to be unaffected by the addition 

of different concentrations of CM, indicating that no factors capable of 

stimulating the pathways responsible for their activation are present in CM.  

 A Western blot performed using the 75% CM samples from each cell line 

revealed that DM1 CM results in a significant increase in levels of pAkt in 

FHL124 cells compared to control CM (p < 0.05) (see figure 4.8). No significant 

difference in pERK levels between DM1 and control CM were observed at this 

dilution (data not shown). 
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Figure 4.7 – see page 129 for figure legend 
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Figure 4.7 - see page 129 for figure legend 
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Figure 4.7 – Signalling pathways activated in FHL124 cells by CM. CM from CCat1 and 

DMCat1 cell lines was diluted with SF medium to give 100%, 75%, 50%, 25% and 0% CM 

which was applied to FHL124 cells for 10 minutes. (a) Western blotting was used to examine 

the activation of Akt, ERK1/2, JNK and PKC. Bands were analysed densitometrically and 

activated protein levels were normalised to their total protein control. Levels of both (b) 

pAkt and (c) pERK increased with increasing concentrations of CM, however, pERK levels 

also increased following addition of 0% CM. Levels of pAkt were higher with addition of 

DMCat1 CM compared to CCat1 CM until a maximal response was reached. Levels of (d) 

pJNK and (e) pPKC were unaffected by CM. (f) Levels of pAkt were significantly increased 

following addition of 75% dilutions of DM1 CM compared to control CM (statistical analysis 

was performed by Student’s T test, * p < 0.05 relative to control CM). 

 

 

4.3.3 Autocrine signalling via the FGF pathway in human lens 

epithelial cells 

 CM collected from all of the DM1 cell lines significantly increased growth 

in FHL124 cells, indicating that factors were released by the cells into the medium. 

These factors are capable of activating the PI3K/Akt pathway which likely leads 

to the increased levels of cell growth and/or survival. Of the autocrine signalling 

systems known to be active in the human lens, all can signal via the PI3K/Akt 

pathway. As the FGF signalling pathway is well characterised in the lens and has 

been shown to encourage growth and survival in LECs, we investigated its role in 
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CM stimulated events (Wang et al., 1999; Wormstone et al., 2001; Tholozan et al., 

2007). 

 

4.3.3.1 Release of bFGF by DM1 lens epithelial cells 

 CM was collected from cells seeded in culture dishes (after weekly 

passaging) every 21 days during the culture period shown in figure 3.9, beginning 

at day 7 and ending on day 70. CM was collected from the culture dishes after 24 

hours. Levels of bFGF in the CM were measured using an ELISA. bFGF was 

detected in CM from each cell line, but was absent from SF medium (see figure 

4.8a). The control cell lines released an average of 0.34 pg/ml ± 0.21 pg/ml bFGF 

compared to an average of 1.31 pg/ml ± 0.73 pg/ml bFGF released by the DM1 

cell lines. This data confirms that the LECs release bFGF which could increase 

growth in FHL124 cells, however, the difference in the levels of bFGF released 

between the control and DM1 lens cells was not statistically significant. 

Interestingly, the levels of bFGF released by the cells increased over increasing 

passage numbers, which was especially evident in the DM1 cell lines (see figure 

4.8b). Levels of bFGF increased over the culture period in all four DM1 cell lines, 

whereas levels only increased in two of the four control cell lines, CCat3 and 

CCat4. The average values for control and DM1 cell lines at each point in culture 

reveals a 55.3 fold increase in release of bFGF in DM1 cells from day 10 to day 

73, compared to only a 10.5 fold increase in the control cells. 

As CM from LECs seeded at high densities has been shown to increase 

survival in cultures seeded at low densities, the effect of cell number on bFGF 

release was analysed in the cell lines (Ishizaki et al., 1993). Culture flasks were 

seeded with either 5 000, 10 000 or 20 000 cells per cm2 of CCat1 or DMCat1 

cells. CM was collected from the flasks after 24 hours and levels bFGF were 

measured using an ELISA (see figure 4.9a). The cells were lysed and total protein 

from each flask was calculated as a measure of cell density (see figure 4.9b). The 

level of bFGF in the CM was normalised to the total protein value extracted from 

each flask and the data shows that there is no effect of cell density on bFGF 

release in the densities tested (see figure 4.9c). Cells seeded at a density of 5 000 

cells per cm2 released the same level of bFGF per µg of protein as those seeded at 

20 000 cells per cm2, however, the level of bFGF released by both cell types 

seeded at a density of 10 000 cells per cm2 was slightly lower. The average level 
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of bFGF released per microgram of protein from CCat1 cells was 0.02 pg/ml ± 

0.003 pg/ml compared to 0.08 pg/ml ± 0.007 pg/ml from DMCat1 cells which was 

significantly higher (p < 0.01, statistical analysis was performed by Student’s T-

test).   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.8 – The release of bFGF from DM1 lens epithelial cells. Levels of bFGF in the CM 

after 24 hours were analysed using an ELISA and normalised to the total protein values 

extracted from each dish. (a) Both control and DM1 lens cells released bFGF into the culture 

medium, however, no significant difference was found between DM1 and control lens cells (n 

= 4, data expressed as mean ± SEM). (b) Levels of bFGF released from the cells increased 

during the culture period, which was especially evident in the DM1 cell lines. After 73 days 

in culture, control cells released an average of 10.5 times more bFGF than after 10 days in 

culture, compared to 55.3 times more in DM1 cells (n = 4, data expressed as mean ± SEM).  
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Figure 4.9 – bFGF release is directly proportional to cell density. CM was collected from 

CCat1 and DMCat1 cells seeded at different densities (5 000, 10 000 and 20 000 cells per cm2). 

(a) bFGF in CM was measured using an ELISA. (b) Total protein from each flask was 

calculated as a measure of cell density (n = 3, data expressed as mean ± SEM). (c) bFGF 

release was normalised to total protein levels revealing that bFGF release is directly 

proportional to cell density. DMCat1 cells release significantly greater levels of bFGF than 

CCat1 cells (n = 3, statistical analysis was performed by Student’s T-test, p < 0.01). 
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4.3.3.2 Expression of FGFR1 in DM1 lens epithelial cells 

As all of the cell lines were shown to release bFGF, the presence of the receptor 

FGFR1 was tested by QRT-PCR analysis of FGFR1 expression. FGFR1 was 

found to be expressed in all of the cell lines, including FHL124 cells (see figure 

4.10). This data reveals that autocrine signalling via bFGF is possible in the cell 

lines and could cause the growth effects observed by the addition of CM to 

FHL124 cells. 

 

 
 
 
Figure 4.10 – FGFR1 is expressed in DM1 lens epithelial cells. QRT-PCR showed that 

FGFR1 was expressed in both control and DM1 lens cells and was also expressed in FHL124 

cells.  There was no significant difference observed in expression levels between control and 

DM1 lens cells (n = 2, data expressed as mean, representative of two independent 

experiments). 
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was also applied to the FHL124 cells. After 48 hours, total protein was calculated 

as a measure of cell growth (see figure 4.11a). CM from both CCat1 and DMCat1 

cells stimulated an increase in FHL124 cell growth, however, in the presence of 

SU5402 (10 µM), the stimulation from CM was significantly decreased (p < 0.05) 

when compared to the relevant DMSO control. FHL124 cell growth was also 

reduced in SF medium and medium supplemented with bFGF (5 ng/ml) in the 

presence of SU5402 compared to the relevant DMSO control, however, this was 

not statistically significant. The effects of the CM on FHL124 cell growth was not 

completely blocked following FGFR1 inhibition as cell growth was still above 

that observed following addition of SF medium in the presence of SU5402. This 

data indicates that other growth factors are released by the cells which do not act 

via FGFR1. 

 The release of LDH into the medium was measured to see whether 

reduced FHL124 cell growth following FGFR1 inhibition was due to increased 

cell death or reduced proliferation. The LDH levels were similar in each condition, 

showing that levels of cell death were not affected by FGFR1 inhibition. This data 

indicates that the reduction in FHL124 cell growth following FGFR1 inhibition 

was due to the reduced proliferative capacity of the cells and not due to increased 

cell death.  However, the effects of CM on cell survival with and without FGFR1 

inhibition were not analysed due to the presence of LDH already in the CM. 

 As inhibition of FGF signalling caused a reduction in the proliferative 

capacity of the FHL124 cells following addition of CM, the signalling pathways 

activated following SU5402 addition were also examined by Western blotting (see 

figure 4.12). FHL124 cells were exposed to SF medium, medium supplemented 

with bFGF (5 ng/ml) and CM from DMCat1 cells in the presence and absence of 

SU5402 (10 µM) for 10 minutes before the cells were lysed and protein extracted.  

Levels of pAkt did not increase following addition of SF medium to 

FHL124 cells (see figure 4.12a). Addition of bFGF led to an increase in pAkt 

levels, however, levels were increased to a much greater extent by the addition of 

DMCat1 CM. In the presence of SU5402 the levels of pAkt following bFGF 

addition were reduced, but levels were still elevated following DMCat1 CM 

addition. This data indicates that stimulation of Akt following DMCat1 CM 

addition is partially due to signalling via FGF, however, other factors capable of 

activating the PI3K/Akt pathway must also be present in the CM. 
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Figure 4.11 – The effect of CM from DM1 lens epithelial cells on FHL124 cell growth 

following FGFR1 inhibition over 48 hours. (a) When SU5402 (10 µM) was added to CM from 

CCat1 and DMCat1 cell lines FHL124 cell growth was significantly decreased when 

compared to the relevant DMSO (1 µl/ml) control (n = 4, data expressed as mean ± SEM, 

statistical analysis was performed by one-way ANOVA with Tukey’s test, * p < 0.05 and ** p 

< 0.01 relative to the relevant DMSO control, # p < 0.05 relative to T = 0). (b) LDH levels 

were not affected by SU5402 (10 µM) (n = 4, data expressed as mean ± SEM). 
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Figure 4.12 – Signalling pathways activated in FHL124 cells by CM following FGFR1 

inhibition. Protein levels of (a) pAkt and (b) pERK were examined by Western blotting and 

analysed densitometrically. Graphs show the activated protein levels normalised to their 

total protein control. A β actin loading control was included but is not shown. Addition of 

DMCat1 CM for 10 minutes stimulated activation of Akt and ERK1/2 and in the presence of 

SU5402 (10 µM) neither pAkt or pERK levels were returned to baseline levels, however, 

greater levels of pAkt remained compared to pERK. 
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Addition of SF medium to FHL124 cells resulted in an increase in levels 

of pERK when compared to baseline levels (T = 0). The addition of bFGF 

resulted in a considerable increase in pERK levels when compared to SF medium, 

whereas levels of pERK following addition of DMCat1 CM fell between those of 

bFGF and SF medium. In the presence of SU5402 the levels of pERK were 

returned to baseline levels (T = 0) following both SF medium and bFGF addition. 

Interestingly, the levels of pERK were still slightly elevated after DMCat1 CM 

addition in the presence of SU5402. This data indicates that the stimulation of 

ERK1/2 following DMCat1 CM addition was only partially due to signalling via 

the FGF signalling pathway (see figure 4.12b).  

  

4.3.4 FGF signalling in DM1 lens epithelial cells 

 In order to investigate the role of FGF signalling in the control and DM1 

lens cells in both SF medium and medium supplemented with 10% FCS, the cells 

were grown in the presence and absence of SU5402 (10 µM) for 24 hours. Cells 

were lysed and total protein was extracted as a measure of cell growth. Protein 

values for each cell line were normalised to the T = 0 value and average values 

across the control and the DM1 cell lines were calculated. A reduction in cell 

growth was observed in both cell types with SU5402 in SF medium, however, this 

was not statistically significant when compared to the DMSO (1 µl/ml) controls 

(see figure 4.13a). In medium supplemented with 10% FCS, no effect was 

observed from the addition of SU5402. Levels of LDH in the medium were also 

calculated as a measure of cell death. LDH values were normalised to the T = 0 

protein value for each cell line in order to observe the LDH released per µg/ml of 

protein (see figure 4.13b). The T = 0 values were chosen to normalise to as a bias 

would be introduced by normalising to the protein values from the same dish due 

to the reduction in cell number (and therefore total protein) that occurs during cell 

death. A slight increase in cell death was observed in both control and DM1 cells 

in SF medium with SU5402, but not with SU5402 in medium supplemented with 

10% FCS, however, this was also not significant. Although neither is statistically 

significant, the slight decrease in cell growth and increase in cell death during 

FGFR1 inhibition may indicate that signalling via the FGF pathway is more 

important in both control and DM1 cells in the absence of added growth factors, 
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indicating that autocrine signalling via the FGF pathway occurs in the control and 

DM1 LECs. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 – The effect of FGFR1 inhibition on DM1 lens epithelial cells over 24 hours. (a) 

Cell growth was measured by calculating the total protein (µg/ml) in cell lysates after 24 

hours. Protein values were normalised to the T = 0 value for each cell line and averages were 

calculated. Addition of SU5402 (10 µM) had no significant effect on cell growth. (b) LDH 

release was measured to analyse cell death and levels were normalised to the total protein 

levels at T = 0. There was no significant difference in levels of cell death following addition of 

SU5402 (n = 4, data expressed as mean ± SEM, statistical analysis was performed by one-

way ANOVA with Tukey’s test). 
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Figure 4.14 - The effect of FGFR1 inhibition on DM1 lens epithelial cells over 48 hours. (a) 

Cell growth was measured by calculating the total protein (µg/ml) in cell lysates after 48 

hours. Protein values were normalised to the T = 0 value for each cell line and averages were 

calculated. Addition of SU5402 (10 µM) resulted in a significant decrease in cell growth of 

both CCat1 and DMCat1 cells, however, DMCat1 had significantly lower levels of cell 

growth following SU5402 addition compared to CCat1 (n = 4, data expressed as mean ± SEM 

of four independent experiments, statistical analysis was performed by one-way ANOVA 

with Tukey’s test, * p < 0.05 and ** p < 0.01 relative to the relevant DMSO control, # # p < 

0.01 relative to CCat1 treated with SU5402 (10 µM)). (b) LDH release was measured to 

analyse cell death and levels were normalised to the total protein levels at T = 0. Addition of 

SU5402 resulted in a slight increase in levels of cell death but this was not statistically 

significant (n = 4, data expressed as mean ± SEM of four independent experiments, statistical 

analysis was performed by one-way ANOVA with Tukey’s test). 
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 As the small effect seen after FGFR1 inhibition for 24 hours was not 

statistically significant, further experiments were performed on CCat1 and 

DMCat1 cells to analyse the effect of FGFR1 inhibition in SF medium for 48 

hours (see figure 4.14). The data shows that growth is significantly reduced in 

both CCat1 (p < 0.01) and DMCat1 (p < 0.05) cells in SF medium with SU5402 

(10 µM) compared to the relevant DMSO controls. Interestingly, cell growth 

following FGFR1 inhibition was also shown to be significantly lower in DMCat1 

cells than CCat1 cells (p < 0.05). A slight increase in LDH levels was also 

observed following addition of SU5402, however, this was not statistically 

significant. The data implies that an autocrine FGF signalling loop is engaged 

when the cells are cultured in SF medium which is involved in cell growth, but 

that it is not critical to their survival. 

 

4.3.5 IGF-1 signalling in DM1 lens epithelial cells 

 As signalling via FGF did not appear to be critical for survival in SF 

medium, the role of another growth factor, IGF-1, which is also important for 

survival in lens cells was analysed. As with the FGF pathway, the IGF-1 pathway 

can also signal via the PI3K/Akt pathway, which is activated by DM1 CM. CCat1 

and DMCat1 cells were grown in SF medium in the presence and absence of the 

IGFR-1 inhibitor AG1024 (1 µM) for 48 hours. Normalised protein values show 

that cell growth was decreased in the presence of AG1024, especially in CCat1 

cells, however, this was not found to be statistically significant (see figure 4.15a). 

There was no difference in LDH levels, indicating that cell death was not affected 

by IGFR-1 inhibition (see figure 4.15b).  
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Figure 4.15 - The effect of IGFR-1 inhibition on DM1 lens epithelial cells over 48 hours. (a) 

Cell growth was measured by calculating the total protein (µg/ml) in cell lysates after 48 

hours. Protein values were normalised to the T = 0 value for each cell line and averages were 

calculated. Although addition of AG1024 (1 µM) resulted in a decrease in cell growth of both 

CCat1 and DMCat1 cells, the difference was not statistically significant. (b) LDH release was 

measured to analyse cell death and levels were normalised to the total protein levels at T = 0. 

Addition of AG1024 had no significant effect on cell death (n = 3, data expressed as mean ± 

SEM of three independent experiments, statistical analysis was performed by one-way 

ANOVA with Tukey’s test). 
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4.4 Discussion 

 

 DM1 lens epithelial cells have significantly increased levels of apoptotic 

cell death when cultured in SF medium compared to controls (see figure 3.15). No 

significant difference in levels of apoptosis was seen between control and DM1 

cell lines when cultured in medium supplemented with 10% FCS. It can be 

hypothesised that this was due to an impairment in autocrine signalling which is 

required for survival in SF medium. This could either be due to the cells not 

releasing enough of their own signalling factors or an impairment in the way that 

they respond to the signalling factors which they produce. Here we have shown 

that DM1 lens epithelial cells are releasing factors into their environment which 

are capable of increasing levels of cell growth and/or survival in the non-virally 

transformed lens cell line FHL124 (see figure 4.5). This data indicates that it is 

not an impaired ability to release autocrine signalling factors that results in 

increased levels of cell death, but rather a reduced ability to respond to these 

factors.  

 As well as increasing cell growth and/or survival in FHL124 cells, the 

factors released by DM1 LECs were shown to activate signalling pathways in 

FHL124 cells resulting in significantly greater levels of Akt activation compared 

to controls (see figure 4.7f). Akt is downstream of PI3K and this data indicates 

that the PI3K/Akt pathway is involved in growth and/or survival in FHL124 cells. 

It has been shown previously that signalling via the PI3K/Akt pathway is 

important for both growth and survival in rabbit and rat LECs (Chandrasekher & 

Sailaja, 2003, 2004; Iyengar et al., 2006).   

 To elucidate the mechanisms behind the increase in apoptotic cell death in 

SF medium, we investigated the role of a known autocrine signalling system in 

the lens: the FGF pathway. Autocrine signalling via bFGF is likely to occur in the 

cell lines as all were shown to release bFGF and express the receptor FGFR1 (see 

figures 4.8a and 4.10). The DM1 cell line, DMCat1, was shown to release 

significantly more bFGF than the control, CCat1, and the DM1 cell lines were 

shown to release more bFGF at later passages, however, no significant difference 

was seen when all of the cell lines were analysed together (see figures 4.9 and 

4.8b). The cell lines released a relatively low level of bFGF (0.17-3.17 pg/ml), 

however, very few cell types have been shown to release bFGF and this is 
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therefore an interesting finding (Rogelj et al., 1988). The release of bFGF may be 

a feature of lens cells as human LECs cultured on their capsule have also been 

shown to release bFGF (Wormstone et al., 2001). As bFGF has also been shown 

to be released from dead or damaged cells, this cannot be ruled out from our 

experiments (D'Amore, 1990). The observed levels of bFGF in the CM could 

therefore be due to release from dead cells and not a true autocrine signalling 

system. However, evidence that an FGF autocrine signalling system does exist in 

the LECs comes from the inhibition of FGFR1 in the cell lines themselves. 

FGFR1 inhibition had no effect on cell growth in cells cultured in medium 

supplemented with 10% FCS, but a decrease in cell growth was observed in cells 

cultured in SF medium with the inhibitor and this was found to be significant 

when repeated in CCat1 and DMCat1 cells (see figures 4.13 and 4.14). This data 

shows that in the presence of serum which contains other growth factors, 

signalling via FGFR1 is not required for cell growth, most likely due to other 

activated signalling pathways which can compensate for its loss. However, in SF 

medium the only growth factors available are those that the cells can synthesise 

themselves, revealing that signalling must occur via FGFR1 under these 

conditions in order for a reduction in cell growth to be observed. This data 

indicates that autocrine signalling via FGFR1 is present in the cells and is 

important for cell growth but is not critical for their survival. 

 Extensive investigations indicate that although signalling via the FGF 

pathway plays a role in growth in human LECs, it is unlikely that the factors 

released by DM1 LECs signal via this pathway. Addition of medium 

supplemented with bFGF (5 ng/ml) at much greater levels than those released 

from the cells themselves had no significant effect on FHL124 cell growth or 

survival (see figures 4.5 and 4.11). This is in contrast to the addition of bFGF (10 

ng/ml) to rabbit LECs, which increased proliferation by 70-80% and was 

significantly blocked by the PI3K inhibitors, wortmannin (200 nM) and 

LY294002 (10 µM) (Chandrasekher & Sailaja, 2003). Addition of bFGF to rat 

LECs, has been shown to induce proliferation, migration and differentiation in a 

concentration-dependent manner. The half maximal concentrations of bFGF 

shown to induce proliferation, migration and differentiation were 0.15, 3 and 40 

ng/ml respectively (McAvoy & Chamberlain, 1989). If the same is true in human 

LECs, this may account for the absence in growth stimulation by addition of 5 



 144

ng/ml of bFGF as bFGF at this concentration would result in a response of 

migration and differentiation which were not examined in the FHL124 cells. The 

FHL124 cells may also be producing and releasing bFGF themselves and addition 

of further bFGF may therefore have no added effect. Although the addition of 

bFGF had no significant effect on the FHL124 cells, the addition of DM1 CM did, 

and as it contained much lower levels of bFGF, this data would indicate that it is 

not the factor responsible for increasing growth and/or survival in the FHL124 

cells. Further to this data, inhibition of FGFR1 in FHL124 cells treated with CM 

resulted in a decrease in cell growth and/or survival and also resulted in a 

reduction in active levels of the downstream signalling molecules Akt and ERK 

(see figures 4.11 and 4.12). However, levels of growth were still greater than 

those observed with the FGFR1 inhibitor in SF medium alone and levels of pAkt 

and pERK were also not completely returned to baseline levels. This data 

indicates that other factors must be present in DM1 CM which activate Akt and 

ERK independently of FGFR1 to increase growth.  

  As FGF does not appear to be the factor released by the DM1 LECs 

which increases growth and/or survival, we investigated the role of the IGF-1 

pathway in the DM1 cells as it has also been shown to signal via the PI3K/Akt 

pathway to mediate growth and survival in LECs (Chandrasekher & Bazan, 2000; 

Chandrasekher & Sailaja, 2004). Inhibition of IGFR-1 resulted in reduced cell 

growth in the cell lines, which was more notable in the control cell line CCat1 

compared to DMCat1, however, this was not significant (see figure 4.15). No 

difference was observed in levels of cell death, indicating that signalling via IGF-

1 may play a role in growth but not in survival in LECs cultured in SF medium. 

This is in contrast to a study conducted on rabbit LECs which showed that 

signalling via IGF-1 stimulated the PI3K/Akt pathway and suppressed apoptosis 

to increase survival (Chandrasekher & Sailaja, 2004). Despite the fact that the 

presence of IGF-1 in the CM or the effect of inhibiting signalling via IGFR-1 in 

FHL124 cells treated with CM was not investigated, the fact that no significant 

effect was seen in levels of cell growth or death in the DM1 cells lines indicates 

that IGF-1 is unlikely to be the factor responsible for increased growth and/or 

survival in FHL124 cells following addition of DM1 CM.  

 The factor, or factors, released by DM1 lens epithelial cells which are 

responsible for increasing growth and/or survival and activating Akt in the 
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FHL124 cells were not identified. Of the four autocrine signalling systems which 

have previously been identified in the lens, FGF and IGF-1 do not appear to be the 

factors released by DM1 LECs which are responsible for promoting growth 

and/or survival. This leaves the autocrine signalling systems involving EGF and 

HGF to still be investigated (Palmade et al., 1994; Majima, 1995; Weng et al., 

1997; Wormstone et al., 2000; Wormstone et al., 2001). Both EGF and HGF have 

previously been shown to signal via PI3K and both have been shown to play roles 

in proliferation in LECs, however, neither has been shown to influence levels of 

survival in LECs (Reddan & Wilsondziedzic, 1983; Wormstone et al., 2000; Choi 

et al., 2004; Jiang et al., 2006). As the presence of EGF and HGF autocrine 

signalling systems in our cell lines have not been tested, we cannot confirm or 

rule out a role for either growth factor in the effects observed following CM 

addition to FHL124 cells. Further, although the autocrine systems involving EGF, 

FGF, HGF and IGF-1 are known to promote growth and/or survival in LECs, 

other currently unidentified or less common autocrine signalling systems could 

also be responsible for the increase in growth and/or survival in the FHL124 cells 

in response to CM. Other growth factors are present within the lens, such as 

vascular endothelial growth factor (VEGF), transforming growth factor β 2 (TGF-

β2) and lens derived growth factor (LEDGF), however, whether autocrine 

signalling systems exist and whether they signal via the PI3K/Akt pathway to 

promote growth and/or proliferation is questionable. VEGF and its receptor 

VEGFR are expressed in the lens and signal via the PI3K/Akt pathway, however, 

the autocrine signalling system is initiated in response to hypoxic conditions and 

results in activation of genes involved in, for example, glucose transportation in 

the lens (Shui et al., 2003; Radreau et al., 2009). Interestingly, hypoxia has been 

shown to play a role in the suppression of lens growth, however, this was shown 

to likely be due to the increasing thickness of the lens with age and is therefore 

unlikely to play a role in the growth of cultured LECs (Shui et al., 2008; Shui & 

Beebe, 2008). LEDGF has been shown to promote LEC survival and is activated 

under stress conditions, however, LEDGF is not known to signal via the PI3K/Akt 

pathway (Ayaki et al., 1999; Singh et al., 2000). TGF-β2 and its receptors are 

expressed in the lens and addition of TGF-β2 has been shown to increase 

proliferation in LECs (Kampmeier et al., 2006). TGF-β2 also plays a role in 

wound healing and its expression is upregulated by LECs in response to addition 
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of TGF-β2 which occurs in response to injury (Wormstone et al., 2006; Dawes et 

al., 2007). However, as with LEDGF, TGF-β2 is not known to signal via the 

PI3K/Akt pathway and these growth factors are therefore unlikely to be 

responsible for the effects of CM addition to FHL124 cells. Further investigation 

is required to establish the role of EGF, HGF and other possible growth factors in 

the effects of DM1 CM.  

 It is possible that no one single factor is responsible for the increase in 

FHL124 growth and/or survival following addition of DM1 CM. The effects 

observed may instead be due to a combination of factors which may be released, 

all activating receptors and downstream signalling pathways which increase 

growth and/or survival. Inhibition of FGFR1 in FHL124 cells treated with CM 

resulted in a reduction in growth and/or proliferation (see figure 4.11) and a 

reduction in the activation of Akt and ERK (see figure 4.12), however, other 

signalling factors must have been present as neither was returned to baseline 

levels. Other signalling factors may have been activating pathways which 

compensated for the loss of signalling via the FGF pathway. Blocking pathways 

in combination, such as FGF and IGF-1 together, may result in a greater reduction 

in the effects of CM.  

 Although the growth factor(s) and receptor(s) responsible for initiating the 

signalling which increased growth and/or survival in FHL124 cells were not 

identified, the downstream signalling pathway which was activated by them was 

revealed. Activation of the PI3K/Akt pathway was significantly increased by 

DM1 CM, indicating that this pathway was responsible for the subsequent 

increase in growth and/or survival of FHL124 cells (see figure 4.7f). This data 

would indicate that the PI3K/Akt pathway should also be upregulated in the DM1 

cell lines themselves, unless an impairment in autocrine signalling results in 

aberrant activation of different pathways in response to the factors released. The 

aberrant activation of pathways in response to stress has been observed in mouse 

myoblasts transfected with DMPK containing small repeats (5 repeats) and large 

repeats (160 repeats). In response to oxidative stress the cells containing small 

repeats activated the MAPK/ERK pathway which led to cell survival, whereas 

those containing large repeats activated the MAPK/JNK pathway which led to 

apoptosis (Usuki et al., 2000; Usuki et al., 2008). This data reveals that in other 

cell types the expanded CTG repeats which are found in DM1 can disturb the 
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activation of signalling pathways. If serum deprivation in the DM1 LECs also 

causes stress to the cells which triggers aberrant activation of cell signalling 

pathways then this could cause the increased levels of cell death in SF medium. 

Therefore, the activation of downstream signalling pathways, and in particular the 

PI3K/Akt pathway, in DM1 LECs requires further investigation to elucidate the 

cause of increased levels of cell death when cultured in SF medium.  
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CHAPTER 5 

CELL SIGNALLING PATHWAYS IN DM1 

LENS EPITHELIAL CELLS  
 

5.1 Introduction 

 

 Growth factor activation of receptor tyrosine kinases (RTKs) results in the 

downstream activation of a number of different signalling cascades in the lens, 

such as the MAPK/ERK and PI3K/Akt cascades. Signalling cascades transduce 

signals from receptors to many possible biological responses in the cell, including 

growth, differentiation, survival and apoptosis. Some signalling cascades which 

are active in the lens, such as the MAPK/JNK and MAPK/p38 cascades, are only 

rarely activated by growth factor activation of RTKs and are instead mostly 

associated with activation under stress conditions, such as exposure to UV 

radiation. These pathways may be of particular importance to the processes of 

survival and apoptosis within the lens.  

  

5.1.1 The PI3K signalling pathway 

 The PI3K pathway plays roles in growth, proliferation and survival in 

many different cell types (see figure 5.1). PI3K is a heterodimeric protein 

composed of an 85 kDa regulatory subunit and a 110 kDa catalytic subunit. Src 

homology 2 (SH2) domains in the regulatory subunit interact with phosphorylated 

tyrosine residues of activated RTKs and result in stabilisation of the catalytic 

subunit. Through these interactions, PI3K is brought into close proximity to 

phosphoinositides in the plasma membrane where it catalyses the addition of 

phosphate groups to the 3’-OH of the inositol ring, preferentially producing 

phosphatidylinositol-3,4,5-trisphosphate (PIP3) from phosphatidylinositol-4,5-

bisphosphate (PIP2) (Franke, 2008). The conversion of PIP2 into PIP3 is 

negatively regulated by phosphatase and tensin homolog (PTEN). Pleckstrin 

homology domains in both Akt and phosphoinositide-dependent kinase 1 (PDK1) 

bind to PIP3 and are brought into close proximity where PDK1 can phosphorylate 

Akt at the threonine residue T308. Akt must first be phosphorylated at the serine 
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residue S473 by mammalian target of rapamycin (mTOR) complex 2 (mTORC2) 

before it can be fully activated by PDK1 and capable of greater levels of 

signalling. The mechanism by which mTORC2 is activated is unknown, although 

it is thought to also be downstream of PI3K as Akt S473 phosphorylation is 

stimulated by growth factors and inhibited by LY294002 and wortmannin, which 

are specific PI3K inhibitors (Sarbassov et al., 2005; Yang & Guan, 2007). There 

are three isoforms of Akt, known as Akt1-3. While Akt1 is ubiquitously expressed, 

Akt2 is found mostly in insulin sensitive tissues and Akt3 is most highly 

expressed in the brain and testis (Franke, 2008). Akt regulates cell survival in 

several different ways, but most notably by targeting the pro-apoptotic Bcl-2 

related protein, Bcl-2-antagonist of death (BAD), and preventing its activity (Song 

et al., 2005). Akt can also regulate protein synthesis by phosphorylating tuberous 

sclerosis complex 2 (TSC2) within the TSC2-TSC1 complex and inhibiting its 

activity, allowing the activation of mTOR complex 1 (mTORC1). mTORC1 

phosphorylates p70 S6 Kinase (p70S6K) which phosphorylates the ribosomal 

protein S6 and induces protein synthesis (Franke, 2008). Akt can also regulate cell 

proliferation via phosphorylation of downstream targets such as the cell cycle 

regulators p21Cip1/Waf1 and p27Kip1. Phosphorylation of these proteins prevents 

their localisation to the nucleus, which prevents them from inhibiting cell cycle 

progression and, therefore, increases cell proliferation (Manning & Cantley, 2007).  

 In bovine lenses, PI3K was found to be expressed and active throughout 

the lens, with highest activity in the LECs (Chandrasekher & Bazan, 2000). PI3K 

and Akt were also shown to be present in LECs from porcine lenses (Zatechka & 

Lou, 2002a). Inhibition of the PI3K/Akt pathway in quail LECs inhibited 

differentiation and was also shown to reduce survival in differentiated lens fibre 

cells, but not in LECs (Weber & Menko, 2006). Inhibiting the PI3K/Akt pathway 

has also been shown in separate studies to result in a block in proliferation and 

differentiation of rat LECs (Iyengar et al., 2006; Wang et al., 2009b). Activation 

of PI3K signalling was shown to play a role in both proliferation and survival in 

rabbit LECs and differentiation in chick LECs (Chandrasekher & Sailaja, 2003, 

2004). Signalling via PI3K was also shown to play a role in cell migration in 

human LECs (Jiang et al., 2006). These studies indicate that the PI3K/Akt 

pathway is involved in numerous biological responses in LECs including 

differentiation, migration, proliferation and survival. 
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Figure 5.1 – The PI3K/Akt signalling pathway. PI3K is recruited to tyrosine kinase domains 

of phosphorylated RTKs and is brought into close proximity to the membrane where it 

converts PIP2 to PIP3. PIP3 recruits Akt and PDK1 resulting in phosphorylation of Akt at 

T308 by PDK1. Akt must first be phosphorylated by mTORC2 at S473 before it can be fully 

activated by PDK1. Akt regulates many biological processes including protein synthesis via 

mTORC1 and p70S6K; survival via inhibition of the pro-apoptotic protein BAD; and 

proliferation via the cell cycle regulators p21Cip1/Waf1 and p27Kip1. The PI3K/Akt pathway is 

negatively regulated by the tumour suppressor protein PTEN which negatively regulates the 

conversion of PIP2 into PIP3. 

  

 

5.1.2 MAPK signalling pathways  

 Cell signalling via MAPK signalling pathways results in the activation of a 

MAPK, of which there are six distinct groups. The pathway leading to the 

activation of the MAPK ERK1/2 is one of the most characterised, along with c-

Jun NH2-terminal kinase (JNK) and p38. The remaining MAPKs are ERK3/4, 

ERK5 and ERK7/8, however, little information is known about the pathways that 

lead to their activation and therefore these will not be discussed. The three main 

MAPK signalling pathways are well characterised and the signalling cascades 
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consist of three sequentially activated kinases (summarised in figure 5.2). The 

MAPKs ERK1/2, JNK and p38 are activated by phosphorylation of both threonine 

and tyrosine residues within a conserved threonine-proline-tyrosine motif by a 

MAPK kinase (MAPKK, also known as MEK or MKK). The MAPKK itself is 

activated by a MAPK kinase kinase (MAPKKK), which are serine/threonine 

kinases. MAPKKKs are activated by phosphorylation and/or interactions with 

small GTP proteins. Activated MAPKs phosphorylate target substrates on serine 

and threonine residues, including transcription factors and other proteins or 

kinases. MAPK pathways are regulated by the opposing actions of phosphatases 

which deactivate kinases by removing phosphate groups (Krishna & Narang, 

2008). 

 

 

 

Figure 5.2 – A summary of the major MAPK signalling cascades. MAPK cascades are 

initiated by small GTPases and/or other protein kinases and are organised into three tiers: 

initially MAPKKKs are activated which lead to the phosphorylation and activation of 

MAPKKs, which in turn phosphorylate and activate MAPKs. The three major pathways are 

the ERK1/2 pathway, the JNK1/2/3 pathway and the p38α/β/γ/δ pathway, all of which are 

activated by various mitogens and external stimuli. The signalling pathways bring about a 

variety of biological responses including growth, proliferation and survival.  
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5.1.2.1 The MAPK/ERK signalling pathway 

 The MAPK/ERK pathway plays roles in proliferation, differentiation and 

survival in many different cell types (see figure 5.3). The MAPK/ERK pathway is 

most commonly initiated following recruitment of proteins to the membrane 

during RTK activation. Docking proteins such as GRB2 bind to the 

phosphorylated tyrosines of the receptor via SH2 domains. GRB2 recruits SOS 

via Src homology 3 (SH3) domains, enabling SOS to become activated and to 

subsequently activate the small membrane bound G protein Ras by the exchange 

of bound guanosine diphosphate (GDP) for GTP. G protein-coupled receptors 

(GPCRs) can also activate the MAPK/ERK pathway via Ras. Ras activates Raf 

and a cascade of kinase activation is initiated. Raf activates the MAPKKs 

MEK1/2, which activate ERK1/2 (Junttila et al., 2008). Activated ERK1/2 

translocate to the nucleus where they activate several transcription factors, such as 

c-Fos, Elk-1, c-Jun and c-Myc, which regulate the transcription of many genes 

involved in proliferation, differentiation and survival (Krishna & Narang, 2008). 

 In porcine LECs, ERK1/2, Raf-1 and MEK1/2 were all shown to be 

present and in a separate study ERK1/2 and MEK1/2 were shown to be expressed 

and active in human, bovine and rat LECs (Zatechka & Lou, 2002a; Li et al., 

2003). Inhibiting the MAPK/ERK pathway has been shown to result in a block in 

proliferation and differentiation of rat LECs (Lovicu & McAvoy, 2001; Iyengar et 

al., 2006; Wang et al., 2009b). Expression of a dominant-negative form of Ras in 

transgenic mice resulted in the development of smaller lenses due to inhibition of 

cell growth. A small increase in levels of apoptosis and a delay in differentiation 

were also observed (Xie et al., 2006). The activation of ERK in the transgenic 

mice was shown to be significantly reduced, whereas activation of Akt, JNK and 

p38 were not affected. This data reveals that signalling via Ras and the 

MAPK/ERK pathway is essential for cell proliferation and, to a lesser extent, for 

survival and differentiation (Xie et al., 2006). Signalling via the MAPK/ERK 

pathway, as well as via PI3K, was also shown to play a role in cell migration in 

human LECs via an increase in the activity of the matrix metalloproteinase, 

MMP-2 (Jiang et al., 2006). This data indicates that the MAPK/ERK pathway is 

involved in proliferation, differentiation, survival and migration in LECs. 
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Figure 5.3 – The MAPK/ERK signalling pathway. GRB2 binds to tyrosine kinase domains of 

phosphorylated RTKs and recruits and activates SOS, which activates Ras by the exchange 

of bound GDP for GTP. Ras activates Raf and a cascade of kinase activation is initiated. Raf 

activates the MAPKKs MEK1/2, which activate ERK1/2. Activated ERK1/2 translocate to 

the nucleus where they activate several transcription factors, such as c-Fos, Elk-1, c-Jun and 

c-Myc, which regulate the transcription of many genes involved in proliferation, 

differentiation and survival. 

 

 

5.1.2.2 The MAPK/JNK signalling pathway 

The MAPK/JNK pathway is strongly activated by cytokines, UV radiation, 

growth factor deprivation, DNA damaging agents and some growth factors and 

GPCRs (see figure 5.4). For this reason JNKs are also known as stress-activated 

protein kinases (SAPKs). Three genes encode forms of JNK, JNK1-3, and 

alternative splicing leads to ten different isoforms. While JNK1 and JNK2 are 

ubiquitously expressed, JNK3 expression is found only in the brain, heart and 

testis. JNK is activated by the MAPKKs, MKK4/7, which are activated by several 
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upstream kinases such as apoptosis signal-regulating kinase 1 (ASK1), MLK-3 

and MKKK1-4 (Krishna & Narang, 2008). The activation of JNK by cytokine 

receptors is mediated by the tumour necrosis factor receptor associated factor 

(TRAF) family of adaptor proteins. Scaffolding proteins known as JNK 

interacting proteins (JIPs) are thought to help organise the transduction of the 

signal through specific kinase cascades in response to different signals (Davis, 

2000). Many JNK substrates are transcription factors, such as c-Jun, ATF-2, Elk-1, 

c-Myc and p53, and the downstream activation of the transcription factor AP-1 

appears to be regulated by JNK activation following stress. JNK signalling is 

mostly involved in regulating apoptosis and survival. JNK has also been shown to 

target both pro- and anti-apoptotic members of the Bcl-2 family of proteins. The 

opposing effects of JNK signalling are thought to be mediated by the duration and 

magnitude of the signal, with prolonged activation leading to apoptosis and 

transient activation promoting survival (Krishna & Narang, 2008). 

 JNK was shown to be present in LECs from porcine lenses and in LECs 

from human, bovine and rat lenses JNK1/2 were expressed and active (Zatechka 

& Lou, 2002a; Li et al., 2003). The MAPK/JNK pathway is mostly activated 

under stress conditions and has been shown to be activated following exposure of 

human LECs to UV radiation (Bomser, 2002). A subsequent study showed that 

inhibition of the MAPK/JNK pathway following UV radiation resulted in 

increased cell death in human LECs (Long et al., 2004). JNK has also been shown 

to be activated by oxidative stress following addition of hydrogen peroxide to 

human LECs. Activation of JNK, and also of ERK1/2, was linked to cell cycle 

arrest via expression of the cell cycle regulator p21Cip1/Waf1, which is thought to 

help protect against DNA damage (Seomun et al., 2005). This data indicates that 

the MAPK/JNK pathway is primarily involved in survival in LECs.  

 

5.1.2.3 The MAPK/p38 signalling pathway 

 The MAPK/p38 pathway is activated by many of the same stimuli as the 

JNK pathway, i.e. environmental stresses, cytokines and some growth factors and 

GPCRs (see figure 5.4). There are four isoforms of p38, known as p38α,β,γ and δ, 

which are activated by different MAPKKs. All four isoforms are activated by 

MKK6 and all but p38β are activated by MKK3. MKK4/7, which activate the 

JNK pathway, can also activate p38, enabling crosstalk between the two pathways. 
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The MAPKKs are activated by several upstream kinases, including MTK1, 

MLK2/3 and ASK1. Activated p38 can move to the nucleus and activate 

transcription factors such as ATF-1/2/6, CHOP, p53 and Elk-1 and can also 

activate other protein kinases in the cytoplasm such as MNK1/2 and MK2/3. The 

wide range of downstream substrates results in a wide range of biological 

responses such as cell cycle inhibition, apoptosis, inflammatory responses, growth 

and differentiation (Krishna & Narang, 2008).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.4 – The MAPK/JNK and MAPK/p38 signalling pathways. The MAPK/JNK and 

MAPK/p38 signalling pathways are mostly activated by environmental stressors and 

cytokines which result in activation of upstream kinases, such as ASK-1, MKKK1-4, 

MLK2/3 and MTK1. The MAPKKs MKK4/7 and MKK3/6 are a ctivated and phosphorylate 

and activate JNK and p38 respectively. Activated JNK and p38 translocate to the nucleus 

where they activate several of the same transcription factors, such as ATF-2, Elk-1, c-Myc 

and p53 which regulate the transcription of many genes involved in apoptosis and survival. 

Activated p38 can also activate other kinases in the cytoplasm such as MNK1/2 and MK2/3 

which have roles in translation and stress and inflammatory responses. 
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 The MAPK/p38 pathway is mostly activated under stress conditions and 

has been shown to be activated following exposure of human LECs to UV 

radiation (Bomser, 2002). In porcine lenses, p38 was found to be present and 

active, with greater levels of active p38 being found in lenses subjected to osmotic 

stress (Zatechka & Lou, 2002a). p38 was also shown to be activated in porcine 

LECs treated with a Rho-associated protein kinase inhibitor and its activation was 

linked to an increase in αB-crystallin (Khurana et al., 2002). αB-crystallin was 

shown to localise to the leading edge of migrating porcine LECs which was 

dependent on its phosphorylation by p38 (Maddala & Rao, 2005). Activation of 

p38 was also shown to play a role in the pathway leading to cataract formation 

induced by mechanical stress in embryonic chick lenses via its downstream 

activation of Src kinase (Zhou & Menko, 2004). In a later study it was shown that 

signalling via p38 and Src kinase led to cataract formation due to apoptosis in 

LECs and a loss in cadherin junctions, leading to fibre cell disorganisation (Zhou 

et al., 2007). This data indicates that p38 could play a role in migration and 

apoptosis in LECs. 

 

5.1.3 The PLCγ pathway 

 A further cell signalling pathway which could play roles downstream of 

the growth factors known to be important in the lens is the PLCγ pathway (see 

figure 5.5). PLC is a class of enzymes which cleave phospholipids. There are 13 

mammalian isozymes of PLC, which are divided into six groups, known as PLCβ, 

γ, δ, ε, ζ and η. PLCγ is a subclass of PLC which is activated by receptor and non-

receptor tyrosine kinases. It contains two SH2 domains and an SH3 domain which 

enable it to be activated by the receptor and mediate interactions with other 

proteins (Kim et al., 2000). PLCγ can be phosphorylated and activated by the 

EGF receptor (EGFR), FGFR and PDGF receptor (PDGFR) and once activated it 

hydrolyses PIP2 to form two products: IP3 and DAG. IP3 binds to calcium 

channels on the membrane of the ER, known as IP3 receptors (IP3R), activating 

them and resulting in Ca2+ release and a subsequent rise in intracellular Ca2+ 

levels, whereas DAG remains in the plasma membrane. PKC can be activated by 

a combination of DAG, Ca2+ and a phospholipid such as phosphatidylserine. PKC 

is a family of serine/threonine kinases, which consists of 10 isozymes which are 

divided into three groups known as the conventional PKCs (PKCα, βI, βII and γ), 
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the novel PKCs (PKCδ, ε, η and θ) and the atypical PKCs (PKCζ and ι), based 

upon the composition of their regulatory domain (Newton, 2010). The regulatory 

domains control the sensitivity of different PKC isozymes to DAG, Ca2+ and 

phospholipids.  

 

 

 

Figure 5.5 – The PLC/PKC signalling pathway. PLCγ binds to tyrosine kinase domains of 

phosphorylated RTKs and is activated, enabling it to hydrolyse PIP2 to form two products: 

IP3 and DAG. IP3 binds to IP3Rs, which results in Ca2+ release and a subsequent rise in 

intracellular Ca 2+ levels, whereas DAG remains in the plasma membrane. DAG and Ca2+ 

activate PKC which plays roles in proliferation, differentiation and survival via interactions 

with the MAPK/ERK signalling pathway; the structure  of the actin cytoskeleton via 

interactions with MARCKS; and receptor desensitisation.  

 

 

 PKC can bind to many different substrates, such as EGFR, which results in 

desensitisation of the receptor; glycogen synthase kinase 3β (GSK-3β), which is 

inactivated by PKC; growth-associated protein 43 (GAP-43), which is specific to 

the nervous system and plays a role in neurite formation; Myristoylated alanine-
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rich protein kinase C substrate (MARCKS), which regulates the structure of the 

actin cytoskeleton; and Raf (Casabona, 1997). PKC activation of Raf activates the 

MAPK/ERK pathway and PLCγ itself can also activate the MAPK/ERK pathway 

via interactions between SOS and its SH3 domain. The PLCγ signalling pathway 

is involved in the processes of secretion, cell proliferation, growth and 

differentiation in many different cell types (Kim et al., 2000). 

 A study in human lenses found expression of PLCγ in LECs with the 

highest levels of expression in cells near the equator of the lens (Maidment et al., 

2004). Proliferation and differentiation are also highest at the equator of the lens, 

which could indicate a role for PLCγ in these processes. PKCα and γ were found 

in bovine LECs, whereas PKCα, γ, ι and ε were found in developing chick lenses 

and were most highly concentrated in the LECs (Gonzalez et al., 1993; Berthoud 

et al., 2000). Overexpression of PKCα and γ in rabbit LECs revealed a role for 

these proteins in the initiation of differentiation as the cells began to elongate and 

express αA- and αB-crystallins (Wagner & Takemoto, 2001). This data indicates a 

role for the PLCγ pathway in differentiation of LECs. 

 

5.1.4 Cross-talk between signalling pathways in the lens 

 Many of the signalling pathways described above result in activation of 

the same proteins and biological processes within a cell. Some signalling 

molecules have been shown to activate more than one pathway within a cell and 

activation of particular pathways can also result in opposing effects such as 

apoptosis and survival. This complexity is the result of cross-talk between 

pathways and the regulation of signal transduction that occurs within cells 

including mechanisms such as the duration and strength of the signal; scaffolding 

proteins; subcellular localisation; and the presence of different isoforms within the 

cascade (Krishna & Narang, 2008). A study investigating the intercommunication 

and cross-talk between pathways in the lens showed that inhibition of the 

MAPK/ERK and MAPK/p38 cascades resulted in an increase in PI3K/Akt 

signalling, most likely due to signalling via Ras. Inhibition of Ras suppressed 

PI3K activation but stimulated the MAPK cascades possibly via the action of p21-

activated kinase. Inhibition of MEK downregulated signalling via ERK and JNK 

when stimulated by bFGF and downregulated signalling via p38 when stimulated 

by osmotic stress. Inhibiting p38 suppressed ERK but stimulated JNK and 
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downregulation of PKC suppressed PI3K and stimulated ERK (Zatechka & Lou, 

2002b). This data highlights the complexity of the signalling network. 

Communication between the signalling systems results in particular pathways 

being upregulated to compensate for the loss of others. It also demonstrates that a 

reduction in a particular component of a given signalling pathway could result in 

the transduction of a signal down a different signalling cascade, which could have 

different effects to those which would usually occur, e.g. apoptosis instead of 

survival. 

 

5.1.5 Signalling pathways in DM1 

 The cell signalling pathways which transduce signals from external stimuli 

into biological responses within the cell are highly complex. Disturbances in the 

regulation of cell signalling pathways are responsible for many diseases from 

cancer to neurological diseases. Studies have shown that the expanded CTG 

repeats in DMPK may result in altered activation of cell signalling pathways 

(Usuki et al., 2000; Usuki et al., 2008; Beffy et al., 2010). Mouse myoblasts 

transfected with DMPK containing small repeats (5 repeats) and large repeats (160 

repeats) were shown to activate different signalling pathways in response to 

oxidative stress caused by the addition of 0.3 µM methylmercury. Cells 

transfected with DMPK containing small repeats activated the MAPK/ERK 

pathway, in comparison to the MAPK/JNK pathway activated in cells transfected 

with DMPK containing large repeats. This difference in activated signalling 

pathways resulted in apoptotic cell death in the cells activating the MAPK/JNK 

pathway and survival in those that activated the MAPK/ERK pathway (Usuki et 

al., 2000). It was subsequently shown that the intracellular concentration of ROS 

accumulated faster in cells expressing larger repeats and that ASK1 was activated 

much earlier and to a greater extent in cells expressing large repeats compared to 

small repeats (Usuki et al., 2008). ASK1 is found upstream of both the 

MAPK/JNK and MAPK/p38 pathways, which are both involved in cell survival 

and apoptosis. The aberrant activation of signalling pathways has also been 

observed in human myoblasts from congenitally affected DM1 foetuses. When the 

DM1 cells were treated with differentiating medium, fewer cells were shown to 

differentiate compared to controls. Differentiation of myoblasts is dependent on 

the activation of the MAPK/p38 pathway and the inactivation of the MAPK/ERK 
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pathway, however, in DM1 myoblasts activation of p38 in response to 

differentiating medium was 50% lower than controls and activation of both MEK 

and ERK1/2 were found to be markedly higher (Beffy et al., 2010). These studies 

indicate that the regulation of cell signalling pathways in DM1 cells may be 

disturbed. 

 Under conditions of serum deprivation, DM1 LECs have been shown to 

have significantly increased levels of apoptosis, despite also being shown to 

release signalling factors capable of significantly increasing growth and/or 

survival in the non-virally transformed cell line, FHL124 (see figures 3.15 and 

4.5). This data would indicate that their responses to these signalling factors are 

somehow impaired. The DM1 LECs may be activating different pathways in 

response to the factors released which could result in the alternative outcome of 

apoptosis. Alternatively, the DM1 LECs may be activating pathways which 

initiate apoptosis in response to the stress caused by serum deprivation and may 

be releasing factors in an attempt to counteract this. Investigating the activation of 

pathways involved in growth, proliferation, survival and apoptosis in DM1 LECs 

may help to elucidate the cause of increased levels of cell death during serum 

deprivation and also of reduced population doubling times when compared to 

control LECs.   

 

5.2 Aims 

 

 The aim of this chapter is to elucidate the signalling pathways which are 

active in the human DM1 lens epithelial cell lines. These will be analysed during 

serum deprivation in order to establish pathways activated by autocrine signalling 

and during normal culture conditions (medium supplemented with 10% FCS). The 

roles that these pathways play in cell growth, proliferation, survival and apoptosis 

will also be investigated. Differences in the activation of particular pathways 

between DM1 and control lens cells could help to identify the cause of reduced 

population doubling times and the increased levels of cell death following serum 

deprivation in DM1 LECs. 
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5.3 Results 

 
5.3.1 Signalling pathways activated in DM1 lens epithelial cells 

cultured in SF medium 

 To establish which downstream signalling pathways are active during 

autocrine signalling, levels of the activated signalling molecules pAkt, pERK, 

pJNK, pp38 and pPKC were measured in CCat1 and DMCat1 cells in response to 

serum deprivation. Activated protein levels were measured throughout the culture 

period shown in figure 3.9 using Western blotting.  

 Levels of pAkt in both cell lines decreased during the culture period (see 

figure 5.6). At all but one time point (day 57) the DMCat1 cells had greater levels 

of pAkt compared to CCat1. Average levels revealed significantly greater levels 

of pAkt in DMCat1 cells compared to CCat1 (p < 0.01). 

 Levels of pERK were detected throughout the culture period in DMCat1 

cells, however, after 43 days in culture pERK was undetectable in CCat1 cells, 

despite a relatively stable expression of total ERK (see figure 5.7). Until that point 

the two cell types had similar levels of pERK and average levels throughout the 

culture period did not reveal a significant difference despite DMCat1 having 

greater levels. 

 Levels of pJNK in both cell lines decreased during the culture period (see 

figure 5.8). At each time point the DMCat1 cells had much greater levels of pJNK 

compared to CCat1. Average levels revealed that DMCat1 had significantly 

greater levels of pJNK (p < 0.01). 

 Levels of pp38 decreased in both cell types during the culture period and 

could not be detected at later passages (see figure 5.9). There was no significant 

difference in the levels of pp38 between CCat1 and DMCat1 cells. 

 Levels of pPKC and PKC varied during the culture period in both CCat1 

and DMCat1 cells (see figure 5.10). After 36 days in culture, the levels of both 

pPKC and PKC were barely detectable in CCat1 cells, whereas both were still 

detected in DMCat1 cells. Average levels throughout the culture period reveal 

greater levels of pPKC in DMCat1 cells, however, this was not significant. 

 Differences in the levels of activated signalling molecules in DMCat1 cells 

compared to CCat1 cells are summarised in table 5.1. 
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Figure 5.6 – Activation of Akt in DM1 lens epithelial cells cultured in SF medium. (a) An 

example Western blot showing levels of pAkt and total Akt from a selection of samples. β 

actin is included as a loading control. (b) Bands were analysed densitometrically and levels of 

pAkt were normalised to total Akt. (c) Average pAkt levels show that DMCat1 has 

significantly greater levels of pAkt compared to CCat1 (n = 13, data expressed as mean ± 

SEM of thirteen independent experiments, statistical analysis was performed by Student’s T 

test, ** p < 0.01 relative to CCat1).   
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Figure 5.7 – Activation of ERK in DM1 lens epithelial cells cultured in SF medium. (a) An 

example Western blot showing levels of pERK and total ERK from a selection of samples. β 

actin is included as a loading control. (b) Bands were analysed densitometrically and levels of 

pERK were normalised to total ERK. (c) Average pERK levels show that DMCat1 has 

greater levels of pERK, but this is not significant (n = 13, data expressed as mean ± SEM of 

thirteen independent experiments, statistical analysis was performed by Student’s T test). 
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Figure 5.8 – Activation of JNK in DM1 lens epithelial cells cultured in SF medium. (a) An 

example Western blot showing levels of pJNK and total JNK from a selection of samples. β 

actin is included as a loading control. (b) Bands were analysed densitometrically and levels of 

pJNK were normalised to total JNK. (c) Average pJNK levels show that DMCat1 has 

significantly greater levels of pJNK compared to CCat1 (n = 7, data expressed as mean ± 

SEM of seven independent experiments, statistical analysis was performed by Student’s T 

test, ** p < 0.01 relative to CCat1).   
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Figure 5.9 – Activation of p38 in DM1 lens epithelial cells cultured in SF medium. (a) An 

example Western blot showing levels of pp38 and total p38 from a selection of samples. β 

actin is included as a loading control. (b) Bands were analysed densitometrically and levels of 

pp38 were normalised to total p38. (c) Average pp38 levels reveal no significant difference 

between CCat1 and DMCat1 cells (n = 13, data expressed as mean ± SEM of thirteen 

independent experiments, statistical analysis was performed by Student’s T test). 
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Figure 5.10 – Activation of PKC in DM1 lens epithelial cells cultured in SF medium. (a) An 

example Western blot showing levels of pPKC and total PKC from a selection of samples. β 

actin is included as a loading control. (b) Bands were analysed densitometrically and levels of 

pPKC were normalised to total PKC. (c) Average pPKC levels show that DMCat1 has 

greater levels of pPKC compared to CCat1 but this is not significant (n = 7, data expressed 

as mean ± SEM of seven independent experiments, statistical analysis was performed by 

Student’s T test).   
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5.3.2 Signalling pathways activated in DM1 lens epithelial cells 

cultured in medium supplemented with 10% FCS 

 To establish which signalling pathways are active under normal culture 

conditions, levels of the activated signalling molecules pAkt, pERK, pJNK, pp38 

and pPKC were measured in CCat1 and DMCat1 cells grown in medium 

supplemented with 10% FCS, throughout the culture period shown in figure 3.9 

using Western blotting. 

 As was seen with cells cultured in SF medium, the levels of pAkt in CCat1 

cells decreased during the culture period, however, this was not as noticeable in 

DMCat1 cells (see figure 5.11). At all but one time point (85 days) the DMCat1 

cells had greater levels of pAkt. Average levels throughout the culture period 

reveal significantly greater levels in DMCat1 cells compared to CCat1 cells, 

which was also observed in SF medium (p < 0.01). 

 Levels of pERK and ERK varied during the culture period in both cell 

types (see figure 5.12). After 57 days in culture, pERK was rarely detected in 

CCat1 cells, whereas pERK was found at each time point in DMCat1 cells. 

Average levels throughout the culture period show that DMCat1 cells have 

significantly greater levels of pERK compared to CCat1 cells (p < 0.01).  

 Levels of pJNK were significantly greater in DMCat1 cells compared to 

CCat1 cells (p < 0.01) (see figure 5.13). This was also observed in cells cultured 

in SF medium, however, activation of JNK appeared to be lower in both cell types 

when cultured in medium supplemented with 10% FCS. After 43 days in culture, 

activation of JNK was no longer seen in CCat1 cells, whereas pJNK was detected 

at each time point in DMCat1 cells. 

 In medium supplemented with 10% FCS, levels of pp38 were very low 

(see figure 5.14). The levels were greater at earlier time points in the culture 

period, which was also observed in SF medium, however, levels appeared to be 

much lower than those observed in SF medium. There was no difference in levels 

of pp38 between the two cell types. 

 In medium supplemented with 10% FCS, levels of pPKC were lower in 

DMCat1 cells compared to CCat1 cells, however, this was not significant (see 

figure 5.15). This was the opposite of what was observed in cells following 

addition of SF medium. Differences in the levels of activated signalling molecules 

in DMCat1 cells compared to CCat1 cells are summarised in table 5.1. 
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Figure 5.11 – Activation of Akt in DM1 lens epithelial cells cultured in medium 

supplemented with 10% FCS. (a) An example Western blot showing levels of pAkt and total 

Akt from a selection of samples. β actin is included as a loading control. (b) Bands were 

analysed densitometrically and levels of pAkt were normalised to total Akt. (c) Average pAkt 

levels show that DMCat1 has significantly greater levels of pAkt compared to CCat1 (n = 13, 

data expressed as mean ± SEM of thirteen independent experiments, statistical analysis was 

performed by Student’s T test, ** p < 0.01 relative to CCat1).   
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Figure 5.12 – Activation of ERK in DM1 lens epithelial cells cultured in medium 

supplemented with 10% FCS. (a) An example Western blot showing levels of pERK and 

total ERK from a selection of samples. β actin is included as a loading control. (b) Bands 

were analysed densitometrically and levels of pERK were normalised to total ERK. (c) 

Average pERK levels show that DMCat1 has significantly greater levels of pERK compared 

to CCat1 (n = 13, data expressed as mean ± SEM of thirteen independent experiments, 

statistical analysis was performed by Student’s T test, ** p < 0.01 relative to CCat1). 
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Figure 5.13 – Activation of JNK in DM1 lens epithelial cells cultured in medium 

supplemented with 10% FCS. (a) An example Western blot showing levels of pJNK and total 

JNK from a selection of samples. β actin is included as a loading control. (b) Bands were 

analysed densitometrically and levels of pJNK were normalised to total JNK. (c) Average 

pJNK levels show that DMCat1 has significantly greater levels of pJNK compared to CCat1 

(n = 13, data expressed as mean ± SEM of thirteen independent experiments, statistical 

analysis was performed by Student’s T test, ** p < 0.01 relative to CCat1).   
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Figure 5.14 – Activation of p38 in DM1 lens epithelial cells cultured in medium 

supplemented with 10% FCS. (a) An example Western blot showing levels of pp38 and total 

p38 from a selection of samples. β actin is included as a loading control. (b) Bands were 

analysed densitometrically and levels of pp38 were normalised to total p38. (c) Average pp38 

levels reveal no significant difference between CCat1 and DMCat1 cells (n = 13, data 

expressed as mean ± SEM of thirteen independent experiments, statistical analysis was 

performed by Student’s T test). 
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Figure 5.15 – Activation of PKC in DM1 lens epithelial cells cultured in medium 

supplemented with 10% FCS. (a) An example Western blot showing levels of pPKC and total 

PKC from a selection of samples. β actin is included as a loading control. (b) Bands were 

analysed densitometrically and levels of pPKC were normalised to total PKC. (c) Average 

pPKC levels show that DMCat1 has lower levels of pPKC compared to CCat1 but this is not 

significant (n = 13, data expressed as mean ± SEM of thirteen independent experiments, 

statistical analysis was performed by Student’s T test).   
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Signalling molecule SF medium
Medium supplemented 
with 10% FCS

pAkt ↑** ↑**

pERK ↑ ↑**

pJNK ↑** ↑**

pp38 − −

pPKC ↑ ↓

Signalling molecule SF medium
Medium supplemented 
with 10% FCS

pAkt ↑** ↑**

pERK ↑ ↑**

pJNK ↑** ↑**

pp38 − −

pPKC ↑ ↓  
 

Table 5.1 – Differences in levels of activated signalling molecules in DMCat1 cells compared 

to CCat1 cells.  = a significant increase (p < 0.01), = an increase, = no difference, 

= a decrease. 

 

 

5.3.3 Inhibition of signalling pathways in DM1 lens epithelial cells 

cultured in SF medium 

 In order to establish the role of particular signalling pathways in autocrine 

signalling in DM1 lens epithelial cells, inhibitors were applied to CCat1 and 

DMCat1 cells cultured in SF medium for 48 hours. 

 Signalling via the PI3K/Akt signalling pathway was inhibited using the 

PI3K inhibitor, LY294002 (25 µM) (see figure 5.16). A significant reduction in 

growth was observed in both cell lines following addition of the inhibitor (p < 

0.01), however, levels of cell growth were significantly lower in DMCat1 cells 

compared to CCat1 (p < 0.01). Despite the significant reduction in cell growth, no 

change was seen in levels of cell death measured using the LDH assay in CCat1 

cells. Although levels of cell death were elevated in DMCat1 cells, this was not 

found to be statistically significant. Signalling via the MAPK/ERK signalling 

pathway was inhibited using the MEK1 inhibitor, PD98059 (10 µM) (see figure 

5.17). Neither cell growth nor cell death was significantly affected in either cell 

line following addition of the inhibitor. Signalling via the MAPK/JNK signalling 

pathway was inhibited using the JNK inhibitor, SP600125 (1 µM and 10 µM) (see 

figure 5.18). Levels of cell growth and death were not affected in either CCat1 or 

DMCat1 cells following addition of SP600125 (1 µM), however, a significant 

reduction in growth was observed in CCat1 cells following addition of SP600125 

(10 µM) (p < 0.05). Although a reduction in growth was observed in CCat1 cells 

at this concentration, no significant effect was seen in levels of cell death. 
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Figure 5.16 - The effect of PI3K inhibition on DM1 lens epithelial cells over 48 hours. (a) Cell 

growth was measured by calculating the total protein (µg/ml) in cell lysates after 48 hours. 

Protein values were normalised to the T = 0 value for each cell line and averages were 

calculated. Addition of LY294002 (25 µM) resulted in a significant decrease in cell growth in 

both CCat1 and DMCat1 cells, however, DMCat1 had significantly lower levels of cell 

growth following LY294002 addition compared to CCat1 (n = 4, data expressed as mean ± 

SEM of four independent experiments, statistical analysis was performed by one-way 

ANOVA with Tukey’s test, ** p < 0.01 relative to the relevant DMSO control, # # p < 0.01 

relative to CCat1 treated with LY294002 (25 µM)). (b) LDH release was measured to analyse 

cell death and levels were normalised to the total protein levels at T = 0. Addition of 

LY294002 resulted in an increase in cell death in DMCat1 cells but this was not statistically 

significant (n = 3, data expressed as mean ± SEM of three independent experiments, 

statistical analysis was performed by one-way ANOVA with Tukey’s test). 
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Figure 5.17 - The effect of MEK1 inhibition on DM1 lens epithelial cells over 48 hours. (a) 

Cell growth was measured by calculating the total protein (µg/ml) in cell lysates after 48 

hours. Protein values were normalised to the T = 0 value for each cell line and averages were 

calculated. Addition of PD98059 (10 µM) had no effect on cell growth (n = 3, data expressed 

as mean ± SEM of three independent experiments, statistical analysis was performed by one-

way ANOVA with Tukey’s test). (b) LDH release was measured to analyse cell death and 

levels were normalised to the total protein levels at T = 0. Addition of PD98059 had no 

significant effect on cell death (n = 3, data expressed as mean ± SEM of three independent 

experiments, statistical analysis was performed by one-way ANOVA with Tukey’s test). 
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Figure 5.18 - The effect of JNK inhibition on DM1 lens epithelial cells over 48 hours. (a) Cell 

growth was measured by calculating the total protein (µg/ml) in cell lysates after 48 hours. 

Protein values were normalised to the T = 0 value for each cell line and averages were 

calculated. Addition of SP600125 (1 µM) had no effect on cell growth, however, addition of 

SP600125 (10 µM) significantly reduced growth in CCat1 cells (n = 3, data expressed as 

mean ± SEM of three independent experiments, statistical analysis was performed by one-

way ANOVA with Tukey’s test, * p < 0.05 relative to CCat1 DMSO control). (b) LDH release 

was measured to analyse cell death and levels were normalised to the total protein levels at T 

= 0. Addition of SP600125 (1 µM and 10 µM) had no effect on cell death (n = 3, data 

expressed as mean ± SEM of three independent experiments, statistical analysis was 

performed by one-way ANOVA with Tukey’s test). 
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To verify that LY294002, PD98059 and SP600125 inhibited signalling 

downstream of their targets, Western blots were performed on protein samples 

collected 24 hours after addition of the inhibitors. Levels of pAkt were shown to 

be markedly reduced following addition of LY294002 (25 µM) as were levels of 

pERK following addition of PD98059 (10 µM), however, levels of pJNK were 

not reduced by SP600125 (1 µM and 10 µM) at either concentration (see figure 

5.19). At the greater concentration, SP600125 (10 µM) was actually shown to 

increase levels of pJNK. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 – The effects of PI3K, MEK1 and JNK inhibition on downstream signalling in 

DM1 lens epithelial cells after 24 hours. Levels of (a) pAkt (b) pERK1/2 and (c) pJNK were 

examined by Western blotting following addition of LY294002 (25 µM), PD98059 (10 µM) 

and SP600125 (1µM and 10 µM) respectively. Bands were analysed densitometrically and 

graphs show the activated protein levels normalised to their total protein control. Addition of 

LY294002 and PD98059 inhibited activation of Akt and ERK1/2 respectively in both CCat1 

and DMCat1 cells, however, SP600125 failed to inhibit the activation of JNK. 
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Figure 5.19 – see previous page for figure legend. 
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5.3.3.1 Apoptotic cell death following inhibition of signalling 

pathways in DM1 lens epithelial cells cultured in SF medium  

 Inhibition of the PI3K/Akt pathway caused a significant reduction in cell 

growth in both CCat1 and DMCat1 cells, however, no increase in cell death as 

measured using the LDH assay was observed in CCat1 cells and the increase in 

DMCat1 cells was not significant. We therefore used the more sensitive technique 

of the TUNEL assay to look specifically at levels of apoptotic cell death. The 

inhibitors, LY294002 (25 µM) and PD98059 (10 µM) were applied to CCat1 and 

DMCat1 cells for 24 hours before levels of apoptotic cell death were analysed. 

Inhibition of the PI3K/Akt pathway using LY294002 resulted in a 

significant increase in the level of apoptotic cell death in DMCat1 cells from 

17.0% ± 0.9% in the DMSO control (2.5 µl/ml) to 30.9%  ± 3.8% in LY294002 (p 

< 0.05) (see figure 5.20). Interestingly, there was no difference in the levels of 

apoptotic cell death in CCat1 cells with 12.2% ± 4.7% apoptotic cells in the 

DMSO control compared to 11.5% ± 4.1% in LY294002. This data indicates that 

inhibition of the PI3K/Akt pathway using LY294002 does increase levels of cell 

death in DMCat1 cells and that cell death occurs via apoptosis, however, it does 

not increase levels of cell death in CCat1 cells.  

Levels of apoptotic cell death were also analysed following inhibition of 

the MAPK/ERK pathway using PD98059 (see figure 5.21). No significant 

difference in levels of apoptotic cell death was observed between the DMSO 

control (1 µl/ml) and PD98059 in CCat1 or DMCat1 cells. Apoptotic cell death 

did increase in CCat1 cells following addition of PD98059 from 10.9% ± 2.5% to 

17.4% ± 2.8%, however, the variability in the samples did not make this 

significant. In DMCat1 cells there were 16.7% ± 0.7% apoptotic cells in the 

DMSO control compared to 15.4% ± 2.4% in PD98059. 

 

 

 

 

 

 

 

 



 180

   

 

 

 

 

 

 

 

 
Figure 5.20 – Apoptotic cell death in DM1 lens epithelial cells following PI3K inhibition. 

CCat1 and DMCat1 cells were treated with DMSO (2.5 µl/ml) or LY294002 (25 µM) for 24 

hours. (a) Fluorescent micrographs showing nuclei labelled with DAPI (blue), apoptotic cells 

labelled using a TUNEL assay (green) and F-actin labelled with Texas red-X phalloidin (red) 

(bar = 200 µm). (b) Analysis of TUNEL positive apoptotic cells shows that addition of 

LY294002 significantly increases apoptosis in DMCat1 cells (n = 3, data expressed as mean ± 

SEM of three independent experiments, statistical analysis was performed by Student’s T 

test, * p < 0.05 relative to DMSO control and CCat1 cells treated with LY294002). 
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Figure 5.21 – Apoptotic cell death in DM1 lens epithelial cells following MEK1 inhibition. 

Cells were treated with DMSO (1 µl/ml) or PD98059 (10 µM) for 24 hours. (a) Fluorescent 

micrographs of cells showing nuclei labelled with DAPI (blue), apoptotic cells labelled using 

a TUNEL assay (green) and F-actin labelled with Texas red-X phalloidin (red) (bar = 200 

µm). (b) Analysis of TUNEL positive apoptotic cells shows that addition of PD98059 has no 

significant effect on levels of apoptotic cell death (n = 3, data expressed as mean ± SEM of 

three independent experiments, statistical analysis was performed by Student’s T test). 
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5.3.4 Investigation of the Akt pathway in DM1 lens epithelial cells 

The Akt pathway appears to be critical for survival in DM1 lens epithelial 

cells and was therefore investigated in more detail.  

The PI3K activator, 740 Y-P (50 mg/ml), was applied to CCat1 and 

DMCat1 cells for 48 hours (see figure 5.22). A minor increase in protein levels 

was observed in DMCat1 cells indicating a slight increase in growth, however, the 

increase was not significant. No difference in protein levels was observed in 

CCat1 cells. LDH release was also measured and revealed a significant increase in 

cell death in both CCat1 and DMCat1 cells (p < 0.01).  

 Levels of the negative regulator of the PI3K/Akt pathway, PTEN, were 

analysed in DMCat1 and CCat1 cells following addition of SF medium 

throughout the culture period shown in figure 3.9 (see figure 5.23). Levels of 

PTEN remained relatively consistent throughout the culture period in DMCat1 

cells, however, levels of PTEN increased considerably in CCat1 cells. Average 

levels of PTEN throughout the culture period revealed significantly lower levels 

of PTEN in DMCat1 cells compared to CCat1 cells (p < 0.01).  

 In order to establish whether DM1 LECs do have lower levels of PTEN or 

whether the previous result was just a consequence of the increase in levels seen 

in the control, the levels of PTEN were analysed in all eight of the cell lines at 

early time points (between days 29 and 36 of the culture period shown in figure 

3.9) during the culture period (see figure 5.24). The data revealed that CCat1 cells 

actually had the lowest level of PTEN compared to the other control cell lines and 

that it was the only cell line with similar levels of PTEN to the DM1 cell lines. 

Average levels revealed that DM1 cell lines had lower levels of PTEN compared 

to the controls, however, this was not statistically significant due to the variability 

in the cell lines. 
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Figure 5.22 - The effect of Akt activation on DM1 lens epithelial cells over 48 hours. (a) Cell 

growth was measured by calculating the total protein (µg/ml) in cell lysates after 48 hours. 

Protein values were normalised to the T = 0 value for each cell line and averages were 

calculated. Addition of 740 Y-P (50 ng/ml) had no significant effect on cell growth (n = 4, 

data expressed as mean ± SEM, statistical analysis was performed by one-way ANOVA with 

Tukey’s test). (b) LDH release was measured to analyse cell death and levels were 

normalised to the total protein levels at T = 0. Addition of 740 Y-P significantly increased cell 

death in both CCat1 and DMCat1 cells (n = 4, data expressed as mean ± SEM, statistical 

analysis was performed by one-way ANOVA with Tukey’s test, ** p < 0.01 relative to SF 

control). 
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 Figure 5.23 – Levels of PTEN in DM1 lens epithelial cells cultured in SF medium. (a) An 

example Western blot showing levels of PTEN from a selection of samples. β actin is included 

as a loading control. (b) Bands were analysed densitometrically and levels of PTEN were 

normalised to β actin. (c) Average PTEN levels revealed that DMCat1 cells had significantly 

lower levels of PTEN compared to CCat1 cells (n = 13, data expressed as mean ± SEM of 

thirteen independent experiments, statistical analysis was performed by Student’s T test, ** 

p < 0.01 relative to CCat1). 
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Figure 5.24 – Levels of PTEN in DM1 lens epithelial cells. An example Western blot is shown 

with β actin included as a loading control. Bands were analysed densitometrically and levels 

of PTEN were normalised to β actin. PTEN levels were greater in the majority of the control 

cell lines, however, this was not statistically significant (n = 3, data expressed as mean ± SEM 

of three independent experiments, statistical analysis was performed by Student’s T test). 

 

 

5.3.4.1 Protein synthesis downstream of Akt in DM1 lens 

epithelial cells 

 Akt activates mTORC1, which is a key regulator of protein synthesis (see 

figure 5.1). The signalling pathway downstream of Akt which is involved in 

protein synthesis was inhibited using the mTOR inhibitor, Rapamycin (25 nM and 

50 nM), which blocks the activity of mTORC1 (see figure 5.25). Levels of cell 

growth decreased in both CCat1 and DMCat1 cells following addition of the 

inhibitor, however, neither was statistically significant. Levels of cell death were 

not significantly affected in either CCat1 or DMCat1 cells following addition of 

Rapamycin (25 nM and 50 nM). 
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Figure 5.25 - The effect of mTOR inhibition on DM1 lens epithelial cells over 48 hours. (a) 

Cell growth was measured by calculating the total protein (µg/ml) in cell lysates after 48 

hours. Protein values were normalised to the T = 0 value for each cell line and averages were 

calculated. Addition of Rapamycin (25 nM and 50 nM) had no significant effect on cell 

growth (n = 3, data expressed as mean ± SEM of three independent experiments, statistical 

analysis was performed by one-way ANOVA with Tukey’s test). (b) LDH release was 

measured to analyse cell death and levels were normalised to the total protein levels at T = 0. 

Addition of Rapamycin (25 nM and 50 nM) had no effect on cell death (n = 3, data expressed 

as mean ± SEM of three independent experiments, statistical analysis was performed by one-

way ANOVA with Tukey’s test). 
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Figure 5.26 – Levels of pp70S6K in DM1 lens epithelial cells cultured in SF medium. (a) An 

example Western blot showing levels of pp70S6K from a selection of samples. β actin is 

included as a loading control. (b) Bands were analysed densitometrically and levels of 

pp70S6K were normalised to β actin. (c) Average pp70S6K levels show that DMCat1 has 

greater levels of pp70S6K compared to CCat1, however, this is not statistically significant (n 

= 13, data expressed as mean ± SEM of thirteen independent experiments, statistical analysis 

was performed by Student’s T test). 
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 Levels of activated p70S6K (pp70S6K), which is found downstream of 

mTORC1, were analysed in DMCat1 and CCat1 cells following addition of SF 

medium throughout the culture period shown in figure 3.9 (see figure 5.26). 

Levels of pp70S6K were higher at early time points during the culture period. 

After 64 days pp70S6K could no longer be detected in CCat1 cells, however, low 

levels were still found in DMCat1 cells. Average levels throughout the culture 

period revealed that DMCat1 had greater levels of pp70S6K, however, the 

difference was not significant. 

 To confirm that inhibition of mTORC1 using Rapamycin inhibited the 

activation of p70S6K, levels of pp70S6K in CCat1 and DMCat1 cells treated with 

Rapamycin (50 nM) for 24 hours were analysed using Western blotting. 

Rapamycin completely inhibited the activation of p70S6K (see figure 5.27). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.27 – Levels of pp70S6K in DM1 lens epithelial cells following inhibition of mTOR. 

Protein levels of pp70S6K were examined by Western blotting and analysed 

densitometrically. Graph shows the activated protein levels normalised to β actin. Addition 

of Rapamycin (50 nM) for 24 hours completely inhibited the activation of p70S6K. 
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5.4 Discussion 

 

 Analysis of activated signalling pathways in both SF medium and medium 

supplemented with 10% FCS revealed not only differences between the two cell 

lines, but also differences during the culture period within each cell line (see 

figures 5.6-5.15). Interestingly, there was relatively little difference in levels of 

activated proteins between cells cultured in SF medium and those cultured in 

medium supplemented with 10% FCS. Under both conditions the DM1 cell line, 

DMCat1, had significantly greater levels of activated Akt and JNK compared to 

the control cell line, CCat1. Levels of pERK were also greater in DMCat1 cells 

under both conditions, however, the difference was only significant in medium 

supplemented with 10% FCS. In SF medium, levels of pPKC were greater in 

DMCat1 cells compared to CCat1 cells, but this was not significant. The opposite 

was found in medium supplemented with 10% FCS, as levels of pPKC were lower 

in DMCat1 cells compared to CCat1 cells, but this was also not significant. No 

difference was found between pp38 levels in CCat1 and DMCat1 cells under 

either condition. Surprisingly, the pattern of activated protein levels appeared 

similar between the two culture conditions (see figures 5.7 and 5.12 for an 

example). Only active levels of p38 and JNK appeared to be reduced when 

cultured in medium supplemented with 10% FCS compared to SF medium. As 

p38 and JNK are involved in stress signalling it is likely that levels would be 

higher in the absence of added serum as this has been shown to induce apoptosis 

(see figure 3.15). 

 In the majority of cases, levels of both activated protein and total protein 

decreased during the culture period despite levels of β actin remaining relatively 

stable. This could indicate that the expression of cell signalling proteins decreases 

as the cells age. Expression of other proteins, such as the receptors known to 

activate the signalling pathways that have been analysed, including FGFR-2 and 

IGFR-1, have previously been shown to decrease in the human lens in later life 

(Bhuyan et al., 2000). The response of LEC explants to bFGF was also shown to 

reduce with age in rats, with those from older rats undergoing a slower 

progression through the differentiation process in response to bFGF (Lovicu & 

McAvoy, 1992). Reduced expression of signalling molecules in our cell lines 

could therefore result from a reduction in expression of the receptors which 
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trigger their activation or could reveal a general trend in protein expression which 

reduces with age. Studies analysing gene expression in the human lens have 

revealed that epithelial cells from lenses with age-related cataract have 

significantly reduced gene expression compared to those of clear lenses (Zhang et 

al., 2002; Ruotolo et al., 2003). The first study used RT-PCR to show that 

expression of ribosomal proteins was reduced in LECs from lenses with age-

related cataract. Ribosomal proteins are required for the translation of mRNA into 

proteins, indicating that protein synthesis would also be reduced in cataractous 

lenses (Zhang et al., 2002). A further study used microarrays to analyse 

expression of over 4000 genes and found that 262 were downregulated in LECs 

from lenses with age-related cataract. Interestingly, the largest class of genes 

found to be downregulated were those involved in signal transduction (Ruotolo et 

al., 2003). A reduction in protein expression can therefore be linked to both 

ageing and cataract development. Despite this, the CCat1 cells which showed the 

greatest variability in levels of activated proteins with some being undetectable 

halfway through the culture period, had relatively constant growth rates 

throughout culture, indicating that a reduction in cell signalling did not affect the 

ability to proliferate (see figure 3.9a). This data highlights the variability in cell 

lines and the requirement to analyse levels throughout the culture period, as is 

seen here, in order to obtain the most accurate results. 

 Signalling via the PI3K/Akt pathway appears to be critical to the survival 

of DMCat1 cells. Firstly, the DM1 cells release factors capable of activating the 

PI3K/Akt pathway in FHL124 cells (see figure 4.7), secondly, DMCat1 cells have 

been shown to have significantly greater levels of pAkt when compared to CCat1 

cells (see figures 5.6 and 5.11), and thirdly, when signalling via the PI3K/Akt 

pathway is blocked a significant decrease in cell growth is observed (see figure 

5.16) and the DMCat1 cells were shown to have significantly greater levels of 

apoptotic cell death (see figure 5.20). This data reveals that signalling via the 

PI3K/Akt pathway is necessary for survival in DMCat1 cells. Interestingly, levels 

of pAkt were significantly higher in DMCat1 cells cultured in both SF medium 

and medium supplemented with 10% FCS. This data could indicate that autocrine 

signalling via the PI3K/Akt pathway is not only important for survival during 

serum deprivation, but may also be required for survival in the presence of added 

growth factors and serum. Further experiments inhibiting signalling via the 
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PI3K/Akt pathway in the presence of serum would be required to confirm this. 

However, in the presence of the many growth factors found in serum, it is unlikely 

that additional autocrine signalling would be required, and therefore this could 

indicate that activation of Akt is independent of the addition or absence of 

extracellular signalling molecules and is instead somehow more directly linked to 

the triplet repeat mutation. 

 Akt requires phosphorylation of S473 by mTORC2 and T308 by PDK1 for 

full activation (see figure 5.1). In this study we detected phosphorylation at S473 

as a marker of Akt activity. Phosphorylation of this site is therefore not directly 

linked to signalling via PI3K, however, inhibition of PI3K using the specific 

inhibitor, LY294002, blocks phosphorylation of S473, indicating that it is also 

regulated by PI3K activity (see figure 5.19a). This agrees with other studies which 

have also shown that phosphorylation of Akt by mTORC2 at S473 is regulated by 

PI3K activity (Sarbassov et al., 2005). This data shows that signalling via both 

mTORC2 and PI3K could be responsible for increased levels of Akt activation in 

DM1 LECs. The mechanisms by which mTORC2 activity is stimulated and 

regulated is largely unknown, however, PI3K is activated mainly by nutrient and 

growth factor stimulation, but may also be activated by some GPCRs (Franke, 

2008). If the triplet repeat mutation triggers Akt activation, this could occur via a 

more direct mechanism intracellularly or via the release of factors which activate 

the pathway extracellularly. A number of intracellular regulators of the PI3K/Akt 

pathway exist, however, the main intracellular regulator is PTEN. 

 PTEN is a tumour suppressor which functions by negatively regulating the 

PI3K/Akt pathway. PTEN dephosphorylates PIP3 and converts it back to PIP2, 

preventing the activation of Akt by PDK1. DMCat1 cells were shown to have 

significantly lower levels of PTEN compared to CCat1 cells and analysis of all 

eight cell lines also revealed reduced levels in the DM1 cell lines, however, this 

was not significant (see figures 5.23 and 5.24). This data is interesting as DMCat1 

was shown to have greater levels of pAkt compared to CCat1 and this could 

therefore be due to a reduction in the levels of PTEN. PTEN levels increased in 

CCat1 cells during the culture period, which coincided with a decrease in pAkt 

levels and underlines PTENs role as a key regulator of the PI3K/Akt pathway. 

PTEN levels could be reduced in DM1 cells in order to increase PI3K/Akt 

signalling and improve survival rates. PTEN itself is regulated both 



 192

transcriptionally and post-translationally. Analysis of PTEN expression levels 

using QRT-PCR may help to elucidate whether the reduction in PTEN protein is 

due to a reduction in transcription of the gene. PTEN is subject to many types of 

post-translational regulation, including interactions with other proteins, 

phosphorylation, ubiquitination, oxidation and acetylation, which can affect its 

activity, breakdown and turnover (Wang & Jiang, 2008). Further experiments 

would be required to assess any possible role that these modifications may play in 

the reduction of PTEN in DM1 LECs. As CM from DM1 cell lines was shown to 

increase signalling via Akt in the non-virally transformed cell line, FHL124, it is 

unlikely that a reduction in PTEN alone is responsible for the increase in pAkt in 

DMCat1. A factor must also be released which activates the PI3K/Akt pathway 

extracellularly, however, the identity of this factor is unknown. 

Activation of the PI3K/Akt pathway using the activator 740 Y-P (50 

mg/ml) caused a significant increase in cell death in both CCat1 and DMCat1 

cells (see figure 5.22). This was a surprising result as inhibiting PI3K using 

LY294002 (25 µM) was shown to cause a significant decrease in growth in both 

CCat1 and DMCat1 cells and a significant increase in apoptotic cell death in the 

DMCat1 cells. This data reveals that signalling via the PI3K/Akt pathway could 

play roles in both survival and apoptosis in human lens epithelial cells. Addition 

of the PI3K activator may have caused an increase in the activation of Akt which 

could have switched downstream signalling from survival to apoptosis via 

crosstalk with other signalling pathways. Alternatively, 740 Y-P may not be a 

specific activator of PI3K and may therefore interact with other proteins to 

activate or inhibit other pathways which may be responsible for the increase in 

cell death (Derossi et al., 1998). 

Inhibition of PI3K resulted in a significant decrease in levels of total 

protein in both CCat1 and DMCat1 cells which may be due to a reduction in 

protein synthesis or in cell number. A reduction in cell number could either be due 

to increased levels of cell death or decreased levels of proliferation. Levels of 

LDH revealed an increase in cell death in the DMCat1 cells, but not in the CCat1 

cells, although this was not significant (see figure 5.16b). As the LDH assay did 

not appear to be sensitive enough to find a significant difference in the levels of 

cell death, we used the more sensitive technique of TUNEL to specifically analyse 

levels of apoptotic cell death. Levels of apoptosis were subsequently shown to be 
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significantly increased in the DMCat1 cells following addition of the PI3K 

inhibitor, LY294002 (see figure 5.20). This data indicates that signalling 

downstream of PI3K/Akt is primarily involved in survival in DMCat1 cells and 

that the decrease in levels of total protein following PI3K inhibition was therefore 

due to a reduction in cell number due to increased levels of cell death. This could 

be confirmed by analysing the phosphorylation of downstream proteins involved 

in the survival pathway such as BAD. BAD is a pro-apoptotic protein which 

targets the anti-apoptotic proteins Bcl-2 and Bcl-xL in the mitochondria and 

inactivates them. Phosphorylation of BAD by Akt creates a binding site for 14-3-3 

proteins which bind to and sequester BAD in the cytoplasm. This results in the 

release of Bcl-2 and Bcl-xL and therefore promotes survival (Manning & Cantley, 

2007). As increased levels of cell death does not appear to underlie the decrease in 

levels of total protein following PI3K inhibition in CCat1 cells, signalling must 

therefore be involved in either protein synthesis or proliferation in normal LECs 

(see figure 5.1). 

 The signalling pathway downstream of Akt which is involved in protein 

synthesis signals via mTORC1 and p70S6K (see figure 5.1). This pathway was 

inhibited using the mTOR inhibitor, Rapamycin, which binds to and inhibits the 

mTORC1 complex. Surprisingly, no significant decrease in total protein was 

observed in either CCat1 or DMCat1 cells, indicating that blocking the pathway 

did not affect cell growth (see figure 5.25). Inhibition of mTORC1 by Rapamycin 

was shown to prevent the activation of p70S6K which would inhibit the activation 

of S6 Kinase and should therefore have blocked protein synthesis (see figure 

5.27). A more direct method to analyse levels of protein synthesis, such as 

addition of radioactive amino acids and measuring their incorporation into newly 

synthesised proteins, may have given a more accurate measure of the effects of 

Rapamycin and may therefore have shown that the PI3K/Akt pathway is involved 

in protein synthesis in human LECs. However, the data presented here suggests 

that signalling via the PI3K/Akt pathway does not significantly affect protein 

synthesis in either cell type.  

 Inhibition of PI3K signalling resulted in a significant decrease in levels of 

total protein extracted from dishes of both CCat1 and DMCat1 cells. In DMCat1 

cells this was shown to be due to increased levels of apoptosis, therefore 

indicating that downstream signalling of the PI3K/Akt pathway was primarily 
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driven via the survival pathway. However, this was not the case in CCat1 cells, 

which did not show increased levels of cell death. Signalling via the downstream 

pathway involved in protein synthesis was also shown to have no significant role 

in the CCat1 cells. This leaves the downstream pathway involved in proliferation 

as the only remaining possible cause for reduced levels of total protein in CCat1 

cells following PI3K inhibition. This pathway was not investigated in the cell 

lines and therefore cannot conclusively be described as the pathway by which 

PI3K/Akt primarily signals via in the CCat1 cells, however, it is likely that 

inhibition of PI3K prevented the inhibition of the cell cycle regulators p21Cip1/Waf1 

and p27Kip1 by Akt and these would therefore continue to block cell cycle 

progression. Analysis of levels of phosphorylated p21Cip1/Waf1 and p27Kip1 

following PI3K inhibition would confirm the role of the cell proliferation pathway 

downstream of Akt in CCat1 cells. Interestingly, expression of p21Cip1/Waf1 and 

p27Kip1 has been shown to be downregulated in DM1 myoblasts (Timchenko et 

al., 2001b; Salisbury et al., 2008). Downregulation of p21Cip1/Waf1 expression was 

found to result from increased levels of pAkt, which phosphorylate CUG-BP1 and 

prevent it from upregulating translation of p21Cip1/Waf1 mRNA (Salisbury et al., 

2008). Downregulation of p21Cip1/Waf1 and p27Kip1 prevents DM1 myoblasts from 

exiting the cell cycle and initiating differentiation. It would therefore also be 

interesting to analyse levels of total p21Cip1/Waf1 and p27Kip1 in DM1 LECs. If 

p21Cip1/Waf1 and p27Kip1 are found to be downregulated in DM1 LECs, signalling 

via Akt would be less important for the prevention of cell cycle inhibition and this 

could explain why signalling is primarily involved in survival in DM1 LECs but 

not in control LECs.  

 As well as pAkt, levels of pERK (see figures 5.7 and 5.12) and pJNK (see 

figures 5.8 and 5.13) were also found to be elevated in DMCat1 cells. The 

MAPK/ERK pathway is mainly associated with proliferation and differentiation 

in the lens (Lovicu & McAvoy, 2001; Iyengar et al., 2006; Wang et al., 2009b). 

Inhibition of the MAPK/ERK pathway had no significant effect on levels of total 

protein or cell death as shown by LDH release and the TUNEL apoptosis assay in 

DMCat1 or CCat1 cells (see figures 5.17 and 5.21). MAPK/JNK signalling in the 

lens has previously been associated with survival (Long et al., 2004; Seomun et 

al., 2005). Interestingly, inhibition of signalling via JNK did not affect survival in 

DMCat1 cells and only affected cell growth and/or proliferation in CCat1 cells 
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when added at a much greater concentration (10 µM) than its IC50 value (see table 

2.1 and figure 5.18). However, at greater concentrations (> 10 µM) the JNK 

inhibitor SP600125 can also inhibit the activity of other signalling molecules such 

as isoforms of ERK, p38 and PKC, which could therefore have caused the 

decrease in cell growth and/or cell proliferation (Bennett et al., 2001). Levels of 

pJNK were analysed following addition of SP600125 in both cell lines and 

revealed that JNK activation was not inhibited and at higher concentrations 

SP600125 actually increased pJNK levels (see figure 5.19c). This could either 

indicate that the inhibitor does not block JNK activation or that the cells are able 

to overcome its effects through, for example, the breakdown or removal of the 

inhibitor. SP600125 is an adenosine trisphosphate (ATP)-competitive inhibitor 

and therefore competes with ATP to prevent the activation of JNK. If ATP levels 

are greater in LECs compared to other cell types tested using the inhibitor, then 

greater concentrations may be required to prevent JNK activation. The role of 

increased levels of pJNK in DMCat1 cells is therefore unknown and requires 

further investigation with a more specific inhibitor or greater concentrations of 

SP600125. The JNK pathway is associated with cellular stress as it is activated in 

response to stressors such as UV radiation, cytokines, growth factor deprivation 

and DNA damaging agents. The JNK pathway can promote both survival and 

apoptosis, with these opposing effects thought to be mediated by the length and 

strength of the activating signals (Krishna & Narang, 2008). Significantly 

increased levels of pJNK in DM1 cells could indicate increased exposure to 

cellular stress which may be linked to the triplet repeat mutation. Although JNK 

activation in the lens has been associated with survival following exposure to UV 

radiation and oxidative stress, it is possible that its sustained activation results in 

increased levels of apoptosis in the DM1 LECs (Long et al., 2004; Seomun et al., 

2005). Further experiments are required to investigate the role of JNK signalling 

in DM1 LECs. 

 Analysis of signalling pathways activated in cells grown in SF medium 

and medium supplemented with 10% FCS revealed that signalling via JNK, p38 

and PKC appeared to be greater under conditions of serum deprivation. This is not 

surprising as activation of both the MAPK/JNK and MAPK/p38 pathways is 

associated with cellular stress. We did not find any differences between SF 

medium and medium supplemented with 10% FCS in levels of activation of Akt 
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or ERK which would indicate autocrine activation. Although levels of pPKC were 

greater in DMCat1 cells in SF medium and lower in medium supplemented with 

10% FCS, neither was significantly different from CCat1 cells. Further 

experiments are required to investigate any possible role that the PLC/PKC 

signalling pathway may play in increased levels of apoptotic cell death in DM1 

LECs in SF medium. As signalling via PLC results in a rise in intracellular Ca2+ 

levels, leading to PKC activation, the role of increased Ca2+ in the DM1 cells 

would also need to be investigated. Rhodes et al. (2006) observed increased levels 

of cell death in the DM1 LECs used in this study following addition of the Ca2+ 

ionophore, ionomycin, when compared to controls. Ionomycin results in 

prolonged high levels of intracellular calcium, which the DM1 LECs were more 

susceptible to (Rhodes et al., 2006). Elevated levels of active PKC have also been 

linked to the presence of expanded CUG repeats in DM1 and were shown to be 

responsible for the increased activation of CUG-BP1 observed in the disease 

(Kuyumcu-Martinez et al., 2007). Inhibition of PKC in a heart-specific mouse 

model was shown to increase survival rates by reducing CUG-BP1 steady-state 

levels, which ameliorated the cardiac conduction defects and contraction 

abnormalities observed in the mouse model (Wang et al., 2009a). Increased levels 

of apoptotic cell death could therefore result from increased signalling via PLC 

leading to Ca2+ release and elevated levels of activated PKC, however, this 

requires further investigation. Levels of pp38 increased in DMCat1 cells in SF 

medium, however, this was also observed in CCat1 cells resulting in no 

significant difference in pp38 levels. Active p38 was also only detected early in 

the culture period when both cell types were growing well, indicating that 

signalling via p38 does not play a role in apoptotic cell death. Levels of pJNK 

increased in DMCat1 cells in SF medium and were significantly higher compared 

to CCat1 cells, indicating that increased activation of JNK may be responsible for 

the increased levels of apoptotic cell death in DM1 cells when cultured in SF 

medium.  

From the data described in this chapter, it is clear that signalling via the 

PI3K/Akt pathway is critical to the survival of DMCat1 cells, but it is not as 

important for survival in CCat1 cells. In the absence of PI3K/Akt signalling, 

DMCat1 cells undergo apoptosis. During culture, the levels of both Akt and pAkt 

were shown to decline, which coincides with a reduction in cell populations 
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observed in DMCat1 cells. It is possible that as the DMCat1 cells age, they are no 

longer able to maintain the level of signalling via Akt that is required to maintain 

survival. The reduced population doubling times and shorter lifespan of DM1 

LECs may result from sustained activation of JNK and a reduction in the 

activation of Akt during culture respectively.   

 DM1 cataract patients have been shown to have reduced LEC densities, 

with larger cells maintaining coverage of the epithelium over the lens (Abe et al., 

1999). As the lens epithelium maintains the balance of ions and water which is 

vital to lens transparency, a loss of cells from this layer could result in loss of 

transparency and cataract development. Cataracts in DM1 patients form in later 

life and even in congenitally affected patients they can take over a decade to 

develop. It is possible that as the cells age they express lower levels of either the 

receptors that are responsible for Akt activation, or of Akt itself, resulting in a 

reduction in pAkt levels and a subsequent increase in apoptotic cell death in DM1 

LECs. Increased levels of cellular stress causing sustained activation of JNK may 

also contribute to increased levels of apoptotic cell death. Greater levels of 

apoptosis caused by reduced levels of pAkt and sustained activation of JNK could, 

therefore, underlie the formation of cataracts in DM1. 
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CHAPTER 6 

GENERAL DISCUSSION 
 

6.1 General discussion 

 

The development of pre-senile cataracts is one of the most distinctive and 

key features of DM. The characteristic, iridescent opacities present in patients 

affected both minimally and congenitally. Despite the prominence of cataracts in 

the disease, very little is known about the mechanisms behind their development. 

Three main hypotheses have been proposed to explain the development of DM1 in 

general: firstly, a reduction in DMPK expression; secondly, a reduction in 

expression of the neighbouring genes, SIX5 and DMWD; and thirdly a gain of 

function by the mutant DMPK mRNA. In the lens, the hypothesis with the 

greatest support to explain cataract development was reduced expression of SIX5. 

In two separate studies using knock-out mice, partial (Six5+/-) or complete (Six5-/-) 

loss of Six5 resulted in the development of cataracts and the incidence and 

severity of lens opacities increased with decreasing Six5 dosage (Klesert et al., 

2000; Sarkar et al., 2000). However, the cataracts which formed did not have the 

characteristic features of DM1 cataracts as no iridescent, dust-like opacities were 

found and the cataracts formed in the nucleus as opposed to the posterior 

subcapsular region where they are found in DM1 patients. Further to this, similar 

cataracts are also found in DM2, which is caused by a repeat expansion mutation 

found at a different gene locus and the SIX5 gene is unaffected in this form of the 

disease. As no conclusive mechanism had been identified to explain the 

development of cataracts in DM1, this study aimed to investigate the underlying 

mechanism in the lens using human LECs derived from DM1 cataract patients.  

 Previous work in this laboratory characterised the human lens epithelial 

cell lines used in this study and showed that the DMPK gene contained large 

triplet repeat expansions only in the DM1 cell lines. DMPK was shown to be 

expressed in the control and DM1 LECs as well as SIX5 and DMWD. SIX5 

expression was found to be significantly reduced in the DM1 cell lines compared 

to the controls (Rhodes et al., 2006). In this study we employed two further 
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control cell lines and found that SIX5 expression was also low in these cell lines, 

indicating that the expression of this gene is highly variable in LECs and the 

haploinsufficiency of SIX5 that has been observed previously in DM1 may not be 

a true result of the DM1 mutation (see figure 3.2). This data adds further weight to 

the argument against SIX5 haploinsufficiency as the cause of DM1 cataract. In 

this study we also found expression of DMPK in all of the cell lines and revealed 

that the transcripts from the mutant allele in DM1 cells formed foci which are 

trapped within the nucleus (see figures 3.3 and 3.4). This is a significant finding 

because the formation of nuclear foci of DMPK transcripts is a common feature in 

cells affected by DM1 and is linked to the sequestration of MBNL proteins and 

the increased activation of CUG-BPs which are involved in the regulation of 

splicing events (Timchenko et al., 2001a; Fardaei et al., 2002). Although foci 

were shown to form and the LECs were found to express MBNL1, MBNL2, CUG-

BP1 and CUG-BP2 (see figures 3.5 and 3.6), we found no difference in levels of 

alternatively spliced isoforms of transcripts commonly affected in DM1. 

Alternative splicing has been used to explain many of the symptoms of DM1, for 

example, the altered splicing of the chloride channel ClC-1 is thought to cause the 

myotonia which is a characteristic feature of the disease and altered splicing of IR 

is likely to underlie insulin resistance and diabetes which is often observed in 

DM1 (Savkur et al., 2001; Mankodi et al., 2002). As no aberrant splicing patterns 

were observed in the DM1 LECs used in this study, the symptom of cataract does 

not appear to result from this mechanism. The triplet repeat mutation in DMPK 

must therefore exert its effects via a different mechanism in the lens. 

 The repeat regions that cause DM are unstable and biased towards 

expansion. The repeats not only expand when passed between generations, but 

also expand in the somatic cells of an individual during their lifetime. This is 

known as somatic mosaicism and the level of expansion varies depending on cell 

and tissue type, for example, cells in skeletal muscle, heart and brain have 

significantly larger repeat expansions than leukocytes (Thornton et al., 1994). 

Lens cells from DM1 cataract patients have also been shown to have larger 

repeats than those found in peripheral blood samples from the same patient (Abe 

et al., 1999). The cultured human DM1 LECs used in this study have also 

previously been shown to contain large repeats (> 1400) even at the earliest 

passage sampled and these were found to expand during culture (Rhodes et al., 
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2006). The size of the triplet repeat in the lens could explain the development of 

cataracts even in mildly affected patients, as larger repeats would make the lens 

more susceptible to their downstream effects. Cataracts do not develop in mildly 

affected patients until later in life and do not develop in congenitally affected 

patients until at least 10 years of age (Harper, 2001). The accumulation of repeats 

in the lens during the lifetime of an individual could explain why this is observed.  

 An interesting study by Khajavi et al. (2001) aimed to investigate the 

mechanism behind the expansion of the triplet repeat in DM1 and showed that the 

repeat containing alleles of DM1 lymphoblastoid cells derived from blood, shifted 

towards expansion via multiple ‘step-wise’ mutations and also through rarer 

‘gross’ mutations. Rare gross mutants which gained large repeats (40-290 repeats) 

were shown to eventually replace the progenitor allele population. It was 

hypothesised that this was due to a growth advantage of the mutant with the larger 

CTG repeat size over the progenitor population. The authors showed that this was 

the case by mixing cell lines containing different sizes of the expanded repeat 

which consistently resulted in survival of the cell line containing the larger repeat. 

The growth advantage was attributed to the increased proliferation rate of the cells 

containing larger repeat expansions, which was found to be due to downregulation 

of p21Cip1/Waf1 expression. As p21Cip1/Waf1 inhibits cell cycle progression, lower 

levels result in an increased proliferation rate. Repeat number was therefore 

shown to correlate inversely with cell doubling times (Khajavi et al., 2001). In 

this study we found similar population doubling times in all DM1 LECs which did 

not appear to correlate with the previously published repeat sizes for these cell 

lines (summarised in figure 3.1a) which contradicts the data from Khajavi et al. 

(2001) (Rhodes et al., 2006). Khajavi et al. (2001) only compared the growth 

rates of DM1 cell lines with varying repeat sizes and did not show whether DM1 

cell lines proliferated faster than controls, however, the lifespan of DM1 

lymphoblastoid cell lines was shown to be significantly shorter than controls as 

DM1 cell lines reached an average of 10.5 passages compared to controls which 

reached over 25 passages (Khajavi et al., 2001). In this study we have shown that 

the contol cell lines proliferate at a faster rate than the DM1 cell lines as the 

controls have shorter population doubling times compared to DM1 LECs. We 

have also shown that the lifespan of our DM1 lens epithelial cell lines is 

significantly shorter than the controls, as DM1 LECs survived for an average of 
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79.5 days in culture compared to control LECs which survived for over 101 days 

(see figure 3.9). Furling et al. (2001a) have also shown that the lifespan of 

satellite cells derived from muscle biopsies of congenital DM1 foetuses was also 

reduced. Lifespan was measured by counting the number of divisions the cells 

could go through before reaching growth arrest, which was found to be between 

50 and 60 divisions for control cells but a maximum of only 31 divisions was 

observed in DM1 cells. The number of divisions was also shown to be lower in 

cells derived from a foetus showing more severe signs of the disease (Furling et 

al., 2001a).  

 DM1 has been described as a premature ageing disorder as many of its 

symptoms are often commonly associated with ageing, such as cataract, erectile 

dysfunction, frontal balding, insulin resistance, cardiac arrhythmias and muscle 

weakness (Harper, 2001; Antonini et al., 2009). If expansion of the CTG repeat 

confers a proliferative advantage, as shown by Khajavi et al. (2001), this may 

indicate that DM1 cells proliferate faster and could therefore reach growth arrest 

earlier which could underlie the suggestions of premature ageing and senescence 

observed in the disease. However, this is unlikely as it would lead to greater cell 

numbers which has not been observed in the disease, unless cell death is also 

greater. A further study using satellite cells from congenital DM1 foetuses showed 

that neither proliferation nor cell death was greater in DM1 cells compared to 

controls. A 59% increase in loss of telomere length per cell division was, however, 

observed and DM1 cells stopped dividing with longer telomeres than controls. 

This was shown to result in the premature senescence of the cells which could be 

overcome by blocking the p16 cyclin-dependent kinase inhibitor. p16 is a key 

regulator of replicative senescence and can be upregulated in response to telomere 

shortening and stress mechanisms including DNA damage and oxidative stress. 

p16 was activated earlier in DM1 cells compared to controls, however, increased 

levels of telomere shortening was shown to be independent of p16 activation and 

was suggested to result from increased susceptibility to reactive oxygen species in 

DM1 cells as this has previously been shown to correlate with CTG repeat length 

(Usuki & Ishiura, 1998; Bigot et al., 2009).  

 A number of studies have reported that DM1 cells and cells containing 

expanded CTG repeats have a reduced tolerance to stress (Usuki & Ishiura, 1998; 

Usuki et al., 2000; O'Cochlain et al., 2004; Rhodes et al., 2006; Usuki et al., 
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2008). A recent study has shown that myoblasts from DM1 patients have 

increased levels of stress. This was shown to be due to the activation of PKR by 

CUG repeats which inactivates eukaryotic initiation factor 2 α (eIF2α) and 

prevents translation of downstream mRNAs, resulting in formation of stress 

granules (Huichalaf et al., 2010). Transgenic mice expressing over 25 extra copies 

of a complete DMPK gene with normal sized repeats revealed DM1-like 

symptoms upon ageing. The accumulation of DMPK transcripts was shown to 

cause severe cellular distress which affected cardiac, skeletal and smooth muscles. 

Symptoms included workload intolerance, hypertrophic cardiomyopathy and 

myotonic myopathy, which are all characteristic of DM1 (O'Cochlain et al., 2004). 

Rhodes et al. (2006) showed that DM1 LECs have increased expression levels of 

the Ca2+-activated K+ channel, SK3, which led to increased levels of cell death in 

conditions of calcium overload. Mouse myoblasts transfected with DMPK 

containing varying numbers of CTG repeats, showed CTG repeat number-

dependent susceptibility to oxidative stress, resulting in apoptosis (Usuki & 

Ishiura, 1998; Usuki et al., 2000). In this study, we have shown that DM1 LECs 

are less able to withstand the stress of being grown in SF medium compared to 

control LECs. SF medium contains no added growth factors and therefore the 

cells rely on autocrine signalling to maintain survival. We have shown that DM1 

cells have significantly increased levels of apoptotic cell death when cultured in 

SF medium compared to controls, indicating that autocrine signalling was 

somehow impaired in these cells leading to increased susceptibility to stress (see 

figure 3.15). Reduced lifespan, premature senescence and increased susceptibility 

to stress can all result in a reduction in cell number in DM1 tissues which could 

contribute to some of the symptoms observed in the disease, such as muscle 

atrophy and cataract formation. 

 Lens epithelial cell density has been shown to decrease with age and as the 

incidence of cataract increases with age, this could indicate a link between the two 

(Konofsky et al., 1987; Guggenmoosholzmann et al., 1989). It has been suggested 

that LECs in vivo accumulate damage from agents to which the lens is exposed to 

throughout life, such as UV radiation and hydrogen peroxide, and this damage 

impairs their function and leads to cell death (Harocopos et al., 1998). Studies 

have shown that cataractous lenses contain greater numbers of apoptotic cells and 

that cell death precedes cataract development (Konofsky et al., 1987; Li et al., 
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1995; Li & Spector, 1996). Analysis of the lens epithelium in DM1 cataract 

patients revealed reduced population densities of lens epithelial cells (Abe et al., 

1999). The decrease in cell density appeared to be dependent on the age of onset 

of disease symptoms, with lower densities observed in patients with an earlier 

onset. The lens epithelium contained larger cells to maintain coverage of the lens; 

however, fewer cells may not be capable of maintaining homeostasis in levels of 

ions and water and may not offer enough protection to the underlying fibre cells 

from damaging agents such as UV radiation and oxidative insults, which could 

lead to the development of cataract. Whether decreased levels of proliferation or 

increased levels of cell death caused the reduced cell densities in lenses from 

DM1 cataract patients is unknown. However, if the CTG repeats in DM1 LECs 

make them more susceptible to stress, then it could be hypothesised that exposure 

of the lens to normal levels of damaging agents may cause cell death earlier than 

in normal controls.  

 Increased levels of cell death could underlie cataract formation in DM1, 

however, the mechanisms that lead to increased cell death are unknown. In this 

study we have shown that DM1 LECs have greater levels of cell death compared 

to controls when grown in both SF medium and medium supplemented with 10% 

FCS (see figure 3.12). We have also shown that DM1 LECs have greater levels of 

apoptosis when cultured in SF medium (see figure 3.15). We hypothesised that 

autocrine signalling is impaired in DM1 LECs leading to increased levels of 

apoptotic cell death when cultured in SF medium. We investigated the release of 

autocrine signalling factors in DM1 LECs by collecting conditioned medium (CM) 

and applying it to the non-virally transformed lens epithelial cell line, FHL124. 

We found that DM1 CM significantly increased growth and/or survival in 

FHL124 cells and activated signalling pathways resulting in greater levels of Akt 

activation compared to controls (see figures 4.5 and 4.7). We investigated the role 

of the FGF and IGF signalling pathways in autocrine signalling in DM1 LECs as 

both pathways have been shown to activate signalling via PI3K and Akt in the 

lens (Chandrasekher & Bazan, 2000; Chandrasekher & Sailaja, 2003, 2004; Wang 

et al., 2009b). Inhibition of FGFR1 in DM1 LECs cultured in SF medium resulted 

in a significant decrease in growth, however, no difference was found in levels of 

cell death (see figure 4.14). No difference was found in either cell growth or cell 

death following IGFR-1 inhibition (see figure 4.15). Inhibition of FGFR1 in 
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FHL124 cells during DM1 CM addition resulted in a decrease in growth and 

levels of pAkt, however, both were still elevated compared to addition of SF 

medium, indicating that other factors were also released by the DM1 cells (see 

figures 4.11 and 4.12). Low levels of bFGF were found in the DM1 CM, however, 

addition of greater levels of bFGF to FHL124 cells did not increase growth and/or 

survival or levels of pAkt to the same extent as was observed following DM1 CM 

addition (see figures 4.5, 4.8 and 4.12). This data indicates that other factors are 

responsible for the increase in growth and levels of pAkt in FHL124 cells. As 

DM1 cells were shown to release factors capable of increasing growth and/or 

survival, this would indicate that their responses to these factors are impaired as 

cell death is increased in these cells compared to controls. In order to investigate 

this, we analysed the activation of signalling pathways in DM1 LECs which are 

known to be involved in growth, proliferation, survival and apoptosis within the 

lens.  

 Studies have shown that CTG repeats can lead to the aberrant activation 

and/or regulation of signalling pathways in DM1 cells (Hernandez-Hernandez et 

al., 2006; Usuki et al., 2008; Beffy et al., 2010). Usuki et al. (2008) showed that 

aberrant activation of the MAPK/JNK pathway in cells containing large triplet 

repeats instead of the MAPK/ERK pathway led to cell death rather than survival 

when exposed to oxidative stress. Beffy et al. (2010) showed that sustained 

activation of the MAPK/ERK pathway along with reduced activation of the 

MAPK/p38 pathway prevented differentiation in myoblasts from congenitally 

affected DM1 foetuses compared to controls, which could play a role in the 

impaired muscle development observed in congenital DM1. The study also 

showed that enlarged vacuoles formed in the DM1 cells, which were not observed 

in controls. These were found to be autophagic vacuoles, which are double-

membraned vesicles which fuse with lysosomes to degrade cellular components. 

Autophagy is regulated by mTOR and is suppressed by activation of the PI3K/Akt 

signalling pathway, which could also indicate that regulation of the PI3K/Akt 

signalling pathway is disturbed in these cells (Glick et al., 2010). A further study 

has also identified disturbances in the PI3K/Akt pathway in a neuronal cell line 

expressing 90 CUG repeats (CTG90 cells) (Hernandez-Hernandez et al., 2006). 

Hernandez-Hernandez et al. (2006) showed that the failure of CTG90 cells to 

differentiate in response to nerve growth factor was likely due to the altered 
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activity of microtubule-associated protein tau (τ) and the impaired activation of 

glycogen synthase kinase 3β (GSK3β) which regulates τ phosphorylation. GSK3β 

activity is negatively regulated by phosphorylation at residue S9 by pAkt. Levels 

of pAkt were found to be reduced in the CTG90 cells leading to an increase in 

GSK3β activity and hyperphosphorylation of τ, which could be linked to 

symptoms observed in the CNS in DM1, such as mental retardation. Aberrant 

activation of signalling pathways could therefore play a role in some of the 

symptoms observed in DM1. 

 To investigate whether aberrant activation of signalling pathways led to 

increased levels of apoptosis in DM1 cells cultured in SF medium, we analysed 

pathways activated in response to both SF medium and medium supplemented 

with 10% FCS. Signalling via the MAPK/JNK, MAPK/p38 and PLC/PKC 

pathways appeared to increase in SF medium in DM1 LECs compared to levels 

observed in medium supplemented with 10% FCS (see figures 5.8 to 5.10 and 

5.13 to 5.15). As the MAPK/JNK and MAPK/p38 pathways are activated under 

stress conditions, it is not surprising that activation is higher during serum 

deprivation. Active levels of p38 were only detected early in the culture period 

and as levels of p38 also increased in control LECs in SF medium, no difference 

was found in the levels observed in DM1 LECs compared to controls. Active 

levels of JNK, however, were found throughout the culture period and were 

significantly higher in DM1 LECs compared to controls. Sustained activation of 

JNK can lead to apoptosis and therefore requires further investigation in DM1 

LECs as it may play a role in the increased levels of apoptotic cell death in SF 

medium compared to controls. Although levels of active PKC were found to be 

higher in DM1 LECs when cultured in SF medium compared to medium 

supplemented with 10% FCS, levels were not significantly different to those 

observed in the control LECs. Signalling via PLC activates PKC by increasing 

levels of DAG and intracellular Ca2+. Elevated levels of intracellular Ca2+ have 

previously been shown to cause increased levels of cell death in human DM1 

LECs (Rhodes et al., 2006). Transgenic mice which express 25 extra copies of the 

DMPK gene with normal repeat sizes also demonstrated intracellular Ca2+ 

overload which promoted nuclear translocation of transcription factors responsible 

for changes in gene expression leading to hypertrophic cardiomyopathy 

(O'Cochlain et al., 2004). Increased signalling via PLC could therefore also play a 
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role in apoptotic cell death in DM1 LECs cultured in SF medium via increased 

levels of intracellular Ca2+ and pPKC, however, this requires further investigation.  

 Cell death was also greater in DM1 cells cultured in medium 

supplemented with 10% FCS compared to controls (see figure 3.12), however, the 

increase in apoptotic cell death was not significant (see figure 3.15). Analysis of 

activated signalling pathways in medium supplememented with 10% FCS 

revealed that DM1 LECs had significantly increased activation of the PI3K/Akt 

and MAPK/JNK pathways compared to controls, which was also observed in SF 

medium (see figures 5.6, 5.8, 5.11 and 5.13). Increased activation of the PI3K/Akt 

pathway in DM1 LECs was shown to encourage their survival as inhibiting the 

pathway led to increased levels of apoptosis (see figure 5.20). Increased activation 

of the MAPK/JNK pathway could have the opposite effect as this can lead to 

increased levels of apoptosis, however, the role of signalling via the MAPK/JNK 

pathway was not elucidated as the JNK inhibitor, SP600125, was found not to 

inhibit the MAPK/JNK pathway in this study. The sustained activation of JNK 

indicates that the DM1 LECs are exposed to increased levels of cellular stress, 

which is known to activate the pathway, even when cultured in medium with 

serum. Signalling via the MAPK/JNK pathway could therefore be responsible for 

the reduced population doubling times observed in DM1 LECs by increasing cell 

death (see figure 3.9).  

 As no single pathway was shown to be significantly upregulated in only 

SF medium in DM1 LECs compared to controls, it appears unlikely that the 

increase in apoptotic cell death in SF medium is due to the aberrant activation of 

signalling pathways. However, the PI3K/Akt and MAPK/JNK pathways are 

aberrantly activated in DM1 LECs in both SF medium and medium supplemented 

with 10% FCS. The JNK signalling pathway has been shown to be activated by 

serum deprivation and we found that levels of pJNK increased in both cell types 

in SF medium (Huang et al., 1997). As DM1 LECs had greater levels of pJNK in 

medium supplemented with 10% FCS, it is likely that serum deprivation caused a 

further increase in signalling via the MAPK/JNK pathway which resulted in 

greater levels of cell death when compared to control LECs.   

 Although an increase in signalling via the PI3K/Akt pathway appeared to 

be protective in DM1 LECs, this may not be the case in other cell types. Increased 

levels of pAkt have also been demonstrated in both cultured and primary DM1 
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myoblasts (Salisbury et al., 2008). Activated Akt was shown to phosphorylate 

CUG-BP1 at serine residue S28, which increased the interactions of CUG-BP1 

with mRNA of the cell cycle regulator, cyclin D1. Translation of cyclin D1 

mRNA is increased by interactions with CUG-BP1, resulting in increased levels 

of proliferation. CUG-BP1 was also shown to be phosphorylated by cyclin D3-

cdk4/6 at serine residue S302, which increases CUG-BP1 binding with 

p21Cip1/Waf1 and CCAAT-enhancer-binding protein β (C/EBPβ) mRNAs. An 

increase in translation of p21Cip1/Waf1 and C/EBPβ by CUG-BP1 is required to 

block cell cycle progression and enable differentiation in myoblasts. Therefore, 

phosphorylation of CUG-BP1 can play an important role in regulating both 

proliferation and differentiation in myoblasts. Levels of cyclin D3 were found to 

be lower in DM1 myoblasts and along with elevated levels of pAkt, which 

increased phosphorylation of CUG-BP1 at S28 and encouraged CUG-BP1 to  

bind to cyclin D1 mRNA rather than p21Cip1/Waf1 and C/EBPβ mRNAs, these 

resulted in a block in differentiation in DM1 myoblasts. Increased levels of pAkt 

could therefore contribute to the impaired differentiation of skeletal muscle in 

DM1 patients. If the triplet repeat mutation is responsible for increasing Akt 

activity in other cell types affected by DM1, then the response will be cell type 

specific. In LECs, increased levels of pAkt increase survival which confers an 

advantage, whereas in myoblasts it leads to impaired differentiation which is 

detrimental.  

 Here we have shown that DM1 LECs require signalling via the PI3K/Akt 

pathway for survival in culture. However, we have also shown that levels of both 

total Akt and active Akt in control and DM1 LECs reduced over time during a 

four month culture period (see figures 5.6 and 5.11). Levels of other downstream 

signalling molecules such as ERK and PKC also appeared to decrease (see figures 

5.7, 5.10, 5.12 and 5.15). Interestingly, studies have shown that expression of 

receptors such as FGFR-2 and IGFR-1 decrease in the human lens in later life and 

the response of rat LEC explants to bFGF also reduces with age (Lovicu & 

McAvoy, 1992; Bhuyan et al., 2000). Expression of proteins involved in signal 

transduction have also been found to be lower in lenses with age-related cataract 

(Ruotolo et al., 2003). This data could therefore indicate that either protein 

expression in general decreases with age in the lens, or that a reduction in levels 

of receptors that respond to growth factors results in a reduction in protein levels 
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of downstream signalling molecules. Either way, a reduction in signalling 

molecules could prevent the signals from growth and survival factors reaching 

their destination. As DM1 LECs appear to rely on signalling via the PI3K/Akt 

pathway for survival, this could explain the reduction in population doubling 

times observed during the culture of DM1 LECs and their limited lifespan 

compared to controls (see figure 3.9).  

 Although the cause of increased activation of Akt and JNK in DM1 LECs 

is unknown, it appears to result from the presence of the triplet repeat. However, 

we could speculate a possible mechanism which would link the triplet repeat 

mutation to the activation of Akt and JNK in the disease. Transcription of the 

mutant DMPK allele found in DM1 results in the production of RNA containing 

CUG repeats. The expanded CUG repeats have been shown to form stable hairpin 

structures where the repeat tract folds back on itself and results in formation of 

dsRNA with G·C and C·G base pairs separated by U·U mismatches. These hairpin 

structures have been shown to activate PKR, which is a protein kinase activated 

by dsRNA of over 30 bp in length which is usually only found in cells following 

infection by viruses which contain dsRNA (Tian et al., 2000). PKR initiates anti-

viral responses by phosphorylating eIF-2α which prevents its recycling and results 

in a block in protein synthesis (Garcia et al., 2006). PKR can also regulate 

translation, cell cycle progression and apoptosis via interactions with other 

proteins including protein phosphatase 2A, nuclear factor κB (NF-κB) and p53. 

Interestingly, PKR has also been shown to regulate the activity of Akt, ERK, JNK 

and p38 (Iordanov et al., 2000; Takada et al., 2007; Alisi et al., 2008). Signalling 

induced by the cytokine, tumour necrosis factor (TNF) has been shown to be 

regulated by PKR which was required for TNF induced activation of Akt and JNK, 

however, it was shown to negatively regulate activation of ERK and p38 (Takada 

et al., 2007). In a separate study, the activation of JNK by dsRNA was shown to 

require PKR-mediated inhibition of protein synthesis by a mechanism which 

activated the upstream kinase, MKK4 (Iordanov et al., 2000). PKR has also been 

shown to directly interact with Akt and p38 to regulate their activity, with the 

interaction with Akt encouraging its activation and the interaction with p38 

resulting in its inhibition. Through its interactions with Akt and p38, PKR was 

shown to play a role in regulating muscle differentiation, which could also link to 

the muscle symptoms observed in DM1 (Alisi et al., 2008). Beffy et al. (2010) 
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showed that DM1 myoblasts had reduced activity of MAPK/p38 which could be 

responsible for impaired muscle differentiation in the disease. Activation of PKR 

by the expanded CUG repeats found in DM1 could therefore underlie the 

reduction in p38 that is observed in DM1 myoblasts from congenitally affected 

foetuses (Beffy et al., 2010). A recent study has confirmed that PKR levels are 

elevated in primary DM1 myoblasts and found that this led to increased levels of 

phosphorylated eIF2α, resulting in cellular stress (Huichalaf et al., 2010). If the 

unusual hairpin structures that are formed by the expanded CUG repeats are 

confirmed to activate PKR in DM1 LECs, then through these interactions PKR 

could cause the increase in pAkt and pJNK levels, with pAkt encouraging survival 

and pJNK likely leading to increased levels of apoptotic cell death. It is also 

possible that the hairpin structures formed by the CUG repeats may activate other 

sensors of dsRNA that are present in cells. These include receptors such as toll-

like receptor 3 (TLR3), which is located in endosomal compartments, and retinoic 

acid-inducible gene 1 (RIG-1) and melanoma differentiation-associated gene 5 

(MDA5) which are cytoplasmic sensors. These sensors activate signalling 

pathways which result in the nuclear translocation of NF-κB and interferon 

regulatory factor 3 (IRF3), resulting in the production of the type I interferons 

(IFNs), IFNα and IFNβ. IFNs are cytokines which are released by cells and induce 

autocrine and paracrine signalling via the type I interferon receptor (IFNAR) 

which results in transcription of IFN stimulated genes (ISGs) (Baum & Garcia-

Sastre, 2010). ISGs regulate many cellular processes to protect the host cell from 

infection and prevent the spread of viruses, for example, by inhibiting cell growth 

and proliferation, and by activating apoptosis (Sen, 2001). IFNs have been shown 

to activate the PI3K/Akt pathway resulting in mTOR activation, which was found 

to be essential for translation of some ISG mRNAs and IFNs have also been 

shown to induce sustained activation of the MAPK/JNK pathway leading to 

apoptosis (Yanase et al., 2005; Kaur et al., 2008). IFN activation of the PI3K/Akt 

pathway has also been shown to promote survival via activation and nuclear 

translocation of NF-κB, which counteracts the apoptotic effects of IFN in some 

cell types (Yang et al., 2001). An increase in levels of pAkt in the DM1 LECs 

may therefore be induced by IFN to counteract increased levels of pJNK and 

maintain survival. If the hairpin structures formed by the CUG repeats are found 

to stimulate IFN production, this could also be found to underlie increased levels 
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of cell death in DM1 LECs. Release of IFN could also be responsible for the 

effects observed following addition of DM1 CM to FHL124 cells as growth 

and/or survival and levels of pAkt were found to increase. If DM1 CM contains 

IFN, addition of DM1 CM to FHL124 cells could promote survival via Akt, 

however, long term addition could result in increased levels of cell death via the 

sustained activation of JNK, which may not have been observed in the short term 

experiments performed in this study. The role of PKR and other dsRNA sensors in 

DM1 lens epithelial cell death, and in DM1 in general, requires further 

investigation. 

 DM1 cataractous lenses have reduced LEC density (Abe et al., 1999). A 

reduction in cell number could result from increased levels of cell death or 

reduced levels of proliferation. From this study, we have shown that DM1 LECs 

are subject to increased levels of cell death compared to control LECs. As 

cataracts form later in life in minimally affected DM1 patients and take at least a 

decade to form in congenitally affected patients, this suggests that the underlying 

cause of cataract formation takes a while to develop or exert its affects. If levels of 

active signalling pathways are age dependent, as is observed in the cultured 

human LECs, then a reduction in active signalling molecules could underlie DM1 

cataract. An increase in levels of cell death, and specifically apoptosis, as a 

consequence of reduced signalling via PI3K/Akt and sustained activation of the 

MAPK/JNK pathway throughout the life of DM1 patients could therefore result in 

cataract development in the disease.  

  

6.2 Summary of major conclusions 

 

 The data presented in this thesis has revealed some novel and important 

findings that may help to further the field of research into cataract formation in 

DM1. We have shown that SIX5 levels are not affected by the triplet repeat 

mutation and that DMPK is expressed in the lens where transcripts form foci in 

the nuclei of DM1 LECs. This data may help to shift the emphasis of research into 

DM1 cataracts away from the current hypothesis of SIX5 haploinsufficiency and 

towards possible mechanisms downstream of mutant transcript production. 

Although we found no evidence for alternative splicing in the proteins that we 

investigated, there are many more that have been observed in other tissues in 
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DM1 that we did not analyse, but could be potential causes of cataract formation 

in DM1, such as the sarcoplasmic/endoplasmic reticulum calcium ATPase 

(SERCA). Two isoforms of SERCA, SERCA1 and SERCA2 are alternatively 

spliced in DM1 muscle cells and have been linked to impaired Ca2+ homeostasis 

in the disease (Kimura et al., 2005). The SERCA isoforms SERCA2 and SERCA3 

are present in the lens and have been linked to cataract formation due to their roles 

in Ca2+ homeostasis (Liu et al., 1999). Analysis of alternative splicing of these 

isoforms in DM1 LECs could therefore be very interesting. This study has also 

highlighted the role of signalling pathways in the survival of DM1 LECs. We 

have shown that the DM1 LECs release factors into the medium which are 

capable of activating the Akt pathway and increasing growth in FHL124 cells. 

Activation of Akt was found to be upregulated in DM1 LECs which was critical 

to their survival. PTEN, the negative regulator of the Akt pathway was also found 

to be downregulated. During culture the levels of pAkt declined in the cell lines 

which coincided with a decline in cell numbers. A decline in cell number in the 

lens could lead to cataract formation due to a loss of homeostasis in levels of ions 

and water. 

 

6.3 Future directions 

 

 In order to build upon this project, further replicates are required for a 

number of the experiments and confirming the results in all eight cell lines would 

be of great benefit. Many of the interesting results could then be followed up and 

investigated further. Establishing the identity of the factor(s) released by DM1 

LECs which activates the Akt pathway and increases growth in FHL124 cells is a 

key area for future studies. Cytokines, such as interferons, are strong candidates 

and these could be investigated using multianalyte ELISAs. Identification of the 

pathways which lead to the release of factors by the DM1 LECs is also of great 

importance. Microarrays could be used to examine expression levels of thousands 

of genes at once which could highlight pathways that are aberrantly activated in 

DM1 LECs. Pathways that are either up or downregulated in the DM1 LECs 

compared to controls may be direct or indirect effects of the triplet repeat 

mutation and may therefore cause or contribute to the symptoms of the disease. 

This project has laid the groundwork for a new focus for DM1 cataract research. 
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