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Abstract

In 2D/3D image registration, preoperative 3D CT images are registered with intra-

operative 2D X-ray images obtained by fluoroscopy or Electronic Portal Imaging

Devices (EPID). These are compared with Digitally Reconstructed Radiograph

(DRR) images rendered from CT volumetric data and 2D/3D image registration

is established. This process is useful in many medical procedures where surgi-

cal planning is undertaken using volumetric data prior to treatment, such as in

radiation therapy treatment and image guide surgery.

This thesis examines the problem of accelerating 2D/3D image registration. In

practice, we developed methods of accelerating the underlying algorithms (mainly

DRR rendering) used in the registration process, at the same time, while checking

the performance and accuracy are within an acceptable range. To accelerate DRR

rendering we investigated a wide range of computer graphics and image processing

techniques using both software (typically executed on the CPU) and hardware

(GPU) systems.

A particular focus of this work is 2D/3D image registration prior to radiation

therapy treatment and so the algorithms are tested using digital X-ray images

acquired at MV and kV energies at the Colney Oncology Centre, Norfolk and Nor-

wich University Hospital (NNUH) using their Varian Linear Accelerator (LINAC)

radiation therapy system. Finally, results of the different approaches we developed

for accelerating DRR rendering show acceptable accuracy within a 2D/3D image
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registration framework. Our results show that we are among the fastest to render

DRR images (i.e. we are able to render DRR image from 256 × 256 × 133 CT

volume in ∼ 24 ms using an NVidia GeForce 8800 GTX and in ∼ 2 ms using

NVidia GeForce GTX 580), and consequently, speed up 2D/3D image registration

without significantly degrading levels of accuracy.
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Chapter 1

Introduction

Radiation therapy is an effective treatment for many types of cancer and as ex-

ternal beam therapy is relatively easily delivered, it remains a widely used treat-

ment [154]. The radiation therapy process involves multiple steps as illustrated in

Figure 1.1. The process begins with data acquisition as a CT volume (Figure 1.1

(a)), then tumour localisation followed by treatment planning (Figure 1.1 (b) and

(c)) and finally the radiation delivery (Figure 1.1 (d)). Radiation treatment is

delivered in fractions, each lasting 15-30 minutes and the whole process, from

beginning to end, takes 4-6 weeks [79][31].

Since radiation damages both healthy and malignant cells, it needs to be accu-

rately targeted. Accurate positioning of the patient prior to (or during) treatment

is a vital component in achieving a successful outcome and one that becomes in-

creasingly important when Intensity Modulation Radiotherapy Treatment (IMRT)

is used [130]. 2D/3D medical image registration, an image guided procedure [187]

used to match preoperative images and plans to images captured intraoperatively,

is used to align the patient prior (or during) to the delivery of radiation ther-

apy treatment [104]. It returns a rigid transformation (rotation and translation)

which provides parameters that are used to position the couch, thereby aligning

the patient’s anatomy with that used for the planning process [11]. Digitally re-

constructed radiographs (DRR) images are rendered from CT volumetric data by

summing the attenuation of each voxel along known ray paths through the CT vol-

ume. Generating projection radiographs is computationally more demanding than

1
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(a) (b)

(c) (d)

Figure 1.1: The main steps of radiation therapy treatment: (a) data
acquisition (i.e. CT scan), (b) tumour localisation, (c) treatment plan-
ning and (d) radiation therapy delivery [169][71][108][149].

3D surface rendering as potentially all the voxels contribute to the process. How-

ever, recent research in automatic 2D/3D registration and online motion track-

ing [22] requires efficient registration of many DRRs (e.g. Lung cancer registration

process should be faster than 0.33 Hz as the breath rate for adult range between

12-20 per minute [170][91]) and this has motivated research into fast algorithms

and hardware acceleration [90][49][124][86]. In [49] Göcke et al. comprehensively

review and compare few volume rendering approaches, and discuss a number of

specific optimisations, concluding that shear-warp factorisation (i.e. an object

space based volume rendering algorithm, more details about shear-warp factori-

sation are presented in Section 3.4.3) [89] with runlength encoding is roughly a

factor of six times faster than a direct approach and that the registration accu-
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racy is unaffected by the rendering approach so long as an appropriate resolution

is chosen. Russakoff et al. [141] implemented a special ray-based data structure

called an Attenuation Field (AF) to be used in the generation of a DRR instead

of the conventional ray casting method. (more detailed information is presented

in Section 3.5). Other work by Penney et al. [124] and Knaan and Joskowicz [86]

compare approaches for 2D/3D image based registration, both reporting similar

surface Target Registration Errors (TRE) of the order of 1-2 mm. Hardware accel-

eration is the focus of other work by Ruijters et al. [140], Gross [54], Wang [178],

Bethune et al. [13], Spörk [160], Mori et al. [111] and Birkfellner [186]. The lat-

ter uses a technique known as splatting which has been developed to efficiently

render irregular meshes, such as those generated by Octrees, using the Graphics

Processor Unit (GPU).

1.1 Motivation

The motivation for improving the speed of 2D/3D image registration can be ex-

plained by the following reasons:

Firstly, patient positioning is an important procedure for the effective and safe

delivery of radiation therapy treatment that can be solved using 2D/3D image

registration. An accurate and fast procedure for patient positioning saves time

and reduces errors in targeting malignant cells at the tumour site. A lot of effort

and time is spent by doctors and physicist in the early stages of diagnoses and

treatment planning and this time can be wasted due to inaccurate positioning

or worse lead to harmful side-effects. Studies have shown that “Efficiency of the

radiation therapy planning depends on the patient setup at each daily fraction”

(i.e. daily fraction: each fraction of the treatment process) [84]. Fast procedures

for patient positioning lead to the treatment of more patients in the same slot of

time. We focused on improving (accelerating) DRR rendering as this process is

computationally expensive and the most demanding component of the registration

method. Additionally, new image guided radiotherapy techniques will benefit

from fast image registration. Recently, Su et al. [163] described a method for

organ motion tracking which depends on fast rendering DRR images and other

researchers have clinically demonstrated real-time tracking and treatment delivery
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systems [29][38][63]. Applications of such systems are limited by latencies within

the registration loop.

1.2 Research Approach

The first step of this study starts by analysing the 2D/3D image registration

scheme in order to identify potential bottlenecks within the process and to un-

derstand interrelations between its components. Then we investigate different

methods of accelerating the rendering of DRR images such as:

1. Data sampling and CT volume compression, including Octree CT volume

compression methods, sampling by reducing the number rays and sampling

by reducing the number of intersection points inside the CT volume.

2. Parallel processing, this includes two methods using the software CPU and

hardware GPU.

3. Sparsely rendered DRR images which uses entropy measure for image blocks

selection.

Concurrently with the improvement for the image registration components we

evaluate the performance of the process by checking if the improvements made

affect the 2D/3D registration performance and if this remains in an acceptable

range for clinical radiation therapy use.

1.3 List of Contributions

This thesis makes the following contributions:

• It proposes a 2D/3D image registration system using compressed CT volu-

metric data (Octree compression) and shows that such a system is able to

achieve clinically acceptable results even when the CT volume is subject to

high levels of compression.
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• It develops parallelised software (i.e. CPU - OpenMP) implementation of

a DRR rendering method and demonstrates this is capable of achieving

accelerated 2D/3D image registration.

• It also develops a parallelised hardware (i.e. GPU - CUDA) implementation

of fast DRR rendering method and demonstrates its acceleration to 2D/3D

image registration.

• It investigates a method of performing 2D/3D image registration using re-

duced resolution DRR images and reports on its accuracy.

• Also, it investigates a method of performing 2D/3D image registration using

sparsely rendered DRR images and reports on its accuracy.

• It integrates the DRR rendering algorithm within a 2D/3D registration

framework that includes a novel optimisation approach which requires fewer

iterations than the standard hill climbing method.

1.4 Thesis Organisation

The remainder of this thesis is organised in the following manner. Chapter 2 de-

scribes different radiological image modalities and intensity modulated radiation

therapy systems used in image registration. Chapter 3 examines 2D/3D image

registration and all its components with detailed description for the methods that

we implemented in our registration system. Chapter 4 examines the performance

of 2D/3D image registration for using the compressed CT volumes to accelerate

the rendering of DRR images. Chapter 5 examines a way of accelerating the ren-

dering of DRR images by parallelising the casting of rays. Chapter 6 introduces

a way of accelerating the 2D/3D image registration by developing a hybrid sys-

tem combined the CPU and GPU. Chapter 7 examines a way of accelerating the

rendering of DRR images by only rendering a fragment of the DRR images with

performance evaluation for the 2D/3D image registration using this method of

accelerating the DRR rendering. Chapter 8 concludes this study and discusses

the possibilities of future work.



Chapter 2

Radiology and Radiation Therapy

The scope of this chapter is limited to an overview of different medical image

modalities and radiation therapy systems that are related to our research (i.e.

modalities and systems that have been used or could be enhanced with the addi-

tion of new methods described in this thesis, to achieve improved performance).

Section 2.1, provides an introduction to X-ray generation; we are particularly

interested in two X-ray energies, kV and MV, used in radiotherapy. We then de-

scribe the interaction between X-rays and materials and their effect on the quality

of kV and MV images. Section 2.2 describes computed tomography and its tech-

nological development. In Section 2.3 we briefly review other imaging modalities

such as magnetic resonance imaging and photon emission tomography. Finally,

in Section 2.4 different systems for radiation therapy are described as this work

provides the motivation for improvements in the 2D/3D registration process which

is a particular focus of this research.

2.1 X-ray Imaging

X-ray imaging has been used in various medical applications for over 100 years. In

1895, Röntgen published his initial results of using X-rays based on his observation

of fluorescence [75][139]. Figure 2.1 shows the first published X-ray image.

Table 2.1 shows a timeline of medical imaging. X-ray imaging was the first

modality used in medical applications and has been used to develop other med-

6
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Figure 2.1: An X-ray image of Anna Berthe Röntgen’s hand, taken on
22-12-1895 [3].

ical imaging techniques (e.g computed tomography). The main reason for the

widespread use of X-rays in medical and dental applications is firstly, that they

are simple to generate and detect. Secondly, it is still the cheapest modality for

obtaining medical images [185].

2.1.1 X-ray Generation

X-rays are high energy photons generated when electrons strike a metal target.

The electrons are emitted from a heated filament or cathode and accelerated to

collide with the metal target (anode). X-rays will be generated as a result of this

collision. A schematic drawing for an X-ray tube is shown in Figure 2.2.

X-rays are generated due to several processes which occur when the accelerated

electron penetrates the anode surface. Firstly, X-rays are produced when electrons

are diffracted and slowed down by the Coulomb fields of the atoms in the anode

material. Secondly, due to the deceleration that results from the interaction with

the orbital electrons and the atomic nucleus. These decelerations produce so called

Bremsstrahlung radiation. Occasionally, the entire energy of the accelerated elec-

tron is transfered into a single photon [21]. Thirdly, the accelerated electron could
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1895 The first X-ray picture has been taken by the German physicist Wil-

helm Conrad Röntgen, showing the skeletal composition of his wife’s left

hand [120].

1950 First Positron Imaging Device [120].

1952 First Clinical Positron Imaging Device [120].

1954 First reports of cardiac Ultrasound Imaging have been reported by
Elder and Hertz [82].

1955 First Fluoroscopic movies that allowed dynamic X-ray imaging of

moving scenes. Providing a new information of the beating heart and

its blood vessels [70].

1972 Computed Tomography (CT) scanning machine has been invented by

the British engineer Godfrey Hounsfield of EMI Laboratories, England,

and the South African born physicist Allan Cormack of Tufts University,

Massachusetts [152][70].

1973 The first Magnetic Resonance Image (MRI) has been developed by

the American Paul Lauterbur and the English Mansfield of Thorn-EMI

laboratories [120].

1974 The first Positron Emission Tomography (PET) camera has been

developed by the American Michael [120].

1980 The first clinical MRI of the brain was first done on a patient [70].

1985 The first Clinical PET scanning has been developed by scientists at the

University of California [70].

1989 The first Spiral CT scanning has been developed which allowed fast

volume scanning of an entire organ during a single, short patient breath

hold of 20 to 30 seconds [70].

2000 The first PET/CT scanner is invented and named by the Time Mag-

azine to be the medical invention of the year [120].

Table 2.1: Medical imaging timeline.
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Figure 2.2: Schematic drawing for the Xray tube [73].

knock out an electron close to the nucleus in the metal atom which will be filled

by an electron further out from the nucleus. This process will cause a difference

in the binding energy which will result in the emission of a monoenergetic photon.

In 1917, Barkla was awarded a Nobel Prize for this discovery and research that

also proved that X-rays are electromagnetic waves, with a range of wavelengths

roughly between 10−8 m and 10−13 m [21][1], a range invisible to the human eye,

as shown in Figure 2.3.

Figure 2.3: X-rays in the electromagnetic spectrum [138].

X-rays used in medical diagnostics are produced by acceleration voltages chosen
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between 25 kV and 150 kV [21], while those used in radiation therapy employ

voltages between 6 MV and 20 MV [30]. In our experiments (Chapter 7) X-rays

used for kV diagnostic imaging range from (79-81) kV and in radiation therapy

(portal imaging) a 6 MV source is used.

2.1.2 X-ray Material Interaction

X-ray interactions with matter is important in medical imaging and diagnostic

applications. The interaction (absorption) of X-ray photons by the human body

(e.g, bone, muscle tissue, epithelial cells, etc.) is used to generate medical images.

The interaction of high energy ionising X-rays with the human body is used in

radiation therapy treatment to destroy cellular DNA. X-ray interaction with the

human body results in one of three cases. Firstly, the X-ray could penetrate the

section of body without interaction (no loss in energy). Secondly, it could be

totally absorbed by the body materials (total loss in the photon energy). Thirdly,

it could be deflected from its original direction or scattered (partially loss in photon

energy) [161]. These cases are illustrated in Figure 2.4.

Figure 2.4: Illustration for the cases of X-ray interaction with human
body materials [161].

In medical image applications, the effects of a photons energy resulting from
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interactions with the human body materials are explained by the photoelectric

effect, Compton scatter and coherent scatter. In the photoelectric effect, the

energy of the X-ray photon is absorbed by an orbital electron which may be

ejected or experience a change in orbit (energy level), producing characteristic

radiation. In Compton scatter, some of the X-ray photon energy is absorbed by

an electron, while the X-ray photon travels in another direction with less energy.

In coherent scatter, no X-ray photon energy will be deposited in the material, it

is pure scattering interaction as illustrated in Figure 2.4.

X-ray imaging for medical applications relies on their attenuation due to dif-

ferent materials within the body. Since different materials will give different levels

of X-ray intensity attenuation, then a projection image can be generated. Levels

of attenuation are governed by the Beers-Lambert law [83] which can be expressed

as follows:

I(η) = I0 ∗ exp−µ(η)

Where I is the final X-ray intensity, I0 is the initial X-ray intensity at the source, µ

is the linear attenuation coefficient for the material through which the X-ray is cast

and η is the length of the X-ray path. As there is quite a big difference between

the attenuation levels of soft tissue and bone (at kV energy) X-ray images with

good contrast can be effectively captured for different medical applications [75].

In our application of 2D/3D image registration we collected two types of X-ray

images which differ from each other by the X-ray source energy levels; MV and

kV. The significant point relating to the X-ray energy is that the probability of

photoelectric interaction occurring within a given material drops sharply as the

X-ray energy is increased [161]. This explains the relatively poor quality of MV

X-ray images compared to the quality of kV X-ray images, as shown in Figure 2.5.

Further details about the effect of using MV and kV X-ray images in the 2D/3D

registration are presented in Chapter 7.

2.1.3 X-ray Detection

X-ray detection is a way of transferring the corresponding photon energy into

an electrical signal. There are two methods of X-ray detection; direct and in-
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(a) (b)

Figure 2.5: Example of MV and kV X-ray images that shows the effect
of using different levels of X-ray energy during the process of generating
X-ray images, where the image (a) generated using 6 MV energy of
X-ray and (b) generated using 80 kV energy of X-ray.

direct. The indirect method uses special materials called Scintillators that are

able to convert X-rays into visible light which are later detected by conventional

photodetectors, as illustrated in Figure 2.6 (a). This method of X-ray detection

provides good quality analog images but this type of image is incompatible with

modern digital storage. A modification of the conventional method uses a fluo-

roscopy screen and camera to produce analog images directly to a TV screen, as

illustrated in Figure 2.6 (b). The modified method suffers from multiple conver-

sion steps (i.e. X-rays to electrons to light, then to the camera) which leads to

poor image quality. A direct conversion process solves these problems by using a

semiconductor detector plane to convert X-rays directly into electrical signals as

illustrated in Figure 2.6 (c). This method of capturing digital images leads to the

generation of good quality images, that have lower storage cost which makes this

method suitable for the needs of modern healthcare [75]. Our 2D/3D image reg-

istration algorithms are tested using digital X-ray images acquired at MV and kV

energies at the Colney Oncology Centre, Norfolk and Norwich University Hospital

(NNUH) using a direct method of X-ray detection.
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(a)

(b)

(c)

Figure 2.6: Illustration for the different methods of detecting X-ray
images. Where (a) shows the conventional method of X-ray image de-
tection, (b) shows fluoroscopy X-ray image detection and (c) shows the
digital method of X-ray image detection.
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2.2 Computed Tomography

The method of Computed Tomography (CT) imaging was developed in the early

1970’s by an English scientist Godfrey Hounsfield who was (jointly) awarded a

Nobel Prize in medicine in 1979. CT images are generated using X-rays to ob-

tain thin slices (images) through the patient’s body. CT images provide more

detail (i.e. higher contrast) for soft tissue organs (i.e. liver, kidney, muscles, etc.)

compared to conventional X-ray radiography as the computed tomography yields

X-ray attenuation per unit volume and is not summed as in the case with con-

ventional projection imaging. The basic idea behind CT imaging is to reconstruct

a two dimensional image slice using one dimensional X-ray projections that are

acquired from different angles [179]. Consequently, a sequence of CT slices could

be used to reconstruct a three dimensional volume that in turn could be used in

different medical applications (e.g. surface rendering, image registration, image

segmentation etc.). In 2D/3D image registration we need to render two dimen-

sional projections (i.e. digitally reconstructed radiographs) of the 3D CT volume.

During the last four decades, methods of acquiring CT images have been refined

in several generations of scanners. These mainly differ from each other based on

the scanning configuration, scanning motions, detector arrangement and geometry

of the X-ray source. Briefly, in the following part of this section we will describe

the geometry for each of the generations and discuss its main pros and cons.

2.2.1 First Generation

The first generation is the simplest method of generating CT images. A highly col-

limated X-ray pencil beam and detector is used to obtain multiple measurements

of X-ray transmission, translated in linear motion across the patient’s body. Pro-

jections are obtained by rotating the X-ray source and detector about the patient’s

isocentre by approximately 1◦ for each projection as illustrated in Figure 2.7. The

rotation-translation motion is repeated to cover all the sides until the source and

detector have rotated through 180◦. However, this method requires a long time

per each scan (i.e. approximately 5 minutes) [32].
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Figure 2.7: First generation of CT [96].

2.2.2 Second Generation

The second generation CT used a narrow fan beam of X-rays and linear detector

array as illustrated in Figure 2.8. A translation and rotation motion of the X-ray

source and detectors were still employed, as in the first generation but a 10◦ step

in rotation angle was now possible due to the use of a fan beam. This reduced the

time need to acquire a scan to 10-90 seconds depending on the manufacturer, but

increased the computational complexity of the reconstruction [21][32].

2.2.3 Third Generation

Third generation machines used a wide fan beam of X-rays with a large number of

detector elements that are able to cover the patient completely so the translation

motion of the previous designs was avoided. Moreover, the X-ray source and the

detectors are mechanically coupled together and both rotated together around the

isocentre as illustrated in Figure 2.9. The main aim of this design is to reduce the

acquisition time to less than 20 seconds. In order to reduce errors due to motion

artefacts the patient was able to hold their breath for this short time [21][32].
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Figure 2.8: Second generation of CT [96].

Figure 2.9: Third generation of CT [96].

2.2.4 Fourth Generation

Fourth generation designs used the same wide X-ray beam fan as in the third

generation but with a fixed full ring of detectors around the isocentre as illustrated



CHAPTER 2. RADIOLOGY AND RADIATION THERAPY 17

in Figure 2.10. Acquisition time for the projection data can be performed in less

than a second [20], with inerscan delay (elapsed time between two scans) of 100

milliseconds. Interscan delay is avoided by enabling the X-ray tube to move in

spiral motion, this brings a significant reduction in the total scanning time [24].

Our research used CT acquired from a fourth generation GEHiSpeedFX/i CT

scanner located at NNUH, operating at 120 kV.

Figure 2.10: Fourth generation of CT [96].

2.2.5 Fifth Generation

The main reason for developing the fifth generation is to reduce slice acquisition

time as much as possible, which allows the system to be used in cardiac imag-

ing. Fifth generation CT is also called electron beam computerised tomography

(EBCT). Here, an electron source radiates a non localised X-ray beam. The elec-

tron beam is focused onto a ring of wolfram targets which are arranged in a half

circle shape around the patient that radiate the required X-ray beams for the CT

system imaging [21] as illustrated in Figure 2.11. Acquisition time for the projec-

tion data can be performed in about 50 ms, which is enough to image a beating

heart with acceptably small motion artefacts [16].
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Figure 2.11: Fifth generation of CT [19].

2.3 Other Radiology Imaging Modalities

In this section we briefly highlight other radiology modalities that could be used,

together with methods described in later chapters to improve the speed of the

2D/3D image registration.

2.3.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) was developed in 1973 by Lauterbur and

Mansfield. Images are generated using a nuclear magnetic resource that is able to

visualise the internal structure of the human body. Comparing MRI to CT scans,

MRI provides better contrast between different body’s tissues, this makes it useful

for imaging the brain, spinal chord, other internal organs such as lung and liver

or even for bones and joints as illustrated in Figure 2.12.

The basic idea behind MRI is that the hydrogen nuclei, which make up 80%

of all atoms in the human body are aligned as a nuclear magnetised atoms by

powerful magnetic fields. In the next step, radio frequency fields are used to

alter the alignment of the previous magnetised atoms. This causes the production

of magnetic signals from the hydrogen nuclei, these are detected by the MRI

scanner and reconstructed as an MRI image [20][115]. The focus of Chapters 4-7

is in different methods of speeding up the rendering of DRRs. We demonstrate

these methods of DRR rendering using X-ray-CT volumes only. However, recent
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Figure 2.12: Example of MR image for the human body, illustrating
the better contrast of MR over CT imaging [65].

research on rendering DRR images from MR volumes reported by Ramsey et

al. [132] uses MR-DRR images in a clinical utility for the setup and verification

of patients with intracranial lesions. Similarly, Chen et al. [27] rendered MRI-

based DRR images to facilitate initial patient setup process, where the MR-DRR

rendering is an essential process in their application of a MRI-based treatment

planning system. These applications could be made more efficient using methods

for speeding up the rendering process which we discuss in Chapters 4-7.
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2.3.2 Positron Emission Tomography

Positron Emission Tomography (PET) is a type of nuclear medicine imaging that

uses short-lived radionuclides to visualise body functions (e.g. blood flow, oxygen

use and sugar metabolism). This gives doctors a tool to be able to evaluate

the functionality of tissues and organs [131][57]. PET images are acquired using

gamma-rays emitted by the decay of radio-isotopes bound to molecules [99] as

follows. It begins with the injection of a radio-pharamaceutical, then a detector

scans the organ or tissues of interest after a specific delay to allow for delivery and

uptake. When the radio-isotope starts to decay it emits a positron that travels

for a short distance before annihilating with an electron which produces two high-

energy (511 kV) photons, that scatter in nearly opposite directions [99]. Summing

many events results in quantities that approximate line integrals through the radio-

isotope distribution which is then used to reconstruct the PET image (for more

details about PET image reconstruction, see [99]). A gamma camera is used to

detect emitted photons and a two dimensional histogram of the detected events

forms a projection image of the distribution of the radio-isotope [99].

Recently, systems have been built that combine PET and CT scanners to

generate PET-CT images. This type of images are generated using two different

types of radiation; gamma and X-ray for the PET and CT respectively. The main

aim of combining this two imaging modalities is to acquire images that are able

to describe the patient’s body organs in a functional and structural way as shown

in Figure 2.13.

PET-CT images have enabled an improvement to the planning and registration

for radiation therapy, this in turn has increased the need to develop new methods

for 2D/3D registration [26]. Method of accelerating the 2D/3D registration process

are applicable for these volumes too. Moreover, our fast rendering method could

be easily applied to allow both projections (DRRs) and surfaces to be rendered

through 3D PET-CT volumes using the maximum intensity projection (MIP)

method described in [97][85][175][17][122].
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(a) (b) (c)

Figure 2.13: An example shows the importance of the functional and
structural images together, where (a) shows the CT image component,
(b) shows the PET image component and (c) shows the PET-CT fused
image [113].

2.4 Radiation Therapy Systems

The common and main goal of radiation therapy systems is to deliver radiation to

the tumour site in the correct doses and location without affecting the surrounding

healthy tissues. There are several different types of radiation therapy systems such

as: Linear accelerator (LINAC), CyberKnife and Tomotherapy. In the following

subsections we introduce each of these different radiation therapy systems and its

methods of image registration for the patient positioning procedure.

2.4.1 Linear Accelerator (LINAC)

LINAC accelerator is the most commonly used radiation therapy system for pa-

tients with cancer. It delivers a high dose of X-ray energy to the region of the

tumour. It can be used for a stereotactic radiosurgery, this makes it suitable to

treat most areas of the body [121]. The system consists of MV X-ray- source, elec-

tronic portable imaging device (EPID), multileaf collimator (MLC) and patient

support system (PSS) [180] as illustrated in Figure 2.14.

The MV X-ray source is able to move in a circular motion around the patient,
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Figure 2.14: A LINAC system showing the major components [164].

while the couch or the PSS can be rotated or translated in six degrees of free-

dom, enabling the system to reach any point on the patient’s body [174]. More

technical details about the LINAC system that are relevant for our study are pre-

sented in Section 7.4.1. Patient positioning prior radiation therapy treatment is

performed using 2D/3D image registration. Our research investigates several dif-

ferent methods for speeding it up and investigates the registration performance in

the framework of kV/MV or kV/kV registration problem.

Recently, intensity modulated radiation therapy (IMRT) has become a vital

tool in meeting the main goal of radiation therapy systems (i.e. delivering radi-

ation to the tumour site in the correct doses and location without affecting the

surrounding healthy tissues) [167]. In IMRT, radiation beams are shaped to closely

approximate the shape of tumour, this enables a more precise conformal radiation

dose to be delivered to the tumour area [77]. To achieve the goal of IMRT, a

multileaf collimator (MLC) is used to turn beams on or off in order to control the

intensity and shape of it as shown in Figure 2.15.
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Figure 2.15: The principle of intensity modulated radiation therapy
using an MLC [165][164].

2.4.2 Cyberknife

“The CyberKnife (Accuray, Inc., Sunnyvale, CA) is an image-guided frameless

radiosurgery system” [48]. There is currently only one machine of this type lo-

cated in the UK (in a Harley Street Clinic). It is capable of irradiating tumors

stereotactically with the tumor location (moving organ) being fed back to a com-

puter controlled robot [180]. The design of Cyberknife enables it to be used in

the treatment of cancers located in a variety of body sites (i.e. brain, lung, spine,

liver, prostate, pancreas) [137]. The system consists mainly of a robotic controller,

an X-ray radiographic locating system and a light weight 6 MV linear accelerator

head [29] as shown in Figure 2.16.

The robotic controller is capable of six degrees of freedom movement. Feedback

from the computerised localisation system uses two fixed X-ray sources (i.e. 100-

120 kV [29]) that enable orthogonal images of the targeted cancerous region to be

acquired. The infrared (IR) tracking system is used to continuously synchronise

the beam delivery to the tumour’s motion which eliminates the need for breath-

holding technique [147]. The patient positioning system is also synchronised with

the treatment system through the robot which aligns the patient in six degrees of

freedom enabling precise and fast patient setup.
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Figure 2.16: A system overview of the Accuray R© Cyberknife showing
its major components [2].

The target location system (i.e. X-ray sources (A) and (B) and the image detec-

tors) generate images that are fed into image-guidance software which uses 2D/3D

image registration to track the targeted tumour by periodically registering these

X-ray images to previously generated DRR images [2]. The registration yields the

current tumour pose (i.e. translation and rotation) as the radiation beams are

accurately aligned to the desired target according to the planned position and ori-

entation of treatment [137][112][29]. Registration is a computationally expensive

process that is required to be processed quickly in order to ensure an accurate and

quick response from the target location system. This requires many DRR images to

be rendered from a pre-computed CT volume and the acquisition of X-ray images

(typically at 1 min intervals [137] for Cyberknife system). This type of 2D/3D

registration is performed between kV/kV image modalities of X-ray and DRR

images. Different studies have investigated the performance of the 2D/3D regis-

tration of dignostic images, the so called kV/kV problem [38][37][141][137][63][25].

In Chapter 7 of this thesis we present our method of speeding up 2D/3D image

registration of kV/kV images that is applicable to this type of radiation therapy

systems.
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2.4.3 Tomotherapy

Tomotherapy is the latest radiation therapy system which is capable of delivering

IMRT by radiating tumours helically with a combination of the use of sophisti-

cated computer controlled radiation beam collimation and the use of on-board

CT scanner for treatment site imaging. The special design of tomotherapy makes

it capable of providing unprecedented accuracy in beam delivery to the tumour

sites and at the same time reduce beam delivering to the healthy tissues [79]. The

general shape of the system looks like a CT scanner but internally it is a radiation

therapy system operated in MV X-ray energy as shown in Figure 2.17.

Figure 2.17: A system overview of Tomotherapy R© with schematic
drawing shows the main components for the helical tomother-
apy [189][102].

This system of radiation therapy combines the IMRT delivery with an internal

image guided system that uses a megavoltage computed tomography scanning

(MVCT). The linear accelerator (LINAC) with 6 MV power is located on a CT is

ring gantry that is able to generate a collimated fan beam using binary multileaf

collimator (MLC). The MV intensity modulated beam is delivered to the patient

from different points through the helical motion of the LINAC around patient’s

body. Radiation is delivered by continuous rotation of the MV LINAC during

the treatment procedure, while the couch is translated at a constant speed inside

the gantry. Although the radiation is delivered in different shapes for different

slices according to the delivery direction as the tumour usually has irregular shape.
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Radiation doses are tumour shaped using the MLC for accurate delivery. However,

the system allows an acquisition for low dose MVCT images (i.e. 3.5 MV) that

are used in the image registration for the patient positioning process. Each of the

MVCT images is collected using array of detectors moving in the same gantry of

the LINAC as illustrated earlier in Figure 2.17 [189].

Unlike the other radiation therapy systems, the tomotherapy’s patient posi-

tioning process is performed without a need for the DRR rendering, as the im-

age registration performed for a pre-collected kilovoltage computed tomography

(kVCT) slices and low dose MVCT slices. Patient positioning is performed before

each of the treatment fraction by collecting MVCT images (i.e. using the same

source of radiation for the treatment with low dose) with different slice spacing (i.e.

2, 4 or 6 mm) to be registered (aligned) with kVCT images that have been used in

the treatment planning phase [78]. Therefore, we can conclude that patient posi-

tioning with the tomotherapy system is not going to directly benefit from our fast

2D/3D image registration but our work on image registration using a sparse set

of kVCT and MVCT images might be useful and worthy of investigation in future

work. Different studies investigating the accuracy and speed of the registration in

the tomotherapy are discussed by [78][33][34][188].

2.5 Summary

In this chapter we described different medical image modalities that are related

to our research, focusing on X-ray images which is one of the main modalities.

The method of generating X-ray images and the different energies used affects the

quality of images. These are important issues that affect some of the results and

artefacts presented throughout the following chapters. Moreover, we described

different systems of intensity modulated radiation therapy that uses 2D/3D image

registration which is the particular focus of this thesis.



Chapter 3

2D/3D Medical Image

Registration.

In this chapter we examine 2D/3D rigid image registration and all its components.

In Section 3.1, we define image registration as a rigid transformation and show

a schematic overview of 2D/3D image registration. In Section 3.2 we examine

three popular similarity measures used in image registration and describe the al-

gorithm we used in our implementation. In Section 3.3 we examine two categories

of optimisation methods for image registration and illustrate the method that we

implemented in our registration system. In Section 3.4 we examine the DRR ren-

dering process and illustrate methods of rendering the DRR images. Rendering

DRRs is a computationally expensive process that forms a focus of much of the

experimental work in this thesis. We introduce four different methods of speeding

up the rendering of DRR images and illustrate each. In Section 3.5 we discuss

different methods of enhancing the performance of the 2D/3D medical image reg-

istration.

3.1 Introduction

Image registration is the determination of a geometrical transformation that aligns

features in one view of an image or volume with corresponding features in another

view of the same or another image or volume [158]. In medical imaging regis-

27
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tration, corresponding images could have the same or different modality, com-

mon modalities are Computed Tomography (CT), Magnetic Resonance (MR),

Single-Photon Emission Computed Tomography (SPECT) or Positron Emission

Tomography (PET). Registration between like modalities, such as MR-MR, is

called ”intramodal” or ”monomodal” registration, whereas registration between

different modalities, such as CT-MR, is called ”intermodal” or ”multimodal” reg-

istration [158]. Our research studies intramodal registration between X-ray images

and CT images. In image registration a geometrical transformation T is applied

to a point x to produce a transformed point x̀:

x̀ = T (x)

Successful registration will make point x equal to x̀ or approximately equal (in the

geometrical meaning), otherwise there will be a registration error if the displace-

ment between x and x̀ is not zero. Geometrical transformation is partitioned into

rigid transformations which are defined as geometrical transformations that pre-

serve all distances (i.e. translation and/or rotation) and non-rigid transformations

(i.e. rigid plus scaling, affine, projective, perspective and/or curved transforma-

tions, for more details see [158]). In our research we only studied registration

with rigid transformation as our focus in not to investigate the registration field

in general, but to establish a registration framework to evaluate our methods of

accelerating DRR rendering and 2D/3D image registration. Moreover, the prob-

lem that we are targeting (radiation therapy) is mainly a uni-modal registration

problem that does not really warrant the extra complexity of a non-rigid frame-

work (Chapter 7 demonstrates that acceptable limits for clinical target registration

error (TRE) can be achieved by rigid registration).

3.1.1 Rigid Transformation

A rigid transformation is defined as a geometrical transformation that preserves

relative distances (i.e. if P and Q are transformed to P̀ and Q̀ then the distance

from P to Q is the same distance form P̀ to Q̀) [158]. The components of rigid

transformation are translation and rotation, where the translation is a three dimen-

sional vector t with components of (tx,ty,tz) relative to the Cartesian axes (x,y,z)
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and rotational components R parameterised in term of three angles of rotation

(θx,θy,θz) about the Cartesian axes (x,y,z), often called ”Euler angles” [44][90].

Then if T is rigid,

x̀ = R(x) + t

The matrix representation t of the translation (tx,ty,tz) is

t(tx, ty, tz) =


1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1


and the matrices representing R (Rx,Ry,Rz) are

Rx(θx) =


1 0 0 0

0 cos(θx) −sin(θx) 0

0 sin(θx) cos(θx) 0

0 0 0 1



Ry(θy) =


cos(θy) 0 sin(θy) 0

0 1 0 0

−sin(θy) 0 cos(θy) 0

0 0 0 1



Rz(θz) =


cos(θz) −sin(θz) 0 0

sin(θz) cos(θz) 0 0

0 0 1 0

0 0 0 1


t and R can be combined into a rigid transformation matrix T , written

T = t(tx, ty, tz)×Rx(θx)×Ry(θy)×Rz(θz)
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=


cycz sxsycz − cxsz cxsycz + sxsz tx

cysz sxsysz + cxcz cxsysz − sxcz ty

−sy sxcy cxcy tz

0 0 0 1


where,

sx = sin(θx), sy = sin(θy), sz = sin(θz), cx = cos(θx), cy = cos(θy), cz = cos(θz)

Rigid registration comprises searching for the optimum six parameters of T

that best aligns the coordinate systems of the corresponding images [46][10].

3.1.2 2D/3D Registration Schematic Overview

2D/3D medical image registration, an image guided procedure [187] used to match

preoperative images and plans to images captured intraoperatively, is used to align

the patient prior to the delivery of radiation therapy treatment [104]. 2D/3D image

registration registers portal X-ray images acquired immediately prior (or during)

radiation therapy treatment to Digitally Reconstructed Radiograph (DRR) im-

ages, rendered from CT volumetric data (more details in Section 3.4). It returns a

rigid transformation T (rotation and translation) which provides parameters that

are used to position the couch, thereby aligning the patient’s anatomy with that

used for the planning process [11][39]. An iterative schematic overview of 2D/3D

medical image registration is shown in Figure 3.1(a).

The schematic overview of the registration process illustrates the use of a sim-

ilarity metric to determine the similarity between the reference image and the

DRR images (more details about similarity measures presented in Section 3.2).

The similarity value is used by the optimisation algorithm to search for T values

that generates the most similar DRR image to the reference image (more details

about optimisation methods presented in Section 3.3). The registration process

is iteratively repeated until optimal values of T are found. The rendering of a

number of DRR images is a vital step in each iteration of the registration process.

DRR rendering is an extremely computationally expensive process and forms a

bottleneck in 2D/3D image registration [84][107]. Figure 3.1(b) illustrates the
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(a)

(b)

Figure 3.1: (a)Iterative schematic overview of 2D/3D medical im-
age registration [182], (b) graphical representation for complexity of the
2D/3D image registration.
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complexity of the DRR rendering process relative to other 2D/3D image registra-

tion components (more details about the DRR rendering methods is presented in

section 3.4)

3.2 Similarity Measures

As illustrated in Section 3.1.2 and the schematic overview of 2D/3D registration

(Figure 3.1), similarity measurement is a vital process in the iterative workflow.

The similarity yields a measurement value that indicates how well the reference

X-ray image matches the rendered DRR image. Similarity measurement in 2D im-

ages is a fundamental and well researched image processing problem and as such,

a number of authors have surveyed the literature in this area [146][123][177]. The

similarity measure methods are mainly categorised into two classes; intensity-

based and feature-based similarity measures. Feature-based measures requires

some pre-processing or user interaction with the images and include the use of

landmarks, corner detection and segmentation in order to obtain significant infor-

mation [182][106]. On the other hand, intensity-based measures that only require

pixel intensities use images without the need for pre-processing [182]. As the main

goal of this research is to speed up 2D/3D registration, we will use only intensity-

based similarity measures as these do not require any pre-processing. The fol-

lowing section introduces the similarity measures we used in our research (i.e.

Normalised Cross Correlation (NCC) and Sparse Normalised Correlation(SNC)).

We also describe Mutual Information (MI). Although we did not use this tech-

nique to measure the similarity between images, it is included to introduce the

concept of entropy which was used to find regions of interest in a sparse rendering

algorithm we developed (Chapter 7).

3.2.1 Normalised Cross Correlation

Normalised cross correlation is used in many different applications of computer

vision when there is a need to assess the similarity between two data sets. It is

sometimes simply called a correlation coefficient when the data sets are images

as in 2D/3D registration [40][90]. NCC is one of the simplest and most effective
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methods of measuring the similarity between images. The main advantage of

NCC is that it is invariant to linear changes in image intensity (i.e. if the pixels

intensities in one of both images are scaled by a constant value, then the NCC

value will not be changed). NCC is defined as:

NCC(Iref , Ij) =

∑N
i=1(Ai − A) · (Bi −B)√

(
∑N
i=1(Ai − A)2) · (∑N

i=1(Bi −B)2)
(3.1)

Where A represents the reference image Iref and B a floating DRR image Ij, A

and B are the mean intensity values and N is the total number of image pixels.

But using Equation 3.1 we need to read both of the images two times in order

to calculate the mean intensity and to complete the summation. Therefore to

reduce the calculation time our application used an optimised version of NCC (i.e.

NCC′) presented by Wolfganag [182] that allows us to read both of the images for

once only, by expanding the equation into the following form:

NCC ′(Iref , Ij) =
(
∑N
i=1 AiBi)−NA B√

(
∑N
i=1 A

2
i )−NA

2 ·
√

(
∑N
i=1 B

2
i )−NB

2
(3.2)

In this case both of the images have to be read only once. Additionally, in

2D/3D registration cases where only one image changes in each iteration (i.e. the

floating DRR image we described earlier in Section 3.1.2), there are considerable

advantages in using this method.

3.2.2 Sparse Normalised Correlation

One of our approaches speeds up the 2D/3D registration loop by rendering only

parts of the images; we call these images sparsely rendered DRRs. We adapt

the method of NCC to provide an efficient similarity metric that is applicable to

sparse images, calling it Sparse Normalised Correlation (SNC). SNC enables us to

measure the similarity for a sparse set of regions (i.e. the whole of the image is

not covered) and thereby register these, as shown in Figure 3.2. Formally this can

be represented as Equation 3.3.

SNC(Iref , Ij) =
∑
i∈S

NCC ′(Iref , Ij, i) (3.3)
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Figure 3.2: Illustrates the SNC method of similarity measure between
an X-ray image and a DRR image.

Where Iref represents the reference image, Ij a floating DRR image , S repre-

sents the sparse regions in the image and i is regions’ pixels counter.

A similar approach is presented by LaRose to provide a similarity metric that

is robust to non-linear changes of intensity, called Local Normalised Correlation

(LNC). According to LaRose [90] the idea is to find the mean NCC over a set

of regions R covering the image, as shown in Figure 3.3. Formally this can be

represented as Equation 3.4.

Figure 3.3: Illustrates the LNC method of measuring the similarity
between an X-ray reference image and a DRR image [90].

LNC(Iref , Ij) =
1

|R|
∑
P∈R

NCC(Iref , Ij, P (p)) (3.4)
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Where R is a set of regions covering the image, each comprising P (p) pixels,

the summation of LNC is divided by |R| to obtain the mean value of LNC over

the image. LNC is useful in cases where one of the images exhibits a non-linearity.

Such a case might arise when the patient is fitted with a metal prosthesis, as shown

in Figure 3.3 (left-hand side).

In our implementation of the similarity measure, we used the modified NCC

(NCC′ Equation 3.2) inside the equation used to compute SNC (Equation 3.3).

This approach is more efficient over the method of LNC which proposed by

LaRose [90] for reasons we already discussed. Moreover, we compute the SNC

for part of the image instead of whole the image by selecting ROI automatically

(as shown in Figure 3.2 and illustrated in Section 7.3.2). This gives us further

efficiency gains over the LNC method in the 2D/3D image registration because

we only need to calculate the similarity measure for selected areas. More details

about the implementation method for the 2D/3D image registration and the SNC

of measuring the similarity between ROI for the reference image and the DRR

images is presented in Chapter 7.

3.2.3 Mutual Information

Mutual Information (MI) measures the amount of shared information by express-

ing the statistical correlation between images using the entropy measure. Shanon’s

entropy is used to asses the amount of information in an image according to Equa-

tion 3.5 [56][182] (more theoretical information about the entropy is presented in

Chapter 7):

E(I) = −
255∑
i=0

(p(i)× log p(i)) (3.5)

Where p(i) is the probability of the i th intensity value of the histogram (i =

0→ 255) for the local regions of our gray scale images I, p(i) = Histogram [i]÷
regionSize. To asses the amount of information shared between two images, the

joint entropy is used as presented in Equation 3.6 [98].

E(Iref , If ) = −
255∑
i,j=0

pA,B(i, j)× log pA,B(i, j) (3.6)
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Where A represents the reference image Iref , B the floating DRR image If and

pA,B(i, j) is the joint probability distribution of A and B. Intensity probability

distribution can be visualised as a two dimensional joint histogram as in Figure 3.4.

MI combines the individual and joint entropy of images as in Equation 3.7.

MI(Iref , If ) = E(A) + E(B)− E(A,B) (3.7)

Where A represents the reference image Iref , B the floating DRR image If ,

E(A) and E(B) denote the individual entropy and E(A,B) denotes the joint en-

tropy. MI is one of the most frequently used methods in the intensity based

registration, especially to measure the similarity between different image modali-

ties. The literature on MI demonstrates that robust and accurate results can be

obtained as MI assumes there are no functional dependences between the images,

only a statistical dependence between their intensities . However, the main draw-

back that has limited the use of MI in some applications is that it does not consider

spacial information [126][100][98]. The MI measure is attractive since it can be

easily calculated from the image histogram, but the computational cost of the

technique is higher compared with NCC and since our images are uni-modal there

is no advantage to be gained by using this approach. However, our sparse render-

ing algorithm uses an entropy measure to select ROI required (as we illustrate in

Chapter 7).

3.3 Optimisation

As we briefly illustrated in the schematic overview of the 2D/3D image registration

(Section 3.1.2), we use an optimisation process to find the parameters for the

rigid transformation T in order to correctly register the reference image with the

DRR image. Optimisation algorithms work iteratively to search the parameter

space T , and terminate once either the accuracy criteria has been satisfied or a

local/global minima/maxima has been found [158][182]. In general optimisation

algorithms are search algorithms that cannot guarantee 100% perfect results in

terms of accuaracy, computaional time and speed, but they do have the ability to

find an optimal solution [160]. Spork [160] illustrates this by an example which
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(a) (b)

(c) (d)

(e)

Figure 3.4: Illustrates the joint histogram used in MI for 2D/3D image
registration. Where (a) shows an X-ray reference image, (b) shows a
DRR image, (c) shows a histogram for the reference image, (d) shows
a histogram for the DRR image, and (e) shows a joint histogram built
from the two histograms for the reference and DRR images.
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attempts to register two non identical images. In this case, none of the similarity

metrics will indicate a perfect match but the optimisation framework will try

to find the best solution. Optimisation algorithms are divided into two main

categories, either gradient based algorithms (e.g. gradient descent [53]) or non-

gradient base algorithms (e.g. best neighbour search [171]). A brief introduction

for the best neighbour search algorithm and the gradient descent algorithm is

presented in the next two sections.

3.3.1 Best Neighbour Search

The best neighbour search algorithm (hill-climbing) refers to the family of pattern

search algorithms. In each iteration of the algorithm the position of the float-

ing image is altered by a specific step size in the parameter space according to

the result of the cost function [182]. When used in 2D/3D image registration

the similarity measure algorithm (cost function) is used to evaluate the similarity

between the reference image and the DRR image at a specific location in a pa-

rameter space comprising six degrees of freedom (DoF) [173]. After comparing 12

DRR images (i.e. both directions for each DoF 2 × 6) the one with the highest

similarity value will be chosen and set as the base step for the next iteration. If

non of the compared DRR images achieves a better value than the current one,

either the algorithm will terminate or it will downscale the step size and re-execute

the iteration in order to find the optimal position of the volume used to generate

the DRR images [182]. The optimal position should be the global maxima for

the optimisation algorithm. However, a drawback of this approach is that the

search algorithm can get stuck at a local maxima, instead of continuing to find

the global maxima [103]. Finally, although best neighbour search is one of the

simplest optimisation algorithms, recent results presented by [141] show that it is

a very suitable algorithm for optimisation in the 2D/3D image registration.

3.3.2 Gradient Descent

Gradient descent is a gradient based approach used in the optimisation process

in order to find the global optima by successively stepping in the direction of the

function’s gradient as illustrated in Figure 3.5.



CHAPTER 3. 2D/3D MEDICAL IMAGE REGISTRATION 39

Figure 3.5: Example illustrates the gradient descent method [5]

The success of the approach depends mainly on selecting the correct size of

the step at each iteration according to the gradient function:

xt+1 = α
df(xt)

dxt

Where α is the step size of the function. α should be chosen carefully; if the

step size is too big this could take the algorithm far from the global optima or if

the step size is too small the algorithm could get stuck in a local optima, never

reaching the global optima [182].

3.3.3 Our Implementation

In a comparable study published by Khamene et al. [84] examining different op-

timisation techniques (e.g. the best neighbour search, gradient descent, powell-

brent) for 2D/3D registration, the mean and standard deviation of TRE showed

no significant difference irrespective of the different optimisation technique used.

They conclude that the type of optimisation technique does not affect the results

of the 2D/3D image registration. Therefore, from our point of view the most im-

portant issue in the choice of optimisation technique is the number of DRR images

required in order to reach the global optima.

We implement a solution for the optimisation problem by posing the six de-

gree of freedom as 3 independent optimisation problems in two degrees of freedom.
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These are solved by fitting a 2nd order polynomial function to the data and differ-

entiating to find the maxima. This reduces the required number of DRR images

that need to be rendered, compared to a hill-climbing algorithm and thus reduces

the time required for registration [39]. For each of the 3 optimisations the pa-

rameters (x, y, z, yaw, pitch, roll) were paired (another research [123] suggests

to combine multiple DOFs). As much as possible we choose uncorrelated pairs

i.e. {x, pitch},{y, yaw},{z, roll}. For each pair we render five DRRs and com-

pute the similarity metric for each. According to our optimisation strategy 15

DRRs (3 × 5) need to be rendered. This is slightly more than needed at each

iteration of an equivalent conventional best neighbour search. However, one must

remember that the approach is not iterative, once the polynomial surface has been

fitted the maxima can be found in one step. More details about our implemented

method of optimisation for the 2D/3D image registration is illustrated in Chapter

4, Section 4.4.

3.4 Digitally Reconstructed Radiographs (DRRs)

A Digitally Reconstructed Radiograph (DRR) is a two dimensional simulated X-

ray image, rendered from medical tomography data sets, such as Computed To-

mography (CT) [9]. Rendering DRR images is important for many medical appli-

cations, such as, 2D/3D medical image registration [119] and brachytherapy [109].

In radiation therapy treatment systems, floating DRR images are a vital part of

the patient positioning process and may be aligned manually or automatically.

DRRs are rendered from the medical tomography data by summing the attenua-

tion due to each voxel along known ray paths through the data volume. However,

this conventional ray tracing approach to DRR rendering is an extremely com-

putationally expensive process and forms a bottleneck in medical applications,

like 2D/3D image registration [84][107]. Normally, conventional DRR rendering

requires p× q rays to be cast to generate a DRR from a data volume; where p and

q are determined by the image resolution. In patient positioning this is usually

chosen to match that of the solid-state flat panel X-ray detector as illustrated in

Figure 3.6.

The complexity of DRR rendering results from the massive number of calcu-
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Figure 3.6: Illustrating the geometry of DRR rendering.

lations needed and the large number of ray casting operations. Compared with

more general surface rendering techniques, rendering DDR images is considerably

more computationally demanding as we need to compute the attenuation of a

monoenrgetic beam due to different anatomic material (e.g. bone, muscle tissue,

etc.) within each voxel, using Beer’s Law [83].

I = I0 ∗ expΣ−µixi

Where I0 is the initial X-ray intensity, µ is the linear attenuation coefficient for the

voxel (material) through which the ray is cast, x is the length of the X-ray path

and subscript i denotes the voxel index along the path of the ray, as illustrated in

Figure 3.6. Voxel values in CT volumes are represented by a CT number quantified

in Hounsfield Units (HU). The attenuation coefficient of the material comprising

each voxel can be recovered by [148]:

CTnumber = 1000 ∗ [(µi − µw)/µw]

where µi is the attenuation value of a particular volume element of tissue (voxel)

and µw is the linear attenuation coefficient of water for the average energy in the

CT beam.

Various methods have been proposed to speed up the rendering of DRR images.

Through the following sub-sections we will cover some of the most recent and

important methods of speeding up DRR rendering. We explored four methods for
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DRR rendering. The first is a simple ray casting method. This has been chosen

by other researchers as a reference method in studies comparing speed, accuracy,

and quality [95][90][141]. The second method we chose uses a technique known as

attenuation fields (AF) [141]. Which represents a recent DRR rendering method

which claims to offer improvement over ray casing methods. The third method is

the shear warp method, which is another fast and accurate method of rendering

volumes [110]. The fourth is a hardware based method which demonstrates some

advantages of using graphics hardware in the rendering process in order to improve

the speed. Finally, we then describe our method for rendering of DRR images.

3.4.1 Ray Casting

Ray casting is one of the oldest and most straight forward methods for rendering

3D data volumes. It simulates real light rays that strike objects by finding their

intersections. In general purpose volume rendering, ray casting is used to find sur-

face intersection points between the rays and the objects. The surface is identified

by defining a threshold value. The volume is visualised by casting the volume front

to back and rendering the first voxel having value above the threshold [184][160].

However, in the case of DRR rendering each of the rays will intersect all voxels

inside the 3D data volume which are located in the direction of the ray. Figure 3.7

illustrates both of the methods. The general concept of any ray casting algorithm

for volume rendering is to have a ray with a specific direction that intersects a 3D

data volume. A specific ray r can be mathematically described as:

~r(t) = ~o+ t~d

Where o is the origin of ray source, d is the direction of the ray and t determining

the ray length (i.e. 0 ≤ t <∞) [61]. The directions of the rays differ according to

the desired projection style (orthogonal, perspective). In orthogonal projection,

the rays are perpendicular to the image plane and parallel to each other, while in

perspective projection, the rays have the same source (origin of ray source) [107].

Origin of the ray and this geometry matches that of the Varian LINAC system

used to acquire the reference X-ray images.

Data sampling was one of the earliest proposals aimed at reducing the compu-
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(a) (b)

(c) [55] (d)

Figure 3.7: Illustration of the difference between visualising a 3D data
volume and DRR rendering from a 3D data volume using ray casting
method. Where (a) shows a ray casting method for 3D volume surface
rendering, (b) shows a ray casting method for DRR rendering from a 3D
data volume, (c) shows an example of the 3D volume surface rendering
method and (d) shows an example of the DRR rendering method.
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tational cost of DRR rendering . This method increases the performance of the

ray casting method but at the same time it has some drawbacks that motivates re-

searchers to develop different methods of ray casting. One of the main drawbacks

is related to the accuracy of the DRR image resulting from the rendering process

as some of the small structures in the volume can easily be missed. Also the time

needed to render a volume is fixed by the number of samples taken and many of

these may lie in the space surrounding the object. This space is likely to be air,

which has comparatively little effect in terms of X-ray attenuation. To avoid sam-

pling in empty spaces authors proposed a way to collect the empty spaces (voxels)

in a large block of data using the Octree/kdtree data structure [94][159][39][183].

More details about the method of using the Octree in the rendering of DRR im-

ages is illustrated in Chapter 4. On the other hand, the ray casting algorithm is

simple to design and implement. There is also an advantage of using ray casting

in DRR rendering as each pixel of the DRR image is calculated independently

(i.e. we accumulate all the intersection points located in the direction of the ray)

and therefore ray casting is perfect for parallelisation [107]. Many research meth-

ods have been developed to parallelise ray casting algorithms using the hardware

(Graphical Processing Unit) [51][76][98][111]. In our research we explore paral-

lelising the ray casting algorithm using both CPU and GPU. We illustrate these

approaches in Chapter 5 and Chapter 6 respectively.

3.4.2 Attenuation Fields

An attenuation field (AF) is a special data structure implemented by Russakoff et

al. [141] used in the rendering of a DRR instead of the conventional ray casting

methods. According to the original proposal of light fields by Levoy and Han-

rahan [93] and similar work in concept (transgraphs) introduced by LaRose [90],

AFs provide a way of parameterising the set of rays that emanate from a static

scene to perform 3D rendering. Rays in the rendering space are parameterised

as R ≡ Pi(u, v, s, t) where plane (u,v) is the focal plane and (s,t) is the virtual

image plane (camera plane) as illustrated in Figure 3.8. An important feature of

the parameterisation is that it can only cope with small relative movements of the

camera (X-ray source) and CT volume.
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Figure 3.8: DRR rendering using AFs [141].

Images of objects inside the light slab (which is a convex quadrilateral object,

formed by two planes (u,v) and (s,t)), are created by calculating a huge number

of rays (theoretically an infinite number of rays) inside this light slab.

In Russkoff’s application of AF DRR rendering [141], the static 3D scene used

to illustrate the approach in Levoy and Hanrahan’s work [93] is replaced by a

3D CT volume and DRR images are rendered by calculating the integral linear

attenuation coefficient affecting rays passing along paths from the X-ray source

to the flat panel detector (destination). To accommodate the differences between

the original structure and the altered one, a virtual image plane is introduced

to model this projective geometry. Comparisons are drawn between this imaging

geometry and that originally proposed by Levoy and Hanrahan in Figure 3.8. A

large number of rays inside the light slab were rendered (i.e. not all the rays) and

then the missing values were estimated by interpolation.

To build the light slab, a set of DRR images for a limited range of gantry/couch

positions (view sphere) must be rendered offline in an earlier step in order to

create the AFs. Once it is built, the AF look-up-table (LUT) can be used to

quickly generate DRRs from novel view-points within the view sphere using an

interpolation of the 4D ray space we illustrate earlier. There is an obvious memory

saving in using AFs, over precomputing a complete set of DRRs covering every

possible gantry/couch position. However, the size of the AF LUT is in the order of

approximately ≈ 2GB (i.e. (u,v) resolution of 64×64 pixels and (s,t) resolution of

512×512 pixels). To address this, Russakoff also compressed the AFs using vector
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quantisation, claiming a compression ratio equal to kb
log2N

where k is the number

of elements per vector, b is the number of bits per element, and N is the number

of codewords.

3.4.3 Shear Warp Factorisation

Shear Warp Factorisation is an object space based volume rendering algorithm

proposed by Lacroute et al. [125] to achieve interactive rendering rates without

significantly affecting the image quality. The shear warp factorisation algorithm

consists in general of three steps (see Figure 3.9(a)). The first step, shears and

resamples the volume slices to form a set of intermediate 2D image slices. The

second step, projects the resampled voxel scanlines onto the intermediate image

slices and the third step, warps the intermediate image into the final result. To

transform the object into the shear object space (step one), there are two cases

according to the direction of the rays. If the rendering is orthogonal then the

volume is transformed to sheared object space by translating each slice. If the

rendering is perspective then the volume transformed to sheared object space

by translating and scaling each slice as illustrated in Figure 3.9(b) and 3.9(c)

respectively. The main advantage of shear warp factorisation is that scanlines

of the volume data and scanlines of the intermediate image are always aligned.

Which allows efficient and synchronised access to the data in the volume to render

the final image [125]. A shear warp factorisation was used in DRR rendering by

Wesse et al. [181] in their research on 2D/3D image registration. More details

about their work are illustrated in the related work section (Section 3.5).

3.4.4 Hardware Texture Mapping

Hardware based volume rendering is a popular topic for research in the graphics

area. The implementation of hardware based solutions for volume rendering de-

pends mainly on the algorithm used for volume rendering. Hardware is no more

than a special tool used to achieve efficient solutions and enhanced results for

the implemented rendering algorithms. Parallelising the implementation of the

rendering algorithm on the hardware device is the main objective for researchers

wishing to take advantage of the large number of processing cores located on
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(a)

(b)

(c)

Figure 3.9: Illustration for the shear warp factorisation algorithm.
Where (a) shows the three steps of a shear warp algorithm, (b) shows a
volume transformed to shear object space for an orthogonal projection
by translating the slices, and (c) shows a volume transformed to shear
object space for a perspective projection by translating and scaling the
slices [125].
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modern graphics cards. However, to be able to program hardware graphics de-

vices (graphics card) there is a need to use a special programming language or

an application programming interface (API). Nowadays there are many choices of

APIs and programming languages (e.g. OpenGL, Direct3D, CUDA, Cg, etc.) used

with different types of hardware (e.g. NVidia, ATI). Graphics hardware comprises

a special graphics processing engine (usually employing multiple processing cores)

and local/global memory configured to store textures and vertices. 3D scene data

is transferred to the graphics card by DMA transfer and rendered to the screen.

To investigate DRR rendering using the hardware we have to load the CT volume

into the hardware memory to be able to easily and quickly access the CT values.

A solution to this problem used to be performed by using a 2D texture mapping

to project the values of the CT slices to the hardware memeory [107]. These days

3D texture mapping is used to project the whole CT volume at once. More de-

tails about the hardware APIs, programming languages, previous work on DRR

rendering and our method of implementing the DRR rendering are illustrated in

details in Chapter 6.

3.4.5 Our Implementation of Rendering DRR Images

Our early implementations for rendering the DRR images used two main algo-

rithms. The first algorithm is a ray-box intersection algorithm which we imple-

mented to find the rays that intersect the CT volume and to find the In/Out in-

tersection points (see Figure 3.7). The second algorithm is a point-based sampling

algorithm which we implemented to provide estimate for the internal intersection

points between the rays and the CT volume. In detail, we implemented an efficient

and robust ray-box intersection algorithm that was initially proposed by Williams

et al. [8], improving the original algorithm developed by Smits [156]. We used

Williams’ algorithm to check each ray used in the DRR rendering is intersecting

the CT volume and once the In and Out intersection points are known the second

point sampling algorithm. We implemented a customised version of the point-

based rendering algorithm which was originally developed by Shen et al. [9] and

used a conventional sampling instead of the hybrid sampling method (for more

details see [9]). Our implementation of the point-based rendering casts rays using
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the sampling method once the In/Out intersection points are known and a variable

sampling distance is chosen according to the required DRR resolution.

The algorithm 4 described in Appendix B illustrates the fast ray-box inter-

section, originally developed by [8] that we implemented for the DRR rendering.

However, the following algorithm (Algorithm 1) illustrates the DRR algorithm

that we implemented in the 2D/3D image registration. Two types of DRR images

can be rendered using the Algorithm 1; Full Resolution DRR images (FR-DRR)

and Reduced Resolution DRR images (RR-DRR). To render FR-DRR we aim to

recovers all the intersection points between the rays and the CT volume by using

all the n ×m rays located in rendering field (where n and m are the parameters

for the size of the detector plane), with a sampling distance equal to the voxel size.

Rendering RR-DRR images is speeded up using two methods: first by reducing

the number of rays in the rendering field and second by reducing the number of

intersection points inside the CT volume. Figure 3.10 provides a simpler illustra-

tion for the different DRR types. More details about the different DRR types and

its application in the 2D/3D image registration is presented in Chapter 7.

Figure 3.10: Illustration for the different DRR types.

Our implementation of DRR rendering uses a polar coordinate system which

models spherical movement around the CT volume and is well matched to the

C-arm LINAC geometry. The movement of the detector plane is connected to the

movement of the ray source with 180◦ between the centre of the detector plane

and the ray source as illustrated in Figure 3.11.
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Algorithm 1 DRR rendering Algorithm: FR-DRR, RR-DRR
1: integer i, j, count
2: float voxelSize
3: clock t start, finish
4: start← clock()

// Calculate the direction of rays
5: for all i,count such that 0 ≤ i ≤ img DimX do
6: for all j such that 0 ≤ j ≤ img DimY do
7: temp point = detectorPlane[count]
8: temp direc = temp point-x source
9: temp ray.setRay(x source,temp direc)
10: x rays.push back(temp ray)
11: count = count+1
12: end for
13: end for

//Define the CT volume dimensions
14: Vector3 min CT coord(0,0,0)
15: Vector3 max CT coord(img DimX,img DimY,img DimZ)
16: Box CT box(min CT coord,max CT coord)

// Find the In/Out intersection time for the CT volume
17: temp ray=x rays[0]
18: t0=0
19: while !(CT box.intersect(temp ray,t0,t0)) do
20: t0 = t0 + voxelSize
21: end while
22: startIntersectionTime = t0
23: while (CT box.intersect(temp ray,t0,t0)) do
24: t0=t0 + voxelSize
25: end while
26: endIntersectionTime = t0

// FR-DRR rendering
27: if full resolution equals true then
28: for all i such that 0 ≤ i ≤ img DimX do
29: for all j such that 0 ≤ j ≤ img DimZ do
30: temp ray = x rays[count]
31: absorpSum = 0
32: t0 = startIntersectionTime
33: for all t0 < endIntersectionTime do
34: t1 = t0, t0 = t0 + voxelSize
35: if CT box.intersect(temp ray,t0,t1) then
36: pointPosition=temp ray.getPointPosition(t1)
37: offset = CTimg.offset(pointPosition.x(),pointPosition.y(),pointPosition.z())
38: absorption = CTimg[offset]
39: absorpSum =absorpSum + absorption
40: end if
41: end for
42: DRR(i,j)=absorpSum
43: count = count + 1
44: end for
45: end for
46: end if

//RR-DRR images by reducing the number of rays
47: if full resolution equals false then
48: for all i such that 0 ≤ i ≤ img DimX do
49: for all j such that 0 ≤ j ≤ img DimZ do
50: temp ray = x rays[count]
51: absorpSum = 0
52: t0=startIntersectionTime
53: for all t0 < endIntersectionTime do
54: t1 = t0, t0 = t0 + voxelSize
55: if CT box.intersect(temp ray,t0,t1) then
56: pointPosition=temp ray.getPointPosition(t1)
57: offset = CTimg.offset(pointPosition.x(),pointPosition.y(),pointPosition.z())
58: absorption = CTimg[offset]
59: absorpSum =absorpSum + absorption
60: end if
61: end for
62: DRR(i,j)(i+1,j),(i,j+1),(i+1,j+1)=absorpSum
63: count = i × img DimZ + j
64: j = j + 2
65: end for
66: i = i + 2
67: end for
68: end if
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Figure 3.11: The spherical coordinate system used to render DRR
images.

3.5 2D/3D Image Registration: Related Work

Various methods have been proposed by many researchers to enhance the perfor-

mance of 2D/3D medical image registration. In this section we will illustrate the

main methods of enhancing the performance of 2D/3D image registration, dis-

cussing the results of these methods and demonstrating the internal processes of

2D/3D image registration and its importance.

Russakoff et al. [141] speed up the 2D/3D registration process mainly by speed-

ing up the rendering of DRR images using the attenuation field (AF) method which

we introduced in Section 3.4.2. They also crop the reference image to identify a

specific region of interest (ROI). This process implies rendering DRRs only for

the ROI (200× 200), which also contributes to the speeding up of DRR rendering

process. Also, they measured the similarity between the images using an inten-

sity similarity measure by applying Mutual Information (MI) measurement, and

they performed the optimisation process by using a simple best neighbour search

strategy. As a result of the registration process they report similar registration

accuracy to that described in previous research using DRRs formed by ray casting

(the difference in overall mean target registration error (TRE) is about 0.1 mm).
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Russakoff performed a quantitative comparison of the quality of AF and ray cast

DRR images by computing the peak signal-to-noise ratio (PSNR). Results show

that PSNR values are greater than 43 dB and from this we can conclude that both

types of DRR images are similar. They rendered an AF DRRs with a resolution

of 256 × 256 pixels in about 50 ms on a PC workstation using a 2.2 GHz Intel

Xeon processor, and rendered AF-DRRs in a ROI (200× 200) pixels in about 30

ms. They perform the whole registration process (which requires about 100-150

iterations of optimisation process) in about 100 seconds on the same machine.

Russakoff’s experimental framework was developed using a CyberKnife Stero-

tactic Radiosurgery system which uses two external X-ray sources to acquire portal

images in the kilo electron-volt (kV) range. Consequently, good quality high con-

trast images will be generated from this system. Mega electron-volt (MV) low

contrast portal images are routinely used for patient setup on Linear Accelera-

tor (LINAC) systems (although LINAC simulators usually provide a kV X-ray

source). Consequently, it is doubtful that such results could be reproduced using

a MV LINAC system. In our experiments we found MV images often contained

insufficient detail and the similarity measure did not return a value above a pre-

defined threshold. Moreover, in Russakoff’s work, cropping the ROI is performed

manually. We believe, in some cases this will lead to degraded performance as

the ROI may change as the patient moves and so the registration process may

be compromised. Their registration method depends on fedicual markers to per-

form the registration. In another publication, Russakoff et al., present AF-DRR

rendering as an alternative to ray casting, but the following statement suggests

a hybrid approach is used “projection values needed for a DRR but not found in

the progressive attenuation field (PAF) are computed in demand using a fast ray

casting engine...” [137]. From this we conclude that the AF-DRR method is not

always able to recover the required DRR images (perhaps because the required

view is outside the view sphere).

Weese et al. [181] tried to enhance the speed of 2D/3D image registration by

speeding up the rendering of DRRs using shear warp factorization, originally de-

veloped by Levoy [125]. They used a shear-warping method of volume rendering

to generate the intermediate image by adding the values of a stack of CT slices,
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which are parallel to the intermediate image plane and obtained the final DRR

image from the intermediate image by applying bi-linear interpolation to it. As a

result of this method, they can perform the registration process within 3.3 seconds

using a Sun Ultrasparc 300 MHz, for CT volume of size 512×512 pixels. Although,

they showed that their applied rendering method does not affect the registration

accuracy, target registration errors, compared with ground-truth registration of

about 0.5◦ in rotation, 0.5 mm in translation parallel to the projection plane, and

5-6 mm for perpendicular translation on the projection plane were reported.

Gross [168] enhanced the performance of 2D/3D image registration by develop-

ing an algorithm that performs registration in an efficient way without degrading

the accuracy or speed. The author focused on applying the registration without

any user interaction even without any landmarks on the patient’s body. Gross

used a GPU based ray casting algorithm to create the DRRs in a quick way by

performing the rendering process in two passes: in the first pass, back face culling

algorithm is used to gives the texture coordinates of the front intersection for each

image pixel. In the second pass, front face culling provides the coordinates of the

back intersection. Using the texture coordinates of the intersection points and the

sample rate, it is possible to determine the points at which to sample the volume

texture. Gross used bone and firm structure to give references for the images

which are used as measures the similarity between X-ray and DRR images in a

registration process that uses an intensity-based model instead of feature-based

one. Gross proposed an adjoint DRR algorithm with algorithmic differentiation

to compute exact derivatives for gradient based optimisation. As a result, DRR

with 256×256 pixels can be rendered in 0.051 seconds from 512×512×318 voxels

CT volume using the GPU raycaster on a machine with an NVIDIA GeForce Go

7400 TurboCache graphics card with 256 MBytes of video memory.

“Automatic registration of portal images and volumetric CT for patient posi-

tioning in radiation therapy” is a significant paper in our area, written by Khamene

et al. [84] in 2006. It is significant for us because the authors dealt with all 2D/3D

registration components and in realistic way, with operations relevant to a LINAC

system (coordinates, beam geometry, transformation, etc.). Logically, they di-



CHAPTER 3. 2D/3D MEDICAL IMAGE REGISTRATION 54

vided the registration process in to three main phases, calibration, to estimate

beam geometry, planning, to define the planned target volume (PTV) using CT

data, and target positioning, to take and rectify the portal images, in order to

”discard the gantry sag” [84], as illustrated in Figure 3.12.

Figure 3.12: Flowchart of registration process [84].

Khamene et al. used an intensity-based method to perform 2D/3D image reg-

istration between the floating images (DRRs) and portal images (LINAC). They

rendered DRRs by computing the integration of attenuation values along the ray

path through the CT volume, assuming that the scattered radiation of the EPID

is a small amount and can be ignored (it is about 2% for 15 MV photon treatment

beams with 60 cm gap between the beam iso-center and the EPID) [105]. More-

over, they developed a professional procedure called ”radiometric calibration”,

which aims to reduce the difference (brightness and contrast) between portal and

floating images, to make the registration process between these types of images

simple and possible, because portal images (LINAC) generated in MV range, on

the other hand floating one (DRRs) rendered from CT volume reconstructed in

kV range .

Also they rendered DRRs 256 × 256 from a CT volume 256 × 256 × 216 in

about 60 ms, by implementing a volume rendering technique to generate DRRs
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as in [23]. They implemented it using the GPU, to get the advantage (high per-

formance) of using the hardware for solving this type of problems. The authors

undertook a professional comparison between various types of similarity measures.

Consequently, they conclude that the local normalised correlation (LNC) is the

best algorithm to measure the similarities between the portal and floating images.

LNC subdivides the images into blocks then computes the correlation coefficient

for each block and averaging the results to get the scalar value. By maximising

the scalar value within an optimisation process, they recover six degrees of free-

dom and use this to register the portal and floating images. They implemented

gradient and non-gradient based methods (gradient descent, powell-brent and best

neighbour search) and attempted to find its effectiveness using the target registra-

tion error (TRE) value. They conclude that the type of optimisation or similarity

measures used does not affect the TRE value. Figure 3.13 illustrates these results

for different types of similarity measures. Finally, they performed the whole reg-

istration process in about 100 second for 256× 256 single portal images, and 170

second for 256× 256 stereo portal images with a 90◦ convergence angle.

Figure 3.13: Mean and standard deviation of target registration error
(TRE) for various similarity measures [84].
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3.6 Summary

In this chapter we examined 2D/3D image registration and its components, focus-

ing on DRR rendering as the main component of it. We also introduced some of

the main related work on accelerating 2D/3D image registration to be able to show

the prons and cons of or our methods over the other methods. Next chapter exam-

ines the performance of 2D/3D images registration using compressed CT volume,

which is one of the acceleration methods we developed during our research.



Chapter 4

Performance of 2D/3D

Registration using (Lossy)

Compressed CT Volume

In this chapter1 we examine the performance of the 2D/3D registration by using

compressed CT volumes in order to speed up the rendering of DRR images. In

Section 4.1, we describe the motivation of this approach. In Section 4.2, we give

a brief introduction to the Octree data structure. In Section 4.3, we describe the

method of compressing and reconstructing the CT volume and rendering DRR

images. We also illustrate the performance of this method. In Section 4.4, we

describe the work flow of the whole 2D/3D registration process using the lossy

compressed CT volumes, then we investigate the performance of the 2D/3D reg-

istration using different compression values. Finally, in Section 4.5, we present a

summary describing the results we have achieved from this study.

4.1 Motivation

2D/3D image registration requires efficient registration of many DRRs (which is

the bottleneck of the registration process) and this has motivated research into

1This chapter is an adapted and extended version of: “Osama Dorgham, Mark Fisher and
Stephen Laycock. Performance of a 2D-3D Image Registration System using (Lossy) Compressed
X-ray CT. The Annals of the BMVA, Volume 3, pages 1–11, 2009”.

57
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fast algorithms and hardware acceleration [90][49][124][86][128][54][140]. Our aim

in this chapter is to evaluate the registration performance of a 2D/3D registration

system which uses compressed CT volume to render DRR images. An Octree

compressed CT volume comprises fewer internal spaces, each containing voxels

which share similar CT numbers and as such, ray casting through a volume rep-

resented as an Octree [94][14][157] is potentially computationally simpler. Little

work has been published on registering 2D projections of Octree volumes and so

this chapter attempts to examine the degree to which Octree compression artefacts

compromise registration performance.

4.2 Octree Data Structure

An Octree is one of the hierarchical data structuring techniques used for spacial

data representation of three dimensional regions [144]. The Octree was developed

independently by a number of researchers [67][134][45] as a three dimensional ex-

tension of the Quadtree which has been developed with a motivation of saving

storage by the aggregation of data sharing common properties within two dimen-

sional regions. The Octree is based on the principle of recursive decomposition

of three dimensional spaces. The decomposition is performed in two ways, either

equally on each level (regular decomposition) or unequally, controlled by a specific

input value (in our research we will use the regular decomposition, as this approach

is easier than unregular decomposition and sufficient for our method) [28]. In ap-

plying Octree recursive decomposition to a three dimensional data cube the root

octant which represents the entire cube domain will be divided recursively into

eight octants. The process could continue until all the leaves are at the same level

in the Octree hierarchy [166]. Figure 4.1 illustrates a Quadtree decomposition

of a two dimensional space (we used the Quadtree in Figure 4.1 as it is easy to

visualise).

Both the Quadtree and Octree find applications in different areas of computer

science. Among the first credited works is that of Jackins et al. [80] who used

the Octree data structure for object representation. Meagher et al. [36] used the

Octree to develop algorithms for performing solid modelling operations and Yau et

al. [190] used the Octree in applications of medical imaging. In computer graphics,
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(a) (b)

(c) (d)

Figure 4.1: (a) Quadtree hierarchical representation, (b) Quadtree
decomposition [142] with an example of (c) 2D image and (d) image
Quadtree decomposition.

the Octree is an attractive data structure for volume rendering and it has been

implemented in many different applications. Boada et al. [14] were the first who

applied the notation of rendering Octree-compressed data by building an Octree

around the main picture part (i.e. bricks), but the Octree lookup process was

a bottleneck [87]. More recently, Song et al. [157] used an Octree for volume

rendering (visualisation) of three dimensional medical data sets. In ray tracing

applications the Octree has been applied by Knoll et al. [87] by building Octrees

around voxels. The structures are then used in a fast neighbour search algorithm

to return the values of cell corners when ray tracing. We used Octree as one of the

most common methods of rendering three dimensional data sets [15][135][143]. In
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our research an Octree compressed CT volume comprises of internal spaces, each

in turn comprising voxels which share similar CT numbers is used to render DRR

images. We illustrate this in the following section.

4.3 Lossy Compressed CT Volumes

In our application we achieve compression of the CT data using the Octree by

encoding the underlying voxels as a tree data structure, where each internal vertex

is formed from up to eight children. Recursively we decompose the CT volume

according to the CT values which share similar CT numbers as one vertex in the

Octree data structure using the scheme illustrated in Section 4.3.1.

4.3.1 Scheme

The algorithm for decomposing the CT volume into an Octree runs offline. It starts

by considering the internal space equal to the CT volume size and recursively splits

this into eight sub-volumes (children). It is most likely that the final Octree will

be an unbalanced tree (i.e. a tree which has different heights for its sub-nodes).

Our method of rendering DRR images is not affected by different depths of the

final tree as it is re-indexed in a hash table. However, the decision to decompose

the volume is made based on a threshold T :

Require: max,min, T

decompose(volume)

V = {k : k is a sub-volume, k > 1}
if (max−min) > T then

for all k ∈ V do

decompose(k)

end for

return true

else

return false

end if
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Where max and min represent the maximum and minimum values of voxel ele-

ments within the (sub)volume. The value of threshold T determines the degree of

compression. Assuming voxels are represented by 8-bits, 0 ≥ T ≥ 255, however,

for generality the threshold is mapped to a parameter (P ), known as the Pivot

value ([0-1]). Hence P = 0 creates the maximum number of internal spaces. Fig-

ure 4.2 shows an example of CT volumes decomposed with different Pivot values.

P=0.4 P=0.6 P=0.8

Figure 4.2: A representation of CT volume decomposed with different
Pivot values.

We store the decomposed CT volume as an ordered list of internal spaces,

corresponding to leaf nodes of the Octree (starting at cell X, Y, Z = 0,0,0 ), each

space is identified by its dimension (d) (i.e. size of the cubic space) and (I) the

attenuation value within the space as illustrated in Figure 4.4. Therefore at 50%

compression the memory required for uncompressed and compressed volumes is

equal and at 75% compression there is a 50% saving. The results presented in

Figure 4.12 suggest that at a level of 75% compression there is a modest increase

in error but within clinically usable limits.

4.3.2 Rendering of DRR images

The first step in rendering the DRR images from a compressed CT volume is to

reconstruct the CT volume from the corresponding Octree. The reconstructed

CT volume enables DRR images to be rendered using Algorithm 1, which we

described in Chapter 3, Section 3.4.5. Although, we developed an algorithm for

directly rendering DRR images from Octree compressed volumes this suffered from
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block artefacts as shown in Figure 4.3.

Figure 4.3: Example of DRR image shows the blocks artefact of using
Octree compressed data.

Block artefacts are produced by the rendering process due to the difference in

sizes of the internal spaces, which allows large spaces to contribute more to the

final accumulated intensity, However, this do not affect the image registration.

The decomposed compressed volume is loaded into main memory as a list data

structure to save the memory space which could be improved by implementing it

as a dynamic data structure, followed by the process of reconstructing (rebuilding)

the compressed CT volume prior to conventionally rendering the DRR images as

illustrated in Figure 4.4.

Voxel values in CT volumes are represented by a CT number quantified in

Hounsfield Units (HU). The attenuation coefficient of the material comprising

each voxel can be recovered by using the method that we describe in Chapter 3.

Section 3.4. To render DDRs we compute the attenuation of a monoenergetic beam

due to different anatomic material (e.g, bone, muscle tissue, epithelial cells, etc.)

using Beer’s Law [83] (more details can be found in Chapter 3). Most neighbouring

voxels within the CT volumes have similar image acquisition parameters [127] and

so the Octree is an appropriate technique for decomposing the CT volumes into

internal spaces that share common properties. In this chapter we only address the

registration performance using a conventional ray casting algorithm [153]. X-rays

emanate from a point source and strike a flat panel situated behind the patient

(i.e. conventional ‘C’ arm geometry); assumed to be lying on a flat couch. The

couch or patient support system (PSS) can be rotated and translated in six degrees

of freedom. The CT volume is quantised in 256×256×133 2 mm3 voxels, and the
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Figure 4.4: The process of rendering a DRR image from compressed
CT volume.

flat panel detector models a Varian A500 amorphous silicon detector (ASD) (40

× 30 cm) operating at an effective resolution of ∼3 mm (note: the actual device

resolution is a factor of 4 times better but we use low resolution DRRs to reduce

computational time). The source and detector are positioned 1.5 m and 1 m from

the center of the CT volume respectively. Example DRR template images from

the two CT volumes are shown in Figure 4.5.
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Figure 4.5: DRR template image (512×344) array rendered form lung
CT volume in 12◦ rotation intervals around the z axis.

Compression artefacts are apparent in DRR images derived from compressed

CT volumes, but at factors of compression of approximately 50% these are visually

imperceivable and images remain of reasonable quality even when higher levels

of compression have been applied to the CT volume (Figure 4.6). Compression

artefacts are better visualised in difference images, computed by subtracting a

compressed DRR image (rendered from compressed CT volume) from the original

DRR image (0% compression).
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(51.4%, P= 0.001) (76.6%, P= 0.01)

(92.8%, P= 0.09) (99.8%, P= 0.5)

Figure 4.6: Example of DRR images (256×133) at various compression
values, and difference images formed by pixel by pixel subtraction from
an uncompressed DRR (black pixel = no difference)
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4.3.3 Performance

An example of DRR images reconstructed from Octree CT volume using a range

of P values are shown in Figure 4.6. Table 4.1 and Figure 4.7 illustrates the

relationship between P and the compression achieved with respect to a specific

(pelvic) CT volume (in terms of the total number of internal spaces rendered).

Figure 4.7: Percentage of compression in pelvic CT volume at specific
P values.

The percentage compression we achieve (at the same (P) value), differs accord-

ing to the size of the CT volume. Octree volumes will generate similar compression

artefacts to those seen in Quadtrees, illustrated in Figure 4.8. When there are a

large number of (voxels, pixels) share the same intensity values and decomposed

in the same internal space, that will lead to higher percentage of compression if

the internal space decomposed for smaller CT volume space. Therefore, the effect

of block artefacts will be insignificant (Figure 4.8(b)) but when there are fewer,

the effects will be visually apparent (e.g. Figure 4.8(d)).

The Octree decomposition process is computationally intensive. Decomposed

CT volume can be generated in O(n3 log8 n) time, where n represents the size of

CT volume, but this is not a concern because they can be precomputed. Each

DRR takes 390 ms using an Intel R© Core
TM

2 Duo Processor T7200, 4M Cache,
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(a) (b) (c) (d)

Figure 4.8: Illustration of the relation between the size of CT slice and
the size of decomposed spaces. Where (a) shows 512×512 CT slice before
decomposition, (b) 256×256 decomposed slice, (c) 128×128 decomposed
slice, and (d) 64×64 decomposed slice.

2.00 GHz to compute using the scheme which presented in Section 4.3.1 and a

minimum of 15 are needed for registration, so this is a significant factor which

limits the usefulness of the approach.

4.4 Registration using Lossy Compressed CT Vol-

umes

In 2D/3D registration, patient alignment is achieved by iteratively solving an opti-

misation problem in six degrees of freedom. In this study we investigate the 2D/3D

registration system using lossy compressed CT volumes, encoded using an Octree

data structure. The process workflow of 2D/3D registration using decomposed

compressed CT volume is visualised in Figure 4.9.

The other two components of the 2D/3D registration are hidden inside the

registration block as shown in Figure 4.9. Similarity measurement and optimisa-

tion processes which form part of the registration are performed iteratively. This

requires the DRR rendering process to find the optimum rigid transformation.

In the optimisation process that we have discussed in Chapter 3, we estimated

a solution by posing this as 3 independent optimisation problems in two degrees

of freedom. In each case we model the similarity metric by fitting a 2nd order

polynomial to a sparse set of target similarity metric values. This reduces the

number of time-consuming DRR images needed compared to a brute-force hill-
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Figure 4.9: Process work flow of 2D/3D registration using decomposed
compressed CT volume.

climbing algorithm and thus reduces the time required for registration. For each

of the 3 optimisations the parameters (x, y, z, yaw, pitch, roll) were paired. As

much as possible we choose uncorrelated pairs i.e. {x, pitch},{y, yaw},{z, roll}.
For each pair we render five DRRs and compute the similarity metric for each.

(Figure 4.10).

According to our optimisation strategy that we have discussed in Chapter 3,

a 15 DRRs (3× 5) needed to be rendered in each iteration, which is substantially

fewer DRRs than and equivalent conventional best neighbour search. In the regis-

tration similarity process images are compared using normalised cross correlation

(Eqn. 4.1) and the optimisation process adjusts the six parameters which control-

ling attitude and position of the PSS (note: other image similarity criteria were

explored in Chapter 3).

NCC(Iref , Ij) =

∑N
i=1(Ai − A) · (Bi −B)√

(
∑N
i=1(Ai − A)2) · (∑N

i=1(Bi −B)2)
(4.1)

where A represents the reference image Iref and B the reconstructed radiograph

Ij. N is the total number of image pixels. At each iteration the maximum of the
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(a) (b)

Figure 4.10: (a) six parameters of rigid transformation. (b) sparse set
of DRRs needed to recover {x, pitch}

similarity metric distribution is calculated using the 2nd order model, typically

polynomial models for the three similarity metric surfaces as shown in Figure 4.11.

In [128] the authors use a similar optimisation approach but estimate the the

similarity metric distribution from a sparse set of values using a Support Vector

Machine (SVM). To assess the performance of the registration with respect to

compressed CT volumes reference DRR images were rendered simulating the ASD

at full resolution (512 × 384). PSS parameters were randomly perturbed in the

range ±10 mm, ±10 degrees. The 2D/3D registration algorithm was then used to

recover the PSS parameters. The experiment was repeated 100 times for a variety

of compression levels for both pelvic and lung CT volume. The target registration

errors (TRE) are summarised in Table 4.2 and Figure 4.12.
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Figure 4.11: Example similarity metric surface estimates (least squares
2nd order polynomial fit)
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Figure 4.12: Mean target registration error (TRE) (p = pitch, w =
yaw, r = roll).

4.5 Summary

The results show that 2D/3D registration can recover PSS {x,y,z} translation of

up to ±10 mm. with sub-voxel accuracy (i.e � 2 mm.) and angular {pitch,

yaw, roll} rotations up to ±10 degrees with an accuracy of better than 1 degree.

Furthermore, the performance does not degrade significantly when Octree com-

pression is used at levels up to about 90%. The errors in recovered y translations

are larger than in x and z since the X-ray fan beam is nearly parallel (∼ 4.5◦)

and so the geometry is insensitive to adjustments in the height of the couch. In

practice, the height of the couch (i.e. patient) much less likely to change compared

to x, y translation and p, w, r rotation of the anatomy and so this is not seen as a

significant problem. That the 2D/3D registration scheme (0% CT volume) deliv-

ers similar TRE to other published studies [84][49] is not significant, particularly

as the evaluation uses simulated fluoroscopy images which are of higher quality.

But it is surprising that this performance does not suffer through the use of a

polynomial estimate of the similarity metric distribution, and in particular the
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accuracy is well within 3 mm required for most radiotherapy patient setup appli-

cations. The fact that the performance remains acceptable even at relatively high

CT volume compression rates is much more interesting. In our knowledge this

is the first study to demonstrate that compressed volumetric data might be used

within a 2D/3D registration framework. Besides the obvious memory saving these

data structures afford they appear to offer efficiencies to ray casting approaches.

Further ray casting approaches that exploit concurrency in CPU and GPU hard-

ware to speed up the rendering of DRR images are illustrated in Chapter 5 and

6.



Chapter 5

Parallelised Accelerated

Rendering of DRR Images

In this chapter1 we examine an approach to speeding up the rendering of DRR

images which parallelises the casting of rays used in rendering DRR images. In

Section 5.1, we describe the motivation for this approach, in Section 5.2 we give a

brief introduction to parallel processing and describe some of popular languages

and frameworks. In Section 5.3, we explore high speed rendering of DRR images

from CT data volumes by parallel processing on multiple CPU cores and we de-

scribe the (API) library we used to develop our software solution. In Section 5.4,

we summarise the findings of this chapter.

5.1 Motivation

The motivation of this work can be explained by the importance of performing the

registration process in a quick way as we illustrated in Chapter 3. We address this

by parallelising the process of rendering DRR images to be able to render DRR

images in a quick way to perform faster registration process.

1This chapter is an adapted and extended version of: “Osama Dorgham, Mark Fisher and
Stephen Laycock. Accelerated Generation of Digitally Reconstructed Radiographs using Parallel
Processing. In Proc. Medical Image Understanding and Analysis 2009, Jul. 14-15 2009, pages
239-243”.

75
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5.2 Parallel Processing

Parallelising a task is not a new concept for mankind and many ingenious systems

have been developed over the years. Figure 5.1 illustrates a system of ploughing

the land developed a long time ago to perform the job faster and more easily.

Figure 5.1: Picture illustrating the concept of parallelising the tasks
from long time ago [62].

In computing the concept is the same but the task and the tools are different.

In computing we can define parallel processing as the simultaneous use of multiple

processor cores to speed up program execution [172]. Different languages and

APIs have been introduced during the last few decades to address the problem of

concurrent programming. So in this section we will give a brief introduction to

some popular languages of parallel processing such as Occam, Pascal-FC, ADA

and OpenMP which represent one of the most recent application programming

interface (API) for parallel processing.

5.2.1 Occam

Occam is a parallel programming language designed to express concurrent program

execution on a network of programming components. Occam was developed in

1982 at Inmos Limited (Bristol, England) with a main goal of keeping the language

simple. With this in mind it is named after William of Occam, a thirteenth century

philosopher who had the philosophical principle of “keep things simple”. Occam

enables an application to be executed as a collection of concurrent processes,
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where each process can communicate with other processes through channels. From

the Occam model, Inmos developed the transputer to support their concurrent

model. Transputers are 32-bit microprossors which can be interconnected via serial

communication channels to form flexible parallel machines. Hence, the language

and the hardware are both designed in such a way that concurrent processes can

be executed on one transputer or divided over many transputers [18][68].

5.2.2 Pascal-FC

Pascal-FC (Functional Concurrent Pascal) is a programming language developed

for use in the teaching of concurrent programming. Pascal-FC was developed in

1988 as an extension of Wirth’s Pascal to be a simple and compact language for

concurrent programming. Communication and synchronisation primitives were

added to support semaphores, CSP/Occam type rendezvous and monitors [35].

5.2.3 Ada

The Ada programming language is a high level programming language mainly de-

signed for the production of massive embedded real-time systems [52][88]. Ada

was the result of the most extensive and expensive design effort ever undertaken

for a programming language [129]. It was designed by the United States De-

partment of Defense (DoD) from 1977 to 1983. The name of the language refers

to Countess Ada Lovelace (1815-1852) who is considered to be the world’s first

programmer [162] (A painting of her is presented in Figure 5.2).

Ada is not just designed for computationally intensive mathematical problems,

it has been designed to support various models of parallelism. Furthermore, Ada

is designed to support a concurrent programming model which was subsequently

used for developing programmes for parallel shared memory machines [4]. In the

early years after Ada’s development it began by supporting basic vector computa-

tions, employing arrays of processors for Single Instruction Multiple Data (SIMD)

machines. Later it also supported a shared memory model of parallelism known as

the Multiple Instruction Multiple Data (MIMD) parallel computing model using

Message Passing [101].
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Figure 5.2: Augusta Ada King, Countess of Lovelace, an English scien-
tist born in 1815, lived with her mother after her parents separation. In
1842, Charles Babbage asked her to translate a paper about the analyt-
ical engines, although he asked her to add her notes to the translation.
After one year of an extensive work she did the job which has been pub-
lished in The Ladies’ Diary and Taylor’s Scientific Memories. In 1953,
after more than hundred years of her death, Ada’s notes have been re-
published and recognised to be the earliest description to the computer
and software [129][43][81].

5.2.4 OpenMP

A few years ago, hardware companies started to compete by developing a new

generation of powerful personal computers based on multi-core technology, which

supports the simultaneous execution of threads in a shared memory system (paral-

lel execution). But to take advantage of this improvement, it is necessary to deploy

a parallel programming software model based on the shared memory architecture.

The software solution was the birth of OpenMP in October 1997, as an effective

parallel programming model able to support many multi-core systems with shared

memory and distributed shared memory. OpenMP is becoming the standard for

parallelised applications, as it has been adopted by major computer manufactur-

ers and software development companies including Compaq, IBM, SGI, Sun, Intel,
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Hewllett-Packard, Kuck & Associates (KAI) and the U.S. Department of Energy

ASCI program. Together these formed the Architecture Review Board (ARB).

OpenMP is not a programming language, it is an application programming inter-

face (API) which supports programmes written in a sequential programming lan-

guages like Fortran, C or C++ enabling them to execute applications on different

cores using threads on a shared memory. In sequential programming languages (e.g

C++) parallelisation is performed by using a parallel programming model which

could be implemented as an API (OpenMP), to provide a bridge between the se-

quential languages and the programmer to develop parallelised programmes [64].

OpenMP fulfilled the goals of ARB members to create a user-friendly API, since it

is used to parallelise the code and leave other programming issues to the compiler.

Also, it is a widely adopted API, so applications developed using OpenMP can be

executed on many different platforms. Moreover, OpenMP was created to survive

for the future, where the fast development on shared-memory parallel computers

(SMPs) and multithreading hardware needs an efficient shared-memory standard

like OpenMP [136][12].

5.3 Fast Rendering of DRR Images by Parallel

Processing

This section explores parallel processing on the CPU for DRR rendering. Parallel

processing has made a tremendous impact on a variety areas of computer science

(e.g. graphics, simulation, security and image processing). In our case, we render

DRR images by casting rays using more than one processor in order to obtain

faster results, which means we are now be able to process more than one ray

concurrently. Multithreaded techniques are well suited to multi-core CPUs found

in many modern PCs and we have obtained a significant performance increase in

the rendering of DRR images with this approach. Our objective is to increase

the speed of DRR rendering using parallel processing. To test the approach, we

developed and implemented the following algorithm (Algorithm 2) in C++ using

parallel programming model (OpenMP library).

This algorithm is designed not only to describe how the DRR image will be
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Algorithm 2 Parallel processing of DRR rendering using OpenMP

1: OpenMP set num of threads(2n)
2: OpenMP start parallel ”for” loop statement
3: with two ”counters” (+:absorptionSum) and (+:count)
4: also with ”private” variables (j,t0,stratTime,endTime,intersectionPoint,absorption)
5: for all i such that 0 ≤ i ≤ imgDimX do
6: count = i × imgDimY
7: for all j such that 0 ≤ j ≤ imgDimY do
8: x ray = x rays[count]
9: absorptionSum = 0

10: for all t0 such that stratTime ≤ t0≤ endTime do
11: if CTimg.intersection(x ray) then
12: intersectionPoint = x ray.getPosition(t0)
13: absorption = CTimg[CTimg.offset(intersectionPoint)]
14: absorptionSum = absorptionSum + absorption
15: end if
16: end for
17: drr.setAbsorption(absorptionSum )
18: count = count +1
19: end for
20: end for

rendered, but also, how the work (rendering process) can be distributed and de-

composed across the multiple cores. Considering Algorithm 1 (Section 3.4.5), we

parallelised the DRR rendering process by assigning each vertical line of rays to

an individual core as a separate thread using the variable “count” as illustrated

in Figure 5.3.

Algorithm 2 also implements the special algorithm of box ray intersection

points [8]. The aim of this implementation is to quickly calculate the coordinates of

the intersection of the ray and the CT volume. A point based algorithm [9][66][74]

is implemented to speed up the rendering process by sampling the intersection

points within the CT volume. Different types of rendering algorithm could be

implemented, such as ray casting [47], splatting [186] or shear-warping [176], but

generally they exhibit a higher time consumption of O(N3) time complexity, com-

pared to the point based algorithm of O(N2) time complexity [9]. The execution

time of the parallel DRR algorithm differs according to the number of cores. Nor-
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Figure 5.3: Illustration for the parallelisation process using algorithm
2.

mally a large number increases the number of parallel threads which reduces the

rendering time of the DRR images, by casting multiple rays simultaneously. Also,

the size of the CT volume affects the total time of the DRR rendering and the

number of sampled points inside the CT volume per ray.

Writing our algorithm using OpenMP does not offer algorithmic capabilities

that are not already available in C or C++. So the main reason to program

in OpenMP is performance [136]. An obvious concept to achieving improved

performance for parallel implementation is to parallelise a sufficiently large portion

of code (i.e. large portion of code means; part of the code represents most of

program code’s lines or/and the highest complexity part of the code). But in

some cases the performance of the application can be constrained by the serial

portion of the program (i.e. portion of the program can not be parallelised). So,

according to Amdahl’s law [136], if F is the parallelised portion of the code and

Se is the speed up achieved in the parallel portion, the overall speed up S will be:

S = 1/[(1− F ) + F/(Se)]

Therefore, we can find the maximum improvement of the DRR rendering pro-

cess when it is parallelised, as illustrated in Figure 5.4.

In Figure 5.4 we show results using Amdahl’s law for different parallelised
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Figure 5.4: The relation between number of processes, parallelised
portion of code and the speed up gained according to Amdahl’s law and
our results of speeding up the DRR rendering.

portion of code at 95%, 90%, 75% and 50% (as in Tables 5.1- 5.4), together with

our parallelised portion of code for DRR rendering (according to the results in

Table 5.5). Our results in Table 5.5, match the 90% parallel portion curve of

Amdahl’s law with an overall speed up of more than three times in comparison

between a single and quad cores and more than eight times between single and

hexa cores. DRR rendering requires a large number of rays to render high-quality

images. DRR images rendered at full resolution require p × q rays, where p and

q are the dimensions of the required image. The acceleration we achieved varied

according to the size of the CT volume data and the number of processors. The

growth and availability of multi-core technology provides a low cost computing

platform to speed up the rendering of the DRR images.
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F N Execution Time Speed Up
T = (1− F ) + F/N 1/T

0.95 1 1 1

0.95 2 0.525 1.904762

0.95 4 0.2875 3.478261

0.95 8 0.16875 5.925926

0.95 16 0.109375 9.142857

0.95 32 0.079688 12.54902

0.95 64 0.064844 15.42169

0.95 128 0.057422 17.41497

0.95 256 0.053711 18.61818

0.95 512 0.051855 19.28437

0.95 1024 0.050928 19.63567

Table 5.1: The speed up results for different number of cores at 95%
parallelised portion of code according to Amdahl’s law, where F is the
fraction of parallelism, N is the number of processors and T is the time.

F N Execution Time Speed Up
T = (1− F ) + F/N 1/T

0.9 1 1 1

0.9 2 0.55 1.818182

0.9 4 0.325 3.076923

0.9 8 0.2125 4.705882

0.9 16 0.15625 6.4

0.9 32 0.128125 7.804878

0.9 64 0.114063 8.767123

0.9 128 0.107031 9.343066

0.9 256 0.103516 9.660377

0.9 512 0.101758 9.827255

0.9 1024 0.100879 9.912875

Table 5.2: The speed up results for different number of cores at 90%
parallelised portion of code according to Amdahl’s law, where F is the
fraction of parallelism, N is the number of processors and T is the time.
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F N Execution Time Speed Up
T = (1− F ) + F/N 1/T

0.75 1 1 1

0.75 2 0.625 1.6

0.75 4 0.4375 2.285714

0.75 8 0.34375 2.909091

0.75 16 0.296875 3.368421

0.75 32 0.273438 3.657143

0.75 64 0.261719 3.820896

0.75 128 0.255859 3.908397

0.75 256 0.25293 3.953668

0.75 512 0.251465 3.976699

0.75 1024 0.250732 3.988315

Table 5.3: The speed up results for different number of cores at 75%
parallelised portion of code according to Amdahl’s law, where F is the
fraction of parallelism, N is the number of processors and T is the time.

F N Execution Time Speed Up
T = (1− F ) + F/N 1/T

0.5 1 1 1

0.5 2 0.75 1.333333

0.5 4 0.625 1.6

0.5 8 0.5625 1.777778

0.5 16 0.53125 1.882353

0.5 32 0.515625 1.939394

0.5 64 0.507813 1.969231

0.5 128 0.503906 1.984496

0.5 256 0.501953 1.992218

0.5 512 0.500977 1.996101

0.5 1024 0.500488 1.998049

Table 5.4: The speed up results for different number of cores at 50%
parallelised portion of code according to Amdahl’s law, where F is the
fraction of parallelism, N is the number of processors and T is the time.
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5.4 Summary

In this chapter, we developed a method of accelerating the process of 2D/3D image

registration by parallelising the DRR images. This was motivated by a need to

improve the speed of this process while maintaining sufficient clinical accuracy.

The speed of rendering DRR images depends mainly on use of parallel processing

(OpenMP) on multiple CPU cores and the resolution of DRR images. The growth

and availability of multi-core technology provides a low cost computing platform to

speed up the generation of the DRR images. Validity and durability of our method

will not stop while the improvement is going on to the processing capabilities.

An important consideration is that using a parallel processing approach on the

CPU does not require any pre-processing steps unlike our previous method of

DRR rendering we presented in Chapter 4 which required the CT volume to be

compressed or methods presented in [145][141][90]. Additionally, we are able to

render DRRs from multiple view points over six degrees of freedom (x, y, z, yaw,

pitch, roll), without any restriction or limitation on the camera position (∆r =

1◦,∆t = 1mm). On the other hand, DRR images could be rendered using a

reduced number of rays, by interpolating the missing values or reduced number

of sampling points. The rendering of reduced resolution DRR images will be

discussed in detail in (Chapter 7, Section 7.2) and their use in 2D/3D registration

for kV reference images is assessed in terms of TRE.



Chapter 6

GPU Acceleration for Digitally

Reconstructed Radiographs

Recent advances in GPU programming languages provide developers with a conve-

nient way of developing applications which can be executed on the CPU and GPU

interchangeably. In this chapter we introduce a way of accelerating the image reg-

istration process by developing a hybrid system which executes on the CPU and

GPU. In Section 6.1 we describe the motivation of running the registration process

as a hybrid system. In Section 6.2 we present the work related to the rendering

of DRR images using the GPU and discuss the efficiency of it in order to give the

reader an easy way of comparing our results to the previous results of speeding

up the registration process. In Section 6.3 we give a brief introduction to GPU

programming and to the APIs, libraries and programming languages which used

in GPU programming for parallel data processing. In Section 6.4 we use CUDA to

develop an accurate solution of rendering the DRR images. Then we compare the

GPU methods of rendering the DRR images to each other. Finally, in Section 6.5

we describe the final structure of the hybrid registration system and evaluate the

performance of it.
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6.1 Motivation

Considering the improvement of the results we achieved by parallelising the process

of rendering DRR images using OpenMP for the CPU implementation, we decided

to investigate if further benefit of multi-core technology could be achieved by ex-

ecuting our DRR rendering algorithm on the Graphical Processing Unit (GPU)

using a parallel computing architecture called the Compute Unified Device Archi-

tecture (CUDA) programming environment. Furthermore, a comparison between

the two implementations motivates us to investigate the current performance and

the future trends for both technologies in order to find the optimal solution for

the registration problem.

6.2 Related Work

Development of powerful multi-core GPUs was initially motivated by the games

industry and they have been used widely in various applications of computer

graphics. However, image processing and computer vision have also benefited

from this technology as many techniques require computation over many pixels,

either for still images or video (e.g. edge detection or face recognition) [69]. Re-

cently, manufacturers of GPUs have targeted a wide range of computer intensive

applications through the development of APIs such as CUDA. In this section we

first introduce different methods that have been used to implement the registra-

tion process on the GPU and the speed gained to render the DRR images. The

next part focuses on the speed and the latest results of using CUDA in image

registration, specifically in the DRR rendering. As expected, most of the current

research has paid attention to the rendering of DRRs on the GPU devices and

leaves the other components of the registration process to be performed on the

CPU device. The reason for this choice is that the DRR rendering is the most

computationally expensive process in any rigid registration method.

One of the earliest GPU-based acceleration studies for 2D/3D image registra-

tion was introduced by LaRose [90] in his PhD thesis for iterative 2D/3D regis-

tration. The technique relies on an OpenGL extension implemented on a GeForce

3 graphics card. Using the accumulating algorithm which runs on graphics hard-
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ware, they were able to accelerate the rendering of the DRR images to render

them at a size of 512× 512 pixels from CT volume of size 256× 256× 256 voxels.

The rendering was achieved at a speed of approximately 14 Hz (71 ms per DRR

image). During the last 10 years there have been significant enhancements in the

GPU industry. This is clearly seen if we compare LaRose’s results to the following

recent results.

• From the literature, Grabner et al. [51] developed their method of Auto-

matic Differentiation (AD) 2D/3D image registration to be executed on a

hybrid CPU/GPU system using the Cg language (Note: Cg has been devel-

oped by NVidia to support parallel GPU implementations, more information

presented in Section 6.4). In their research they discuss the design and imple-

mentation of their algorithm on the GPU and the restrictions and conflicts

that arise due to the requirements for reverse mode AD. In addition, they

present a method which can register a CT data set of 512×512×288 voxels

with three reference X-ray images of 512 × 512 pixels in 11.8 seconds on a

Geforce 8800 GTX NVidia card.

• Ino et al. [76] accelerated the process of 2D/3D image registration using

a General Purpose computing on Graphics Processing Unit (GPGPU) ap-

proach. They used OpenGL to implement their method and perform the

DRR rendering, gradient image rendering and normalised cross correlation

(NCC) computation on the GPU. Their experimental results show that they

rendered the DRR image from 300× 300× 48 voxels in 17.1 ms using Pen-

tium 4 3.4 GHz with GeForce 7800 GTX. They compared their results to

a cluster based method and showed that their method was faster than a 32

node cluster of PCs with Pentium 3 1 GHz CPU. According to this study a

DRR image of size 256× 256 could be rendered in 66.4 ms using CT volume

of size 256× 256× 256.

• Lu et al. [98] used CUDA to implement a technique they developed to ac-

celerate the rendering of DRR images. From their results they reported a

real time reconstruction process within 3 seconds for a 128×128×128 voxel

CT volume from 80 128× 128 pixels projection, without compromising the
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image quality. According to their results this means that they need more

than 37 ms to render each DRR image using Core2 Quad Q6600 CPU (2.4

GHz), 4 GB memory and an NVidia 8800 GTX GPU with 768 MB RAM

and CUDA 2.0. According to this study a DRR image of size 256 × 256

could be rendered in 296 ms using CT volume of size 256× 256× 256.

• Mori et al. [111] developed a GPU-based (CUDA) application to render

DRR images. They performed a comparison between the CPU and GPU

based applications of rendering DRR images. Their CPU-based application

requires about 8500 ms to render a single DRR image, but using the GPU

based application it requires 2.8 minutes to render 784 DRR images which

means it takes approximately 214 ms per DRR image from a CT volume of

size 512× 512× 256 voxels using an NVidia 8800 GTS GPU. According to

this study a DRR image of size 256×256 could be rendered in 53.5 ms using

CT volume of size 256× 256× 256.

• Bethune et al. [13] studied DRRs as an individual process in the medical

image processing field. They showed its importance in image registration,

illustrated by applications in planning of orthopedic surgery and viewing

intra-articular features which are not visible in surface-shaded CT images.

Their technique used the hardware capabilities of the GPU to detect empty

regions (air, soft tissues, etc.) in the CT volume, then to avoided rendering

these regions in order to accelerate the DRR rendering process. They did

not explain if the process of detecting empty regions was a pre-processing or

not, but from the description of their technique it seems it was performed as

a pre-process operation. Experimental results showed that the accelerated

and unaccelerated rendered DRRs were identical, and could be rendered by

the GPU with a speed up factor of up to 2.9, without any loss in the DRRs

quality. A DRR of size 512× 512 pixels rendered from a CT volume of size

512 × 512 × 128 voxels with frame rate of 5.4 frames per second from the

entire volume and with frame rate of 22.5 frames per second (∼44 ms per

DRR) from the boxed volume (accelerated method) using 2.6 GHz Pentium

PC with an Nvidia 5900 graphics card containing 256 MB of video memory.

According to this study a DRR image of size 256 × 256 could be rendered
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in 22 ms using CT volume of size 256× 256× 256.

• Finally, the latest work has been done by Spork in his thesis [160]. Spork

presents a GPU-based high speed rendering algorithm for DRR images. He

also did a comparison between the GPU-based Wobbled splat rendering al-

gorithm [186] and his GPU-based ray casting implementation. He compared

the quality and the performance of the algorithms. Results show that he can

render DRR images from CT volume of size 256× 196× 196 voxels in about

13 ms with opacity threshold of 70 (i.e. rendering very few voxels) using

NVidia Quadro FX 570M GPU with 512 MB memory, (where we required

11 ms to render a DRR image using larger CT volume of size 256×256×133

voxels with bigger amount of voxels as the threshold is 50% of the CT vol-

ume volxels and using NVidia 8800 GTX GPU). According to this study a

DRR image of size 256× 256 could be rendered in 22 ms using CT volume

of size 256× 256× 256.

6.3 General Purpose Computing on Graphics Pro-

cessing Unit (GPGPU)

Nowadays, Graphics Processing Units (GPUs) are relatively cheap, powerful and

available hardware components, which can be used to perform intensive calcula-

tions, especially in graphics and game computing. The last decade of hardware

performance developments and future trends show that GPU-based computation

is significantly faster than the CPU-based computation as illustrated in Figure

6.1.

GPUs can be used to do general purpose scientific and engineering computing,

the general use of GPU applications have been called General Purpose Computing

on Graphics Processing Unit (GPGPU) [59]. The purpose of this section is to give

a brief introduction to the GPGPU programming and to the APIs, libraries and

programming languages which are support and used in GPU programming for

parallel data processing.
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Figure 6.1: Development of the CPUs (Intel) and GPUs (NVidia)
from 2003 to 2008 measured by the Giga FLoating point Operations
Per Second (GFLOPS/s) [118].

6.3.1 OpenGL

OpenGL (Open Graphics Library) is an application programming interface (API)

established as an industry standard by Silicon Graphics and other graphics hard-

ware companies in 1993. OpenGL is designed to access graphics hardware at

the lowest level to provide applications with high performance. OpenGL speci-

fication and conformance tests are controlled by the ARB (for more information

see Section 5.3). In June 2003, 10 years after releasing the first specification of

OpenGL the ARB approved the inclusion of a high-level graphics programming

language called the OpenGL Shading Language as an extension to OpenGL [133].

Normally GPUs have at least two programmable processors called the vertex and

fragment processor. The GPU vertex processor undertakes tasks related to the

vertex shaders such as colour computation, vertex position transformation or com-

puting values for lighting per pixel. The following example of OpenGL code would

send to the vertex processor a vertex position and colour for each vertex.

glBegin(GL POINTS)

glColor3f(r,g,b);
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glVertex3d(x,y,z);

glEnd();

On the other hand, the fragment processor operates the tasks related to the

fragment shaders such as computing texture coordinates per pixel, fog computa-

tion or computing normals for lighting per pixel. The fragment processors inputs

are interpolated values that are a result of the previous stage in the pipeline such

as vertex position, colour, etc. The main advantage of the fragment processor is

that it can access texture memory, combining texture values in random ways. A

fragment shader can read multiple values from multiple or single textures. Also re-

sults from one texture access can be used conditionally to perform another texture

access, so that ray casting algorithms can be processed in a fragment processor as

a fragment shader [133].

6.3.2 Cg Language

C for Graphics (Cg) is a shading language developed for GPU programming,

introduced by NVidia in close collaboration with Microsoft in December 2002

[98]. Cg is derived from C but includes some specific adjustment to be compatible

with the features of graphics hardware; so Cg code looks like C code with the

same function calls, declarations and most data types. Cg is a shading language

compatible with OpenGL and DirectX and is used mainly for vertex and fragment

shaders, which allows programmers to write programs for both the vertex processor

and the fragment processor [42][116]. Finally, the main reason of developing the

Cg language is to use a high-level programming language for hardware, rather

than the low-level language such as Assembly language which is painful to use

and presents serious difficulties to the effective use of hardware [116]. So, we

can imagine Cg as a language that has been developed to render objects easily

using programmable graphics hardware (i.e. a language for graphics hardware

programming).
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6.3.3 Compute Unified Device Architecture (CUDA)

CUDATM was introduced by NVidia in November 2006, as a general purpose

parallel computing architecture. The CUDA software environment is designed

to support familiar high-level programming languages like C to make it easy for

programmers to learn. Also, it is designed to support application programming

interfaces, such as OpenCL (Open Computing Language is a trademark of Apple

Inc., used under license by Khronos [72]), CUDA FORTRAN and DirectCom-

pute [117]. CUDA is a scalable parallel programming model, where programs

written using CUDA could be executed on any number of processors without re-

compilation. The core of CUDA consists of three abstractions: thread groups,

shared memory, and barrier synchronisation, which provide different levels of data

parallelism and thread parallelism. This different level of parallelism would make

it possible to decompose the programming problem into sub-problems which can

be solved in parallel using blocks of threads, then into finer pieces that can be

solved cooperatively in parallel by all threads within the block which will pre-

serve CUDA scalability [118]. In CUDA thread groups abstraction, threads can

be divided into multiple equal-shape thread blocks which are organised into a

one-dimensional, two-dimensional, or three-dimensional grid of thread blocks il-

lustrated in Figure 6.2.

Threads are indexed by defining it as a three component vector, so that threads

can be identified using a one dimensional index, two dimensional index (Dx, Dy)

with ID of (x + yDx), and a three dimensional index (Dx, Dy, Dz) with ID of

(x+yDx+DxDy). In CUDA shared memory abstraction, threads can access data

from multiple memory spaces during their execution. All threads have access to

the same global memory, but each thread has its private local memory. Also, each

thread block has its shared memory which is visible to all threads of the block as

illustrated in Figure 6.2. Memory resources are limited for each core. Therefore,

the number of threads per block is limited as well, since all threads of a block are

expected to be located on the same processor core. Threads of a block are able

to communicate with each other by reading and writing per-block shared mem-

ory at a synchronisation barrier. In CUDA barrier synchronisation abstraction,

a barrier for threads of a block guarantee synchronisation and concurrent execu-
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Figure 6.2: Grid of blocks of threads that execute in parallel [118].

tion, where no thread sharing the barrier can proceed until all threads reach the

barrier [118][114].

6.4 CUDA-based Rendering for DRR Images

The main reason for us to choose CUDA to implement our algorithms on the GPU

is that CUDA supports any application to be processed on the GPU, unlike Cg

for example which is mainly useful for graphics applications. Other reasons to

choose CUDA are that we do not need to worry about the physical structure of

the GPUs when it is an NVidia product and it is relatively easy to find NVidia

products that are suitable for applications in the health industry.
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6.4.1 An Accurate Method of Rendering DRR images us-

ing CUDA

Considering the high processing capabilities of the GPUs, we decided to improve

the quality of DRR images by implementing another ray casting algorithm. This

algorithm is capable of rendering accurate DRR images using a voxel traversal

structure [7]. We did not initially investigate this approach as it needs more

computation compared to the sampling algorithm [9] which we have implemented

and introduced in a previous chapter. This method of rendering fast DRR images

samples the voxels inside the CT volume along the X-rays path (
→
u +t

→
v , 0 ≤

t ≤ 1), by finding the entry (In) and exit (Out) intersection points (tin, tout) for

each ray and the CT volume. We then increment by ∆t from tin to find all the

intersection points (voxels) along the X-ray path (for more details please return

to Section 3.4). The sampling method would be ideal if the X-rays are parallel

since the sampling interval could be set to deliver accurate results. But in our

application X-rays are cast as a cone beam and this introduces inaccuracies as

samples may not be taken in every voxel and the distance traversed across each

voxel will vary (depending on the angle of incidence). Our problem lies in the fact

that some X-rays which are not parallel to the direction of the voxels inside the

CT volume will result in intersecting some voxels more than once, as we illustrate

in Figure 6.3.

Figure 6.3: 2D illustration of the artefact of intersecting X-rays (cone
beam) with CT volume.
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Incrementing by ∆t, as a fixed value along the path of the X-rays will result

in a small error of sampling some voxels more than once. Rendering DRR images

using the cone bean and fixed sampling suffers from this artefact. To eliminate

the artefact we implement a fast and simple incremental grid algorithm which was

developed by Amonatides et al. [7] to sample each voxel only once despite the

direction of the X-rays, as illustrated in Figure 6.4.

Figure 6.4: 3D illustration for the incremental grid algorithm which
ensures voxels are only sampled once.

This traversal algorithm consists of two phases, initialisation and incremental

traversal. The initialisation phase calculates the parameter values which will cause

the ray to move into a new slice of the grid. The variables tMaxX, tMaxY

and tMaxZ are used to store the parameter values for movements in the x, y

and z axes respectively. ∆x, ∆y and ∆z are used to store the parameter values

required to move along the ray such that a distance of one cell width, one cell

high and one cell deep is traversed. Then the incremental traversal phase can

determine all the voxels that intersect with the X-rays by incrementing the exact

movement along each ray. The algorithm starts from the first box the ray cuts and

looks at the smallest parameter value stored in tMaxX, tMaxY and tMaxZ to

determine the next box which must be chosen. The variables are updated and the

algorithm repeats until the next selected box no longer resides in the voxel grid.

This algorithm is one of the fastest for ray tracing, as it requires very few floating
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point operations and it ensures each voxel can be sampled only once. Abstract

pseudo code for the DRR algorithm using CUDA is illustrated in Algorithm 3.

Algorithm 3 CUDA-based rendering of DRR images

1: x raysList.clear();
2: x raySource.set();
3: for all i such that 0 ≤ i ≤ imgDimX do
4: for all j such that 0 ≤ j ≤ imgDimZ do
5: index← i× imgDimZ + j
6: host x raysDirection[index× 3].x()← detectorP lane[index].x();
7: host x raysDirection[index× 3 + 1].y()← detectorP lane[index].y();
8: host x raysDirection[index× 3 + 2].z()← detectorP lane[index].z();
9: end for

10: end for
11: CUDA MemoryCopyHostToDevice(device x raysDirection, host x raysDirection);
12: CT.startIntersectionPoint.set();
13: CT.endIntersectionPoint.set();
14: CUDA calculateAbsorption(device DRR, device x raysDirection, x raySource,

x raysList, CT.startIntersectionPoint, CT.endIntersectionPoint)
15: {
16: d index← imgDimY × imgDimZ + imgDimX;
17: x ray absorption← calculate x ray absorption using fast voxel traversal alg();
18: device DRR[d index]← x ray absorption;
19: }
20: CUDA MemoryCopyDeviceToHost(host DRR, device DRR);
21: host DRR.display();

As illustrated in the previous algorithm, CUDA supports transfer of CT data

between the main memory (host memory) and the local hardware memory (device

memory). This operation is performed once during the DRR rendering process

(line 11 in Algorithm 3), which eliminates the time required to move the data

for each ray calculation. In Figure 6.5, we are introducing examples of DRR

images rendered from pelvis CT volume data using the accurate and the sampling

methods of DRR rendering which we described in Chapter 3, Section 3.4.5.

In order to compare the quality of DRR images rendered using the two meth-

ods, we performed a quantitative comparison between the sampled DRR image

and the accurate one by calculating the peak signal-to-noise ratio (PSNR).



CHAPTER 6. GPU ACCELERATION FOR DIGITALLY RECO . . . 99

(a)

(b)

(c)

Figure 6.5: Sample of DRR images rendered from pelvis CT volume
data using (a) Amonatides’ et al. [7] algorithm (very accurate), (b)
sampling algorithm which we described in Chapter 3, Section 3.4.5 and
(c) difference image formed by pixel by pixel subtraction between the
two images (black pixel = no difference).

PSNR = 20× log10

(
R√
MSE

)

Where R is the maximum pixel value and MSE is the mean square error.

Results show that DRR images rendered using both of the methods are very

similar in quality as the PSNR ratio between the DRR images is above 36 dB .

On the other hand, the GPU-based sampling method of rendering DRR images is

faster than an accurate rendering of DRR images by 1.8 times (accurate rendering

68 ms ÷ sampling method 38 ms, using NVidia GeForce 8800 GT of rendering
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DRR images from CT volume of size 256× 256× 133 voxels (pelvis)). Therefore,

we decided to keep the sampling method as the reference method for all further

steps in our research.

6.4.2 Performance Evaluation of GPU-based Rendering of

DRR Images

In the previous chapter we illustrated our enhanced CPU-based method of ren-

dering DRR images. In this section we will evaluate the performance of our

GPU-based rendering method by comparing it to previous results we got from

our CPU-based rendering method. In this comparison we will focus on the image

quality and rendering time of DRR images as the main measures of performance.

Rendering Time (Speed)

Comparing the speed between the GPU and CPU is not an “apple to apple”

comparison due the difference in the architecture between them. To enable a

comparison we implement the same algorithm for rendering DRR images on the

GPU and on the CPU. Results show that the speed is significantly reduced for

the GPU-based method when compared to the CPU-based one, as illustrated in

Figure 6.6.

Table 6.1 and 6.2 show the timing results of rendering different size and reso-

lution DRR images using a GPU Nvidia GeForce 8800 GTX and Nvidia GeForce

GTX 580, respectively. The GeForce 8800 GTX contains 128 streaming processor

cores running at a frequency of 575 MHz and has a total memory of 768 MB. The

GeForce GTX 580 contains 512 streaming processor cores running at a frequency

of 1544 MHz and has a total memory of 1536 MB.

According to the related work which we introduced in an earlier part of this

chapter, we believe that Mori et al. [111] presents the fastest method of rendering

full resolution DRR images. But comparing our results to their results, we believe

that we recorded the fastest results of rendering full resolution DRR images. Using

our method we are able to render a DRR image from 512× 512× 267 CT volume

in about 184 ms using NVidia GeForce 8800 GTX where they rendered a DRR
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Figure 6.6: Comparison of the speed of the GPU-based method versus
the CPU-based method of rendering DRR images using different sizes of
CT volumes. CPU-based DRR images were rendered using a Precision
Workstation T5500 Dual Quad core, Intel R© 2.3GHz. GPU-based DRR
images were rendered using NVidia GeForce 8800 GTX.

DRR Images Resolution

CT volume size Full resolution 50% sampling 25% sampling

64× 64× 64 (pelvis) 11 ms 11 ms 11 ms

128× 128× 66 (pelvis) 11 ms 11 ms 11 ms

128× 128× 86 (lung) 11 ms 11 ms 11 ms

256× 256× 133 (pelvis) 24 ms 11 ms 11 ms

256× 256× 172 (lung) 24 ms 11 ms 11 ms

512× 512× 267 (pelvis) 184 ms 104 ms 51 ms

512× 512× 344(lung) 237 ms 118 ms 64 ms

Table 6.1: Results in milliseconds of running the GPU-based rendering
algorithm of reduced resolution DRR images using different CT volumes
(pelvis and lung). DRR images were rendered with reduction in the
sampled points by 50% and 75% of the FR-DRR image using NVidia
GeForce 8800 GTX.

image in about 214 ms using NVidia 8800 GTS. But our CT volume is larger than

their CT volume by 5%, also their DRR images are surrounded by a black area

rendered as an artefact of rays not intersecting the CT volume (according to Mori)
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DRR Images Resolution

CT volume size Full resolution 50% sampling 25% sampling

64× 64× 64 (pelvis) < 1 ms < 1 ms < 1 ms

128× 128× 66 (pelvis) 1 ms < 1 ms < 1 ms

128× 128× 86 (lung) 1 ms < 1 ms < 1 ms

256× 256× 133 (pelvis) 2 ms 1.5 ms 1 ms

256× 256× 172 (lung) 3 ms 2.5 ms 1 ms

512× 512× 267 (pelvis) 27 ms 13 ms 8 ms

512× 512× 344(lung) 35 ms 20 ms 10 ms

Table 6.2: Results in milliseconds of running the GPU-based rendering
algorithm of reduced resolution DRR images using different CT volumes
(pelvis and lung). DRR images were rendered with reduction in the
sampled points by 50% and 75% of the FR-DRR image using NVidia
GeForce GTX 580.

and we think this area represents about 34% of the total size of the DRR image.

Where our DRR images rendered using rays intersect all the CT volume which

means we perform more calculations to find all the intersection points for each ray.

Moreover, the resulting times of rendering the DRR images which are presented

in Table 6.1 and Table 6.2 include the calculation times of the rays direction, the

transformation operation, and presenting the DRR image on the screen. From

Table 6.1 results show that small DRR images (128 × 66 and 128 × 86 pixels)

which are rendered using small CT volumes (128 × 128 × 66 and 128 × 128 × 86

voxels) will require about 11 ms to render each DRR image, which we believe is

not the real amount of time required to render the DRR image itself but it is the

time for projecting the image onto the screen and performing the other internal

operations in the DRR rendering process like copying memory from the host to the

device, calculating ray directions and detector plane transformations, etc. whereas

within a registration system there is no need to view the DRR image during the

registration process as all the calculations can be performed on the graphics card

after rendering the DRR images. The structure of the whole registration process

is presented in the next section.

The results show that the GPU-based rendering (NVidia GeForce 8800 GTX)
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required approximately 24 ms to render a full resolution DRR image from a 256×
256× 133 CT volume, which gives a speed up ratio of 8 times over the results of

a CPU-based rendering (using OpenMP with 8 cores) introduced in the previous

chapter. More results for the speed up ratio between the GPU-based rendering

and CPU-based rendering of DRR images are presented in Table 6.3.

Speed up ratio PSNR

CT volume size GPU/CPU(1 core) GPU/CPU(8 cores) ratio

128× 128× 66 (pelvis) 10 2.4 ∞
128× 128× 86 (lung) 12.5 3 ∞
256× 256× 133 (pelvis) 35.7 8.1 ∞
256× 256× 172 (lung) 46 10.6 ∞
512× 512× 267 (pelvis) 36.1 8 ∞
512× 512× 344(lung) 36.6 7.8 ∞

Table 6.3: Speed up ratio for the GPU-based method over the CPU-
based method, and the PSNR ratio between DRR images rendered using
both methods. CPU-based DRR images were rendered using a Precision
Workstation T5500 Dual Quad core, Intel R© 2.3GHz. GPU-based DRR
images were rendered using a NVidia GeForce 8800 GTX .

Image Quality

We evaluate the quality of the DRR images by calculating the PSNR ratio

between the DRR images which were rendered using the GPU-based and CPU-

based methods . Results from Table 6.3 shows that there is no difference at

all between the DRR images as the PSNR ratio ≡ ∞ (MSE ≡ 0). Although,

Mori et al. [111] reported a difference in the quality of DRR images which were

rendered using GPU-based and CPU-based methods in single and double precision

respectively. In our method we did not face this problem as we are not performing

any interpolation operations to render DRR images and we are able to run our

method using any NVidia GPU products.
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6.5 Hybrid Approach of 2D/3D Registration

According to the difference in the capabilities between the CPU and GPU, and

the difference in the complexity of the applications, we found that the best way

to achieve the optimum performance for the 2D/3D image registration problem

is to have a hybrid CPU/GPU based system that is able to get the maximum

benefit from both types of processor depending on the registration process and

its internal sub processes (optimisation, similarity measure and DRR rendering).

For more details about 2D/3D image registration process please refer to Chapter

3. In this section we will describe the structure and performance of the 2D/3D

image registration process using a hybrid system which partially executes on the

CPU and partially executes on the GPU.

6.5.1 The Structure of the Registration Using a Hybrid

Approach

We proposed a structure for the registration process according to the complexity

of its internal processes (components) and according to the capabilities of the CPU

and GPU. To evaluate the complexity of internal processes we give the registration

process a mathematical description:

f(n) = α× (n3 + n2) + ζ

Where α indicates the number of required transformation operations (transla-

tion and rotation) done by the optimisation process, n represents a dimension of

the CT volume, and ζ is a constant representing the total number of support oper-

ations like computing the direction of X-rays, transforming the detector plane, etc.

From the previous equation we can say that the registration process is required

to render α DRR images of complexity O(n3) and similarity measure operations

of complexity O(n2), so that the final complexity of registration process will be

O(n3). The high complexity of the DRR rendering process returns to the nature

of the rendering process as a graphics problem (huge number of rays need to in-

tersect all the voxels inside the CT volume). In spite of the high complexity of
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this problem, an important characteristic can be exploited, namely that the ray

intersections are not related to each other. Therefore, each ray can be processed

individually and randomly from the other rays. We can take advantage of this

characteristic by processing each ray individually using the GPU to get the benefit

of the huge number of processors (128 processor using NVidia GeForce 8800 GTX)

available to process the ray intersections in parallel.

On the other hand, whether the similarity measure process can be implemented

as a CPU-based process or GPU-based process depends mainly on the way the

DRR rendering process is implemented. In the first case, implementing the sim-

ilarity measure process as a CPU-based process, requires the DRR images to be

copied back from the device memory (GPU memory) to the host memory (CPU

memory). This could lead to a synchronisation problem on the GPU device as it

is busy all the time rendering a DRR image and so it needs a slot of time to return

back the DRR image to the host memory to be evaluated by the similarity measure

process. According to the previous mathematical description of the registration

process we know that the similarity measure process is not a high complexity pro-

cess and normally does not require a long time to be executed using the CPU, so

for example it requires about 2 ms to measure the similarity between two images of

size 512×267 pixels using a Precision Workstation T5500 Dual Quad core, Intel R©

2.3GHz. Whereas transferring the DRR images from the device memory to the

host memory requires almost the same time. The first case of implementing the

similarity measure process as a CPU-based process is illustrated in Figure 6.7.

In the second case, implementing the similarity measure as a GPU-based pro-

cess does not require any data transfer between the device and the host memory

as the DRR images are stored on the device memory. But time is still needed to

perform the similarity measurement process on the GPU. However, there will not

be a delay or synchronisation problem as all the required data is stored on the

GPU. This requires device memory to store a DRR image of size 512× 267 pixels

≡ 4 (float)× 512× 267 ≡ 546816 byte ≡ 0.52 MB. These days, reasonable graph-

ics cards can have 512 MB memory or more, so the memory required for storing

a DRR image is not a problem. The second case of implementing the similarity

measure process as GPU-based process is illustrated in Figure 6.8.
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Figure 6.7: A single iteration of the registration process, where the
DRR rendering is implemented as a GPU-based rendering process and
the similarity measure process is implemented as a CPU-based process.



CHAPTER 6. GPU ACCELERATION FOR DIGITALLY RECO . . . 107

Figure 6.8: A single iteration of the registration process, where the
DRR rendering implemented as a GPU-based rendering process and
the similarity measure process is implemented as a GPU-based process.
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Finally, the required memory space on the GPU card will vary according to

the size of the CT volume and the rendered DRR image. The total required size

in bytes

≡ 4(float)× CT X dimension× CT Y dimension× CT Z dimension+

4(float)×DetectorP lane X dimension×DetectorP lane Y dimension+

4(float)×DRR X dimension×DRR Y dimension.

For example the required device memory to render a DRR image of size 512×
267 pixels from a CT volume of size 512 × 512 × 267 voxels will be: 4 × 512 ×
512× 267 + 4× 512× 267 + 4× 512× 267 ≡ 281063424 bytes ≡ 268 MB.

6.6 Summary

In this chapter we accelerate the speed of the image registration process by en-

hancing the speed of rendering DRR images using the GPU. We proposed a hybrid

CPU/GPU based registration solution that splits the registration process between

the CPU and GPU to get the maximum performance (speed and accuracy). Using

CUDA to implement a hardware solution for the DRR rendering process has im-

proved the speed without compromising the DRR image quality. Comparing it to

previous results using the CPU, however, the PSNR ratio was∞ for all the differ-

ent sizes of DRR images. Comparing our results of the DRR rendering process to

previous work of other researchers we believe that we reported the fastest results

rendering full resolution DRR images. We are able to render a DRR image from

256× 256× 133 CT volume in about 24 ms using an NVidia GeForce 8800 GTX

and in 2 ms usnig NVidia GeForce GTX 580. Finally, our results from this work

can be built easily in to the system of 2D/3D registration using sparsely rendered

DRR images, which will be illustrated in the next chapter.



Chapter 7

2D/3D Image Registration using

Reduced Resolution and Sparsely

Rendered DRR Images

In this chapter1 we examine the performance of 2D/3D image registration using

reduced resolution and sparsely rendered DRR images (i.e. rendering fragments

of the DRR images). In Section 7.1 we describe the motivation of this work

(approach). In Section 7.2, we investigate the relationship between the execution

time of our parallel DRR algorithm, the number of cores, the number of rays

(resolution), and the number of sampling points inside the CT volume which are

used to render the DRR image. In Section 7.3, we discuss a local entropy measure

(a statistical measure of the randomness), which we used to automatically select

specific ROIs which are combined to form sparsely a rendered DRR. In Section 7.4,

we integrate both of these techniques in a system for speeding up the registration

process and evaluate it using a LINAC system providing both kV and MV reference

images. We test its accuracy by comparing our results with those obtained using

a commercial software package used at NNUH. In Section 7.5, we summarise the

findings of this chapter.

1This chapter is an adapted and extended version of: “O. Dorgham, M. Fisher, S.D. Laycock,
A.J. Vinall and W. Holmes-Smith. Fast 2D/3D Image Registration using Accelerated Generation
of Sparsely Rendered Digitally Reconstructed Radiographs. International Journal of Computer
Assisted Radiology and Surgery, Volume 5, Supplement 1, pp. S68, June 2010”.
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7.1 Motivation

This work is motivated by the need to further reduce the time within the 2D/3D

registration loop. Here we focus on a number of approximate DRR rendering

methods and investigate how these perform with respect to clinical registration

accuracy.

7.2 Rendering Reduced Resolution DRR Images

Rendering reduced resolution DRR images (RR-DRR), will consume less time

in comparison to the full resolution DRR images (FR-DRR). We implement two

methods of rendering RR-DRR images; firstly, by reducing the number of rays

that are cast through the CT volume, and secondly, by reducing the number of

sampling points inside the CT volume per each ray. Then we evaluate the quality

and speed of rendered RR-DRR compared to that for FR-DRR images. In the first

method we use nearest neighbour interpolation to replace all the missing values

of the rendered DRR images [92]. We have the choice of controlling the number

of rays intersecting the CT volume, so in our experiments we rendered RR-DRR

images by using 25% of the rays that are used to render FR-DRR images. Hence,

each ray intensity value is used to draw 4 pixels in the RR-DRR image, as shown

in Figure 7.1.

In the second method of rendering a RR-DRR image, we reduced the sampling

points inside the CT volume to different ratios by 50% and 75% which provides

a low cost computation to calculate the intensity value per each ray. A sample

of the resulting RR-DRR images are presented in Figure 7.2. Speed of rendering

RR-DRR images using single core is presented in Table 7.1 (however, speed of

rendering RR-DRR images using different number of cores shows simillar results

for rendring FR-DRR, values are given in Appendix A, Table A.11 and A.12,

although, graphical representation is presented in Figure A.2).
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(a)

(b)

(c)

(d)

Figure 7.1: Example for RR-DRR using interpolated rays where (a) is
a diagram shows a grid of nearest neighbour interpolation where green
areas show the calculated pixels and the gray areas show the interpolated
pixels in the DRR image, by calculating 25% of the required rays needed
to render FR-DRR image, (b) FR-DRR and (c) RR-DRR image and (d)
difference image formed by pixel by pixel subtraction between the two
images (black pixel = no difference).
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(a)

(b) (d)

(c) (e)

Figure 7.2: Example for RR-DRR using reduced sampling where(a)
sample of Lung FR-DRR image, (b) and (c) RR-DRR images were ren-
dered by reducing the sampling points by 50% and 75% respectively,
(d) difference image formed by pixel by pixel subtraction between im-
age (a) and image (b) while (e) difference image formed by pixel by
pixel subtraction between image (a) and image (c) (black pixel = no
difference).
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Speed of rendering RR-DRR images
hhhhhhhhhhhhhhhhhhCT Volume Size

Method type rays reduction sampling method

50% 75%

128× 128× 66 (pelvis) 26 ms 53 ms 28 ms

128× 128× 86 (lung) 35 ms 72 ms 37 ms

256× 256× 133 (pelvis) 242 ms 429 ms 219 ms

256× 256× 172 (lung) 278 ms 573 ms 296 ms

512× 512× 267 (pelvis) 1586 ms 3153 ms 1691 ms

512× 512× 344(lung) 2008 ms 4105 ms 2201 ms

Table 7.1: Speed of rendering DRR images using the first and second
method of rendering RR-DRR images using a single core of Precision
Workstation T5500 Dual Quad core, Intel R© 2.3GHz.

By visual examination of the DRR images in Figure 7.1 and 7.2 it is hard to

see the difference between the FR-DRR and RR-DRR images. But a quantitative

comparison can be obtained by computing the PSNR (for more information about

PSNR ratio, please refer to Section 6.4.1). A set of PSNR ratios were computed

for a range of the most commonly used sizes (resolution) of DRR images and for

two sets of CT volume (lung and pelvis), using the two methods (i.e. sampling

and rays reduction) of rendering RR-DRR images discussed. PSNR values for

FR-DRR images are also included (Table 7.2). Results from Table 7.2 illustrate

why it is hard to notice the difference between our FR-DRR images and RR-DRR

images in Figure 7.1 and 7.2. The PSNR ratio in Figure 7.1 is about 44 dB and

in Figure 7.2 is about 43 dB. According to Huang et al.[151], PSNR ratios above

36 dB represent an excellent image quality of compressed images (in our case

RR-DRR images). Although, results form Table 7.2 show that using 25% of the

total number of rays (first method of rendering RR-DRR) is at the breaking point

(i.e. where the registration fail) of rendering RR-DRR from CT volume of size

256 × 256 × 133 voxels (pelvis) and 256 × 256 × 172 voxels (lung), also reducing

the number of sample points inside the CT volume to 75% is the breaking point

of rendering RR-DRR images from CT volume 256 × 256 × 172 voxels (lung).

Comparing the method of rendering RR-DRR images to the method of multi-
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scale pyramid, we render DRR images with the consistent resolution (i.e. full or

reduced) in all the registration iterations. On the other hand, multi-scale pyramid

method could give better registration results but this could cost more time to

render different DRR images with different resolutions. However, we render a

RR-DRR image from CT volume of size 256 × 256 × 133 voxels using the first

method of reducing the number of calculated rays with a resolution of 256× 133

pixels in approximately 242 ms, and we render a RR-DRR image from the same

CT volume using the second method of reducing the sampling points for 25% in

the CT volume, with a resolution of 256 × 133 pixels in approximately 219 ms

using a Precision Workstation T5500 Dual Quad core, Intel R© 2.3GHz.

PSNR ratio
hhhhhhhhhhhhhhhhhhCT Volume Size

Method type rays reduction sampling method

50% 75%

128× 128× 66 (pelvis) 32.62 dB 33.49 dB 29.21 dB

128× 128× 86 (lung) 30.64 dB 35.65 dB 30.35 dB

256× 256× 133 (pelvis) 35.87 dB 44.18 dB 33.75 dB

256× 256× 172 (lung) 36.49 dB 46.29 dB 35.58 dB

512× 512× 267 (pelvis) 43.72 dB 53.23 dB 43.66 dB

512× 512× 344(lung) 42.49 dB 52.87 dB 45.05dB

Table 7.2: A set of PSNR ratios between DRR images rendered using
the first and second method of rendering RR-DRR images and FR-DRR
images.

Referring to our methods of rendering reduced resolution DRR images. We

compared the results of performing the 2D/3D registration process using FR-DRR

images and RR-DRR images. Figures 7.3 and 7.4 show the NCC surface produced

when matching reference and floating DRR images (at full and reduced resolutions)

in the range 0◦ → +20◦ (the values are given in Appendix A, Tables A.2 - A.9).

Figure 7.5 indicates the floating DRR image which is best match in each case

(values tabulated in A.10). These confirm that FR-DRRs and RR-DRR’s (50%

under-sampled) produce the most accurate results, most cases being able to give

perfect registration performance. Registration at large angles (i.e. > 17◦) tend to
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produce large errors because our DRR algorithm moved on ideal geometry (i.e.

a point X-ray source) and the Linac source is not ideal. Hence there are errors

between DRR and epid images but these are much significant at large angles. This

can be seen in Figure 7.15.

However, the performance of the registration process using RR-DRR with 75%

did not provide accurate results, either using the sampling method nor the rays

reducing method. This registration results explained by the previous PSNR ratios

that have been presented in Table 7.2 as the PSNR values where less than 36 dB

for the 256× 133 pixels of pelvis RR-DRR image.
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(a)

(b)

Figure 7.3: Results of performing 2D/3D registration process between
kV reference image and the DRR images in range of 0◦ → +20◦. Where
(a) results of using FR-DRR images and (b) results of using RR-DRR
images for sampling method with 50% samples of the volume.
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(c)

(d)

Figure 7.4: Results of performing 2D/3D registration process between
kV reference image and the DRR images in range of 0◦ → +20◦. Where
(c) results of using RR-DRR images for sampling method with 75%
reduction in samples, and (d) results of using RR-DRR images for the
method of reducing number of rays with 75%.
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Figure 7.5: Accuracy for the performance of the 2D/3D registration
using different methods of rendering the DRR images (full and reduced
resolution images).

7.3 Sparsely Rendered DRR Images

We illustrated in the previous section that the total time of rendering DRR images

can be reduced by reducing the resolution of the DRR images either by casting

fewer rays or by taking fewer samples inside the CT volume. In this section we

will discuss a further approach for speeding up the rendering of DRR images (for

registration) by rendering only part of the image. To reduce the time of rendering

full size DRR images, we used features within the reference images to select a

region of the DRR image to be rendered and subsequently used in the registration

process. We used an entropy measure to select these region of interest (ROI) areas

in the DRR images, as we illustrate in the following sections.
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7.3.1 Local Entropy Measure

In 1948 Shannon introduced a universal measure (Entropy) to model and quantify

information using probability theory [150]. Entropy is a statistical measure of

randomness that can be used to indicate the amount of information in an image

[50][58], it is used in image processing in different applications like image retrieval,

classification or image segmentation [155][6]. We used the entropy measure to

weight different features within both kV or MV energy reference images (e.g,

bone, muscle tissue, air, etc.). We calculate entropy as follows:

E = −
255∑
i=0

(p(i)× log p(i))

Where p(i) is the probability of the i th intensity value of the histogram (i =

0 → 255) for the local regions of our gray scale images p(i) = Histogram [i] ÷
sizeofImage. Entropy is 0 for a stable image (an image with pixels having the

same value), as values are in the range [0, 1] and calculating E with values of p(i) =

0 and p(i) = 1 will results of E = 0. Entropy will be maximum when all values are

equal [50]. Using maximum local entropy values we are able to identify regions with

significant features, for example, Figure 7.6 illustrates maximum entropy regions

in a coronal Lung CT slice (with various region sizes). In the 2D/3D registration

the entropy measure can be used to select between different ROI areas. More

details about using the entropy measure in the 2D/3D registration are described

in the following section.

7.3.2 Automatic Selection of Region of Interest

As we described in Chapter 3, Section 3.4, rendering DRR images conventionally

demands a massive number of calculations to find the intersection points between

X-rays and voxels within the CT volume (i.e. large number of ray casting oper-

ations). To reduce the computational load incurred by repeatedly rendering full

size DRR images (FS-DRR) we render DRR image fragments for specific regions

of interest. ROI within the reference image are chosen automatically then the

mask is projected to render fragments the of the DRR image. The fragment size

is predetermined and the entropy value can be used to denote the information
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(a) (b)

(c) (d)

Figure 7.6: ROI selected using entropy measure with different blocks
sizes of selected areas of 20%. for a coronal Lung CT (512× 330 pixels)
slice image entropy measured for blocks of size (a) 8 × 8 pixels, (b)
16× 16 pixels, (c) 32× 32 pixels and (d) 64× 64 pixels.

content of the ROI [191]. We sort the region fragments in descending order ac-

cording to their entropy values; regions with highest entropy are selected as a ROI

fragments, which will be used as a mask for DRR rendering step as shown in Fig-

ure 7.7. Instead of rendering a FS-DRR, we render selected spaces of the volume

determined by the ROI mask areas. Sparse DRR images significantly reduce in

the number of rays cast and hence time. Examples of sparse DRR images are

shown in Figure 7.8.

There are two parameters related to the ROI fragments, firstly, the size of

fragment which is measured by (n × m) pixels as in Figure 7.6, secondly, the

number of fragments which is measured by the percentage of FS-DRR coverage

as in Figure 7.8. The size of the ROI area and its blocks can affect the accuracy

and speed of the registration process, more details and experimental results are
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(a) (b)

Figure 7.7: (a) Conventional method of DRR rendering, (b) sparse
DRR rendering.

discussed and presented in the following section. By selecting ROI automatically,

we are eliminating human error and providing a stable, robust and fast method of

selecting the areas of ROI, thereby enabling registration process to be performed in

an accurate way without any concern about the experience of the person selecting

the ROI used in the registration process. However, the execution time of rendering

sparsely DRR images differ according to the size of the ROI area and the number

of the cores are used to render the sparse DRR image. The size of the ROI

determines the required number of rays needed in the registration process, and in

turn the number of used cores and the number of parallel threads which are used

to cast multiple rays simultaneously when parallel architectures are used. This, in

turn reduces the time of rendering sparsely DRR images (SP-DRR), for example

rendering SP-DRR image 256×133 pixels, for example, 30% of ROI requires about

60 ms for FR-DRR image and about 15 ms for RR-DRR image rendered from CT

volume of size 256 × 256 × 133 pixels using a Precision Workstation T5500 Dual

Quad core, Intel R© 2.3GHz. Possible improvement in speed might be obtained

by selecting sets of ROI randomly. However, this strategy could fail to return

useful ROI and so we feel that selecting the most useful ROIs derives more robust

registration results.
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(a) (b)

(c) (d)

Figure 7.8: Example of DRR images where (a) original FS-DRR image,
(b-d) represent sparse DRRs formed using 10%, 30% and 50% of ROI
fragments respectively.
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7.4 Using Fast DRR Rendering in Image Reg-

istration with a LINAC Radiation Therapy

System

Many different types of radiation therapy systems are used in cancer treatment,

such as: Linear Accelerator (LINAC), CyberKnife and Tomotherapy. As we de-

scribed in earlier stage in Section 2.4, and despite the difference in the structure

of the systems but the objective is similar [41] and patient setup is needed in all

cases where treatment is delivered in fractions. For patient setup using any of the

previous systems, we need to render accurate and quick DRR images consistent

with the geometric configuration of the Electronic Portal Imaging Device (EPID)

which used to produce reference images from the desired system.

7.4.1 LINAC System

In our study, we used a Varian 2100EX LINAC radiation therapy system fitted

with Varian AS1000 EPID panel (for MV operation) and IDU20 EPID panel (for

kV operation), located at the Norwich Norfolk University Hospital (NNUH). The

geometry is as shown in Figure 7.9.

The LINAC was set up using a field size of 20 × 20 cm defined at the iso-

centre i.e. 100 cm from the X-ray source (we assume X-rays emanate from a point

source and strike a flat panel situated behind the patient, i.e. conventional ’C’ arm

geometry). The EPID panel is located 40 cm beyond the iso-centre. The detector

area is 40.14 × 30.11 cm with 512 × 384 pixels and 0.784 pixel pitch (Note: the

active area of the detector plane is 30 × 24 cm for this geometry but will vary

slightly if the detector plane is moved). The couch or patient support system

(PSS) can be rotated and translated in six degrees of freedom (DoF), however to

simplify our experimental simulation we only attempt to recover rotation around

the z-axis (i.e. 1 DoF). Depending on the type of radiation therapy treatment

system, 2D/3D image registration could be a kiloVoltage/kiloVoltage (kV/kV)

registration process (e.g. Cyberknife) or, it could be a MegaVoltage/kiloVoltage

(MV/kV) registration process (e.g. most conventional LINAC systems). However,
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Figure 7.9: Details of the radiation therapy system used.

as the Varian 2100EX LINAC system we used for this work able to render both kV

and MV reference images (see Figure 7.10), we can investigate both techniques.

Figure 7.10: Varian 2100EX LINAC system in NNUH, which is able
to render dual type of reference images ( MV and kV images).
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We used a Varian 2100EX set to produce X-rays in the (79 − 81) kV energy

range, where the kV images were taken using a function called Automatic Exposure

Control (AEC) so the exposure levels are automatically set. The energy selected

does not vary very much. Most lateral images (−20 and 20 degree) are captured

at 81 kV and the most anterior images (0 degree) 79 kV. For MV experiments

we used the Varian 2100EX at 6 MV energy. A Rando phantom was used to

provide CT volume and to render the kV and MV energy reference images. The

experimental system is shown in Figure 7.11.

(a) (b) (c)

Figure 7.11: (a)Pelvis Rando phantom with EPID images of (b) MV
energy of X-rays, and (c) KV energy of X-rays.

We build our CT volume from a series of Dicom images obtained from the

Rando phantom and collected as axial 3 mm CT slices with a pixel spacing of

0.96289 × 0.96289 mm using 120 kV energy X-rays using GE HiSpeed FX/i CT

scanner located at NNUH.

7.4.2 Performance of (kV/kV) and (MV/kV) Radiation

Therapy Systems

Using the geometry specification of the LINAC system we rendered DRRs exactly

equal in size to the MV and kV reference images in 1◦ steps within a range of

−20◦ → +20◦ in Rz. However, after we got the images from the hospital we

found there is a variation in the size of the effective area between the MV and kV

images as illustrated in Figure 7.12(a,b). We believe this variation was due to a
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difference in the location of EPID panel geometry between both types of reference

images. To compensate the variations in geometry (between MV and kV setup)

we perform 2D/3D registration on images of 332×332 pixels by cropping the both

kV and MV reference images as illustrated in Figure 7.12(c).

(a) (b) (c)

Figure 7.12: (a,b) Original size of EPID images of MV and kV energy
of X-rays and (c) cropped kV EPID image (Note: the Rando phantom
artefact).

We render DRR images of the same size as the cropped reference images of

332 × 332 pixels prior to the registration process between the DRR images and

each of the reference images without bothering about the difference in the effective

area sizes. As we do not know the exact location of the iso-centre (so called blind

iso-centre) we use the 2D/3D registration process to recover it. We use the curved

lines (an artefact produced by the Rando phantom slices) to confirm we have the

correct geometry (i.e. the X-ray source is in front of the panel and not vice-versa).

Note: the curve artefacts are also shifted due to a small misalignment in the

geometry (discovered after the data set was acquired and verified by commercial

Varian’s offline review software).

We present results confirming the sensitivity and accuracy of our method. First

we initialise the system at predefined iso-centre. To illustrate the sensitivity of the

similarity measure we choose an EPID image in the range 0◦ → +20◦ (0◦ → +20◦

or −20◦ → 0◦ shows the same results). Next we measure the similarity between

the reference and each of 20 DRR images (full size or sparse ones) from 0◦ → +20◦

rotation around the z axis, and present these results in Table 7.3 (reference image

at 10◦). Figure 7.13 shows the EPID images and the best match of the DRR

images, which confirming that the system can reliably recover rotations over a
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Figure 7.13: Accuracy of recovered rotation (using full size DRRs).

limited angle of view (up to 17◦ around the z axis).

Unfortunately the results are not so good for the MV EPID images, almost

certainly due to their poor quality (compared to the kV ones). Figure 7.14 shows

an example of the results that we obtain by performing the best-matching oper-

ation for the 10◦ EPID image and sparsely rendered DRR images with different

percentages of automatic selected ROI. These confirm that for kV/kV registra-

tions (10% of ROI) is sufficient for reliable 2D/3D registration. The performance

of an MV/kV system is worse, although the error performance might be improved

by applying some image enhancement. Using 10% of the sparse DRR image as a

ROI will increase the speed of sparse DRR rendering and the similarity measure

algorithm as the NCC value is calculated only for the selected ROI. To assess the

absolute error in the registration we used Varian’s offline review software to regis-

ter our rendered DRR images (floating images) from a pre-collected CT volume for

pelvis random phantom with reference kV images generated using the same rando

phantom. Registration results shows difference between floating DRR images and

reference kV images which shown in Figure 7.15.
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Figure 7.14: Results of 10 iterations of performing best matching
operation between 10◦ EPID image (kV, MV) and different ratios of
sparse DRR images in range of 0◦ → +20◦.

Figure 7.15: Directional error of kV (DRR/EPID) images using
NNUH Varian commercial software.
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Overall, we can say that these results are in the range of clinical radiotherapy

treatment errors (according to [60]) giving target registration errors of ≤ 3 mm in

lateral direction, ≤ 1 mm in longitudinal direction, ≤ 1 mm in vertical direction

and < 1◦ in couch return direction for DRR and EPID images that are rendered

in the range of 0◦ → +18◦ rotational movement around z axis. However, larger

registration error values could be resulted from this experiment as we were using

Varian’s commercial software which could include another errors that are in the

range of clinical radiotherapy treatment (which we are not sure from it as it is

commercial software). Despite this issue we were able to perform the registration

process using our developed method with high accuracy as we illustrated earlier

in Figure 7.13.

7.5 Summary

In this chapter, we developed a method of accelerating the process of 2D/3D

image registration by rendering reduced resolution and sparse DRR images. This

was motivated by a need to improve the speed of this process while maintaining

sufficient clinical accuracy. The speed of rendering DRR images depends mainly on

the resolution of DRR images and the number and size of the ROI blocks selected

for sparse rendering using the entropy measure. Small numbers of ROI means

a faster rendering process for DRR images; consequently faster 2D/3D image

registration. We tested and evaluated the performance of the accelerated 2D/3D

registration process with both kV and MV reference images using data from an

upgraded Varian LINAC machine at the NNUH. The CT data and EPID images

were derived from a Rando phantom. The experimental procedure recovered a

rotation in the direction of Rz in a range of −20◦ → +20◦ (in 1◦ steps). We

estimated absolute target registration errors by comparing our registrations to

those recovered using a commercial Varian’s offline review software.

Experimental results of registering kV EPID images to floating sparse DRR

(kV) images shows that it is possible to perform the registration process with

a level of accuracy sufficient for most pelvic cancer sites for rotations up to 17◦

around z axis, but results for the MV EPID images were not so good because of

their low quality (compared to the kV ones). Moreover, the kV/kV results remain
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acceptable even when rendering sparse DRR images at 10% of ROI. Overall, using

kV/kV registration it is possible to recover a movement of ≤ 3 mm in lateral

direction , ≤ 1 mm in longitudinal direction, ≤ 1 mm in vertical direction and

< 1◦ in couch return direction for DRR and EPID images rendered in range

0◦ → +18◦ rotational movement around z axis. These results have been collected

using single dataset for pelvis rando phantom, but we believe results will not be

affected that much using different datasets (e.g. lung or head) as all of these body

sites does share bone and soft tissues. Furthermore, the quality of DRR images is

still in the excellent resolution category with PSNR values of about 36 dB for lung

RR-DRR image with 256× 172 pixels resolution rendered from a 256× 256× 172

CT volume using the two methods of rendering RR-DRR images. For example,

reducing the number of rays (i.e. 25% of the total number of rays) or reducing

the number of sample points (i.e. 75% reduction on the total number of sample

points). Results show that the performance of the 2D/3D registration is almost

the same using the FR-DRR images and RR-DRR images with 50% using the

sampling method. However, the performance of the registration process using

pelvis RR-DRR with 75% sampling did not provide an accurate result, either

using the sampling method or by reducing the rays cast. This registration results

are explained by the PSNR ratios which were less than 36 dB for the 256 × 133

pixels pelvis RR-DRR image. Finally, combining parallel processing with sparse

DRR rendering using the automatic method of ROI selection increases the speed

of the registration process according to the size of the ROI. Acceptable registration

performance even can be achieved with only a few ROIs.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis described a number of methods aimed at accelerating 2D/3D image

registration which have been developed by the author and other researchers. We

developed our methods using a strategy that enables us to maximise the benefit of

available software and hardware resources (GPU, if available; otherwise multiple

CPU cores, or single core), keeping in mind that the speed we gained should not

interfere with the clinical accuracy of 2D/3D image registration. However, we

conclude this work by answering the following questions.

What strategy did we adopt to accelerate 2D/3D image registration?

We studied 2D/3D image registration as a collection of three main processes: the

rendering of digitally reconstructed radiographs, similarity measurement and op-

timisation processes. Our development was guided based on the computational

complexity (time and space) of the underlying algorithms. Accelerating the DRR

rendering process was the highest priority as it is the most complex process and

forms an acknowledged bottleneck in 2D/3D image registration. In later steps we

built the other 2D/3D registration components in such a way to make them to be

compatible to each other.

132
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What type of methods did we develop to accelerate DRR rendering?

Based on the nature of the DRR rendering process we developed a number of

different strategies to accelerate it. Reducing the number of intersection points

between X-rays and CT volume was one of the solutions which we adopted, one

way of accomplishing this was by compressing the CT volume, other solutions

we tested exploited sub-sampling both inside the CT volume and by reducing the

number of rays that intersect the CT volume. Moreover, we combined the previous

methods in parallel processing approaches that resulted in both software (CPU)

and hardware (GPU) solutions. Through automatic rendering of sparse DRR

images we also demonstrated an important approach for accelerating rendering

process as we are rendering only a fraction of the image. Finally, all methods (i.e.

paralleisation, reduced resolution and automatic selection of ROI) are combined

in one registration system as shown in Figure A.1 .

What speedup was gained by accelerating the DRR rendering algo-

rithm?

The acceleration we achieved varies according to the methods we implemented to

render DRRs and the quality of images we require. Using the Octree method of

compressing voxelised CT volumes it takes 390 ms to render a DRR image of size

512× 384 pixels from a 512× 512× 384 voxel compressed CT volumetric data set

using an Intel R© Core
TM

2 Duo Processor T7200 with 4M Cache running at 2.00

GHz. In another method we used parallel programming to accelerate the DRR

rendering process. This takes ∼ 200 ms to render a full resolution DRR image

of size 256 × 133 pixels from CT volume of size 256 × 256 × 133 voxels using a

Dell Precision Workstation with Intel R© T5500 Dual Quad core processor running

at 2.3GHz. As expected, reducing the DRR image resolution improved the speed

of DRR rendering. It takes ∼ 50 ms to render a DRR image of size 256 × 133

pixels by reducing the number of rays cast by 25% compared with that used to

render full resolution DRR images. Reducing the resolution of DRR images by

taking fewer samples inside the CT volume was also investigated, this takes ∼ 100

ms to render a DRR image of size 256 × 133 pixels from a CT volume of size
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256 × 256 × 133 voxels with 50% of the full resolution DRR image and using a

Precision Workstation T5500 Dual Quad core, Intel R© 2.3GHz. The most success-

ful method we developed is a hardware solution which is able to render a DRR

image from a 256× 256× 133 CT volume in ∼ 24 ms using an NVidia GeForce 8800

GTX and in ∼ 2 ms using NVidia GeForce GTX 580. According to our knowledge

this result is one of the fastest DRR rendering results to be achieved to date.

How do we measure the quality of the accelerated DRR images that we

rendered?

We measure the quality of the accelerated DRR images by performing a quan-

titative comparison by computing peak signal-to-noise ratio (PSNR) of images

rendered at full resolution using a reference algorithm and those rendered using

an accelerated approach.

The two methods of rendering RR-DRR images we tested (i.e. reducing the

number of rays by 75% or the number of sample points by 50% and 75%), both

returned DRR images that were classified as excellent with PSNR values of about

36 dB for RR-DRR lung images with 256× 172 pixels resolution rendered from a

256× 256× 172 CT volume. Additionally, using these algorithms within a 2D/3D

registration framework showed that the performance is almost the same using full

resolution DRR images and reduced resolution DRR images with 50% down sam-

pling. However, the performance of the registration process using pelvis reduced

resolution DRR with 75% down sampling did not provide accurate results, neither

using the reduced sampling method or the ray reducing method. This registration

result can be explained by the PSNR ratios as this was less than 36 dB for the

256× 133 pixels of pelvis reduced resolution DRR image. Using CUDA to imple-

ment a GPU hardware solution for the DRR rendering process improved the speed

without compromising the DRR image quality. When compared with reference

DRRs all those produced by the GPU exhibited a PSNR ratio of ∞ (even though

GPU arithmetic is single precision).

What effect does accelerating 2D/3D registration have on clinical ac-

curacy?
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Methods of accelerating registration using Octree compression can still achieve

results with in acceptable accuracy limits of clinical accuracy. Using a Octree

compressed CT volume for 2D/3D image registration can recover patient support

system (PSS) {x,y,z} translation of up to ±10 mm with sub-voxel accuracy (i.e

� 2 mm) and angular {pitch, yaw, roll} rotations up to ±10 degrees with an

accuracy of better than 1 degree. Furthermore, the performance does not degrade

significantly with high levels of compression (>80%). The errors in recovered y

translations are larger than in x and z since the X-ray fan beam is nearly parallel

(∼ 4.5◦) and so the geometry is insensitive to adjustments in the height of the

couch. In practice, the height of the couch (i.e. patient) much less likely to change

compared to x, y translation and p, w, r rotation of the anatomy and so this is not

seen as a significant problem.

Using the method of accelerating the process of 2D/3D image registration by

parallelising and sparsely rendering the DRR images also achieved acceptable re-

sults. We tested and evaluated the performance of the accelerated 2D/3D registra-

tion process with both kV and MV reference images using data from an upgraded

Varian LINAC machine at the NNUH. The CT data and EPID images were de-

rived from a Rando phantom. The experimental procedure recovered a rotation

the direction of Rz in a range of −20◦ → +20◦ (in 1◦ steps). We estimated absolute

target registration errors by comparing our registrations to those recovered using

a commercial Varian’s offline review software. Experimental results of registering

kV EPID images to floating sparse DRR (kV) images shows that it is possible to

perform the registration process with a level of accuracy sufficient for most pelvic

cancer sites for rotations up to 17◦ around z axis, but results for the MV EPID

images were not so good because of their low quality (compared to the kV ones).

Moreover, the kV/kV results remain acceptable even when rendering sparse DRR

images at 10% of ROI. Overall, using kV/kV registration it is possible to recover

a movement of ≤ 3 mm in the lateral direction , ≤ 1 mm in the longitudinal

direction, ≤ 1 mm in the vertical direction and < 1◦ in couch return for DRR

and EPID images that are rendered in a range of 0◦ → +18◦ rotational movement

around z axis.
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8.2 Future Research

A number of areas for future research have been identified during this work, these

are as follows:

• In our investigation of the hybrid based acceleration for 2D/3D image reg-

istration, Section 6.5, we implemented a DRR image rendering approach

using GPU hardware. Another design for a hybrid CPU/GPU based sys-

tem (Figure 6.8) also implemented the similarity metric algorithm using the

GPU as a hardware process. This solution is worthy of future investigation

since the whole registration process is performed as a hardware process and

is potentially more efficient.

• Splat rendering is another method of accelerating DRR rendering (i.e. This

technique represent Octree internal spaces by points. The image quality

depends on the Octree compression factor. But initial results show that

reasonable quality of DRR images can be rendered with highly compressed

data). Preliminary results of implementing a splat rendering method show

some promising results. We are are able to render DRR images with 256×256

pixels resolution from a 256 × 256 × 256 CT volume at a speed of ∼ 330

fps using a DELL XPS Quad core, Intel R© 2.3GHz with NVidia GeForce

8800 GT. Figure 8.1 shows an example DRR image rendered using splat

rendering. However, measuring the quality of DRR images and the accuracy

for 2D/3D image registration remain tasks for future work.

• There is a high demand for fast Tomotherapy KVCT/MVCT image regis-

tration [78]. We believe that our method of using sparse images for 2D/3D

registration will improve the speed for Tomotherapy registration with accept-

able levels of accuracy. However, these assumptions need to be confirmed

by experimentation.

• In the European Congress of Radiology (ECR) 2007, Dr. Bordy said “the

number one killer disease in the US is not cancer or heart diseases but

variability in care”. Based on this view, measuring the clinical performance

for different image registration techniques could be another area for future
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Figure 8.1: An example of DRR image rendered using splat rendering
with OpenGL Vertex Buffer Object (VBO) and Octree partitions with
Pivot value of 0.2 (more details about Octree partitioning are presented
in Section 4.3)

research. In the case of radiation therapy, the uncertainty in the delivery

of radiation therapy could go some way towards explaining the variability

in treatment outcomes. Further clinical work is needed to explore more the

performance of 2D/3D registration within radio oncology.



Appendix A

Supplementary Results

Misalignment
Vertical (cm) Longitudinal (cm) Lateral (cm) Couch Return (deg)

Angle 0 0 0.1 -0.2 0.7
Angle 1 0 0.1 -0.2 0.8
Angle 2 0 0.1 -0.2 0.2
Angle 3 0 0.1 -0.2 0.3
Angle 4 0 0.1 -0.2 0.3
Angle 5 0 0.1 -0.3 0.3
Angle 6 0 0.1 -0.3 0.2
Angle 7 0 0.1 -0.3 0.3
Angle 8 0 0.1 -0.3 0.2
Angle 9 0 0.1 -0.3 0.8

Angle 10 -0.1 0.1 -0.3 0.5
Angle 11 -0.1 0.1 -0.3 0.5
Angle 12 -0.1 0.1 -0.3 0.2
Angle 13 -0.1 0.1 -0.3 0.5
Angle 14 -0.1 0.1 -0.3 0.6
Angle 15 -0.1 0.1 -0.3 0.1
Angle 16 -0.1 0.1 -0.3 0.1
Angle 17 -0.1 0.1 -0.3 0.7
Angle 18 -0.1 0.1 -0.3 0.1
Angle 19 -0.1 0.2 -0.4 0.7
Angle 20 -0.1 0.2 -0.4 0.1

Table A.1: Directional error of kV (DRR/EPID) images using NNUH
Varian commercial software.
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Figure A.2: Results in milliseconds of rendering different types of
DRR images (full resolution and reduced resolution) from 256×256×133
pelvis CT volume using the parallelised algorithm of DRR rendering and
using a Precision Workstation T5500 Dual Quad core, Intel R© 2.3GHz.



Appendix B

Ray-box Intersection Algorithm

Algorithm 4 RayBox Intersection Algorithm [8]

1: Vector3 = (float x, float y, float z)

2: Vector3 parameters[0] = min box 3dCoordinates

3: Vector3 parameters[1] = max box 3dCoordinates

4: Vector3 origin

5: Vector3 direction
6: Vector3 inv direction
7: inv direction = (1/direction.x(), 1/direction.y(), 1/direction.z())

8: integer sign[3]

9: sign[0] = boolean (inv direction.x() < 0)

10: sign[1] = boolean (inv direction.y() < 0)

11: sign[2] = boolean (inv direction.z() < 0)

12: boolean Box intersect(Ray r, float tIn, float tOut)

13: {
14: float tmin, tmax, tymin, tymax, tzmin, tzmax

15: tmin = (parameters[r.sign[0]].x - r.origin.x) × r.inv direction.x

16: tmax = (parameters[1-r.sign[0]].x - r.origin.x) × r.inv direction.x

17: tymin = (parameters[r.sign[1]].y - r.origin.y) × r.inv direction.y

18: tymax = (parameters[1-r.sign[1]].y - r.origin.y) × r.inv direction.y

19: if (tmin > tymax) or (tymin > tmax) then

20: return false
21: end if
22: if (tymin > tmin) then

23: tmin = tymin

24: end if
25: if (tymax < tmax) then

26: tmax = tymax

27: end if
28: tzmin = (parameters[r.sign[2]].z - r.origin.z) × r.inv direction.z

29: tzmax = (parameters[1-r.sign[2]].z - r.origin.z) × r.inv direction.z

30: if (tmin > tzmax) or (tzmin > tmax) then

31: return false
32: end if
33: if (tzmin > tmin) then

34: tmin = tzmin
35: end if
36: if (tzmax < tmax) then

37: tmax = tzmax
38: end if
39: return false
40: }
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