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Abstract 
 

The current methods available for protein structure prediction are quite unsuitable 

for cofactor containing proteins, as the cofactors themselves are not taken into account 

during the prediction methodologies, which can seriously affect the quality of the overall 

prediction.  One of the primary aims of this thesis is to begin to solve this problem. 

This project has two distinct areas; (1) the development of methodologies for the 

prediction of cofactor rich proteins, namely multiheme proteins and (2) the experimental 

structural determination of two cofactor containing proteins; the flavocytochrome c sulfide 

dehydrogenase SoxF from Paracoccus denitrificans and the copper chaperone protein 

CopZ from Bacillus subtilis. 

The multiheme protein structure prediction methodology developed in this work 

builds its models around the packing of the hemes, which have found to be conserved 

within protein families. The methodology has had some successes and shown significant 

improvements over the existing tools currently available to the wider scientific community. 

High resolution structures for CopZ have been determined with different packings 

of Cu(I) to CopZ monomers, namely a dimer containing a tetranuclear Cu(I) cluster and a 

trimer containing a trinuclear Cu(I) cluster.  The trimeric CopZ structure has led to the 

generation of models for the prediction of Cu(I) transfer in Bacillus subtilis between CopZ 

and its target protein CopA via a hetero-trimeric complex. 

The structure determination of SoxF had shed new light on the nature of the active 

site of this class of sulfite dehydrogenases, through which I have put forward a method for 

this proteins observed function as a catalyst for the reactivation of the sulfur oxidising, sox 

cycle, which is responsible for oxidising inorganic sulfur species to sulfate. 
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Chapter 1 - Introduction 

1.1 Heme Proteins 

1.1.1 Introduction 

 
A heme is a prosthetic group that consists of an iron atom bound in the centre of a 

porphyrin ring, proteins that contain such groups are known as hemoproteins.  These 

proteins have diverse biological functions including the transport of diatomic gases, 

chemical catalysis and electron transport.  The iron in the heme group serves as a source 

or sink of electrons during electron transfer or redox chemistry due to the its ability to exist 

in its ferrous (Fe2+), ferric (Fe3+) or ferryl (Fe4+) state.  Hemoproteins achieve this 

remarkable functional diversity by modifying the environment around the heme groups. 

 

1.1.2 Types of heme 

 
Several different heme types exist in nature, the most common of which are shown 

in figure 1.1.  Of these the most abundant is the B-type heme (Figure 1.1B), this heme is 

found in hemoglobin and myoglobin, as well as the peroxidase family of enzymes.  

Generally, B-type hemes are attached to the surrounding protein matrix by a single 

coordination bond between the heme iron and an amino acid side chain.  For hemoglobin, 

myoglobin and the peroxidases this is a histidine residue, however, in heme-thiolate 

proteins, such as cytochrome P450, the residue is a cysteine [Omura et al 2005].  

C-type hemes are similar in structure to B-type hemes, the only differences being 

that the two vinyl side chains at ring positions two and three are covalently bound to the 

protein matrix through thioether linkages from cysteine residues (Figure 1.1C). In addition 

to these covalent bonds, the heme iron is generally coordinated by two conserved amino 

acid side chains.  The cytochrome c electron transfer proteins are an example of 

hemoproteins that contain C-type hemes, the fifth heme iron ligand is always provided by 

a histidine residue and if a sixth is present it is generally provided by a methionine residue 

(in the case of class one cytochrome c proteins [Bushnell et al 1990]) or another histidine 

residue (in the case of class three cytochrome c proteins [Czjzek et al 1994]).  

The A-type heme (Figure 1.1A) differs in structure from the B and C type hemes by 

incorporating an isopropanoid chain at ring position two and oxidising the methyl side 

chain at ring position eight into a formyl group.  As with B-type hemes, A-type hemes are 

generally attached to the protein matrix by a coordination bond between the heme iron 

and a conserved amino acid side chain.  An example of a protein with this type of heme is 

cytochrome c oxidase, the last protein in the electron transport chain, it receives four 

electrons (donated by cytochrome c) and transfers them to one oxygen molecule reducing 

it to two water molecules. This process also involves the translocation of four protons 

across the membrane, creating a proton motive force that ATP synthase uses to 



 9 

synthesise ATP, it is also thought that the formyl group and isopropanoid side chain play 

important roles in energy conservation during this reaction [Papa et al 1998].  

O-type hemes (Figure 1.1D) are structurally homologous to A-type hemes, the only 

difference being the methyl group at ring position eight has not been oxidised to a formyl 

group.  An O-type heme has been isolated in the Escherichia coli enzyme ubiquinol 

oxidase, where it was found to reduce oxygen in a similar manner to the A-type heme 

[Abramson et al 2000]. 

 

 

 

The heme iron is able to exist in three oxidation states, the most common being 

the ferrous (Fe2+) and ferric (Fe3+) states, with the ferryl (Fe4+) state less common.  

Several heme proteins, including cytochrome c’s, peroxidases and cytochrome P450’s are 

able to access more than one of these iron oxidation states during their functional 

processes.  It is the heme iron’s ability to undergo such redox chemistry and electron 

transfer that leads to the wide variety of functions in hemoproteins. 

 
 
 

Figure 1 .1 – Structures of the most common heme types, showing; (A) an A-type 
heme, (B) a B-type heme, (C) a C-type heme and (D) an O-type heme. 

A B 

C D 
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1.1.3 Heme synthesis and degradation 

 
The basic protoheme (B-type heme) is synthesised in a seven step process 

involving successive enzymatic reactions (Figure 1.2), beginning with the universal 

tetrapyrrole precursor δ-aminolevulinic acid (ALA) created by the condensation of glycine 

and succinyl-CoA via δ-aminolevulinic acid synthase, which is the rate limiting enzyme for 

this pathway [Anderson et al 2001]. 

Two molecules of ALA are condensed by ALA dehydratase to form 

porphobilinogen (PBG).  PGB deaminase catalyses successive condensations of PGB, 

initiated by the elimination of the NH2 group, until the linear tetrapyrrole 

hydroxymethylbilane is formed.  This intermediate is converted by uroporphyrinogen III 

synthase to the macrocyclic uroporphyrinogen III, which is a precursor for vitamin B12 and 

siroheme biosynthesis [O’Brian et al 1996].  Next uroporphyrinogen III decarboxylase 

converts all four acetyl side chains to methyl side chains, forming coporphyrinogen III, 

before coporphyrinogen III oxidase converts the propionyl groups at ring positions 2 and 4 

to vinyl groups, forming protoporphyrinogen IX, oxidation of this intermediate adds more 

double bonds via the action of protoporphyrinogen IX oxidase, yielding protoporphyrin IX.  

Protoporphyrin IX is the point at which the heme and chlorophyll biosynthesis pathways 

diverge [O’Brian et al 1996], with chlorophylls adding an Mg atom to their porphyrin 

centres and hemes adding an Fe2+ ion via the ferrochelatase enzyme to create the 

protoheme.  
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The protoheme can be converted into other heme types by further enzymatic 

reactions.  To create an O-type heme, farnesylation occurs at the vinyl group on ring 

position two of the protoheme, replacing it with a farnesyl group.  This is thought to be 

carried out by a protoheme IX farnesyltransferase, coded for by the cyoE gene in E.coli 

[Saiki et al 1993].  The O-type heme is in fact an intermediate step in the production of an 

A-type heme, which is produced when the methyl group at heme position eight is oxidised 

to create a formyl group.  This process is thought to occur via an initial hydroxylation of 

the position eight methyl group by a three-component monooxygenase consisting of 

Cox15p, ferredoxin and ferredoxin reductase, the resultant alcohol would then be further 

oxidised to the formyl group [Barros et al 2002].  A C-type heme is formed when a 

covalent attachment is made between the vinyl groups of the protoheme and the cysteine 

Figure 1.2 – The generic heme synthesis pathway, beginning with the universal 
tetrapyrrole precursor δ-aminolevulinic acid (ALA).  The solid arrows correspond to the 
enzymatic reactions of the seven steps and the dashed arrows correspond to multi-step 
reactions leading to other tetrapyrrole derivatives.  In addition to the substrates shown, 
coproporphyrinogen oxidase and protoporphyrinogen oxidase require O2 in aerobic 
systems and another oxidant in anaerobic systems, and ferrochelatase requires ferrous 
iron.  Abbreviations; ALA = δ-aminolevulinic acid, PBG = prophobilinogen, uro’gen = 
uroporphyrinogen, copro’gen = coproporphyrinogen, proto’gen = protoporphyrinogen, 
Me = methyl, AH = acetyl, PH = propionyl and V = vinyl. Figure taken from [Anderson et 
al 2001]. 
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residues of the heme coordinating CXXCH motif of an apocytochrome c protein.  This 

reaction is catalysed by a cytochrome c heme lyase, encoded by the CYC3 gene [Moraes 

et al 2004]. 

The process of heme degradation is initiated by a family of enzymes known as 

heme oxygenases (HO) that catalyse oxidative degradation of ferric hemes to biliverdin 

IX, Fe2+ and carbon monoxide (CO), using NADPH as the reducing agent (Figure 1.3).  In 

mammals biliverdin is further reduced to the potent antioxidant bilorubin by the action of 

biliverdin reductase, since bilirubin is toxic at high concentrations it is subsequently bound 

to glucuronic acid and excreted.  The iron released by HO activity is normally recycled to 

keep up with the bodies daily iron requirement, and the CO has been identified as a factor 

in neuroendocrine regulation, a protective agent in hemorrhagic shock and a modulator of 

vascular tone [Unno et al 2007]. 

 

Figure 1.3 - Heme degradation . Heme oxygenase, catalyses the rate limiting step 
in heme metabolism. Both heme oxygenase enzymes (HO-1 and HO-2) oxidise 
ferric heme (ferriprotoporphyrin IX) to the bile pigment biliverdin-IXa (BV), in a 
reaction requiring 3 moles of molecular oxygen. NADPH:cytochrome p-450 
reductase, reduces the ferric heme iron as a prerequisite for each cycle of oxygen 
binding and oxygen activation. The cleavage of the heme ring frees the a-methene 
bridge carbon as CO, and generates the biliverdin-iron complex (BV-Fe3+). An 
additional NADPH dependent reduction releases Fe2+ from BV and the BV is 
reduced to BR by NAD(P)H:biliverdin reductase. Abbreviations: M = methyl, V = 
vinyl and P = propionate. Figure taken from [Ryter and Tyrrell 2000] . 
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Two forms of HO enzyme were discovered in the 1980’s, they were called HO-1 

and HO-2 respectively, and both have very different regulatory mechanisms for their 

production [Maines et al 1986].  Since then a third enzyme, related to HO-2 (≈90%), has 

been discovered that is thought to potentially have a heme-dependent regulatory role in 

the cell, although it has poor heme catalytic activity [Mccoubrey et al 1997].  HO-1 is 

induced by chemical agents and conditions that cause oxidative stress, including; heat 

shock, ischemia, GSH-depletion, radiation, hypoxia, hyperoxia, and cellular 

transformations and disease states.  HO-2 is not induced by such stimuli; in fact the only 

chemical inducers of HO-2 identified to date are adrenal glucocorticoids [Maines 1997] . 

 Hemes have the ability to regulate their synthesis and degradation through 

feedback mechanisms to maintain intracellular heme levels.  For example, the δ-

aminolevulinic acid synthase enzyme (ALAS1), responsible for the production of ALA, has 

three heme regulatory motifs (HRMs) that consist of five amino acid residues ([Arg, Lys, or 

Asn]-Cys-Pro-[Lys or a hydrophobic residue]-[Lue or Met]) that are able to bind hemes.  

The binding of hemes to these HRMs prevents ALAS1 from undergoing translocation into 

the mitochondria where heme synthesis occurs, thus inhibiting heme synthesis 

[Furuyama et al 2007].  Hemes can also control their intracellular levels through 

transcriptional regulation of the HO-1 gene via the transcriptional repressor Bach1.  Bach1 

is a transcriptional repressor that is able to bind to the MAf Recognition Element (MARE) 

as a hetero dimer with a small maf family protein, subsequently repressing transcription, 

however, if the small maf family protein forms a hetero dimer with Nrf2 transcription is 

stimulated [Sun et al 2002].  Like ALAS1, back1 contains HRMs that hemes can bind 

with; this interaction prevents Bach1 from binding with the MARE site and thus prevents it 

from repressing the transcription of HO-1, leading to more HO production and heme 

degradation during periods of high heme concentration [Suzuki et al 2004]. 

 

1.1.4 Structure and function of hemoproteins 

 

Hemoproteins come in many forms and have many functions; these functions are 

dependent on the type of heme, heme iron oxidation state changes and the structure of 

the apoprotein itself, and can range from catalysis, to gas transport and channel proteins.  

This section will discuss how the heme type can affect protein function and how hemes 

are coordinated in hemoproteins. The principles arising from this discussion will be 

illustrated by examples of different hemoproteins. 
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1.1.4.1 How heme type can affect function 

 

The most obvious difference between B and C type and A and O type hemes is 

the 17-carbon farnesyl group found in A and O type hemes that replaces the vinyl group 

found in B and C type hemes, this hydrophobic side chain has been identified as 

functionally important in several hemoproteins.  Wang et al examined the effects of 

changing heme types in heme-copper oxidases (HCOs) [Wang et al 2005].  They found 

that HCOs remained mostly active after a substitution between A and O type hemes, 

however, replacing an A or O type heme with a B-type heme caused the HCOs to loose 

their activity, suggesting the 17-carbon farnesyl group played an important part in enzyme 

function.  The general consensus for the function of this farnesyl group is as an anchor for 

keeping the heme in the correct position in the enzyme.  It has also been proposed that 

this farnesyl group could be an essential part of the active site hydrogen bonding network 

which, along with internal water molecules, bridges the gap between tyrosine 288 and 

threonine 359 hydroxyl groups in the K-pathway of Rhodobacter sphaeroides [Cukier et 

al 2004].  Wang et al also experimented with replacing a B-type heme with an O-type 

heme in an engineered heme-copper site in myoglobin, they found that this change 

reduced the heme reduction potential by approximately 20 mV [Wang et al 2005]. 

 

1.1.4.2 Heme coordination 
 

The coordination of hemes within hemoproteins depends on several factors 

including; heme type, protein sequence and protein function.  Heme type is important 

since hemes are coordinated differently depending on their structure.  For example, A and 

B type hemes tend to be attached to the apoprotein through a single coordination bond 

between their iron centre and a conserved amino acid residue (Figure 1.4B), although 

they can also have two coordinating Fe-ligand bonds (Figure 1.4A & C).  In contrast, C-

type hemes are often attached to the apoprotein by two coordination bonds between their 

iron centre and two conserved amino acid residues (one of which is always a histidine), as 

well as these bonds they can also be coordinated by up to two thioether linkages from 

cysteine residues at ring positions two and four of the heme (Figure 1.4D). 
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 The protein sequence is important in heme coordination because of the conserved 

residues that bind with the heme iron; the sequence must contain at least one histidine 

residue in close proximity to the heme group to act as an axial ligand, depending on the 

heme type another residue(s) may also be needed to act as a second axial ligand (e.g. 

histidine, methionine, tyrosine, etc) or to form thioether linkages.  An example of sequence 

importance is the CXXCH binding motif used to bind C-type hemes, providing two 

cysteine residues for thioether linkages and a histidine for heme iron coordination [Allen 

et al 2005], as a result this motif is very highly conserved amongst C-type heme binding 

hemoproteins. 

Protein function is important in heme coordination because it will determine where 

in the protein the heme needs to be situated, i.e. if the heme is part of the catalytic active 

site for an enzyme it will need to be located around the active site where it can have 

access to the substrate, in these cases the heme would usually have only one axial ligand 

to expose the iron for performing redox reactions.  The ligands that bind the heme can 

have an effect on the individual heme group or the protein as a whole.  For example, 

carbon monoxide binding in the heme pocket of myoglobin results in a conformational 

relaxation of the protein [Neinhaus et al 2002].  A study by Das et al, using a de novo 

protein S824C, illustrated how ligand binding to heme groups can shift the hemes redox 

A B 

C D 

Figure 1.4 – Heme coordination in hemoproteins .  Showing an A-type heme 
coordinated by two histidine residues (A) and one histidine residue (B) (PDB ID: 
1M56 [Svensson et al  2002]), a B-type heme coordinated by a histidine 
residue and a methionine residue (C) (PDB ID: 1QQ3 [Arnesano et al 2000]) 
and a C-type heme coordinated by two histidine residues and two thioether 
linkages from cysteine residues (D) (PDB ID: 1AQE [Aubert et al 1998]).   

A-type heme 

A-type heme 

B-type heme C-type heme 

His 421 

His 102 

His 419 

His 102 

Met 7 

His 33 

His 90 

Cys 89 

Cys 86 



 16

potential and that this shift responds differently to different ligands.  They found that the 

binding of imidazole based ligands produced a negative shift in the hemes redox potential, 

whereas the binding of pyridine based ligands produced a positive shift in the hemes 

redox potential [Das et al 2006].  Similar results have been found with analysis of 

myoglobin, where binding of imidazole produced a negative shift in heme redox potential 

of approximately 50 mV [Zhang et al 2003]. 

 

1.1.4.3 Hemoprotein functions – Heme enzymes 

 

A well studied class of heme enzymes are the peroxidases, these enzymes are 

responsible for oxidising various biological substrates via the creation of high valent iron-

oxygen intermediates by utilising an oxygen atom from hydrogen peroxide (H2O2) [Poulos 

2006].  The first step in this catalytic process is the oxidation of the Fe3+ and porphyrin 

ring from the resting compound using hydrogen peroxide, creating an Fe4+ ion and a 

porphyrin π-cation radical, collectively known as compound I.  The next step is a substrate 

oxidation by compound I, resulting in a one electron reduction of the porphyrin π-cation 

radical to a normal porphyrin containing an Fe4+ ion, this is collectively known as 

compound II.  The final step is another one electron reduction resulting from substrate 

oxidation, reducing the Fe4+ ion back to Fe3+, reforming the resting compound (Figure 1.5) 

[Hersleth et al  2006]. 

 

An example of a substrate oxidised by a heme peroxidase is ferulic acid, a plant 

cell wall protein that undergoes oligomerisation in the presence of horseradish peroxidase 

(HRP) and H2O2.  HRP-catalysed oxidation of monomeric ferulic acid radicals leads to the 

formation of decarboxylated dehydrodimers that can be further oxidised by an additional 

ferulic acid monomer to form trimeric ferulic acid radicals [Oudgenoeg et al 2002].  The 

Figure 1.5 – The peroxidase catalytic cycle.   The porphyrin ring is represented 
by red boxes on both sides of the Fe ion, and the porphyrin π-cation radical by + . 
[Hersleth et al 2006] 
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structure for HRP in a complex with ferulic acid was released in 1999 [Henriksen et al 

1999], in which the heme containing active site can be identified (Figure 1.6A) as well as 

how the ferulic acid substrate enters the active site (Figure 1.6B).   

 

Another example of a class of heme containing enzymes is the cytochrome P450s, 

the majority of which act as versatile monooxygenases.  These enzymes are capable of 

catalysing many different reactions, including; the hydroxylation of alkanes to alcohols, 

conversion of alkenes to epoxides, arenes to phenols, sulfides to sulfoxides and sulfones, 

and the oxidative split of C-N, C-O, C-C or C-S bonds.  The basic structure of all 

cytochrome P450s are relatively similar and all contain a well conserved heme-binding 

core, however the ability of cytochrome P450s to catalyse the reactions of many 

substrates of different conformations and charges mean the protein must be flexible to 

allow them to bind [Zhao et al 2006].  Structural studies of cytochrome P450s have 

shown the substrate is buried when bound to the active site, therefore the protein must be 

able to perform opening and closing motions to allow the substrate access to the active 

site [Poulos 2005] .  The ability of cytochrome P450s to undergo this change in 

conformational state has been identified; Scott et al found that in mammalian cytochrome 

P450 some active site residues have the ability to move almost 19 Å, with the Ile114 

residue being displaced by 18.9 Å [Scott et al 2004]. 

  
1.1.4.4 Hemoprotein functions – Gas transport 

 
 A well studied gas transport hemoprotein is hemoglobin (Hb).  Hb is the respiratory 

protein for the red blood cells, it allows them to carry oxygen from the lungs to the rest of 

the body, where the oxygen is exchanged for carbon dioxide and returned back to the 

lungs.  Hb is a 64,500 Da heterotetrameric protein made up of two α and two β subunits 

A B 

Figure 1.6 – The active site of horseradish peroxidase (PDB ID: 6ATJ) 
[Henriksen et al 1999].  Showing; (A) just the heme in the active site and (B) 
the active site with the heme and ferulic acid substrate present.  The heme 
group is coloured magenta and ferulic acid substrate cyan.  
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that are 141 and 146 amino acid residues in length respectively (Figure 1.7A).  Each 

subunit contains one heme group and can bind one molecule of oxygen when the heme 

iron is in the ferrous state.  In this state the iron is bound to the heme through the four 

nitrogen’s of the porphyrin ring, and coordinated in the protein by a histidine residue, this 

accounts for five of the irons six possible ligands, with the sixth being able to reversibly 

bind with an oxygen molecule (Figure 1.7B). 

 

Hb has the ability to exist in two states that are in rapid equilibrium; a “tense” state 

(T-state) with a low affinity for oxygen and a “relaxed” state (R-state) with a high affinity for 

oxygen [Monod et al 1965].  As well as being able to bind hemes, Hb has other binding 

sites that are able to bind alternative ligands, such as protons and chloride.  It is hemes 

ability to bind protons that has been proposed as a trigger for conformational change 

between the T and R states, the binding of protons to R-state Hb reduces its affinity for 

oxygen, via a thermodynamic relationship that Wyman [Wyman 1967]  termed “linked 

function”, causing the oxygen to be released and carbon dioxide to be bound via the Bohr 

effect [Tsuneshige et al 2002].  Perutz proposed that the physical reason for the change 

in Hb conformation was the position of the heme iron atoms with respect to the plane of 

the hemes porphyrin ring [Perutz 1972] .  In the T-state the iron is coordinated by five 

bonds and protrudes from the heme plane.  Upon further ligation, via the binding of 

oxygen, the iron moves towards the heme plane, pulling on the proximal histidine in the 

process, breaking the α1β2 and α2β1 interactions formed during the T-state, resulting in Hb 

switching to its R-state. 

 

 

 

A B 

Figure 1.7 – The overall structure of hemoglobin and the binding o f oxygen 
to the heme iron . (A) Shows the overall structure of hemoglobin (PDB ID: 2HHB 
[Fermi et al 1984]) with the α-subunits marked in red, the β-subunits in blue and 
hemes in yellow. (B) Displays how the heme and oxygen molecules interact, 
showing the heme group, iron coordinating histidine residue and oxygen molecule 
(red spheres).  
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1.1.4.5 Hemoproteins – Gas sensing\Transcriptional regulation  

 

 CooA is a carbon monoxide (CO) sensing heme protein, which upon sensing CO 

activates transcription of the coo operon; the genes responsible for metabolism of CO in 

Rhodospirillum rubrum [Poulos 2006] .  CooA is a homodimeric protein, with each subunit 

containing 222 amino acid residues and one B-type heme that reversibly binds CO when 

the heme iron is in its ferrous state.  CooA exists in two forms; an inactive form, where the 

heme in each subunit is coordinated by the His77 residue from that subunit and the Pro2 

residue from the opposite subunit, and an active form where the hemes are coordinated 

by the His77 residue and bound to CO (Figure 1.8) [Puranik et al 2004].  

 
 

 A crystal structure of the inactive form of CooA has been solved by Lanzilotta et al 

that indicates how the hemes are coordinated by the His77 and Pro2 residues from each 

chain (Figure 1.9A) [Lanzilotta et al 2000].  However, no wild type structure for a 

transcriptionally active form of CO bound CooA has yet been reported.  Komori et al, have 

produced a crystal structure for an imidazole-bound CooA, with imidazole taking the place 

of a CO molecule (Figure 1.9B) [Komori et al 2007].  This imidazole bound from was still 

found to be transcriptionally inactive; however the effect of a change in heme coordination 

on the overall structure of the protein can be clearly seen (Figure 1.9C vs. Figure 1.9D). 

Figure 1.8 – Schematic for CO binding to a B-type heme in CooA.  Figure taken from 
[Puranik et al 2004]. 
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 Komori et al postulated the reason for the inactivity of the imidazole bound from of 

CooA is likely to be due to hydrogen bonding between the carbonyl oxygen atom of Met5 

and Nε of imidazole, stabilising the complex and restricting movement that CO is likely to 

be able to induce [Komori et al 2007].  Although without a refined structure of a 

transcriptionally active form of CO bound CooA it is not possible to ascertain the specific 

interactions that occur. 

 Borjigin et al have crystallised a CooA mutant where Asn127 and Ser128 have 

been converted to Leucine [Borjigin et al 2007]. This form of CooA was also found to be 

transcriptionally inactive in the presence of CO, but as with the Komori structure, does 

contain a significant domain movement of approximately 20 Å. 

 

A B 

C D 

Figure 1.9 – The coordination of the heme groups and overall structures for the 
inactive and imidazole bound forms of CooA (PDB ID: 1FT9 [Lanzilotta et al 
2000] (inactive) & 2FMY [Komori et al 2007] (imidazole bound)).  Shown are; (A) 
the His-Pro coordinated heme from the inactive CooA, (B) the His-Imidazole 
coordinated heme from the imidazole bound CooA, (C) and (D) the overall 
structures of inactive and active CooA respectively, demonstrating the large 
conformational change caused by changes in heme coordination.  Residues are 
coloured by chain ID (A=green, B=Cyan), hemes are coloured magenta and 
imidazole yellow. 
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1.1.4.6 Hemoproteins – Electron transfer 

 

Electron transfer hemoproteins function either directly by mediating transport of 

electrons through them, as seen in the membrane bound cytochrome bc1 complex, or by 

storing electrons in their heme groups and moving the entire protein, as seen in 

cytochrome c.  Both the cytochrome bc1 complex and cytochrome c occur widely in 

eukaryotic and prokaryotic respiratory and photosynthetic electron transfer chains, 

including the mitochondrial electron transport chain; where they are responsible for the 

transfer of electrons across the mitochondrial inner membrane which is coupled with the 

pumping of protons across the same membrane (the cytochrome bc1 complex), and the 

transport of electrons from complex III to complex IV of the electron transport system 

(cytochrome c) [Crofts et al 2006]. 

The cytochrome bc1 complex (Figure 1.10) is a dimeric membrane bound protein 

complex that contains three catalytic subunits in each monomer; a cytochrome b protein 

with two B-type hemes (one high spin and one low spin), a cytochrome c1 protein with one 

C-type heme and Rieske iron sulphur protein with one iron sulphur cluster.  The complex 

is responsible for the transfer of electrons between two mobile electron carriers across the 

mitochondria inner membrane; from ubiquinol (QH2), located in the matrix, to cytochrome 

c, located in the inner membrane space.  This movement of electrons also creates a 

proton motive force, capable of driving ATP synthesis [Trumpower 1990] .  This electron 

transport and proton motive force occur via a Q-cycle mechanism.  In this mechanism two 

separate ubiquinone binding sites, called Qo (quinoloxidising site, located on the inner 

membrane space side of the membrane) and Qi (quinonereducing site, located on the 

matrix side of the membrane) are responsible for feeding electrons into the system from 

QH2.  The first electron of QH2 is transferred to a soluble cytochrome c electron carrier via 

the iron sulphur cluster of the Rieske iron sulphur subunit and C-type heme of the 

cytochrome c1 subunit.  The second electron is transferred from the Qo site to the low spin 

B-type heme.  From heme it moves within the membrane to reduce the high spin B-type 

heme, which in turn reduces a ubiquinone molecule bound to the Qi site.  During one 

complete Q-cycle, one molecule of ubiquinol is oxidised to ubiquinone, two molecules of 

cytochrome c are reduced, two protons are consumed on the matrix side of the membrane 

and four protons are released on the inner membrane space side of the membrane, thus 

generating a proton motive force [Rich 2004] . 
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As previously mentioned, cytochrome c can act as an electron transport protein 

involved in the electron transport chain of many eukaryotic and prokaryotic respiratory and 

photosynthetic electron transfer chains.  It is responsible for transferring electrons from 

complex III (the cytochrome bc1 complex) to complex IV (a cytochrome c oxidase) of the 

electron transport chain.  At complex IV cytochrome c oxidase removes four electrons 

from four molecules of cytochrome c and transfers them to dioxygen (O2), producing two 

molecules of water, this reaction is coupled with a proton motive force that pumps four 

protons across the membrane from the matrix to the inner membrane space (in the case 

of the electron transport chain from mitochondria) [Stiburek et al 2006]. 

 

1.1.4.7 Hemoproteins – Channel proteins 

 

 An example of a channel hemoprotein is the calcium dependant BK channel, a 

transmembrane protein responsible for the control of trafficking potassium ions (K+) 

across the membrane [Poulos 2006] .  The BK channel contains a conserved heme 

Membrane 

Inner membrane 
space 

Matrix 

Figure 1.10 – A monomer of the Bovine cytochrome bc1 complex 
(PDB ID: 1BE3 [Iwata et al 1998]).  The three catalytic subunits are 
coloured cyan for the Rieske iron sulphur subunit, green for the 
cytochrome c1 subunit and yellow for the cytochrome b subunit.  The 
cofactors are coloured magenta and the remaining protein grey.  
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binding motif, it has been found that the binding of hemes to this motif profoundly inhibits 

the K+-transporting action of the protein by inhibiting the mechanisms that open the 

channel [López-Barneo and Castellano 2005] .  A proposed mechanism for this action 

suggests that the binding of heme to the BK channel alters the conformation of the 

protein, preventing the activating calcium ions (Ca2+) from binding with the protein, 

therefore causing it to stay closed [Horrigan et al 2005].  The presence of BK channels in 

mitochondria (the site of heme synthesis) and the potential for heme regulation of these 

channels [Tang et al 2003] provides more evidence for the self regulating ability of 

hemes. 

 

1.1.5 Heme motifs 

 

The covalent attachment of hemes to their apoproteins enables them to be tightly 

bound, increasing the stability of the protein and allowing clusters or chains of hemes to 

be formed, which is thought to allow for fast electron transfer between the heme groups 

[Page et al 2003].  This is due to the protein folding in such a way that the edge-to-edge 

distances between heme groups and other electron donors/acceptors (e.g. radical forming 

amino acids such as tyrosine or tryptophan) are kept to a minimum, allowing for faster 

electron transfer, since smaller distances result in lower activation energies and faster 

rates for electron transfer [Moser et al 2006].    

These heme clusters can be highly conserved, even in proteins that are totally 

unrelated in amino acid sequence or polypeptide fold.  In multiheme proteins many hemes 

are found to be arranged relative to neighbouring hemes in characteristic ways. These 

commonly-observed packings of hemes will be referred to in this thesis as heme pair 

motifs, with the most common pairs containing hemes in either an offset parallel 

arrangement (parallel stacking pair motif, Figure 1.11A) or perpendicular to each other (di-

heme elbow motif, Figure 1.11B), previously observed by Inês et al [Inês et al 2006].   

 

 

Figure 1.11 – Structures of the most common heme pair motifs [Inês et al 
2006]. (A) The offset parallel arrangement of the parallel stacking pair motif. (B) 
The perpendicular arrangement of the di-heme elbow motif.  
 

A B 
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Inês et al have also shown that smaller heme motifs can be used to construct 

larger heme motifs; an example of this is the cytochrome c3 family [Inês et al 2006].  The 

cytochrome c3 family is populated by hemoproteins with four distinct motifs; cytochrome 

c3, cytochrome c7, 9-heme cytochrome and 16-heme cytochrome c.  Proteins 

incorporating the c3 motif are involved in intramolecular electron transfer and contain a 

tetraheme domain (Figure 1.12A). The c7 motif consists of a 3-heme domain (Figure 

1.12A), with a heme substructure homologous to three of the four hemes in the c3 motif 

and contains proteins with metal ion reducing properties. The 9-heme motif contains two 

repeats of the c3 motif, with a linking heme between them (Figure 1.12B) and is populated 

by proteins that are believed to take part in the periplasmic assembly of proteins involved 

in the mechanism of hydrogen cycling, receiving electrons from tetraheme c3 proteins.  

The 16-heme cytochrome c motif is an amalgamation of the other motif of the c3 like 

family, containing a 9-heme cytochrome motif, bound to a c3 motif, bound to a c7 motif 

(Figure 1.12C). 

 

 

Figure 1.12 – The heme substructure of the motif of the cytochrome c3 family, 
showing; (A) The tetraheme c3 motif, with the c7 motif contained within it coloured 
cyan, (B) the 9 heme domain (with the c3 motifs coloured magenta) and (C) the 16 
heme motifs (with the 9 heme motif coloured green, the c3 motif magenta and c7 
motif cyan) 

A B 

C 



 25

1.2 Copper proteins 

 

1.2.1 Introduction 

 

Copper is an essential trace metal and cofactor for many proteins and it’s involved 

in many important cellular processes, such as enzymatic reactions [Pufahl et al 1997 ] 

and electron transport [Brown et al 2002]. This is largely because copper is able to exist 

in multiple oxidation states in vivo [Rae et al 1999].  For example, copper plays an 

important role in the action of the Cu, Zn superoxide dismutase enzyme, where it acts as 

an electron carrier [Pufahl et al 1997 ].  This enzyme is responsible for breaking down 

superoxide O2
- into O2 and H2O2, a vital process since an excess of superoxide species 

within cells has been linked to oxidative damage to proteins, lipids and DNA, as well as an 

acceleration of age-dependent skeletal muscle atrophy [Muller et al 2006].  However, 

copper is also potentially extremely toxic due to the formation of reactive free radical 

species via the Fenton reaction [Halliwell and Gutteridge 1990] .  Therefore, cellular 

processes are needed to control the concentration and oxidation state of copper within the 

cell.  

 

1.2.2 Copper homeostasis systems 

 

Saccharomyces cerevisae Atx1 and the transporting P-type ATPases associated 

with it was the first copper homeostasis system to be identified [Lin and Culotta 1995] .  

Atx1 is required for the transport of Cu(I) into the trans-Golgi network, responsible for 

trafficking protein towards the cell wall and beyond in eukaryotic cells.  Atx1 delivers 

copper to the Cu(I) transporting ATPase Ccc2, which in turn transfers the Cu(I) across the 

membrane into the trans-Golgi network.  From here the Cu(I) is incorporated into the milti-

copper oxidase Fet3, which is located on the cell membrane and required for high-affinity 

iron uptake into the yeast cell [Askwith et al 1994].  Atx1 deletion mutants of 

Saccharomyces cerevisae show a deficiency in iron, due to the lack of copper 

incorporation into Fet3 [Lin et al 1997]. 

The cop operon is an example of a copper chaperone system that plays a role in 

copper homeostasis within the bacterial cell.  This operon has been well studied in the 

Gram-positive bacterium Enterococcus hirae and Bacillus subtilis. The E.hirae cop operon 

consists of four genes; copA and copB that code for P-type ATPases, copY that codes for 

the transcriptional regulator of the cop operon and copZ that codes for an Atx1-like copper 

chaperone.  The P-type ATPases are copper pumps, proposed to be involved in Cu(I) 

uptake into the cell (CopA) and Cu(I) secrction out of the cell (CopB) [Multhaup et al 

2001].  The transcriptional regulator CopY exists as a homodimer under conditions of 
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normal copper concentration, in which it binds to two distinct 28 basepair sequences in 

the promoter region of the cop operon, thus inhibiting transcription of the genes [Strausak 

and Solioz 1997] .  The DNA binding conformation of the CopY homodimer is stabilized 

by a Zn(II) ion bound by four cysteine residues in a tetrahedral environment, under 

conditions of elevated Cu(I) this Zn(II) ion is displaced by Cu(I), resulting in the conversion 

of CopY from a DNA-binding form to a non-binding form, thus releasing it from the 

promoter region and inducing transcription of the cop operon [Cobine et al 2002].  The 

copper chaperone CopZ is required for the delivery of Cu(I) to CopY [Cobine et al 1999] 

and has also been shown to interact with the Cu(I) uptake ATPase CopA, which is thought 

to result in Cu(I) loading of CopZ [Multhaup et al 2001]. 

The proposed mechanism for this system is as follows; the extracellular reductase 

CorA reduces Cu(II) to Cu(I) [Solioz and Stoyanov 2003] , Cu(I)  is taken into the cell 

through CopA where it is transferred to CopZ, from here Cu(I)  is donated to the CopY 

repressor bound to the promoter region of the cop operon, releasing the Zn(II) from CopY, 

allowing CopY to detach from the promoter and for transcription of the cop operon to 

commence  (Figure 1.13) [Magnani and Solioz 2005] . 

 

The cop operon of B.subtilis consists of only two genes; copA that codes for a 

Cu(I)-transporting P-type ATPase and copZ that codes for an Atx1-like copper chaperone.  

CsoR has been identified as one of the Cu(I)-sensing repressors that regulate 

transcription of the cop operon [Smaldone and Helmann 2007] , YcnK has also been 

identified as a transcriptional regulator and YcnJ has been identified as the protein 

responsible for the influx of copper into the cell [Chillappagari et al  2009] (Figure 1.14).  

Inactivation of CopA led to an enhanced sensitivity to environmental copper, suggesting 

that CopA is responsible for Cu(I)-export in B.subtilis [Radford et al 2003].  Inactivation of 

Promoter  cop  operon  

CopZ  
CopA  

CopY  
CopB  

CopZ  
CopY  

Cu(I) 

Zn(II) 

Cell membrane  

     CorA  
Cu(II) 

Figure 1. 13 – A schematic of the Enterococcus  hirae  cop  operon.  The 
extracellular reductase CorA reduces Cu(II) to Cu(I) [Solioz and Stoyanov 
2003]. Cu(I) is taken into the cell via the P-type ATPase CopA, Cu(I) is 
then transferred to the CopZ chaperone, which in turn donates it to the 
transcriptional regulator CopY.  This releases the Zn(II) ion bound to CopY, 
releasing CopY from the promoter region and thus allowing transcription of 
the cop operon [Magnani and Solioz 2005] 
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CopZ also resulted in an increase in copper sensitivity, it also resulted in a significant 

decrease in cellular copper, suggesting that CopZ may act as a cytoplasmic store of Cu(I) 

under normal conditions [Radford et al 2003]. 

 

1.2.3 Atx1-like copper chaperone structures and cop per transfer mechanism 

 

Atx1 is a 72 residue polypeptide that forms a ferredoxin-like βαββαβ-fold, where 

the antiparallel β strands form a β-sheet, on which the two α helices are found in an open-

faced β-sandwich formation [Rosenzweig et al 1999].  The structures of the CopZ copper 

chaperones from E.hirae and B.subtilis share the same ferredoxin-like βαββαβ-fold and 

therefore have homologous structures (Figure 1.15), with c-α RMSDs of 1.7 and 2.0 Å 

with the Atx1 structure respectively [Wimmer et al 1999, Banci et al 2001]. 

Figure 1.14 – A schematic for copper homeostasis in Bacillus subtilis.  Cu(II) 
is taken into the cell via YcnJ, where it is reduced to Cu(I).  Depending on their 
association with copper, the transcriptional repressors YcnK and CsoR are 
either activated (Green) or inactivated (Red) by this influx of copper. Resulting 
in the increase or decrease in CopZ production to remove copper via CopA.  
The negative regulation of components (–) is indicated with dashed arrows. 
Copper sensing (s) is indicated with dotted arrows. CM = cytoplasmic 
membrane; in = intracellular and ex = extracellular.  This figure was taken 
from [Chillappagari et al  2009]. 
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A mechanism for how copper is transferred between Atx1 and its target P-type 

ATPase Ccc2 has been proposed (Figure 1.16) [Pufahl et al  1997], as the structures of 

the copper chaperones from the CopZ structures are so similar, it is reasonable to 

assume that CopZ would employ a similar technique when transferring copper to its target 

P-Type ATPase CopA.. 

 

1.2.4 Copper related diseases 

 
Menkes disease and Wilson disease are two conditions that rise from disruption in 

copper homeostasis processes.  In humans, under normal conditions, the copper 

chaperone HAH1 binds and delivers copper to P-type ATPases that are located in the 

membrane of the trans-Golgi network and deliver copper to the secretory pathway for 

metalation of cuproenzymes.  The P-type ATPases that are associated with the Menkes 

and Wilson diseases are ATP7A and ATP7B respectively [Klomp et al 1997, Hung et al 

1998].  Under normal conditions, when intracellular copper concentration increases these 

Figure 1. 15 – Structures for the copper chapperones; Atx1 from 
Saccharomyces cerevisae (green), CopZ from Enterococcus hirae 
(cyan) and CopZ from Bacillus subtilis (magenta), showing the 
homology between the three structures.  The polypeptide chain is 
displayed in cartoon format and the copper binding cysteine residues 
in stick format. 
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Figure 1.16 – The proposed mechanism for copper transfer between Atx1 and Ccc2, 
involving two and three-coordinate Cu(I) bridge intermediates.  This mechanism is 
likely to hold true for copper transfer between CopZ and CopA. 



 29

proteins export excess copper outside the cell [Lutsenko et al 2007].  It is mutations in 

these proteins that lead to Menkes and Wilson diseases [Bull and Cox 1994] , due to the 

bodies inability to distribute copper correctly. 

 

1.3 Protein structure prediction 
 
1.3.1 Introduction 
 

The overall aim of protein structure prediction is the creation of three-dimensional 

protein structures from their amino acid sequence, in essence predicting a proteins tertiary 

structure from its primary structure.  Protein structure prediction has the potential to be 

useful for processes such as, designing new drugs or creating novel enzymes, giving it 

high importance in both the medical and biotechnology industries.  A reliable method for 

computationally predicting protein structure has also become more important in recent 

years with the completion of large scale DNA sequencing projects, such as the human 

genome project.  These have produced massive amounts of sequence data, but as yet 

yielded relatively few experimentally determined protein structures due to the time 

consuming and relatively expensive nature of X-ray crystallography and NMR 

spectroscopy, as well as these methods not being successful with all proteins, especially 

membrane proteins [Qain et al 2007, Lacapère et al 2007]. 

The task of creating a protein structure from an amino acid sequence is not an 

easy one and is made more difficult by the sheer number of possible protein structures for 

any given sequence, a limited understanding of how the amino acid sequence folds into a 

native protein, and the massive amounts of computing power needed for some prediction 

methods.  The current methods for structure prediction fall into two main categories; 

comparative protein modelling and de novo protein modelling.  In basic terms comparative 

protein modelling or homology modelling uses previously solved structures as templates 

for structure prediction and de novo protein modelling attempts to build three-dimensional 

protein models “from scratch” based on physical principles. 

 

1.3.2 Homology modelling 

 

 Homology modelling works on the principle that the structural conformation of a 

protein is more highly conserved than its amino acid sequence, therefore subtle changes 

in sequence identity result in only minor changes in the overall structure [Lesk and 

Chothia 1986] .  Homology modelling software takes an amino acid sequence as an input 

and uses it to search for homologues of that sequence from proteins with experimentally 

solved structures in a structural database, such as the Protein Data Bank (PDB) [Berman 

et al 2000].  This search for conserved sequences is carried out by sequence alignment 
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software such as BLAST [Johnson et al 2008]; BLAST is able to reliably identify protein 

segments with a sequence identity greater than 30%.  For lower sequence identities, 

methods such as PSI-BLAST and hidden Markov models, as used in the SAM (Sequence 

Alignment and Modelling) package [Karplus et al 1998], provide a more reliable result 

due to their use of profile analysis.   

 Once the structural segments are identified, a model is assembled and assessed 

for its accuracy.  In the case of models where an experimentally defined structure exists, 

accuracy is measured by comparing the prediction with the experimentally refined model 

using a root mean square deviation (RMSD), which measures the distance between 

corresponding atoms in the two superimposed structures.  However, RMSD analyses 

alone are not full proof, a small change in just one part of the protein, such as a hinge 

joining two domains or a loop, can cause two similar structures to appear very different.  

An alternative method is the Local Global Alignment (LGA) method [Zemla 2006]  that 

uses the longest continuous segments (LCS) and global distance test (GDT) algorithms to 

determine the accuracy of the modelled structure [Zemla 2003] .  The LCS algorithm 

identifies the longest continuous segments of residues in the target deviating from the 

model by not more than specified α-carbon RMSD cut-off. The GDT algorithm identifies in 

the target the sets of residues deviating from the model by no more than a specified α-

carbon distance cut-off using many different superimposed structures.   

 In cases where there is no experimentally defined structure, statistical potentials 

or force field-based energy calculations must be used to assess the accuracy of the 

model.  Statistical potentials are based on observed residue-residue contact frequencies 

among proteins of known structure in the PDB, assigning an energy score to each 

possible pairwise interaction between amino acids, these pairwise interaction scores are 

combined into a single score for the entire model [Melo et al 2002].  Force field based 

energy calculations aim to assess the atomic interactions that are physically responsible 

for the stability of the protein structure, these calculations are performed using a molecular 

mechanics force field and take into account covalent, van der Waals and electrostatic 

interactions [Moult 1997] .  Since the force fields are firmly based on the principles of 

physics, the force field based analyses for model assessment has the potential to be 

highly accurate, although more accurate force fields will be needed before this is the case 

[Misura 2005] .  A further problem is that many proteins are too large for these 

calculations to be practical with the current algorithms and levels of available computing 

power, in these cases statistical potentials are a viable alternative. 

 

 

 

 

 



 31

1.3.2.1 Statistical potentials 

 

 Statistical potentials are calculated from known protein structures and are used 

to quantify the observed preference for the different residues or atom types to be exposed 

to the solvent, or to form pairwise or higher order interactions with each other.  Statistical 

potentials can be used in; assessment of experimentally determined or computationally 

predicted proteins structures, de novo protein structure prediction [Chiu and Goldstein 

2000], threading [Panchenko et al 2000], detection of native-like protein confirmations 

[Vendruscolo et al 2000] and the prediction of protein stability [Gilis and Rooman 

1996]. 

 There are a number of methods for calculating statistical potentials including; 

distance-dependent, contact, accessible surface and main chain dihedral angle potentials.  

Each method calculates the occurrences of their given variable (pairwise contact, φ/ψ 

angle, etc) by statistical examination of the native variables present in the database of 

structures contained within the PDB [Berman et al 2000].  Distance-dependent potentials 

can be calculated using the following equation [Melo and Feytmans 1997] : 
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Where Mij
kσ is the number of occurrences for the interaction type pair ij separated by k 

residues in sequence, f ij
k(l) is the relative frequency of occurrence for the interaction type 

pair ij at sequence separation k in the class of distance l, and f xx
k(l) is the relative 

frequency of occurrence for all the interaction type pairs at sequence separation k in the 

class of distance l. 

Contact potentials can be calculated using the following equation [Melo and Feytmans 

1997]: 
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Where i is the interaction types (amino acids or binary profiles), Ni is the contact number 

of the interaction centre i. Nobs(i,k) is the number of observed contacts of interaction centre 

i with other interaction centres at k'th bin and Ncbin is the number of contact bins. A contact 

is defined by the Cα-Cα distance of two interaction centres within 8 Å. The number of 

contact bins is set to 25. In the rare occasions of more than 25 contacts, the statistics is 

included in the bin for 25 contacts [Melo and Feytmans 1997] . 

 The accessible surface of an interaction centre is defined as the number of 

interaction centres within a sphere around the central interaction centre, the distance 

range of the potential is used for the radius of the sphere.  Accessible surface potentials 

can be calculated using the following equation [Gilis and Rooman 1996] : 
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Where Mi is the frequency of the interaction centre type i in all the burial classes f i(r) is 

the relative frequency of occurrence of the interaction centre type I in the burial class r and 

f iref(r) is the reference state [Gilis and Rooman 1996] . 

 The dihedral angle potential can be calculated using the following formula [Melo 

and Feytmans 1997] : 
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Where i is the amino acid type, Φi, Ψi are the torsion angles of the specific amino acid i.  

The torsion potential is the logarithm of the number of observed occurrence of the amino 

acid i at torsion angles of Φi, Ψi [Nobs(i, Φi, Ψi)] normalized by the averaged occurrence. 

Each torsional angle is divided into 36 bins, therefore, Nbin is equal to 36 [Melo and 

Feytmans 1997] . 

 

1.3.2.2 Errors in homology models 

 

 Large scale errors in protein structures created using homology modelling 

techniques tend to be a result of poor template selection or poor sequence alignment, 

removing human error from the equation, these problems do not have a straightforward 

solution as they are often the result of not having an available template structure, and can 

therefore only realistically be solved by large scale de novo modelling.  Serious local 

errors in homology modelled protein structures frequently form where there are gaps in 

the template structure; these gaps are most common in loops.  The modelling of loops not 

present in the template structures can be performed using database methods that work 

well with short loops (<5 residues), or de novo methods that can handle longer loops, but 

struggle with anything larger than 12 residues [Rohl et al 2004, Xiang 2006] .  The other 

major source of local errors is the prediction of amino acid side chain conformations, this 

is partly due to the fact that many side chains in crystal structures are not in their optimal 

rotameric state as a result of crystal packing.  Our current ability to accurately predict side 

chains is limited and mainly caused by misaligned residues and/or backbone shifts that 

need to be either accurately modelled in the initial prediction or refined simultaneously to 

improve side chain predictions [Ginalski 2006] . 
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1.3.2.3 Loop and Side chain prediction 

 

 The basic goal of loop prediction is to ascertain the conformation of a loop that is 

fixed at both ends by the protein backbone.  Loop prediction can be made using either 

database or de novo methods.  Database methods work by searching for segments of 

protein with known 3D structures that fit with the two exposed ends of the protein 

backbone, sequence similarity is then applied to determine which protein segment is the 

most likely loop.  This method has been found to work adequately for loops up to 5 

residues in length before the predictions become unreliable [Fidelis et al 1994].  The de 

novo method involves the generation of large numbers of randomly chosen candidate 

conformations, once generated an energy function that utilises CHARMM molecular 

mechanics force field [MacKerell et al 1998] is applied to find the most likely 

conformation.  This method has been found to work adequately for loops up to 12 

residues in length before the predictions become unreliable; however, it is thought that a 

more accurate energy function will lead to more accurate loop modelling [Fiser et al 

2000].  Some of the highest accuracy has been achieved by Jacobson et al, who 

achieved a 1.0 Å RMSD deviation for 8 residue loops with a computer intensive approach 

that combined OPLS all-atom energy function, efficient methods for loop building and 

side-chain optimisation, and the hierarchical refinement protocol [Jacobson et al 2004]. 

 Accurate prediction of amino acid side chains is best achieved when the backbone 

structure itself is known to a high degree of accuracy.  The majority of side chain 

predicting programs are based on rotamer libraries that contain the side chain torsional 

angles for the preferred conformations of specific side chains, this has become a valid 

method of prediction since computational prediction through energy functions is 

impractical due to the sheer number of possible conformations, and that the most 

frequently observed conformation tends to the be the most energetically favourable.  

These libraries have been improved by incorporating protein backbone data; backbone-

dependant rotamer libraries use backbone φ and ψ angles to help determine side chain 

conformation.  This is possible due to significant correlations found between side chain 

dihedral angle probabilities and backbone φ ψ angles [Dunbrack and Karplus 1995] .  

The major advantage of backbone-dependent libraries is they increase computer 

efficiency, since bad rotamers that clash with the backbone have already been removed.  

It has been shown that using a detailed rotamer library based on conformations taken 

from known structures, rather than idealised bond lengths and angles, can yield 

accuracies of 0.62 Å RMSD deviation for core residues [Xiang and Honig 2001] . 
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1.3.3 Threading 

 

 Threading is an alternative method of protein modelling.  The essential 

difference between threading and homology modelling is that where homology modelling 

attempts to align a query sequence to a target sequence, threading attempts to align a 

query sequence to a structural segment or fold (Figure 1.17). 

 

 The rationale behind threading is based on the observation of the limited number 

of folds found in nature and that amino acids preference for different structural 

environments provides enough information to choose between these folds. The term 

“threading” was first introduced by Jones et al in 1992 [Jones et al 1992].  The basic 

principle is that a target sequence is threaded through the backbone structures of a 

collection of template proteins from a fold library and a “goodness of fit” score calculated 

for each based on an energy function, with the prediction with the lowest free energy 

value being taken as the result.  Threading methods therefore incorporate characteristics 

from homology modelling (the sequence alignment aspect) and de novo modelling 

(predicting structure based on low-energy conformations in the target protein) to create 
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Figure 1.1 7 – The basic principle of threading .  The sequence “ABCDEFGHI” 
fits a protein fold as shown in (A), although this is unknown.  (B) Is the template 
structure taken from a fold library that has been deemed the closest match for 
the target structure and the sequence will be threaded onto it.  (C) Shows how 
the sequence best fits the template structure with matches coloured in green 
and gaps in red.  (D) Shows the predicted structure from the threading method. 
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their protein models, with the two main problems to overcome being; how to calculate the 

energy and how to “thread” a sequence through a fold.  The energy of each threading 

alignment can be calculated as the sum of the energy of all pairwise interactions using the 

following equation [Mirny et al  2000]: 
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Where L is the length of the query sequence, s denotes alignment, and rs
i is a coordinate 

of the ith group in this alignment (usually the α or β carbon atom).  ∆ corresponds to the 

cutoff distance for contact potential that determines which groups are interacting (this is 

usually 7.5-9 Å between α or β carbon atoms of the two interacting residues), ξi 

corresponds to the type of amino acid at the ith position in the query sequence and U is a 

20x20 matrix of interaction energy parameters between all types of amino acids [Mirny et 

al 2000].  However, this is not the only method of calculating the free energy for a 

structural alignment, the potential of mean force is another type of interaction function for 

protein threading and can be calculated using the following formula [Hayward 2006] : 
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Where E(r) is the potential of mean force, Kb is Boltzmanns constant, T is the temperature 

and p(r,ξi) is the probability of amino acid i occurring at a distance of r. 

 Just as there are different methods for calculating the energy function, there are 

also different methods for aligning the query sequence with the target structure.  The 

simplest method is to use protein sequence alignment between the query and target 

sequences, the problem with this method is its non-physical approach, i.e. it does not 

incorporate structural information, and that the observed sequence variability in otherwise 

similar structures can make the results unreliable.  More sophisticated methods 

incorporate structural factors into their alignment predictions and can use pairwise 

interactions or mean force potentials to aid their predictions [Xu and Xu 2000] .  These 

methods work by constructing a matrix which gives the score that every sequence residue 

would have if it were placed in each position of the template structure.  A dynamic 

programming algorithm is then used to trace back through the matrix for the lowest energy 

pathway that keeps the query sequence intact, but is allowed to insert gaps if necessary, 

although any gaps inserted are subject to a gap penalty.  The size of the gap penalty 

differs between alignment methods, but the general rule is that the penalties for inserting 

gaps into core structures (α-helices, β-sheets, etc) are much greater than the penalties for 

inserting gaps into turns and loops [Lathorp and Smith 1996] . 

 The first program to implement a threading method, called THREADER, was 

released in 1994 [Jones 1994] .  At the first CASP (Critical Assessment of techniques for 

protein Structure Prediction) in 1995 it was the most successful method for fold 

recognition [Lemer et al 1995].  Over the years many more threading methods have been 
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proposed [Xu and Xu 2000, Rost et al 1997], with the main emphasis on finding more 

accurate alignment algorithms, utilising larger fold libraries or coming up with novel 

methods for energy calculations. 

 Despite advances in threading there are limitations in the method that are still 

causing problems.  If there is an unknown fold in the query protein that does not appear in 

the fold library used by your specific threading method it is very unlikely that a successful 

model will be produced.  Even predictions where the template structure is similar to the 

native structure can produce high energy models with a small “energy gap” (the difference 

in energy between optimal and random alignments, a large gap means a fully folded, low 

energy structure) [Mirny and Shakhnovich 1998] .  It has also been suggested that more 

unique folds in the fold library can make detection more difficult, by increasing the 

likelihood of random errors [Rost et al 1997].  This conclusion was reached by testing a 

set of 89 proteins against three different fold libraries, with 723, 449 and 403 chains 

respectively.  The percentage of correctly detected first hits was inversely proportional to 

the size of the dataset with accuracies of 29 %, 31 % and 33 %, respectively.  Another 

current limitation in threading techniques is the complexity of the models created.  

Advances in computing should be able to allow more complex models that can take side-

chain size, shape and charge into account; this would allow search models to eliminate 

templates that would produce unfeasible side-chain packing, improving search focus 

[Lovell et al 2000]. 

 

1.3.4 De novo  protein modelling 

 

 The aim of de novo protein modelling, also known as ab initio modelling, is to 

build three dimensional protein models from scratch, that is to say, based wholly on 

physical principles rather than direct comparisons with previously solved structures.  De 

novo methods work by either attempting to mimic protein folding or by applying a 

stochastic method that investigates all possible solutions and uses global optimisation to 

find the structure with the lowest free energy. 

 Stochastic methods are likely to have limited success with current levels of 

computing power due to Levinthal’s paradox [Levinthal 1968] , which observes that if a 

protein is folded by randomly attempting all possible conformations the time needed to do 

so would be astronomical due to the sheer number of possible conformations.  For 

example, a protein made up of 150 amino acids would have around 10300 different 

conformations.  Since in nature many small proteins fold spontaneously on a millisecond 

or even microsecond time scale, Levinthal proposed that a random conformational search 

does not occur in folding and the protein must, therefore, fold by a directed process. 

 Folding methods are a more likely source of de novo protein structure prediction, 

but are not without their problems that need to be tackled before they can become viable 
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prediction methods, such as, the thermodynamic question of how an amino acid sequence 

forms the native protein structure from the interatomic forces acting on it [Dill  et al 2007].  

Although some progress has been made in this field, with the prediction of novel small 

proteins such as Top7 [Kuhlman et al 2003], the key challenges, including better 

understanding of the relative strengths of intermolecular and solvation forces still remain.  

Other significant stumbling blocks are the efficiency of the algorithms used for folding 

calculations and the availability of the necessarily huge computing power needed to 

perform them.  That is not to say there have not been successes.  The IBM Blue Gene 

group were able to fold a 20 residue mini-protein “Trp-cage” to an accuracy of 

approximately 1 Å RMSD [Pitera and Swope 2003]  using 92 nanoseconds of replica 

exchange molecular dynamics.  Zagrovic et al [Zagrovic et al 2002] have been able to 

fold the 36 residue α-helical protein from the villin headpiece to an accuracy of 1.7 Å 

RMSD using the Folding@home distributed computing system [Pande 2000] .  Both these 

structures were solved using Molecular Dynamics (MD). These successes do indicate the 

immense amount of computing power needed to fold even the smallest protein with any 

degree of accuracy, however, it is becoming clear that de novo predictions are no longer 

and insurmountable challenge. 

 

1.3.4.1 Molecular Dynamics 

 

 MD is a form of computer simulation where atoms and molecules are allowed to 

interact for a period of time under known laws of physics, providing a view of the motion of 

the atoms.  In basic terms, the forces acting on each atom are calculated using “force 

fields” that take into account covalent, van der Waals and electrostatic interactions.  The 

effects these forces will have on the position of the atoms is modelled using Newtown’s 

second law of motion (Force = mass x acceleration) and new positions for all atoms are 

calculated.  The time step between each calculation (i.e. the amount of modelled time 

between each integration of Newton’s second law) is very small, generally in the order of 

femtoseconds (10-15 seconds), and the overall period of time modelled is typically in the 

order of picoseconds (10-12 seconds).  The computing power needed to perform MD 

modelling is vast, to put it into context, the modelling of one nanosecond of real time life of 

a protein requires one million sets of calculations for each atom in the protein, meaning 

simulations of a few nanoseconds of a moderate side protein can take months to perform.  

The overall period of time modelled in MD calculations is important; to be able to draw 

valid conclusions the time span of the simulations must at least equal the time span of the 

kinetics of the natural process [McDowell et al 2007]. 

 Variations on MD techniques have been developed; one such is Replica 

Exchange Molecular Dynamics (REMD).  REMD has been developed to overcome the 

problem of conventional MD simulation methods getting “trapped” in a large number of 
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local minimum states [Sugita and  Okamoto 1999] .  To overcome this problem REMD 

performs a number of parallel simulations at different temperatures, with periodic 

exchanges of configuration.  The effect of this is; if a particular simulation has become 

trapped at an energy minimum, it can escape via an exchange with a higher temperature 

conformation.  A detailed description of the algorithms for this method can be found in 

Sugita et al [Sugita and  Okamoto 1999] .  Since each replica can be simulated using its 

own computer processor, REMD is well suited to running on parallel computers that can 

increase the speed of simulations, however this can also be a weakness, since REMD 

requires synchronisation between processors to perform the exchanges, therefore the 

simulation is limited to the speed of the slowest processor [Rhee and Pande 2003]  

making it unsuitable for large scale distributed computing, such as Folding@home [Pande 

2000].  A solution to this problem has been put forward by Rhee and Pande [Rhee and 

Pande 2003] , who proposed having multiple replicas for each temperature level, 

eliminating the synchronisation needed in the original REMD method.  This multiplexed-

replica exchange molecular dynamics (MREMD) method is therefore able to make use of 

distributed computing, allowing Rhee and Pande [Rhee and Pande 2003]  to simulate 

more than 200 microseconds of MD time, allowing their model protein (BBA5) to reach the 

folded state starting from the unfolded state, which was a first for an REMD-based 

simulation [Rhee and Pande 2003] . 
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1.4 Hidden Markov Models 
 

1.4.1 Creation of Hidden Markov Models 
 
A Hidden Markov model (HMM) is a statistical model for predicting the probability 

of a given sequence of events given prior knowledge of a past series of events and has 

application in speech recognition [Rabiner 1989] , gene prediction and sequence 

alignment.  For example, given a multiple sequence alignment of a set of amino acid 

sequences, a HMM can be built from these sequences that gives the probability of finding 

a given residue type at each position of the sequence, based on the amino acid positions 

in the input sequences (Figure 1.18). 

 

 
1.4.2 Uses of HMMs 
 
1.4.2.1 Using HMMs for protein analysis 
 

The Protein families (Pfam) database is a biological example of the 

implementation of HMMs.  Pfam is a comprehensive collection of nearly 12,000 conserved 

protein families and is used by; experimental biologists researching specific proteins, 

computational biologists who need to organise sequences, evolutionary biologists 

considering the origin and evolution of proteins and structural biologists for identifying 

interesting new targets for structure determination [Finn et al 2010].  HMMs are built for 
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Figure 1. 18 – A multiple sequence alignment (A), an extract from the 
hidden portion of the HMM (B) and the visible portion of the HMM (C) 
created from the sequence alignment.  The area boxed in red highlights 
the residue types and the area boxed in blue highlights the residue 
number. The matrix of numbers refer to the scores calculated for the 
likelihood of finding each residue type at each position in the sequence, 
the highest scoring residues are highlighted in green. 
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each protein family providing; information on the domains found within the family, a 

phylogenetic tree built from the sequences in the family and details of any structures that 

have been solved for proteins in each family.   

Users are able to search the Pfam database with a target sequence of an 

unknown protein and Pfam will suggest possible functions and if present, structural 

templates, for the protein based on the domains it finds using its database of HMMs.  It 

has been found that searching a database of HMMs rather than sequences gives more 

accurate results than a pairwise sequence search used by BLAST searches, and that the 

outputs from HMM based searches are easier to digest since the user is provided with a 

list of a few possible domains rather than a large number of homologous sequences, 

many of which will have the same domain [Sonnhammer et al 1998]. 

 

1.4.2.2 Using HMMs for gene prediction 

 

 Advances in gene sequencing techniques has led to an increase in the volume of 

genetic data needing interpretation.  Most commonly, genes have been identified by 

homology-based methods such as BLASTX [Altschul et al 1990, Meyer et al  2008], 

however, these methods use searches against known databases, meaning they are 

unable to predict novel genes. 

HMMs can be used in improve gene prediction from sequencing data, Rho et al 

developed the novel gene prediction method FragGeneScan, which combines sequencing 

error models and codon usages in a HMM to improve the prediction of protein-coding 

regions [Rho et al 2010].  They compared the results of their method with the non-HMM 

based methods Glimmer [Delcher et al 1999] and metagene [Noguchi et al 2006] (no 

longer in use) and found their HMM-based method not only out preformed the existing 

techniques for identifying genes with existing homologues, but was also able to identify 

novel genes with no homologues in existing sequence databases [Rho et al 2010]. 

Another study of gene prediction was carried out by Yao et al who analysed ab 

initio gene prediction by testing 5 programs for the discovery of maize genes [Yao et al 

2005].    The 5 programs tested were; FGENESH [Salamov and Solovyev 2000] , 

GeneMark.hmm [Lukashin and Borodovsky 1998] , GENSCAN [Burge and Karlin 

1997], GlimmerR [Salzberg et al  1999] and Grail [Xu and Uberbacher 1997] , of which 

three used HMM based methods (FGENESH, GeneMark.hmm and GENSCAN).  Each 

program was tested with 10 different genes and found that the HMM based methods gave 

more correct predictions than the non-HMM based methods, more specifically that 

FGENESH was the best performer of the five [Yao et al 2005]. 
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1.4.3 HMM software 

 

 Several HMM software packages are available, the most popular of these being 

the HMMER [Eddy 2998]  and SAM [Hughey and Krogh 1996]  packages, these 

packages have the ability to build HMMs, search sequence databases using the HMMs 

and score the sequence hits they identify. 

 The HMMER package was developed chiefly by Sean Eddy and contains all the 

necessary HMM building and scoring programs relevant to homology detection.  The 

HMMER package also contains a HMM calibration program (hmmcalibrate) that calibrates 

the HMM by scoring it against a set of random sequences and fitting an extreme value 

distribution to the resultant raw scores,   this parameter is used to calculate E-values for 

alignments between the HMM and sequences of interest. 

 The SAM package was developed by the bioinformatics group at the University of 

California, and as with the HMMER package, contains all the necessary HMM building 

and scoring programs, as well as several scripts for running them.  The SAM package 

does not contain a HMM calibration program, instead the HMM searching program 

calculates E-values directly using a theoretical function that takes the difference between 

the raw scores of the query sequence and its reverse as its argument for E-value 

calculation. 

 Studies have been carried out to compare these two packages [Madera and 

Gough 2002, Wistrand and Sonnhammer 2005], with the general consensus being that 

SAM is more sensitive when identifying HMM hits to sequences of interest, and that 

HMMER is faster (between 1 and 3 times faster) and has a more accurate scoring system. 
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1.5 Outline of the scope of the thesis 

 

 This thesis aims to improve upon existing protein structure prediction 

methodologies for multicofactor proteins, focusing on multiheme cytochromes to begin 

with, but the methods developed in this thesis are also likely to be applicable for other 

cofactor rich proteins that have sufficient structural data available.  The prediction 

methods developed will be compared with existing tools available to the wider scientific 

community to demonstrate the specific advantages of the new methodology. 

 This thesis will also provide an insight into the copper transport mechanisms of the 

Atx1-like copper chaperone proteins by examining changes in monomer packing and 

copper cluster formation for the Bacillus subtilis copper chaperone CopZ in response to 

changing levels of available copper. This data will also be used to predict a structural 

complex for the mechanism of copper transfer between CopZ and the P-type ATPase 

CopA. 

The final section of this thesis will examine the structural differences between 

native and product inhibited forms of the flavoprotein SoxF and what clues this information 

could provide to ascertain SoxFs role in the sulfur oxidising sox cycle of Paracoccus 

denitrificans.  SoxF has been shown to have sulfide dehydrogenase activity and also 

shown to interact with the sox cycle intermediate transport complex SoxYZ, this thesis will 

attempt to solve the crystal structures of native and inhibited forms of SoxF and use them 

to hypothesise the nature and role of this interaction. 
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Chapter 2 - Analysis and Prediction of the Structur es of 
Multiheme Cytochromes 
 
2.1 Introduction 
 

This chapter will analyse the distribution of heme groups in multiheme 

cytochromes with available crystal structures and examine the conserved heme motifs 

that arise from this analysis.  The sequences and polypeptide structures that coordinate 

each of these conserved heme motifs will be extracted and aligned for the creation of 

Hidden Markov Models (HMMs).  These HMMs will be used to search sequences of 

unknown structure to provide predictions for heme sub structure and templates for the 

modelling of polypeptide structure, where available.  Test cases, which were proteins that 

had unpublished structural data available, were used to test this structure prediction 

methodology; the results were compared with predictions produced using existing 

homology modelling servers. 

 
2.2 Materials and methods 
 
2.2.1 Selection of multiheme proteins and heme pair s 
 
 To analyse the heme packing motifs found in multiheme proteins, the Protein Data 

Bank (PDB) [Berman et al  2000] was interrogated to extract the coordinates of interacting 

pairs of c-hemes from multiheme proteins whose structures had been determined by X-

ray crystallography at resolutions ≤ 3.0 Å [Walsh et al  2009] where the distance between 

the two heme groups was at most 14 Å.  The distance between hemes refers to the 

minimum distance between the closest carbon atoms from each heme porphyrin ring. A 

maximum distance of 14 Å was used because this has been determined to be the 

maximum distance for efficient electron transfer between hemes [Page et al  1999].  Two 

databases of multiheme proteins and heme pairs were generated; one excluding 

sequences at the 40 % sequence identity level and the other at the 90 % level.  The 40 % 

cut-off value was chosen as it is the point at which sequence identity and biochemical 

function begin to converge [Brylinski & Skolnick 2008]  and the 90 % cut-off value was 

chosen to give a larger non-redundant dataset containing more structural data.  

The 40 % set contained 37 multiheme proteins with 152 heme pairs, and the 90 % 

set contained 56 multiheme proteins with 282 heme pairs.  Both datasets were then 

reduced by removing those heme pairs where one or both of the iron-ligating residues 

from either heme was not provided by the histidine residue.  The resulting 40 % bis-His 

dataset contained 27 proteins with 125 heme pairs and the 90 % bis-His dataset 

contained 40 proteins and 245 heme pairs.   Heme motif packing analysis was carried out 

using the 40% bis-His ligated dataset, to ensure the results were not distorted by the 
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presence of highly homologous sequences.  A breakdown of the proteins that make up 

this dataset can be seen in table 2.1. 

 

Table 2.1 – Proteins in the 40 % Bis-His ligated dataset 
SCOP 
Family SCOP Domain PDB 

ID Hemes Heme 
pairs 

Protein structure 

1AQE 8 7 
1GYO 8 7 

Homodimeric (4 hemes 
per monomer) 

1J0P 4 6 
1WAD 4 6 
2BQ4 4 6 
2CY3 4 6 

Cytochrome c3 

3CAO 4 6 
1RWJ 3 1 

Monomeric 

Cytochrome c7 3BXU 6 3 Homodimeric (3 hemes 
per monomer) 

Cytochrome c3-
like 

Nine-heme cytochrome c 1OFW 18 18 Homodimeric (9 hemes 
per monomer) 

1JNI 4 1 Periplasmic nitrate reductase 
subunit NapB 1OGY 4 1 

Dimeric (2 hemes per 
monomer) 

Hydroxylamine 
oxidoreductase, HAO 1FGJ 24 8 Homotrimeric (8 hemes 

per monomer) 
Cytochrome c554 1FT5 4 2 Monomeric 

Dimeric di-heme split-soret 
cytochrome c 1H21 4 2 Homodimeric (2 hemes 

per monomer) 
3BNJ 10 5 

Cytochrome c nitrite reductase 
1OAH 10 5 

Homodimeric (5 hemes 
per monomer) 

1M1Q 4 4 Flavocytochrome c3 
(respiratory fumarate 

reductase), N-terminal domain 1Y0P 4 4 

Putative Cytochrome c 1SP3 8 8 
Diheme c-type Cytochrome 

DHC2 2CZS 2 1 

Crystal structure of E.coli nrfB 2OZY 5 5 

Monomeric 

Di-heme elbow 
motif 

Hexameric multiheme 
cytochrome c nitrite reductase 2OT4 48 9 Homohexameric (8 

hemes per monomer) 

Formate 
dehydrogenase 

Formate dehydrogenase N 
from E.coli 1KQF 6 1 Heterononameric (2 

hemes in chains C,F&I) 
Quniol:Fumarate reductase 

from Wolinella Succinogenes 2BS2 4 1 

NarGHI mutant NarI-K86A 1Y5I 4 1 

Heterohexameric (2 
hemes in chains C&F) Other (not in 

SCOP 
database) DHC purified from 

Rhodobacter sphaeroides 2FWT 2 1 Monomeric 

N.B Colours of SCOP families refer to those seem in the raw output (see appendix I-IV) 
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2.2.2 Clustering techniques  
 

Similar packings of c-heme pairs in multiheme cytochromes were detected using a 

JAVA program written for this purpose.  The program performs two least squares 

superpositions for each combination of heme pairs in the dataset based on the non-

hydrogen atoms of the porphyrin rings, superimposing the hemes in each of the two 

possible permutations. RMSD values were calculated for each superposition, the smaller 

of the two values being taken to reflect the similarity of the two heme packings. The 

resulting distance matrix populated with RMSD values was clustered using the R package 

[Ihaka and Gentleman 1996 ], a system for statistical computation and graphics.  The 

clustering method used was the single-link (also known as nearest neighbour) hierarchal 

clustering method, where the distance between groups is defined as the distance between 

the closest pair of objects from each group.   

Clustering with R resulted in cluster dendrograms which were then interrogated by 

another JAVA program, written to identify heme pair clusters at different RMSD cut-offs.  

The RMSD cut-off used in the following analyses is 1.5 Å, this value was chosen to 

compensate for inaccuracies in the crystal structures and subtle variations in the packings 

of heme pairs. The resulting clusters are called heme pair clusters or heme pair motifs. 

Once the heme pair clusters had been determined, heme triplet clusters (similar 

packings of three neighbouring heme groups) were identified by a further JAVA program 

that analyses the pair clusters and identifies heme triplets when it finds two heme pairs 

from the same protein in different clusters that share a single common heme.  These 

heme triplets are grouped according to the heme pairs that make up each triplet cluster, 

i.e. a triplet cluster that contained heme pairs from pair clusters n and m would be known 

as triplet cluster n-m.  A similar method was used to obtain heme quartet (4 heme) and 

quintet (5 heme) clusters by comparing the list of pair clusters with the list of triplet 

clusters to identify the quartets, and with the quartet clusters to identify the quintets, 

respectively. An RMSD value is also calculated for the alignment of heme motifs within 

each triplet, quartet and quintet cluster to ensure that only one structural alignment of 

hemes is present, i.e. that each cluster contains only one heme triplet/quartet/quintet motif 

structure and that each element of the cluster falls within the 1.5 Å RMSD cutoff. 

 
2.2.3 Extracting sequence data from the heme motif clusters  
 

Amino acid sequence data was then extracted for each heme motif cluster 

identified in section 2.2.2.  The sequences between the iron ligating histidine residues 

(Figure 2.1A) and heme binding CXXCH motifs (Figure 2.1B) were selected.  These 

sequences will be referred to as PD and PP for the sequences between iron ligating 

histidine residues and heme biding CXXCH motifs, respectively. The letters P (proximal) 

and D (distal) refer to the identity of the ligating histidine residue at each end of the 
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sequence, the PD sequences run from a proximal to a distal histidine and PP sequences 

run from proximal to proximal histidines. 

 

 
 

To extract the PD sequences a JAVA program was written that identifies a set of 

user defined heme groups, then picks out these specific hemes from the original PDB 

files, identifies the iron ligating residues for each heme group by finding the closest two 

histidines to the heme iron and extracts the amino acid sequence between them.  This 

program outputs; a file with sequences between the iron ligating histidines in FASTA 

format and a PDB file containing the coordinates of the aminoacids in this sequence.  

 The software written to extract the PP sequences works in much the same way.  

Also written in JAVA, this program; identifies the two hemes in the user defined list of 

heme pairs, finds them in their original PDB files, identifies the two cysteine residues that 

make up the CXXCH motifs binding each heme and extracts the amino acid sequence 

between them.  As with the PD sequence program, files containing the amino acid 

sequence and coordinates are output.  This process was performed on all pair, triplet, 

quartet and quintet motifs in the database. 

 

2.2.4 Clustering of the extracted sequence data 

 

To create subclusters of similar sequences within each pair, triplet and quartet 

heme clusters, three methods were employed.  The first was a simple sequence length 

cut-off, grouping together sequences of similar lengths (typically 0-25, 26-50, 51-100, 100-

150 and 150+ residues). The actual lengths were chosen based on the observed grouping 

of sequence lengths within each cluster.  A second set of subclusters were created based 

on phylogenetic analysis, this was done by submitting all sequences in a given cluster to 

multiple sequence alignment via TCOFFEE [Notredame et al 2000] and interrogating the 

A B 

Figure 2.1 – Structures of (A) the iron ligating histidine residues and 
(B) the heme binding CXXCH motifs that the JAVA program searches 
for while collecting the PD and PP sequence data.  The histidine 
ligands are labelled as proximal or distal. 

Proximal 

Proximal 

Proximal 

Distal 
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resulting phylogram.  The third sub set of clusters were based on structural homology 

between the intervening polypeptide sequences.  A JAVA program was written to perform 

a least squares superposition on the hemes from each cluster and calculate a C-α RMSD 

value for the intervening polypeptide, these RMSD values were output to a matrix that was 

clustered using the R package [Haka et al  1669] with the single-link hierarchal clustering 

method.  The resulting dendrograms were interrogated to determine structural subclusters 

within each heme cluster.  These analytical methods were performed on the PD 

sequences for each heme and PP sequences for each motif from each pair, triplet and 

quartet cluster.  The quintet clusters were not analysed, as the majority only contained 

one sequence. 

  

2.2.5 Generation of Hidden Markov Models 

 

Hidden Markov Models (HMMs) were generated for each subcluster identified in 

section 2.2.4.  To do this, multiple sequence alignments were generated for each 

subcluster using TCOFFEE [Notredame et al 2000] and output in MSF alignment format 

for HMM generation using the programs hmmbuild and hmmcalibrate from the HMMER 

package [Eddy 1998] .  This resulted in sets of HMMs for each heme motif based on both 

sequence and structural homologies.  These HMMs were used to search for the 

respective heme motif within the sequence of a protein of unknown structure. 

 

2.2.6 Making predictive models using HMMs 

 

Hmmsearch from the HMMER package [Eddy 1998]  was used to search within 

the amino acid sequences of proteins of unknown structure with the HMMs generated for 

each heme motif.  The region of the target sequence the HMM aligned with is referred to 

as a “hit”. Valid hits were identified as those that incorporated either a histidine residue at 

each end of the hit (with only one of the histidines as part of a CXXCH motif) in the case 

of the PD sequences or a CXXCH motif at each end of the hit in the case of the PP 

sequences.  If two HMMs from different heme motifs produced significant hits in the same 

part of the sequence, that with the lowest E-value was taken as the correct result in that 

region of the sequence. 

The first search pass was performed with the HMMs based on sequence data to 

predict the heme substructure, since these were found to have greater success in 

identifying the positions of heme motifs.  A second pass was performed with the HMMs 

based on structural homologues and were used to indentify potential templates for the 

polypeptide structure between heme groups. 

Once the make up of the heme substructure was predicted, a model was built 

using a JAVA program that had access to a representative structure for each motif and 
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superimposes the first heme of the new motif onto the last heme of the previous as 

demonstrated in figure 3.2.  This produces a PDB format file with a heme substructure for 

the protein of interest that is used as a “scaffold” for modelling the polypeptide structure.  

 

 

 

 

 To add a polypeptide structure to the protein of interest, the hits from the structure- 

based HMMs are mapped onto the heme substructure.  Where templates for polypeptide 

structure have been identified the hemes for each motif are superimposed to place the 

polypeptide template in the correct orientation and MODELLER [Eswar et al 2006] is 

used to predict the full 3D protein structure.  Distance and angle restraints are placed on 

the heme ligating residues, as their positions have been found to be very highly conserved 

within hemoprotein structures, as will be shown in section 2.3.10. 

 The created models are then each given an overall score and E-value based on an 

average of the scores and E-values of the HMM hits that make up both the heme 

substructure and polypeptide template for the model, giving an indication of the quality of 

the prediction.  For instances where there is no HMM coverage between heme motifs in 

the target sequence, from either the sequence based or structure based HMMs, penalty 

scores and E-values of -5 and 1 will be used. 

 

2.2.7 Comparisons with existing protein structure p rediction servers 

 

In order to give a side by side comparison of the above methodologies with 

existing modelling techniques, models were also generated using the I-TASSER [Zhang 

2008], Phyre [Kelley and Sternberg 2009]  and SwissModel [Arnold et al  2006] servers 

to ascertain the relative merits of each technique.  These models were created by 

submitting the protein sequence of interest to each server and downloading the resulting 

PDB file. 

 
 

Figure 2.2 – A representation of how the JAVA program builds the 
heme substructure.  Heme 1 of pair B is superimposed onto heme 2 
of pair A, to create the triplet structure, the next pair will be 
superimposed onto heme 3 of this structure. 

Pair A 

Pair B 

Pair A+B 
1 

1 

2 

2 

1 

2 
3 
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2.2.8 Determination of the residues in van der Waal s contact with each heme 
 

 To identify the residues in van der Waals contact with each heme a JAVA program 

was written to; read in a list of user defined heme groups, identify these hemes within their 

original PDB files and ascertain the residues within van der Waals contact.  This was 

achieved by calculating the sum of the van der Waals radii plus an extra 50 % for each 

atom of each residue with each atom of each heme as a cut-off for the residues that will 

be identified as being in van der Waals contact with each heme, in short, if the radii 

overlap the residue and the heme are in van der Waals contact.  The values for the van 

der Waals radii were obtained from the Cambridge Crystallographic Data Centre [Allen 

2002] and the sum of van der Waals radii plus an extra 50 % value was used to 

compensate for inaccuracies within the crystal structures. 

There were several outputs from this analysis, all taking the form of PDB files.  For 

each run of the program, a PDB file was output containing the complete structures of all 

amino acids adjudged to be in contact with the heme, three more were also output where 

each residue was identified by a single atom as it’s centroid and coloured by amino acid 

type, side chain charge (positive, negative or neutral) or side chain polarity (polar or non-

polar). 
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2.3 Results 
 

 
Figure 2.3 shows the structure of a standard C-type heme with the four pyrrole 

rings labelled A, B, C and D, this figure will act as a reference for the following section 

when specific pyrrole rings are referred to. 

 
2.3.1 Heme pair clusters in the 40 % bis -His ligated set  
 
Table 2.2 –  Breakdown of pair cluster sizes from the 40 % bis-His ligated set 

Cluster 
Size 

Number of 
clusters of this 

size 

Number of 
heme pairs 

Percentage of total 
heme pairs 

Cumulative 
percentage of 

heme pairs 
26+ 1 28 22.4 22.4 

20-25 1 20 16 38.4 
10-19 2 20 16 54.4 
5-9 4 34 27.2 81.6 
1-4 19 23 18.4 100 

 

In total, 27 pair clusters were identified, the two largest of these containing 28 and 

20 heme pairs, corresponding to the di-heme elbow and parallel pair heme pair motifs 

respectively (Figure 2.4).  As table 2.2 shows, these two clusters accounted for nearly 40 

% of the total heme pairs.  The nearest atoms between each heme in the pairs of the di-

heme elbow motif cluster belonged to the pyrrole ring C, with an average heme-heme 

distance of 5.9 Å, this suggests electron transfer properties for this motif, since they are 

well within the minimum electron transfer distance of 14 Å [Page et al  1999] and it has 

been proposed that the exposed sulfur of the cysteine residue may act to facilitate 

electron transfer with the C ring of a heme [Tollin et al  1986]. The pyrrole A rings provide 

Figure 2.3 – The structure of a standard C-type heme, 
the four pyrrole rings A, B, C and D have been labelled. 
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the nearest contacts between the hemes in the parallel pair cluster, with an average 

heme-heme distance of 4.1 Å, the alignment of the pair also brings the B rings together, 

with an average heme-heme distance of 5.1 Å, that are likely to facilitate electron transfer 

as they also contain bound sulfur from a cysteine residue. 

 

 

 

 
 
 

The next six largest clusters accounted for almost 40% of the total heme pairs, 

with two clusters containing 10 pairs, three 9 pairs and one 7 pairs.  Clusters 3-7 form part 

of the cytochrome c3-like motif and found in the tetraheme cytochrome c3 domain (Figure 

2.5A), the nearest-approach heme atoms in these clusters come from the D-D, B-B, B-D, 

B-B and D-B pyrrole rings, respectively. The minimum heme-heme distances are 9.4, 5.4, 

6.5, 8.4 and 10.0 Å, respectively, potentially allowing electron transfer between the hemes 

in each of these pairs.  Cluster 8 is part of the di-heme elbow motif SCOP family and looks 

similar to cluster 1 (the di-heme elbow motif), but differs from it due to the increased 

heme-heme distance between the two hemes: 5.9 Å for cluster 1 and 11.8 Å from cluster 

8 (Figure 2.5B). 

Figure 2. 4 – Orthogonal views of the heme motifs for pair clusters 1 & 2, 
the two largest clusters of heme pairs.  The di-heme elbow motif (A) 
contained 28 heme pairs and the parallel heme stacking motif (B) 
contained 20 pairs.   

A B 
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The packing of subunit-spanning heme pairs (where each heme is coordinated by 

residues from a different polypeptide chain) are found in clusters 9, 10 and 13 (Figure 

2.6).  No intra-subunit heme pairs are found in these clusters suggesting that the subunit-

spanning clusters represent unique heme pair packings.  Cluster 9 contains two pairs from 

homodimeric cytochrome c nitrite reductases, cluster 10 contains two pairs from dimeric 

cytochrome c3s and cluster 13 contains one pair from the hexameric cytochrome c nitrite 

reductase.  The closest pyrrole rings between these pairs are A-A, B-B and C-D with 

minimum heme-heme distances of 5.2, 7.3 and 6.5 Å respectively.  Representations of 

these pairs can be seen in figure 2.3. A complete breakdown of composition of the heme 

pair clusters can be seen in Appendix I. 

Pair cluster 1 = Hemes 1 & 4 
Pair cluster 3 = Hemes 1 & 2 
Pair cluster 4 = Hemes 2 & 4 
Pair cluster 5 = Hemes 3 & 4 
Pair cluster 6 = Hemes 1 & 3 
Pair cluster 7 = Hemes 2 & 3 
 

1 

2 

3 

4 

Figure 2. 5 – A breakdown of the structures of clusters 3-8.  (A) 
Clusters 3-7 (as well as cluster 1) can be found in the tetraheme 
cytochrome c3 domain. (B) Cluster 8, from the di-heme elbow like 
SCOP family is similar to cluster 1, as can be seen by the position of 
the transparent heme that indicates where the heme would lie relative 
to heme 2 in the cluster 1 pair motif. 

A 

 1

1 

B 2 
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2.3.2 Heme triplet clusters in the 40 % bis -His ligated set  

 

Table 2.3 –  Breakdown of triplet cluster sizes from the 40 % bis-His ligated set 

Cluster 
Size 

Number of 
clusters of this 

size 

Number of 
heme triplets 

Percentage of total 
heme triplets 

Cumulative 
percentage of 
heme triplets 

21+ 1 23 20 20 
11-20 0 0 0 20 
5-10 5 42 36.5 56.5 
1-4 40 50 43.5 100 

 

Initial results identified 115 heme triplets, grouped into 46 clusters, the largest of 

which consisted of 23 heme triplets and corresponded to a triplet motif constructed from 

pair clusters 1 & 2 (the di-heme elbow and parallel pair motifs).  However, the RMSD 

values for this cluster identified it as being made up of two separate clusters differing 

structurally according to the common heme shared by the di-heme elbow and parallel 

stacking pairs which combine to form the triplet. In other words, the clusters differ solely 

according to whether the first or second heme from the di-heme elbow pair constitutes the 

shared heme of the triplet.  Examination of the amino acid sequence linking the hemes in 

each triplet has shown that they also differ according to the order in which the hemes from 

each pair motif are coordinated in the sequence, i.e. whether the motifs are ordered di-

heme elbow → parallel pair or parallel pair → di-heme elbow in the sequence.   Figure 2.7 

shows the configuration of hemes in each of these clusters; 13 triplets fall into the parallel 

pair → di-heme elbow cluster, triplet cluster 1a (green), and 10 into the di-heme elbow → 

parallel pair cluster, triplet cluster 1b (cyan).  

  

Reference 
heme 

Reference heme 

Cluster 9 

Cluster 9 

Cluster 10 

Cluster 10 

Cluster 13 
Cluster 13 

Figure 2. 6 – Orthogonal views of the subunit-spanning pair motifs.  One 
heme from each pair is aligned with a reference heme (Blue).  The 
clusters shown are; cluster 9 (Green) from cytochrome c nitrite reductase, 
cluster 10 (Cyan) from dimeric cytochrome c3 and cluster 13 (Magenta) 
from hexameric cytochrome c nitrite reductase.   
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Of the next largest set of clusters (5-10 triplets in each), 4 of them contain 

cytochrome c3-like proteins, more specifically they are made up of the different triplets 

found in the cytochrome c3 tetraheme domain.  Figure 2.8 shows this tetraheme cluster 

and the triplet clusters found within it. 

 

 

 

 The other cluster present in this set of clusters (those containing 5-10 triplets) is 

populated by proteins from the di-heme elbow SCOP family and refers to a triplet formed 

between the di-heme elbow motif and cluster 8 pair cluster motifs. A complete breakdown 

of the heme triplet clusters can be seen in Appendix II. 

 

 

Figure 2. 7 – Orthogonal views of the two subclusters found in triplet cluster 1 (heme 
numbers are arbitrary).  These subclusters are defined by the position of heme 3 
relative to heme 2 and the order the hemes from each pair are found in the sequence.  
In triplet cluster 1a (green) the order of the pairs is parallel pair → di-heme elbow and 
in triplet cluster 1b (cyan) the order of the pairs is di-heme elbow → parallel pair. 
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Triplet cluster 2 = Hemes 1, 2 & 4 
Triplet cluster 3 = Hemes 1, 3 & 4 
Triplet cluster 4 = Hemes 1, 2 & 3 
Triplet cluster 5 = Hemes 2, 3 & 4 
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Figure 2. 8 – The cytochrome c3 tetraheme domain, and the triplet 
clusters found within it (heme numbers are arbitrary). 
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2.3.3 Heme quartet clusters in the 40 % bis-His lig ated set  

 

Table 2.4 –  Breakdown of quartet cluster sizes form the bis-His ligated 40 % set 

Cluster 
Size 

Number of 
clusters of this 

size 

Number of 
heme 

quartets 

Percentage of total 
heme quartets 

Cumulative 
percentage of 
heme quartets 

5-10 3 23 23.2 23.2 
2-5 6 13 13.1 36.3 
1 63 63 63.7 100 

 

 In total 99 heme quartets were identified and grouped into 72 unique clusters.  As 

with the triplet clusters, each quartet cluster contained proteins from only one SCOP 

family.  The largest cytochrome c3-like SCOP family containing cluster (cluster 2, 

containing 9 quartets), corresponded to the cytochrome c3 tetraheme domain (Figure 2.5).  

The two other larger clusters (those containing more than 5 quartets) corresponded to 

conserved heme quartets in di-heme elbow motif family proteins (Figure 2.9).  These 

quartet motifs are constructed from the sequential packing of di-heme elbow and parallel 

pair motifs, further emphasising the importance of these motifs in this family of proteins.  

The close proximity of pyrrole C & B rings along this quartet suggests these motifs would 

have electron transfer properties. 

 

 

The quartet clustering results emphasize the diversity adopted in the packing of 

hemes in multiheme proteins with larger heme substructures, since over 60 % of all heme 

quartets segregate into unique heme packing motif clusters.  A complete breakdown of 

the heme quartet clusters can be seen in Appendix III. 

 

Figure 2. 9 – The two largest SCOP di-heme elbow motif family quartet 
clusters (heme numbers are arbitrary).  (A) Cluster 1 (8 quartets); constructed 
from one parallel pair (hemes 2-3) and two di-heme elbow (hemes 1-2 & 3-4) 
heme pair motifs. (B) Cluster 3 (6 quartets); constructed from one di-heme 
elbow (hemes 2-3) and two parallel pair (hemes 1-2 & 3-4) heme pair motifs.  

A B 
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2.3.4 Heme quintet clusters in the 40 % bis -His ligated set 

 

Table 2.5 –  Breakdown of quintet cluster sizes form the bis-His ligated 40 % set 

Cluster 
Size 

Number of 
clusters of this 

size 

Number of 
heme quintets 

Percentage of total 
heme quintets 

Cumulative 
percentage of 
heme quintets 

2 3 6 10.2 10.2 
1 53 53 89.8 100 

 
  

In total 59 heme quintets were found and separated into 56 unique clusters.  As with the 

triplet and quartet clusters, each quintet cluster contained proteins from only one SCOP 

family.  The number of quintets is significantly lower than the number of quartets as only 

10 of the initial 28 proteins have more than 4 hemes.  The main finding from the quintet 

analysis is the link between nrfB (PDB ID: 2OZY [Clarke et al  2007]) and the hexameric 

octaheme cytochrome c nitrite reductase (PDB ID: 2OT4 [Polyakov et al  2009]) that both 

contain instances of the largest quintet cluster (Figure 2.10). 

 

 

Approximately 90% of the quintets identified arise from clusters containing only 

one instance, with over half of these coming from the nine-heme cytochrome c (PDB 

ID:1OFW [Bento et al  2003]) due to the large number of unique quintets found in its 

Figure 2. 10 – The layout of hemes in the two chains pf the octaheme 
cytochrome c nitrite reductase (2OT4) [Polyakov et al  TBP] .  The magenta 
hemes refer to the quintet cluster of hemes also found in nrfB (2OZY) [Clarke 
et al  2007], the yellow hemes refer to the other three hemes of the octaheme 
domain and the active site hemes of the nitrate reductase are circled red. 
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densely packed heme substructure.  A complete breakdown of the heme quintet clusters 

can be seen in Appendix IV. 

No attempts were made to identify higher order clusters than quintets as there are 

insufficient multiheme cytochromes with six or more hemes.  In addition, the majority of 

quintet clusters contain only one heme motif and more than half of these arise from the 9 

heme cytochrome c. To a large extent, this makes the quintet clustering results redundant. 

 

2.3.5 Distribution of heme motifs 

 

Figure 2.11 shows a breakdown of heme motif clusters and the distribution of 

heme motifs within these clusters for the pairs, triplets, quartets and quintets.  It shows the 

change in motif distribution from a smaller number of highly-populated clusters in the 

heme pair analysis to large numbers of lowly-populated clusters in the heme quintet 

analysis. 
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Figure 2.11 – Histograms showing an analysis of cluster size distribution of the 
heme pair, triplet, quartet and quintet motifs.  These graphs demonstrate the shift 
from highly populated heme pair and triplet clusters, to predominantly single 
occupancy quintet clusters. 
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2.3.6 The effects of inclusion of non bis -His ligated heme pairs 

 

The effects of inclusion of non bis-His ligated heme pairs on the preceding 

analysis can now be discussed.  Of the 27 heme pairs added, only two were incorporated 

into existing pair clusters; the heme pair between hemes 90 and 92 of the c7-type 

cytochrome from Geobacter sulffereducins (PDB ID: 1RWJ [Pokkuluri et al  2004]) was 

added to cluster 3 and the heme pair between hemes 91 and 92 from the same protein 

was added to cluster 4.  These pairs from 1RWJ are structurally homologous to pairs from 

the dimeric cytochrome c7 (PDB ID: 3BXU [Morgado et al  2008]), the 3BXU pairs were in 

the initial bis-His analysis while the 1RWJ pairs were not, due to heme 92 of 1RWJ having 

histidine - methionine ligation.  This change in ligation has been proposed to give heme a 

higher reduction potential, with a midpoint reduction potential 50 mV higher than an 

equivalent domain where all three hemes are bis-His ligated [Pokkuluri et al  2004]. 

All other non bis-His ligated heme pairs were grouped into unique clusters, with 

the two largest containing 6 and 7 pairs, respectively, both originating from proteins in the 

di-heme elbow motif SCOP family and both containing the active site heme for their 

respective protein structures.   

The additional heme triplet, quartet and quintet motifs created by the incorporation 

of the non bis-His ligated heme pairs also fall into unique clusters, suggesting the motifs 

may be specific to the function of the hemes within their individual proteins and have no 

close evolutionarily links to other heme motifs. 

 
2.3.7 Breakdown of PD sequence from heme pair subcl usters 
 

The extracted PD sequences for the most populous pair clusters were separated 

into subclusters.  The sequences from the di-heme elbow (cluster 1) and parallel pair 

(cluster 2) motif clusters ranged from 12-195 and 13-215 residues in length and could be 

separated into 34 and 26 subclusters respectively.  The sequences from clusters 3 to 7, 

that come exclusively from cytochrome c3 like family proteins, have less diversity as can 

be seen by the lower number of subclusters.  Table 2.6 shows a more detailed breakdown 

of these subclusters. 
 

Table 2.6 – Breakdown of PD subclusters 

Cluster ID 
Number of 

sequence based 
subclusters 

Number of 
structure based 

subclusters 

Number of 
phylogram based 

subclusters 

Total 
number of 

subclusters 
Cluster 1 4 3 4 9 6 8 34 
Cluster 2 4 5 4 3 5 5 26 
Cluster 3 2 2 2 3 4 4 17 
Cluster 4 2 2 4 3 4 4 19 
Cluster 5 2 1 2 5 3 3 16 
Cluster 6 1 2 5 5 3 3 19 
Cluster 7 1 2 5 3 3 3 17 
*NB the numbers in blue refer to the first heme in each pair motif and the red to the second 
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2.3.8 Breakdown of PP sequence from heme pair subcl usters 

 
The extracted PP sequences for the most populous pair clusters were separated 

into subclusters.  The sequences from the di-heme elbow and parallel stacking pair motif 

clusters ranged from 27-73 and 24-145 residues in length respectively and could be 

separated into 20 and 15 subclusters respectively.  The homology in the sequences and 

structures for clusters 3-7, that conform to the pairs found in the tetraheme c3 domain, 

resulted in very few subclusters for these pair clusters. Table 2.7 shows a more detailed 

breakdown of these subclusters. 

 
Table 2.7 – Breakdown of PP heme pair subclusters 

Cluster ID 
Number of 

sequence based 
subclusters 

Number of 
structure based 

subclusters 

Number of 
phylogram based 

subclusters 

Total number 
of 

subclusters 
Cluster 1 3 7 10 20 
Cluster 2 4 3 8 15 
Cluster 3 3 3 3 9 
Cluster 4 3 3 3 9 
Cluster 5 2 2 2 6 
Cluster 6 2 2 2 6 
Cluster 7 2 2 2 6 

 
2.3.9 Breakdown of PP sequences from heme triplet s ubclusters 
  

The extracted PP sequences for the most populous triplet clusters were separated 

into subclusters.  The sequences from the most populous triplet cluster, based on 

packings of di-heme elbows and parallel pairs, ranged from 55-234 residues in length and 

could be separated into 17 subclusters.  The first of which corresponds to the two heme 

substructures found in this cluster (Figure 2.7), with triplet cluster 1a referring to a parallel 

pair → di-heme elbow and triplet 1b referring to a di-heme elbow → parallel pair packing 

of pair motifs.  The homology in the sequences and structures for clusters 2-5, that refer to 

the triplets found in the tetraheme cytochrome c3 domain, resulted in very few subclusters 

for these triplet clusters. Table 2.8 shows a more detailed breakdown of these 

subclusters. 

 
Table 2.8 – Breakdown of PP heme triplet subcluster s 

Cluster ID 
Number of 

sequence based 
subclusters 

Number of 
structure based 

subclusters 

Number of 
phylogram based 

subclusters 

Total number 
of 

subclusters 
Cluster 1a 2 2 4 8 
Cluster 1b 2 3 4 9 
Cluster 2 3 3 3 9 
Cluster 3 2 2 2 6 
Cluster 4 2 2 2 6 
Cluster 5 2 2 2 6 
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2.3.10 Distribution of residues in Van der Waals co ntact with the hemes in 

the most populous heme clusters 

 

Analysis of the distributions of residues in van der Waal’s contact with each heme 

in each pair cluster did not identify any specific residues, beyond the iron ligating 

histidines and heme binding cysteines, that are consistently found in a specific position 

around the heme, although it did identify very specific geometries for the heme binding 

histidines and cysteines (Figure 2.12). 

 

 

However, if the residues are grouped by their charge (i.e. whether they are 

positive, negative or neutral), it can be seen that the heme environment is predominantly 

neutral for both hemes of the parallel pair and di-heme elbow pair motifs (Figure 2.13). 

D 

A B 

C 

Figure 2.12 – Positions of the heme binding histidine and cysteine residues 
from the di-heme elbow motif first heme (A) and second heme (B), and the 
parallel pair motif first heme (C) and second heme (D) 
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The results of analysis of residues in van der Waal’s contact, grouped by side 

chain polarity, do not show trends in the distribution of polar and non-polar residues 

around the heme groups (Figure 2.14). 

A B 

C 
D 

Figure 2.13 – Centroid positions of the residues in van der Waal’s contact with 
the di-heme elbow motif first heme (A) and second heme (B), and the parallel 
pair motif first heme (C) and second heme (D).  Residues with positive side 
chains are coloured green, negative side chain are cyan and neutral side chains 
magenta 
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2.3.11 Testing the HMM prediction methodology 

 

 To test the HMM based protein structure prediction methodology, two test cases 

were used, one from each of the major SCOP families.  The small tetraheme cytochrome 

from Shewanella frigidimarina and the 12 heme cytochrome GSU_1996 from Geobacter 

sulfurreducens, both of which have unpublished structural data available from within the 

research group, in the case of the STC, and from an external collaboration with 

P.R.Pokuluri (Biosciences Division, Argonne National Laboratory), in the case of 

GSU_1996. 

 

2.3.11.1 Shewanella frigidimarina  small tetraheme cytochrome (STC) 

 

 The closest homologue to the STC from the non-redundant protein database was 

with 1M1Q [Leys et al  2002], an STC from Shewanella oneidensis that had 69 % 

sequence identity, to ensure this highly homologous protein didn’t bias the predictions, a 

new set of HMMs were generated with the 1M1Q sequence omitted from the multiple 

sequence alignment used to build the HMMs. 

A B 

C D 

Figure 2.14 – Centroid positions of the residues in van der Waal’s contact with 
the di-heme elbow motif first heme (A) and second heme (B), and the parallel 
pair motif first heme (C) and second heme (D).  Residues with polar side chains 
are green and non-polar side chains are cyan. 
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 The hits found with the PD based HMMs did not produce particularly useful results, 

primarily due to many of the HMM hits not beginning and ending with a histidine residue, 

or if they did, either both or neither of the histidines occurred in a heme coordinating 

CXXCH motif, making the result meaningless in the context of iron ligating histidine 

prediction. 

 

 

 The hits found with the PP based HMMs gave a consensus heme substructure of 

two di-heme elbow motifs and a parallel pair motif in a sequential composition (Figure 

2.15).  These predictions were based on hits from pair, triplet and quartet sequence based 

HMMs.  Searches carried out using the structure-based HMMs led to prediction of 3D 

structure for the polypeptide sequence between the first and last CXXCH motifs, that is, 

between residues 15 and 79 (comprising 75 % of the total sequence).   This predication 

had an overall score of 34.18 and E-value of 2.0x10-5.  

The heme substructure and templates for the polypeptide structure were fed into 

MODELLER [Eswar et al  2006], along with spatial restraints on the geometries of heme-

coordinating residues i.e. the iron ligating histidine residues and cysteine residues of the 

CXXCH motif.  The modelled structure was superimposed with the crystal structure 

(Figure 2.16) resulting in an RMSD of 1.7 Å. The close correspondence of theoretical 

model and crystal structure provides support for the validity of the method. 

Figure 2.15 – The distribution of the HMM hits on the STC sequence, the dotted 
lines refer to the regions covered by HMMs from di-heme elbows (red), parallel 
pairs (blue), triplet cluster 1a (purple) and triplet cluster 1b (green). 
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Both Phyre and Swissmodel predictions for the STC were built using the STC from 

Shewanella oneidensis (PDB ID: 1M1Q [Leys et al  2002]) as a template; as a result the 

structures of the predicted models are very close to the crystal structure, despite the lack 

of heme groups, with RMSDs of 0.46 Å and 0.45 Å, respectively.  The I-TASSER 

prediction was built using the oxidised and reduced structures of the STC from 

Shewanella oneidensis (PDB IDs: 1M1Q and 1M1R respectively [Leys et al  2002]) as 

well as the NMR structure for the Shewanella Frigidimarina structure (PDB ID: 2K3V 

[Paixao et al 2008] ), resulting in a model with an RMSD of 0.70 Å to the crystal structure. 

 

2.3.11.2 Geobacter sulfurreducens GSU_1996 

 

 GSU_1996 is a multiheme cytochrome containing 12 heme groups.  Searches 

performed using the HMMs derived from the cytochrome c3-like SCOP family of clusters 

suggested the protein to be composed of a tandemly repeating array of four cytochrome 

c7 domains (identified by means of hits with a subcluster of pair cluster 4) but was unable 

to predict structures for the heme pairs linking each domain.  Searches with the HMMs 

derived from the di-heme elbow family of clusters suggested this inter-domain packing of 

hemes fell into the parallel pair heme motif substructure and was also able to provide a 

template for modelling of the structure of the connecting polypeptide chain (Figure 2.17).  

This predication had an overall score of 39.05 and E-value of 0.15. 

Figure 2.16 – A superposition of the modelled STC structure (Green) 
with the STC crystal structure (Cyan), showing the conservation in 
structure between the two models. 
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 This information was fed to MODELLER and a first generation model created. 

From this model, the identity of distal heme ligating residues could be ascertained by 

using a program written in JAVA to find the closest available ligand to the heme iron. It 

was found that 8 of the 12 hemes were bis-His ligated, while every 3rd heme was His-Met 

ligated. Spatial restraints were placed on the heme coordinating residues and a second 

generation model produced for the protein (Figure 2.18). 

 

 Comparisons between the modelled structure and the available experimental data 

provided subsequently by P.R.Pokuluri (Biosciences Division, Argonne National 

Figure 2.18 – A predicted model for the protein GSU_1996 as created using the 
prediction methodology described in this chapter. The hemes are displayed as 
magenta sticks and the amino acid backbone as a green cartoon. 
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Figure 2.17 – The distribution of the HMM hits on the GSU_1996 
sequence, the dotted lines refer to the regions covered by HMMs 
from parallel pairs (blue) and pair cluster 4 (orange). 
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Laboratory) has shown that the predicted structure has a good fit to the crystal structure if 

split up into two regions.  The first region, covering hemes 1-6, has an RMSD of 2.7 Å, 

while the second region, covering hemes 7-12, has an RMSD of 5.0 Å.  However, the 

predicted and crystal structures diverge at the point linking hemes 6 and 7 (Figure 2.19), 

with an RMSD of 15.4 Å for the complete structure. 

 

 The heme pair linking hemes 6 and 7 from the GSU_1996 crystal structure was 

compared with the existing heme pairs in the database by adding it to the complete list of 

heme pairs and recalculating the pair clusters to observe which, if any, cluster this pair 

was located in.  It was found that this domain linking pair motif had a novel heme packing 

geometry that was unlike any previously observed structures in the heme pair database.  

This demonstrates a limitation in the methodology as it is unable to handle structures with 

hitherto unseen heme packings. 

A B 

C 

Figure 2.19 – Alignments of the GSU_1996 predicted structure (Cyan) with the 
crystal structure (Green). (A) The alignment between the region of the protein 
covering hemes 1-6 (RMSD 2.7 Ǻ). (B) The alignment between the region of the 
protein covering hemes 7-12 (RMSD 5.0 Ǻ). (C)  The alignment between the 
region of the protein covering hemes 1-6 with the rest of the predicted model 
(RMSD 15.4 Ǻ) shown to demonstrate the diversion in the two structures. 
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 The Phyre and Swissmodel predictions for GSU_1996 were both built using  

hexadecaheme  cytochromes as templates, with the Phyre template coming from 

Desulfovibrio vulgaris Hildenborough (PDB ID: 1GWS [Czjzek et al  2002]) and the 

Swissmodel template coming from Desulfovibrio gigas (PDB ID: 1Z1N [Santos-Silva et al  

2007]), these structure had a 14 % and 17 % sequence identity to GSU_1996 

respectively.  The I-TASSER prediction was built using a nonaheme cytochrome c 

structure (PDB IDs: 1DUW [Umhau et al  2001]) two different hexadecaheme cytochrome 

structures (PDB IDs: 1Z1N and 2E84 [Shibata et al  2004]) and the structure of a zinc 

finger DNA binding protein (PDB ID: 2I13 [Segal et al  2006]) 

The predicted GSU_1995 structures contained no heme groups, which make up a 

large proportion of the final structure, and as a result the predicted structures were a very 

poor match to the crystal structure, with RMSDs of 25.2 Å for the Phyre prediction, 21.3 Å 

for the Swissmodel prediction and 22.07 Å for the I-TASSER prediction (Figure 2.20). 
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A 

B 

Figure 2.20 – Superposition of the GSU_1996 structure as predicted by (A) 
Phyre, (B) Swissmodel and (C) I-TASSER (all cyan), with the crystal structure 
(Green), due to the major differences between the structures, for clarity, only 
the surface of the crystal structure is shown. 

C 
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2.4 Discussion 
 
2.4.1 The distribution of heme motifs in multiheme proteins 
 

The results of clustering the heme pair motifs used in this analysis showed that the 

majority of pair clusters contain proteins from only one SCOP family [Murzin et al  1995]. 

The exception to this was the most populous cluster (corresponding to the di-heme elbow 

motif), which contained a mixture of heme pairs from the cytochrome c3-like (11 pairs) and 

di-heme elbow motif (19 pairs) SCOP family proteins, identifying an evolutionary link 

between the two families.  This also highlights an issue with the naming of the families in 

the SCOP database, as it seems counterintuitive that the di-heme elbow motif family 

would not contain all the hemes that contain the di-heme elbow heme pair motif.  The 

addition of non bis-His ligated pairs had little effect on the composition of the clusters with 

25 of the 27 extra heme pairs falling into unique clusters, suggesting these hemes have 

evolved unique packing arrangements to facilitate their functions as active site hemes.   

The clusters identified for the larger heme motifs (triplets, quartets and quintets) all 

contained proteins from only one SCOP family. This suggests that the packing of the 

hemes is specific to the function of the protein since the proteins in the cytochrome c3-like 

family function in electron transport and the proteins of the di-heme elbow motif family are 

predominantly enzymes.   

The clustering results have also shown that, for the dataset used in this analysis, 

all members of the di-heme elbow SCOP family contain both di-heme elbow pair and 

interacting parallel pair motifs, suggesting a functional relationship between the two.  In 

fact, almost all of the heme substructures observed in SCOP di-heme elbow family 

proteins can be built using sequential packing of these two motifs, with the addition of an 

active site motif if required to add enzymatic functionality. 

A recent investigation into the distribution of multiheme C-type cytochromes in 

prokaryotic organisms [Sharma et al  2010] that clustered a range of multiheme 

cytochrome sequences, identified several conserved multiheme cytochrome structures for 

six of the fifteen most populous clusters identified from their analysis.  These 

corresponded to; the Nitrite reductase NrfA, NrfB, hydroxylamine oxidase and 

tetrathionate reductase, that all contain sequential packings of di-heme elbows, parallel 

pairs and an active site pair (where required), NapB, that contains a single parallel pair 

and the di-heme cytochrome c that contains a single unique heme pair found in one 

structure in a single cluster in this chapter.  Their conclusions, with regards to the 

structural properties of multiheme cytochromes, were that the lack of structural templates 

for may of the clusters of multiheme cytochromes identified in their analysis would limit the 

structural characterisation of these multiheme cytochromes due to the inability to predict 

key factors such as the position and orientation of heme cofactors and their ligands 

[Sharma et al  2010].  Work in this chapter has shown that it is possible to break these 
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larger structures down into their component parts and use them to construct models 

based on the assembly of these component parts.  This method not only aids in the 

prediction of the polypeptide structure, but it crucially also predicts the position and 

orientation of the heme cofactors that are integral to the function of all multiheme 

cytochromes. 

 

2.4.2 Sequence-derived subclusters found in heme mo tif clusters 

 

The results of the subclustering analyses performed on the most populous heme 

clusters created subclusters based on both sequence and structural information for heme 

coordinating polypeptide. They identified a much greater homology between the 

sequences and structures of the cytochrome c3-like SCOP family of proteins, with the 

majority of clusters based on hemes from this family having very few polypeptide derived 

subclusters.  In contrast, the clusters based on di-heme elbow SCOP family proteins 

demonstrated much more variation in the linking polypeptide sequences, with many more 

polypeptide derived subclusters (See Tables 2.6-2.8).  This pattern fits with the 

observation of the more diverse functions of proteins from the di-heme elbow SCOP 

family. 

When the HMMs built from these subclusters were used to search sequences of 

unknown structure, it was found that the HMMs built using the heme coordinating PP 

sequences identified more valid hits than those built using the iron ligating PD sequences. 

This was due to the PD-based HMMs often giving a hit where neither or both of the 

histidine residues at each end of the hit were part of a CXXCH motif, these hits cannot be 

correct as each bis-His ligated iron must be ligated by one histidine from a CXXCH motif 

and one from another histidine found in any other region of the sequence that is not part 

of a CXXCH motif.  The reason for this problem is likely to be that a single histidine 

residue at each end of the HMM is not a sufficient enough sequence motif to insure the 

HMM hits in a valid section of the search sequence.  However, it appears that the CXXCH 

motif is sufficient enough to get consistent hits in desirable regions, as there were very 

few instances during this research of PP based HMM hits where the hit to the target 

sequence did not begin and end with a CXXCH motif. 
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2.4.3 Assessment of the MHC structure prediction me thod 

 

 The comparisons of the predicted STC and GSU_1996 models with the crystal 

structures for each protein have shown that the HMM based methodology developed 

during this work has the ability to predict at least partial protein structures with an 

acceptable degree of accuracy.  The predicted model for STC was close to that of the 

crystal structure over 75 % of the polypeptide chain (that between the first and last 

CXXCH motifs), with a final RMSD of 1.7 Å for the alignment of the two structures. 

 If separated into two regions the predicted model for GSU_1996 was close to the 

crystal structure over the first region covering hemes 1-6, as an RMSD of 2.7 Å would 

suggest, and the second region covering hemes 7-12 was also quite close to the crystal 

structure, with an RMSD of 5.0 Å.  However, taking the protein as a whole it was identified 

that the linking heme pair between these two regions of the protein in the crystal structure 

was very different to that in the predicted structure, with an RMSD of 15.4 Å for the whole 

structure.  An analysis of this linking heme pair has shown that it is unlike any previously 

observed during this work.  This demonstrates a limitation of the HMM based prediction 

methodology, as it is unable to factor in unique heme packing into its predictions. 

 The overall scores calculated for these models (34.18 for the STC and 39.05 for 

GSU_1996) suggest that they are both accurate predictions, with the GSU_1996 

prediction seemingly being more accurate due to its higher score.  However, the overall E-

values for each model (2.0x10-5 for the STC and 0.15 for GSU_1996) point towards the 

STC being the more accurately predicted structure, a finding which is confirmed by the 

RMSDs calculated from the alignments between the predictions and the crystal structures.  

This shows how both parameters are needed to make a judgement on the accuracy of 

any predictions and also provides some example overall scores and E-values for 

predictions of proven accuracy. 

 

2.4.4 HMM methodology vs existing prediction server s 

 

 The comparisons of the models predicted using the HMM based methodologies 

developed in this chapter and existing techniques available at the I-TASSER, Phyre and 

Swissmodel servers, identified specific advantages to the HMM based method.  The I-

TASSER, Phyre and Swissmodel servers may have made a more accurate prediction of 

the STC structure, as proved by RMSD’s of 0.701, 0.459 and 0.452 Å respectively, but the 

poorer performance of the HMM based method, which had an RMSD of 1.7 Å for its 

superposition to the crystal structure, is likely to be due to the removal of the close 

homologue that was in fact used as the template for the two structure prediction servers.  

However, these models were still missing the heme groups that the HMM based methods 

are able to generate, a feature that is lacking in all online prediction servers.  It should 
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also be noted that the inclusion of the close homologue to the HMM prediction 

methodology gave a final model with an RMSD fit of 0.389 Å to the crystal structure, a 

more accurate result than those generated by the online servers. 

 The inability of I-TASSER, Phyre and Swissmodel to incorporate heme into their 

predictions becomes even more of an issue during the prediction of GSU_1996.  The 

absence of any close homologue covering the whole of the protein caused severe 

problems for the Phyre and Swissmodel servers, with their final models having RMSDs of 

22.07, 25.2 and 21.3 Å when compared to the crystal structure.  The RMSD of 15.4 Å for 

the HMM based model may not seem significantly better, but the HMM model was shown 

to be a close match to the crystal structure over the two separate halves of the protein, 

and was only let down in its ability to predict the novel heme packing between hemes 6 

and 7.  In contrast, the models generated by I-TASSER, Phyre and Swissmodel had no 

such regions of close homology, this is likely to be due to their lack of heme incorporation, 

since in heme rich proteins such as GSU_1996, the heme substructure is likely to be the 

primary  driving force in the overall protein structure.  

 

At the most recent CASP (Critical Assessment of Techniques for Protein Structure 

Prediction) event (CASP 8) [Moult et al 2009] the I-TASSER server was determined to be 

the most accurate of the structural prediction servers (Figure2.21). The methods 

described in this chapter appear to provide a novel and useful first solution to the problem 

of predicting the three dimensional structures of multiheme cytochromes – a problem 

beyond the limitations of current structure prediction servers. 

 
 
 
 
 

Figure 2.21 – An excerpt from the Group performance table from the CASP 
website (http://predictioncenter.org/casp8/groups_analysis.cgi), with the position 
of the Zhang-Server (I-TASSER) highlighted in yellow. GR numbers with an S 
next to them refer to groups taking part in the server-CASP experiment, where the 
results are produced by automated servers. 
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Chapter 3 - A study of multiheme cytochromes from t he 
cytochrome rich bacterial species Shewanella oneidensis and 
Geobacter sulfurreducens 
 

3.1 Introduction 

 

The Geobacter and Shewanella species of proteobacteria are of interest to the 

scientific community due to their novel electron transfer capabilities, their ability to 

generate electricity from waste organic matter and their role in bioremediation of 

contaminated environments [Giometti 2006] . 

Geobacter sulfurreducens is a species of the Geobacteraceae family; they are 

comma shaped, gram negative, anaerobic bacteria that have been found as a 

predominant microbial component of diverse subsurface environments, including aquatic 

sediments, pristine deep water aquifers and petroleum-contaminated shallow aquifers 

[Coates et al 1996].  The complete genome sequence of G.sulfurreducens is 3.8 mega-

bases in size and encodes a predicted 3466 proteins. 

 Shewanella oneidensis is a species of the Shewanellaceae family; they are gram 

negative bacteria that have the ability to grow both aerobically and anaerobically.  First 

isolated in Lake Oneida, S.oneidensis is found predominantly in aquatic environments, 

thriving equally well near the water surface using oxygen for respiration or at the bottom of 

the water using iron or manganese oxides as electron acceptors [Myers and Nealson 

1988].    A multi-component branched electron transport system utilizing a variety of c-

type cytochromes, reductases, iron-sulfur proteins and quinines is thought to be the 

reason for this respiratory versatility [Richardson 2000] .  The complete genome 

sequence of S.oneidensis is 5.0 mega-bases in size and encodes a predicted 4758 

proteins [Heidelberg et al 2002]. 

 This chapter analyses the proteomes of S.oneidensis and G.sulfurreducens, 

identifying the multiheme cytochromes in each, predicting the structures of a subset of 

these cytochromes and using these structures to infer putative functional properties of 

these proteins. 
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3.2 Materials and Methods 

 

3.2.1 Identification of multiheme cytochromes 

 

Identification of multiheme cytochromes was performed using the Comprehensive 

Microbial Resource (CMR) server [Peterson et al 2001] to search for specific sequence 

motifs in the Shewanella oneidensis and Geobacter sulfurreducens genomes.  Multiheme 

cytochromes were identified using the search term [C].{2}[C][H], which corresponds to the 

known heme binding CXXCH motif.  This process was repeated for both the CXXXCH 

([C].{3}[C][H]) and CXXXXCH ([C].{4}[C][H]) motifs, both of which have been observed as 

heme binding motifs [Aubert et al 1998, Pattarkine et al 2006].  The resulting lists of 

sequences were interrogated to remove all cytochromes containing only a single heme, 

leaving only the multiheme cytochromes. 

 

3.2.2 Automation of prediction methodology  

 

In order to streamline the structural prediction methodologies developed in 

Chapter 2 it was necessary to automate the prediction process, as the manual searching 

of each sequence with each Hidden Markov Model (HMM) would be very time consuming.  

This automation was achieved by writing a PERL script to read in a sequence file 

containing a single or multiple sequences, execute hmmsearch (part of the HMMER 

package [Eddy 1998] ) and use it to search against the sequence(s) in this file with all the 

available HMMs or a subset if preferred (e.g. just the HMMs derived from the di-heme 

elbow family or cytochrome c3-like SCOP families).  This program outputs a single file 

with a summary of the hits for each of the HMMs against the sequence(s) of interest 

containing the identity of the HMM responsible for each hit, the start and end residue 

numbers of the hit in the protein sequence, the score and the E-value. 

A second PERL script takes this information and plots the position of the HMM hits 

against the protein sequence in a graphical format, to give an “at-a-glance” overview of 

the prediction for each sequence (Figure 3.1).  These outputs can be used to identify 

target protein sequences that are likely to be good candidates for prediction, i.e. a protein 

with significant HMM coverage will give a more complete structural prediction than a 

protein where there are very few or contradicting HMM hits. 
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3.2.3 Creation of 3D structural models from selecte d sequence targets 

 

Once likely targets had been identified by the method set out in section 3.2.1, the 

same methodologies set out in Chapter 2 were used to create a 3D model, using the 

JAVA code to build a heme substructure and MODELLER to incorporate the identified 

polypeptide templates. 

 

3.2.4 Structure validation 

 

 All structural validation was carried out using the PROCHECK [Laskowski et al 

1993] software at the Joint Center for Structural Genomics (JCSG) server 

(http://www.jcsg.org/prod/scripts/validation/sv2.cgi). 

 

3.3 Results 

 

3.3.1 Breakdown of multiheme cytochromes found in Shewanella oneidensis   

 

 In total 34 putative multiheme cytochromes with either CX2CH, CX3CH or CX4CH 

heme binding motifs were identified in the Shewanella oneidensis genome, ranging from 

2-10 hemes in size.  A graphical breakdown of the distribution of the identified protein 

sequences can be seen in figure 3.2. 

Figure  3.1 – An example output of the automated HMM searching 
software.  A schematic representation of the primary sequence is 
displayed as a grey bar, with the position of the hemes highlighted in 
yellow.  The hits found with the di-heme elbow (red), parallel pair 
(blue), triplet (green) and quartet (magenta) based HMMs are shown 
as coloured bars, the scores and E-values are also displayed. 
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3.3.2 Breakdown of multiheme cytochromes found in Geobacter 
sulfurreducens  
 

In total, 85 multiheme cytochromes were identified in the Geobacter 

sulfurreducens genome, ranging from 2-35 hemes in size. A graphical breakdown of the 

distribution of the identified protein sequences can be seen in figure 3.3. 

 

 
 

Figure 3.3 – The distribution of multiheme cytochromes in the Geobacter 
sulfurreducens genome, this graph shows the number of heme binding motifs 
against the number of proteins with that specific numbers of motifs. 
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Figure 3.2 – The distribution of putative multiheme cytochromes in the 
Shewanella oneidensis genome, this graph shows the number of heme binding 
motifs against the number of proteins with that specific numbers of motifs. 
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3.3.3 Structure predictions for multiheme cytochrom es from Shewanella 
oneidensis  and Geobacter sulfurreducens  
 

 Heme substructure and polypeptide template predictions were made for each 

multiheme cytochrome identified in Shewanella oneidensis and Geobacter sulfurreducens 

using the automated HMM software.  From these predictions, a subset were chosen for a 

more thorough examination.  These proteins were then selected either for their relevance 

to other research groups at UEA (in the case of MtrA, MtrC and MtrF), the quality of their 

initial prediction (in the case of GSU_0357) or their unusual nature (in the case of 

GSU_2210). 

 

3.3.3.1 Structure prediction for the Shewanella oneidensis  decaheme 
cytochrome MtrA 
 

The results of the HMM searches on the MtrA sequence resulted in a prediction for 

the heme substructure encompassing all ten hemes.  This substructure consisted of four 

di-heme elbow motifs and five parallel pair motifs arranged alternately in series along the 

length of the protein sequence.  Templates for polypeptide structures were identified 

between residues 67 and 317, accounting for 84 % of the total protein sequence (Figure 

3.4A).  This prediction had an overall score of 9.42 and E-value of 9.75x10-5.  Validation of 

the final predicted 3D-structure showed that only 1.4 % of non-glycine and non-proline 

residues fall into the disallowed regions of the Ramachandran plot (Figure 3.4B). 
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Figure 3.4 – (A) A model for the 3D-structure of MtrA, covering all ten 
hemes and residues 67-317 (84% of the total structure).  The hemes are 
displayed as magenta sticks, the polypeptide structure in cartoon format 
and a transparent protein surface is also shown. (B) A Ramachandran plot 
for the MtrA structure. 74.3% of residues are in the most favoured regions, 
16.7% in additionally allowed regions, 7.7% in generously allowed regions 
and 1.4% in disallowed regions. 

A 
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3.3.3.2 Structure predictions for the Shewanella oneidensis  decaheme 
cytochromes MtrC and MtrF 
 

 MtrC and MtrF are homologous decaheme cytochromes (27.2 % identity, 39 % 

similarity), both of which have their heme binding CXXCH motifs separated into two 

groups of five separated by 197 amino acids in MtrC and 170 in MtrF.  MtrC is of particular 

interest as it has been shown to form a complex with MtrA and MtrB [Hartshorne et al 

2009].  The results of the HMM searches on the MtrC sequence predicted a heme 

substructure for all ten hemes, with two di-heme elbows and two parallel stacking pair 

motifs arranged sequentially in series for each group of five hemes.  The first heme 

domain begins with a di-heme elbow motif and the second with a parallel pair motif 

(Figure 3.5). 

 

 Assignment of templates for the MtrC polypeptide structure prediction was of 

limited success, with templates identified for the regions covering hemes 1-2, 3-4 and 6-7 

only (Figure 3.6), equating to only 11 % of the complete structure. 
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Figure 3.5 – The heme substructure for the first (A) and second (B) 
heme domains of MtrC. The heme numbers refer to the order in which 
the heme binding CXXCH motifs appear in the sequence. 
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 In an attempt to get a more complete structural prediction for this type of 

decaheme cytochrome, a model was built for the homologous protein MtrF.  The HMM 

searches once again predicted a heme substructure for all ten hemes, this substructure 

was found to be the same as that predicted for MtrC (Figure 3.5).  Templates for 

polypeptide structure were again limited, although there were more templates for 

polypeptide structure identified for the first heme domain, with hemes 1-3 and 4-5 

covered, although only hemes 6-7 where covered from the second domain (Figure 3.7), 

equating to 16 % of the complete structure in total. 

 

 

 The overall scores for the MtrC and MtrF predictions were 0.11 and 4.44 

respectively, while the overall E-values were 0.17 and 0.12 respectively.  This would 

suggest that these are not highly accurate predictions 

 

 

A 
 

B 
 

 

Figure 3.7 –  The predicted polypeptide structure, displayed in cartoon 
format, for; (A) MtrF heme domain 1 and (B) MtrF heme domain 2, 
covering 16% of the total sequence. 

A 
 

B 
 

 

Figure 3.6 –  The predicted polypeptide structure, displayed in cartoon 
format, for; (A) MtrC heme domain 1 and (B) MtrC heme domain 2, 
covering 11% of the total sequence. 



 81

3.3.3.3 Structure prediction for the Geobacter sulfurreducens  27-heme 
cyochrome, GSU_2210 
 

 The results of the HMM searches against the GSU_2210 sequence resulted in a 

prediction for the heme substructure of all 27 hemes.  This substructure consisted of nine 

repeats of the three heme cytochrome c7 domain, linked by eight parallel stacking pair 

motifs, templates for polypeptide were also identified between residues 30 and 684, 

accounting for 95 % of the total protein sequence (Figure 3.8).  The prediction had an 

overall score of 21.36 and E-value of 0.014.  The structure had a helix-like superstructure, 

with six c7 domains per turn of the helix, with a diameter of 67.3 Å. 

Validation of this predicted structure identified only 4.8 % of non-glycine and non-

proline residues as falling into the disallowed regions of the Ramachandran plot (Figure 

3.8C), most of which fall in the regions of the structure that link every other c7 domain, i.e. 

the 2nd, 4th, 6th and 8th parallel pairs of the structure.  
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Data provided subsequently by P.R.Pokuluri (Biosciences Division, Argonne 

National Laboratory) concerning the structure of the homologous protein GSU_1996 that 

contains six repeats of the cytochrome c7 domain (see chapter 2 section 2.3.10.2), 

suggested a discrepancy between the predicted structure of GSU_2210 and the true 

structure, this change centred around a difference in heme packing between hemes 6 and 

7 of the homologous GSU_1996 structure (the heme pair linking the 2nd and 3rd c7 

domains.  With this in mind, a second model for GSU_2210 was constructed using the 

Figure 3.8 – The first predicted model for GSU_2210, displaying (A) the side-on 
view and (B) the view down the “super-helix” created by the global fold of the 
protein, covering all 27 hemes and residues 30-684 (95% of the total structure). 
The hemes are displayed as magenta sticks, the polypeptide structure in 
cartoon format and a transparent protein surface is also shown. (C) A 
Ramachandran plot for the GSU_2210 structure. 75.6% of residues are in the 
most favoured regions, 14.6% in additionally allowed regions, 5.0% in 
generously allowed regions and 4.8% in disallowed regions. 
 

A B 

C 
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alternate heme packing motif identified in GSU_1996 to replace the original prediction of 

parallel heme pairs between every other cytochrome c7 domain repeat in the structure 

(Figure 3.9). This resulted in a more ‘open’ helix-like superstructure than the previous 

model, with the nine c7 domains not being enough to complete a turn of the helical 

superstructure.  In fact 10 would be needed for one complete turn of the helical 

superstructure, which would have an increased diameter of 101.8 Å. 

Validation of this predicted structure identified only 2.3 % of non-glycine and non-

proline residues fall into the disallowed regions of the Ramachandran plot (Figure 3.9C). 
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Figure 3.9 – The second predicted model for GSU_2210 built using the 
template for the novel heme pair, identified in GSU_1996, to link every third c7 
domain. Displaying; (A) the side on and (B) the top down views, covering all 27 
hemes and residues 30-684 (95% of the total structure).  The hemes are 
displayed as magenta sticks, the polypeptide structure in cartoon format and a 
transparent protein surface is also shown. (C) A Ramachandran plot of the 
alternative GSU_2210 structure. 81.5% of residues are in the most favoured 
regions, 12.8% in additionally allowed regions, 3.4% in generously allowed 
regions and 2.3% in disallowed regions. 
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C 



 85

3.3.3.4 Structure prediction for the Geobacter sulfurreducens  octaheme 
cytochrome GSU_0357 
 

The results of the HMM searches on the GSU_0357 sequence predicted a heme 

substructure for all eight hemes.  This substructure consisted of three di-heme elbow 

motifs, three parallel stacking pair motifs and an active site heme pair.  Templates for 

polypeptide structure were identified between residues 18 and 399, accounting for 75 % of 

the total protein sequence (Figure 3.10A).  The prediction overall score of 52.88 and E-

value of 2.33x10-5.Validation of this predicted structure identified only 0.6 % of non-glycine 

and non-proline residues as falling into the disallowed regions of the Ramachandran plot 

(Figure 3.10B). 

A search of the Dali database using DaliLite V3 [Holm and Rosenström 2010]  

with the predicted GSU_0357 structure found it to be most similar to the various eight 

heme cytochrome c nitrite reductase structures present in the database, with the highest 

similarity to chain A of the Thiolkalivibrio nitratireducens nitrite reductase structure (PDB 

ID: 2OT4 [Polyakov et al 2009]) that has 49 % sequence identity and an RMSD of 0.6 Å 

to the GSU_0357 model. 
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Figure 3.10 – (A) The predicted structure for GSU_0357, covering all eight hemes 
and residues 18-399 (75% of the total structure). The hemes are displayed as 
magenta sticks, the polypeptide structure in cartoon format and a transparent 
protein surface is also shown. (B) A Ramachandran plot of the MtrA structure. 
86.0% of residues are in the most favoured regions, 12.2% in additionally allowed 
regions, 1.2% in generously allowed regions and 0.6% in disallowed regions. 
 

A 
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3.3.3.5 Structural prediction for the Geobacter sulfurreducens  five heme 
cytochrome GSU_3223 
 

The results of the HMM searches on the GSU_3223 sequence predicted a heme 

substructure for all five hemes.  This substructure consisted of two di-heme elbow motifs, 

two parallel stacking pair motifs arranged sequentially in series.  Templates for 

polypeptide structure were identified between residues 88 and 183, accounting for 49 % of 

the total protein sequence (Figure 3.11A).  The prediction overall score of 4.69 and E-

value of 0.09.  Validation of this predicted structure identified only 5.1 % of non-glycine 

and non-proline residues fall into the disallowed regions of the Ramachandran plot (Figure 

3.11B). 

A search of the Dali database using DaliLite V3 [Holm and Rosenström 2010]  

with the predicted GSU_3223 structure found it to be most similar to the various 

cytochrome c nitrite reductase NrfHA complex structures in the database, with the highest 

similarity to chain L of the Desulfovibrio vulgaris NrfHA complex (PDB ID: 2J7A 

[Rodrigues et al 2006]) that has 16 % sequence identity and an RMSD of 4.8 Å to the 

GSU_3223 structure. 
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 A BLAST search performed using the GSU_3223 sequence identified a region to 

the N-terminal side of the heme binding region that was homologous to the copper binding 

region of the copper specific repressor CsoR from Mycobacterium tuberculosis (PDB ID: 

2HH7 [Liu et al 2007]) (34 % identity over a 37 residue region).  In the CsoR structure the 

Figure 3.11 – (A) The predicted structure for GSU_3223, covering all 5 hemes 
and residues 88-183 (49% of the total structure). The hemes are displayed as 
magenta sticks, the polypeptide structure in cartoon format and a transparent 
protein surface is also shown. (B) A Ramachandran plot of the MtrA structure. 
76.9% of residues are in the most favoured regions, 16.7% in additionally allowed 
regions, 1.3% in generously allowed regions and 5.1% in disallowed regions. 
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copper is bound to the protein by a cysteine residue found at the N-terminal end of the 

second α-helix of a three α-helix domain (Figure 3.12A).   

 

A secondary structure prediction for GSU_3223 (calculated using PSI-PRED 

[Jones 1999, Bryson et al 2005]) identified three N-terminal α-helices in positions 

equivalent to those in CsoR, although there is a large 25 residue insertion between the 

first and second α-helix.  Also conserved between GSU_3223 and CsoR are the copper 

binding cysteine (Cys36), the preceeeding tyrosine and proceeding valine and aspartic 

acid residues, suggesting GSU_3223 could potentially have copper binding properties.  

Although in order to bind copper in a fashion similar to that observed in CsoR, GSU_3223 

would need to dimerise forming an anti-parallel four helix bundle with a trigonally 

coordinated copper complex stabilised by two cysteine and one histidine residues (Figure 

3.12B) [Liu et al 2007], which would be unlikely given the lack of residues homologous to 

His61 and Cys65 from CosR in the GSU_3223 sequence.  However, there are two 

cysteine residues at the C-terminal end of the first predicted α-helix of GSU_3223 that 

could potentially provide sufficient ligands to bind the copper if the helical packing is 

similar to that observed in CosR, using these residues would also not require GSU_3223 

to for a homodimer to bind the copper. 

 

 

 

 

 

 

 

 

 

Figure 3.12 – (A) The structure of a monomer of copper bound CsoR showing 
the position of copper binding at the N-terminal end of the second α-helix and the 
residues involved in copper coordination in the homodimer.  (B) The residues 
involved in Cu(I) coordination at the dimer interface.  The polypeptide backbone 
is displayed in cartoon format, the copper binding residues in stick format, the 
Cu(I) ion as a sphere and the N and C termini are also labelled for one of the 
monomers. 
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3.4 Discussion 

 

3.4.1 What can be learnt from the predicted structu re of MtrA? 

 

The decaheme cytochrome MtrA is known to interact with the membrane bound 

protein MtrB [Ross et al 2007, Hartshorne et al  2009] and it has also been shown to 

interact directly with the extracellular decaheme cytochrome MtrC [Hartshorne et al  

2009].  The current schematic for the MtrCAB complex (Figure 3.12), based on the 

observations of Hartshorne et al [2009] , is that the complex receives electrons from the 

quinol pool via an electron transfer protein, such as CymA, these electrons are transferred 

thorough MtrA to MtrC using MtrB to hold the complex together.  The overall score (9.42) 

and in particular the overall E-value (9.75x10-5) for the predicted model of MtrA suggests it 

is a reasonably accurate prediction and thus can be used to help shed light on the nature 

of this complex. 

 

 

FepA [Buchanan et al  1999] is a 22 strand β-barrel membrane protein with a 

cavity diameter of 30 Å. If we divide the diameter by the number of β strands we get a 

contribution of 1.36 Å from each strand.  MtrB is a 28 strand porin, so by multiplying the 

contribution from each β strand by the number of β strands, we get an approximate cavity 

diameter of 38 Å for MtrB.  The predicted structure for MtrA has a diameter of ~30 Ǻ for 

~68 Å of the protein from the C-terminal end and ~40 Å for the remaining 29 Å of the 

Figure 3.1 2 – A schematic for the electron transfer complex MtrCAB and 
the role it plays in the transfer of across the outer membrane, showing 
MtrA inserting into MtrC, allowing it to transfer electrons to MtrC for iron 
reduction. 
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length of the protein at the N-terminal end (Figure 3.13).  This suggests that MtrA may be 

able to insert into the β-barrel of MtrB, but only for an approximate 68 Å region 

incorporating the C-terminus, the remaining protein covering the N-terminal end of MtrA 

appears too wide to insert into MtrB.   

Although it should be noted that 34 residues from the N-terminus and 12 residues 

from the C-terminus are not included in the model for MtrA as there was no template for 

the polypeptide in these regions.  These missing residues are likely to have some 

influence on the dimensions of the model, although the small number of residues missing 

at the C-terminal shouldn’t affect the dimensions of the protein to the point that it no longer 

fits into the proposed MtrB β-barrel. 

 

 This hypothetical structure for an MtrAB complex fits in with the known role of the 

MtrCAB complex as a complex responsible for the transport of electrons across the outer 

membrane [Ross et al  2007].  The close packing of hemes in the MtrA structure would 

allow electron transfer along the length of the protein via the heme groups. The 

dimensions of MtrA relative to the predicted dimensions of MtrB would allow MtrA to insert 

into MtrB to reduce the electron transfer distance between MtrA and MtrC, resulting in 

electron transfer between MtrA and MtrC, using MtrB as a sheath (Figure 3.12). 

 

 

 

 

 

~40 Å ~30 Å 

~68 Å 

~97 Å 

Figure 3.1 3 – The approximate dimensions of the predicted structure for MtrA, 
showing the ~68 Å portion of the protein at the C-terminal end of the protein 
with a sufficiently small diameter to fit into the lumen of the MtrB channel. The 
hemes are displayed as magenta sticks, the polypeptide structure in cartoon 
format and a transparent protein surface is also shown. 

~29 Å 
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3.4.2 What can be learnt form the predicted structu res for MtrC and MtrF 

 

 The predicted structures for MtrC and MtrF suggest that both proteins incorporate 

close packings of hemes, providing them with the potential for electron transport 

properties, which would be expected given the role presumed of MtrC as a reducing agent 

for external electron acceptors, such as Fe(III) [Shi et al  2007].  The protein sequence 

would suggest these hemes are grouped into two domains of five hemes due to the 185 

residue gap between the 5th and 6th hemes, but as there was no prediction for this 

interlinking sequence, it was unclear from the analysis whether these two heme domains 

are in contact with each other (i.e. within the minimum electron transfer distance of 14 Å).  

The overall scores and E-values for the MtrC and MrtF structures suggests the predictions 

are not that close to their actual structures, this is confirmed by an analysis of early 

crystallographic data for MtrC. 

A novel heme substructure has been proposed for MtrF using crystallographic data 

collected and refined to 3.5 Å by Tom Clarke (UEA) (Figure 3.14A).  The heme 

substructure identified in this medium-low resolution dataset (Figure 3.14B) does contain 

some previously identified heme pair packing motifs. For example, the packing between 

heme pairs 1-2 and 4-5 appear to be parallel pair-like, while the packing between hemes 2 

and 3 appear to be di-heme elbow-like. However, the heme packing between hemes 3 

and 4 is novel, thus making it impossible to predict by the methods set out in this thesis. 



 93

 

 

 

 

 

 

 

 

1 
2 

3 

4 

5 

6 
7 

8 

9 

10 

Figure 3.1 4 – Structures of (A) the polyalanine model for MtrF, provided by 
Tom Clarke (UEA) and (B) the heme substructure for the 1st heme domain. 
The hemes are numbered in the order in which their CXXCH motifs appear 
in the protein sequence. The hemes are displayed as magenta sticks, the 
polypeptide structure in cartoon format and a transparent protein surface is 
also shown. 
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3.4.3 What can be learnt from the GSU_2210 structur al model? 

 

The predicted models for GSU_2210 form what could be described as “molecular 

wires”, close packing of hemes that allow electron transfer over long distances. The 

complete structure for proteins homologous to GSU_2210 that are built from repeating 

linked cytochrome c7 domains have been difficult to crystallise, with currently only the 

structure of individual domains having been published [Pokkuluri et al 2004].  This 

difficulty in crystallising the complete proteins may point towards flexibility between the 

individual c7 domains, a flexibility that has been suggested by the predicted models for 

GSU_2210.  Both of these models appear to be plausible solutions for the GSU_2210 

structure, with the first prediction based solely on HMM hits having and overall score and 

E-value that suggest it is a reasonably accurate prediction and both this prediction and the 

second that incorporated the novel packing identified in GSU_1996 by Pokkuluri et al 

performing well in structural validation checks. This would suggest that the final structure 

for GSU_2210 may have a certain amount of flexibility, allowing for subtle changes in the 

packing of the c7 domains and thus a flexible pathway for electron transport, although it is 

unlikely the degree of flexibility will be to the extent shown in the two predicted structures. 

It has also been proposed that cytochromes with high heme contents, such as the 

27 heme protein GSU_2210 and dodecaheme protein GSU_1996, can act as capacitors 

that enhance the electron storage capacity of the bacterial periplasm [Morgado et al  

2009].  It is thought this capacitance can permit continued electron flow from the inner 

membrane to the periplasm, generating the energy that could be used to create a proton 

motive force to power the flagella motors, moving the organism to locate new external 

terminal electron acceptors once the current supply becomes exhausted [Esteve-Nunez 

et al  2008].  The predicted periplasmic location (based on the location of the protein in 

separated cell fractions [Ding et al  2006]), predicted extended helical structure and 

apparent flexibility of GSU_2210 are likely to aid in the distribution of electrons about the 

organism, fitting in with Morgado et al’s hypotheses. 

 

3.4.4 What can be learnt from the GSU_0357 structur al model? 

 

 The structure for GSU_0357 is an example of an application of the HMM 

methodology on an active site containing protein, in this case a cytochrome c nitrite 

reductase.  The high overall score, low overall E-value and an RMSD value of 0.13 Å from 

a superposition of the predicted model of GSU_0357 with the crystal structure of the 

homologous Thiolkalivibrio nitratireducens cytochrome c nitrite reductase suggest the 

prediction is very accurate and highlights the structural conservation between this family 

of enzymes. 
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3.4.5 What can be learnt from the GSU_3223 structur e? 

 

 The structure for GSU_3223 is novel example of a protein that appears to contain 

both a chain of C-type hemes, as suggested by the presence of the five CXXCH motifs 

and by positive hits against heme packing HMMs, as well as a CsoR-like copper binding 

domain N-terminal to the heme binding domain. 

 The presence of the CsoR-like copper binding domain and the predicted location 

of the three N-terminal α-helices, also found in the CosR structure, in the GSU_3223 

sequence suggest it could potentially have copper-binding properties, although the 

absence of the other copper binding cysteine and histidine residues at the C-terminal end 

of the second α-helix would dispute this.  However, the GSU_3223 sequence does 

contain two cysteine residues at the C-terminal end of the first α-helix, which would be in 

close proximity to the copper binding site if the helical packing is homologous to that 

observed in CsoR, which could potentially provide the necessary ligands for the copper. 

There are currently no structures for proteins homologous to GSU_3223 available 

in the PDB, therefore, despite it’s relatively low overall score (4.69) and high E-value 

(0.09), this prediction does shed some light on the basic structure of this novel 

cytochrome, which would certainly be worth further investigation. 
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Chapter 4 - The structures of two stoichiometries o f the copper 
chaperone CopZ and mechanistic insights into Cu(I) transfer 
between CopZ and its cognate Cu(I)-transporting P-t ype ATPase, 
CopA  
 
 

4.1 Introduction 
 
A range of distinct Cu(I)-binding forms of CopZ from B.subtilis have been 

determined in solution by Kihlken et al. Using UV visible absorbance spectroscopy and 

analytical ultracentrifugation (AUC) they identified three distinct dimeric forms of CopZ 

containing; 1, 2, and 3 Cu(I) ions respectively [Kihlken et al 2002]. These findings were 

based on absorbance changes at 265nm during addition of Cu(I) (in the form of CuCl) to 

apo-CopZ (in aliquots of ~0.07 Cu(I) per CopZ monomer) that identified three distinct 

phases of binding at the 0.5, 1.0 and 1.5 Cu(I) per monomer levels, and AUC experiments 

carried out with each of the three distinct copper loaded species that indicated the 

formation of dimers in solution [Kihlken et al 2002]. 

This chapter reports the results of crystal structure analyses on two of the Cu(I)-

binding forms, the 1 Cu(I) dimer and the 2 Cu(I) dimer, although interestingly these were 

not the forms found in the crystal structures.  The 2 Cu(I) dimer gave a crystal structure 

with a homodimer containing a tetranuclear copper cluster (hereafter referred to as 

Cu4(CopZ)2) and the 1 Cu(I) dimer gave a crystal structure with a homotrimer containing a 

trinuclear cluster (hereafter referred to as Cu3(CopZ)3).  These structures are analysed 

and compared with other copper transport proteins.  

An additional experiment was also performed based on work by Einsle et al 

[Einsle et al 2007] to ascertain the oxidation state of the four coppers in the tetranuclear 

cluster of the Cu4(CopZ)2 structure.  This involved performing a fluorescence scan on a 

Cu4(CopZ)2 crystal and collecting multiple datasets across the copper X-ray absorption 

edge and collectively refine the anomalous scattering factors of these datasets. 

After unsuccessful attempts to acquire a crystal structure from CopA, a homology 

model was created to analyse potential methods for CopA’s interaction with CopZ.  These 

analyses were based on substituting CopZ monomers from the Cu4(CopZ)2 and 

Cu3(CopZ)3 structures with the homology model for CopA and examining the properties of 

the protein-protein interface. 
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4.2 Materials and Methods  
 
4.2.1 The structure of the P1 crystal form of Cu 4(CopZ)2 
 
4.2.1.1 Crystallisation 
 

A protein solution of CopZ, determined by luminescence spectroscopy to contain a 

dimeric form of CopZ binding two Cu(I) ions (data not shown), was provided by Liang 

Zhou (UEA).  Previous work with this form of the protein had shown that crystals would 

grow in a solution containing; 0.1M sodium acetate pH 4.6, 0.2 M CaCl2 and 30 % (v/v) 

propan-2-ol, at a temperature of 4 °C.   

Crystals were grown using the hanging drop vapour diffusion technique, utilising 

drops containing 2 µl of the concentrated CopZ solution and 2 µl of the crystallisation 

solution, equilibrated against a 1000 µl reservoir of the crystallisation solution at a 

temperature of 4°C.  Crystals of typical dimensions  250-450 µm grew from these 

experiments within 1-3 days.  However, it was found that crystals grown under these 

conditions rapidly degraded on exposure to air, due to evaporation of isopropanol.   

In an attempt to reduce exposure to air, a vapour batch method for crystallisation 

adapted from that used by Mortuza et al [Mortuza et al 2004] was implemented (Figure 

4.1).  A Terasaki plate (Molecular Dimensions Ltd)  was glued into a square Petri dish; 8 

ml of silicone oil was poured over the wells, 4 µl of a solution containing a 1:1 mixture of 

concentrated CopZ solution (14.5 mg ml-1) and crystallisation solution was pipetted into 

the wells, under the oil layer.  30 ml of a 30 % (v/v) propan-2-ol solution was poured into 

the Petri dish, the plate was sealed with Parafilm and incubated at 4°C.  Plate crystals with 

maximum dimensions of 80-400 µm grew within 5-7 days. 

 
Two different crystals forms were produced by the different crystallisation 

techniques, with the vapour batch diffusion technique producing plate crystals and the 

standard vapour diffusion technique producing more three dimensional crystals. 

 
 
 

     
Figure 4. 1 – A representation of the method used for crystallis ation of 
Cu4(CopZ) 2. A Terasaki plate was glued into a square Petri dish; 8 ml of 
silicone oil (yellow) was poured over the wells, 4 µl of a 1:1 protein 
solution/crystallisation solution (red) was pipetted under the oil, 30 ml of a 30 
% (v/v) propan-2-ol solution (blue) was poured into the dish around the 
plate, the dish was sealed with Parafilm and incubated at 4 °C. 
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4.2.1.2 Crystal harvest optimisation and data colle ction 
 

When harvesting the crystals grown by vapour batch diffusion, several methods 

were experimented with to decide which produced the best quality crystals most suitable 

for data collection that would reduce the exposure to air and sufficiently cryoprotect the 

crystals (all harvesting was undertaken at 4°C).  T he best results were obtained from 

crystals harvested by injecting a cryoprotecting solution of 20 % (v/v) ethylene glycol 

directly into the drop, under the oil layer, through which the crystals were extracted by 

mounting in a free standing film using a LithoLoop (Protein Wave Corp, Japan) and 

immediate cryocooling via rapid immersion into liquid nitrogen.  Thus, keeping the crystals 

under the protective oil layer for as long as possible to reduce exposure to air. 

Several methods were also tested for harvesting the hanging drop vapour diffusion 

grown crystals.  The best method found was to remove a small amount of the mother 

liquor from the drop and replace it with an excess of a cryoprotecting solution (typically 4-

16 µl of the mother liquor plus 20-30 % (v/v) ethylene glycol), thus removing the need to 

transfer crystals to a separate drop containing the cryoprotecting solution, which would 

have increased their exposure to air, leading to degradation via isopropanol evaporation. 

Crystals were quickly mounted in a free standing film using a LithoLoop (Protein Wave 

Corp, Japan) and immediate cryocooling via rapid immersion into liquid nitrogen. 

 X-ray diffraction datasets were collected at the SRS (Daresbury Laboratory, UK) 

on station 10.1 using a MAR225 CCD detector.  From crystals grown by the vapour batch 

diffusion technique, a SAD dataset was collected at the copper K-edge (λ = 1.379 Å, 8.99 

keV), with a detector distance of 135mm and an exposure time of 8 seconds per image.  

360 1° oscillations about the goniometer Φ axis were recorded.  As well as these full 

datasets a Cu fluorescence scan was performed on the crystal before the data collection.  

A SAD dataset was also collected from a crystal grown by the vapour diffusion technique 

at the copper K-edge (λ = 1.382 Å, 8.97 keV), with a detector distance of 120 mm and an 

exposure time of 8 seconds.  180х1° oscillations about the goniometer Φ axis were 

recorded.  A Cu-K fluorescence scan was also performed on this crystal. 

 
4.2.1.3 Structure determination and refinement 

 
Analysis of a SAD dataset collected from a crystal grown using the vapour batch 

diffusion technique using MOSFLM [CCP4 1994]  suggested the space group was of a 

triclinic crystal system.  XPREP [Sheldrick 1991]  was used for preliminary space group 

determination, suggesting a P1 space group.  The data was scaled using SCALA [CCP4 

1994, Kabsch 1988]  and the space group confirmed to be P1.  Molecular replacement 

was carried out with MOLREP [CCP4 1994] using the existing CopZ NMR structure as a 

search model.   Initial structure refinement was carried out using REFMAC5 [CCP4 1994, 

Murshudov et al 1997].  COOT [Emsley and Cowtan 2004]  was used for map 



 99

interpretation and remodelling of the structure.  Changes were made to several side 

chains before further refinement with REFMAC5 and addition of water molecules with 

ARPwaters [Perrakis  et al 1997].  As was found with previous work on this form of 

CopZ, a Cu4(CopZ)2 crystal structure was identified rather than the Cu2(CopZ)2 structure 

found in solution. The final structure from this refinement, carried out over the full 

resolution range (27.6-2.0 Å), at a resolution of 2.00 Å had an R-factor of 19.1%, and an 

Rfree of 24.4%.  For full data collection and refinement parameters for this dataset see 

tables 4.1 and 4.2. 

An analysis of a SAD dataset taken from a crystal grown with the hanging drop 

vapour diffusion technique was performed using the same techniques. The space group 

was determined to be P21, as with the P1 form a Cu4(CopZ)2 structure was found rather 

than the expected Cu2(CopZ)2 structure.  The final structure from this refinement, carried 

out over the full resolution range (40-1.70 Å), had an R-factor of 18.4 %, and an Rfree of 

17.7 %.  For full data collection and refinement parameters see Tables 4.1 and 4.2. 

 
4.2.2 The crystal structure of Cu 3(CopZ)3 
 
4.2.2.1 Crystallisation 
 

A concentrated protein solution of CopZ (58.2 mg ml-1), determined by 

luminescence spectroscopy to contain a dimeric form of the protein binding a single Cu(I) 

ion (data not shown), was provided by Liang Zhou (UEA).  Initial crystallisation screening 

experiments were carried out under anaerobic conditions at 4°C using a Belle Technology 

glove box, with an oxygen concentration of 0.2 ppm. Hanging drop vapour diffusion 

experiments were set utilising the screens of Jancarik & Kim [Jancarik and Kim 1991]  

and Cudney et al. [Cudney et al 1994].  Clusters of rod shaped crystals appeared after 4 

days from a crystal growth solution containing; 0.2 M ammonium acetate, 0.1 M sodium 

acetate pH 4.6 and 30 % (w/v) PEG 4000. Optimisation around this condition revealed 

that crystals were able to grow at a lower ammonium acetate concentration (0.05 M) and 

lower PEG 4000 concentration (26 % v/w) but grew best in the original screen conditions. 

 
4.2.2.2 Crystal harvest and X-ray diffraction data collection 
 
 Crystal harvesting was carried out anaerobically at 16°C.  Crystals were 

transferred to a cryoprotecting solution (0.2 M ammonium acetate, 0.1 M sodium acetate 

pH 4.6, 30 % (w/v) PEG 4000 and 25 % (v/v) ethylene glycol) and allowed to equilibrate 

for one minute.  The crystals used for data collection were rod-shaped with dimensions 

ranging from 75-200 µm x 5-10 µm and were mounted in a free standing film using a cryo-

loop (Hampton Research) and cryocooled by immediate immersion into liquid nitrogen. 

X-Ray data was collected at the SRS (Daresbury Laboratory, UK) on station 10.1 

using a MAR225 CCD detector to a maximum resolution of 1.9 Å.  A SAD dataset was 
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collected at the high energy side of the copper K-edge (λ = 1.38 Å), with a detector 

distance of 115 mm and an exposure time of 10 seconds per image.  340×1° oscillations 

about the goniometer Φ axis were recorded, producing 242 usable diffraction images. 

 
4.2.2.3 Structure determination and refinement 
 

Analysis of the SAD dataset using MOSFLM [CCP4 1994]  suggested Laue group 

6/m.  The data was scaled with SCALA [CCP4 1994, Kabsch 1988]  and molecular 

replacement was carried out using MOLREP [CCP4 1994]  with a monomer from the 

Cu4(CopZ)2 crystal structure [140]  used as the search model. From this analysis the 

space group was unambiguously determined to be P63.  Initial refinement was carried out 

using REFMAC5 [CCP4 1994, Murshudov et al 1997], and COOT [Emsley and Cowtan 

2004] was used for model building.  Changes were made to several side chains with 

COOT, before further refinement with REFMAC5.  Interestingly, the protein was found to 

exist in a trimeric Cu3(CopZ)3 form (3 CopZ monomers and 3 Cu(I) ions), rather than the 

expected dimeric Cu1(CopZ)2 form.  The final structure from this refinement, using data 

from the full resolution range (50-1.9 Å), had an R-factor of 27.3 %, and an Rfree of 33.5 

%.  Due to the size of these R-values, SFCHECK [CCP4 1994]  was used to look for 

twinning that may not have been picket up by SCALA.  SFCHECK suggested a twinning 

fraction of 4%, so SHELX [Sheldrick and Schneider 1997]  was subsequently used to 

refine the structure as it can incorporate the effects of twinning into its analysis.  The 

results from this refinement were more promising. After the addition of waters using 

COOT (20 in total) the final R-factors were R = 19.1 % and Rfree = 26.4 %. Figure 4.2 

shows one of the residues (Glu9) as an example where the map was improved using 

SHELXL refinement.  For full data collection and refinement parameters see Tables 4.1 

and 4.2. 



 101

 
To ensure the results were not being influenced by the template models used in 

the analyses, SAD-phased maps were created using the copper anomalous signal.  

SHELXD & SHELXE [Sheldrick and Schneider 1997]  were used to determine the 

positions of the anomalous scatterers and for solvent flattening.  This analysis 

successfully identified the positions of the coppers in the trimer.  

 
4.2.3 Cu4(CopZ)2 Copper oxidation state refinement 
 

Given the sensitivity of Cu(I) to oxidation and the solvent exposure of the outer 

sites in the cluster, verifying that the cluster contained solely Cu(I) ions is no simple task. 

The shoulder apparent in X-ray fluorescence spectra of Cu4(CopZ)2 crystals at ~8984 eV 

(Figure 4.6D) arises from the 1s→4p transition. However, this alone is insufficient to 

unambiguously determine the composition of each copper ion in the cluster.  Work done 

by Einsle et al [Einsle et al 2007] has suggested it is possible to determine the oxidation 

state of metal ions within a protein structure by taking multiple datasets from a single 

crystal around the X-ray absorption edge of the expected metal ion and collectively refine 

the anomalous scattering factors of these datasets.  Datasets were therefore collected at 

five different wavelengths (8987, 8990, 8993, 8985 & 8998 eV), these wavelengths were 

chosen after performing a fluorescence scan on a CopZ crystal (Figure 4.6D) and picking 

wavelengths across the copper edge, statistics for these datasets can be seen in Table 

4.5. A dataset was also collected at the low energy side of the Cu-K edge (8960 eV) from 

which a structural model was created and refined using data to a resolution of 1.79 Ǻ, to 

give an accurate structure for the oxidation state refinement (R values for this model with 

the copper edge datasets can be seen in Table 4.3). X-ray energy-dependent anomalous 

Figure 4. 2 – Residue Glu9 from Cu3(CopZ)3, shown with the 
double difference Fourier maps generated by (A) SHELXL and 
(B) REFMAC5 refinement, both at a contour level of 1.0 sigma.  
This shows one of the areas of improvement between the two 
electron density predictions.  This figure was created using 
COOT [Emsley and Cowtan 2004]  

A B 
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scattering factors (∆f ′′ and ∆f ′) were refined for each metal ion for each dataset using the 

phenix program suite [Adams et al 2010]. 

 
4.2.4 Molecular modelling and protein structure ana lysis 
 
 Protein structures were superimposed using SUPERPOSE from the CCP4 

programme suite [CCP4 1994, Krissinel and Henrick 2004] or PyMOL [DeLano 2002] .  

Analysis of subunit interfaces was performed with PROTORP [Reynolds et al 2009]. 

 
4.2.5 Structure predictions for polynuclear copper cluster proteins 
 
4.2.5.1 Selection of existing poly-nuclear copper c luster proteins with solved 
structures 
 

A search was performed on the PDB for proteins containing copper (I) ions by 

selecting the “Chemical ID” option in the advanced search parameters and searching for 

“CU1”.  Relevant proteins were selected from the resultant list by identifying proteins 

containing at least two Cu(I) ions, where both were in van der Waals contact, and 

therefore likely to form a poly-nuclear copper cluster. 

 
4.2.5.2 Creation of Hidden Markov Models (HMMs) 

 
Homologous copper cluster packings were identified in the selected protein 

structures, the sequences between the first and last residues of the copper coordinating 

sequence were extracted, multiple sequence alignments performed with TCOFFEE 

[Notredame et al 2000] and HMMs built using HMMER [Eddy 1998] . 

 
4.2.5.3 Building of predictive models 

 
The newly created HMMs were used to search sequences of poly-nuclear copper 

cluster proteins with unknown structures.  When a valid hit (one where all the copper 

ligating residues from the HMM and the target sequence line up) was identified, the 

structures of the sequences that made up the HMM were used as templates for model 

building with MODELLER [Eswar et al 2006].  As well as the HMM based predictions, 

models were also built using the tetra-nuclear copper cluster from the Cu4(CopZ)2 as a 

template. 
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4.3 Results 
 
4.3.1 Statistics from data collections and structur al refinement 
 

Tables 4.1 and 4.2 summarise the data collection and refinement statistics for the 

P1 structure of Cu4(CopZ)2, the P21 structure of Cu4(CopZ)2 (collected for use in the 

oxidation state refinement experiment) and structure of Cu3(CopZ)3. 
 

Table 4.1  - Data collection statistics for each CopZ dataset 
Dataset Cu4(CopZ)2  

(SAD data collection) 
Cu4(CopZ)2  

(SAD data collection) 
Cu3(CopZ)3  

(SAD data collection) 

Beamline SRS 10.1 ESRF BM14 SRS 10.1 

Space group P1 P21 P63 

Cell Parameters 
      a , b , c (Å) 
      α , β , γ (°) 

 
31.53 , 43.30 , 54.30 
78.65 , 86.29 , 84.52 

 
23.39 , 74.83 , 40.88 
90 , 101.59 , 90 

 
63.96 , 63.96 , 27.30 
90 , 90 , 120 

Wavelength (Å) 1.379 1.38 1.38 

Resolution (Å) 30 – 2.0(2.11 – 2.0) 27.34 – 1.79 (1.89-1.79) 50  – 1.9 (2.0 – 1.9) 

Completeness (%) 94.4 (86.2) 97.6 (95.3) 97.2 (84.2) 

Rsym  (%) 2.2 (3.8) 4.8 (19.6) 6.6 (23.8) 

Ranom (%) 4.6 (19.4) 3.8 (14.3) 7.1 (26.3) 

<I/σI> 39.6 (24.3) 18.9 (6.1) 29.1 (8.6) 

Independent reflections 17865 (2402) 12659 (1762) 5023 (608) 

Multiplicity 4.0 (3.9) 3.6 (3.4) 14.1 (10.7) 

Overall temperature factor (Å2) 20.1 11.8 19.2 

Anomalous completeness (%) 93.9 (85.0) 93.4 (87.1) 96.7 (86.3) 

Anomalous multiplicity 2.0 (2.0) 1.8 (1.7) 7.3 (5.2) 
Numbers in brackets represent data in the high resolution shell 

 
Table 4.2 -  Refinement statistics for each CopZ dataset 

Dataset Cu4(CopZ)2 
(P1) 

Cu4(CopZ)2 
(P21) 

Cu3(CopZ)3 

CopZ monomers per AU* 4 2 1 

Cu ions per AU* 8 4 1 

Refined structure 
    Total atoms 
    Water molecules 

 
2225 
199 

 
1159 
137 

 
527 
20 

Rcryst (%) 19.1 17.6 19.1 

Rfree (%) 24.2 22.3 26.4 

Ramachandran Analysis (%) 
       Most favoured 
       Additional allowed 
       Generously allowed 

 
95.9 
4.1 
0 

 
96.7 
3.3 
0 

 
85.5 
14.5 
0 

RMS deviations  
      Bonds  (Å)  
      Angles  (°) 
      Planes (Å) 

 
0.02 
1.58 
0.11 

 
0.01 
1.17 
0.08 

 
0.01 
2.00 
0.02 

Mean Atomic B-value  (Å2) 21.6 12.0 17.6 

*AU = Asymmetric unit 
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4.3.2 Structure of CopZ proteins – Cu 4(CopZ)2 (P1 crystal structure) 

 

 
The final model of the two Cu4(CopZ)2 dimers found in the asymmetric unit (Figure 

4.3) contains all the 276 amino acid residues from the primary sequence (69 per 

monomer), eight copper ions and 199 water molecules.  The principal secondary structure 

elements for each monomer as determined by the program STRIDE [Frishman and 

Argos 1995]  are: two α helices (Gln14–Glu26 and Val53–Gln63), a 310 helix (Leu37-

Ala39) and three β strands (Glu2–Glu9, Val30–Val36 and Lys41–Phe46). The (Φ, Ψ) 

torsion angles of all residues fall within the allowed regions of the Ramachandran plot.   

This CopZ structure was found to have a novel tetranuclear Cu(I) cluster with two 

subsets of Cu(I) ions in different coordination environments (Figure 4.4).  The outer Cu(I) 

ions (labelled 3 and 4) exhibit distorted trigonal coordination, while the inner Cu(I) ions 

(labelled 1 and 2) exhibit distorted digional coordination.  Four cysteine residues (Cys13 

and Cys16 from each monomer) are central to the formation of the cluster, whereby each 

acts as a ligand to an inner (digonal) and outer (trigonal) copper ion. Two histidine 

residues (His15 from each monomer) provide the remaining ligands to the trigonal Cu(I) 

ion sites. In addition, two water molecules (W1 and W2) move to points within 2.53 and 

2.61Ǻ of the trigonal copper ions sites 3 and 4, respectively, imparting a partial tetrahedral 

character.  The Cu(I) ions in adjacent trigonal and diagonal sites lie at a distance of 2.57 Ǻ 

, while the distance between the digonal sites is 2.74 Ǻ. These distances, particularly the 

former, are shorter than the sum of the van der Waals radii of the ions, suggesting the 

presence of a true metal cluster. 

Figure 4. 3 – The structure of the Cu4(CopZ)2 dimer, as seen from above 
the copper binding site.  The side chains of the copper binding residues 
are displayed in stick format and copper ions as orange spheres. 
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The Ser12 residues from each subunit form part of a second coordination sphere 

of the inner Cu(I) sites. The serine hydroxyl oxygen-Cu(I) distances are 2.92 and 3.04 Ǻ 

for sites 1 and 2, respectively. In the same way, Tyr65 and Tyr650 form part of a second 

coordination sphere to the outer Cu(I) sites with phenolic hydroxyl-Cu(I) distances of 3.39 

and 3.46 Ǻ for sites 3 and 4, respectively. The side chains of the methionine residue of 

each MXCXXC motif (Met11) point away from the cluster and insert into the core of the 

protein, making van der Waals contact with other hydrophobic residues, including the side 

chain of Tyr65. The methionine residue appears to contribute to local protein structural 

integrity and will therefore play an indirect role in copper binding.  

The inner Cu(I) ions of the tetranuclear cluster are buried at the CopZ dimer 

interface and shielded from interaction with solvent. The sulfur atoms of the four cysteine 

residues acting as ligands to the inner and outer sites are also buried. Luminescence in 

the ~600 nm region is often observed for protein-bound copper clusters and is indicative 

of the cluster being in a solvent shielded environment [Stillman 1995, Srinivasan et al 

1998]. The observed solvent exposure of the cluster here is consistent with the lack of a 

luminescence signal associated with this complex. 

W1 

W2 

1 2 

3 

4 

Cys13 

Cys13 

Cys13 

Cys13 

Cys16 

Cys16 

Cys16 
Cys16 

His15 

His15 

His15 
His15 

2.18 

2.23 

2.40 

2.36 2.41 
2.19 

2.24 

2.28 

1 2 

3 4 

2.03 2.03 
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Figure 4. 4 - The Cu4(CopZ)2 copper binding motif. Bonds between the 
copper coordinating residues Cys13, His15 & Cys16 and waters (W1 & 
W2) are marked with dashed lines. Bond lengths are an averaged value 
over the two dimers in the asymmetric unit (+/- 0.1 Ǻ).  
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 To prove the coppers were indeed coppers and not zinc, energy dispersive X-ray 

fluorescence (EXF) spectra were taken from the crystal and from copper foil (Figure 4.5).  

The fluorescence scans (Figures 4.6 A&B) taken either side of the zinc K-edge suggest 

zinc is not present in the crystal as the number and relative size of the peaks does not 

change.  If zinc was present a large peak at a higher channel number than the copper 

peak would be expected in the EXF spectra taken on the high energy side of the zinc 

absorption edge (Figure 4.6B).  The fluorescence scan on copper foil (Figure 4.6C) proves 

the peak in the scans on the crystal corresponds to copper, since they appear in the same 

place as the copper foil peak.  The EXAFS fluorescence trace (Figure 4.6D) suggests that 

at least some of the coppers are in the Cu(I) form, as it contains the classic Cu(I) feature 

at 8983 eV corresponding to the 1s→4s transition of Cu(I) [Hu et al 1997], highlighted by 

a circle in Figure 4.5D. 
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Figure 4.5 – Energy dispersive X-ray fluorescence spectra of Cu4(CopZ)2 
taken at (A) 1.25 Ǻ (below the zinc edge) and (B) 1.295 Ǻ (above the zinc 
edge).  Also shown are (C) a fluorescence scan of copper foil and (D) an 
EXAFS fluorescence scan that contains a typical Cu(I) feature (circled). 
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4.3.3 Copper cluster oxidation state refinement  
 

 Table 4.3 summarises the data collection statistics for the different wavelength 

datasets collected for oxidation state refinement.  Table 4.4 shows the R values for these 

datasets calculated using the model created from the low energy dataset (8960 eV). 

 
Table 4.3 – Statistics for the datasets collected from a single CopZ crystal 

Dataset  Rmerge 
(%) 

Completeness 
(%) 

 Overall  Inner Outer Overall  Inner Outer 

8960 48.0 24.0 19.6 97.6 99.2 95.3 

8987 47.0 26.0 18.3 97.6 99.2 95.3 

8990 48.0 25.0 18.2 97.4 99.2 94.4 

8993 50.0 25.0 19.1 97.4 99.2 94.8 

8995 49.0 27.0 19.3 97.5 99.2 94.9 

8998 49.0 24.0 19.4 97.6 99.2 95.1 

 Anomalous 
completeness (%)  

Anomalous multiplicity  

 Overall  Inner Outer Overall  Inner Outer 

8960 99.3 99.5 87.1 1.8 1.9 1.7 

8987 93.4 99.5 87.2 1.8 1.9 1.7 

8990 92.6 98.9 85.4 1.7 1.9 1.6 

8993 92.5 98.9 86.2 1.7 1.9 1.7 

8995 93.3 98.2 87.1 1.8 1.9 1.7 

8998 93.9 98.4 87.8 1.8 1.9 1.7 
 

Table 4.4 – R and FreeR values for copper edge datasets against the model 
generated with the 8960 eV dataset 
 

Dataset 8987 8990 8993 8995 8998 
R (%) 17.84 17.77 17.71 17.71 17.62 

FreeR (%) 21.1 21.1 21.1 21.1 21.1 
 

 Refinement of the X-ray energy-dependent anomalous scattering factors (∆f′′ and 

∆f′) for each metal ion gave results consistent with scattering from copper ions alone, and 

furthermore, suggests that all four copper sites are in the Cu(I) oxidation state, as no pre-

edge features arising from tetrahedral Cu(II) are detected in the region 8988-8990 eV 

(Figure 4.6).  
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4.3.4 Comparison of Cu 4(CopZ) 2 P1 and P2 1 structures 
 
 The final Cu4(CopZ)2 structures derived from the P1 and P21 crystal forms were 

aligned, the all atom RMSD value from this structural alignment was 0.39 Ǻ.  A closer 

examination of the two structures showed a small degree of flex between the dimers, with 

angles of 124° and 127° between the two dimers of t he P21 and P1 forms respectively.  

Figure 4.7 shows the alignment of the structures of the two CopZ dimers, demonstrating 

the close structural homology between the two models. 

Figure 4.6 - Analysis of the Cu4(CopZ)2 metal cluster. (A) X-ray fluorescence 
emission spectrum of a single Cu4(CopZ)2 crystal normalized to the value at 
8984 eV. (B) Normalized edge spectra for model Cu(II) complexes, with S4 
(dashed line) and N4 (solid line) equatorial ligand sets [Kau et al  1987]. (C) 
Refined anomalous scattering factors ∆f ′′ and ∆f ′ (inset) for digonal, Cu1 (□) 
and Cu2 (◊), and trigonal, Cu3 (∆) and Cu4 (x), copper sites. ∆f ′′ scattering 
factors for sulfur are also given (+) 
 

A B 

C 
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4.3.5 Structure of Cu 3(CopZ)3 
 

 
The final model of the CopZ monomer contains all 69 of the amino acid residues 

from the primary sequence, one presumed Cu(I) ion and 20 water molecules.  The 

principle secondary structure elements for each monomer predicted by STRIDE 

[Frishman and Argos 1995]  are: two α-helices (Gln14–Glu26 and Val53–Asp62), three 

β-strands (Glu2–Glu9, Val30–Val33 and Lys41–Phe46), four type I β-turns (Asn36-Ala39, 

Figure 4. 7 – A superposition of the Cu4(CopZ)2 P21 crystal form 
(Green & Cyan) and P1 crystal from (Magenta & Yellow) in a cartoon 
representation.  Coppers are shown as orange spheres.  

Figure 4.8 - The structure of Cu3(CopZ)3 as viewed from down 
the 3-fold axes. Each monomer is displayed in cartoon format, 
with the side chains of the copper-coordinating residues 
displayed as sticks. The three CopZ monomers (A, B and C) 
are shown along with their molecular surfaces coloured green, 
cyan and magenta. Copper ions are coloured orange.  
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Leu37-Gly40, Asp47-Lys50 and Ala48-Val51), one type IV β-turn (Leu27-Val30) and one 

inverted γ-turn (Val67-Ala69). 

The result expected from this analysis was a Cu1(CopZ)2 dimeric protein, 

containing two CopZ monomers binding one Cu(I) ion. However, the results of cell and 

symmetry tests on the monomer obtained from crystallographic experiments and the 

positions of the anomalous scatterers have shown the protein to be in a Cu3(CopZ)3 

trimeric form, with three CopZ monomers binding three Cu(I) ions (Figure 4.8).  The 

trigonal co-ordination of each copper ion in the cluster is provided by Cys13 and Cys16 

from each CopZ monomer (distances 2.24 Å and 2.31 Å respectively) and Cys16 of a 

neighbouring monomer (coordination distance 2.21 Å) (Figure 4.9A). These distances are 

consistent with those observed in similar copper sites in proteins deposited in the PDB 

(~2.4 Å). The three sulfur atoms and copper ion are essentially coplanar and the most 

compressed of the S–Cu–S angles (107.1°) involves the sulfur atoms from Cys16 

residues.  The copper ions in the cluster are fully shielded from the solvent, but the sulfur 

atoms of residues Cys16 are solvent accessible on the near face of the trimer. Solvent 

access to the copper cluster via the remote face of the trimer is blocked by residues Ser12 

arranged around the molecular 3-fold axis. 

Two water molecules (W1 and W2) are buried in each CopZ monomer adjacent to 

the bound copper ion. Their low temperature factors indicate a restricted mobility. Tyr65 

plays a central role in stabilizing these solvent sites, forming hydrogen bonds with each. 

W1 also forms further hydrogen bonds with the main chain amide nitrogen atoms of 

residues Ser12 and Cys13, whereas W2 forms hydrogen bonds with the main chain 

carbonyl oxygen of Cys16 and the side-chain of Gln63 (Figure 4.8B). These interactions 

appear critical to the conformation of the polypeptide spanning the copper-binding 

sequence motif. 
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The (Φ, Ψ) torsion angles of all residues fall within the allowed regions of the 

Ramachandran plot.  All the residues around the copper binding site are well defined 

within the electron density (Figure 4.10A & 4.10B), although some residues at the N-&C-

termini are less well defined.  To help validate the positions of the copper ions and thus 

the trimeric nature of the protein, an anomalous difference map was created that was 

found  to have three intense regions of electron density around the three fold axis that 

were still present up to a contour level of 30 sigma.  An anomalous difference fourier map 

was also calculated (Figure 4.10C), since these peaks were located at the copper binding 

site where coppers were expected and the dataset was taken at the copper k-edge, where 

the majority of the anomalous signal would be expected to come from copper ions, it is 

very likely these peaks of electron density refer to the three proposed Cu(I) ions of the 

Cu3(CopZ)3 structure.  

Figure 4.9 – (A) The Cu3(CopZ)3 copper binding motif.  Bonds between 
copper coordinating residues Cys13 & Cys16 are marked with dashed lines.  
Bond lengths are in Å. (B) The intra-subunit interactions involving water 
molecules W1 and W2 and residues Ser12, Gln63 and Tyr65.   
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Figure 4.10 – The copper binding centre of the Cu3(CopZ)3 trimer (Cys13-
Gln14-His15-Cys16), showing; (A) the SHELXL Fourier map (grey) 
orientated down the three fold axes and (B) orientated to the side of the 
trimer interface, at a contour level of 1.0 sigma, and (C) an anomalous 
difference Fourier map (red) showing the positions of the coppers at a 
contour level of 20 sigma.  

C 
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4.3.6 Comparison of the Cu 4(CopZ)2 and Cu 3(CopZ)3 structures 
 
 Monomers from the Cu4(CopZ)2 and Cu3(CopZ)3 structures were superimposed, 

the all atom RMSD value from this structural alignment was 0.73 Å, suggesting the two 

monomers are structurally homologous.  Figure 4.11A shows how the bulk of the two 

structures fit together, with the more noticeable differences around the copper binding 

residues shown in Figure 4.11B. 

 
 These differences in the copper binding residues are due to the different methods 

each CopZ structure uses for binding copper, with the Cu4(CopZ)2 structure needing the 

Ser12 and His15 residues in close proximity the metal binding site as they are involved in 

copper coordination. There are also differences in the positioning of the cysteine residues 

(particularly Cys16), due to the differing geometries of the copper clusters. 

There are also noticeable differences in the positioning of some of the other 

residues around the copper binding site that are involved in inter-subunit interactions 

(Figure 4.12A).  These are changes to Tyr65, which is involved in inter-subunit 

interactions in the Cu4(CopZ)2 structure as part of the secondary coordination sphere of 

the copper cluster (Figure 4.12B) and is involved with stabilising the copper coordinating 

cysteines in conjunction with two water molecules (Figure 4.9B), and Lys18, Asp62, 

Asp66, Gln14 & Gln63, that are involved in inter-subunit hydrogen-bonding interactions in 

the Cu3(CopZ)3 structure (Figure 4.12C). 

 

Figure 4.1 1 – (A) A cartoon representation of monomers from 
Cu4(CopZ)2 (Cyan) and Cu3(CopZ)3 (Green) CopZ structures.  Also 
shown are the positions of the coppers in Cu4(CopZ)2 (Orange) and 
Cu3(CopZ)3 (Red) CopZ structures. (B) The copper binding residues 
from Cu4(CopZ)2 (Cyan) and Cu3(CopZ)3 (Green) (Ser12, Cys13, His15 
& Cys16).  N.B. Although Ser12 and His15 are not directly involved in 
copper binding in the Cu3(CopZ)3 structure, they are displayed to 
highlight the changes in the structures.  

A B Ser12 

His15 

Cys13 

Cys16 

Cys16 
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 These results could help to explain why unexpected forms of CopZ were found in 

the crystal structures. It is possible that in copper-limited conditions (such as the 2 CopZ : 

1 Cu(I) conditions that the Cu3(CopZ)3 crystals grew from) CopZ forms a trimeric structure 

that allows additional subunit-subunit interactions to hold the whole protein together.  

Whereas, in conditions where copper is more plentiful (such as the 2 CopZ : 2 Cu(I) 

conditions the Cu4(CopZ)2 crystals grew from) additional copper is utilised to form the 

Cu4(CopZ)2  dimer, where the binding of the copper is enough to hold the protein together 

and subunit-subunit interactions are minimal.  There is currently no evidence for a wild 

type Cu3(CopZ)3 structure in solution, however, a Tyrosine – Lysine mutant has been 

developed by Nick Le Brun and Chloe Singleton (UEA, School of Chemical Sciences) that 

has been found to exist as a trimeric species.  Recent work by Badarau et al has also 

identified another copper chaperone mutant that exists as a trimer, when they solved the 

Figure 4.1 2 – (A) The positional changes of the inter-subunit interacting 
residues (Ser12, Gln14, His15, Lys18, Asp62, Gln63, Tyr65 & Asp66) of 
Cu4(CopZ)2 (Cyan) and Cu3(CopZ)3 (Green). (B) The interactions between 
subunits of Cu4(CopZ)2, Cu-residue interactions are represented by black 
dashed lines and residue-residue interactions (Tyr65–His15) by red dashed 
lines. (C) The interactions between subunits of Cu3(CopZ)3, Cu-residue 
interactions are represented by black dashed lines and residue-residue 
interactions (Ser12-H2O, Lys18–Asp62, Asp66-Gln14 & His15–Gln63) by 
red dashed lines. 
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structure of a histidine – tyrosine mutant of Atx1 from the cyanobacterium Synechocystis 

[Badarau et al 2010]. 

With regards to the Cu3(CopZ)3 structure, sequence alignments between Bacillus 

subtilis CopZ and sequences from other CopZ orthologues from a variety of micro-

organisms reveals conservative amino acid substitutions in the residue that mediate the 

hydrogen bonding interactions between the subunits that stabilise the trimer (Figure 4.13). 

Suggesting this trimeric form of CopZ may not be limited to Bacillus subtilis. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 3 – Sequence alinment of CopZ orthologues from: CopZ from Bacillus 
subtilis (BsCopZ, O32221); CopZ from Enterococcus hirae (EhCopZ, Q47840); 
copper chaperone from Ralstonia eutropha (ReCopZ, Q0K5J5); copper 
chaperone from Desulfohalobium retbaense (DrCopZ, C1SUC1); copper-ion-
binding protein from Helicobacter pylori G27 (HpCopZ); metal-associated protein 
from Streptomyces coelicolor A3(2) (ScCopZ, B5ZAE1). Identical residues are 
indicated by a red background, conservatively varied residues are boxed in blue 
and shown in red characters. Secondary structural elements in CopZ are 
indicated and labelled. Pairs of residues forming intersubunit contacts in the 
Cu3(CopZ)3 trimer are indicated by matching pairs of symbols (▼,▲,►). In each 
case, the hydrogen bond donor involves the residue in the range 14–18 (CopZ 
numbering). The corresponding hydrogen bond acceptor is in the residue range 
62–66. Note that residue Ser12 forms water-mediated contacts with the 
equivalent residue in the other two subunits (○). 
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4.3.7 Comparison of CopZ with CopA 
  

Sequence alignments of CopZ with the N1 (Figure 4.14A) and N2 (Figure 4.14B) 

domains of CopA were performed that show a conservation of the copper binding 

MXCXXC motif in all structures. 

 
 A structural alignment of one monomer from the P21 CopZ structure with the N1 

and N2 domains of the CopA NMR structure [Banci et al 2003(1)] shows homologous 

structural alignments (Figure 4.14C), with RMSDs of 0.74 Å for the N1 domain and 1.48 Å 

for the N2 domain, despite relatively low sequence identities of 32.9 % and 24.1 % 

respectively.  The cysteine residues around the copper binding sites in CopZ and the 

CopA domains are conserved, suggesting these are the locations for copper binding in 

CopA.   

 

 

 

 

A 

B 

Figure 4.1 4 – Sequence alignments of (A) CopAN1 & CopZ and (B) CopAN2 & 
CopZ.   Sequence similarities are displayed as a blue box around red text and 
sequence identities as white text on a red background.  Secondary structures for 
each sequence are also shown. (C) The superimposed strutcures of a CopZ 
monomer (Green), CopA-N1 (Cyan) and CopA-N2 (Magenta) shown in cartoon 
format. 
 

C 



 117

4.3.8 How the CopZ structure compare with existing structures for CopZ and 
other metallochaperones? 
 

There are a number of existing NMR structures for CopZ in the PDB, two 

originating from Bacillus subtilis (1K0V, copper bound form [Banci et al 2001] & 1P8G, 

apo form [Banci et al 2003(2)]) and one from Enterococcus hirae (1CPZ [Wimmer et al 

1999]).  Interestingly, the CopZ structure from E.hirae despite having the lowest sequence 

identity provided the best RMSD fit with the P21 Cu4(CopZ)2 crystal structure (Table 4.7). 

 
Table 4.7 –  Results of sequence and structural alignment between a monomer 
from the P21 Cu4(CopZ)2  structure and the existing CopZ structures. 

Structure 
(PDB ID) 

Sequence 
identities (%) 

RMSD value for alignment 
with Cu3(CopZ)3 (Å) 

1K0V 100 2.85 
1P8G 100 2.86 
1CPZ 42 1.74 

NB – RMSD result refers to the all atom value 

There are several structures for other metallochaperones in the PDB taken from; 

Homo sapiens [Wernimont  et al  2000, Gitschier  et al 1998, DeSilva et al 2005, 

Achila et al 2006], Ralstonia metallidurans [Serre et al 2004], Saccharomyces cerevisiae 

[Rosenzweig et al 1999] and Shigella flexneri [Steele and Opella 1997] .  Sequence and 

structural alignments were performed against the P21 structure for CopZ on these 

proteins, using NEEDLE [Needleman and Wunsch 1970]  for the sequence alignments 

and SUPERPOSE [CCP4 1994, Krissinel and Henrick 2004]  for the structural 

alignments. A breakdown of these results can be seen in table 4.8. 

 
Table 4.8 –  Results of sequence and structural alignment between the P21 
Cu4(CopZ)2  structure and other metallochaperones. 

Structure 
(PDB ID) 

Solved 
by Description Organism 

Sequence 
identity to 
CopZ (%) 

RMSD value 
for alignment 
with CopZ (Å) 

1FEE X-ray HAH1 Homo sapiens 23 3.94 

1CC8 X-ray Atx1 metallochaperone Saccharomyces 
cerevisiae 26 4.05 

1AW0 NMR 

Fourth metal-binding 
domain of the Menkes 

copper transporting 
ATPase 

Homo sapiens 29 1.57 

1KVI NMR 

First metal-binding 
domain of the Menkes 

copper transporting 
ATase 

Homo sapiens 35 2.44 

2EW9 NMR Wilson protein domains 
5 and 6 Homo sapiens 36 2.51 

1OSD X-ray Periplasmic Mercury-
binding Protein MerP 

Ralstonia 
metallidurans 38 1.66 

1AFI NMR MerP Shigella flexneri 38 2.39 
NB – RMSD result refers to the all atom value, X-ray = X-ray diffraction and NMR = Solution NMR 
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These results show how metallochaperones with a low sequence identity to CopZ 

can have superficially similar structures. Most noticeably the fourth metal-binding domain 

of the Menkes copper transporting ATPase and the Ralstonia metallidurans form of MerP 

that both give an RMSD lower than 2.0 Å form their structural alignments, giving them an 

apparent better fit than all of the existing CopZ structures in the PDB.   

 
A multiple sequence alignment (Figure 4.15) identified a conserved MXCXXC 

metal binding motif in each protein, as well as a glycine residue found 46-47 residues 

along the amino acid sequence.  This glycine residue is in the vicinity of the metal binding 

site and although it appears to be too far away to directly affect metal binding, it does 

have the potential to be involved in inter-subunit interactions, as identified in the 

Cu3(CopZ)3 structure where the corresponding glycine residue (Gly65), along with Asp66, 

could potentially form a hydrogen bond with a glutamine residue (Gln14) form the adjacent 

monomer. 

 

 

 

 

 

 

 

 

Figure 4.1 5 - A multiple sequence alignment of CopZ with other 
metallochaperones of known structure.  Identical residues are indicated by a red 
background, conservatively varied residues are boxed in blue and shown in red 
characters. 
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4.3.9 Structure predictions for polynuclear copper cluster proteins 
 
4.3.9.1 Selection of existing poly-nuclear copper c luster proteins with solved 
structures 
 

The search of the PDB produced 129 hits, of which only four referred to proteins 

with ploy-nuclear copper clusters; the two CopZ structures solved in this chapter 

[Hearnshaw et al 2009, Singleton et al 2009], and two structures for yeast 

metallothionein [Calderone et al 2005, Peterson et al 1996].  The two CopZ structures 

were unsuitable for HMM based analysis as the copper cluster was located at the dimer 

interface, with residues from both monomers used to coordinate the cluster, therefore only 

the metallothionein structures were used for HMM generation. 

 
4.3.9.2 Results of HMM creation and searches 
 
 A number of HMMs were built based on copper binding in the two yeast 

metallothionein structures, these HMMs accounted for the different copper packing 

observed in the eight copper cluster.  Figure 4.16 shows the copper cluster from one of 

the yeast metallothionein structures and identifies one of the HMMs constructed from it. 

 

 
 
 
 
 
 
 
 
 
 

Figure 4.1 6 – The structure of the yeast metallothionein (PDB ID: 1RJU 
[Calderone et al 2005]), showing the 8 copper cluster (orange and red 
spheres) and coordinating cysteine residues.  An example of a copper cluster 
structure used to build a HMM is marked by red spheres and the cysteines that 
coordinate it are coloured magenta. 
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4.3.9.3 Prediction of Ace1 tetra-nuclear copper clu ster 
 

 HMM searches on the Ace1 sequence were unable to give a consistent and 

definite prediction for the make up of the tetra-nuclear copper cluster, however the 

location of the hits over a specific region of the Ace1 copper binding domain identified 6 

out of the 8 cysteine residues that could be tentatively assigned as the copper 

coordinating residues for structural modelling, using a structure for a Cu4S6 ring from the 

Cambridge structural database as a template (Figure 4.17). 

 
 A Ramachandran analysis of this structure suggests it is at least protein like, with 

none of the residues falling into disallowed regions of the Ramachandran plot. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cys63 

Cys80 

Cys82 

Cys88 
Cys90 

Cys104 

Figure 4.1 7 – Structure prediction for the copper binding domain of 
Ace1, covering residues 63-104 of the Ace1 sequence. 
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4.3.9.4 Prediction of Mac1 tetra-nuclear copper clu ster 
 
 The prediction for the two tetra-nuclear copper clusters for Mac1 built around the 

C1 and C2 copper binding motifs [Keller et al 2000] were made using the cluster from the 

Cu4(CopZ)2 as a template (Figure 4.18), due to the lack on consistent hits with the HMM 

based analysis and the existence of a histidine ligand in the Cu4(CopZ)2 cluster that is also 

found in the C1 and C2 motifs. 

 
 Ramachandran analyses of these models highlight some problems, with both 

structures having residues in the disallowed regions of the plot; the C1 and C2 based 

models have 2 and 3 residues respectively in disallowed regions, accounting for 15.4 and 

27.3 % of the modelled structures.  
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Figure 4. 18 – Predicted structures for (A) the C1 and (B) C2 
copper binding motifs of Mac1. 
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4.4 Discussion 
 

4.4.1 Why do the stoichiometries of the CopZ crysta l structures not match 
those identified in solution experiments? 
 

The expected stoichiometries of CopZ monomers to copper ions identified in 

solution were not the same as those identified in the crystal, with the Cu1(CopZ)2 solution 

resulting in a Cu3(CopZ)3 crystal structure and the Cu2(CopZ)2 solution resulting in a 

Cu4(CopZ)2 crystal structure.  We must, therefore, ask why these unexpected 

stoichiometries were formed. 

The electron density maps for the Cu3(CopZ)3 structure (Figure 4.10) show the 

protein is definitely trimeric due to the quality of the fit with the copper binding residues 

and the copper atoms themselves, so there is no major problem with the interpretation.  A 

possible explanation for this change is a weak association between the two monomers of 

the Cu1(CopZ)2 dimer, causing them to separate and reform into the Cu3(CopZ)3 trimeric 

form under the forces exerted during crystallisation.  Alternatively the Cu1(CopZ)2  dimeric 

form of CopZ may be energetically unfavourable in the crystal and therefore unstable, 

causing the protein to change into the Cu3(CopZ)3 trimeric form in solution before 

crystallisation.  It is unclear exactly how or why CopZ changes its copper binding 

structure, but it is an indication of the flexibility of the protein. 

  
4.4.2 How the CopZ structure compares with existing  structures for CopZ 
and other metallochaperones? 

 

As has been shown, all currently available Atx1 like metallochaperone structures 

share a similar structure, based around a ferredoxin-like βαββαβ-fold (Table 4.8).  

However, the way these monomers aggregate around varying numbers of Cu(I) ions to 

form higher order clusters can be quite different. 

Recent work by Badarau et al has identified Atx1-like copper chaperone structures 

that bind copper in stoichiometries similar to those observed in CopZ, they solved the 

structures of a two copper dimer, a four copper dimer with a “head-to-head” arrangement 

(Figure 4.19A), a four copper dimer with a “side-to-side” arrangement (Figure 4.19A) and 

a four copper trimer [Badarau et al  2010].   
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The two copper dimer coordinates its copper using the two cysteine residues from 

each monomer at the copper binding interface (Cys12 and Cys15), the four copper dimer 

with the side-to-side arrangement coordinates its coppers using the same cysteine 

residues and two chloride ions present in the solution, the four copper dimer with the 

head-to-head arrangement coordinates its coppers using the same cysteine residues and 

a histidine residue (His61) from each monomer (different to he His15 residue used to 

coordinate the four coppers in the CopZ dimer) and the four copper trimer coordinates its  

coppers using the two cysteine residues from each monomer. 

The two CopZ structures, Cu4(CopZ)2 and Cu3(CopZ)3 have RMSDs of 3.7 and 2.1 

Å with their respective Atx1 homologues (the four copper dimer with the head-to-head 

arrangement for Cu4(CopZ)2 and the four copper trimer for Cu3(CopZ)3) and have quite 

different methods of copper coordination (Figure 4.20) 

A B 

Figure 4. 19 – Structures of the (A) head-to-head and (B) side-to-side 
dimer formations found by Badarau et al. [2010]. 
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These structures show the versatility of the Atx1-like copper chaperones 

with respect to the binding of copper and how they are able to pack their individual 

coppers in a variety of ways and use a variety of ligands (not just the highly 

conserved MXCXXC motif) to coordinate their copper atoms. 

 

 

 

 

 

Figure 4. 20 – A comparison of the CopZ structures (Green polypeptide and 
orange coppers) and the Badarau et al Atx1 structures (Cyan polypeptide and 
red coppers). Panel (A) shows the alignment of the two dimers from above the 
copper binding interface, panels (B) and (C) show the copper binding interface 
of each dimer, showing the differences in copper binding in each structure. 
Panel (D) shows the alignment of the two trimers down the 3 fold axis, panels 
(E) and (F) show the copper binding interface of each trimer, showing the 
differences in copper binding in each structure. 
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4.4.3 Modelling putative copper transfer complexes 

 

Multhaup et al have shown that CopZ can bind to CopA in both the presence and 

absence of copper [Multhaup et al 2001].  This binding is much stronger with copper 

present, as demonstrated by the observed 15-fold decrease in the dissociation rate, kd.  

However, little is known about how this binding could occur, other than it appears to be 

the CXXC motif in CopA that is responsible for binding copper. The high-resolution 

structure of a complex involving three CopZ monomers reported here not only 

demonstrates an extraordinary flexibility in Cu(I) co-ordination and monomer–monomer 

interactions, but also raises the possibility that a transient trimeric heterocomplex between 

CopZ and CopA could occur as part of a novel Cu(I)-transfer mechanism. Molecular 

modelling was used to test this hypothesis.  

 Models were constructed demonstrating potential structures for how CopA may 

bind to CopZ in the presence of Cu(I), using the Cu3(CopZ)3 and Cu4(CopZ)2 structures as 

templates for modelling the interaction.  Two models were created for the 

CopA/Cu3(CopZ)3 hybrid structures, with either the N1 (Cu3(CopZ)2(CopAN1)) (Figure 

4.21A) or N2 (Cu3(CopZ)2(CopAN2))  (Figure 4.21B) subunits of the CopA NMR structure 

replacing one of the monomers of the Cu3(CopZ)3 structure. Two models were also 

created for the Cu4(CopZ)2 hybrid structures, again with the N1 (Cu4(CopZ)1(CopAN1)) 

(Figure 4.21C) or the N2 (Cu4(CopZ)1(CopAN2)) (Figure 4.21D) subunit of the CopA NMR 

structure replacing one of the monomers of the Cu4(CopZ)2 structure. All these models 

seem to be plausible as there are no steric clashes between the domains of CopZ and 

CopA in any structure. 
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Two structures for CopA were modelled using the Swiss Model server [Arnold et 

al 2006] and utilising a monomer from the Cu3(CopZ)3 and Cu4(CopZ)2 structures as a 

template.  It is arguably the case that this template would create a more accurate structure 

for modelling side chain interactions than the NMR structure [Banci et al 2003]. Figure 

4.22 shows copper binding sites of the CopA/CopZ hybrid structures created using these 

CopA models.   

A B 

Figure 4.2 1 – (A) Models for Cu3(CopZ)2(CopAN1) and (B) 
Cu3(CopZ)2(CopAN2). (C) Models for Cu4(CopZ)1(CopAN1) and (D) 
Cu4(CopZ)1(CopAN2). The N1- and N2-domains of CopA are coloured red 
and yellow respectively. Copper ions are shown as orange spheres.  

C D 
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The CopA(I)/Cu3(CopZ)3(II) models were able to maintain all coordinating 

reactions mediating the trinuclear copper cluster with both the N1 or N2 subunit of CopA 

at the trimer interface, through the sulfurs of cysteines 17 & 20 or 85 & 88 respectively 

(Figure 4.22A).  However, the CopA(I)/Cu4(CopZ)2(I) model is unable to maintain the 

tetranuclear copper cluster, due to the absence of a suitable residue to provide the 

coordination offered by His15 of CopZ.  Three of the four copper ions could be 

coordinated once again by cysteines 17 and 20 or 85 and 88 (depending on the CopA 

domain present at the interface), and a threonine residue conserved in both domains (Thr 

16/84) would be able to provide the secondary coordination afforded by Serine 12 in CopZ 

(Figure 4.22B). 

It has been shown that CopA can bind CopZ not only in the presence of copper, 

but also in the absence of copper [Multhaup et al 2001], and to accomplish this there 

must be some other protein-protein interactions, apart from those mediating for formation 

of the copper cluster.  Like the Cu4(CopZ)2 crystal structure, the CopA(I)/Cu4(CopZ)2(I) 

hybrid model did not contain any additional intersubunit interactions beyond those 

coordinating the copper cluster.  There are however a number of potential intersubunit 

hydrogen-bonding interactions in the hybrid models based on the Cu3(CopZ)3 structure, 

where the N1 and N2 domains of CopA are bound at the interface, containing 5 and 6 

hydrogen-bonding interactions respectively (Figure 4.23).  The Cu3(CopZ)2(CopAN1) model 

has the 3 hydrogen-bonds found between the CopZ monomers already identified in the 

Cu3(CopZ)3 structure (Figure 4.12C) and has two hydrogen-bonds at the CopA-CopZ 

Cys16 
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Cys13 

Cys13 Cys17/85 

Cys20/88 
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Cys17/85 

Cys20/88 
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Figure 4.2 2 – The copper binding site of proposed CopA/CopZ hybrid structures 
(A) The CopA(I)/Cu3(CopZ)3(II) hybrid structure.  CopA residues are coloured red, 
CopZ monomers green and cyan, and coppers orange.  (B) The 
CopA(I)/Cu4(CopZ)2(I) hybrid structure.  CopA is coloured green and CopZ red.  
Orange spheres indicate coppers that have sufficient coordination via 
neighbouring residues; the magenta sphere indicates the copper that does not.  
(Since both the N1 & N2 subunits have the same binding site, only one is shown, 
but the residue numbers for both are displayed).   
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interface, between; CopA-Leu67↔CopZ-His15 and CopA-Lys68↔CopZ-Lys18 (Figure 

4.23A). The Cu3(CopZ)2(CopAN2) model also has the 3 hydrogen-bonds found between 

the CopZ monomers already identified in the Cu3(CopZ)3 structure (Figure 4.12C) and has 

three hydrogen-bonds at the CopA-CopZ interface, between; CopA-Asn90↔CopZ-Gln63, 

CopA-Lys124↔CopZ-Lys18 and CopA-Leu125↔CopZ-His15 (Figure 4.23B). 

 
The specific interactions between molecular subunits at the interfaces in the 

trimeric complexes are limited. The total surface area lost on formation of the three 

modelled complexes from individual subunits ranged from 702 to 783 Å2.  Of this, approx. 

60% was contributed by non-polar and neutral atoms. The usual indicators of permanency 

for protein complexes (e.g. [Ponsting et al 2000]) cannot be used for situations such as 

this where a major driver for stability is presumably the formation of specific Cu(I) ion to 

cysteine thiolate co-ordinate bonds. However, the relatively low value of the solvent-

accessible area lost on complex formation and the low number of inter-subunit hydrogen 

bonds are at least consistent with a tentative classification of the modelled complexes as 

transient. 

A potential method to test the validity of these models would be to prepare protein 

solutions containing stable forms of differing mixtures of CopA bound to CopZ and copper 

ions for crystallisation experiments, leading to X-ray data collection to ascertain a 3D 

structure.  However the predicted transient nature of this complex is likely to make 

isolating a complex stable enough to form protein crystals quite challenging, if this is the 

case, surface plasmon resonance [Van Der Merwe 2001]  or analytical ultracentrifugation 

are other potential techniques that could be analysed to assess CopA-CopZ complex 

formation. 

The residues identified as potentially important for inter-subunit binding between 

CopZ and CopA (His15, Lys18 & Gln63 from CopZ, Lys66 & Leu67 from CopAN1 and 

Asn90, Lys134 & Leu135 from CopAN2) could be tested by site directed mutagenesis, 

mutating these residues and performing solution experiments capable of analysing protein 
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Figure 4.2 3 – Hydrogen bonds formed between the CopZ and CopA subunits 
of (A) Cu3(CopZ)2(CopAN1) and (B) Cu3(CopZ)2(CopAN2) structures.  
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binding, such as surface plasmon resonance [Van Der Merwe 2001] or analytical 

ultracentrifugation. 

 
4.4.4 Comparison of Cu 4(CopZ)2 with other tetra-copper cluster containing 
proteins and structure predications for these prote ins 
 

Mac1 and Ace1 are two copper-regulated transcription factors from 

Saccharomyces cerevisiae [Keller et al 2000]. X-ray absorption spectroscopy on the 

copper regulatory domains of these proteins has revealed remarkably similar tetra-copper 

clusters [Brown et al 2002].  The precise coordination of these copper binding sites is 

currently unknown, as no structure is available. However, suggestions have been put 

forward by Brown et al as to the layout of these copper clusters [Brown et al 2002]. Mac1 

is thought to bind copper via a CXCXXXXCXCXXCXXH motif providing trigonal 

coordination for each copper though five cysteine residues and one histidine (Figure 

4.24A). Copper binding in Ace1 is thought to be coordinated by 6 (Figure 4.24B) or eight 

(Figure 4.24C) cysteine residues over a 60 residue Cys-rich domain, providing each 

copper with a trigonal coordination. 

 
Structure predictions for Mac1 and Ace1 using the HMM based prediction 

methodology had limited success in predicting the structures of poly-nuclear coppers 

clusters.  This is primarily due to the lack of existing structures for poly-nuclear copper 

cluster containing proteins, with yeast metallothionein providing the only template for 

HMM construction.  This method may have more success in the future once the structures 

of more poly-nuclear coppers cluster containing proteins have been solved.  The 

structures that have been proposed for Mac1 (Figure 4.18) and Ace1 (Figure 4.17) do at 

least give some indication as to the possible structure of the polypeptide that coordinates 

the coppers in these tetranuclear clusters. 

 
 

Figure 4.2 4 – Proposed structures for copper binding sites from (A) 
Mac1, (B) Ace1, utilising 6 cysteine residues and (C) Ace1, utilising 8 
cysteine residues. [Brown et al 2002] Copper ions are coloured red, 
sulfur yellow, carbon green and nitrogen blue.  Peptide bonds are 
coloured grey and cluster coordinating bonds cyan. 

A B C 
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Chapter 5 - Structural studies of the Sulfide Dehyd rogenase 
Flavoprotein SoxF of Paracoccus pantotrophus  and insights into 
its role in the sox  cycle 

5.1 Introduction 
 

5.1.1 FAD structure and properties 

 

Flavin Adenine Dinucleotide (FAD) is a redox cofactor involved in metabolic 

reactions that can exist in two different redox states, which it converts between by 

accepting or donating electrons.  The molecule itself consists of a riboflavin moiety 

(vitamin B2) bound to the phosphate group of and ADP molecule (Figure 5.1A) and 

undergoes its redox reactions on the isoalloxazine rings of the riboflavin subunit (Figure 

5.1B). 

 

Figure 5.1  – The chemical structure of FAD (A) with the riboflavin 
subunit highlighted by a red box and the ADP subunit by a blue 
box. (B) The equilibrium between the oxidised and reduced forms 
of FAD, showing where the electrons are added/removed. 

A 

B 

Oxidised form (FAD) Reduced form (FADH 2) 
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Flavin binding proteins or flavoproteins are involved in a wide range of biological 

processes, including; sulfur oxidisation, bioluminescence, photosynthesis, DNA repair, 

apoptosis and the removal of radicals leading to oxidative stress. 

 

5.1.2 Succinate dehydrogenase  

 

Succinate dehydrogenase (SDH) is an example of a flavoprotein. SDH is an 

enzyme complex bound to the inner mitochondrial membrane of mammalian mitochondria 

and many bacterial cells.  SDH is part of both the citric acid cycle. In the citric acid cycle it 

is responsible for the oxidation of succinate to fumarate and the reduction of ubiquinone to 

ubiquinol.  In the electron transport chain it is responsible for the delivery of electrons to 

the quinone pool. 

Eukaryotic SDH consists of four subunits (Figure 5.2). These are arranged into a 

hydrophilic head that protrudes into the matrix of the mitochondrion, consisting of two 

subunits, a flavoprotein (Sdh1) and an iron-sulfur protein (Sdh2), which form the catalytic 

core of the complex, and a hydrophobic membrane anchor that is embedded into the inner 

mitochondrial matrix with a short segment protruding into the soluble inner membrane 

space, consisting of two subunits, Sdh3 and Shd4, that bind a B-type heme at the subunit 

interface with each subunit providing one of the two axial His ligands [Sun et al  2005]. 

 

Figure 5. 2 – Structure of the succinate dehydrogenase enzyme complex (PDB 
ID: 3ABV [Harada et al 2011]) and its position in the mitochondrial membrane.  
The subunits that form the hydrophilic head, Sdh1 and Sdh2, are coloured 
green and cyan respectively, the subunits that form the hydrophobic membrane 
anchor, Sdh3 and Sdh4, are coloured magenta and yellow respectively.  The 
FAD, heme and iron sulfur cofactors are displayed as sticks. 

Inner membrane space 

Inner mitochondrial 
membrane 

Matrix of mitochondrion 
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The binding site for succinate oxidation is found on Sdh1.  The side chains of 

residues Thr254, His354, and Arg399 stabilise the succinate molecule while FAD oxidises 

it and carries the electrons to the first of the iron-sulfur clusters in Sdh2.  The electrons are 

tunnelled through Sdh2 along the iron-sulfur cluster relay to one of two potential 

ubiquinone binding sites; the higher affinity QP site, formed by residues from Shd2, Shd3 

and Sdh4 and the lower affinity QD site, formed by residues from Sdh3 and Sdh4, where 

ubiquinone is reduced to ubiquinol [Yankovskaya et al  2003, Sun et al  2005]. 

The role of the B-type heme associated with Sdh3 and Sdh4 remains unclear.  It 

has been shown that reduction of ubiquinone can still take place without the heme moiety 

and that the affect on the catalytic activity of the complex is minimal [Oyedotun et al  

2007], suggesting the heme is not needed for ubiquinone reduction. Rutter et al have 

speculated that the ubiquinone reduction is able to take place at the QP site without using 

the heme, but that the heme would be needed to mediate the transfer of electrons to the 

QD site to allow ubiquinone reduction at the lower affinity site [Rutter et al  2010]. 

 

5.1.3 Sulfur oxidising flavoproteins 

 

Sulfur, the 10th most abundant element in the universe, is a brittle, yellow, non-

metallic element that occurs in all living matter as a component of methionine and 

cysteine amino acids, it has critical roles in both climate and in the health of various 

ecosystems [Environmental Literacy Council 2006] . 

Most of the Earth's sulfur is contained in rocks and salts or buried deep in the 

ocean in oceanic sediments. Sulfur is also found in the atmosphere and can enter through 

both natural and human sources. Natural resources include; volcanic eruptions, bacterial 

processes, evaporation from water, or decaying organisms. While human sources for 

atmospheric sulfur are primarily a consequence of industrial processes where sulfur 

dioxide (SO2) and hydrogen sulfide (H2S) gases are emitted on a wide scale.   

When sulfur dioxide enters the atmosphere it reacts with oxygen to produce sulfur 

trioxide gas (SO3), or with other chemicals in the atmosphere to produce sulfur salts. 

Sulfur dioxide can also react with water to produce sulfuric acid (H2SO4).  All these 

particles will settle back onto earth, or react with rain and fall back as acid deposition. The 

particles will then be absorbed by plants again and are released back into the 

atmosphere, so that the sulfur cycle will start over again [Environmental Literacy 

Council 2006] . 

 

5.1.3.1 Sulfide:Quinone oxidoreductases 

 

The Sulfide:Quinone oxidoreductases (SQRs) are another example of  

flavoproteins.  Homologues of the SQRs are found in all domains of life except plants and 
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play a physiological role in both sulfide detoxification and energy transduction [Marcia et 

al 2009].  The SQRs oxidize sulfide ions (S2
-, HS-) to zero valent sulfur, thought to be 

released from the protein as a polysulfide chain of up to 10 sulfur atoms [Greisbeck et al 

2002]. 

Several SQR structures have been solved [Brito et al 2009, Marcia et al 2009, 

Cherney et al  2010] that have identified the catalytic cysteine residues at the active site 

and shown how they are able to bind varying numbers of sulfur atoms, this fits with the 

belief that the SQRs are responsible for creating long chains of sulfur atoms.  Figure 5.3 

shows an example of an SQR structure and some of the different active site compositions 

that have been discovered thus far. 

The exact mechanism for sulfide oxidation is currently unknown.  Several 

mechanisms have been put forward [Brito et al 2009, Cherney et al 2010, Marcia et al 

2010], with a common theme between all of them of the FAD cofactor acting as the 

electron donor/acceptor for the mechanism, highlighting the vital role of FAD in the 

system. 

 

A B 

Figure 5.3 – The structure of an SQR and a selection of SQR active sites whose 
structures have been published. (A) Shows the overall secondary structure of a 
monomer of the SQR from Aquifex aeolicus (PDB ID: 3HYV [Marcia et al 2009]), with 
α-helices coloured red, β-sheets yellow and turns and loops green, the FAD cofactor 
is coloured magenta and the active cysteine residues are coloured cyan. (B) Shows 
the active site of the Aquifex aeolicus SQR with a chain of nine sulfurs with an S8 ring 
that have built up on cysteine 156. (C) Shows the active site of the Acidithiobacillus 
ferrooxidans SQR (PDB ID: 3KPG [Cherney et al  2010]) with a chain of five sulfurs 
between the two cysteine residues. (D) Shows a different sulfur composition in the 
active site of the Acidithiobacillus ferrooxidans SQR (PDB ID: 3KPI [Cherney et al  
2010]) with a chain of four sulfurs between the two cysteine residues. (E) Shows the 
active site of the Acidianus ambivalens SQR (PDB ID: 3H8I [Brito et al 2009]) with a 
chain of two sulfurs between the two cysteine residues. 

C D E 
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5.1.3.2 The sox system 

 

The α-Proteobacterium Paracoccus pantotrophus is an example of an organism 

that can oxidise inorganic sulfur species to sulfate, via its sulfur oxidizing, or “sox” system, 

which is found in both photosynthetic and non-photosynthetic sulfur-oxidizing Eubacteria 

[Sauve et al 2007] .  This oxidation  of inorganic sulfur species to sulphate by bacteria, 

such as Paracoccus pantotrophus, is a vital part of the global sulfur cycle [Freidrich et al 

2005] and is important for agriculture (through the oxidation of inorganic reduced 

compounds), waste water treatment (thorough the oxidation of toxic hydrogen sulfuide to 

relatively harmless sulfate) and biomining (through mineral decomposition) [Rawlings 

2002] The sox gene cluster of P.pantotrophus comprises 15 genes, organised into three 

transcriptional units; soxRS, soxVW and soxXYZABCDEFGH (Figure 5.4).  The gene 

soxR codes for a DNA-binding repressor protein of the AsrR family and soxS codes for a 

periplasmic thioredoxin that has been shown to be essential for full expression [Rother et 

al 2005].  The soxVW genes comprise a transcriptional unit soxV that codes for the 

membrane protein SoxV, a channel protein with six transmembrane helices, responsible 

for transport of reductant and soxW codes for a periplasmic thioredoxin [Fredrich 2008] . 

The soxXYZABCDEFGH genes code for the 7 core proteins of the sox cycle 

(SoxXYZABCD), a small c-type cytochrome (SoxE), a flavoprotein with sulfite 

dehyrogenase activity (SoxF), a protein with two zinc binding motifs (SoxG) and a protein 

with two metal binding motifs (SoxH) [Rother et al  2001]. 

 

The current model for the Sox pathway from P.pantotrophus is shown in Figure 

5.5.  SoxAX initiates oxidation of thiosulfate to form SoxY-thiocysteine-S-sulfate, SoxB 

hydrolyzes sulfate from the thiocysteine-S-sulfate residue to give S-thiocysteine, SoxCD 

then oxidizes the outer sulfur atom to SoxY-cysteine-S-sulfate and finally, sulfate can 

again be hydrolyzed and removed by SoxB to regenerate the cysteine residue of SoxY 

[Friedrich et al  2001]. 

 

R S V W X Y Z A B C D E F G HT RR SS VV WW XX YY ZZ AA BB CC DD EE FF GG HHTT

Figure 5.4 -  Schematic map of the sox gene cluster of P.pantotrophus. 
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SoxF of P.pantotrophus is a 42,797 Da, monomeric, FAD containing periplasmic 

protein, closely related to the flavoprotein subunits of flavocytochromes from 

chemolithotrophic and phototrophic sulfur-oxidizing bacterium [Quentmeier et al  2004].  

SoxF has sulfite-dehydrogenase activity. It has been found to be non-essential for the 

activity of the Sox pathway, however, knocking out the SoxF gene does result in a 

reduced rate of thiosulfate oxidation, this rate can be enhanced in vivo via the addition of 

SoxF to the proteins of the Sox system [Bardischewsky et al 2006] , suggesting that 

SoxF does influence the sox system in some way. 

This chapter will present X-ray crystal structures for the native form of SoxF (SoxF-

native) and the sulfite-inhibited (SoxF-SO3
2-) and sulfur-inhibited (SoxF-Sn) forms.  It will 

also show the results of the docking of a GGCGG pentapeptide that mimics the C-terminal 

of SoxY into the active site cavity of SoxF leading to a proposed mechanism for SoxF 

mediated reactivating of SoxYZ via the refolding of the SoxY C-terminus, thus 

characterising SoxF’s influence on the sox system. A homology model for the small c-type 

cytochrome SoxE (presumed to act as the electron acceptor for SoxF) will also be shown, 

along with a model for a SoxEF complex. 

 

 

Figure 5. 5 – The sox system of Paracoccus pantotrophus.  The capital letters 
indicate the Sox proteins according to their gene designation. X and A, 
Cytochrome complex SoxAX; B, dimanganese protein SoxB; C and D, 
heterotetrameric molybdoprotein-cytochrome c complex Sox(CD)2; Y and Z 
the heterodimeric complex that carries the intermediates between the other 
Sox proteins [Friedrich et al  2001]. 
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5.2 Materials and Methods 

 

5.2.1 SoxF crystallisation and structure determinat ion 

 

5.2.1.1 Crystallisation 

 

N-terminal His-tagged SoxF was provided by Prof. Cornelius Friedrich (University 

of Dortmund).  The concentration of the protein solution in 10 mM Tris pH 7.5, 1 mM 

MgSO4, 0.1 mM sodium thiosulfate was determined to be 5.5 mg ml-1 via the method of 

Bradford [Bradford 1976] .  Initial crystallisation screening experiments were carried out at 

4°C and 10°C using the screens of Jancarik & Kim [Jancarik and Kim 1991]  and Cudney 

et al. [Cudney et al 1994] and the hanging drop vapour diffusion technique.  Each 

experiment utilised a 3.5 µl drop containing equal volumes of concentrated protein 

solution and screen solution.  Each hanging drop was equilibrated against a 700 µl 

reservoir of screen solution.  Emerald green crystals of a plate morphology (Figure 5.6) 

appeared in drops grown at 4°C after 7 days from a crystal growth solution containing; 0.1 

M MES pH 6.5 and 12 % w/v PEG 20,000.  Optimization around this condition revealed 

that the crystals grew reproducibly across a PEG 20,000 concentration gradient of 10-14 

% but grew best under the original conditions. 

  

Wild-type SoxF was also provided by Prof. Cornelius Friedrich (University of 

Dortmund).  The concentration of the protein solution in 10 mM Tris pH 7.5, 1 mM 

MgSO4, 0.1 mM sodium thiosulfate was determined to be 7.5 mg ml-1 via the method of 

Bradford [Bradford 1976] .  Initial crystallisation screen experiments were carried out 

A B 

Figure 5. 6 – Crystals of wild type SoxF protein, grown using the 
seeded sitting drop vapour diffusion technique. (A) Grown in 0.1 M 
sodium cacodylate pH 6.5, 30 % w/v PEG 8000. (B) Grown in 0.1 M 
MES pH 6.5, 12 % w/v PEG 20,000. 
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under the same conditions used with the His-tagged protein, but unfortunately, no crystals 

grew from these experiments.   

Cross microseeding experiments were carried out with the wild type protein at 4°C 

and 16°C using the screens of Jancarik & Kim [Jancarik and Kim 1991]  and Cudney et 

al. [Cudney et al 1994] and an Oryx Nano protein crystallisation robot (Douglas 

Instruments Ltd).  A seed stock was created using crystals of His-tagged SoxF and a seed 

bead (Hampton Research).  The desired seed crystal was removed from the drop and 

placed into a microcentrifuge tube containing 50 µl of crystal stabilising solution (0.1 M 

MES pH 6.5, 12 % w/v PEG 20,000) and the seed bead, before vortexing in 10 seconds 

intervals for a total 90 seconds, returning the solution to the ice after each vortex.   

Sitting drop vapour diffusion seeding experiments were set up in 96-well plates 

using 0.2 µl of concentrated protein solution, 0.1 µl of seed stock and 0.2 µl of screen 

solution per drop.  Each sitting drop was equilibrated against a 50 µl reservoir of screen 

solution.  Emerald green crystals appeared within 6 days in drops grown at 16°C in two 

different crystal growth conditions one in; 0.2 M sodium acetate, 0.1 M sodium cacodylate 

pH 6.5, 30 % w/v PEG 8000, and the other in the same conditions as the His-tagged 

protein (0.1 M MES pH 6.5, 12 % w/v PEG 20,000).  These crystals are currently waiting 

for available synchrotron beamtime for data collection. 

 

5.2.1.2 Crystal harvest and X-ray data collection 

 

Crystal harvesting was carried out at 4°C.  Crystal s were transferred to a 

cryoprotecting solution (0.1 M MES pH 6.5, 12 % w/v PEG 20,000, 30 % (w/v) ethylene 

glycol) and allowed to equilibrate for one minute.  The crystals used for data collection 

were of plate morphology with dimensions ranging from 80-200 µm x 80-200 µm and were 

mounted in a free standing film using a LithoLoop (Molecular Dimensions Ltd) and 

cryocooled by immediate immersion into liquid nitrogen.  In an attempt to solve structures 

of inhibited SoxF, a number of crystals were soaked in a solution containing the mother 

liquor and either 50 mM sodium metabisulfite or 1 mM sulphur in the form of polysulfide, 

created by dissolving sulfur in boiling sodium hydroxide, both of which have been shown 

to inhibit (in the case of sulfur, Ki = 1.3 µM) or inactivate (in the case of sulfite) SoxF 

activity [Quentmeier et al 2004], before harvesting via transferring to a cryoprotecting 

solution (0.1 M MES pH 6.5, 12 % w/v PEG 20,000, 30 % (w/v) ethylene glycol) and 

cryocooling by immediate immersion into liquid nitrogen. 

X-ray data was collected at the Diamond Light Source (beamline I02) using an 

ADSC Q315 CCD detector.  Datasets were collected for the native and soaked crystals.  

The native dataset (SoxF-native) was taken at a wavelength of 0.979 Å, with a detector 

distance of 290.3 mm and an exposure time of 7.5 seconds per image, 180×1.0° 

oscillations about the goniometer Φ axis were recorded.  The dataset taken from a sulfite-
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soaked crystal (SoxF-SO3
-) was collected at a wavelength of 0.977 Å, with a detector 

distance of 374.2 mm and an exposure time of 0.348 seconds per image, 410×0.9° 

oscillations about the goniometer Φ axis were recorded.  The dataset taken from a sulfur-

soaked crystal (SoxF-Sn) was collected at a wavelength of 0.979 Å, with a detector 

distance of 373.4 mm and an exposure time of 1 second per image, 200×0.6° oscillations 

about the goniometer Φ axis were recorded. 

 

5.2.1.3 Structure determination and refinement 

 

Analysis of the three datasets collected from SoxF crystals processed with 

MOSFLM [CCP4 1994]  was carried out with POINTLESS [Evans 2005] . This suggested 

the space group for each was C2.  The datasets were subsequently scaled using SCALA 

[CCP4 1994, Kabsch 1988]  and from these analyses the space group was confirmed to 

be C2 for each dataset.  Molecular replacement was carried out with PHASER [McCoy et 

al 2007] using a modelled structure, created with MODELLER 9v4 [Eswar et al 2006], 

based on the 2.5 Å resolution crystal structure of the homologous protein FccB, a sulfide 

dehydrogenase from Allochromatium  Vinosum (PDB ID: 1FCD [Chen et al  1994]).  Initial 

refinements and simulated annealing were carried out using PHENIX [Adams et al 2010], 

and COOT [Emsley and Cowtan 2004]  was used for map interpretation and remodelling 

of the structures, before final refinements and addition of water molecules using PHENIX.   

The final structure of SoxF-native from this procedure, refined using data over the 

full resolution range (44.4-2.2 Å), had an R-factor of 21.9%, and an Rfree of 27.4%. The 

final structure of SoxF-SO3
2-, refined using data over the full resolution range (50-2.8 Å), 

had an R-factor of 22.6 % and an Rfree of 30%. The final structure of SoxF-Sn, refined 

using data over the full resolution range (50-2.8 Å), had an R-factor of 24.1 % and an 

Rfree of 30 %.  For full data collection and refinement parameters see Tables 5.1 and 5.2. 
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5.2.2 Statistics from data collections and structur al refinement 

 

Tables 5.1 and 5.2 summarise the data collection and refinement statistics for the native, 

sulfite soaked and sulfur soaked structures of the His-tagged SoxF protein. 

 

Table 5.1 –  Data collection statistics for each SoxF dataset 

Dataset SoxF - Native SoxF – SO3
2- SoxF - Sn 

Beamline DLS I02 DLS I02 DLS I02 

Space group C2 C2 C2 

Cell Parameters 
      a , b , c (Å) 
      α , β , γ (°) 

 
152.7, 76.2, 89.0 
90, 121.1, 90 

 
152.4, 76.4, 88.5 
90, 121.0, 90 

 
151.9, 75.9, 88.3 
90, 121.0, 90 

Wavelength (Å) 0.979 0.977 0.979 

Resolution (Å) 44.4–2.2 (2.32 – 2.2) 50–2.8 (2.95 – 2.8) 50–2.8 (2.95-2.8) 

Completeness (%) 99.5 (99.3) 99.7 (96.9) 96.3 (95.9) 

Rsym  (%) 13.6 (31.0) 19.9 (45.7) 10.3 (18.6) 

<I/σI> 6.9 (3.7) 9.6 (2.5) 7.5 (3.4) 

Independent 
reflections 

44173 (6390) 21407 (3130) 20489 (2939) 

Multiplicity 3.5 (3.6) 3.0 (3.1) 2.4 (2.5) 

Overall temperature 
factor (Å2) 19.3 33.6 32.5 

Numbers in brackets represent data in the high resolution shell 
 

Table 5.2 –  Refinement statistics for each SoxF dataset 

Dataset SoxF – Native SoxF – SO3
- SoxF – Sn 

SoxF monomers per AU* 2 2 2 

Refined structure 
    Total atoms 
    Water molecules 

 
6460 
430 

 
6165 
150 

 
6083 
107 

Rcryst (%) 21.9 22.6 24.1 

Rfree (%) 27 30 30 

Ramachandran Analysis (%) 
       Most favoured 
       Additional allowed 
       Generously allowed 
       Disallowed 

 
86.2 
13.1 
0.5 
0.3 

 
80.8 
17.2 
1.4 
0.6 

 
79.8 
18.0 
1.8 
0.3 

RMS deviations  
      Bonds  (Å)  
      Angles  (°) 
      Planes (Å) 

 
0.01 
1.09 
0.01 

 
0.01 
1.52 
0.01 

 
0.04 
2.03 
0.02 

Mean Atomic B-value  (Å2) 13.3 11.5 11.6 
*AU = Asymmetric unit 
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5.2.3 Modelling of the Di-heme subunit 

 

A model for the di-heme subunit, SoxE, was generated by comparative structural 

modelling using MODELLER 9v4 [Eswar et al 2006]. The crystal structure of an oxidised 

recombinant cytochrome c4 from Pseudomonas stutzeri (PDB ID: 1M70 [Kadziola et al 

1995]), which has a 21.3 % sequence identity to SoxE, was used as a template.  The 

cytochrome c4 from Pseudomonas stutzeri was used as a template for modelling, rather 

than the di-heme subunit FccA of the flavocytochrome c sulfide dehydrogenase, because 

it had a greater sequence identity to SoxE.  Additional distance restraints were placed on 

the heme binding cysteine and histidine ligands, as these have been discovered to be well 

conserved in hemoproteins (see Chapter 2), to improve the quality of the model 

 

5.2.4 Modelling of a transient SoxEF encounter comp lex 

 

 A model for a transient SoxEF encounter complex between SoxE and SoxF was 

created using the FccAB complex from Allochromatium vinosum as a template.  The 

homology modelled SoxE structure was superimposed onto the di-heme subunit FccA and 

the 2.2 Å resolution native SoxF crystal structure was superimposed into the flaviun 

binding subunit FccB.  All superpositions were carried out using the alignment function of 

PyMOL [DeLano 2002] , which performs a Cα alignment. 

 

5.2.5 Searches for homologous proteins 

 

To search for proteins with structures that were homologous to SoxF a protein 

BLAST search [Altschul et al 1990] was carried out against the PDB database.  Global 

sequence alignments and thus identities were calculated using the NEEDLE pairwise 

sequence alignment algorythm [Needleman and Wunsch 1970] . 

A group of SoxF orthologues had been identified by Freidrich et al [Freidrich et al 

2005], the sequences of these proteins were aligned using MUSCLE [Edgar 2004] , and 

CONSURF [Glaser et al 2003] was used to produce a PDB file with the residues coloured 

in accordance with their conservation in the sequence alignment. 
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5.3 Results 
 

5.3.1 The Crystal Structure of SoxF-native 

 

 The final model of the two SoxF monomers found in the asymmetric unit contain 

786 amino acid residues from the primary sequence (393 per monomer), two flavin 

adenine dinucleotide (FAD) molecules that are bound covalently to the apoprotein by an 

8-α-methyl(S-cysteinyl) thioether linkage with Cys43 and 430 water molecules (Figure 

5.7).  The protein is comprised of two domains, a FAD binding domain (Pfam ID: 

PF09242) found in the flavocytochrome c sulphide dehydrogenases and a FAD-

dependent pyridine nucleotide-disulphide oxidoreductase domain (Pfam ID: PF07992) 

found in both class I and class II oxidoreductases and also NADH oxidases and 

peroxidases. 

The principal secondary structure elements for each monomer as determined by 

the program STRIDE [Frishman and Argos 1995]  are: nine α helices (Gly13-Arg23, 

Ser46-Gly51, Tyr63-Ala68, Pro133-Ala144, Pro164-Thr180, Gln198-Tyr209, Arg256-

Ile260, Ala301-Leu319 and Ala371-Phe392), four 310 helices (Phe56-Leu59, Pro111-

Ser113, Leu119-Ala121 and Pro229-Ser231) and 25 β strands (Lys4-Ile8, Asp30-Val34, 

Val39-Thr41, Gln60-Gly62, Ala72-Val74, Ala78-Val81, Thr87-Leu90, Val95-Pro97, 

Arg100-Leu103, Ile107-Phe109, Val150-Val154, Lys185-Leu189, Val213-Ile216, Val225-

Arg228, Glu233-Val236, Thr239-Lys242, Cys245-Val248, Gln252-Ala254, Ala270-Pro271, 

Lys278-Ser279, Asp282-Ile287, Ser292-Ala293, Tyr329-Ala338, Asp341-Asn352 and 

Arg355-Ile363).  The (Φ, Ψ) torsion angles of all but one residue (Arg323 from monomer 

B) fall within the allowed regions of the Ramachandran plot. 
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 The sequencing of the P.denitrificans SoxF suggested residues 162 and 333 

(the active site residues) are both cysteine residues [Wodara et al 1997], but closer 

inspection of the difference Fourier electron density maps has suggested that Cys333 has 

undergone a post translational modification to form a cysteine persulfide (cysteine residue 

with an extra sulfur attached to the SD sulfur atom). These active site residues also have 

alternate conformations, one of which results in the formation of a trisulfide bridge, the 

refined occupancies of the two conformers were 0.41 in favour of the bridged (oxidised) 

conformation and 0.59 in favour of the broken (reduced) conformation (Figure 5.8). 

Figure 5. 7 – Structure of SoxF displayed in cartoon format, the side chains 
of the active site residues (Cys162 and Cys333) and the FAD cofactor 
displayed as sticks and coloured cyan and magenta respectively. 
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 Single difference Fourier electron density maps were also calculated for the 

SoxF-native dataset, with a cysteine residue at position 333 rather than a cysteine 

persulfide (Figure 5.9), to provide further evidence for this interpretation of the data, i.e. 

the presence of dual conformations for the active site residues that result in the formation 

of a trisulfide bridge via a cysteine persulfide at position 333.  The regions of positive 

single difference density located between the cysteine two residues and above Cys333; 

where the middle sulfur of the trisulfide bridge and SD atom of the cysteine persulfide 

respectively would be located support this interpretation of the data.  The regions of 

negative single difference density located over the SG atoms of the cysteine residues 

Figure 5. 8 – Orthogonal views of the active site of SoxF-native, displaying 
the alternative conformations of the active site residues (Cys 162 and 333) 
and the double difference Fourier electron density map around them, at a 
contour level of 1.1 sigma.  The protein backbone is displayed in cartoon 
format and the FAD cofactor coloured magenta. 

Cys162 

Cys333 

Cys162 

Cys333 
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suggest their occupancies are too high, also supporting this interpretation of the data, 

since the dual conformers of the cysteine residues result in lower individual occupancies. 

 

 

5.3.2 Structures of SoxF-SO 3
2- and SoxF-S n 

 

 The structures for SoxF-SO3
2- and SoxF-Sn were superficially similar to that of 

the native structure, with RMSD’s of 0.33 and 0.29 Å respectively after structural 

alignment, based on the coordinates of the Cα atoms.  Both structures contained two 

SoxF monomers in the asymmetric unit, both contained all 786 amino acid residues from 

the primary sequence (393 per monomer) and two FAD molecules.  The sulfite-soaked 

structure contained 182 water molecules and the sulfur-soaked structure 131.  The 

secondary structure elements for each structure are the same as those found in the native 

structure.  For the SoxF-SO3
2- structure, the (Φ, Ψ) torsion angles of all but three residues 

(Arg83 from each monomer and Arg323 from the second monomer fall within the allowed 

regions of the Ramachandran plot.  For the SoxF-Sn structure, the (Φ, Ψ) torsion angles of 

all but four residues (Arg83 and Arg323 from each monomer) fall within the allowed 

regions of the Ramachandran plot.  

 The geometries of the active sites for each structure are markedly different; both 

still appear to contain one cysteine and one post translationally modified cysteine residue, 

rather than two apo cysteine residues, but this is where the similarities end.  The SoxF-

SO3
2- structure, like the native structure, contains alternate conformers for the residues of 

the active site, one of which forms a trisulfide bridge. However, unlike the native structure 

the modified cysteine residue, resulting in a cysteine persulfide, is found at position 162 

Cys333 

Cys333 

Cys162 Cys162 

Figure 5. 9 – Orthogonal views of the active site of SoxF-native, with a cysteine 
residue present as position 333 rather than a cysteine persulfide.  The double 
difference Fourier electron density map at a contour level of 1.1 sigma is 
coloured Grey, the positive single difference Fourier electron density map at a 
contour level of 5 sigma is coloured  is coloured green and the negative single 
difference Fourier electron density map at a contour level of -4 is coloured red. 
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rather than 333 and the alternate conformation for residue Cys333 is the sulfite bound 

form of cysteine, cysteine-s-sulfonate (Figure 5.10). 

 

 A single difference Fourier electron density map was also calculated for the SoxF-

SO3
2- dataset, with a cysteine persulfide at position 333 rather than a cysteine-s-sulfonate 

(Figure 5.11), to provide further evidence for this interpretation of the data, i.e. the 

presence of the cysteine-s-sulfonate at position 333.  The region of positive electron 

density over the SD atom of the cysteine persulfide at position 333 suggests there is more 

than just sulfur present at in this region, supporting this interpretation of the presence of a 

cysteine-s-sulfonate, as does the lack of any single difference density around the active 

site residues of the refined structure. 

Figure 5. 10 – Orthogonal views of the active site of SoxF-SO3
2-, displaying the 

alternative conformations of the active site residues (Cys 162 and 333) and the 
double difference Fourier electron density map around them, at a contour level 
of 1.1 sigma.  Cys162 has been modified to a cysteine persulfide and Cys333 to 
a cysteine-s-sulfonate. The protein backbone is displayed in cartoon format and 
the FAD cofactor coloured magenta. 

Cys162 

Cys162 

Cys333 

Cys333 
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The SoxF-Sn structure, unlike the SoxF-native and SoxF-SO3
2- structures, does not 

contain alternate conformers for the two active site cysteine residues. Furthermore, the 

electron density suggests there is no bridge formed between them.  As was observed in 

the native structure, residue 162 is a cysteine and residue 333 has undergone a post 

translational modification.  However, unlike the native structure residue 333 has been 

modified to a cysteine-s-trisulfane (a cysteine residue with a chain of three additional 

sulfur atoms attached to its SD sulfur atom) rather than a cysteine persulfide. (Figure 

5.12) 

Figure 5. 11 – The active site of SoxF-SO3
2- with a cysteine persulfide at 

position 333, rather than a cysteine-s-sulfonate. The double difference 
Fourier electron density map at a contour level of 1.1 sigma is coloured 
Grey and the positive single difference Fourier electron density map at a 
contour level of 2.3 sigma is coloured  is coloured green. 
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5.3.3 Modelling a SoxF-SoxYZ complex 

 

 It has been speculated that SoxF is capable of binding the SoxYZ heterodimer, 

either as a single SoxYZ heterodimer or a SoxYZ heterotetramer involving two SoxYZ 

heterodimers.  To test if two SoxYZ heterodimers could bind with SoxF a SoxYZ 

heterotetramer was docked into the SoxF active site cleft to analyse if there were any 

clear polypeptide clashes that would preclude complex formation. The dimeric structure of 

SoxY from Chlorobium limicola f. thiosulfatophilum (PDB ID: 2NNF [Stout et al 2007]) 

Figure 5. 12 – Orthogonal views of the active site of SoxF-Sn, displaying the 
active site residues (Cys 162 and 333) and the double difference Fourier 
electron density map around them, at a contour level of 1.1 sigma.  Cys333 has 
been modified to a cysteine-s-trisulfane. The protein backbone is displayed in 
cartoon format and the FAD cofactor coloured magenta. 

Cys162 

Cys333 

Cys162 

Cys333 
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was used as a template for SoxYZ dimer packing.  The results suggested that a 

heterotetramer could physically fit into the active site cleft as no clashes were found; 

however the active cysteine residues on the C-termini of the SoxY molecules could not 

approach close enough to the SoxF active site with two heterodimers present, making a 

single heterodimer more likely. 

 To give further insight to the nature of the SoxF-SoxYZ interaction a GGCGG 

pentapeptide structure that mimics the sequence found on the C-terminal of SoxY was 

docked into the active site, using a pathway predicted by CAVER [Petrek et al 2006] as a 

mould for docking. This was done to assess how many pentapeptide sequences could be 

docked into the active site and the specific binding interactions that could take place.  A 

number of pentapeptide structures were generated based on secondary structure 

elements and fit to the caver path, with the best shown in Figure 5.13. 

 

 Figure 5.14 shows how the pentapeptide fits into the binding cavity in relation to 

the SoxF structure.  The SG atom on the pentapeptide cysteine approaches to within 2.1 

Å of the cysteine persulfide SD atom on Cys333 of SoxF.  Also shown are the residues 

that line the binding pocket of SoxF; Asn158, Pro163, Pro164, Lys194, Ser196, Asp296, 

Pro298, Leu345 and Ile363. 

Figure 5. 13 – Orthogonal views of the GGCGG pentapeptide sequence 
that replicates the sequence found on the C-terminal of SoxY (displayed 
as sticks with a transparent protein surface) and how it fits within the 
CAVER pathway (displayed as a mesh).  Demonstrating how only one 
pentapeptide is able to fit into the active site pathway. 



 149

 

 All these results points towards a single SoxYZ heterodimer interacting with 

SoxF rather than a heterotetramer, since there was not enough space in the predicted 

active site cavity to accommodate more than one pentapeptide.  Further evidence can be 

seen in the positioning of the three proline residues (Pro 162, 164 and 298, Figure 5.14) 

that appear to form a rigid “plug hole” around the reactive persulfide residue, providing 

enough space for a single thiol group from the approaching SoxY cysteine, but not 

enough for a second. 

 

5.3.4 How SoxF compares with its homologues  

 

 Analysis of the SoxF sequence with CONSURF [Glaser et al 2003], utilising 10 

homologous sequences as identified by Freidrich et al [Freidrich et al  2005], indicated 

conserved regions in the sequences. There was strong sequence conservation in the 

vicinity of the active site (Figure 5.15A) and an area of strong sequence conservation at 

the SoxE binding face (Figure 5.15B).   

Pro163 

Pro298 Pro164 
Pro163 

Pro164 

Pro298 

Asp296 

Asp296 

Ser196 
Ser196 

Asn158 

Asn158 

Lys194 

Lys194 

Leu345 
Leu345 

Ile363 

Cys162 
Cys333 Cys162 

Cys333 

Figure 5. 14 – Orthogonal views of the GGCGG pentapeptide (with its N and C termini 
labelled) and how it could fit into the SoxF binding cavity.  The cysteine SG sulfur on 
the pentapeptide approaches to a distance of 2.1Å from the cysteine persulfide SD 
sulfur on Cys333 of SoxF. The side chains of the active site cysteine residues and the 
residues that form the “plug hole” are displayed as sticks, the other side chains of the 
binding pocket residues are labelled and displayed as lines, and the FAD cofactor 
coloured magenta. 
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 A multiple sequence alignment of these SoxF orthologues (Figure 5.16) 

indicates conservation of the active site cysteines, the three proline residues of the rigid 

“plug hole” surrounding the reactive persulfide residue and the serine of the active lining 

the active site cavity, and conservative amino acid substitutions of the “plug hole” forming 

leucine and other residues lining the active site cavity. 

Figure 5. 15 – The protein surface of SoxF as seen from (A) above the active site 
at the SoxY binding face and (B) the SoxE binding face, displayed in the 
CONSURF colouration (key above figure legend). The conservation of sequence 
around the active site and SoxE binding region (both circled) can be seen. 

Variable Conserved Average 

A 

B 
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Figure 5.1 6 – Multiple sequence alignment of SoxF orthologues.  Active site cysteines 
(▲), residues of the active site cavity that form the “plug hole” around the reactive 
cysteine 333 (○) and the other residues surrounding the active site cavity (●) are all 
marked.  The secondary structure annotation is from the 2.2 Å resolution SoxF-native 
structure.  Identical residues are indicated by a red background, conservatively varied 
residues are boxed in blue and shown in red characters. 
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 Four SoxF homologues with solved structures were identified by a BLAST 

search of the PDB, a breakdown of which can be seen in Table 5.3.  All structures used 

are native protein structures, i.e. the crystals had not undergone any soaking procedures 

prior to data collection. 

Table 5.3 –  A breakdown of structures homologous to SoxF 

PDB 
ID Description Organism 

Sequence 
identity to 
SoxF (%) 

RMSD value 
for alignment 
with SoxF (Ǻ) 

1FCD Flavocytochrome c sulfide 
dehydrogenase 

Allochromatium  
vinosum 42.4 0.76 

3KPI sulfide:quinone 
oxidoreductase 

Acidithiobacillus 
ferrooxidans 19.0 2.46 

3HYV sulfide:quinone 
oxidoreductase Aquifex aeolicus 19.2 3.56 

 

 A multiple sequence alignment of these structural homologues (Figure 5.17) 

identified conserved catalytic cysteine residues in each sequence and insertions in the 

sulfide:quinone oxidoreductases (SQRs) relative to SoxF and the flavocytochrome c 

sulfide dehydrogenase that form the “capping loop” identified by Marcia et al that 

guarantees exclusive access of sulfite in the SQRs [Marcia et al  2009]. 

 A closer inspection of the active sites of SoxF and its structural homologues 

reveals differences in the stoichiometries of the active site cysteine. As has been 

previously stated, the active site of SoxF-native is comprised of a cysteine (Cys162) and a 

post translationally modified cysteine to a cysteine persulfide (Cys333) that have different 

conformers, one of which results in the formation of a trisulfide bridge (Figure 5.18A).  The 

flavocytochrome c sulfide dehydrogenase (PDB ID: 1FCD [Chen et al  1994]) contains a 

single conformation of cysteine residues in a disulfide bridge (Figure 5.18B).   The active 

site cysteines of the SQR’s both contain alternate conformers.  Like SoxF (PDB ID: 3KPI 

[Cherney et al 2010]) contains a cysteine and cysteine persulfide, although the persulfide 

is found on the opposite cysteine (Cys160), the alternate conformation for this active site 

is a branched polysulfide bridge containing six sulfur atoms (Figure 5.18C).  The other 

SQR (PDB ID: 3HYV [Marcia et al 2009]) also contains a cysteine and cysteine 

persulfide, with the persulfide on the opposite cysteine (Cys156) to SoxF, the alternate 

conformation for this active site is that it has an eight sulfur ring attached to Cys156 

(Figure 5.18D).  These findings suggest that it is the N-terminal cysteines (Cys160 and 

Cys156) that are the reactive active site residues in the SQRs, as opposed to the C-

terminal cysteine (Cys333) in SoxF. 
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Figure 5. 17 – Dali [Holm and Rosenström  2010] alignment of SoxF homologues 
identified by BLAST search of the PDB.  1FCD is a flavocytochrome c sulfide 
dehydrogenase from Chromatium vinosum, 3KPI and 3HYV are sulfide:quinone 
oxidoreductases from Acidithiobacillus ferrooxidans and Aquifex aeolicus 
respectively.  The active site cysteines are marked with a ▲ and the insertions in 
the SQRs that correspond to the “capping loops” are highlighted green.  The 
secondary structure annotation is from the 2.2 Å resolution native SoxF structure.  
Identical residues are indicated by a red background, conservatively varied 
residues are boxed in blue and shown in red characters. 
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Figure 5.1 8 – The active sites of P. Pantotrophus SoxF and its homologues, 
showing the alternate cysteine and sulfur geometries in; (A) SoxF-native, (B) 
Chromatium vinosum flavocytochrome c sulfide dehydrogenase (1FCD), (C) 
Acidithiobacillus ferrooxidans sulfide:quinone oxidoreductase (3KPI) and (D) 
Aquifex aeolicus sulfide:quinone oxidoreductase (3HYV).  All structures are of the 
native form of each protein. For comparison the active sites of (E) the SoxF-Sn 
and (F) SoxF-SO3

2- structures are also shown. 
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The addition of the capping loops in the SQR structures results in a clear 

differences in the pathways between SoxF and the SQRs (Figure 5.19).  

 

 

5.3.5 A Homology Model for the small c-type cytochr ome SoxE, presumed 
subunit of a transient SoxEF encounter complex 
 

 SoxF is thought to interact with a c-type cytochrome subunit SoxE [Friedrich et 

al 2000, Quentmeier et al  2004], presently no crystal structure exists for this protein, so 

MODELLER was used to model the structure of SoxE using the structure of a homologous 

protein, cytochrome c4 from Pseudomonas stutzeri (PDB ID: 1M70 [Kadziola et al 1995]), 

as a template.  Figure 5.20 shows a sequence alignment between SoxE and 1M70.   

A B 

Figure 5. 19 – CAVER pathways calculated for (A) P.pantotrophus SoxF and (B) 
Acidithiobacillus ferrooxidans sulfide:quinone oxidoreductase, demonstrating the 
significant differences in active site cavities in the two structures.  The proteins 
are displayed in cartoon format with a transparent surface representation also 
shown, active site residues are displayed as sticks, FAD cofactors coloured 
magenta and active site cavities coloured orange. 



 156

 

 The final structure contained 210 of the 213 residues from the primary sequence 

and two heme groups (Figure 5.21). The principal secondary structure elements as 

determined by the program STRIDE [Frishman and Argos 1995]  are: eight α helices 

(Cys14-His18, Tyr48-Leu60, Pro91-Asp103, Leu125-Leu132, Trp146-His150, Gln167-

Gln179, Val186-Gly192 and Glu196-Thr208) and one 310 helix (Thr81-Met83).  The (Φ, Ψ) 

torsion angles of all but four residues (Arg19, Lys75, Ala118 and Gln151) fall within the 

allowed regions of the Ramachandran plot. 

 

 Both of the hemes were found to be His-Met ligated and interestingly the second 

appears to have a highly unusual WXXCH heme binding motif (Figure 5.22), with the 

tryptophan residue presumably providing some form of heme stabilisation to compensate 

for the loss of the cysteine residue. 

Figure 5. 21 – Homology modelled structure for the cytochrome c 
subunit SoxE, presumed electron acceptor for SoxF.  The protein is 
displayed in cartoon format, with heme cofactors coloured magenta.  

Figure 5. 20 – Sequence alignment between the target sequence, SoxE, and 
the sequence for the template structure, 1M70. Identical residues are 
indicated by a red background, conservatively varied residues are boxed in 
blue and shown in red characters. 
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5.3.6 Modelling of the presumed transient SoxE-SoxF  complex 

 
 SoxE is thought to associate with SoxF [Wodara et al 1997], it is thought this 

interaction occurs in a way homologous to that observed in FccAB of Allochromatium 

vinosum [Chen et al  1994], although the heterodimer formed between SoxE and SoxF in 

P.denitrificans is thought not to be as tight as that formed between FccA and FccB in 

Allochromatium vinosum since they have not been successfully purified together. To 

model the P.denitrificans heterodimer, the model for SoxE and crystal structure of the 2.2 

Å resolution SoxF were superimposed onto the di-heme cytochrome and flavin binding 

subunits of the Allochromatium Vinosum structure (Figure 5.23), with RMSDs of 0.73Å 

and 0.76Å, respectively. 

 

Figure 5. 23 – A model for the transient SoxE-SoxF encounter complex from 
P.denitrificans.  SoxE is coloured cyan, SoxF green and the cofactors magenta. 

Met187 

Cys149 

His150 Trp146 

Figure 5. 22 – The unusual WXXCH heme coordination proposed for 
the second heme of SoxE.  The protein is displayed in cartoon 
format; the heme coordinating residues are displayed as yellow 
sticks and the heme cofactors as magenta sticks 
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 There were two main chain-main chain clashes between the two models on the 

dimer interface. This is likely to be due to the SoxE structure being a homology model 

rather than a crystal structure, and in fact the two main chain clashes between the models 

occur in loop regions of the SoxE structure where there is an insertion relative to the 

template structure used to build the model.  

 A potential path for electron transfer between the two subunits can be seen 

between the FAD of SoxF and interface facing heme of SoxE (Figure 5.24). Two 

tryptophan residues (Trp 334 and 383) are involved in this pathway, although it is unclear 

whether the electrons are passed from Trp383 to Trp334 during transfer, or if these 

residues are present to provide an appropriate electron tunnelling environment since the 

distance between the FAD and heme cofactors of 12.2 Ǻ is short enough to allow direct 

electron transfer. 

 

 This predicted electron transfer pathway fits with the caver prediction for the 

cavity leading from the active site to the protein surface (Figure 5.25), since they do not 

occupy the same space.  The channel itself fits with the model for the protein complex as 

a whole, as it does not interfere with the SoxF-SoxE interface. 

Figure 5. 24 – Potential electron transfer path between SoxE and SoxF 
via tryptophans 334 and 383. Electron transfer distances are shown 
are in Ångstroms. 
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 Electrostatic surfaces were calculated for SoxE and SoxF, these results seem to 

fit with the hypothesis for the heterodimeric complex, with SoxF having a positive surface 

at the binding site and SoxE having a negative surface (Figure 5.26). 

 

 

 

Figure 5.25 – The active site cavity as predicted by CAVER [Petr et 
al 2008]. Active site cysteines and residues along the electron 
transfer chain between SoxE (cyan) and SoxF (green) are shown as 
sticks, cofactors are coloured magenta and the cavity is the orange.  
The insert shows where the cavity protrudes on the protein surface. 

SoxF 

SoxE 

Figure 5. 26 – The electrostatic surfaces of SoxF and SoxE from 
-2.00 (red) to 2.00 (blue) kb T ec

-1., showing the electrostatic 
surfaces of the proteins at their interaction faces. 
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5.4 Discussion 

 

5.4.1 Post-translational Modifications to the activ e site cysteine residues in 
native and inhibited SoxF  
 

 The soaking of SoxF crystals in sodium metabisulfite or dissolved polysulfide 

was performed to solve the structure of the inhibited enzyme.  RMSD values of 0.23 and 

0.21 Å for the Cα alignments of the SoxF-SO3
2- and SoxF-Sn structures with the SoxF-

native structure show there is globally very little difference between the inhibited and 

active forms of SoxF.  However, a closer look at the active site residues (Cys162 and 

Cys333) from each structure (Figure 5.27) highlights more significant differences.   

 

SoxF-SO3
2- is likely to have become inhibited via the process of sulfitolysis.  Sulfite 

(SO3
2-) has the ability to attack and break disulfide bridges via sulfitolysis [Häberlein 

1994, Drescher et al 1998], so it is not unreasonable to suggest that SO3
2- could attack 

and break the trisulfide bridge between cysteines 162 and 333 in SoxF. This attack could 

potentially occur at two different positions, identified as 1 and 2 (Scheme 5.1). However 

analysis of the double difference Fourier electron density map would suggest SO3
2- only 

attacks at position 2 of the bridge, since there is no electron density to suggest the SO3
2- 

moiety is present on cysteine 162, only cysteine 333.  Presumably, the reaction with SO3
2- 

inactivates SoxF by blocking the reactive cysteine 333.  

Scheme 5.1: 

R―S―S―S―R  +  SO3
2 

162                               333
R―S―SH 2O3S―S―R  + H2

162                                                            333

1 2R―S―S―S―R  +  SO3
2 

162                               333
R―S―SH 2O3S―S―R  + H2

162                                                            333

1 2

 

 SoxF-Sn is likely to have become inhibited by the action of the polysulfide chains 

(HSn).  HSn has the ability to attack persulfurated cysteine residues adding elongated 

sulfur chains to them, as identified in the Sud proteins [Klimmek et al 1998, Klimmek et 

al 1999].  X-ray data has shown that addition of HSn to SoxF crystals results in the 

addition of sulfur to the persulfurated cysteine 333 (Scheme 5.2). 

A B C 

Cys162 

Cys162 
Cys162 

Cys333 
Cys333 Cys333 

Figure 5. 27 – The differences in the active site residues between (A) 
SoxF-native (B) SoxF-SO3

2- and (C) SoxF-Sn.  The active site cysteines 
are displayed as sticks, the surrounding protein backbone as transparent 
cartoon and FAD cofactors are coloured magenta. 
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Scheme 5.2: 

R―SH     HS―S―R  +  HSn
162                                         333

R―SH    Sn+1―S―R
162                                           333

R―SH     HS―S―R  +  HSn
162                                         333

R―SH    Sn+1―S―R
162                                           333

 

 Both these inhibited SoxF structures suggest that it is the persulfurated cysteine 

333 that is the site of activity in SoxF’s active site, since both forms of inhibition result in 

modifications to this specific residue. 

 

5.4.2 Interaction between SoxF and SoxYZ  

 

 It has been speculated that SoxF is capable of binding the SoxYZ, either as a 

single SoxYZ heterodimer, or a SoxYZ heterotetramer involving two SoxYZ heterodimers.  

The docking of a SoxYZ heterotetramer to SoxF suggested that SoxYZ was unlikely to 

bind to SoxF in this form, since although there were no peptide clashes, the active 

cysteine of SoxY could not be brought close enough to the SoxF active site. This 

hypothesis is backed up by the results obtained from fitting a GGCGG pentapeptide 

sequence, which matches the sequence found at the C-terminal of SoxY, into the SoxF 

active site cavity. The result suggested only a single SoxYZ dimer would interact with 

SoxF as there was only sufficient space for one pentapeptide in the cavity (Figure 5.8) 

and the ring of proline resides that appear to form a rigid “plug hole” around the active 

persulfide residue (Figure 5.9).  Based on this information, it is plausible that SoxF binds 

only a single SoxYZ heterodimer  

 So what could be happening with regards to SoxYZ binding to SoxF?  A 

mechanism for SoxF-mediated activation of SoxY. This mechanism is based on; the 

observation of a mixed oxidized/reduced trisulfide bridge (ratio 42%:58% from occupancy 

refinement) involving cysteines 333 and 162 in SoxF, the observation of a mixture of 

trisulfide bridge and cysteine-S-sulfonate at position 333/cysteine persulfide at position 

162 in the sulfite-soaked crystals (Scheme 5.1 and Figure 5.27B), the observation of a 

cysteine-S-trisulfane at position 333/cysteine at position 162 with no evidence for a 

trisulfide bridge in the sulphur-soaked crystals (Scheme 5.2 and Figure 5.27C), the 

absence of a stable SoxFE complex after purification (unlike the case for FccBA), and the 

structure of the active site cavity that restricts access to the trisulfite by bulky thiol-bearing 

moieties such as SoxY.  The structures of the native and soaked forms of SoxF suggest 

an equilibrium exists between the oxidised and reduced form of the trisulfide in isolated 

SoxF, the absence of a stable complex with di-heme SoxE or any suitable cytochrome c 

ensures that electrons distribute between the oxidised and reduced forms of the trisulfite 

bridge and the FAD cofactor, and the structure of the active site cavity, suggests that it is 
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the cysteine persulfide at position 333 of the reduced trisulfide bridge which is the most 

likely site of attachment of SoxY via the cysteine at position 110. 

 

 The schematic shown in Figure 5.28 illustrates the formation of a SoxZYF 

complex linked via a trisulfide bridge. Following the formation of an intermolecular 

trisulfide bridge between SoxF and SoxYZ long finger-like insertion in SoxZ relative to 

SoxY may obscure the site of cytochrome c binding to SoxF, isolating the system and 

precluding loss of electrons. The C-terminal region of SoxY undergoes a change in 

conformation during binding to the SoxF active site cavity. Release of “activated” SoxYZ 

follows. Figure 5.29 shows a structural schematic of this interaction. 
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Figure 5. 28 - A schematic illustrating the formation of a SoxZYF complex 
linked via a trisulfide bridge (numbers in red are used to identify each 
complex).  Complex 1 and 2 (the oxidised and reduced forms of the SoxF 
trisulfide bridge) are in equilibrium, Cys108 from SoxY is able to attack the 
reduced trisulfite bridge (complex 2) forming an intermolecular trisulfide bridge 
between SoxF and SoxYZ (complex 3), the finger-like insertion in SoxZ 
relative to SoxY may obscure the site of cytochrome c binding to SoxF, 
isolating the system and precluding loss of electrons, the C-terminal region of 
SoxY undergoes a change in conformation during binding to the SoxF active 
site cavity,  “activated” SoxYZ is released (complex 4) and the SoxF trisulfide 
bridge returns to its equilibrium between the oxidised and reduced states. 
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5.4.3 Could the mixture of trisulfide plus cysteine  and cycteine-s-sulfane/persulfide 
be a result of photoreduction 
 

It has been shown that disulfide bridges can be broken as a result of 

photoreduction due to synchrotron radiation [Weik et al  2000, Alphey et al  2003].  To test 

whether such photoreduction has occurred in the SoxF structures, leading to the mixture 

of species in the active sites, a method used by Robets et al could be used employed. 

Roberts et al had solved the structure of the N-terminal domain of the Salmonalla 

typhimurium flavoprotein AhpF with data collected at synchrotron sources [Wood et al 

2001], they found that the active site cysteine residues did not form a disulfide bridge, but 

appeared to be in close nonbonded interaction (~3 Å separation), despite the protein used 

for crystallisation being in the oxidised state and crystallised in the absence of any 

reducing agent.  To test whether this disulfide bridge reduction was as a result of 

synchrotron radiation two datasets were collected from a single large crystal, one using 

their own laboratory X-ray source and then one at a synchrotron.  They found that the 

disulfide bridge was oxidised in the dataset collected using their in-house X-ray source, 

but it reduced during synchrotron data collection [Roberts et al 2005].  In order for the 

hypothesise put forward in this chapter to be possible, this test would need to show that 

the trisulfide bridge was reduced before synchrotron data collection.  

 

 

 

 

 

SH

S SH

SH
S

S

S

SH

SH

S SH

SH

SoxZ

SoxF
SoxE

SoxY

FAD (ox) HemeFAD (red)

Figure 5.2 9 – Structural schematic of the SoxZYF complex showing. SoxYZ binds 
with SoxF via an intermolecular trisulfide bridge, blocking the SoxE binding site of 
SoxF with the long finger-like insertion in SoxZ, the C-terminal of SoxY is then 
modified and “activated” SoxYZ released. 
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5.4.4 Comparisons of SoxF with it structural homolo gues 

 

 RMSD values for alignments of SoxF with its structural homologues (Table 5.3) 

suggest that the structures are superficially similar, as was observed with the differences 

between the native and soaked structures for SoxF. The significant differences become 

apparent when looking at the active sites.  Figure 5.18 shows how the orientations and 

sulfur bindings of the two active site cysteine residues differs between each protein, with 

the persulferated cysteine in these structures being the equivalent of Cys162 from SoxF 

rather than Cys333.   

 There is also a noticeable difference in the pathways as predicted by CAVER, 

with the large cavity capable of accommodating at least a pentapeptide molecule 

observed in SoxF replaced by a much tighter path in the Acidithiobacillus ferrooxidans 

SQR (Figure 5.30).  This change in active site cavity is likely due to two insertions and a 

deletion in the SQR enzyme that result in the blocking of the large cavity seen in SoxF.  

The changes in active site cavity also fit with the known function of the SQRs as enzymes 

that catalyse the reaction of sulfide ions to elemental sulfur [Greisbeck et al 2002], which 

would not require a cavity the size of that observed in SoxF. 

 

 

 

 

 

 

A B 

Figure 5. 30 – Caver pathways from (A) Paracoccus pantotrophus SoxF and (B) 
Acidithiobacillus ferrooxidans sulfide:quinone oxidoreductase, demonstrating the 
significant differences in active sites between the two structures. 
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5.4.5 Reasons for no tight complex with the cytochr ome subunit, observed 
in the Allochromatium vinosum sulfite dehydrogenase 
 

 An electrostatic surface potentials for FccA and FccB (Figure 5.31) suggest that 

the electrostatic attraction between the two subunits is inferior to that seen in the SoxE-

SoxF complex (Figure 5.26) since the charges to not match up as clearly, indicating the 

differences in binding strength are more likely to be due to reside-residue contacts on the 

protein surface, or interactions between the FAD and heme cofactors. 

 

 The SoxE-SoxF complex does have two regions where main chain-main chain 

clashes occur between the two structures (Figure 5.32) that could point towards a reason 

for a more transient complex between SoxE and SoxF. 

 

 The interface between FccA and FccB has 13 hydrogen bonds, including one 

slat bridge, connecting the two subunits [Chen et al  1994], only 8 hydrogen bonds could 

FccB 

FccA 

Figure 5. 31 – The electrostatic surface potentials for FccA and FccB from -2.00 
(red) to 2.00 (blue) kb T ec

-1, showing the interacting faces of each subunit. 

A B 

Figure 5. 32 – The regions between SoxE (cyan) and SoxF (green) 
where the main chain-main chain clashes occur, at (A) residues 71-73 
and (B) 136-143 of the modelled SoxE structure. 
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be identified at the interface between SoxE and SoxF, suggesting another reason for the 

more transient nature of the complex. 

 There is also a change in the electron transfer paths between the SoxE-SoxF 

(Figure 5.24) and FccA-FccB (Figure 5.33) complexes, with the FccA-FccB complex 

bringing the FAD and heme cofactors closer together (11.0Å, compared in 12.2Å). 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

11 Å 

Trp391 

Tyr338 

Figure 5. 33 – The electron transfer path between FccB (green) 
and FccA (cyan), showing the distance between the FAD and 
heme cofactors and the residues located along the path. 

FccB FAD 

FccA  
heme 
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Chapter 6 - Conclusions and future work 

 

6.1 Heme packing and hemoprotein prediction 

 

The results of the heme packing analysis in Chapter 2 has shown that specific 

heme motifs are conserved between proteins within each SCOP family and that, with the 

exception of the di-heme elbow pair motif which was found in the c3-like and di-heme 

elbow SCOP families, each SCOP family contains a unique set of heme packing motifs. 

The analysis has also shown that, based on the proteins used in this analysis, heme 

packings from each family can be constructed from a small number of heme motifs.  The 

cytochrome c3–like SCOP family is populated by hemoproteins with four distinct motifs; 

cytochrome c3, cytochrome c7, 9-heme cytochrome and 16-heme cytochrome c, some of 

which have been shown to spear in more than one family (Figure 1.12).   The di-heme 

elbow motif SCOP family contains proteins from a wide range of protein structures, 

however, the analysis of the heme packings has shown that the heme substructures from 

all of these proteins can be constructed from sequential packing of the parallel pair and di-

heme elbow pair motifs, with the incorporation of an active site heme pair if the protein 

has enzymatic function. 

The sequences that coordinate each heme motif were extracted, separated into 

subclusters based on their sequence length, polypeptide structure or phylogeny, aligned 

and used to build HMMs.  This work has demonstrated that these HMMs can be used to 

predict the heme substructure of hemoproteins and provide templates for polypeptide 

modelling.  This structure prediction methodology has been shown to produce models that 

agree with the structures determined by X-ray crystallography. In the case of the STC test 

case, this is true over the entire length of the heme substructure and true for a part of the 

heme substructure in the GSU_1996 test case.  The problems with the GSU_1996 

prediction were due to the presence of a hitherto unobserved heme pair motif in the 

experimental structure. As this prediction methodology is based on recognition of 

previously observed heme packings, as new heme pair motifs are observed and 

incorporated into the heme pair database, problems such as this will become less 

frequent.  However, it should be noted that the HMM based prediction methodology 

developed in this thesis provides a significantly closer approximation of the GSU_1996 

structure than any of the existing techniques tested during this work. 
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6.1.1 Future development of the structure predictio n method 

 

The automation of the hemoprotein structure prediction methodology described in 

this thesis will be an important next step.  The successful automation of HMM searching 

has helped to allow more rapid identification of target proteins that have a higher 

likelihood of giving a successful prediction (see Chapter 3), but the automation of the 

model building itself will speed up the process even further.  A useful addition to the 

methods described in Chapter 2 would be the incorporation of de novo prediction methods 

for the remaining unmodelled regions of hemoproteins (i.e. the N-terminal region before 

the first heme and the C-terminal region after the last heme).  Another feature to add 

would be the ability to infer functional properties on the predicted structures by simulating 

heme redox potentials and residue pka values using computational methods such as Multi-

Conformational Continuum Electrostatics (MCCE) [Georgescu et al 2002]. 

The information discovered and techniques developed in this work may eventually 

lead to the design of new multiheme cytochrome structures with specific functions, such 

as artificial nano-wires.  This could most likely involve the design of self-assembling 

proteins with structures similar to GSU_1996 and GSU_2210. 

It may also be possible to adapt this methodology to predict the structures of other 

cofactor rich proteins, such as iron sulfur cluster containing proteins.  The success of this 

would rely on the availability of sufficient structural data to identify conserved patterns in 

cofactor packing and corresponding amino acid sequences for HMM construction.  It is 

that lack of such information that was the limiting factor in the quality of the predictions of 

the copper cluster containing proteins Mac1 and Ace1 in Chapter 4. 

 

6.2 Copper chaperone studies 

 

The work described on the copper chaperone CopZ in Chapter 4 has shown it is 

able to adjust its copper coordination stoichiometries to bind varying amounts of 

monovalent copper, with a four copper dimer and three copper timer observed in the 

crystal and one and two copper dimers observed in solution [Kihlken et al 2002]. This 

provides an insight into the versatility of the Atx1-like copper chaperones with respect to 

copper coordination.  This versatility has been further highlighted by crystal structures 

published recently by Badarau et al, who solved a range of copper bound species of Atx1 

from the cyanobacterium Synechocystis PCC6803 which used different monomer packing 

geometries and copper coordinating residues to bind varying number of copper ion 

[Badarau et al 2010].   

The structural homology of the N-terminal domain of CopA to CopZ and the 

existence of the trimeric species allowed putative models of copper exchange complexes 

to be constructed by substituting in turn each of the two N-terminal copper binding 
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domains of CopA. The usual indicators of permanency for protein complexes (e.g. 

[Ponsting et al 2000]) could not be used for the assessment of this transient complex 

because a major driver for stability is presumably the formation of specific Cu(I) ion to 

cysteine thiolate co-ordinate bonds. However, the relatively low value of the solvent-

accessible area lost on complex formation and the low number of inter-subunit hydrogen 

bonds are at least consistent with a tentative classification of the modelled complexes as 

transient. 

 

6.2.1 Future work on the copper homeostasis pathway  of B.subtilis 

 

An area for future work for this project would need to be the development of a 

method to test the validity of the copper exchange complex.  One method for 

accomplishing this would be to prepare protein solutions containing stable complexes of 

differing mixtures of CopA bound to CopZ and copper ions for crystallisation experiments, 

leading to X-ray data collection to ascertain a 3D structure of the complex.  However the 

predicted transient nature of this complex is likely to make isolating a complex stable 

enough to form protein crystals quite challenging, if this is the case, surface plasmon 

resonance [Van Der Merwe 2001]  or analytical ultracentrifugation are other potential 

techniques that could be analysed to assess the nature and strength of CopA-CopZ 

complex formation.  At the very least a crystal structure for the N-termini domains of CopA 

would give a more accurate structure for the modelling of the complex. 

 

6.3 The sulfur oxidation pathway of Paracoccus pantotrophus  

 

 The X-ray crystal structures of native and two product inhibited forms of the sox 

cycle flavoprotein SoxF have been solved and described in this thesis (Chapter 5).  The 

structures are highly homologous with the main differences found at the active site 

cysteine residues (Figure 5.27).   

SoxF is thought to interact with the di-heme cytochrome SoxE, although no 

structure for such or complex or SoxE itself is currently available.  A model for SoxE was 

created based on a homologous structure (PDB ID: 1M70 [Kadziola et al 1995]) and a 

SoxEF complex modelled based on the homologous FccAB complex from Allochromatium 

vinosum (PDB ID: 1FCD [Chen et al  1994]).   

The action of the active site residues and the size of the active site cavity led to the 

proposal of a mechanism for SoxF-mediated activation of the sox cycle sulfur transporting 

heterodimer SoxYZ via modification of the C-terminal of SoxY (Figure 5.29). 
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6.3.1 Future work on the structure-function relatio nships of SoxF  

 

It will be necessary to assess whether or not the break in the active site trisulfide 

bridge observed in the structure of SoxF occurs naturally and is a requirement for function 

or simply arose as a result of photoreduction in the synchrotron X-ray beam.  One method 

for ascertaining this would be to dissolve a number of crystals before and after X-ray 

exposure for analysis using mass spectrometry.  It would be important to use dissolved 

crystals rather than protein solution to ensure the species being analysed is that same as 

that observed in crystal and not another form found only in solution.  An alternative 

method could be to collect a dataset from a crystal using an “in house” radiation source, 

this would reduce the intensity of the X-rays and has been shown to prevent the reduction 

of disulfide bridge in flavoprotein structures [Roberts et al 2005].  For completeness, if 

the crystal survives it would also be good to collect a dataset at a synchrotron using the 

same crystal and examine any changes in the composition of the active site that could be 

due to photoreduction. 

In order to validate the model of the SoxEF complex the ideal scenario would be to 

purify and crystallise a stable (trapped) form of the SoxEF complex, however if this is not 

possible then a crystal structure for SoxE alone would be enough to create a more 

accurate model of the complex and to characterise the unusual WXXCH presumed heme 

binding motif found in SoxE. 
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Appendix I - Pair clusters - 125 pairs (40% His-His set), 1.5A cutoff 
 
Cluster 01 (28) 
1SP3-A804-A803 
1M1Q-A804-A803 
2CY3-A121-A119 
1OAH-A1522-A1521 
1FGJ-A3-A2 
1FGJ-A8-A7 
1FT5-A216-A215 
2OZY-A204-A205 
2OT4-A1002-A1003 
2OZY-A202-A203 
2OT4-A1007-A1008 
1OAH-A1523-A1524 
3BNJ-A516-A517 
1FGJ-A5-A6 
1Y0P-A801-A802 
1M1Q-A801-A802 
3BNJ-A514-A515 
2OT4-A1005-A1006 
1RWJ-A90-A91 
1OFW-A1299-A1301 
1OFW-A1294-A1296 
3CAO-A104-A106 
3BXU-A72-A73 
2BQ4-A1115-A1117 
1GYO-A111-A113 
1WAD-A112-A114 
1AQE-A119-A121 
1J0P-A1001-A1003 
 
Cluster 02 (20) 
1FGJ-A1-A2 
2CZS-A500-A501 
1SP3-A801-A803 
1JNI-A111-A110 
1OGY-B1128-B1129 
1FGJ-A5-A3 
1OAH-A1523-A1522 
2OT4-A1003-A1005 
1FGJ-A6-A7 
2OT4-A1006-A1007 
3BNJ-A515-A516 
1SP3-A806-A807 
1Y0P-A802-A803 
1SP3-A804-A805 
1M1Q-A802-A803 
2OZY-A201-A202 
2OZY-A203-A204 
2OT4-A1001-A1002 
1FT5-A213-A215 
1H21-A1248-A1249 

Cluster 03 (10) 
2BQ4-A1115-A1118 
1GYO-A111-A114 
1WAD-A112-A115 
1J0P-A1001-A1004 
3BXU-A72-A74 
2CY3-A119-A122 
1AQE-A122-A119 
3CAO-A107-A104 
1OFW-A1294-A1298 
1OFW-A1299-A1302 
 
Cluster 04 (10) 
1J0P-A1003-A1004 
3BXU-A73-A74 
2CY3-A121-A122 
1AQE-A121-A122 
1OFW-A1301-A1302 
1GYO-A113-A114 
2BQ4-A1117-A1118 
1WAD-A115-A114 
1OFW-A1298-A1296 
3CAO-A107-A106 
 
Cluster 05 (9) 
1OFW-A1294-A1295 
2BQ4-A1115-A1116 
1J0P-A1001-A1002 
2CY3-A119-A120 
1AQE-A119-A120 
1GYO-A111-A112 
1WAD-A113-A112 
1OFW-A1300-A1299 
3CAO-A105-A104 
 
Cluster 06 (9) 
2CY3-A121-A120 
1AQE-A121-A120 
1OFW-A1295-A1296 
1GYO-A112-A113 
2BQ4-A1116-A1117 
1WAD-A113-A114 
1J0P-A1002-A1003 
1OFW-A1300-A1301 
3CAO-A105-A106 
 
Cluster 07 (9) 
1GYO-A114-A112 
1OFW-A1302-A1300 
1AQE-A122-A120 
2CY3-A122-A120 

1OFW-A1295-A1298 
3CAO-A105-A107 
2BQ4-A1116-A1118 
1WAD-A113-A115 
1J0P-A1002-A1004 
 
Cluster 08 (7) 
1SP3-A803-A805 
2OZY-A202-A204 
3BNJ-A514-A516 
1M1Q-A801-A803 
1Y0P-A801-A803 
2OT4-A1005-A1007 
2OT4-A1002-A1005 
 
Cluster 09 (2) 
1OAH-A1524-B1524 
3BNJ-A517-B517 
 
Cluster 10 (2) 
1AQE-A119-B119 
1GYO-A111-B111 
 
Cluster 11 (2) 
1SP3-A806-A805 
1SP3-A808-A807 
 
Cluster 12 (2) 
1FGJ-A5-A2 
1OAH-A1523-A1521 
 
Cluster 13 
2OT4-A1003-B1003 
 
Cluster 14 
2FWT-A803-A805 
 
Cluster 15 
1OFW-A1297-A1298 
 
Cluster 16 
1FGJ-A8-C2 
 
Cluster 17 
1OFW-A1297-A1296 
 
Cluster 18 
1OFW-A1297-A1299 
 
Cluster 19 
1KQF-809-810 
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Cluster 20 
1Y5I-C806-C807 
 
Cluster 21 
1OFW-A1297-A1301 
 
Cluster 22 
1H21-A1249-B1249 
 
Cluster 23 
1Y0P-A803-A804 
 
Cluster 24 
2BS2-C1255-C1256 
 
Cluster 25 
1OFW-A1298-B1300 
 
Cluster 26 
1OFW-A1300-B1298 
 
Cluster 27 
1SP3-A805-A807 
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Appendix II - 115 Triplets from 40% His-His set 
 

Cluster 01 (23) | 01-02 
1FGJ-A3-A2-A1 
1FGJ-A3-A2-A5 
1FGJ-A5-A6-A3 
1FGJ-A5-A6-A7 
1FGJ-A8-A7-A6 
1FT5-A216-A215-A213 
1M1Q-A801-A802-A803 
1M1Q-A804-A803-A802 
1OAH-A1522-A1521-A1523 
1OAH-A1523-A1524-A1522 
1SP3-A804-A803-A801 
1SP3-A804-A803-A805 
1Y0P-A801-A802-A803 
2OT4-A1002-A1003-A1001 
2OT4-A1002-A1003-A1005 
2OT4-A1005-A1006-A1003 
2OT4-A1005-A1006-A1007 
2OT4-A1007-A1008-A1006 
2OZY-A202-A203-A201 
2OZY-A202-A203-A204 
2OZY-A204-A205-A203 
3BNJ-A514-A515-A516 
3BNJ-A516-A517-A515 
 
Cluster 02 (10) | 01-04 
1AQE-A119-A121-A122 
1GYO-A111-A113-A114 
1J0P-A1001-A1003-A1004 
1OFW-A1294-A1296-A1298 
1OFW-A1299-A1301-A1302 
1WAD-A112-A114-A115 
2BQ4-A1115-A1117-A1118 
2CY3-A121-A119-A122 
3BXU-A72-A73-A74 
3CAO-A104-A106-A107 
 
 
Cluster 03 (9) | 01-06 
1AQE-A119-A121-A120 
1GYO-A111-A113-A112 
1J0P-A1001-A1003-A1002 
1OFW-A1294-A1296-A1295 
1OFW-A1299-A1301-A1300 
1WAD-A112-A114-A113 
2BQ4-A1115-A1117-A1116 
2CY3-A121-A119-A120 
3CAO-A104-A106-A105 
 
Cluster 04 (9) | 04-07 
1AQE-A121-A122-A120 
1GYO-A113-A114-A112 
1J0P-A1003-A1004-A1002 
1OFW-A1298-A1296-A1295 
1OFW-A1301-A1302-A1300 
1WAD-A115-A114-A113 
2BQ4-A1117-A1118-A1116 
2CY3-A121-A122-A120 
3CAO-A107-A106-A105 
 

Cluster 05 (9) | 03-06 
1GYO-A111-A114-A112 
1J0P-A1001-A1004-A1002 
1OFW-A1294-A1298-A1295 
1OFW-A1299-A1302-A1300 
1WAD-A112-A115-A113 
2BQ4-A1115-A1118-A1116 
2CY3-A119-A122-A120 
1AQE-A119-A120-A122 
3CAO-A105-A104-A107 
 
Cluster 06 (5) | 01-05 
1M1Q-A804-A803-A801 
2OT4-A1005-A1006-A1002 
2OT4-A1007-A1008-A1005 
2OZY-A204-A205-A202 
3BNJ-A516-A517-A514 
 
Cluster 07 (4) | 02-05 
1SP3-A801-A803-A805 
2OT4-A1001-A1002-A1005 
2OT4-A1003-A1005-A1007 
2OZY-A201-A202-A204 
 
Cluster 08 (3) | 02-12 
1SP3-A804-A805-A806 
1SP3-A806-A807-A805 
1SP3-A806-A807-A808 
 
Cluster 09 (2) | 01-09 
1OAH-A1523-A1524-B1524 
3BNJ-A516-A517-B517 
 
Cluster 10 (2) | 01-10 
1AQE-A119-A121-B119 
1GYO-A111-A113-B111 
 
Cluster 11 | 01-11 
2OT4-A1002-A1003-B1003 
 
Cluster 12 (2) | 01-13 
1FGJ-A5-A6-A2 
1OAH-A1523-A1524-A1521 
 
Cluster 13 | 02-11 
2OT4-A1003-A1005-B1003 
 
Cluster 14 (2) | 03-10 
1AQE-A122-A119-B119 
1GYO-A111-A114-B111 
 
Cluster 15 | 05-05 
2OT4-A1005-A1007-A1002 
 
Cluster 16 (2) | 06-10 
1AQE-A119-A120-B119 
1GYO-A111-A112-B111 
 
Cluster 18 | 01-17 
1FGJ-A8-A7-C2 

 
Cluster 19 | 01-18 
1OFW-A1294-A1296-A1297 
 
Cluster 20 | 01-23 
1OFW-A1299-A1301-A1297 
 
Cluster 21 | 02-13 
1FGJ-A1-A2-A5 
 
Cluster 23 | 02-24 
1H21-A1248-A1249-B1249 
 
Cluster 24 | 02-25 
1Y0P-A802-A803-A804 
 
Cluster 25 | 02-29 
1SP3-A804-A805-A807 
 
Cluster 26 | 03-15 
1OFW-A1294-A1298-A1297 
 
Cluster 27 | 03-20 
1OFW-A1299-A1302-A1297 
 
Cluster 28 | 03-27 
1OFW-A1294-A1298-B1300 
 
Cluster 29 | 04-18 
1OFW-A1298-A1296-A1297 
 
Cluster 30 | 04-23 
1OFW-A1301-A1302-A1297 
 
Cluster 31 | 04-27 
1OFW-A1298-A1296-B1300 
 
Cluster 32 | 05-12 
1SP3-A803-A805-A806 
 
Cluster 35 | 05-25 
1Y0P-A801-A803-A804 
 
Cluster 36 | 05-29 
1SP3-A803-A805-A807 
 
Cluster 37 | 06-20 
1OFW-A1300-A1299-A1297 
 
Cluster 38 | 06-28 
1OFW-A1300-A1299-B1298 
 
Cluster 39 | 07-18 
1OFW-A1295-A1296-A1297 
 
Cluster 40 | 07-23 
1OFW-A1300-A1301-A1297 
 
 

 



 174

Cluster 41 | 07-28 
1OFW-A1300-A1301-B1298 
 
Cluster 42 | 08-15 
1OFW-A1295-A1298-A1297 
 
Cluster 43 | 08-27 
1OFW-A1295-A1298-B1300 
 
Cluster 44 | 08-28 
1OFW-A1302-A1300-B1298 
 
Cluster 45 | 12-29 
1SP3-A808-A807-A805 
 
Cluster 46 | 15-20 
1OFW-A1297-A1298-A1299 
 
Cluster 47 | 15-23 
1OFW-A1297-A1298-A1301 
 
Cluster 48 | 15-27 
1OFW-A1297-A1298-B1300 
 
Cluster 49 | 18-20 
1OFW-A1297-A1296-A1299 
 
Cluster 50 | 18-23 
1OFW-A1297-A1296-A1301 
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Appendix III - 99 Quartets from 40% His-His set 
 

Cluster 1 (8) | 01-02-01 
1FGJ-A5-A6-A3-A2 
1FGJ-A8-A7-A6-A5 
1M1Q-A801-A802-A803-A804 
1OAH-A1523-A1524-A1522-A1521 
2OT4-A1005-A1006-A1003-A1002 
2OT4-A1005-A1006-A1007-A1008 
2OZY-A202-A203-A204-A205 
3BNJ-A514-A515-A516-A517 
 
Cluster 2 (9) | 01-05-04 
1AQE-A119-A121-A120-A122 
1GYO-A111-A113-A112-A114 
1J0P-A1001-A1003-A1002-A1004 
1OFW-A1294-A1296-A1295-A1298 
1OFW-A1299-A1301-A1300-A1302 
1WAD-A112-A114-A113-A115 
2BQ4-A1115-A1117-A1116-A1118 
2CY3-A121-A119-A120-A122 
3CAO-A104-A106-A107-A105 
 
Cluster 3 (6) | 01-02-02 
1FGJ-A3-A2-A1-A5 
1FGJ-A5-A6-A3-A7 
1SP3-A804-A803-A805-A801 
2OT4-A1002-A1003-A1001-A1005 
2OT4-A1005-A1006-A1007-A1003 
2OZY-A202-A203-A204-A201 
 
Cluster 4 (3) | 01-02-13 
2OT4-A1002-A1003-A1001-B1003 
2OT4-A1002-A1003-A1005-B1003 
2OT4-A1005-A1006-A1003-B1003 
 
Cluster 5 (2) | 01-02-08 
2OT4-A1002-A1003-A1005-A1007 
2OT4-A1005-A1006-A1007-A1002 
 
Cluster 6 (2) | 01-08-02 
2OT4-A1007-A1008-A1005-A1003 
2OZY-A204-A205-A202-A201 
 
Cluster 7 (2) | 02-08-01 
2OT4-A1001-A1002-A1005-A1006 
2OT4-A1003-A1005-A1007-A1002 
 
Cluster 8 (2) | 01-05-10 
1AQE-A119-A121-A122-B119 
1GYO-A111-A113-A114-B111 

 
Cluster 9 (2) | 01-04-10 
1AQE-A119-A121-A120-B119 
1GYO-A111-A113-A112-B111 
 
Cluster 10 | 01-08-08 
2OT4-A1007-A1008-A1005-A1002 
 
Cluster 11 | 01-02-09 
1OAH-A1523-A1524-A1522-B1524 
 
Cluster 12 | 01-02-11 
1SP3-A804-A803-A805-A806 
 
Cluster 13 | 01-02-12 
1FGJ-A5-A6-A7-A2 
 
Cluster 14 | 01-02-16 
1FGJ-A8-A7-A6-C2 
 
Cluster 15 | 01-02-23 
1Y0P-A801-A802-A803-A804 
 
Cluster 16 | 01-02-27 
1SP3-A804-A803-A805-A807 
 
Cluster 17 | 01-04-25 
1OFW-A1294-A1296-A1298-B1300 
 
Cluster 18 | 01-08-09 
3BNJ-A516-A517-A514-B517 
 
Cluster 19 | 01-05-17 
1OFW-A1294-A1296-A1295-A1297 
 
Cluster 20 | 01-05-26 
1OFW-A1299-A1301-A1300-B1298 
 
Cluster 21 | 01-09-02 
3BNJ-A516-A517-B517-A515 
 
Cluster 22 | 01-09-12 
1OAH-A1523-A1524-B1524-A1521 
 
Cluster 23 | 01-12-02 
1FGJ-A5-A6-A2-A1 
 
Cluster 24 | 01-17-18 
1OFW-A1294-A1296-A1297-A1299 
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Cluster 25 | 01-17-21 
1OFW-A1294-A1296-A1297-A1301 
 
Cluster 26 | 01-21-04 
1OFW-A1299-A1301-A1297-A1302 
 
Cluster 27 | 01-21-05 
1OFW-A1299-A1301-A1297-A1300 
 
Cluster 28 | 01-21-15 
1OFW-A1299-A1301-A1297-A1298 
 
Cluster 29 | 01-21-17 
1OFW-A1299-A1301-A1297-A1296 
 
Cluster 30 | 02-08-08 
2OT4-A1001-A1002-A1005-A1007 
 
Cluster 31 | 02-08-13 
2OT4-A1003-A1005-A1007-B1003 
 
Cluster 32 | 02-08-11 
1SP3-A801-A803-A805-A806 
 
Cluster 33 | 02-11-02 
1SP3-A804-A805-A806-A807 
 
Cluster 34 | 02-11-11 
1SP3-A806-A807-A808-A805 
 
Cluster 35 | 02-27-11 
1SP3-A804-A805-A807-A808 
 
Cluster 36 | 03-05-10 
1GYO-A111-A114-A112-B111 
 
Cluster 37 | 03-05-15 
1OFW-A1294-A1298-A1295-A1297 
 
Cluster 38 | 03-05-18 
1OFW-A1299-A1302-A1300-A1297 
 
 
Cluster 39 | 03-05-25 
1OFW-A1294-A1298-A1295-B1300 
 
Cluster 40 | 03-05-26 
1OFW-A1299-A1302-A1300-B1298 
 
Cluster 41 | 03-15-18 
1OFW-A1294-A1298-A1297-A1299 

 
Cluster 42 | 03-15-21 
1OFW-A1294-A1298-A1297-A1301 
 
Cluster 43 | 03-18-15 
1OFW-A1299-A1302-A1297-A1298 
 
Cluster 44 | 03-18-17 
1OFW-A1299-A1302-A1297-A1296 
 
Cluster 45 | 04-06-21 
1OFW-A1301-A1302-A1300-A1297 
 
Cluster 46 | 04-06-25 
1OFW-A1298-A1296-A1295-B1300 
 
Cluster 47 | 04-06-26 
1OFW-A1301-A1302-A1300-B1298 
 
Cluster 48 | 04-17-01 
1OFW-A1298-A1296-A1297-A1294 
 
Cluster 49 | 04-17-18 
1OFW-A1298-A1296-A1297-A1299 
 
Cluster 50 | 04-17-21 
1OFW-A1298-A1296-A1297-A1301 
 
Cluster 51 | 04-17-25 
1OFW-A1298-A1296-A1297-B1300 
 
Cluster 52 | 04-21-15 
1OFW-A1301-A1302-A1297-A1298 
 
Cluster 53 | 04-21-17 
1OFW-A1301-A1302-A1297-A1296 
 
Cluster 54 | 08-11-02 
1SP3-A803-A805-A806-A807 
 
Cluster 55 | 08-27-02 
1SP3-A803-A805-A807-A801 
 
 
Cluster 56 | 08-27-11 
1SP3-A803-A805-A807-A808 
 
Cluster 57 | 05-07-10 
1AQE-A119-A120-A122-B119 
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Cluster 58 | 05-18-15 
1OFW-A1300-A1299-A1297-A1298 
 
Cluster 59 | 05-18-17 
1OFW-A1300-A1299-A1297-A1296 
 
Cluster 60 | 05-18-26 
1OFW-A1300-A1299-A1297-B1298 
 
Cluster 61 | 06-17-04 
1OFW-A1295-A1296-A1297-A1298 
 
Cluster 62 | 06-17-18 
1OFW-A1295-A1296-A1297-A1299 
 
Cluster 63 | 06-17-21 
1OFW-A1295-A1296-A1297-A1301 
 
Cluster 64 | 06-21-15 
1OFW-A1300-A1301-A1297-A1298 
 
Cluster 65 | 06-21-17 
1OFW-A1300-A1301-A1297-A1296 
 
Cluster 66 | 06-21-26 
1OFW-A1300-A1301-A1297-B1298 
 
Cluster 67 | 07-15-18 
1OFW-A1295-A1298-A1297-A1299 
 
Cluster 68 | 07-15-21 
1OFW-A1295-A1298-A1297-A1301 
 
Cluster 69 | 15-18-25 
1OFW-A1297-A1298-A1299-B1300 
 
Cluster 70 | 15-25-03 
1OFW-A1297-A1298-B1300-A1294 
 
Cluster 71 | 15-25-07 
1OFW-A1297-A1298-B1300-A1295 
 
Cluster 72 | 15-25-21 
1OFW-A1297-A1298-B1300-A1301 
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Appendix IV - 59 Quintets from 40% His-His set 

 
Cluster 1 (2) | 01-08-02-02 
2OT4-A1007-A1008-A1005-A1003-A1006 
2OZY-A204-A205-A202-A201-A203 
 
Cluster 2 (2) | 01-02-02-13 
2OT4-A1002-A1003-A1001-A1005-B1003 
2OT4-A1005-A1006-A1007-A1003-B1003 
 
Cluster 3 (2) | 01-05-04-10 
1AQE-A119-A121-A120-A122-B119 
1GYO-A111-A113-A112-A114-B111 
 
Cluster 4 | 01-02-08-02 
2OT4-A1002-A1003-A1005-A1007-A1006 
 
Cluster 5 | 01-08-02-08 
2OT4-A1007-A1008-A1005-A1003-A1002 
 
Cluster 6 | 01-08-02-13 
2OT4-A1007-A1008-A1005-A1003-B1003 
 
Cluster 7 | 01-02-01-02 
1FGJ-A8-A7-A6-A5-A3 
 
Cluster 8 | 01-02-01-09 
3BNJ-A514-A515-A516-A517-B517 
 
Cluster 9 | 01-02-01-13 
2OT4-A1005-A1006-A1003-A1002-B1003 
 
Cluster 10 | 01-02-01-12 
1FGJ-A8-A7-A6-A5-A2 
 
Cluster 11 | 01-02-01-16 
1FGJ-A8-A7-A6-A5-C2 
 
Cluster 12 | 01-02-02-01 
1FGJ-A5-A6-A3-A7-A2 
 
Cluster 13 | 01-02-02-11 
1SP3-A804-A803-A805-A801-A806 
 
Cluster 14 | 01-02-02-27 
1SP3-A804-A803-A805-A801-A807 
 
Cluster 15 | 01-02-05-11 
2OT4-A1002-A1003-A1005-A1007-B1003 
 
Cluster 16 | 01-02-09-12 
1OAH-A1523-A1524-A1522-B1524-A1521 
 
Cluster 17 | 01-02-11-27 
1SP3-A804-A803-A805-A806-A807 
 
 

Cluster 18 | 01-05-04-17 
1OFW-A1294-A1296-A1295-A1298-A1297 
 
Cluster 19 | 01-05-04-21 
1OFW-A1299-A1301-A1300-A1302-A1297 
 
Cluster 20 | 01-05-04-25 
1OFW-A1294-A1296-A1295-A1298-B1300 
 
Cluster 21 | 01-05-04-26 
1OFW-A1299-A1301-A1300-A1302-B1298 
 
Cluster 22 | 01-12-02-02 
1FGJ-A5-A6-A2-A1-A3 
 
Cluster 23 | 01-21-05-26 
1OFW-A1299-A1301-A1297-A1300-B1298 
 
Cluster 24 | 01-21-15-25 
1OFW-A1299-A1301-A1297-A1298-B1300 
 
Cluster 25 | 02-06-01-01 
2OT4-A1001-A1002-A1005-A1006-A1003 
 
Cluster 26 | 02-06-01-02 
2OT4-A1001-A1002-A1005-A1006-A1007 
 
Cluster 27 | 02-06-01-13 
2OT4-A1003-A1005-A1007-A1002-B1003 
 
Cluster 28 | 02-27-11-02 
1SP3-A804-A805-A807-A808-A806 
 
Cluster 29 | 03-05-15-18 
1OFW-A1294-A1298-A1295-A1297-A1299 
 
Cluster 30 | 03-05-15-21 
1OFW-A1294-A1298-A1295-A1297-A1301 
 
Cluster 31 | 03-05-15-25 
1OFW-A1294-A1298-A1295-A1297-B1300 
 
Cluster 32 | 03-05-18-26 
1OFW-A1299-A1302-A1300-A1297-B1298 
 
Cluster 33 | 03-15-18-25 
1OFW-A1294-A1298-A1297-A1299-B1300 
 
Cluster 34 | 03-15-21-25 
1OFW-A1294-A1298-A1297-A1301-B1300 
 
Cluster 35 | 03-18-15-17 
1OFW-A1299-A1302-A1297-A1298-A1296 
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Cluster 36 | 03-18-15-21 
1OFW-A1299-A1302-A1297-A1298-A1301 
 
Cluster 37 | 03-18-15-25 
1OFW-A1299-A1302-A1297-A1298-B1300 
 
Cluster 38 | 04-06-21-26 
1OFW-A1301-A1302-A1300-A1297-B1298 
 
Cluster 39 | 04-17-01-25 
1OFW-A1298-A1296-A1297-A1294-B1300 
 
Cluster 40 | 04-17-18-25 
1OFW-A1298-A1296-A1297-A1299-B1300 
 
Cluster 41 | 04-17-21-25 
1OFW-A1298-A1296-A1297-A1301-B1300 
 
Cluster 42 | 04-21-15-17 
1OFW-A1301-A1302-A1297-A1298-A1296 
 
Cluster 43 | 04-21-15-25 
1OFW-A1301-A1302-A1297-A1298-B1300 
 
Cluster 44 | 05-18-15-17 
1OFW-A1300-A1299-A1297-A1298-A1296 
 
Cluster 45 | 05-18-15-25 
1OFW-A1300-A1299-A1297-A1298-B1300 
 
Cluster 46 | 05-18-15-26 
1OFW-A1300-A1299-A1297-A1298-B1298 
 
Cluster 47 | 05-18-17-26 
1OFW-A1300-A1299-A1297-A1296-B1298 
 
Cluster 48 | 06-17-04-25 
1OFW-A1295-A1296-A1297-A1298-B1300 
 
Cluster 49 | 06-21-15-17 
1OFW-A1300-A1301-A1297-A1298-A1296 
 
Cluster 50 | 06-21-15-25 
1OFW-A1300-A1301-A1297-A1298-B1300 
 
Cluster 51 | 06-21-15-26 
1OFW-A1300-A1301-A1297-A1298-B1298 
 
Cluster 52 | 06-21-17-26 
1OFW-A1300-A1301-A1297-A1296-B1298 
 
Cluster 53 | 07-15-18-25 
1OFW-A1295-A1298-A1297-A1299-B1300 
 
Cluster 54 | 07-15-21-25 
1OFW-A1295-A1298-A1297-A1301-B1300 
 
 

Cluster 55 | 08-27-02-02 
1SP3-A803-A805-A807-A801-A806 
 
Cluster 56 | 08-27-11-02 
1SP3-A803-A805-A807-A808-A806 
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