Impact of composting strategies on the treatment of soils contaminated with organic pollutants

Semple, K. T., Reid, B. J. ORCID: and Fermor, T. R. (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environmental Pollution, 112. pp. 269-283. ISSN 1873-6424

Full text not available from this repository. (Request a copy)


Chemical pollution of the environment has become a major source of concern. Studies on degradation of organic compounds have shown that some microorganisms are extremely versatile at catabolizing recalcitrant molecules. By harnessing this catabolic potential, it is possible to bioremediate some chemically contaminated environmental systems. Composting matrices and composts are rich sources of xenobiotic-degrading microorganisms including bacteria, actinomycetes and lignolytic fungi, which can degrade pollutants to innocuous compounds such as carbon dioxide and water. These microorganisms can also biotransform pollutants into less toxic substances and/or lock up pollutants within the organic matrix, thereby reducing pollutant bioavailability. The success or failure of a composting/compost remediation strategy depends however on a number of factors, the most important of which are pollutant bioavailability and biodegradability. This review discusses the interactions of pollutants with soils; look critically at the clean up of soils contaminated with a variety of pollutants using various composting strategies and assess the feasibility of using composting technologies to bioremediate contaminated soil.

Item Type: Article
Uncontrolled Keywords: sdg 12 - responsible consumption and production ,/dk/atira/pure/sustainabledevelopmentgoals/responsible_consumption_and_production
Faculty \ School: Faculty of Science > School of Environmental Sciences
UEA Research Groups: Faculty of Science > Research Centres > Centre for Ecology, Evolution and Conservation
Faculty of Science > Research Groups > Geosciences
Faculty of Science > Research Groups > Environmental Biology
Faculty of Science > Research Groups > Resources, Sustainability and Governance (former - to 2018)
Faculty of Science > Research Groups > Geosciences and Natural Hazards (former - to 2017)
Depositing User: Rachel Snow
Date Deposited: 09 Jun 2011 14:21
Last Modified: 04 Mar 2024 16:47
DOI: 10.1016/S0269-7491(00)00099-3

Actions (login required)

View Item View Item