A complete expression profile of matrix-degrading metalloproteinases in Dupuytren’s disease

Johnston, Phillip, Chojnowski, Adrian J., Davidson, Rose K. ORCID: https://orcid.org/0000-0002-6624-4011, Riley, Graham P. ORCID: https://orcid.org/0000-0001-5528-5611, Donell, Simon T. and Clark, Ian M. (2007) A complete expression profile of matrix-degrading metalloproteinases in Dupuytren’s disease. The Journal of Hand Surgery, 32 (3). pp. 343-351.

[thumbnail of Johnston_et_al_Journal_of_Hand_Surgery_-_American_Volume,_2007,_32,_343-351.pdf]
PDF (Johnston_et_al_Journal_of_Hand_Surgery_-_American_Volume,_2007,_32,_343-351.pdf)
Download (263kB) | Preview


Dupuytren’s disease (DD) is a common fibrotic condition of the palmar fascia, leading to deposition of collagen-rich cords and finger contractions. The metzincin superfamily contains key enzymes in the turnover of collagen and other extracellular matrix macromolecules. A number of broad-spectrum matrix metalloproteinase inhibitors, used in cancer clinical trials, caused side effects of DD-like contractures. We tested the hypothesis that changes in the expression of specific metalloproteinases underlie or contribute to the fibrosis and contracture seen in DD. We collected tissue from patients with DD and used normal palmar fascia as a control. We profiled the expression of the entire matrix metalloproteinase (MMP), tissue inhibitor of metalloproteinases (TIMP), and a disintegrin and metalloproteinase domain with thrombospondin motif (ADAMTS) gene families in these tissues using real-time reverse-transcription polymerase chain reaction. A number of metalloproteinases and inhibitors are regulated in DD. The expression of 3 key collagenases, MMP1, MMP13, and MMP14 is increased significantly in the DD nodule, as is the expression of the collagen biosynthetic enzyme ADAMTS14. The expression of MMP7, an enzyme with broad substrate specificity, is increased in the DD nodule and remains equally expressed in the DD cord. TIMP1 expression is increased significantly in DD nodule compared with normal palmar fascia. This study measured the expression of all MMP, ADAMTS, and TIMP genes in DD. Contraction and fibrosis may result from: (1) increased collagen biosynthesis mediated by increased ADAMTS-14; (2) an increased level of TIMP-1 blocking MMP-1– and MMP-13–mediated collagenolysis; and (3) contraction enabled by MMP-14–mediated pericellular collagenolysis (and potentially MMP-7), which may escape inhibition by TIMP-1. The complete expression profile will provide a knowledge-based approach to novel therapeutics targeting these genes.

Item Type: Article
Uncontrolled Keywords: sdg 3 - good health and well-being ,/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_being
Faculty \ School: Faculty of Science > School of Biological Sciences
Faculty of Medicine and Health Sciences > Norwich Medical School
UEA Research Groups: Faculty of Science > Research Groups > Cells and Tissues
Faculty of Medicine and Health Sciences > Research Groups > Nutrition and Preventive Medicine
Faculty of Medicine and Health Sciences > Research Groups > Musculoskeletal Medicine
Faculty of Medicine and Health Sciences > Research Centres > Lifespan Health
Depositing User: Users 2731 not found.
Date Deposited: 17 May 2011 13:38
Last Modified: 19 Oct 2023 00:46
URI: https://ueaeprints.uea.ac.uk/id/eprint/30671
DOI: 10.1016/j.jhsa.2006.12.010


Downloads per month over past year

Actions (login required)

View Item View Item