Biophysical characterization of the sterol demethylase P450 from Mycobacterium tuberculosis, its cognate ferredoxin, and their interactions

McLean, Kirsty J., Warman, Ashley J., Seward, Harriet E., Marshall, Ker R., Girvan, Hazel M., Cheesman, Myles R., Waterman, Michael R. and Munro, Andrew W. (2006) Biophysical characterization of the sterol demethylase P450 from Mycobacterium tuberculosis, its cognate ferredoxin, and their interactions. Biochemistry, 45 (27). pp. 8427-8443. ISSN 0006-2960

Full text not available from this repository. (Request a copy)


Mycobacterium tuberculosis encodes a P450 of the sterol demethylase family (CYP51) chromosomally located adjacent to a ferredoxin (Fdx). CYP51 and Fdx were purified to homogeneity and characterized. Spectroscopic analyses were consistent with cysteinate- and aqua-ligated heme iron in CYP51. An is an element of(419) of 134 mM(-1) cm(-1) was determined for oxidized CYP51. Analysis of interactions of 1-, 2-, and 4-phenylimidazoles with CYP51 showed that the 1- and 4-forms were heme iron-coordinating inhibitors, while 2- phenylimidazole induced a substrate-like optical shift. The 2-phenyimidazole-bound CYP51 demonstrated unusual decreases in high-spin heme iron content at elevated temperatures and an almost complete absence of high-spin heme iron by low-temperature EPR. These data suggest thermally induced alterations in CYP51 active site structure and/or binding modes for the small ligand. Reduction of CYP51 in the presence of carbon monoxide leads to formation of an Fe(II)-CO complex with a Soret absorption maximum at 448.5 nm, which collapses ( at 0.246 min(-1) at pH 7.0) forming a species with a Soret maximum at 421.5 nm (the inactive P420 form). The rate of P420 formation is accelerated at lower pH, consistent with protonation of the cysteinate (Cys 394) to a thiol underlying the P450-P420 transition. The P450 form is stabilized by estriol, which induces a type I spectral shift on binding CYP51 (Kd) 21.7 mu M). Nonstandard spectral changes occur on CYP51 reduction (using either dithionite or natural redox partners), including a blue-shifted Soret band and development of a strong feature at similar to 558.5 nm, suggestive of cysteine thiol ligation. Thus, ligand-free ferrous CYP51 is prone to thiolate ligand protonation even in the absence of carbon monoxide. Analysis of reoxidized CYP51 demonstrates that the enzyme re-forms P450, indicating that Cys 394 thiol is readily deprotonated to thiolate in the ferric form. Spectroscopic analysis of Fdx by EPR (resonance at g =2.03) and magnetic CD (intensity for oxidized and reduced forms and signal intensity dependence on field strength and temperature) demonstrated that Fdx binds a [3Fe-4S] iron-sulfur cluster. Potentiometric studies show that the midpoint potential for ligand-free CYP51 is -375 mV, increasing to -225 mV in the estriol-bound form. The Fdx potential is -31 mV. Fdx forms a productive electron transfer complex with CYP51 and reduces it at a rate of 3.0 min(-1) in the ligand-free form and 4.3 min(-1) in the estriol-bound form, despite a thermodynamic barrier. Steady-state analysis of a M. tuberculosis class I redox system comprising flavoprotein reductase A (FprA), Fdx, and estriol-bound CYP51 indicates heme iron reduction as a rate-limiting step.

Item Type: Article
Faculty \ School: Faculty of Science > School of Chemistry
Depositing User: Rachel Smith
Date Deposited: 10 May 2011 11:13
Last Modified: 21 Apr 2020 19:48
DOI: 10.1021/bi0601609

Actions (login required)

View Item View Item