Multiscale nonlinear decomposition: The sieve decomposition theorem

Bangham, JA, Chardaire, P, Pye, CJ and Ling, PD (1996) Multiscale nonlinear decomposition: The sieve decomposition theorem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18 (5). pp. 529-539. ISSN 0162-8828

Full text not available from this repository.


Sieves decompose one dimensional bounded functions (d/sub m/)/sub m=1//sup R/ that represent the information in a manner that is analogous to the pyramid of wavelets obtained by linear decomposition. Sieves based on sequences of increasing scale open-closings with flat structuring elements (M and N filters) map f to {d} and the recomposition, consisting of adding up all the granule functions, maps {d} to f. Experiments show that a more general property exists such that {d/spl circ/} maps to f/spl circ/ and back to {d/spl circ/} where the granule functions {d/spl circ/} are obtained from {d} by applying any operator /spl alpha/ consisting of changing the amplitudes of some granules, including zero, without changing their signs. In other words, the set of granule function vectors produced by the decomposition is closed under the operation /spl alpha/. An analytical proof of this property is presented. This property means that filters are useful in the context of feature recognition and, in addition, opens the way for an analysis of the noise resistance of sieves.

Item Type: Article
Faculty \ School: Faculty of Science > School of Computing Sciences
Depositing User: EPrints Services
Date Deposited: 01 Oct 2010 13:41
Last Modified: 20 Aug 2023 01:13
DOI: 10.1109/34.494642

Actions (login required)

View Item View Item