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I. INTRODUCTION

Molecular photonics has come of age at the threshold of the new millennium.

With the main principles of molecule–photon interaction generally well under-

stood, and with laser science mature, it is a field in which we are now witnessing

an unparalleled advancement in science and technology, and the realisation of

many new and exciting applications. It is nonetheless a field in which the gulf

between the two disciplines of chemistry and optics, which represent its

molecular and photonic heritage, demands a conceptual and mathematical bridge

of sufficient strength to support its progeny. At one extreme, the chemists and

materials scientists whose work is increasingly directed toward the devising,

synthesis, and characterization of novel photonic materials, need a framework

that can accommodate and relate to their insights into the relationships between

molecular quantum mechanics, structure, and optical properties. At the other,

laser physicists and optical engineers need a vehicle for the furtherance of theory

in a form that can reveal the detailed format of the quantum optical parameters

that relate to particular materials.

As a theory that addresses the full extent of its molecular photonics remit

with the equitable rigour of quantum mechanics, quantum electrodynamics is

undoubtedly the tool of choice for this demanding task. In a previous review,

one of us has delineated the development of a quantum electrodynamical

framework for the generation of optical harmonics in molecular systems [1].

The present work has a rather different focus and is intended to supplement that

review, making reference to it but expanding its remit and elaborating on

different topics. Theory is cast in a form suitable to address any condensed-

phase system of independent atoms or molecules, for example liquids, solutions,

molecular crystals, or mesoscopically more intricate structures such as

membranes. Among other things, this present work focuses on a number of

more recent topical issues such as the quantum-optical basis for dissipative and

refractive effects, the role of permanent dipole moments, resonance damping,

and time-reversal symmetry. Attention is also drawn to a new diagram-based

calculational device that appears to offer significant advantages over the

traditional time-ordered diagrammatic methods.

II. FOUNDATIONS

To fully develop the photonic and material components of quantum-optical

response invites the application of quantum electrodynamics (QED). The

defining characteristic of this theory is that it addresses every optical interaction

in terms of a closed dynamical system where light and matter are treated on an

equal footing, each component addressed with full quantum-mechanical rigor. It

is a theory whose predictions have been tested to a higher degree of precision
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than any other in modern physics, and that remains unchallenged by the most

sophisticated experimental measurements [2]. Even in the noncovariant form

commonly employed for dealing with the optical interactions of conventional

matter, QED accommodates retardation features associated with the finite time

of signal propagation. The success of QED in leading to the correct form of the

Casimir–Polder interaction, for example, owes its origin to this intrinsic property

of its formulation [3–6]. Indeed, it has recently been shown that even the

application of properly retarded classical electrodynamics produces results of

significantly different form [7]. In the subjects to be described below, retardation

effects are not specifically at issue—and the advantages of a QED foundation,

which we shall highlight, are entirely independent of such features. The need to

apply QED in order to properly accommodate retardation features in the quantum

optics of nanostructures has nonetheless been demonstrated by Chernyak and

Mukamel [8]. The interested reader may also find another body of work on

resonance energy transfer and cooperative absorption, in which we have

described several processes where retardation is a highly significant factor.

The primary references to such work can be found elsewhere in reviews of that

subject area [9,10].

The familiar semiclassical basis for optical calculations has been compared

to the QED method previously [1]. Some of its shortcomings in connection with

nonlinear optics and electro-optics have recently been highlighted [11]. Not

surprisingly, the semiclassical theory is inconsistent with the general principles

of quantum optics, allowing for example the detection of a single photon by two

different detectors [12]. The semiclassical invocation of an electric polarization

as the oscillating moment of a radiating dipole, coupled with the electric field

vector of the ensuing radiation, generally casts the signal amplitude in the form

of a sum of contributions associated with physically distinct processes—when it

is a fundamental violation of the superposition principle to summarize the

amplitudes of transitions between nonidentical sets of initial and final radiation

states. Again, the semiclassical polarization formalism does not allow the full

incorporation of magnetic and diamagnetic interactions. For example, in a

general three-wave interaction mediated by a species that supports E12M1 (two

electric dipoles, one magnetic dipole) but not E13 channels, the magnetic dipole

interaction in the former can be associated with each of the three waves, yet for

obvious reasons only two are accommodated in the electric polarization. It has

also been remarked that outside of QED there is no formal basis for establishing

the gauge transformations that underpin the familiar multipolar description of

optical interactions [13,14a,b].

The definitive molecular formulation of quantum electrodynamics estab-

lished by Power [3] and Craig and Thirunamachandran [15] forms the primary

basis for the theory developed below (see also Dalton et al. [16]). This

framework provides for direct calculation of the tensor parameters involved in
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linear and nonlinear optical interactions, which naturally emerge from the

derivation of observables such as signal intensities. The starting point for such

calculations is the QED Hamiltonian for the dynamical system, wherein matter

is conventionally described in terms of individual components with distinct

electronic integrity and overall electrical neutrality. In the following text we cast

theory in a form suitable to address any condensed-phase system of independent

atoms or molecules, for example, liquids, solutions, molecular crystals, or even

mesoscopically more intricate structures such as membranes. The theory can

also be applied to subunits such as ions or chromophores, assuming that it is the

transitions in these that dominate the optical response of the medium, so that

each ion or chromophore can be treated as the optical representative of a local

environment that is itself electrically neutral. For simplicity, the term molecules

is used here as an umbrella term for the distinct optical units labeled x. In

multipolar form the system Hamiltonian may then be represented as follows;

H ¼ Hrad þ
X
x

Hmol xð Þ þ
X
x

Hint xð Þ ð1Þ

Here Hrad is the Hamiltonian for the radiation field in vacuo, Hmol the field-free

Hamiltonian for molecule x, and Hint is a term representing molecular interaction

with the radiation. It is worth emphasising that the basic simplicity of Eq. (1)

specifically results from adoption of the multipolar form of light-matter inter-

action. This is based on a well-known canonical transformation from the

minimal-coupling interaction [17–21]. The procedure results in precise cancel-

lation from the system Hamiltonian of all Coulombic terms, save those intrinsic

to the Hamiltonian operators for the component molecules; hence no terms

involving intermolecular interactions appear in Eq. (1).

An important implication of developing theory from the full QED Hamilto-

nian is that neither the eigenstates of Hrad nor those of HmolðxÞ are stationary

states for the system described by it. Thus the presence of the radiation field

modifies the form of the molecular wavefunctions, and equally the presence of

matter modifies the form of the radiation wavefunctions. Since the Hamiltonian

remains the same irrespective of the state of the system, then even when no light

is present the coupling still effects a modification of the molecular wave-

functions. This is, for example, manifest in the occurrence of spontaneous

emission (luminescence) from isolated molecules in excited states, the lifting of

degeneracy between the 22S1=2 and 22P1=2 states of atomic hydrogen (the Lamb

shift), also the Casimir force between conducting plates, and yet again the

corrections responsible for what was once considered the ‘‘anomalous’’

magnetic moment of the electron.

We now consider the detailed nature of the terms in the QED Hamiltonian.

The simplest to deal with is the middle term, which denotes a sum of the normal
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nonrelativistic Schrödinger operators Hmol xð Þ for each molecule, the operator

counterparts of their classical energies, which need no further elaboration.

Equally, the radiation field term Hrad is the operator equivalent of the classical

expression for electromagnetic energy—which, recalling the relation c2 ¼
1=ðm0e0Þ between the vacuum electric susceptibility e0 and magnetic perme-

ability m0, is expressible as

Hrad ¼
1

2

ð
½e0e?2ðrÞ þ m�1

0 b2ðrÞ�d3r ð2Þ

Here e? is the fundamental transverse microscopic electric field operator and b is

the corresponding magnetic field operator. The superscript on the electric field

operator designate its transverse character with respect to the direction of

propagation, redundant in the case of the magnetic field as it is intrinsically

transverse, namely, divergence-free, since it arises from the curl of a vector

potential field a(r). Since the electric field also derives from a(r), we concentrate

first on the second-quantized form of this vector potential, which is cast in terms

of a summation over radiation modes as follows:

a? rð Þ ¼
X
k;l

�h

2Voe0

� �1=2

½eðlÞk a
ðlÞ
k eik	r þ e

ðlÞ
k a

yðlÞ
k e�ik	r� ð3Þ

Here V denotes the quantization volume, and e
ðlÞ
k is the unit polarization vector

for the radiation mode characterized by wavevector k, polarization l and circular

frequency o ¼ cjkj; where it appears, an overbar denotes complex conjugation.

The polarization vector is considered a complex quantity specifically to admit the

possibility of circular or elliptical polarizations. Associated with each mode

(k; l) are a Hermitian conjugate pair of photon annihilation and creation

operators, a
ðlÞ
k and a

yðlÞ
k , respectively, which operate eigenstates of Hrad with

mðk; lÞ photons (m being the mode occupation number) as follows

a
ðlÞ
k jm k; lð Þi ¼

ffiffiffiffi
m
p
jðm� 1Þðk; lÞi ð4Þ

a
yðlÞ
k jmðk; lÞi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1Þ

p
jðmþ 1Þðk; lÞi ð5Þ

reducing the number of (k; l) photons by one in the former case and increasing it

by one in the latter. We note in passing that these operators are not form-

invariant, meaning that although the same symbols are used in connection with

field expansions in the minimal coupling formalism, the operators themselves

differ as from those we employ for multipolar coupling, as the radiation states on

which they operate also differ when matter is present [22].
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Our efforts will be repaid if we take pause to examine the properties of the

vector potential, and thereby also its derivative fields. The vector potential is

self-evidently Hermitian, as befits the status of the field it represents. Its parity

with respect to space-inversion is odd, since P operation reverses the sign of r,

e, and k. Its character with respect to time-inversion T , which is also of interest,

is less self-evident. First, this operation gives

a?ðrÞ�!T
X
k;l

�h

2Voe0

� �1=2

½�eðlÞ�ka
ðlÞ
�keið�k	rÞ þ e

ðlÞ
�ka

yðlÞ
�k e�ið�k	rÞ�

since it reverses the sign of k and complex conjugates all numbers. Then, since

the sum over the dummy variable k extends in all directions, it is convertible to a

sum over �k, and using the permissible relation �e
ðlÞ
�k ¼ �e

ðlÞ
k [23,24], we obtain

the result that a?ðrÞ is also of odd parity in time. Now, using the source-free

result

eðrÞ ¼ � qaðrÞ
qt

ð6Þ

implemented in the interaction picture where time features explicitly [compare

with the later equations (30)–(32)], we obtain the following expression for the

electric field operator:

e?ðrÞ ¼ i
X
k;l

�ho
2Ve0

� �1=2

½eðlÞk a
ðlÞ
k eik	r � �e

ðlÞ
k a

yðlÞ
k e�ik	r� ð7Þ

Equally, from

bðrÞ ¼ curl aðrÞ ð8Þ

we have a magnetic field given by

bðrÞ ¼ i
X
k;l

�hom0

2V

� �1=2

½bðlÞk a
ðlÞ
k eik	r � �b

ðlÞ
k a

yðlÞ
k e�ik	r� ð9Þ

where the complex unit vector b
ðlÞ
k is defined as

b
ðlÞ
k ¼ k̂� e

ðlÞ
k ð10Þ

Again, both the electric and magnetic fields are obviously of Hermitian character.

What also emerges from the route of their derivation through Eqs. (3), (6), and
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(8) is that the electric field operator is of odd parity with respect to space, and

even parity with respect to time; the magnetic field operator is of even parity with

respect to space and odd with respect to time.

Employing the preceding field operator expansions enables the radiation

Hamiltonian (2) to be recast in a form that more readily identifies its own

quantum properties, explicitly featuring the photon creation and annihilation

operators:

Hrad ¼
X
k;l

a
yðlÞ
k a

ðlÞ
k þ

1

2

� �
�ho ð11Þ

The 1
2
�ho associated with each radiation mode is the energy associated with the

familiar vacuum fluctuations, the origin of spontaneous emission and self-energy

corrections. The eigenstates jmðk; lÞi of Hrad are number states; states that more

closely model the coherence and other properties of laser light will be introduced

later.

To complete the definitions of the terms in Eq. (1), the full expression for the

interaction Hamiltonian HintðxÞ, before multipolar decomposition, can be wri-

tten as follows

Hint xð Þ ¼ �e�1
0

ð
p? x; rð Þ 	 d? rð Þd3r�

ð
m x; rð Þ 	 b rð Þd3r

þ 1

2

ð ð
Oij x; r; r0ð Þbi rð Þbj rð Þd3r d3r0 ð12Þ

where p? x; rð Þ is the transverse electric polarization vector field, m x; rð Þ is the

magnetization vector field, and O x; r; r0ð Þ is the diamagnetization tensor asso-

ciated with molecule x. Each has a multipolar expansion (see, e.g., Refs. 20 and

21) leading to an infinite series of terms, the leading contributions of which

provide the leading terms of HintðxÞ as follows:

Hint xð Þ ¼ �e�1
0 m xð Þ 	 d? Rx

� �
� e�1

0 Qij xð Þri d
?
j Rx
� �

�m xð Þ 	 b Rx
� �

� 	 	 	
ð13Þ

Here lðxÞ is the electric dipole (E1) operator for molecule x located at position

Rx, QijðxÞ is the corresponding electric quadrupole (E2) operator, and mðxÞ is the

magnetic dipole (M1) operator. The diamagnetization does not contribute to this

order of approximation. We also recognize in Eqs. (12) and (13) the microscopic

transverse displacement electric field, d?, whose quantum operator form will be

discussed in the next section. Explicit expressions for the components of the
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leading molecular multipoles are as follows

mi xð Þ ¼
X
aðxÞ

eaðqaðxÞ � RxÞi ð14Þ

QijðxÞ ¼
1

2

X
aðxÞ

ea ðqaðxÞ � RxÞiðqaðxÞ � RxÞj �
1

3
jqaðxÞ � Rxjdij

	 

ð15Þ

mi xð Þ ¼
1

2

X
aðxÞ

ea½ðqaðxÞ � RxÞ � _qaðxÞ�i ð16Þ

where summations are taken over each constituent particle aðxÞ of charge ea and

position vector qa. In passing it may be noted that employment of the traceless

form of the electric quadrupole and higher-order multipoles is consistent with the

divergence-free character of the electric displacement field on which the gradient

operator,r, acts in Eq. (13). In general, each electric multipole (En) is time-even

and carries a ð�1Þn signature for space inversion; the corresponding magnetic

multipole (Mn) is time-odd and has ð�1Þn�1
space parity. Hence the time-even,

space-even nature of Hint is secure.

The electric dipole term in (13) normally represents the strongest coupling

between matter and radiation and is sufficient for the majority of cases, in which

the electronic excitations of molecules are restricted to regions significantly

smaller than the wavelengths of the radiation engaged. The electric quadrupole

and magnetic dipole terms together are then smaller by a factor typically of the

order of the fine structure constant a ¼ 1
137

. The leading diamagnetisation

contribution is of the order a2, and thus comes into play at the same level as

electric octupole and magnetic quadrupole interactions. Although in many

quantum optical calculations the detailed, multipolar form of the coupling is

deemed largely irrelevant, the spatial and temporal symmetries depend crucially

on the multipoles involved, as do the magnitudes of the corresponding coupling

constants.

III. MEDIA CORRECTIONS

The development of the quantum field theory so far has been cast in a form most

directly suited for applications in which the material part of the system comprises

only those molecules or optical centers involved in the interactions of interest,

with no other matter present. More generally in condensed-phase materials, such

centers are surrounded by other atoms or molecules whose electronic properties

modify the fields experienced (and produced) by those optical centers. To take

account of such influences, we introduce the microscopic displacement electric

field d. This arises as a direct consequence of working within the multipolar
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formalism and is related to the fundamental electric field e and microscopic

polarization field p by

d? ¼ e0e? þ p? ð17Þ

At this stage the molecular and optical properties are neatly entwined. In its

semiclassical macroscopic counterpart, Eq. (17) is termed a material equation

because of its engagement of a bulk polarization P; the microscopic and bulk

polarisations are, for simple cubic systems, related through the succinct expre-

ssion
P

3
¼ p ð18Þ

It is common practice in the semiclassical formalism to incorporate all the

ensuing material-induced (Lorentz) field corrections as an integral part of the

optical susceptibilities in an ad hoc manner. In using quantum field theory, and

considering all interactions to occur through the exchange of transverse photons,

it is not necessary to modify the corresponding molecular polarizabilities, if the

field operators take full account of the light propagation environment. Then all

matter-induced corrections are carried with the displacement field, and the

appropriately modified operator automatically accommodates the local field or

media effects.

The nature of media effects relates to the fact that, since the microscopic

displacement field is the net field to which molecules of the medium are

exposed, it corresponds to a fundamental electric field dynamically ‘‘dressed’’

by interaction with the surroundings. The quantized radiation is in consequence

described in terms of ‘‘dressed photons’’ or polaritons. A full and rigorous

theory of dressed optical interactions using noncovariant molecular quantum

electrodynamics is now available [25–27], and its application to energy transfer

processes has been delineated in detail [10]. In the present context its

deployment leads to a modification of the quantum operators for the auxiliary

fields d? and h, which fully account for the influence of the medium—the

fundamental fields of course remain unchanged. Expressions for the local

displacement electric and the auxiliary magnetic field operators [27], correct for

all microscopic interactions, are then as follows

d? rð Þ ¼ i
X
k;l;m

�hv
ðmÞ
g oðmÞk e0

2cVnðoðmÞk Þ

 !1=2
fnðoðmÞk Þg

2 þ 2

3

 !

� ½eðlÞk P
ðlÞ
k;meiðk	rÞ � e

ðlÞ
k P

yðlÞ
k;m e�iðk	rÞ� ð19Þ

h?ðrÞ ¼ i
X
k;l;m

�hv
ðmÞ
g oðmÞk nðoðmÞk Þ

2m0cV

 !1=2

½bðlÞk P
ðlÞ
k;meiðk	rÞ � �b

ðlÞ
k P

yðlÞ
k;m e�iðk	rÞ� ð20Þ
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where m0 is the magnetic permeability of the vacuum m0 ¼ 1=e0c2ð Þ. To fully

appreciate these expressions for the new auxiliary field operators, it is expedient

to dwell briefly on their key features and elucidate the new symbols which appear

in the preceding equations.

Compared with the mode expansions of their fundamental field counterparts,

Eqs. (7) and (9), the most obvious difference apparent in Eqs. (19) and (20)

relates to the introduction here of additional summations over m. This index

labels the branches of polariton dispersion and runs from m ¼ 1; 2; . . .M, where

M ¼ Mmol þ 1 and Mmol is the number of molecular frequencies. For example,

in a two-level molecular system characterized by a single transition frequency,

there are two branches to the dispersion curve. In general, the summations over

k extend to k� 2p=a, where a is a characteristic intermolecular separation.

Consequently the auxiliary operators are properly invoked only when dealing

with the propagation and interactions in condensed media of infrared, optical, or

ultraviolet light—where a description in terms of refractive index is entirely

legitimate. Nonetheless, the theory properly accommodates not only transparent

but also dispersive regions where the polariton wavevector and frequency are

not linearly related, signifying resonant or near-resonant optical response. It also

affords a means for the representation of photonic bandgap materials. Figure 1

illustrates the photonic and exciton-like regions for conventional two-, three-

and multilevel systems. The index m, which identifies each of the dispersion

branches in the general case, has to be incorporated in the definition of the

polariton frequency, as given by

oðmÞk ¼ ck

nðoðmÞk Þ
ð21Þ

where several normal frequencies are associated with each value of k, again as

evident in Fig. 1. The mode expansions (19) and (20) also feature polariton

annihilation and creation operators, P
ðlÞ
k;m and P

yðlÞ
k;m , respectively, with similar pro-

perties to their vacuum counterparts of Eqs. (4) and (5). Finally, Eqs. (19) and (20)

also feature the group velocity v
ðmÞ
g , defined for each specific polariton mode as

vðmÞg ¼ c
qoðmÞk nðoðmÞk Þ

qoðmÞk

( )�1

¼ qoðmÞk

qk
ð22Þ

and again incorporating the frequency-dependent refractive index defined as

½nðoðmÞk Þ�
2 ¼ 1þ

�aðoðmÞk Þr=e0

1� �aðoðmÞk Þr=3e0

ð23Þ
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Figure1. Schematiccurves illus-

trate the dispersion relationship be-

tween the polariton frequency/oðmÞðkÞ
and the wave-vector/k. Figure 1(a)

illustrates the dispersion if only a

single molecular frequency is present

(Hopfield model), and (b) the case of

two molecular resonances; (c) depicts

a situation in which a number of such

dispersion branches are present.
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representing a quantum extension of the Lorentz–Lorenz equation. Here �a is the

average molecular polarizability of the homogeneous host, based on an

electronically isotropic medium, and r is the number density of host molecules.

In the majority of applications to quantum and nonlinear optical phenomena,

it is only the photon-like branches of the dispersion curves that are of interest,

and the m index in the preceding expressions can generally be left implicit.

Again, as we shall be concerned with photonic regions, it is legitimate to engage

a
ðlÞ
k and a

yðlÞ
k in place of P

ðlÞ
k and P

yðlÞ
k . In keeping with this policy, we shall from

here on once again refer only to photons, although it is understood that the quanta

involved are, strictly speaking, optical branch polaritons. The case of vacuum

propagation can then be viewed as a special case of the more general formalism.

For example, if the refractive index is set to unity in Eq. (19), the group velocity

is simply c, the polariton operators become identical to those representing the

annihilation and creation of pure photons, and the expression reduces directly to

the fundamental electric field operator of Eq. (7), multiplied by e0.

At this juncture we have in place a formalism that fully accounts for the

refractive and dissipative modifications of the fundamental fields due to the

dispersive electronic properties of the optical medium. This has been achieved

not by any phenomenological or other ad hoc approach, but from first principles,

using the theoretical methods of molecular QED. As a result, the necessary local

field corrections in condensed media naturally emerge from the detailed form of

the auxiliary field operators, obviating the need to encompass them indirectly in

terms of macroscopic bulk susceptibilities, as is necessary in the semiclassical

theory.

IV. PERTURBATIVE DEVELOPMENT

With the full Hamiltonian given by Eq. (1), the time evolution of the system

wavefunction c is determined by the time-dependent Schrödinger equation:

i�h
qc tð Þ
qt
¼ Hc tð Þ ð24Þ

Solutions of high precision, fully incorporating electronic media effects, can be

derived on the assumption that the coupling between matter and radiation is

treated as a perturbation on the eigenstates of H0, where

H0 ¼ Hbath þ
X
x

0Hmol xð Þ ð25Þ

with

Hbath ¼ Hrad þ
X
x

00 HmolðxÞ þ HintðxÞð Þ ð26Þ
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In Eq. (25) the prime on the summation denotes its limitation to those molecules

whose transitions are engaged either directly or indirectly in the optical response.

The double prime on the summation in Eq. (26) denotes the exclusion of those

molecules. The eigenstates of H0 thus contain products of the eigenstates of the

optically prominent molecules and the dressed-photon eigenstates of Hbath. As

usual, if the system is in an eigenstate of H0 at time 0, the wavefunction at any

later time t is expressible as

jcðtÞi ¼ exp
�iH0t

�h

� �
Uðt; 0Þjcð0Þi ð27Þ

defining a unitary time evolution operator Uðt; 0Þ for the evolution of the system

in the time interval (0; t). Substitution of Eq. (27) into Eq. (24) leads to an exact

result for Uðt; 0Þ expressible as the following series expansion

Uðt; 0Þ ¼ 1þ
X1
m¼1

ði�hÞ�m

ðt

t0

ðt1

t0

	 	 	
ðtm�1

t0

~Hintðt1Þ~Hintðt2Þ 	 	 	 ~HintðtmÞdt1 dt2 	 	 	 dtm

ð28Þ

where ~HintðtÞ is the interaction representation of the operator responsible for the

coupling between light and matter, given by ~HintðtÞ ¼ expðiH0t=�hÞHint

expð�iH0t=�hÞ. In the electric dipole approximation this results in the expression

~HintðtÞ ¼ �e�1
0 l 	 ~dðr; tÞ ð29Þ

where the corresponding microscopic electric displacement operator, ~dðr; tÞ in

the interaction representation, may be expressed as a sum of two parts:

~dðr; tÞ ¼ ~dðþÞðr; tÞ þ ~dð�Þðr; tÞ ð30Þ

~dðþÞðr; tÞ ¼ i
X
k;l;m

�hv
ðmÞ
g oðmÞk e0

2cVnoðmÞ
k

( )1=2 n2

oðmÞ
k

þ 2

3

0
@

1
Ae
ðlÞ
k a

ðlÞ
k exp½iðk 	 r� oðmÞk tÞ�

ð31Þ

~dð�Þðr; tÞ ¼�i
X
k;l;m

�hv
ðmÞ
g oðmÞk e0

2cVnoðmÞ
k

( )1=2 n2

oðmÞ
k

þ 2

3

0
@

1
Ae
ðlÞ
k a

yðlÞ
k exp½�iðk 	 r� oðmÞk tÞ�

ð32Þ
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In this form, the time-even and space-odd character of the electric displacement

is again apparent. Also, development of the magnetization reveals its time-odd

and space-even character.

In developing the quantum amplitude for an optical process, it is necessary to

determine the matrix elements of the time evolution operator, and to this end it is

frequently expedient to invoke an expansion in terms of operators rather than the

embedded time integrals of Eq. (28). The method of resolvent operators, which

affords a framework for both perturbative and nonperturbative analysis [28–30],

proceeds through the introduction of a retarded Green function, KþðtÞ ¼
Uðt; 0ÞyðtÞ, together with its advanced counterpart, K�ðtÞ ¼ �Uðt; 0Þyð�tÞ,
where yðtÞ is the Heaviside function. These functions allow us to extend to

infinity the temporal dependence of the evolution operator, enabling us to

express the time evolution operator UIðt; t0Þ as

Uðt; 0Þ ¼ KþðtÞ � K�ðtÞ ¼
1

2pi
eiEf t=�h

ðþ1
�1

eiEf t=�h½G�ðEÞ � GþðEÞ�dE ð33Þ

where Ef denotes the (final) system energy and the retarded and advanced

propagators, GþðEÞ and G�ðEÞ, respectively, are Fourier transforms of the

retarded and advanced Green functions:

G�ðEÞ ¼
1

i�h

ðþ1
�1

eiEt=�hK�ðtÞdt ¼ lim
Z!0þ

ðE � H � iZÞ�1 ð34Þ

At this stage it is convenient to define a set of subsystems, each containing one of

the optically prominent molecules x and the bath. Introducing and expanding in

perturbative fashion the corresponding resolvent operator [31]

TsubðxÞðzÞ ¼ ðz� H0 � Hint xð ÞÞ�1

¼ ðz� H0Þ�1 þ ðz� H0Þ�1
HintðxÞðz� H0Þ�1

þ ðz� H0Þ�1
HintðxÞðz� H0Þ�1

HintðxÞ z� H0ð Þ�1	 	 	

¼
X1
p¼0

½T0ðzÞHint xð Þ�pT0ðzÞ ð35Þ

enables the requisite optical amplitude to be determined. Specifically, for a

process associated with an initial system state jii and a final system state j f i, we

have a quantum probability amplitude that can be evaluated from the equation

cfi ¼ h f jUðt; 0Þjii ¼ 1

2pi
eiEf t=�h

þ
e�izt=�hh f jTsubðxÞðzÞjiidz

¼ 1

2pi
eiEf t=�h

X1
p¼0

þ
e�izt=�hh f j T0ðzÞHint xð Þ½ �pT0ðzÞjiidz ð36Þ
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where the contour for integration encompasses the real axis. Using the method of

residues to evaluate the contour integral, and discarding optical frequency

oscillatory terms, we thus obtain

cfi ¼ dfi � 2pid Ef � Ei

� �X
x

Mfi xð Þ ð37Þ

The first term denotes the trivial nonprocess in which the initial and final states of

the entire system are identical, and can be discarded for any real process. The

subsequent term, in which the delta function serves to ensure overall energy

conservation, leads to a rate equation expressed by the familiar Golden Rule

[32–34]

� ¼ 2p
�h

� �X
x

MfiðxÞ
�����

�����
2

dðEf � EiÞ ð38Þ

cast in terms of a transition matrix whose elements are

Mfi xð Þ ¼ fsubðxÞjHint xð Þ þ Hint xð ÞTsubðxÞHint xð ÞjisubðxÞ
� �

¼ h fsubðxÞjHint xð Þ þ
X1
p¼0

Hint xð Þ T0Hint xð Þ½ �p T0Hint xð ÞjisubðxÞi ð39Þ

and where the resolvent operators T0 and TsubðxÞare evaluated for z ¼ E0.

V. TIME ORDERINGS AND STATE SEQUENCES

For each molecule x, every other molecule yields a vanishing contribution to the

summands in Eq. (39). Hence, by invoking the completeness relation for the

subsystem states, the matrix elements Mfi can succinctly be expressed as

Mfi¼h f jHintjii þ
X
rð1Þ

h f jHintjrð1Þihrð1ÞjHintjii
Ei � Erð1Þð Þ

þ
X

rð2Þ;rð1Þ

h f jHintjrð2Þihrð2ÞjHintjrð1Þihrð1ÞjHintjii
Ei � Erð2Þð Þ Ei � Erð1Þð Þ

þ
X

rð3Þ;rð2Þ;rð1Þ

h f jHintjrð3Þihrð3ÞjHintjrð2Þihrð2ÞjHintjrð1Þihrð1ÞjHintjii
Ei � Erð3Þð Þ Ei � Erð2Þð Þ Ei � Erð1Þð Þ þ 	 	 	

ð40Þ

where all states and energies are eigenstates of H0 and thus relate to the total

system containing both the bath and the molecule, with the summations over the
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virtual intermediate states rð1Þ; rð2Þ; . . . taken over all such states excluding i or f .

In passing it is worth noting that this specifically does not exclude the molecular

initial or final state from inclusion in the intermediate state summations, a point

that has often been misunderstood but that is quite clear in the QED formulation.

The representation of any m-photon interaction entails terms involving m-photon

operators. In view of the linearity in the photon creation and annihilation

operators of all the electric and magnetic multipole interactions, this represen-

tation generates its leading contribution from the term involving the mth power

of Hint, and for most processes it is sufficient to consider only the leading

nonvanishing term. Writing the system states explicitly as products of molecular

and radiation states, we then have

M
ðmÞ
fi ¼

X
r
ð1Þ
mol

	 	 	
X
r
ðm�1Þ
mol

X
r
ð1Þ
rad

	 	 	
X
r
ðm�1Þ
rad

h frad; fmoljHintjrm�1
mol ; r

ðm�1Þ
rad i

� hrðm�1Þ
rad ; r

ðm�1Þ
mol jHintjrðm�2Þ

mol ; r
ðm�2Þ
rad i 	 	 	 hrð1Þrad; r

ð1Þ
moljHintjimol; iradi

� ½ðEimol
� E

r
ðm�1Þ
mol

Þ þ ðEirad
� E

r
ðm�1Þ
rad

Þ��1 	 	 	 ½ðEimol
� E

r
ð1Þ
mol

Þ

þ ðEirad
� E

r
ð1Þ
rad

Þ��1 ð41Þ

In each of the (m� 1) summations over the intermediate radiation states jrðjÞradi,
there are only a limited number of possibilities that can make nonvanishing

contributions, determined by the sequencing of the creation and annihilation

events for the photons emitted and absorbed during the overall interaction. Each

of these sequences is conventionally represented using Feynman time-ordered

graphs. Calculations based on this method are commonly expedited by the

construction of all topologically different diagrams connecting the same initial

and final states; the summations over the intermediate states jrð1Þradi to jrðm�1Þ
rad i in

Eq. (41) are then equivalent to summations over the various time orderings. An

alternative method based on state sequences [35] enables the complete set of

interaction sequences for any process to be cast in the form of a single diagram.

The latter method offers a more concise presentation and improved calculational

expediency, particularly in the case of high-order interactions.

Optical frequency doubling affords a simple illustration of each of these

diagrammatic methods. For clarity, it is expedient to write down the system

states for the conversion process (although familiarity with either method

enables this information to be read off directly from the diagrams). The initial

and final states for the interaction are as follows:

jimol; iradi ¼ jE0; qðk; lÞ; q0ðk0; l0Þi ð42Þ
j fmol; fradi ¼ jE0; ðq� 2Þðk; lÞ; ðq0 þ 1Þðk0; l0Þi ð43Þ
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Given that the molecule is initially in its ground state, there are initially q photons

of the pump mode (k; l) and q0 photons of the harmonic mode (k0; l0). There are

three possible sequences of photon annihilation and creation (a, b, and c) that can

provide a route from the initial to the final state, each involving different virtual

intermediate states. To avoid confusion, the intermediate state labels rð1Þ and rð2Þ

are redesignated here as r and s, respectively, and the latter appear below with

superscripts to identify the route

jrmol; ra
radi ¼ jEr; ðq� 1Þðk; lÞ; q0ðk0; l0Þi

jsmol; sa
radi ¼ jEs; ðq� 2Þðk; lÞ; q0ðk0; l0Þi

)
ð44Þ

jrmol; rb
radi ¼ jEr; ðq� 1Þðk; lÞ; q0ðk0; l0Þi

jsmol; sb
radi ¼ jEs; ðq� 1Þðk; lÞ; ðq0 þ 1Þðk0; l0Þi

)
ð45Þ

jrmol; rc
radi ¼ jEr; qðk; lÞ; ðq0 þ 1Þðk0; l0Þi

jsmol; sc
radi ¼ jEs; ðq� 1Þðk; lÞ; ðq0 þ 1Þðk0; l0Þi

)
ð46Þ

as represented by the three time-ordered diagrams of Fig. 2. For example, in

Fig. 2a, the sequence of interactions is as follows. First, a photon of the pump

mode is annihilated by a molecule in its ground state j0i, which thereby

undergoes a transition to a state jri. A second pump photon is then annihilated,

and the molecule proceeds to a state jsi. Finally, a harmonic frequency photon is

emitted, and the molecule returns to its ground state. Figures 2b and 2c represent

the two other possible sequences in which emission of the harmonic photon

precedes either one, or both of the pump photon interactions. It is important to

emphasize that no single time-ordered diagram represents a physically distingui-

shable process; these diagrams are ultimately only calculational aids based on

s

r

0

0

k′,λ′

k,λ

k,λ

(a) (b) (c)

Figure 2. The three time-ordered diagrams representing second harmonic generation. Pump

photons of wave vector k and polarization l impinge on the molecule from the left and the

subsequent harmonic (k0;l0) leaves the molecular world line from the right. We assume the initial

and final state of the molecule is the ground state 0; the intermediate states are labelled r and s.
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the approximations of perturbation theory. Collectively, the photon creation and

annihilation events that take place at each molecule appear simultaneously, as far

as real experimental measurements with finite time resolution are concerned.

However, the time–energy uncertainty relation does permit short-lived inter-

mediate states that are not properly energy-conserving. This helps explain why it

is necessary to include the diagrams corresponding to extremely counterintuitive

time sequences such as that of Fig. 2c. Nonetheless, all possible interaction

sequences must be included in calculating any matrix element.

The state sequence diagram of Fig. 3 accommodates all three routes between

the initial and final states; those states are represented by boxes on the far left

and far right of the diagram, respectively. The intervening columns represent

intermediate system states r and s connected by links that represent valid

operations by Hint on a preceding state. In these diagrams, lines thus represent

interactions and vertices (where data boxes appear) represent states; in this

sense they bear a reciprocal space relationship to the Feynman diagrams, where

the converse applies.

VI. TENSOR REPRESENTATION

To proceed with the general development, it is useful to extract from the quantum

amplitude those elements that involve properties belonging solely to the radiation

and molecular tensors, respectively. Thus we formulate matrix elements through

the appropriate tensor products for deployment in the Golden Rule.

Consider an m-photon process involving modes of radiation ðkm; lmÞ; . . . ;
ðk1; l1Þ, all potentially different, initially containing qm; . . . ; q1 photons, respec-

tively. Equation (41) may be factorized as a tensor product of two terms, only

one of which is dependent on any intrinsic molecular properties:

Mfi k1; l1ð Þ 	 	 	 km; lmð Þf g ¼ ð�1Þme�m
0 aim			i2i1 �om;o1; . . . ;onð Þ

� rim			i2i1
km; lmð Þ; . . . ; ðk1; l1f Þg ð47Þ

k, k

k, k, k′

k, k, k′

k, k′

k′

Figure 3. State sequence diagram for SHG. The intial state is represented by the solitary box in

the column on the left and the final state by the corresponding the box on the right; columns with

more then one box indicate virtual states r and s. An example is afforded by the uppermost route

through the diagram, which corresponds identically to the time-ordering of Fig. 2(c).
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Specifically, this equation entails the m-fold tensor contraction of aðmÞðom; . . . ;
o1Þ, a rank-m microscopic nonlinear polarisability tensor containing all the

molecular variables (with a parametric dependence on the optical frequencies),

with qðmÞfðkm; lmÞ; . . . ; ðk1; l1Þg, a tensor constructed solely from radiation

parameters, including all the necessary local field corrections. Note the

incorporation in Eq. (47) of a sign prefactor, serving to redefine each energy

denominator so that the absorption of a photon is associated with a negative

radiative frequency and emission with a positive frequency. This results in

nonlinear polarisability expressions conforming to the usual conventions. An

example might be n-harmonic generation where a tensor written as aðmÞð�om;
o1; . . . ;o1Þ indicates the absorption n photons of frequency o1 and emission of a

single photon at a frequency om � no1.

We postpone to a later section a detailed explanation of the explicit

expressions for the molecular tensors aðmÞ; we next identify the structure of the

radiation tensor qðmÞ, which in the electric dipole approximation is given by the

following:

qðmÞfðkm; lmÞ; . . . ; ðk1; l1Þg ¼ hðmm þ 1Þðk; lÞjd?jðmmÞðk; lÞi; . . . ;
hðm1 � 1Þðk; lÞjd?jðm1Þðk; lÞi ð48Þ

In general, to incorporate the matrix elements of Eq. (47) into the rate equation

(38), it is necessary to sum, over all molecules in the system, the tensor product

entailed in the former—and to this end it proves useful to isolate the one part of

the above radiation tensor that is molecule-specific. This simply reflects the fact

that the tensor is a field quantity, sensitive to the position of the molecule at

which it is evaluated, as follows from the phase factors in (19) and (20). The

tensor representing the radiation field for the interaction at molecule x may, in

fact, be written in the following general form, irrespective of the order or nature

of the multipolar interactions involved:

q xð Þ ¼ q0 expði�k 	 RxÞ ð49Þ

Here r0 is a position-independent radiation tensor, Rx is the position vector of the

molecule relative to an arbitrary fixed origin, and �k the wavevector mismatch

for the process as defined by

�k ¼
Xm

r

grkr ð50Þ

where gr assumes the value of þ1 for each absorbed photon and �1 for each

emitted photon. For instance, the radiation tensor for frequency doubling carries

the phase factor exp½ið2k� k0Þ 	 Rx�, and hence �k ¼ ð2k� k0Þ. Such features
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are responsible for the all-important issue of coherence. Combining the above

results, it thus transpires that any optical process rate may be written in a general

Golden Rule form as

� ¼ 2p
�h

XN

x

e�m
0 aðxÞim			i2i1

r0im			i2i1
exp i�k 	 Rx
� ������

�����
2

d Ei � Ef

� �
ð51Þ

This equation lies at the heart of the theoretical development; the precise

structure of the molecular and radiation tensors it involves will depend on the

detailed nature of the optical interaction to be modeled.

VII. CONSTRUCTION OF RADIATION TENSORS

Having stated that all optical interactions can be modeled through Eq. (51), we

now outline the explicit details of both radiation and molecular tensors

embedded in the matrix element. As we have shown, the radiative features

that are of interest are cast in the tensor r introduced in Eq. (48). For any optical

process the components of this tensor are explicitly given by a position-

independent expression, which follows from Eq. (49):

r0fðkm; lmÞ; . . . ; ðk1; l1Þg ¼ r0im			i1fðkm; lmÞ; . . . ; ðk1; l1Þg

r0im			i1fðkm; lmÞ; . . . ; ðk1; l1Þg ¼ f�iðmÞgsim			i1fðkm; lmÞ; . . . ; ðk1; l1Þg

�
Ym
i¼1

�hv
ðmÞ
g oðmÞk e0

2cVnok

 !1=2
n2
ok
þ 2

3

� � ffiffiffi
q
p

2
4

3
5
ðjkijÞ

ð52Þ

Here, qi is the number of photons in the ith mode within the quantization volume

V . If no photons of a particular mode are initially present, as would be the case

for spontaneous emission processes, qi is equal to unity, as the photon creation

operator then acts on the vacuum state. The symbol sfðkm; lmÞ; . . . ; ðk1; l1Þg
represents a polarization tensor defined by

Sim			i1fðkm; lmÞ; . . . ; ðk1; l1Þg ¼ ei1ðk1; l1Þ 	 	 	 eimðkm; lmÞ � ei1 	 	 	 eim ð53Þ

The arguments associated with each unit vector are now dropped for brevity. The

polarization unit vectors ei refer to each photon involved in the interaction

process. The polarization vectors are represented as above for each photon that is

annihilated, but created photons carry the overbar to represent complex
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conjugation, thus allowing for the possibility that the light is circularly or

elliptically polarised. It is also customary if two photons are from the same mode,

as for example would be the case in single-color two-photon absorption or a

harmonic process, to place parentheses around the appropriate indices to signify

permutational symmetry.

In order to relate to the specific conditions produced by a given laser source,

it is clearly necessary to express results in terms of physically meaningful

radiation parameters in lieu of the artificial quantization volume V and photon

number q that appear in Eq. (52). The procedure for this reformulation allows

consideration of pump radiation states characterized by various forms of photon

statistics, leading to results appropriate for several different kinds of intensity

distribution. In an earlier review [1] it was shown how to develop theory in

terms of quantum optical states more realistic than the zero-fluctuation number

states jqðk; lÞi hitherto employed in the general formulation. Although these

states are the most usual basis for QED calculations based on time-dependent

perturbation theory, they are associated with infinite phase uncertainty and do

not adequately represent any real laser input. One basis set of states that appears

rather better suited to the modeling of laser radiation is the overcomplete set

represented by the coherent states jbðk; lÞi. These states, characterized for any

given radiation mode by minimization of the uncertainty in phase and

occupation number [36,37], are eigenstates of the corresponding annihilation

operators, satisfying the result

aðlÞðkÞjbðk; lÞi ¼ bðk; lÞjbðk; lÞi ð54Þ

where bðk; lÞ is a complex number whose modulus relates to the mean photon

number q through q ¼ jbðk; lÞj2. It should nonetheless be mentioned that the

employment of coherent or other states can, if caution is not exercised, produce

spurious features resulting from the fact that they are not eigenstates of the

radiation Hamiltonian, so that neither photon creation followed by annihilation

nor annihilation followed by creation is an identity operation. This feature is

commonly overlooked, but it provides one of the best reasons for working with

number states if quantum optical aspects are not at issue.

Rate equations expressed in terms of mean photon number and quantization

volume are still not directly applicable to experiment. Moreover, since the

quantization volume is no more than a theoretical artifact, it must invariably

cancel out in any final result. However, the ratio of these two quantities, which

represents a mean photon density, is directly related to the mean irradiance, and

the relationship may be derived as follows. Consider a quantization volume

represented by a small cube of space of side length l and volume V through

which the incident beam passes; by definition, this cube contains on average q

photons of circular frequency ok, and its energy content is q�hok (see Fig. 4). For
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a group of q photons with a mean group velocity vg, it takes a time l=vg for the

energy q�hok to traverse the cube; hence the mean irradiance IðokÞ (power per

unit beam cross-sectional area) is given by fq�hok=ðl=vgÞg=l2, so that

IðokÞ ¼
q�hvgok

V
ð55Þ

In passing we may note that the mean interval t between photon arrival times for

any one molecule of physical cross section s is directly related to IðokÞ through

t ¼ �hok

IðokÞs
ð56Þ

The parameter t is rarely featured in the literature but in the case of non-

parametric excitation and decay processes in molecular media, its value relative

to the decay lifetime affords a useful gauge of excitation efficiency.

For the generation of radiation through any incoherent optical process, the

general freedom in propagation direction means that each photon is spontane-

ously created into any one of an infinite set of radiation states, subject to energy

conservation. For a collection of free molecules, uncertainty in the molecular

state energy, due to the presence of densely packed quasicontinuous vibrational

and rotational energy levels, ensures that a density of states representation can

legitimately replace the delta function of Eq. (51); see, for example, the work by

Craig and Thirunamachandran [15].

Even in coherent processes whose nature serves to define the principal

direction of the emergent radiation, and where the initial and final molecular

states are necessarily identical, the general theory leads to quantum amplitudes

in which the final state of the radiation field is not yet completely specified with

regard to the wavevector and polarization of the emitted radiation. As such, the

sums over all possible values of k0 and l0 should remain in the general ampli-

tudes of the radiation tensor q0. However, the restrictions imposed on parametric

ι

Figure 4. The schematic illustrates a photon flux through a quantization volume. Each side of

the chosen cube is assigned a length l. The photons traverse the box in a time l=vg where vg is the

group velocity in the medium.
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processes by virtue of energy conservation and wavevector matching conditions

[1] ensures that radiation is emitted into a small pencil of solid angle centered

around k0 þ d k0, where the prime indicates that the photon is emitted. In

effecting the associated sums, we achieve a result of a form that correctly loses

dependence on the quantization volume (i.e., except for processes occurring in

geometrically confined microcavities where the quantization volume retains

physical significance). In the limit of a large quantization volume, the sum over

k0 is conveniently replaced by an integral of the form

1

V

X
k0
¼)

V!1

ð
d3k0

ð2pÞ3
¼ 1

ð2pÞ3
ð1

0

þ
k02dk0d	 ð57Þ

where it is understood that the solid angle d	 extends over all angles. For

coherent emission into a pencil of solid angle d	 (� 4p steradians) centered

around k0, it is legitimate to substitute for the sum over k0 by

X
k0
¼) d	V

ðwpÞ3
ð1

0

k02dk0 ð58Þ

Using Eq. (58), any remaining V factor can be successfully removed from the

appropriate expressions.

To illustrate a case to be revisited in detail later, we explicitly derive the rate

for coherent second-harmonic generation in a system containing M molecules.

Using the general expression Eq. (52) for the radiation tensor together with the

Golden Rule, and retaining a sum over the emitted harmonic in the matrix

elements, we first obtain an expression of the form

�coh ¼
2p
�he6

0

�hvgoke0

2cVnok

� �2 n2
ok
þ 2

3

� �4

qðq� 1Þ

�
X
k0;l0
ðZM �MÞ

�hv0go
0
k0e0

2cVno0
k0

 !
n2
o0

k0
þ 2

3

 !2

jbiðjkÞð�2o;o;oÞ�e0iejekj2

� dð�hok � 2�hokÞ ð59Þ

Several points deserve mention. First, retention of the sum over the harmonic

wavevector and polarization signifies an initial condition that assumes the

absence of any harmonic radiation prior to interaction, so that no direction is

favored on the basis of stimulated emission (i.e., although the emergent

wavevectors are equal in magnitude, they may differ in direction). Secondly,

although photon branch indices are suppressed for conciseness, they are to be
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regarded as still implicit. Finally, the parentheses around the molecular tensor

indices represent index symmetry. (This will be explained in more detail when

we deal with the molecular tensors explicitly in the following sections.)

The delta function in Eq. (59) serves to ensure energy conservation, while the

factor ðZM �MÞ signifies the extent to which photon momentum is conserved,

as determined by wavevector matching. As shown previously [1,38], we have

ZM ¼ M2 in the limit of exact wavevector matching. Now, substituting Eqs. (55)

and (58) into (59) allows the rate of coherent harmonic production, into an

infinitesimal solid angle d	, to be expressed as follows:

d�coh ¼
I2ðokÞgð2Þok

d	

4�hð2pÞ2c2e3
0n2

ok

n2
ok
þ 2

3

� �4X
l0

ð1
0

k02dk0
do0k0
dk0

�ho00
2cno0

k0

 !

�
n2
o0

k0
þ 2

3

 !2

jbiðjkÞð�2o;o;oÞ�e0iejekj2dð�ho0k0 �2�hokÞ ðZM �MÞ ð60Þ

Here the group velocity of the harmonic wave is written explicitly as do0k0=dk0,
and we have introduced the second-order degree of coherence gð2Þ as appropriate

for a generalization beyond number states

gð2Þ ¼ hqðq� 1Þi
hqi2

ð61Þ

where the angular brackets indicate expectation values based on the number state

operators, q � aya. We proceed with the assumption that the output is polarized,

thus obviating the need for the polarization sum l0. Then, using the definition

k0 ¼ o0k0no0
k0
=c and exploiting delta function properties and after a little algebra,

we finally arrive at the expression

d�coh ¼
I2ðokÞgð2Þok

d	o3
kn2ok

4�hc5p2e3
0n2

ok

n2
ok
þ 2

3

� �4
n2

2ok
þ 2

3

� �2

� jbiðjkÞð�2o;o;oÞ�e0iejekj2ðZM �MÞ ð62Þ

which is best recast in terms of a radiant intensity of harmonic emission by using

Iðk0Þ ¼ ð�ho0k0 Þ
d�

d	
¼ ð2�hokÞ

d�

d	
ð63Þ

Significantly, the results of Eqs. (62) and (63) closely resemble those calcu-

lated using the more familiar vacuum electric field operators, modified by the
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inclusion of refractive index-dependent correction factors (see, e.g., Refs. 1 and

15). This reflects the fact that the rates calculated for any interaction using those

methods can, in some sense, incorporate the necessary media contributions if

the matrix elements are phenomenologically modified by the factors

n
�1=2
ok
fðn2

ok
þ 2Þ=3g or n

1=2

o0
k0
fðn2

o0
k0
þ 2Þ=3g, for each absorbed or emitted photon,

respectively, where nok
is the frequency-dependent refractive index. This is a

simple prescription that lacks the details of the underlying physics, including the

implicit photonic branch indexing. The advantage of the complete method

described in the course of this review is that it is directly amenable to systems of

significantly greater optical complexity. In contrast to developments that

directly dress the molecular response with the local field factors, casting the

molecular optical response tensor as a microscopic representative of a bulk

susceptibility, Eq. (62) explicitly retains all such factors whose value is

determined by the properties of the input radiation, as modified within the bulk

of the nonlinear medium.

VIII. PUMP PHOTONICS

Whilst the above is perfectly adequate for the description of processes observed

with continuous-wave (cw) input, proper representation of the optical response to

pulsed laser radiation requires one further modification to the theory. It is

commonly thought difficult to represent pulses of light using quantum field

theory; indeed, it is impossible if a number state basis is employed. However by

expressing the radiation as a product of coherent states with a definite phase

relationship, it is relatively simple to construct a wavepacket to model pulsed

laser radiation [39]. The physical basis for this approach is that pulses necessarily

have a finite linewidth and therefore in fact entail a large number of radiation

modes, so that for the pump radiation, it is appropriate to construct a coherent

superposition

jiradi ¼
Y

l

jaðolÞi ð64Þ

and where

jaðolÞj ¼ q
1=2
l ð65Þ

represents the mean number of photons in the mode labeled by the (positive or

negative) integer l. For simplicity, it may be assumed that each mode is

associated with the same direction of propagation and polarization, so that the

frequency label uniquely identifies each component. If the central frequency is

o0 and the interval between adjacent modes is 	, then we can write

ol ¼ o0 þ l	 ð66Þ
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which, with 	 ¼ pvgðo0Þ=L ½vgðo0Þ denoting the intracavity speed of light at

frequency o0�, serves to represent the frequency distribution of a laser with

optical cavity length L. A phase relationship between the axial cavity modes,

corresponding to perfect mode locking, can now be enforced by writing

aðolÞ ¼ q
1=2
l exp½�iðoltÞ� þ j ð67Þ

with a suitable value for t and arbitrary j. When the initial state defined by (64)

is made subject to this condition and employed in the calculation of matrix

elements as in Eq. (41), this leads to the representation of a pulse train described

by the following temporal envelope function JðtÞ [39]:

JðtÞ ¼
X

l

ðqlolÞ1=2
exp½�il	ðt þ tÞ� ð68Þ

where the time t arises through evaluation of the matrix elements of ~dðþÞ as given

by Eq. (31). Choosing t ¼ �p=	 places time zero exactly in between two

successive pulses, such that Jð0Þ � 0 and the interaction is smoothly switched

on. By extension of these principles to a continuous frequency distribution,

single pulses of radiation can be entertained in the theory through the envelope

function

JðtÞ ¼
ð

AðoÞ exp½�ioðt þ tÞ�dt ð69Þ

The net result of incorporating all these modifications in the theory of harmonic

emission, or any other process entailing the annihilation of n photons from the

pump radiation, is that we now have the following prescription:

q!

ðq� nÞ!

	 

! J2no�n ð70Þ

For coherent state light, each and every coherence factor takes the value of unity,

and it may be observed that the result of effecting Eq. (70) is that a time-

dependent irradiance IoðtÞ now appears, properly defined through

IoðtÞ ¼
�hc

V

� �
J2ðtÞ ð71Þ

To complete the reformulation of results in terms of physically meaningful

parameters, and to relax the unduly restrictive assumption of the last section, we

now consider the possibility of stimulated emission for photons generated by the
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optical process of interest, as, for example, in the case of strong harmonic

pumping. This leads to a matrix element containing a factor ðq0 þ 1Þ1=2=V1=2,

indicating that the rate becomes linearly dependent on ðq0 þ 1Þ=V . When q0 is

large, the rate is essentially proportional to the harmonic photon density. In the

light of the preceding remarks on the pump radiation, it is nonetheless for many

reasons inadvisable to work in terms of q0. Number states are hardly appropriate,

nor is it sensible to suppose that all harmonic photons are delivered into a single

radiation mode. Under conditions of strong emission pumping, it is better to

gauge the mean number of n-harmonic photons by employment of the relation

q0 ¼ n�1ðq0 � qÞ ð72Þ

where q0 is the initial number of pump photons. Equation (72), which basically

reflects energy conservation, may be regarded as an integrated form of the

generalised Manley–Rowe relation

d IðokÞ=okf g
dz

¼
�qd Iðo0

k0 Þ=o0k0
� �

dz
ð73Þ

[40]. The q0 that appears in the rate equations is best interpreted as a ratio of the

stimulated to the spontaneous emission rate (see, e.g., Ref. 41).

IX. CONSTRUCTION OF MOLECULAR RESPONSE TENSORS

In this section we address the detailed form, and in particular the dispersion

behavior, of the molecular response tensors. We note that the frequency depen-

dence of nonlinear polarisabilities and their sum rules have been the subject of a

series of incisive works by Bishop and others; see, for example, the paper by

Bishop and DeKee [42]. In addressing dispersion behavior below, we follow the

same general principles, but at the outset we invoke excited-state damping to

allow for the incorporation of lineshape. This is a matter that, once its context is

established below, we shall return to in the following section.

To begin, from Eqs. (41) and (47) the explicit result for the nonlinear polari-

zability aðmÞ that mediates an m-photon process may be written, in the electric

dipole approximation, as follows:

aðmÞ ¼
X
r
ð1Þ
mol

	 	 	
X
r
ðm�1Þ
mol

X
r
ð1Þ
rad

	 	 	
X
r
ðm�1Þ
rad

h fmoljljrðm�1Þ
mol ihr

ðm�1Þ
mol jljr

ðm�2Þ
mol i 	 	 	 hr

ð1Þ
moljljimoli

½ð ~E
r
ðm�1Þ
mol

� ~Eimol
Þ þ ðE

r
ðm�1Þ
rad

� Eirad
Þ��1 	 	 	 ½ð~E

r
ð1Þ
mol

� ~Eimol
Þ þ ðE

r
ð1Þ
rad

� Eirad
Þ��1

ð74Þ
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The summations over all possible intermediate radiation states are accommo-

dated by reference to the various contributing time orderings, or pathways

through state-sequence diagrams, and generally result in a set of terms. Each

term has a different frequency dependence, as determined by the structure of its

energy denominator. The tildas appearing over the molecular energies in Eq. (74)

represent a complex representation that includes the effects of damping, to be

discussed in detail below. In general, all molecular states carry such damping;

only in the special case of the lowest energy (ground) state is the damping

redundant. When written with explicit reference to its frequency arguments, the

ordering of tensor subscripts in aðmÞ is assumed to relate identically to the

ordering of the frequencies. Thus, for example, in writing the component

að3Þijk ð�o3;o2;o1Þ of the nonlinear optical tensor that mediates sum-frequency

conversion, the index i corresponds to the o3 photon interaction, j to the o2, and k

to the o1 interaction. Since molecular response tensors are seldom completely

index-symmetric [43], preserving an unambiguous correlation between indices

and photon frequencies is a very necessary consideration. In the time-ordered

diagrams, each interaction vertex carries the same index for the corresponding

photon in each diagram, so that the subscript ordering on the molecular

interaction vertices varies from diagram to diagram. On state-sequence diagrams,

the same index set labels the interaction lines denoting state connections.

It is instructive to take as a first example the general expression for molecular

polarizability, the response tensor that formally mediates elastic light scattering

in the electric dipole approximation. The result is obtained by application of

Eq. (74) with m ¼ 2 (one photon is annihilated and another of the same

frequency is created). Here there are only two time orderings, or state-sequence

pathways, as illustrated in Figs. 5 and 6, respectively. Each generates a term

whose numerator is a product of transition dipole moment components. For

r

0

(a) (b)

0

k,λ

k′,λ′

Figure 5. The two time-ordered diagrams required for light scattering. The incident light has

wave-vector k and polarization l and is scattered (re-emitted) with wave-vector and polarization k0

and l0 respectively. The initial and final satate for the molecule is assumed to be the ground state 0;

intermediate state carries the label r.
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example, from Fig. 5a, or the upper pathway in Fig. 6, we obtain the numerator

h f jmijrihrjmjjii. Calculation of each corresponding energy denominator using

Eq. (74) requires us to identify the individual energy components. If we assume

that the response is to be calculated for a molecule in its ground electronic state,

then Eimol
¼ E0 and the radiation field consists of q photons of frequency o,

Eirad
¼ q�ho. The intermediate state energies, ~Ermol

þ Errad

� �
, are again calculated

with the aid of the diagrams. In the intermediate state of the coupled system in

Fig. 5a, a photon has been absorbed by the molecule, which is thereby promoted

to an intermediate electronic state—corresponding to the state box in the center

of the lower pathway in Fig. 6. Therefore the total intermediate state energy is

the sum of the intermediate molecular energy ~Ermol
and the modified radiation

field Errad
¼ ðq� 1Þ�ho. Following Eq. (74), and considering only the first state

sequence, we have as one contribution to the molecular polarizability:

að2;1aÞ
ij ð�o;oÞ ¼

X
r

h0jmijrihrjmjj0i
~Er � E0 þ ðq� 1Þ�ho� q�ho
� � ¼X

r

h0jmijrihrjmjj0i
~Er � E0 � �ho
� �

ð75Þ

Proceeding to evaluate in a similar manner the contribution associated with the

alternative time ordering (Fig. 5b, and the upper pathway in Fig. 6), and then

adding the result to (75), we arrive at the following final expression

að2Þij ð�o;oÞ ¼
X

r

h0jmijrihrjmjj0i
~Er0 � �ho
� � þ h0jmjjrihrjmij0i

~Er0 þ �ho
� �

( )
ð76Þ

using the standard energy difference notation ~Er � E0 ¼ ~Er0.

As an aside, it is useful to obtain from the Eq. (76) a result for the mean

polarizability, whose value is required by Eq. (23). If the transition molecular

dipoles are real (as is the case for nondegenerate transitions, or as may be

enforced by a suitable choice of degenerate basis set), and the molecular

k′, k′

k k′

Figure 6. The state-sequence diagram for scattering.
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environment is randomly oriented, an isotropic average can be employed, and

the mean polarizability is then expressed as

�að�o;oÞ ¼ 1

3

X
r

jhrjlj0ij2
~Er0 � �ho
� �þ jhrjlj0ij2

~Er0 þ �ho
� �

( )

¼ 2

3

X
r

jhrjlj0ij2
~Er0

~E2
r0 � �h2o2

( )
ð77Þ

By explicitly including the wavevector and branch index dependence of the

radiation frequency, and unfolding the detail of the molecular state damping, we

conclude that the mean polarizability as used in Eq. (23) is

�a oðmÞk

� �
¼ 2

3�h

X
r

jhrjlj0ij2ð	r0 � i
2
grÞ

	r0 � i
2
gr

� �2�oðmÞ
2

k

8<
:

9=
; ð78Þ

where by factorizing �h from the expression, 	r0 represents each molecular

frequency defined as 	r0 ¼ 	r � 	0. The imaginary elements in Eq. (78) arise

from the substitution ~Er ¼ Er � 1
2

i�hgr, to properly accommodate finite excited-

state lifetimes as discussed in the next section. It is represented explicitly here to

illustrate that through Eqs. (78) and (23), the refractive index has both real and

imaginary parts. The complex nature of (23), on passing through a particular

molecular frequency, is illustrated in Fig. 7.

A second example, with m ¼ 3, illustrates the nonlinear molecular polariza-

bility responsible for second-harmonic generation. Here each tensor numerator

contains a product of three transition dipole moments. Reading off from the

appropriate diagram, for example, using Fig. 2a, we obtain the numerator

m0s
i msr

j m
r0
k . Here we again assume that the molecule starts and finishes in its

ground electronic state, and we have introduced the shorthand notation

m0s
i msr

j m
r0
k � h0jmijsihsjmjjrihrjmkj0i. Each denominator is a product of factors,

one for each intermediate state, in each of which again the energy of the initial

state is subtracted from the (complex) intermediate state energy. In the case of

Fig. 2a, we find that for the intermediate state jsi, the difference in molecular

energies is ~Es0 ¼ ~Es � ~E0

� �
, and the difference in photon energies �2�ho, thus

giving a factor of ~Es0 � 2�ho
� �

. For the intermediate state jri, the difference in

molecular energies is ~Er0 and the difference in photon energies ��ho, giving a

factor of ~Er0 � �ho
� �

. Proceeding in a similar way from Figs. 2b and 2c and

summing, we thus obtain the following complete expression for the frequency-
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doubling molecular polarizability tensor (the molecular hyperpolarizability)

bijkð�2o;o;oÞ ¼
X

s

X
r

	
m0s

i msr
j m

r0
k

ð~Es0 � 2�hoÞð~Er0 � �hoÞ
þ

m0s
j msr

i m
r0
k

ð~Es0 þ �hoÞð~Er0 � �hoÞ

þ
m0s

j msr
k m

r0
i

ð~Es0 þ �hoÞð~Er0 þ 2�hoÞ



ð79Þ

where we have used the common nomenclature to represent the leading order of

nonlinear molecular response, specifically, bð�2o;o;oÞ � að3Þð�2o;o;oÞ.
A few further general remarks are in order at this stage. One is to note the

fact that the sum over intermediate molecular states, as in Eqs. (76) and (79), in

principle applies not only to electronic but also to vibrational levels. Although

this issue initially received most attention in connection with molecular

hyperpolarizabilities [44], it applies equally to other optical response tensors.

The vibrational contributions, which were previously largely overlooked, have

now been extensively studied and shown to be important in many applications

[45,46]. Second, the polarizabilities associated with nonlinear parametric

processes may in most circumstances be regarded as properties of the ground-

state molecule, since it is the molecular ground state that usually constitutes the

Frequency/Arbitrary units

D
is

pe
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io
n/

A
rb

itr
ar

y 
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its

Figure 7. The dotted line (the real part of Eq. (23) utilizing Eq. (78) as the mean polarizability)

illustrates the dispresion of the refractive index across an arbitrary molecular resonance. The solid

line represents the imaginary part of the refractive index and only contributes close to the resonant

frequency.
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initial and final molecular levels. Certainly it can be anticipated that under

normal conditions the majority of conversion events will be mediated by ground

(usually S0) electronic state molecules, simply because of the overwhelming

population of such molecules compared to those in excited states. However,

other states may play the role of the initial/final state, and their corresponding

polarizabilities can be evaluated in the same way. In fact, it transpires that the

polarizabilities associated with electronic excited states can exceed those

associated with the ground state by orders of magnitude, as has been shown both

in theory and experiment [47–49]. Thus, if the appropriate excited state is

optically pumped so as to provide a significant population of molecules, the

observed polarizability characteristics of the medium can be significantly

enhanced, or diminished. This is an important fact that we shall return to when

discussing optically induced harmonic generation in more detail.

X. DAMPING

The issue of correctly signing the damping of energy denominators in optical

response tensors has been the subject of much recent debate [see, e.g., Refs. 50–

52]. This stems partly from a common confusion in the literature between two

entirely different forms of damping; it also reflects attempts to impose conflicting

conditions on the molecular response. The former obscurity is very easily dealt

with, though; as will be shown below, it forms the ground in which seeds of the

latter conflict have been sown.

First, the emergence of photon (more accurately, bath quantum, polariton)

energies in the denominators of expressions such as Eqs. (76) and (79)

originated in the development of the signal amplitude from Eq. (36). In the

evaluation of the underlying contour integrals invoked at that stage, imaginary

infinitesimals are commonly added to the photon energies to displace the poles

from the real axis. Each photon energy thereby acquires an infinitesimal

addendum, �ho! �hoþ is, with s! þ0. In the polarizability equation (76), for

example, this modification introduces addenda of �is and þis, respectively, to

the two energy denominators—a prescription that also allows the tensor to

retain the property of hermiticity. It has to be emphasized, nonetheless, that the

result has no meaning other than in the specific case of the limit s! þ0.

The second type of resonance modification to energy denominators, alluded

to earlier, is designed to reflect the finite lifetime of each molecular energy level,

phenomenologically implemented by a modification of the corresponding energy

~Er ¼ Er �
1

2
i�hgr ð80Þ

where gr may be considered a sum of the inverse lifetimes associated with

each line-broadening mechanism, and representing the FWHM (full width at
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half-maximum) linewidth of the nonlinear response near resonance. Only the

ground state is undamped, since its lifetime is taken as infinite. Using the positive

sign in equation (80) results in the time dependence of each molecular state jri
acquiring within its phase factor e�i~Ert=�h an exponential decay component.

More significantly, the choice of the positive sign for the damping proves to be

uniformly consistent with time-reversal symmetry, as will be discussed in more

detail below. The result of implementing this correction in the polarizability

equation (76), for example, is the addition of þ 1
2

i�hgr to each energy

denominator, the sign the same in each term. In nonresonant processes, �hgr is

typically several orders of magnitude smaller than Er, and its precise value is

determined by the nature of the molecule and the local structure of the bulk

phase. Near to resonance, the damping serves to give a realistic lineshape to the

optical response. For example, in light scattering close to an optical absorption

band where �ho � Er0, the first term of Eq. (76) dominates and the corresponding

rate acquires a Lorentzian lineshape. Resonance features play a particularly

prominent role in the case of many large organic structures, whose ultrafast

excited-state decay mechanisms produce damping factors on the terahertz scale.

Detailed consideration of lineshape is also necessary in order to properly

accommodate the dispersion behavior featured in the realization of wavevector

matching for parametric processes.

Historically two conventions have been used extensively in the literature for

setting the signs of the phenomenological damping factors. Although mutually

incompatible, justifications for each convention have been made by appeal to

causality—a different line generally being taken in the semiclassical and fully

quantum-mechanical approaches to the interacting system of molecules and

radiation. In earlier work [1] this issue was unresolved and the prevailing

convention (variable signing, discussed in the following paragraphs) was ado-

pted. Now it is clear that constant signing is correct; an example is instructive.

The two conventions with respect to second-harmonic generation are as follows;

in the semiclassical or variable-sign convention (vsc) the signs are chosen

oppositely for interactions preceding and following in time the emission of the

harmonic photon, as follows [53–55]:

bvsc
ijk ð�2o;o;oÞ ¼

X
s

X
r

	
m0s

i msr
j m

r 0
k

ðEs0 � 2�ho� 1
2

i�hgsÞðEr0 � �ho� 1
2

i�hgrÞ

þ
m0s

j msr
i m

r 0
k

ðEs0 þ �hoþ 1
2

i�hgsÞðEr0 � �ho� 1
2

i�hgrÞ

þ
m0s

j msr
k m

r 0
i

ðEs0 þ �hoþ 1
2

i�hgsÞðEr0 þ 2�hoþ 1
2

i�hgrÞ



ð81Þ
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In the fully quantum-mechanical development [constant-sign convention, (csc)],

as adopted in most of the literature on Raman scattering, all the signs of the

damping are identical:

bcsc
ijk ð�2o;o;oÞ ¼

X
s

X
r

	
m0s

i m
sr
j m

r 0
k

ðEs0 � 2�ho� 1
2

i�hgsÞðEr0 � �ho� 1
2

i�hgrÞ

þ
m0s

j msr
i m

r 0
k

ðEs 0 þ �ho� 1
2

i�hgsÞðEr 0 � �ho� 1
2

i�hgrÞ

þ
m0s

j msr
k m

r 0
i

ðEs 0 þ �ho� 1
2

i�hgsÞðEr 0 þ 2�ho� 1
2

i�hgrÞ



ð82Þ

The latter result (82) yields a quantum probability amplitude that, under

Hermitian conjugation and time reversal, correctly equates to the corresponding

amplitude for the time-inverse process of degenerate downconversion. To see

this, we note that the matrix element for SHG invokes the tensor product

bijkð�2o;o;oÞrið jkÞ, where the brackets embracing two of the subscripts ð jkÞ in

the radiation tensor denote index symmetry, reflecting the equivalence of the two

input photons. As shown previously [1], this allows the tensor product to be

written without loss of generality as bið jkÞð�2o;o;oÞrið jkÞ, entailing an index-

symmetrized form of the molecular response tensor,

biðjkÞð�2o;o;oÞ ¼ 1

2
fbijkð�2o;o;oÞ þ bikjð�2o;o;oÞg ð83Þ

Each of the six terms of the hyperpolarizability tensor so formed transforms into

one of the six counterpart terms in biðjkÞð2o;�o;�oÞ, the tensor for degenerate

downconversion, on performing the combined operations of Hermitian conjuga-

tion and time reversal (the radiation tensor for downconversion is also obtained

by performing the same procedure on riðjkÞÞ. For example, the last term of

biðjkÞð�2o;o;oÞ, in the order that logically follows from Eqs. (82) and (83),

behaves as follows:

m0s
k msr

j m
r 0
i

ðEs 0 þ �ho� 1
2

i�hgsÞðEr 0 þ 2�ho� 1
2

i�hgrÞ

�!HT m0r
i mrs

j m
s 0
k

ðEs 0 þ �ho� 1
2

i�hgsÞðEr 0 þ 2�ho� 1
2

i�hgrÞ

and on interchanging the dummy state sum indices r and s, the result is exactly

the first term of bijkð2o;�o;�oÞ as follows from the form given by (82). The
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time reversal represented above is depicted in the time-ordered diagrams of

Fig. 8. The two-step operation of HT is given above to clarify the action of the

two operators, although it introduces assumptions that the indices relate to

contractions with real polarization vectors and that the molecular states are all

nondegenerate and time-even, consistent with spin-paired molecular orbitals.

However, the combined operation is not subject to these conditions, so that the

end result holds in general [11,24,50].

The variable-sign result Eq. (81) produces results that fail to satisfy such

time-reversal symmetry, as shown by Andrews et al. [50]. The requirement for

temporal symmetry remains unequivocal, despite the violation of time-reversal

invariance by the system itself (its engagement of molecular interaction with the

bath leading to state decay), specifically because of the inclusion of damping.

The two conventions agree in ostensibly the most crucial signing, that which

relates to potentially resonant denominator terms; they differ in ‘‘antiresonant’’

terms. Nonetheless, in certain processes they can lead to results with experi-

mentally very significant differences.

The origin of confusion surrounding the correct form of damping is readily

identified on comparison of Eqs. (81) and (82). In the latter, consistent signing is

associated with the consistently positive signs of the energies Es 0 and Er 0; in the

former, the signing appears consistent with the variable signs of the photon

energies �ho, 2�ho. Thus, if the imaginary infinitesimals discussed earlier are

directly substituted by physically meaningful and finite damping constants,

spurious results conforming to the variable-sign rule emerge. Those results

satisfy the Hermitian property of reciprocity, but that is not a principle of

universal application [56]. Any prescription with variable assignment of signs

can also introduce significant ambiguities in connection with processes entailing

two or more outgoing waves, as, for example, in four-wave mixing.

r

s

0

0

(a) (b) (c)
k′,λ′

k,λ

k,λ

Figure 8. The three time-ordered diagrams for degenerate down-conversion, representing exact

time reversal of the SHG orderings illustrated in Fig. 2. Consequently the emitted photons now carry

the wave vector and polarization labels, k and l, and the annihilated photon is characterized by k0; l0.
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The variable-sign convention would also logically lead to a secondary rule,

that where static fields appear in electro- or magneto-optical processes, the

interactions with which they are associated should carry no damping. However,

from a quantum field theoretic viewpoint, static perturbations must induce

damping [52]. All electromagnetic interactions are fundamentally mediated

through the exchange of virtual photons (the gauge bosons). A static field invol-

ved in an electro-optical process in any given molecule is mediated in the same

way. It owes its origin to the coupling between the charges within that molecule

and those constituting the source of the static field. This coupling is expressed

through the accommodation of interactions with virtual photons from modes of

an infinite range, as with any electrodynamic interaction, and summation over

the virtual photon wavevectors and polarizations thereby ensures a result that

properly reflects the conservation of energy. Consequently, the case of a static

field is no different in type from a time-varying field—except that, while

causality is, of course, satisfied, explicit retardation features disappear. Hence

the damping associated with any molecular excited state must be subject to

damping, irrespective of the frequency of the electric field responsible for the

perturbation. Damping factors are not frequency-dependent; each excited state

has a damping of a characteristic magnitude, irrespective of the frequency of the

perturbation with which it is associated. In this connection it has been shown

that the correct constant-signing rule is necessary to uphold the principle that

linear electro-optical response cannot occur in an isotropic liquid, whether

chiral or not [57].

In general, detailed consideration of damping is especially important

when operating near to resonance, which in general occurs when there exists

a molecular state differing in energy from the initial state by an amount

approaching the energy of one or more of the photons involved. For coherent

parametric processes the need to operate in regions of dispersion, in order to

satisfy wavevector matching conditions, is a well-known experimental tech-

nique. Operating in such frequency regions necessitates adoption of the

polariton (rather than vacuum photon) formulation, as described in Section III.

Inspection of the dispersion curves in Fig. 1, considering for simplicity case (a)

with just one molecular frequency, clearly illustrates three areas of interest: (1)

the diagonal curve segments represent photon-like radiation propagating through

the media at transparent frequencies, (2) the horizontal regions exhibit exciton-

like molecular resonances (photons impinging on the medium at such fre-

quencies are readily absorbed into the molecular bulk), and (3) level-crossing

areas signify a dispersive mixing of the molecular and radiation states. It is these

latter regions in which it is commonly necessary to operate. Thus, depending on

whether the radiation frequency is sufficiently above or below a particular mole-

cular resonance will determine the branch index that is appropriate.
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XI. INDEX SYMMETRY AND MOLECULAR STRUCTURE

A number of symmetry factors of quite distinct origins play a significant role in

determining the nullity or nonnullity of the various components of any molecular

optical response tensor (3n components in the case of dipole coupling). Equally,

symmetry considerations determine the number of linearly independent compo-

nents. In second-harmonic generation, for example, the symmetrized tensor

components must satisfy identities such as bzðxyÞ ¼ bzðyxÞ, regardless of whether

the molecule possesses the three- or higher-fold axis of symmetry necessary to

confer degeneracy on the x and y axes. Consequently, of the 33 ¼ 27 tensor

components, only 18 are independent. In general, for n-harmonic processes, the

rigorously index-symmetric polarizability tensor has only 3ðnþ 1Þðnþ 2Þ=2

independent components. The inherent structural symmetry of most molecules

generally reduces this number still further.

It is most important to note that in many cases of harmonic emission, a more

completely index-symmetric form of the polarizability tensor is implicated.

Consider once again the prototypical example of optical nonlinearity afforded

by harmonic generation. When any harmonic is generated from a plane-

polarized beam, in an isotropic medium, it produces photons with the same

polarization vector as the incident light. In such a case the radiation tensor rijk

becomes fully index-symmetric, and arguments similar to those given above

show that only the fully index-symmetric part of the hyperpolarizability tensor,

bijkð�2o;o;oÞ, can be involved. This does not mean that the tensor itself is

inherently fully index-symmetric, but it does mean that experiments of the kind

described cannot determine the extent of any index antisymmetry.

This leads us to the issue of approximate index symmetry. Any nonlinear

optical process involving only static (zero-frequency) fields is correctly des-

cribed in terms of a classical response tensor, which is always fully index-

symmetric. When optical frequencies are involved, the differences between the

energy denominators of the various terms in the tensor remove this symmetry.

The only exception, albeit an important one, is the linear polarizability. Since

this entails the product of two transition moments connecting the same pair of

states, permutational index symmetry is guaranteed. If, however, the photon

frequencies all fall substantially below any electronic transition frequencies of

the material, all energy denominators become approximately equal, (~Es 0 � ~Er 0

in the case of frequency doubling), and the tensor becomes in effect fully index-

symmetric. Under such conditions the polarizability tensor for an n-harmonic

process has only ðnþ 2Þðnþ 3Þ=2 independent components, for example, 10 in

the case of frequency doubling. Index symmetry based on the assumption that

such an approximation is valid, normally referred to as Kleinman symmetry [58]

is nonetheless unjustified in a great many applications [43,59].
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We now establish on the basis of physical symmetry the conditions for the

existence of the m-photon optical response tensor aðmÞ. For any parametric

process, the initial and final molecular states are identical and normally carry

the full ground-state symmetry of the molecule (or, in the case of a crystalline

solid, that of the unit cell). Thus, since each term in the explicit expression (74)

contains a product of m transition moments, the tensor can be nonvanishing only

if the totally symmetric representation of the appropriate point group or space

group is spanned by the product of ðnþ 1Þ translations (in the case of electric

dipole, E1, coupling). The origin of this condition can be traced back to Eq. (41).

Where the molecule or crystal possesses a center of symmetry, the symmetry

condition can be met only in the generation of odd harmonics, where m is even

and the product of translations is thus of gerade (even) symmetry. For the same

reason free atoms cannot support the production of even harmonics, except

under special conditions that effectively disrupt atomic symmetry.

Much more detailed symmetry information follows by considering the

explicit group-theoretic basis. In general, the independent components of the

response tensor form a basis for a reducible representation of the appropriate

molecular or crystallographic group; the reduction of this representation into

irreducible parts leads to results such as those given in Table I, in which DðjpÞ

stands for the irreducible representation of weight j and parity p. In this table,

based on the transformation properties associated the normal E1 coupling, the

second-harmonic polarizability bð�2o;o;oÞ is represented as bSHG and the

third-harmonic as cTHG � cð�3o;o;o;oÞ, although in each case it should be

borne in mind that the same molecular tensors are involved in both coherent and

incoherent harmonic processes. The first entry for each tensor gives the redu-

ction based on consideration of only the index symmetry inherent in the

interaction, as, for example, is denoted by the brackets around the subscripts in

bSHG
iðjkÞ : the second entries give the results that apply under Kleinman assumption

of full index symmetry, such as bSHG
ðijkÞ . In each case the entry in the final column

gives r, the number of independent tensor components. This may be regarded as

TABLE I

Group-Theoretic Representations and Number of Components r of Second- and

Third-Harmonic Polarizabilities

Coupling Tensor Representation r

E1(E12) bSHG
ið jkÞ 2Dð1�Þ � Dð2�Þ � Dð3�Þ 18

(E13) bSHG
ðijkÞ Dð1�Þ � Dð3�Þ 10

E1(E13) gTHG
ið jklÞ Dð0þÞ � Dð1þÞ � 2Dð2þÞ � Dð3þÞ � Dð4þÞ 30

(E14) gTHG
ðijklÞ Dð0þÞ � Dð2þÞ � Dð4þÞ 15
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a maximum, applicable to molecules totally lacking any intrinsic symmetry; any

molecule with a twofold or higher axis of symmetry will inevitably manifest

other relationships between its tensor components which will further reduce the

number of independent parameters.

Any parametric nonlinear polarizability can be supported by a given mole-

cule or crystal only as long as the totally symmetric representation of the

corresponding point or space group is spanned by some components of the

tensor. This remains true even for the parametric polarizabilities associated with

molecular excited states; provided they are nondegenerate, the product of the

initial and final state representations will generate the totally symmetric

representation. In the very rare cases where the polarizability properties of

molecules in degenerate excited states are required, the theory can be extended

in an obvious way. Since components that transform under Dð0þÞ invariably span

the totally symmetric representation, it is immediately apparent from Table I

that, on the basis of molecular symmetry, third-harmonic processes are

universally allowed. Indeed, this is true for all odd harmonics; it is because

the corresponding polarizabilities invariably carry components of Dð0þÞ sy-

mmetry.

By contrast in the case of SHG, for example, only those species whose totally

symmetric representation is spanned by Dð1�Þ, Dð2�Þ, or Dð3�Þ components can

support the hyperpolarizability tensor bSHG, and this excludes all centrosym-

metric species. More interestingly, the condition is satisfied by all polar species,

since these necessarily have Dð1�Þ components transforming under the totally

symmetric representation. In fact, among the common nonpolar molecular point

groups, only the following permit a nonzero hyperpolarizability, by virtue of

having Dð2�Þ and/or Dð3�Þ components transforming under their totally symme-

tric representation: S4; C3h; D2; D3; D4; D6; D3h; D2d; T ; Td [60]. If Kleinman

symmetry is assumed, the hyperpolarizability tensor carries only Dð1�Þ and

Dð3�Þ components: in this case the SHG potential of species with D4 or D6

symmetry, which have only Dð2�Þ components, is not apparent.

Although index symmetry places constraints on the maximum number of

independent elements for any given nonlinear susceptibility, that number is

generally reduced to a significant degree by virtue of molecule, crystal, or site

symmetry, where present. Two features are responsible for this; one is the fact

that symmetry will generally dictate that certain tensor components are

necessarily zero. For example, in any species with a mirror plane perpendicular

to the z axis bSHG
zðzzÞ , must be zero since it has to equal its own negative. Second,

structural symmetry will usually forge relationships between different

components. For example, in species with a threefold axis of proper rotational

symmetry, bSHG
xðxxÞ has to equal minus bSHG

xðyyÞ. The explanation is that the product

xðx2 þ y2Þ does not transform under the totally symmetric representation, and

hence the linear combination ðbSHG
xðxxÞ þ bSHG

xðyyÞÞ must be zero. For such reasons the
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18 tensor components associated with SHG generally reduces to a far smaller

number; in the extreme case of species with tetrahedral symmetry, there is in

fact only one independent component (xyz).

Where local symmetry permits harmonic generation based exclusively on

electric dipole coupling, the inclusion of higher-order multipolar contributions

in the exact coupling equation (13) produces additional terms that are normally

negligible. If electric dipole harmonic generation is forbidden, which, as we

have seen, is the case for even harmonics in a centrosymmetric species, these

higher-order terms can nonetheless become significant and may operate to effect

weak harmonic emission. The exception is the case of an isotropic fluid, where

global symmetry precludes the involvement of any higher multipoles in second-

harmonic emission within the bulk [61–63]. Work by Cao and Zhu [64] has

shown how the multipolar generation of a second harmonic signal in such

systems necessitates the presence of a surface, from which the harmonic can

emerge as a reflected beam. In other systems lacking full rotational symmetry,

the higher multipoles can also be important. For example, if any one of the three

ungerade electric dipole (E1) interactions involved in second-harmonic

generation is replaced by a gerade electric quadrupole (E2) interaction, the

operator product generates a Dð0þÞ contribution as shown in Table II. Since this

invariably spans the totally symmetric representation, the corresponding

response tensor is nonzero even in centrosymmetric materials. In the first row

of Table II the coupling E1(E1E2) refers to the polarizability associated with

one electric dipole and one electric quadrupole annihilation of a pump photon,

with electric dipole emission of the harmonic. The labeling E2(E12) in the

second row relates to electric dipole annihilation of both pump photons and

electric quadrupolar harmonic emission. In the third row the coupling (E12E2)

can refer to either case, but the corresponding representation applies only under

TABLE II

Representations and Number of Components r of Leading Higher-Order Multipole Second-

Harmonic Polarizabilities

Coupling Tensor Representation r

E1(E1E2) ~bSHG
ið jkÞl Dð0þÞ � 2Dð1þÞ � 3Dð2þÞ � 2Dð3þÞ � Dð4þÞ 45

E2(E12) ~bSHG
ðijÞðlkÞ Dð0þÞ � Dð1þÞ � 2Dð2þÞ � Dð3þÞ � Dð4þÞ 30

(E12E2) ~bSHG
ðijklÞ Dð0þÞ � Dð2þÞ � Dð4þÞ 15

E1(E1M1) bSHG
ijk Dð0þÞ � 3Dð1þÞ � 2Dð2þÞ � Dð3þÞ 27

M1(E12) bSHG
ið jkÞ 2Dð1þÞ � Dð2þÞ � Dð3þÞ 18

(E12M1) bSHG
ðijkÞ Dð1þÞ � Dð3þÞ 10
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the assumption of Kleinman index symmetry. Similar remarks apply if one of

the electric dipole couplings is alternatively replaced by a gerade magnetic

dipole (M1) interaction, though in this case the Dð0þÞ representation arises only

where the magnetic interaction is involved in the annihilation of a pump photon.

Moreover, the Dð0þÞ feature is not apparent if Kleinman symmetry is assumed.

XII. TWO-LEVEL SYSTEMS

From the results in the last section it is clear that for particular applied radiative

frequencies or frequency multiples, close to resonance with particular molecular

states, each molecular tensor will be dominated by certain terms in the

summation of states as a result of their diminished denominators—a principle

that also applies to all other multiphoton interactions. This invites the possibility

of excluding, in the sum over molecular states, certain states that much less

significantly contribute. Then it is expedient to replace the infinite sum over all

molecular states by a sum over a finite set—this is the technique employed by

computational molecular modelers, their results often producing excellent

theoretical data. In the pursuit of analytical results for near-resonance behavior,

it is often defensible to further limit the sum over states and consider just the

ground and one electronically excited state. Indeed, the literature is replete with

calculations based on two-level approximations to simplify the optical properties

of complex molecular systems. On the other hand, the coherence features that

arise through adoption of the celebrated Bloch equations are limited to exact

two-level systems and are rarely applicable to the optical response of complex

molecular media.

In the case of a single resonance, optical harmonic conversion is driven

largely by transitions involving just the ground and resonant levels, so that the

kinetics of the process approximates that of a two-level system. Indeed, in the

realm of resonant multiphoton phenomena the two-level approximation is

peculiarly appropriate for harmonic emission, whereas most nonparametric

processes such as multiphoton absorption require three or more levels for their

adequate representation. Consider once again, for example, the case of fre-

quency doubling, where resonance amplification can occur at either the pump or

the harmonic frequency. To begin, it is useful to separate the molecular tensor

into a sum of two parts, in the first of which both the summations over

intermediate states jri and jsi are restricted to the ground level j0i and a

resonant level jui; in the second, all other possibilities are accounted for. Hence

we can write

bijkð�2o;o;oÞ ¼ bTLA
ijk ð�2o;o;oÞ þ bothers

ijk ð�2o;o;oÞ ð84Þ
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where the superscript ‘‘TLA’’ denotes the two-level approximation. It is to be

noted at the outset that the bothers term does not completely exclude the states j0i
and jui from every intermediate state summation; for example, it accommodates

contributions associated with jri ¼ jui, jsi 6¼ fj0i; juig.
Focusing first on the dominant two-level term [65], careful analysis of the

tensor structure, with respect to the proper signs for the damping corrections and

utilizing the freedom to add a j,k index-antisymmetric term (see later), yields

the following result [59,66]:

bTLA
ijk ð�2o;o;oÞ ¼

	
m0u

i m0u
j
�dk

ðEu0 � 2�ho� i�uÞðEu0 � �ho� i�uÞ

þ
m0u

j
�djm0u

k

ðEu0 þ �ho� i�uÞðEu0 � �ho� i�uÞ

þ
�djm0u

k m0u
i

ðEu0 þ �ho� i�uÞðEu0 þ 2�ho� i�uÞ



ð85Þ

assuming only that the electric dipole transition moments are real, and for

conciseness introducing the shorthand notation �u ¼ 1
2
�hgu. Where only diagonal

components arise, as, for example, may apply for harmonic generation within a

regular solid, the tensor product bTLA 	 r featured in the rate equation (51)

reduces to a simpler structure first identified by Oudar and Chemla [67]. Both in

its simpler form, and in the general expression Eq. (85), the most significant

feature is the appearance in each term of the vector parameter �d, defined by

�d ¼ luu � l00 ð86Þ

specifically, the difference between the static electric dipole moments of the

resonant and ground states. Hence the two-level hyperpolarizability displays a

linear dependence on the magnitude of �d, which, for example, in extensively

conjugated molecules can reasonably be assumed proportional to the length of

the conjugation chain [67].

It is important to have included the ground state of the molecule in the sums

over intermediate states for the dependence on �d to be recovered, and this

proves significant for two reasons: (1) the result Eq. (85) shows that the two-

level hyperpolarizability can be supported only by molecules with permanent

ground- or excited-state dipoles, which means polar molecules; and (2) it is

clear that there is considerable scope for the two-level response to be enhanced

in polar molecules having a resonant excited state whose equilibrium geometry

is appreciably different from that of the ground state, or in species exhibiting the

characteristically strong absorption associated with a charge-transfer transition.
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Similar features arise in the theory of multiphoton absorption [68–70] and also

single-photon cooperative absorption [71,72]. In connection with second-

harmonic generation, the result has added significance since most species that

can support bð�2o;o;oÞ, and thereby have the potential for frequency

doubling, are, indeed, polar (see previous section).

Let us now consider more specifically the case of a medium possessing an

excited state jui close in energy to that of the emitted harmonic, 2�ho. For

practical application, this condition is generally more useful than resonance at

the fundamental frequency, since the latter condition is likely to result in a

substantial loss of pump power through conventional single-photon absorption.

In view of its denominator structure, it is clearly the first term in Eq. (85) that

will provide the major contribution to the nonlinear response tensor

bTLA
ijk �

m0u
i m0u

j
�dk

ð�h�o� i�uÞð�hoþ �h�o� i�uÞ
ð87Þ

where �o represents the detuning from resonance: both the first and second

terms of Eq. (85) dominate in the case of resonance at the fundamental

frequency. If the molecule has no dipole and possesses a center of symmetry, it is

well known that the all hyperpolarizability tensor components are null and no

second-harmonic generation is possible. However, if only �d vanishes, as in the

case of a tetrahedrally symmetric molecule, then only the two-level contribution

to the tensor, bTLAð�2o;o;oÞ, disappears. The remaining contribution

botherð�2o;o;oÞ, as defined by Eq. (84), persists and is itself dominated by a

term with essentially the same denominator structure as Eq. (87); specifically, the

product of a near-resonant and an off-resonant term. For the general structure that

then emerges, the reader is referred to Andrews [1].

It has been established in a series of works that a transformation of the

electric dipole interaction is valid for deriving the optical characteristics of

molecular systems with a response dominated by two electronic states [68–70;

73–77]. This procedure relates to the employment of a fluctuation dipole

operator [78,79] as given by

H0int ¼ �e�1
0 ½l� l00� 	 d? ð88Þ

in which the subtracted moment is the permanent dipole of the initial molecular

state—usually the ground state. It has been proved how utilizing Eq. (88) for the

form of the interaction operator leads to a new and expedient algorithm for the

calculation of the requisite nonlinear optical polarizabilities [80], based on a

novel interpretation of the appropriate time-ordered diagrams. In establishing the

form for probability amplitudes of systems driven primarily by interactions
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between the ground state j0i, and one other higher electronic state jui, it proves

legitimate and expedient simply to recast the permanent moments, where they

arise as follows

luu ! luu � l00 ¼ �d; l00 ! 0 ð89Þ

while leaving any transition dipoles ðlu0; l0uÞ unchanged. When the various time

orderings for any optical processes of interest are drawn up, application of this

rule enables expressions involving any connected route that entails the ground-

state dipole l00 to be discarded, so long as those entailing the excited state dipole

luu are re-interpreted to invoke �d. This is the algorithm whose illustrative

applications are described below. The method has been explicitly validated for

all parametric and nonparametric processes, both degenerate and fully nonde-

generate [80] and can be shown to correspond to a canonical transformation on

the interaction Hamiltonian [14a,b; 81]. In every case its implementation leads in

a matter of lines to results identical to those previously established by subs-

tantially more laborious means [66,69,70]. It may also be noted that the

fluctuation dipole results are exact, when the correct constant-sign convention is

used for damping; when variable signing is employed, the result is approximate

only [66].

As an example, we again derive the two-level second harmonic tensor, this

time using the algorithm outlined by Eq. (89). The three time-ordered diagrams

as illustrated in Fig. 2a–c are once more employed. The route of molecular

states between the initial (ground) state and the final (also ground) state runs

through two virtual states, jri and jsi, and in the two-level approximation each

of these is summed to represent one of two possibilities, either the ground state

j0i or the excited state jui. The j0i  jsi  jri  j0ið Þ sequences that arise are

thus concisely expressible as 0000, 00u0, 0u00, 0uu0, corresponding to the

dipole products l00l00l00; l00l0ulu0; l0ulu0l00; l0uluulu0, respectively. From

the three time orderings we therefore have 3� 22 ¼ 12 contributions—each a

product of three ‘transition’ dipoles (one or more of which may be permanent),

divided by a product of two energy factors. Application of the algorithm

determines that only the state sequence 0uu0 ðl0uluulu0Þ need be considered in

a suitable reinterpretation of the three time-ordered diagrams, since each of the

other possibilities generates a l00 segment. Utilizing Fig. 2, we therefore obtain

a two-level hyperpolarizability tensor exactly as expressed by Eq. (85). This is

the simplest example of how the algorithm quickly generates results that would

otherwise demand considerable algebraic manipulation. However, it is with

higher-order amplitudes that the method is most obviously efficacious. Even in

(85), the tensor structure obviates simple factorization in terms of �d; higher

orders have the additional complication that terms both linear and in powers of
�d arise.
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The process of third-harmonic generation (THG) serves both to illustrate

the power of the new algorithm and to draw out some new physics. To derive

the form of the susceptibility tensor, one needs to employ either the four

time-ordered diagrams or the equivalent state-sequence diagram represent-

ing THG. Both diagrammatic representations are illustrated in Fig. 9. The

state route connecting the initial and final (ground) states here runs through

three virtual states, r, s, and t, and the two-level approximation requires each to

be either the ground or the excited state. In this case, from the four time

orderings we get a total of 4� 23 ¼ 32 contributions, each a product of four

transition or permanent dipoles divided by three energy quotients. With

the benefit of the algorithmic method delineated above, we can take the four

time orderings and dispense with all except two of the following state

sequences: 00000, 000u0, 00u00, 00uu0, 0u000, 0u0u0, 0uu00, 0uuu0. Speci-

fically, discarding each sequence that includes the segment 00, we retain only

0u0u0 and 0uuu0. With proper reinterpretation of these remaining cases, we

thus immediately obtain the following explicit result comprising only eight

terms, of which each successive pair results from the successive time-ordered

diagrams of Fig. 9a, also corresponding to all routes through the state-sequence

k,λ

k,λ

k,λ

k′,λ′

3 k, k′ 2 k, k′ k, k′

k′3 k

2 k k

(a)

(b)

Figure 9. The four time-ordered diagrams characterizing third harmonic generation (a) and the

state-sequence diagram representing the same process (b).
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diagram of Fig. 9b. [80]

gijklð�3o;o;o;oÞ ¼
mu0

i mu0
j mu0

k mu0
l

ðEu0 � 3�ho� i�uÞð�2�hoÞðEu0 � �ho� i�uÞ

þ
mu0

i1
�dj
�dkmu0

l

ðEu0 � 3�ho� i�uÞðEu0 � 2�ho� i�uÞðEu0 � �ho� i�uÞ

þ
mu0

j mu0
i mu0

k mu0
l

ðEu0 þ �ho� i�uÞð�2�hoÞðEu0 � �ho� i�uÞ

þ
mu0

j
�di
�dkmu0

l

ðEu0 þ �ho� i�uÞðEu0 � 2�ho� i�uÞðEu0 � �ho� i�uÞ

þ
mu0

j mu0
k mu0

i mu0
l

ðEu0 þ �ho� i�uÞð2�hoÞðEu0 � �ho� i�uÞ

þ
mu0

j
�dk
�dimu0

l

ðEu0 þ �ho� i�uÞðEu0 þ 2�ho� i�uÞðEu0 � �ho� i�uÞ

þ
mu0

j mu0
k mu0

l mu0
i

ðEu0 þ �ho� i�uÞð2�hoÞðEu0 þ 3�ho� i�uÞ

þ
mu0

j
�dk
�dlmu0

i

ðEu0 þ �ho� i�uÞðEu0 þ 2�ho� i�uÞðEu0 þ 3�ho� i�uÞ

ð90Þ

where once again it is the index-symmetrized form, here entailing all

permutations ( jkl), that will feature in the observables. The transition moment

lu0 is taken to be real and hence equal to l0u; also note that the tensor c is minus

that given as c00(�3o;o;o;o) elsewhere [80], because here each energy

denominator expression carries an overall a minus sign, for consistency within

the current work.

One aspect of Eq. (90) deserving comment is its amenability for the

identification of resonances. Three-photon resonances are manifest in the first

and second terms, through the appearance of the factor Eu0 � 3�ho� i�uð Þ; two-

photon resonances Eu0 � 2�ho� i�uð Þ are featured in the second and fourth, and

single-photon resonances Eu0 � �ho� i�uð Þ are seen in each of the first six.

Since exploitation of the latter kind of resonance is in practice usually avoided

because of the competing linear absorption with which it is associated, it is the

two- and three- photon resonances that are of the most interest. Under suitable

conditions, third-harmonic generation in either of those cases is driven largely

by just two of the contributions to Eq. (90). Other contributions, signifying
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minor corrections, are of much the same order of magnitude as those relating to

the involvement of other molecular energy levels.

Further features are evident when the relative magnitudes of the dipole

difference jdj and the transition dipole jlu0j are considered. One immediately

striking feature is the observation that the second, fourth, sixth, and eighth terms

all disappear if jdj ¼ 0, leaving only terms associated with virtual excitation

routes. [Note that no such routes were manifest in the second-harmonic result. If

jdj ¼ 0 then the entire expression Eq. (85) becomes zero—any process involving

an odd number of photons has to entail at least one 00 or uu segment in the

interaction sequence.] In the third-harmonic case, in particular, both terms

associated with two-photon resonances disappear—in other words, there can be

no two-photon resonance enhancement of third-harmonic generation under such

circumstances. If, however, jdj � jlu0j, then the even terms of Eq. (90)

dominate the optical response—and in the case of three-photon resonance, it is

the second term that provides by far the leading contribution. Such consi-

derations should play an important role in implementing strategies for the

calculation of nonlinear optical response; for example in the case just cited, the

dominant term is of a form that had not previously been identified as represe-

nting the major contribution.

XIII. OPTICAL COHERENCE IN DISPERSED PARTICLES

Despite the powerful symmetry rule that precludes the generation of even har-

monics in optically isotropic media, except at surfaces, a number of experimental

results have indicated exceptions to the rule, as detailed in the earlier review [1].

Most entail conditions resulting in a transient, local removal of isotropy, and are

therefore well understood. Nonetheless, two quite different mechanisms have

been found to mediate second-harmonic generation in macroscopically isotropic

systems. In this section we consider a mechanism relating to optical coherence in

small particles in suspension, or locally ordered domains within macroscopically

structureless media. In the next section we shall focus on a six-wave form of

interaction associated with very high pump laser intensities.

The coherent generation of second harmonics from particles in suspension

was first found to operate in the generation of strongly directed SHG signals

from photosynthetic bacterial membranes, randomly oriented in aqueous suspe-

nsion [82,83]. The paradox was resolved when it was shown that the unusually

strong signal detected from such isotropic suspensions is attributable to optical

coherence within the separate particles of the suspension [84]. As such, the

harmonic emission displays an amalgam of the characteristics associated with

full coherence (second-harmonic generation) and incoherence (hyper-Rayleigh

scattering). To understand this, it is necessary to return to the development of

theory in Section VII. Consider a fluid or mesoscopically disordered material
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(or any other optically isotropic system) within which there are small particles

or local domains possessing a microscopically ordered structure. Examples of

such systems include colloids, cell and membrane suspensions, and many pla-

stics, glasses, and other modern materials. In systems of interest, each particle

or domain includes a significant number of optical centers with strong optical

dispersion at the frequency of the pump laser radiation or its harmonic. Let us

suppose that such a system contains M randomly oriented particles (individually

denoted below by the subscript m), each composed of n discrete molecules or

other optical centres (denoted by the subscript x). Within each particle it is

assumed that there is a structurally imposed orientational correlation, that is, a

significant intrinsic rigidity, such that its net optical response can be cast in

terms of an ‘‘effective hyperpolarizability’’ tensor given by

b00
ðmÞijk ¼

Xn

x

b00
ðxÞlmvl

x
ill

x
jml

x
kv ei�k	ðRx�RmÞ ð91Þ

Here the hyperpolarizability of each individual optical center, b00
ðxÞlmv, is given a

superscript label 00 to indicate that it relates to the electronic ground state (an

assumption to be revisited later), and its position is given relative to the common

Cartesian frame. The factor l
x
il(l

x
jm, l

x
kn) is the cosine of the angle between the

space fixed axis ið j; kÞ and the molecule fixed axis lðm; vÞ. If the particles or

ordered domains are small compared to the optical wavelengths involved, then so

will be the internal distances (Rx � Rm), and thus in many circumstances—even

in the complete lack of wavevector matching (�k ¼ 0)—the phase factor in

Eq. (91) can often be taken as effectively unity. However, we retain its explicit

form for generality.

The rate of second-harmonic generation by the entire system of particles is

expressible as a sum of two terms �1 and �2 as follows, where angular brackets

denote the orientational average

�1 ¼ M&hjb00
ðmÞijk�e

0
i ej ekj2i ð92Þ

�2 ¼ ðZM �MÞ&jhb00
ðmÞijk�e

0
i ej ekij2 ð93Þ

in which the latter, which represents a coherent addition of SHG amplitudes from

every optical center in the system, corresponds exactly to the earlier Eq. (59)

(which thereby serves to define the parameter �). When the particles are

randomly oriented, �2 vanishes as a result of the isotropic average, as is well

known. However, since the corresponding average is conducted over the modulus

square in the ‘‘incoherent’’ term, �1, this contribution persists, representing an

addition of the harmonic intensities produced by different particles. As

determined by Eq. (91), these contributions in fact accommodate a coherent
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addition of signals from the various optical centers that each particle contains.

The analysis of angularly resolved measurements of the second harmonic [85]

led to experimental verification of this interpretation, as shown in Fig. 10.

The coherent addition of second-harmonic signals, which can occur only in

regions of local order, leads to intriguing possibilities for materials strongly

pumped by an ultrafast source [86]. Here, the key feature is the relationship

between the hyperpolarizabilities of optical centers in their ground and

electronic excited states, under resonance conditions. To investigate this further,

we return to the two-level model of the previous section, considering the role of

other electronic levels subsequently. The hyperpolarizability for the upper state

u is readily obtained using the transformed interaction Hamiltonian:

H00int ¼ �e�1
0 bl� luuc 	 e? ð94Þ

Here the algorithm given in (89) is modified by interchanging the labels 0 and u:

l00 ! l00 � luu ¼ �d; luu ! 0 ð95Þ

This has the effect of reversing the sign of d and also the energy difference Eu0,

wherever each appears, although the Hermiticity of the dipole operator ensures

that for nondegenerate states the transition dipole suffers no change:

d ¼ luu � l00 ! �d ¼ �ðluu � l00Þ
Eu0 ¼ Eu � E0 ! �Eu0 ¼ E0u

l0u ¼ lu0

0 22
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Figure 10. Intensity (arbitrary units) of optical SHG from a purple membrane suspension.

Experimental data (Allcock et al. 1996) obtained with Nd:YAG laser pumping are shown by the open

circles and the solid line represents the theoretical fit.
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It then transpires that the upper-level hyperpolarizability tensor stands in the

following simple relationship to its ground-state counterpart [86]:

b00
ijkð�2o;o;oÞ ¼ �buu

ijkð�2o;o;oÞ ð96Þ

Similar features arise when third-harmonic generation is considered. In passing

we note that a variable-sign convention for the damping would lead to behavior

of an analytical form substantially different from that discussed below.

Consider a system in which, prior to the input of the pump radiation

responsible for the detected harmonic output, irradiation with a beam of the

appropriate resonant frequency produces a significant population of the elec-

tronic level u among the optical centers in each particle or domain. With first-

order decay kinetics, the probability that a certain center x is excited at time t is

given by

P Rx; t
� �

¼ P0 Rx
� �

exp �k t � t0ð Þð Þ ð97Þ

where k is the decay constant and P0 is the residual probability that the upper

level is excited at time t0, the time at which the pump radiation for SHG detection

is applied. Particular interest expressed below focuses on the case of ultrafast

excitation of sufficient intensity to elicit the onset of saturation, where P0 > 0:5.

While both excited- and ground-state species are present, the two processes

described above contribute to an effective unit hyperpolarizability given by

bðmÞijk ¼
Xn

x

½ð1� PðRx; tÞÞb00
ðxÞlmv þ PðRx; tÞbuu

ðxÞlmv�l
x
ill

x
jmknxei�k	ðRx�RmÞ

¼
Xn

x

½ð1� 2PðRx; tÞÞb00
ðxÞlmv�l

x
ill

x
jml

x
kvei�k	ðRx�RmÞ ð98Þ

leading to a harmonic intensity that features a characteristic decay and recovery

in its temporal profile. Let us assume for simplicity that the probability of initial

excitation is identical for all optical centers, removing the Rx dependence of

PðRx; tÞ. Let us also denote by b the key factor

b ¼
Xn

x

b00
ðxÞlmvl

x
ill

x
jml

x
kv�e
0
iejekei�k	ðRx�RmÞ ð99Þ

which will in general be a complex quantity by virtue of the damping involved in

the hyperpolarizability tensor. For simplicity, assuming continuous-wave pump
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radiation, the intensity of harmonic emission thus acquires a time dependence of

the biexponential form

I ! jbj2½1� 4 expð�kt0Þ þ 4expð�2kt0Þ� ð100Þ

where t0 ¼ t � t0 and P0 Rx
� �

� 1, giving a trace of the form GðtÞ ¼ 1� 4

expð�ktÞ þ 4 expð�2ktÞ as shown in Fig. 11.

To observe this exact time dependence in the second harmonic would require

the satisfaction of certain criteria detailed below. Nonetheless, these conditions

are largely a reflection of the simple two-level model employed, and in the

following discussion we show that the major features of the result should be

manifest in real systems of considerably greater electronic complexity. First, we

note that with the two-level model a necessary condition for observation of a

fall, and recovery of the harmonic output as illustrated in Fig. 11 is the creation

of a transient population inversion by the preceding excitation laser pulse. The

minimum output intensity (which will, in fact, be nonzero) would then be

obtained at the time where the fractional population of the upper level u has

fallen to exactly 0.5, matching the ground-state population in a two-level

system. In practice, achieving initial population inversion is likely to require

that the excitation pulse populate a higher level h that rapidly decays to u, where

the latter plays the role of a population bottleneck as in conventional laser

action. Although this emphasizes the fact that a two-level representation of the

0.0
0.0

0.5

1.0

1.5

1.0 2.0 3.0 4.0

G
(t

)

t

Figure 11. Schematic of the harmonic temporal profile G(t) from Eq. (100) in arbitrary units.
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electronic energy levels is necessarily incomplete—as, indeed, it generally is—

the inclusion of h and any other levels in the electronic structure of the optical

centers will not significantly affect the results, provided those levels are no

longer significantly populated once the pump for harmonic emission is applied.

The harmonic signal will still be dominated by generation in centers in either

the 0 or u state. Other electronic levels will certainly play the role of virtual

states in the hyperpolarizabilities of each of those levels, adding a background

contribution to each.

The effect of involving other levels in the calculations is assessed as follows,

by considering what modifications to the preceding theory ensue. Both the

tensors b00 and buu certainly acquire additional (and different) background contri

butions, also complex, such that

Xn

x

b00
ðxÞlmn l

x
ill

x
jml

x
kn�e
0
i ej ek ei�k	ðRx�RmÞ ! bþ ~b

Xn

x

buu
ðxÞlmn l

x
il l

x
jm l

x
kn�e
0
i ej ek ei�k	ðRx�RmÞ ! �bþ �b

9>>>>=
>>>>;

ð101Þ

This results in a harmonic intensity with a more intricate time dependence of the

form

I ! jðbþ ~bÞ � ð2bþ ~b� �bÞ exp �kt0ð Þj2 ð102Þ

which no longer factorises out the temporal profile Gðt0Þ. Separating the real and

imaginary parts of each parameter b ¼ b0 þ ib00, ~b ¼ ~b0 þ i~b00, �b ¼ �b0 þ i�b00; we

thus have

I ! ½ðb0 þ ~b0Þ � ð2b0 þ ~b0 � �b0Þ expð�kt0Þ�2 þ ½ðb00 þ ~b00Þ
� ð2b00 þ ~b00�b00Þ expð�kt0Þ�2 ð103Þ

Of the two intensity contributions in Eq. (103) the first, associated with the real

parts of the hyperpolarizabilities, will generally dominate, leading to a minimum

in the harmonic emission at a time given by

t0min ! k�1 ln
2b0 þ ~b0 � �b0

b0 þ ~b0

 !
ð104Þ

However, the effect of the second contribution in Eq. (103), corresponding to the

imaginary parts of the hyperpolarizabilities and due to damping effects, will be to

obviate complete cancellation of the harmonic signal at this time—only by a
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spurious accident of hyperpolarizability values could the two harmonic intensity

contributions of Eq. (103) be simultaneously zero. The characteristic fall and

recovery of the harmonic remains.

In the light of the results presented above, it is useful to recall that the

behavior we have identified, in the second-harmonic profile of a system of

randomly oriented small particles or ordered domains in complex materials,

owes its origin to the local quantum coherence between harmonic emission

processes at different optical centers within each particle or domain. This

behavior is dominated by features associated with a two-level optical response,

but, provided the pump or harmonic frequencies are close to resonance, broadly

similar effects are anticipated in systems of considerably greater electronic

complexity. The effects of damping, which have to be included during operation

close to resonance, and also the effects (as virtual states) of higher electronic

levels, are to produce a background emission that prevents the harmonic from

falling quite to zero during the probe pulse throughput. The characteristic signal

recovery nonetheless remains a key feature, and its detailed form reflects the

correct (constant sign) convention for effecting the optical damping. In this

sense, observations might provide ground for experimental verification of the

signing. Determination of the biexponential form of the harmonic profile will

faithfully register the dynamics of excited-state decay.

The result has structural as well as kinetic implications. The local coherence,

responsible for the partial cancellation of the harmonic signal after a chara-

cteristic delay time, is entirely dependent on a structural rigidity within each

particle. This need not mean that all the optical centers are identically aligned,

but that they do not rotate significantly with respect to each other (at least over

the timescale for the harmonic measurements). The extent of recovery in the

harmonic signal serves to register the extent of local coherence, and hence in

many systems the localization of structural order. In any less than completely

rigid system, it might be possible to assess the degree of local flexibility from

the extent of harmonic recovery.

XIV. SIX-WAVE SECOND HARMONIC GENERATION

A spate of papers since the mid-1990s have reported theoretical and experi-

mental studies of second-harmonic generation mediated by six-wave mixing

(SWM), reflecting the new availability of laser sources with sufficient power and

stability to make such observations possible [87–95]. Here we review the theory

underlying the six-wave mechanisms for the evolution of a coherent second-

harmonic signal in media where it is normally forbidden. As we shall see, the

process oþ oþ oþ o! 2oþ 2o is invariably permitted, irrespective of local

or bulk symmetry. We show how the initial results can be neatly adapted to model

real molecular systems. We conclude by exhibiting the experimentally verified
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form of a time-delayed harmonic that emerges if a pump probe system of beams

is employed, which once again is a manifestation of quantum-optical interference.

To calculate the rate, we first construct a matrix element using the general

equation (41) and substitute into the Golden Rule, Eq. (51). The detailed

structure of the nonlinear polarizability að6ÞSWMð�2o;�2o;o;o;o;oÞ, which the

process entails, is obtained using the state-sequence diagram of Fig. 12; in all

there are 15ð¼ 6!=4!2!Þ pathways linking the initial and final states to be taken

into consideration, representing all topologically distinct orderings of the six

electric dipole interactions involved. Again we might have used the time-

ordered diagrams as an alternative—both, of course, lead to identical tensor

expressions—but the concise representation of the state-sequencing is now

clearly evident. For the explicit representation of the somewhat unwieldy

resulting expressions, it is convenient to employ a more compact notation than

we have used for lower-order polarisabilities. Here we follow Naguleswaran and

Stedman [96], and neatly express að6ÞSWMð�o0;�o0;o;o;o;oÞ as

að6ÞSWMð�o0;�o0;o;o;o;oÞ¼
X
p

X
r;s;t;u;v

fðm0v
pð6Þm

vu
pð5Þm

ut
pð4Þm

ts
pð3Þm

sr
pð2Þm

r0
pð1ÞÞ

½f~Er 0 þ �hZpð1Þopð1Þgf~Es 0 þ �hðZpð1Þopð1Þ þ Zpð2Þopð2ÞÞ
� f~Et0 þ �hðZpð1Þopð1Þ þ Zpð2Þopð2Þ þ Zpð3Þopð3ÞÞg
� f~Eu0 þ �hðZpð1Þopð1Þ þ Zpð2Þopð2Þ þ Zpð3Þopð3Þ

þ Zpð4Þopð4ÞÞg � f~Ev0 þ �hðZpð1Þopð1Þ

þ Zpð2Þopð2Þ þ Zpð3Þopð3Þ þ Zpð4Þopð4ÞZpð5Þopð5ÞÞg��1

ð105Þ

where the sign of the photon label ZpðnÞ ¼ þ1 or �1 for emission or absorption,

respectively. The sum over p leads to 30 unique permutations, allowing for

4k,2k′

4k

3k,2k′

3k,k′

3k

2k,k′

2k

2k k

2k,2k′

k,2k′

2k′

k′

k,k′

Figure 12. The state-sequence diagram representing SWM.
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reversal of the time orderings of the signal photons, as is necessary for harmonics

produced with differing wavevectors or polarizations. As an example of the

energy denominator for a particular time ordering, consider the term for which

pð1Þ ¼ n; pð2Þ ¼ m; pð3Þ ¼ l; pð4Þ ¼ k;pð5Þ ¼ j, andpð6Þ ¼ i. An energy deno-

minator of the following form emerges

½ð~Er 0��hoÞð~Es 0�2�hoÞð~Et0�2�hoþ �ho0Þð~Eu0 � 3�hoþ �ho0Þrð~Ev0 � 4�hoþ �ho0Þ�

corresponding to the following temporal ordering: absorptions n and m (o),

emission l (o0), absorptions k and j (o) and finally emission i (o0).
It is worth drawing attention to the presence, and means of dealing with, the

secular resonances that arise in high orders of optical nonlinearity. These

features represent the fact that the quantum amplitudes for such processes can

subsume the matrix elements for lower-order processes, apparently leading to

spurious infinities. The various time orderings of the SWM interaction described

here clearly include some that factor as a product of two sequential SHG time

orderings, and it repays effort to examine in more detail their structure in the

SWM polarizability tensor. Consider a situation where the molecular interme-

diate state jti is represented by the molecular ground state j0i in the sum over t.

When this occurs, certain energy denominators, such as Eti, can suffer a

complete cancellation of the radiation terms to uncover an expression of the

form E00 � i�0 ¼ �i�0; see, for example, Table III, which lists the energy

denominators. As the ground-state lifetime, represented by ��1
0 , is considered

infinite, a divergent signal is suggested. In order to circumvent these secular

resonances, the molecular polarizability has to be reconstructed in such a way as

to remove the possibility of infinite response [79]. We have reported the details

for such a reconstruction explicitly for the SWM polarizability tensor [91]. The

procedure is straightforward and entails properly taking the limit as the virtual

state energy approaches that of the ground state.

Returning to the general form of the SWM interaction, it is next necessary to

form the radiation tensor using the general expression of Eq. (52). Explicitly

incorporating the degree of coherence of the input beam and assuming that there

are initially no photons in the harmonic mode, the following equation, where Io
is the intensity of the pump radiation, is obtained for the rate of six-wave mixing:

�SWM ¼
4p�h
e6

0

� �
Io

2cno

� �4
no þ 2

3

� �8X
k0;l0

n0go
0

2cVno0

� �2
no0 þ 2

3

� �4

gð4Þo ZN

� jhað6Þð�2o;�2o;o;o;o;oÞ 	 �e0�e0eeeeij2dð2�hok0 � 4�hokÞ ð106Þ

The result embodies the coherence factor ZN to account for the phase-matching

characteristics of the process, leading to the familiar sinc2 behavior, which
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demonstrates that the SWM process manifests coherence for emission in the

forward z direction. This is nonetheless subject to optimal wavevector matching:

�k ¼ 4k� k0 � 0.

The question of whether SWM can generate an observable signal in fluids

requires further analysis, and calls for explicit evaluation of the ensemble

average of the tensor product in Eq. (106) as

hað6Þ 	 �e0�e0eeeei ¼ að6ÞðlmÞðvoprÞ�e
0
i�e
0
j ek el em enh‘il‘jm‘kn‘lo‘mp‘nri ð107Þ

Applying a sixth-rank rotational average [97] immediately reveals that the rate

equation entails an overall multiplier of the scalar product (e 	 e), which vanishes

for circular polarizations. The six-wave interaction is thus subject to the same

embargo on conversion of a circularly polarized pump as the conventional SHG

process [98]. In the case of a plane-polarized pump, ensemble averaging leads to

the result;

�SWM ¼
4p�ho2

k

e6
0

� �
Io

2cno

� �4 n2
ok
þ 2

3

� �8

gð4Þo

X
k0;l0

n0go
0
k0

2Vcno0k0

� �2 n2
o0

k0
þ 2

3

 !4

� jf6ðe 	 e0Þ2 � 2gað6ÞðlmÞðlmnnÞ � f2ðe 	 e
0Þ2 � 3gað6ÞðllÞðmmnnÞj

2ZN

� dð2�ho0k0 � 4�hokÞ ð108Þ

following simplication exploiting the inherent permutational symmetry in the

first two and last four indices of the nonlinear response tensor. Equation (108)

illustrates the fact that there need not be full retention of polarization in the

emitted harmonic; indeed, the extent of depolarization r is given by

r ¼ �SWMðe0 ? eÞ
�SWMðe0 keÞ ¼

f3allðmmnnÞ � 2almðlmnnÞg
fallðmmnnÞ þ 4almðlmnnÞg

����
����
2

ð109Þ

whose value must lie in the range 0 # r # 9. If full permutational (Kleinman)

index symmetry applies to the components of the nonlinear susceptibility tensor,

Eq. (109) reduces to the result r ¼ 1
25

. Departure of the degree of depolarization

from this value thus registers invalidity of the Kleinman assumption.

Before further developing the theory to a form more directly suited to a

different kind of experimental application, we outline why SWM is a mecha-

nism allowed for all possible molecular symmetries. By inspection of the index

symmetry in the radiation tensor, it is clear that a harmonic signal can derive

only from that part of the sixth-rank polarizability að6ÞSWM that is symmetric with

respect to permutation among the four indices related to the absorbed pump
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photons, and also between the two indices relating to the two harmonic photons.

Under the operations of the full rotation group SO(3), the group-theoretic

representation of the tensor emerges as 2Dð0þÞ � Dð1þÞ � 4Dð2þÞ � 2Dð3þÞþ
3Dð4þÞ � Dð5þÞ � Dð6þÞ, accommodating a maximum of 90 independent compo-

nents in the case of a molecule lacking any intrinsic symmetry. If full (Kleinman)

index symmetry is assumed, the representation becomes Dð0þÞ � Dð2þÞ � Dð6þÞ,
accounting for a total of just 28 independent components. In either case the

crucial facet of the result is its incorporation of a Dð0þÞ component, which

invariably spans the totally symmetric representation of any point or space

groups. Thus six-wave second-harmonic production entails a nonlinear

polarizability that never vanishes for symmetry reasons; for example, it permits

the process to be supported in centrosymmetric molecules or solids. Naturally,

the six-wave process will be insignificant in media where the normal SHG

process is allowed, since it derives from three orders higher perturbation

theory.

Since the early 1990s, a number of studies on the generation of optically

induced harmonics from isotropic suspensions of organic dyes have led to the

characterization of SWM mechanisms (see, e.g., Refs. 88–90 and 92–95).

However, it has generally been found experimentally expedient to induce the

harmonic by seeding. This requires that samples be pumped not only with the

four beams at the fundamental but also with a probe beam at the harmonic

frequency, allowing for stimulated emission to enhance the interaction. The

experimental setup is usually based on three distinct beams impinging on the

sample. Of these, two are counterpropagating fundamental beams of frequency

o, with the third at a frequency of 2o stimulating the second harmonic into a

specific mode satisfying the wavevector matching conditions. A schematic

experimental geometry is illustrated in Fig. 13. Under such conditions the

number of time-ordered diagrams is increased from the original 15 to 180 (¼6!/

2!2!), indicating a reduction in the extent of permutational symmetry among

both the product radiation and molecular polarizability indices.

Referring to the experimental geometry of Fig. 13, we can assign the

radiation modes r1 ¼ ðk1; l1Þ; r2 ¼ ðk2l2Þ; r3 ¼ ðk3; l3Þ, and r4 ¼ ðk4; l4Þ;
recognizing that k1 ¼ �k2 and k3 ¼ �k4. Using the coherent representation for

a SWM process, [Eq. (106)], and recognizing the appropriate index symmetry,

we can write

�SWM ¼
2p
e6

0

� �
I1

2cno

� �2
I2

2cno

� �2
no þ 2

3

� �8

g
ð2Þ
1 g

ð2Þ
2

I3

2cn2o

� �
n2o þ 2

3

� �2

�
X
k4;l4

n0gok4

2cVno4

� �
no4
þ 2

3

� �2

ZNdð�hok4
þ 2�ho� 4�hoÞ

� jað6Þ
ijðklÞðmnÞð�ok4

;�2o;o;o;o;oÞ�eð4Þi �e
ð3Þ
j e
ð2Þ
k e
ð2Þ
l eð1Þm eð1Þn j

2 ð110Þ
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Note the dependence of the rate on the intensity of the stimulating harmonic or

seeding beam at 2o. On converting the sum over k4 to an integral, utilizing our

knowledge of the delta function and converting to a harmonic intensity, we have

ISWM ¼
1

e6
0ð2pÞ

2

I1

2cno

� �2
I2

2cno

� �2
no þ 2

3

� �8

g
ð2Þ
1 g

ð2Þ
2

I3

2c

� �
ð2oÞ4

2c3

 !
n2o þ 2

3

� �4

ZN

�
X
l4

jað6Þ
ijðklÞðmnÞð�2o;�2o;o;o;o;oÞ�eð4Þi �e

ð3Þ
j e
ð2Þ
k e
ð2Þ
l eð1Þm eð1Þn j

2 ð111Þ

Z
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ω

2ω

ω
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Sample

r2r4

r3

r1

BS

A

F
P

Detector

Figure 13. Schematic of a typical SWM experimental set-up. Counter-propagating fundamental

beams of mode r1 ¼ ðk1;l1Þ and r2 ¼ ðk2; l2Þ, each contribute two photons while the stimulating

beam r3 ¼ ðk3; l3 and signal beam r4 ¼ ðk4; l4Þ each gain one photon. The laboratory axes are

illustrated and other symbols represent: A-Aperture, BS-beam splitter, C-chopper, F-bandpass filter,

P-polarizer, M-mirror and WP-wave plate.
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where g
ð2Þ
i is the second-order degree of coherence of the ith mode. Notice how

the artificial dependence on the quantization volume disappears. The interesting

features of the optical response are embedded in the molecular polarizability/

radiation tensor product. For an isotropic sample, we again have to perform a

rotational average taken inside the modulus squared. Index symmetry exists only

in the k; l and m; n index pairs, as indicated by parentheses. Therefore, on

applying a sixth-rank average, we calculate the response as

hISWMi ¼
k

105

X6

i¼6

Ei Ai ð112Þ

Here k represents all the molecule-independent and polarization-independent

constants gathered into a single parameter; the Ei values represent the unique

radiation polarization products

E1 ¼ ðeð1Þ 	 eð1ÞÞðeð2Þ 	 eð2ÞÞð�eð3Þ 	 �eð4ÞÞ E3 ¼ ðeð1Þ 	 eð2ÞÞðeð1Þ 	 �eð3ÞÞðeð2Þ 	 �eð4ÞÞ

E2 ¼ ðeð1Þ 	 eð1ÞÞðeð2Þ 	 �eð3ÞÞðeð2Þ 	 �eð4ÞÞ E4 ¼ ðeð1Þ 	 eð2ÞÞðeð1Þ 	 �eð4ÞÞðeð2Þ 	 �eð3ÞÞ

E3 ¼ ðeð1Þ 	 eð2ÞÞðeð1Þ 	 eð2ÞÞð�eð3Þ 	 �eð4ÞÞ E5 ¼ ðeð1Þ 	 �eð3ÞÞðeð1Þ 	 �eð4ÞÞðeð2Þ 	 eð2ÞÞ
ð113Þ

and the Ai values represent the molecular response, in the following format:

A1

A2

A3

A4

A5

A6

2
6666664

3
7777775
¼

8 �5 �5 4 4 5

�5 11 4 �6 �6 4

�5 4 11 �6 �6 4

4 �6 �6 16 2 �6

4 �6 �6 1 16 �6

�5 4 4 �6 �6 11

2
6666664

3
7777775

a1

a2

a3

a4

a5

a6

2
6666664

3
7777775

ð114Þ

Here each independent molecular polarizability invariant is explicitly defined as

a1 ¼ að6Þ
iiðjjÞðkkÞ a4 ¼ að6Þ

ijðikÞðjkÞ

a2 ¼ að6Þ
ijðijÞðkkÞ a5 ¼ að6Þ

jiðikÞðjkÞ ð115Þ

a3 ¼ a
ð6Þ
iiðjkÞðjkÞ a6 ¼ a

ð6Þ
jkðiiÞðjkÞ

In this format we can easily derive expressions for the signal intensity of the

harmonic for arbitrary electric field polarizations. By assuming a laboratory-

frame coordinate axis as illustrated in the experimental setup shown in Fig. 13,
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the polarization vectors for the four fields, characterized by their azimuth and

ellipticity as defined in Fig. 14, are concisely expressed as

eð1Þ ¼ ðcos y1 cosZ1 � isiny1 sinZ1Þx̂þ ðsiny1 cosZ1 þ icosy1 sinZ1Þŷ
eð2Þ ¼ ðcosy2 cosZ2 � i sin y2 sinZ2Þx̂� ðsin y2 cosZ2 þ i cosy2 sinZ2Þŷ
eð3Þ ¼ ðcosy3 cosZ3 � isiny3 sinZ3Þx̂� ðsiny3 cosZ3 þ icosy3 sinZ3Þŷ

� ðcosdŷ� sin dẑÞ
eð4Þ ¼ ðcosy4 cosZ4 � isiny4 sinZ4Þx̂þ ðsiny4 cosZ4 þ icosy4Z4Þŷ

� ðcosdŷ� sindẑÞ
ð116Þ

By placing a plane polarizer in the signal collection geometry ðZ4 ¼ 0Þ and

collecting the signal separately along x̂ðy4 ¼ 0Þ and ŷðy4 ¼ p=2Þ directions, we

are free to select any particular set of polarizations for the applied fields. As an

example of the many controlled polarization plots possible, consider the applied

X

Y

e(i
 
)

θi

ηi

b

a

Figure 14. General representation for an arbitrarily polarized light beam, with polarization

vector eðiÞ as represented by Eq. (116). The definition of the azimuth yi and ellipticity Zi ¼ tan�1(b/

a) is as illustrated with respect to the X- and Y-axis with the Z-axis pointing into the plane of the

paper.
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fields all linearly polarized along the x̂ axis except for beam eð1Þ, which makes

an angle y1 to the others. The signal intensity then reduces from Eq. (112) to

hIðx̂Þ�pol
SWM i ¼ K

105
jðA1 þ A2Þ þ ðA3 þ A4 þ A5 þ A6Þcos2y1j2 ð117Þ

hIðŷ�pol
SWM i ¼

K

105

1

2
ðA5 þ A6Þsin2y1 cosd

����
����
2

ð118Þ

where d is the angle at which the seeding and signal fields propagate with respect

to the laboratory (x̂; ŷ) plane. The calculated signal for collection along the x̂ and

ŷ axis can be plotted as a function of angle y1. This is illustrated in Fig. 15. By

performing a number of similarly designed experiments, detailed information on

the six-wave mixing polarizability tensor can be extracted.

The seeding of molecular harmonics is in some sense a throwback to

experiments where second harmonics were first observed in condensed-matter

isotropic systems. For example, in glass fibers it was observed that a harmonic

was produced after long exposures to fundamental frequency laser light

[99,100]. It was later found that, by introduction of a low intensity seeding beam

at the harmonic frequency, the onset of the harmonic in the glass was essentially

instantaneous [101]. It was at this time that the proposal of a SWM mechanism
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Figure 15. The solid and dotted lines represent theoretically calculated traces for SWM signals

collected under the polarization conditions pertaining to Eqs. (117) and (118), respectively. The solid

trace is normalized and the dotted line scaled by a factor of 4. The results are calculated assuming all

molecular parameters A1 � A6 yield equal contributions.
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was first made [102,103]. However, it is necessary to accommodate additional

features that are observed in the generation of harmonics from suspensions of

organic dyes that absorb at the harmonic frequency. In such media the temporal

behavior of the harmonic evolution is generally considered consistent with some

degree of molecular alignment as a result of the optical perturbations to the

environment [104]. Such perturbations would necessarily be physically distinct

from the process of harmonic production, although engendered by the same

optical input beams. This represents a move away from the instantaneous SWM

mechanism, allowed for all molecular symmetries, focusing instead on time-

dependent molecular orientational symmetry breaking. Here we illustrate how,

with a resonant seeding harmonic, the concept of a molecular population diffrac-

tion grating can be employed as an alternative and more readily comprehensible

means of eliciting the physics of harmonic evolution. This is a quantum optical

effect that does not require the invocation of light-induced orientation. Its

foundation is based on a selective absorption process that is a direct result of a

molecular ensemble initially having an isotropic array of molecules.

The first task then is to show that, in the presence of the two writing beams r2

and r3, the created population grating is of just the correct periodicity to

efficiently generate phase-matched second-harmonic photons from the probe

beam r1. As a result, the r4 signal photons emerge at the second-harmonic

frequency and propagate in the direction exactly opposite that of seeding beam

r3, according to the dictates of wavevector matching. We shall suppose that the

seeding pulses from modes r2 and r3 are coincident with the sample at time

t ¼ 0, and then at t ¼ t the pulse from the probe beam r1 arrives. The sample is

absorbing at the harmonic frequency, and so transition to the excited state is

expected. Nonetheless, there are two ways to accomplish this in the presence of

the two differing input frequencies: (1) two-photon absorption of photons solely

from the fundamental beam and (2) single-photon absorption of photons from

the harmonic beam. (This principle was first considered in connection with ioni-

zation processes by Baranova and Zel’dovich, [105].) We thus need to consider

two time orderings as shown in Fig. 16. The matrix element (quantum pro-

bability amplitude) for the transition in a particular molecule x is thus written as

M
ðxÞ
fi ¼ M

ðx;aÞ
fi þM

ðx;bÞ
fi ð119Þ

where M
ðx;aÞ
fi is the matrix element for graph (a) of Fig. 16 and M

ðx;bÞ
fi is that for

graph (b). By rigorously following the procedures for forming the matrix

elements as outlined in earlier sections, these quantities can be written as

M
ðx;aÞ
fi ¼ �hngok

2ce0Vnok

� �
n2
ok
þ 2

3

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq2ihðq2 � 1Þi

p
a10
ðijÞðo;oÞe

ð2Þ
i e
ð2Þ
j ei 2k2	Rx

ð120Þ
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and

M
ðx;bÞ
fi ¼ i

�hn0go
0
k0k
0

2cVe0nok0

� �1=2 n2
o0

k0
þ 2

3

 ! ffiffiffiffiffiffiffiffiffi
hq3i

p
m10

i e
ð3Þ
i eik3	Rx ð121Þ

In these equations the position of the molecule is described by the vector Rx;
the wavevectors of the two beams of modes r2 and r3 are k2 and k3 respectively,

with hq2i and hq3i the corresponding mean photon numbers (mode occupancies);

and eðnÞ is a unit vector describing the polarization state of mode rn. In deriving

Eqs. (120) and (121), the state vectors describing the radiation fields have been

assumed to be coherent laser states, and so, for example, hq2i ¼ hað2Þjn̂jað2Þi;
where jað2Þi is the coherent state representing mode 2 and n̂ is the number

operator; a similar expression may be written for hq3i . Also, the molecular

parameters apparent in Eqs. (120) and (121) are the components of the transition

dipole, m10
i , and the index-symmetric second-order molecular transition tensor,

a10
ðijÞðo;oÞ.

The rate at which the excited state is populated is once again given by

recourse to the Golden Rule [Eq. (51)] and clearly three contributions are

apparent:

� ¼ 2p
�h
jMðxÞfi j

2rð1ÞF ¼ �1 þ �2 þ �3 ð122Þ

r2

r2

r3

r

e1

e0

e1

e0

(a) (b)

Figure 16. The time-ordered diagrams associated with the formation of an appropriate

molecular grating for SHG. The two writing beams r2 and r3 populate the upper electronic state via

two- and single-photon absorption respectively.
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where

�1 ¼
2prð1ÞF

�h

�hngok

2ce0Vnok

� �2 n2
ok
þ 2

3

� �4

hq2ihðq2 � 1Þijað10Þ
ðijÞ e

ð2Þ
i e
ð2Þ
j j

2 ð123Þ

�2 ¼
2prð1ÞF

�h

)
� i

�hngok

2ce0Vnok

� �
n2
ok
þ 2

3

� �2
�hn0go

0
k0

2ce0Vno0
k0

 !1=2 n2
o0

k0
þ 2

3

 !
ð124Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq3ihq2ihðq2 � 1Þi

p
a10
ðijÞ�m

10
k e
ð2Þ
i e
ð2Þ
j �e
ð3Þ
k eið2k2�k3Þ	Rx þ c:c

*

and

�3 ¼
2prð1ÞF

�h

�hn0go
0
k0

2ce0Vno0
k0

 !
n2
ok
þ 2

3

� �2

hq3ijm10
i e
ð3Þ
i j

2 ð125Þ

As the transition is to a particular molecular electronic manifold, we have

utilized the convenient density of states representation in the expressions. We see

that the rate at which the exited state is populated depends on the position of the

molecule, through �2—and also on the molecular orientation, through the matrix

elements. It is this �2 term that produces the grating within the sample. We note

here that the periodicity of the grating, determined by eið2k2�k3Þ	Rx � e�ið2k1þk3Þ	Rx,

is exactly that required for phase-matched second-harmonic generation from the

probe beam, where the signal is created in precisely the opposite direction to the

harmonic pump beam.

Thus far we have a position-dependent rate �ðRxÞ at which the upper state is

populated during application of the two writing beams. If we take the effective

time for which the beams are applied as �t, the probability that molecule x is

excited immediately after the pulses have passed is PðRxÞ ¼ �ðRxÞ�t. The

probe pulse arrives after a delay of tð>�tÞ seconds, during which time the

molecule, if excited, may relax. We suppose that it relaxes to the ground state

via a simple exponential decay. At time t the probability that the molecule is

excited is hence

PðRx; tÞ ¼ �ðRxÞ�t e�k10ðt��tÞ ð126Þ

where k10 is the decay constant. It is useful to assume that the molecules remain

clamped in between light pulses, so that we can ignore any movement (rotational

or translational) that may occur during these finite periods. This physically

reasonable assumption is primarily made for calculational expediency; it may be
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dispensed with, but only at the cost of substantially increased complexity [93].

This means that the probe pulse encounters the associated population distribution

in the sample and the harmonic is then produced from it. Again two possibilities

arise, as illustrated in Fig. 17 (in which only the dominant of three contributory

time orderings is shown). Writing as M
0ðx;aÞ
fi and M

0ðx;bÞ
fi the quantum-optical

matrix elements for these component processes, the effective matrix element for

harmonic production will be

M
0ðxÞ
fi ¼ 1� PðRx; tÞ

� �
M
0ðx;aÞ
fi þ PðRx; tÞM0ðx;bÞfi ð127Þ

reflecting a statistical weighting of the appropriate quantum amplitudes. For a

two-level system, Eq. (127) is exact, and follows from use of the completeness

relation for the molecular states. The two components involved in the harmonic

generation process are, in fact, identical in terms of the photonics, differing only

in their molecular mediation, and so we have

M
0ðx;aÞ
fi ¼ �i

�hngok

2ce0Vnok

� �
n2
ok
þ 2

3

� �2
�hn0go

0
k0

2ce0Vno0
k0

 !1=2 n2
o0

k0
þ 2

3

 !

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq1iðhq1i � 1Þ

p
b00

iðjkÞ�e
ð4Þ
i e
ð1Þ
j e
ð1Þ
k eið�2k2þk3Þ	Rx ð128Þ

and

M
0ðx;bÞ
fi ¼ �i

�hngok

2ce0Vnok

� �
n2
ok
þ 2

3

� �2
�hn0go

0
k0

2ce0Vno0
k0

 !1=2 n2
o0

k0
þ 2

3

 !

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq1iðhq1i � 1Þ

p
b11

ið jkÞ�e
ð4Þ
i e
ð1Þ
j e
ð1Þ
k eið�2k2þk3Þ	Rx ð129Þ
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Figure 17. Representative time-ordered diagrams illustrating the harmonic formation from

molecules in (a) the ground electronic state e0 and (b) the excited state e1.
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where hq1i is the mean number of photons in mode r1. The index-symmetric

hyperpolarizbilities are exactly as those given in previous sections (where the

upper level was designated u). They are distinguished by the fact that the har-

monic stems from the labeled states 0 and 1, respectively; as before, the repeated

superscripts indicate that the molecules return to their initial state following the

interaction. As shown in the last section, a two-level model would require that the

hyperpolarizability of the upper level be precisely minus that of the ground state,

as in Eq. (96). In the SWM systems of experimental interest, the two-level model

is too restrictive; however, it can certainly be anticipated that the upper- and

lower-level hyperpolarizabilities will substantially differ, a feature that proves

crucial for the following analysis.

To continue, we now compile the total matrix element for SHG from the

ensemble through

M0fi ¼ �i
�hngok

2ce0Vnok

� �
n2
ok
þ 2

3

� �2
�hn0go

0
k0

2ce0Vno0
k0

 !1=2 n2
o0

k0
þ 2

3

 !

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq1iðhq1i � 1Þ

p
�e
ð4Þ
i e
ð1Þ
j e
ð1Þ
k

X
x

fb00
iðjkÞ þ PðRx; tÞ�biðjkÞg eið�2k2þk3Þ	Rx

ð130Þ
where the difference in the hyperpolarizabilities between the upper and lower

states has been written

�bið jkÞ ¼ b11
ið jkÞ � b00

ið jkÞ ð131Þ

The rate of production of SHG from the ensemble given by the Golden Rule is

R ¼ 2prð2ÞF

�h

X
x

M
0ðxÞ
fi

�����
�����
2

where rð2ÞF is the density of states for the second (reading) process. Taking an

orientational average and effecting the usual split into incoherent (single site)

and coherent (multi-site interference) terms, we have

hRi ¼ 2prð2ÞF

�h

X
x

jM0ðxÞfi j
2 þ

X
x6¼x0

M
0ðxÞ
fi

�M
0ðx0Þ
fi

* +

The dominant contribution to SHG is hence the coherent term

Rcoh ¼
2prð2ÞF

�h

X
x 6¼x0
hM0ðxÞfi ih �M

0ðx0Þ
fi i ð132Þ

where we have assumed that differing molecules in the solution are

orientationally uncorrelated, as is the case for the majority of pairs in the
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system. For any one particular molecule, one can simply employ Eq. (130),

excluding the sum over x. Referring back to that equation and effecting the

orientational average for individual molecules leads to disappearance of the first

term within the parenthesis, as is usual for SHG in isotropic media. The second

term, however, contains ‘‘hidden’’ orientational factors through PðRx; tÞ, as a

result of which the average is nonzero. Using Eq. (126) we thus have

h�ðRxÞ�t e�k10ðt��tÞ�bið jkÞi ¼ hð�1 þ �2 þ �3Þ�biðjkÞi�t e�k10ðt��tÞ ð133Þ

Of the three contributory terms, it is �2 that is responsible for the observed

signal, as it is the only term to exhibit the necessary phase matching when inser-

ted into Eq. (130). We thus ignore the other two terms in (133). The assumption is

justified by experiments where no SHG signal is observed if either of the writing

beams r2 or r3 is blocked [106]. Using the �2 term in Eq. (133), we now find

h�ðRxÞ�t e�k10ðt��tÞ�biðjkÞi ¼ i
2prð1ÞF

�h

�hngok

2ce0Vnok

� �
n2
ok
þ 2

3

� �2
�hn0go

0
k0

2ce0Vno0
k0

 !1=2

�
n2
o0

k0
þ 2

3

 !
hq3ihq2iðhq2i � 1Þ½ �1=2

� hfa10
ðlmÞ�m

10
n e
ð2Þ
l eð2Þm eð3Þn eið2k2�k3Þ	Rx þ c:c:g

��biðjkÞi�t e�k10ðt��tÞ

with the exponential explicitly exhibiting the phase-matching (and the complex

conjugate term accounting for the fact that SHG can be produced from a funda-

mental beam propagating in the opposite direction, as also observed experi-

mentally). The phase-matched, orientationally averaged matrix element is hence

hM0ðxÞfi i ¼
prð1ÞF

�h

�hngok

2ce0Vnok

� �2 n2
ok
þ 2

3

� �4
�hn0go

0
k0

2ce0Vno0
k0

 !
n2
o0

k0
þ 2

3

 !2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq3ihq2iðhq2i � 1Þhq1iðhq1i � 1Þ

p
� ha10

ðlmÞ�m
10
n �biðjkÞie

ð2Þ
l eð2Þm �eð3Þn �e

ð4Þ
i e
ð1Þ
j e
ð1Þ
k �t e�k10ðt��tÞ ð134Þ

which is necessarily position-independent, so that the phase-matching double

sum in Eq. (132) can be evaluated for the ensemble of N molecules as

NðN � 1Þ � N 2 for large N. The resulting rate of SHG production is

Rcoh¼
2p3ðrð1ÞF Þ

2rð2ÞF

�h3
ðN �tÞ2 �hngok

2ce0Vnok

� �4 n2
ok
þ 2

3

� �8
�hn0go

0
k0

2ce0Vno0
k0

 !2 n2
o0

k0
þ 2

3

 !4

� hq3ihq2iðhq2i � 1Þhq1iðhq1i � 1Þ
� jha10

ðlmÞ�m
10
n �biðjkÞie

ð2Þ
l eð2Þm �eð3Þn �e

ð4Þ
i e
ð1Þ
j e
ð1Þ
k j

2
e�2k10ðt��tÞ ð135Þ
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Casting the result in terms of the mean intensities of the beams, with o0k0 � 2ok,

the final expression for coherent SHG from the grating may be written as

I
ð2oÞ
sig ¼

ðrð1ÞF Þ
2

k0ð Þgð2Þ1 g
ð2Þ
2 ðN �tÞ2

256�h2c5e6
0

ðIðoÞ1 I
ðoÞ
2 Þ

2
I
ð2oÞ
3

� jha10
ðlmÞ�m

10
n �biðjkÞie

ð2Þ
l eð2Þm �eð3Þn �e

ð4Þ
i e
ð1Þ
j e
ð1Þ
k j

2
e�2k10ðt��tÞ ð136Þ

where I
ðoÞ
n is the mean intensity of the nth beam of frequency o and g

ð2Þ
n is its

degree of second-order coherence. Equation (136) thus exhibits the correct

dependence on the intensities of the three input beams (quadratic with respect to

the two fundamental beams and linear in the harmonic writing beam) and also

the sample density (I
ð2oÞ
sig / N2). Dynamically this equation yields a simple

exponential decay due to relaxation of the molecules from the excited to ground

state; the timescale for the decay is therefore governed by the intrinsic fluore-

scence lifetime.

The polarization dependence of Eq. (136) is exactly that found previously for

the case of coincident pulses, represented herein as Eq. (111). It is therefore

interesting to compare the two results and their respective dependences on the

molecular tensor components. Evaluating the sixth-rank average for Eq. (136),

we find

hIð2oÞsig i ¼
ðrð1ÞF Þ

2ðk0Þ3g
ð2Þ
1 g

ð2Þ
2 ðN�tÞ2

256�h2c5e6
0

ðIðoÞ1 I
ðoÞ
2 Þ

2
I
ð2oÞ
3

1

105

X6

i¼1

EiA
0
1

�����
�����
2

e�2k10ðt��tÞ

ð137Þ

where the modified linear matrix A0 now contains a molecular response through

A01
A02
A03
A04
A05
A06

2
666666664

3
777777775
¼

8 �5 �5 4 4 5

�5 11 4 �6 �6 4

�5 4 11 �6 �6 4

4 �6 �6 16 2 �6

4 �6 �6 2 16 �6

�5 4 4 �6 �6 11

2
666666664

3
777777775

�m10
g a10
ðbbÞ�bgðaaÞ

�m10
b a10
ðbgÞ�bgðaaÞ

�m10
g a10
ðabÞ�bgðabÞ

�m10
b a10
ðagÞ�bgðabÞ

�m10
g a10
ðagÞ�bbðabÞ

�m10
a a10
ðggÞ�bbðabÞ

2
66666666666664

3
77777777777775

ð138Þ

The linear matrix E is exactly that as previously defined, in Eq. (113). The

polarization characteristics are similar in form to those of the coincident-pulse

case. Hence, although one would not expect them to be exactly the same because
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of their different dependence on molecular properties, polarization analysis is

unlikely to unambiguously differentiate the contributory mechanisms. The latest

analysis shows experimental results exactly in agreement with this theory [93].

XV. CONCLUSION

In this review we have described some of the advances in the quantum electro-

dynamical formulation of theory for molecular photonics. We have shown how

the framework described in an earlier review has now been extended to new areas

of application, and reformulated for application to real dispersive media—as

reflected in the new treatment of refractive, dissipative, and resonance properties.

With all its conceptual splendor, conventional quantum optics has not generally

been pursued at this level of detail on its dielectric host, and it is our hope that

this work will help match its precepts with quantitative accuracy. Applications of

the new theory have revealed new quantum optical features in two quite different

aspects of the familiar process of second harmonic generation, one operating

through local coherence within small particles and the other, a coherence bet-

ween the quantum amplitudes for fundamental and harmonic excitation. Where

the salient experiments have been performed, they exactly match the theoretical

predictions. The theoretical foundation we have discussed therefore shows pro-

mise for the delivery of accurate insights into other optical processes yet to be

characterized, and it should be well placed to facilitate the determination of

meaningful data from the associated experiments.
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