Longpath DOAS observations of surface BrO at Summit, Greenland

Stutz, J, Thomas, JL, Hurlock, SC, Schneider, M, von Glasow, R, Piot, M, Gorham, K, Burkhart, JF, Ziemba, L, Dibb, JE and Lefer, BL (2011) Longpath DOAS observations of surface BrO at Summit, Greenland. Atmospheric Chemistry and Physics Discussions (ACPD), 11 (2). pp. 6707-6736. ISSN 1680-7316

Full text not available from this repository.

Abstract

Reactive halogens, and in particular bromine oxide (BrO), have frequently been observed in regions with large halide reservoirs, for example during bromine catalyzed coastal polar ozone depletion events. Much less is known about the presence and impact of reactive halogens in areas without obvious halide reservoirs, such as the polar ice sheets or continental snow. We report the first LP-DOAS measurements of BrO at Summit research station in the center of the Greenland ice sheet at an altitude of 3200 m. BrO mixing ratios in May 2007 and June 2008 were typically between 1–3 pmol mol-1, with maxima of up to 5 pmol mol-1. These measurements unequivocally show that halogen chemistry is occurring in the remote Arctic, far from known bromine reservoirs, such as the ocean. During periods when FLEXPART retroplumes show that airmasses resided on the Greenland ice sheet for 3 or more days, BrO exhibits a clear diurnal variation, with peak mixing ratios of up to 3 pmol mol-1 in the morning and at night. The diurnal cycle of BrO can be explained by a changing boundary layer height combined with photochemical formation of reactive bromine driven by solar radiation at the snow surface. The shallow stable boundary in the morning and night leads to an accumulation of BrO at the surface, leading to elevated BrO despite the expected smaller release from the snowpack during these times of low solar radiation. During the day when photolytic formation of reactive bromine is expected to be highest, efficient mixing into a deeper neutral boundary layer leads to lower BrO mixing ratios than during mornings and nights. The extended period of contact with the Greenland snowpack combined with the diurnal profile of BrO, modulated by boundary layer height, suggests that photochemistry in the snow is a significant source of BrO measured at Summit during the 2008 experiment. In addition, a rapid transport event on 4 July 2008, during which marine air from the Greenland coast was rapidly transported to Summit, led to enhanced mixing ratios of BrO and a number of marine tracers. However, marine transport events are rare and most likely not the main source of bromide in surface snow at Summit. The observed levels of BrO are predicted to influence NOx chemistry as well as impact HOx partitioning. However, impact of local snow photochemistry on HOx is smaller than previously suggested for Summit.

Item Type: Article
Faculty \ School: Faculty of Science > School of Environmental Sciences
Related URLs:
Depositing User: Rosie Cullington
Date Deposited: 21 Mar 2011 11:00
Last Modified: 21 Apr 2020 16:54
URI: https://ueaeprints.uea.ac.uk/id/eprint/26747
DOI: 10.5194/acpd-11-6707-2011

Actions (login required)

View Item View Item