Mycothiol disulfide reductase: A continuous assay for slow time-dependent inhibitors

Hamilton, Chris J., Finlay, Richard M. J., Stewart, Matthew J. G. and Bonner, Alexandra (2008) Mycothiol disulfide reductase: A continuous assay for slow time-dependent inhibitors. Analytical Biochemistry, 388 (1). pp. 91-96. ISSN 1096-0309

Full text not available from this repository. (Request a copy)

Abstract

Seven ethnobotanically selected medicinal plants were screened for their antimycobacterial activity. The minimum inhibitory concentration (MIC) of four plants namely Artemisia afra, Dodonea angustifolia, Drosera capensis and Galenia africana ranged from 0.781 to 6.25 mg/mL against Mycobacterium smegmatis. G. africana showed the best activity exhibiting an MIC of 0.78 mg/mL and a minimum bactericidal concentration (MBC) of 1.56 mg/mL. The MICs of ethanol extracts of D. angustifolia and G. africana against M. tuberculosis were found to be 5.0 and 1.2 mg/mL respectively. The mammalian cytotoxicity IC50 value of the most active antimycobacterial extract, from G. africana, was found to be 101.3 µg/mL against monkey kidney Vero cells. Since the ethanol G. africana displayed the best antimycobacterial activity, it was subjected to fractionation which led to the isolation of a flavone, 5,7,2'-trihydroxyflavone. The MIC of this compound was found to be 0.031 mg/mL against M. smegmatis and 0.10 mg/mL against M. tuberculosis. This study gives some scientific basis to the traditional use of these plants for TB-related symptoms.

Item Type: Article
Uncontrolled Keywords: sdg 3 - good health and well-being ,/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_being
Faculty \ School: Faculty of Science > School of Pharmacy
UEA Research Groups: Faculty of Science > Research Groups > Medicinal Chemistry (former - to 2017)
Faculty of Science > Research Groups > Chemical Biology and Medicinal Chemistry (former - to 2021)
Depositing User: Rachel Smith
Date Deposited: 15 Mar 2011 16:34
Last Modified: 24 Oct 2022 00:54
URI: https://ueaeprints.uea.ac.uk/id/eprint/26306
DOI: 10.1016/j.ab.2009.02.015

Actions (login required)

View Item View Item