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ABSTRACT

The lack of information about future changes in extreme weather is a major constraint of Integrated Assessment Models (IAMs) of

climate change. The generation of descriptions of future climate in current IAMs is assessed. We also review recent work on scenario

development methods for weather extremes, focusing on those issues which are most relevant to the needs of IAMs. Finally, some

options for implementing scenarios of weather extremes in IAMs are considered.
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1. INTEGRATED ASSESSMENT AND CLIMATE

CHANGE

One of the essential characteristics of integrated assessment

is the simultaneous consideration of the multiple dimensions

of environmental problems such as climate change. A num-

ber of formal integrated assessment models (IAMs) for cli-

mate change have been developed over the last decade,

starting with the models IMAGE 1.0 and ESCAPE in the

early 1990s [1, 2]. These models were constructed using

modules that are reduced-form versions of more complex

models, for example of the climate system, the economy and

ecosystems. Most climate modules in IAMs generate zero

(i.e., globally-averaged; e.g., PAGE) or one (i.e., zonally-

averaged; e.g., IMAGE) dimensional descriptions of future

climate, usually at a mean (e.g., 30-year average) seasonal or

annual resolution [3–5]. Some IAMs (e.g., IMAGE 2.2 and

AIM) then generate spatially explicit, i.e., two-dimensional,

descriptions of future climate, usually by accessing stored

patterns of climate change derived from more complex

General Circulation Model (GCM) experiments [6–8].

These approaches to generating future climate descrip-

tions in IAMs, which are reviewed in Section 2, are

computationally efficient and allow multiple experiments

to be easily conducted in an integrated framework. The

climate output is then input into an ecosystem, agriculture or

health impacts module (e.g., AIM), or used directly to

estimate the economic cost of climate damage from a look-

up climate damage function (e.g., DICE). In either case, the

current lack of any information about changes in daily or

extreme weather (the focus of this review) is a major

weakness. Agriculture, for example, is likely to be as, or

more, sensitive to changes in daily weather sequences and

the occurrence of extreme weather events than to changes in

mean monthly or seasonal climate [9–11]. Potential changes

in extremes and the ensuing changes in risk are also

important for sectors such as water resources and insurance

[12, 13]. Climate damage functions that express the eco-

nomic impact of climate change as a function of global- (or

regional-) mean climate alone are likely to underestimate the

economic damage associated with extreme events such as

flooding and storms (e.g., in the UK, the October 1987

windstorm event is estimated to have cost insurers 3.1 billion

US dollars, with further economic losses of 2.7 billion US

dollars [14]). The lack of information about changes in daily

weather and extreme events also limits simulation of

adaptive processes in social institutions and environmental

systems: an important objective of the emerging third

generation of IAMs [15].

Identification and definition of the weather extremes

which should be considered in IAMs is not straightforward,

although a number of indicators of temperature (e.g., 90th
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percentile, frost severity index, heat wave duration index)

and precipitation (e.g., 90th percentile=quantile, maximum

length of wet=dry spell, magnitude of the 20 year return

period event) weather extremes have recently been recom-

mended for use in climate-change studies [12, 16]. Appro-

priate temporal and spatial scales also need to be identified

[17]. It is generally assumed that information at the daily

time scale is necessary to investigate extreme events.

However, extreme events such as drought (e.g., the 1976

multi-season drought in the UK) can usefully be defined

using monthly data and at the regional spatial scale (e.g.,

greater than 1000 km2 for the UK). Intense rainfall events

leading to flooding are more appropriately investigated at

higher resolutions (e.g., durations of 12–72 hours and spatial

scales of about 100 km2 are relevant in Scotland).

For many impact sectors it may be necessary to consider

other variables, such as wind, hail, fog, lightning and storm

surges. Joint probability events may also be important (e.g.,

wind storms with snow=rain, heavy snow followed by rapid

thaw, coastal storm surge with river flood), together with

changes in the persistence and sequence of extreme events

(e.g., sequences of long dry=hot summers) and seasonal

changes in the timing of extremes (e.g., changes in the

season of maximum frequency of occurrence). Finally, a

distinction needs to be made between meteorological

information on extremes (i.e., statistics concerning their

frequency and magnitude) and their impacts. What, for

example, is the relationship between the 99th percentile

precipitation event and the 1 in 100-year flood event? And

how might this relationship be affected by factors such as

land-use change? It should also be noted that some weather

events may be extreme in terms of their impact, although the

weather event itself is not extreme (e.g., for air quality and

building comfort, ‘non-events’ such as very low wind speed

may be important). Thus, even for single-sector climate

impacts studies, the incorporation of changes in weather

extremes is potentially complex and places additional

demands on scenario development methods compared with

changes in mean climate. In IAMs, these complexities must

be balanced against the need for computational efficiency

(see Section 4).

Recent work on scenario development methods for

weather extremes is reviewed in Section 3, focusing on

temperature and precipitation extremes and the issues which

are most relevant to the needs of integrated assessment

modelling. Ways in which these methods could be

implemented in IAMs in order to overcome one of the

shortcomings of the current generation of IAMs, i.e., the

failure to represent extreme weather events, are discussed in

Section 4, focusing on the UK and European perspectives.

Together with the growing recognition of the need to

incorporate information about changes in interannual

climate variability and the occurrence of extremes into

integrated assessments, there is also growing concern to take

into account the full range of uncertainties in scenario

construction and, at the same time, to distinguish be-

tween the inherent unpredictability of climate and climate

model deficiencies [18–29]. The IPCC Third Assessment

Report (TAR) [30, 31] and many of the references cited

above, refer to a cascade of climate prediction uncertainty

related to:

� the forcing emissions scenarios, i.e., inter-scenario

variability;

� the response of different climate models, i.e., inter-model

variability;

� different realizations of a given forcing scenario with a

given climate model, i.e., internal model variability

(which is, in part, a reflection of natural climate

variability); and,

� sub-grid scale forcings and processes.

Appropriate techniques for handling the first three sources of

uncertainty are widely recognised (see references above,

also [32–38]), although they are not yet routinely or

comprehensively applied in impacts assessments. Thus,

� uncertainties due to inter-scenario variability can be

handled by using more than one forcing scenario;

� uncertainties due to inter-model variability can be handled

by using output from more than one climate model; and,

� uncertainties due to internal model variability and thus, in

part, natural climate variability, can be handled by using

single-model ensembles (i.e., simulations performed with

the same climate models and forcing, but starting from

different initial conditions).

The application of these techniques in IAMs is reviewed in

Section 2.7, while the additional issues that arise in applying

them to extremes, together with the less-widely addressed

problem of uncertainties arising from sub-grid scale forcings

and processes, are discussed briefly in Section 3.5.

The IPCC Second Assessment Report (SAR) [39]

concluded that one of the biggest challenges facing

integrated assessment was the consideration, assessment

and incorporation of low probability=high consequence

events into IAMs. This need was re-emphasised by the Third

Assessment Report [31] which identifies events such as

‘‘abrupt’’ reorganisation of the thermohaline circulation and

the collapse of the West Antarctic ice sheet that could arise

due to non-linearities in the climate system. Reviewing

knowledge of such events is beyond the scope of this paper,

although it is noted that the DICE and ICLIPS IAMs have

been used to explore abrupt thermohaline circulation

changes [40–44]. Future integrated assessments of these

changes will benefit from ongoing research on (i) the

conditional probability of the event occurring, and (ii) the

response of the climate system to the event.

The focus of this paper is climate and extreme weather

events. Thus potential problems relating to the representa-

tion of social, economic and technological aspects, and the

associated feedbacks, are not discussed.
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2. THE TREATMENT OF CLIMATE IN IAMs

2.1. The Development of IAMs

The criterion used to determine whether a model is

‘integrated’ is subjective. The problem stems from the fact

that IAMs are supposedly all encompassing; replicating not

only the primary dynamic interactions between society and

environment, but also the secondary feedback mechanisms.

In trying to embrace all aspects of environmental change, the

developers of such models have to make decisions about the

focus of their study and how they wish to express the impacts

they are attempting to estimate, whether this be through

the reporting of physical changes in emissions, shifts in land-

use activity or mortality rates, or through cost-benefit

analysis of damages resulting from climate change [39].

This in many cases leads to certain components or modules

within the IAM – those most closely linked to the exposure

unit being studied – being more complex than those other

modules that are included in the IAM in order to close the

loop.

The origins of integrated assessment modelling lie with

the ‘‘Club of Rome’’ models developed in the 1970s. These

used a holistic approach to look at issues such as resource

depletion, population growth and environmental pollution

[45]. The late 1970s saw the development of formally-

modelled integrated assessments of energy policy. The role

of such models in environmental policy formation was

further enhanced in the early 1980s when the RAINS model

played a key part in the process that brought about a

European-wide agreement to control acid rain [46]. But,

while many environmental issues were explored using an

integrated approach, climate change impact assessment

studies carried out during the 1980s tended to be more

focused in nature, looking only at single exposure units.

The earliest integrated global climate change models

were conceived in the late 1980s, when the first model to

fully encompass energy, climate and impacts was IMAGE

1.0 [1]. At the regional level, the MINK project [47] and the

Atmospheric Stabilisation Framework (ASF) were initiated

to examine the problem of climate change in an integrated

way and looked at climate impacts on sectors such as

forestry, agriculture and water resources [39].

The early 1990s witnessed the development of several

global and regional integrated climate change models.

IMAGE reached version 2 and a European consortium

developed the ESCAPE model. As the models became more

complex, so the size and nature of the modelling effort

changed, from models such as DICE, PAGE and FUND

developed by individuals, to models such as IMAGE 2.2

developed by whole research institutes and eventually to

models such as ICLIPS developed by research networks

spanning continents. The representation of climate in these

IAMs has become more sophisticated and diverse over time.

Methods used in the current generation of IAMs are

reviewed in the next section.

2.2. Representation of Climate

in the Currently-used Second Generation of IAMs

Here, thirteen of the more established climate change IAMs

(Table 1) which illustrate the different approaches to

integrated assessment modelling are reviewed. The IAM

literature is extensive and the list of models in Table 1 is not

exhaustive. However, it encompasses all the internationally

better known IAMs. All listed IAMS are referenced in the

IPCC SAR and TAR and some have been used most recently

to investigate the impacts associated with the SRES marker

scenarios [48]. The focus here is on how they use observed

climatologies and climate model projections: summarised in

Table 2. It is immediately apparent that the type of climate

data and models utilised by each IAM is highly dependent on

its particular focus, i.e., economic costs and benefits,

biophysical impacts, policy guidance or adaptation.

The aim of the climate model component of any IAM is to

produce plausible future climates, linked to prior emissions,

in order to assess the impacts of climate change. Two

approaches are taken (Fig. 1). The first approach, used in

IAMs focusing on economic costs and benefits, is to estimate

global temperature between two time periods and the second

approach, used in IAMs focusing on biophysical impacts, is

to perturb observed baseline regional climatologies using

climate model output.

The majority of IAMs adopt the second approach, i.e.,

future climate is constructed by combining an observed

baseline climatology with future regional climate change

patterns produced by GCMs, scaled using estimates of

changes in global mean temperature generated by Simple

Climate Models (SCMs) such as COSMIC [49, 50] or

MAGICC [51]. This approach is typified by the IMAGE

model [52] in which future greenhouse gas emissions are

calculated by the energy-industry module for each economic

region as a function of energy consumption and industrial

production. These emissions are combined with emissions

released from the terrestrial biosphere to the atmosphere

which are produced by the terrestrial-environment module

(which simulates land use and land-cover dynamics for a

0.5� � 0.5�grid). The combined emissions are globally

aggregated and then input into a SCM, in this case an

upwelling-diffusion model based on MAGICC. The output

from this module is used to scale the regional climate change

pattern, which is then added to the 1961–1990 baseline

climatology.

CETA, DICE, FUND, ICAM-3, MERGE, MiniCAM and

PAGE95 all adopt the first approach, i.e., they use an

observed reference point, rather than a baseline climatology,

from which to calculate changes in atmospheric greenhouse

gas concentrations and global temperature. These models

tend to operate at the global level, using SCM output to

produce an aggregated average global change in climate.

This approach is illustrated by MERGE. Future concentra-

tions of greenhouse gases (CO2, CH4 and N2O) are simulated
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and then the change in temperature calculated relative to

2000. The global equilibrium (surface) temperature change

(DPT ) is calculated by aggregating the radiative effects

(DF) of CO2, CH4 and N2O:

DPT ¼ d�DF ð1Þ

where: d determines the equilibrium climate sensitivity

(assumed to be 0.555 �C W m2 in MERGE) and DF ¼
DFCO2

þ DFCH4
þ DFN2O.

Actual temperature change, DAT, is then calculated:

DATtþ1 	 DATt ¼ c1
�ðDPTt 	 DATtÞ ð2Þ

where: c1¼ 0.05 (representing a 20 year mean lag to reflect

the slower warming of the oceans) and DATt is the actual

temperature change in year t relative to 2000 [53].

One of the greatest challenges for IAMs is that the

climatic conditions need to be calculated online. A technique

that is commonly used to generate a large range of climate

scenarios internally is pattern-scaling. SCENGEN [54] and

COSMIC [49, 50] are widely used pattern-scaling tools.

Pattern-scaling works by standardising the climate change

pattern derived from a GCM by dividing by the global mean

warming for a particular climate change experiment, which

then expresses the climate change per �C global warming

[55–60]. The standardised pattern can then be re-scaled

using the global temperature change simulated under any

other scenario by an SCM such as MAGICC. A typical two-

stage approach for temperature is illustrated in Equations 3

and 4 [61]. �
Ti2xCO2

	 Ti1xCO2

DT2x

�
¼ DT�i ð3Þ

where:

DT2x ¼Equilibrium GCM climate sensitivity

Ti1xCO2
¼Temperature for 1�CO2 experiments at grid point i

Ti2xCO2
¼Temperature for 2�CO2 experiments at grid point i

DT�i ¼ Standardised temperature change value for grid

point i from a GCM experiment

The actual climate change scenario is then constructed by:

DT�i � MAGICCDTyear ð4Þ

where:

MAGICCDTyear¼ the global-mean temperature change for a

given year with respect to 1990.

Table 1. Model names, developers and key references for the 13 IAMs reviewed in the paper.

Model Developers Key references

Cost-benefit analysis models
CETA EPRI and Teisberg Associates, USA [4, 66, 170]
DICE Nordhaus, Yale University, USA [171]

Related models:
PRICE
RICE

FUND RSJ Tol, University of Hamburg [5, 68]
ICAM-3 Carnegie Mellon University, USA [172, 173]
MERGE 4.4 Stanford University, USA http:==www.stanford.edu=group=MERGE= [53, 67]
MiniCAM Global Change Group at Pacific Northwest

Laboratory, USA.
http:==www.grida.no=climate=ipcc=emission=

154.htm
http:==sedac.ciesin.org=mva=MCPAPER=

mcpaper.html [174, 175]
PAGE95 Judge Institute of Management Studies,

University of Cambridge, UK
[3, 85]

Biophysical-impacts models
AIM National Institute for Environmental Studies,

Japan and Kyoto University
http:==www-cger.nies.go.jp=ipcc=aim= [6]

CLIMPACTS
Related models: OzCLIM,

BDCLIM, VANDACLIM

International Global Change Institute (IGCI),
University of Waikato, New Zealand

http:==www.waikato.ac.nz=igci=
climpacts_webpage= [83]

ESCAPE Climatic Research Unit, UK and RIVM,
The Netherlands

[2, 54]

IMAGE 2.2 RIVM, The Netherlands http:==www.rivm.nl=image=home.html
[52, 176]

MIT IGSM Joint Program on the Science and Policy of
Global Change, Massachusetts Institute
of Technology, USA

http:==web.mit.edu=globalchange=www=if.html
[8, 177]

Tolerable windows approach
ICLIPS Potsdam Institute for Climate Impact

Research (PIK), Germany
http:==www.pik-potsdam.de=cp=iclips

[43, 75, 79]
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Table 2. Summary of how the 13 IAMs reviewed in the paper use observed climatologies and climate model projections.

Model Geographical

Focus of IAM

No. of Emissions Regionsa Baseline

Climatology=

Reference Data

Simple Climate Model

(SCM) Description

Description of internally

calculated climate change

(�C) variablesb

Treatment of

uncertainty

Cost-benefit analysis models

CETA Global and

2 regions

1 – Global or 2 – OECD

plus the Commonwealth

of Independent States and

Eastern Europe, Rest of

World.

Global temperature

at pre-industrial

levels.

Global 2100 model [179]

incorporating a global

warming module and

adaptation=damage cost

function representing

damage from warming.

1990–2200 at 10-yr intervals.

Global temperature change

related to temperature at

pre-industrial levels.

Sensitivity analysis of

changes to various

parameters within

the IAM. Use of

different climate

sensitivities ranging

from 1–5 �C

DICE Global 1 – Global Temperature only.

Historical time

series of annual

averages 1862–

1989 [180]

1965–2105. Box-Advection

Model. SCM calibrated

against historical

temperature series

1862–1989 [180] and

runs of 3 GCMs [181–183].

1965–2105 at 10-yr intervals.

Global temperature change.

Stochastic treatment

of uncertainty

utilising Monte

Carlo distributions

of the IAM

parameters. Use

of different climate

sensitivities.

FUND Global and

9 regions

9 – OECD-America, OECD-

Europe, OECD-Pacific,

Central and Eastern Europe

and the Former Soviet Union,

Middle East, Latin America,

South and Southeast Asia,

Centrally Planned Asia, Africa.

Observed global

annual average

temperature

time series from

1950 to 1990.

(IMAGE database:

[184]).

FUND consists of a set of

exogenous scenarios and

endogenous perturbations,

[68]

1950–2200. Global temperature

change at 1-yr intervals.

Global temperature change.

Area weighted average

regional temperature

increase is used to

approximate mean

global temperature

increase.

Stochastic treatment

of uncertainty

utilising probability

distributions of the

IAM parameters.

ICAM-3 Global and

12 regions

12 – US and Canada, Western

Europe, China and East Asia,

Eastern Europe, India and

South Asia, Southeast Asia,

North Asia, C and S Africa,

North Africa and the Middle

East, Latin America, Australia

and New Zealand, Japan.

Temperature. Model

initialised with a global

temperature anomaly

drawn from a normal

distribution with a

mean of 0.4 K and

standard deviation 0.3 K.

This is based on the IPCC

consensus that global

temperature change from

pre-industrial times to

1995 was in the range

of 0.3 to 0.5 K.

Global temperature response

to a perturbation in the

greenhouse gas radiative

forcing. A simple model

is used to achieve

temperature change

consistent with observed

energy transport from

equator to pole [185].

Local temperature

anomalies are adjusted

based on the radiative

cooling due to regional

aerosols.

1975–2100. Temperature

at 5-yr intervals. Can

be divided into an

arbitrary number of

latitudinal bands to

estimate regional

temperature change.

The regional model

uses 7 latitudinal

bands: 90–75�N;

75–50�N: 50–30�N;

30�N–0�; 0�–30�S;

30–55�S; 55–90�S.

The middle five bands

cover the 12 UN-defined

regions.

Stochastic treatment

of uncertainty

utilising probability

distributions of the

IAM parameters.

Sensitivity analysis

of changes to

various IAM

parameters.
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Table 2. (continued).

Model Geographical

Focus of IAM

No. of Emissions Regionsa Baseline

Climatology=

Reference Data

Simple Climate Model

(SCM) Description

Description of internally

calculated climate change

(�C) variablesb

Treatment of

uncertainty

MERGE 4.4 Global and

9 regions

9 – USA, OECDE (Western

Europe), Japan, CANZ

(Canada, Australia, New

Zealand), EEFSU (Eastern

Europe and the Former

Soviet Union), China, India,

MOPEC (Mexico and OPEC),

ROW (Rest of World)

Global temperature

at 2000.

The SCM is composed of

the Global 2200 emissions

model which then inputs

into the climate submodel.

The SCM therefore represents

atmospheric lifetimes of the

three main greenhouse gases

and then yields a global

change in radiative forcing

and global average

temperature change.

2000 to 2200. 2000–2050

at 10-yr intervals and

then 25-yr intervals up to

2200. Global temperature

change only.

Sensitivity analysis

of changes to

various IAM

parameters.

MiniCAM Global and

11 regions

(14 region

version

nearing

completion)

11 – USA, Canada, Western

Europe, Japan, Australia and

New Zealand, Eastern Europe

and the Former Soviet Union,

Centrally Planned Asia, Middle

East, Africa, Latin America and

Caribbean, South and East Asia.

Reference period can

be defined by the

user in MAGICC –

default is 1990.

1990 to 2095. Upwelling-

Diffusion Climate Model

(MAGICC). Emissions

calculations are made

by the ERB model for

CO2, CH4 and N2O.

Input to SCM and then

scaled to give regional

change in temperature

using SCENGE.

1990–2095 at 15-yr intervals.

Global temperature change

and sea level rise.

Use of different

climate sensitivities

ranging from

1.5–4.5 �C

PAGE95 Global and

8 regions

8 – European Union, Eastern Europe

and the Former Soviet Union, USA,

other OECD nations, Africa and the

Middle East, China and centrally

planned Asia, India and Southeast

Asia, Latin America. (These are

aggregated to form a global total

before entry into the SCM).

Global temperature

at pre-industrial

(1765) levels.

1990–2200. Reduced form

of the STUGE model

[186] updated to include

sulphates.

The output interval is user

specified between 1990 to

2200. The default is a 20-yr

interval up to 2100, and every

25-yrs from 2100 to 2200.

Annual global and regional

temperature changes.

Temperature rise computed

by relating temperature to

the difference in concentration

in the base year (1990) and the

pre-industrial concentration of

greenhouse gases to produce

the realised regional temperature

increase in each year compared

with the pre-industrial temperature

in 1765. Area weighted average

regional temperature increase is

used to approximate mean global

temperature increase.

Stochastic treatment

of uncertainty

utilising probability

distributions of the

IAM parameters.
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Biophysical-impacts models

AIM Global and

Asian-Pacific

Region

9 – USA, Western Europe, OECD and

Canada, Pacific OECD, Eastern

Europe and Former Soviet Union,

China and Central Planned Asia,

South and East Asia, Middle East,

Africa, Middle and South America

1920–1980 long-term

monthly averages.

0.5� � 0.5� grids.

Monthly Tmax, Tmin,

solar radiation &

precipitation

(extrapolated from

observed data: [187])

Greenhouse Gas Cycle

Model and Climate

Change Model (AIM=

climate).

1990–2100. Global change in

Tmean at 5-yr intervals

until 2030 and then at

2050, 2075 and 2100.

GCM resolution data

interpolated to 0.5� � 0.5�

grids. Monthly, regionalized

temperature and precipitation

changes.

Calculation of �C

using different

2�CO2 sensitivities.

Use of different

AOGCM �C

patterns including

GISS, GFDL,

HadCM2, CCC

& ECHAM2. Use

of different socio-

economic scenarios.

CLIMPACTS New Zealand 1 – Global 30-yr normal (1951–

1980). 0.05� � 0.05�

grids. Monthly

Tmax, Tmin, solar

radiation & precipi-

tation (extrapolated

from observed data).

Upwelling-Diffusion Climate

Model (MAGICC).

1990–2100 at 5-yr intervals.

0.05� � 0.05� grids. Monthly

Tmax, Tmin, solar radiation

& precipitation. Global mean

change Tmean and sea level

rise at 5-yr intervals.

Calculation of �C

using different

2�CO2 sensitivities.

Use of different

GCM �C patterns –

CSIRO4 and

GFDLQ. Use of

different socio-

economic scenarios.

ESCAPE EU 10þ15

and EU nation

states

4 – EU, Other OECD, Former Soviet

Union & Rest of World (these are

aggregated to form a global total

before entry into the SCM)

30-yr normal (1951–

1980). 0.5� � 1.0�

grids. Monthly

Tmean Tmax, Tmin

& precipitation

(extrapolated from

observed data).

Upwelling-Diffusion Climate

Model (IMAGE 1.0=

STAGGER).

1990–2100 at 5-yr intervals.

0.5� � 1.0� grids; Mean

Monthly and Seasonal

Tmax, Tmin & precipitation.

Global mean change Tmean

and sea level rise at 5-yr

intervals.

Calculation of �C

using different

2�CO2 sensitivities.

Use of different

socio-economic

scenarios. Regional

patterns of climate

change estimated

using GFDL, GISS,

Oregon State

University, Lawrence

Livermore Nat. Lab.,

UKMO & MPI

GCMs.

IMAGE 2.2 Global and

nation state

17 – Canada, USA, Central America,

Northern Africa, Western Africa,

Eastern Africa, Middle East,

South Asia, OECD Europe, Eastern

Europe, Former USSR, East Asia,

South East Asia, Japan, South America,

Southern Africa, Oceania (these are

aggregated to form a global total

before entry into the SCM)

30-yr normal (1961–

1990). 0.5� � 0.5�

grids. Monthly

Tmax, Tmin, solar

radiation & precipi-

tation (extrapolated

from observed data:

[73])

Upwelling-Diffusion Climate

Model (MAGICC).

Global mean change

Tmean and sea level rise.

1990–2100 at 5-yr intervals.

0.5� � 0.5� grids. Monthly,

regionalized temperature

and precipitation changes,

and daily temperatures

(the latter are used in the

terrestrial vegetation and

carbon modules).

Calculation of �C

using different

2�CO2 sensitivities.

Use of different �C

patterns: ECHAM4,

CGCM1, GFDL-

LR15-a, HadCM2

and CSIRO-MK2

GCMs. Use of

different socio-

economic scenarios.

Sensitivity analysis

of changes to various

IAM parameters.
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Table 2. (continued).

Model Geographical

Focus of IAM

No. of Emissions Regionsa Baseline

Climatology=

Reference Data

Simple Climate Model

(SCM) Description

Description of internally

calculated climate change

(�C) variablesb

Treatment of

uncertainty

MIT IGSM Global and

12 regions

12 – USA, Japan, European

Community, Other OECD,

Central and Eastern Europe,

Former Soviet Union, Energy-

exporting LCDs, China, India,

Dynamic Asian Economies,

Brazil, Rest of World

Climate model initialised

with greenhouse gas

concentrations of year

specified by user. Observed

climate used in Terrestrial

Ecosystem Model (TEM)

and Natural Emissions

Models (NEM).

The Intermediate Complexity

Model (ICM) is a

simplified 2D atmosphere

3D ocean model coupled

with atmospheric chemistry,

run at 20 minute time steps

integrated to monthly

resolution. Climate

variables include

temperature, cloudiness,

humidity, precipitation,

and sea level.

Monthly average zonal climate

values over land at 7.826�

latitudinal resolution. Used

to perturb observed climate

to produce future climate in

e.g., TEM or NEM. Climate

variables include temperature,

cloudiness, humidity, precipitation,

greenhouse gas and air pollution

levels, sea level. Data interpolated

to varying resolutions dependent

on model being input to e.g., TEM

0.5� � 0.5� or NEM 2.5� � 2.5� and

1� � 1�.

Sensitivity analysis

of changes to

various IAM

parameters.

Tolerable windows approach

ICLIPS Global and

11 regions

11 – Sub-Saharan Africa, Centrally

Planned Asia (mainly China),

Former Soviet Union, Middle East=

North Africa, North America, South

Asia (mainly India), Western Europe,

Eastern Europe, Latin America and

the Caribbean, Pacific OECD (Australia,

New Zealand, Japan), Other Pacific Asia.

30-yr normal (1961–90).

0.5� � 0.5� grids. Monthly

Tmax, Tmin, solar

radiation & precipitation

(extrapolated from

observed data: [73]),

i.e., same as IMAGE2.2.

Energy-balance model.

Modules for non-CO2

GHGs based on MAGICC.

Climate indicators e.g.,

global Tmean, precipitation,

cloud cover and sea level

rise can be combined with

static climate change patterns

derived from GCMs in order

to obtain an approximation of

regional change in climate

attributes.

1990–2200 at 5-yr intervals. Global

Tmean, precipitation, cloud cover

and sea level rise.

Use of different

socio-economic

scenarios e.g., SRES

A1, A2, B1, B2. Use

of different AOGCM

�C patterns –

ECHAM3GGa1

(ECHAM4=OPYC3

at T42 resolution)

and HadCM2GGaX

ensemble mean

(HadCM2

2.5� � 3.75�).

Note. aThis refers to the number of regions explicitly mentioned within emissions scenarios in the SCM. It should be noted that in many cases regional variations can still be calculated
exogenously and aggregated to form a global total before input to the SCM. However, this method is less suited to the analysis of different emissions pathways and the evaluation
of different environmental policies.
bUnless otherwise stated, future climate data for any individual meteorological variable is calculated by scaling standardised 1 or 2-dimensional future climate change fields from
a predefined GCM with the output from the SCM acting as a scaling coefficient. This change field is then added, in the case of temperature, or applied as a percentage change, in
the case of precipitation, to the observed baseline. For more information see [178].
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Fig. 1. Approaches to the representation of climate change in IAMs.
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Equation (3) shows how a standardised pattern of regional

climate change is expressed as a response per �C increase in

global temperature. Equation (4) shows how the pattern is

then combined with SCM output to generate a future climate

at a particular point in time.

Pattern-scaling allows a much wider range of forcing

scenarios and climate sensitivities to be considered than is

possible from the limited number of GCM simulations

which have been performed using a limited range of

emissions scenarios. Thus it provides a way of addressing

uncertainties due to inter-scenario and inter-model vari-

ability. Recent investigations of this technique indicate that it

is a legitimate approach, certainly so far as mean climate is

concerned [56, 58, 59]. However, disadvantages include the

underlying assumptions that the spatial pattern of change

remains constant over time and linearly related to global-

mean temperature change [62, 63] and that the climate

response to all greenhouse gases is identical [57, 61], and the

applicability of this method to regional climate model

output, to statistical downscaling and to weather extremes

has not been investigated (see Section 3.3).

IAMs have traditionally been divided into two generic

categories based on their application to policy issues [39]

and which are also reflected in their representation of

climate. The first category (see Cost-Benefit Analysis

models in Table 3) includes models developed to carry out

‘policy optimisation’ analyses which explore the economic

costs and benefits of implementing controls on greenhouse

gas emissions and policies such as the carbon tax [64]. The

second category (see Biophysical-impacts models in Table

3) includes models developed to carry out ‘policy evalua-

tion’ exercises, e.g., to look at physical changes in the

ecosystem and land-use changes in response to the

introduction of regional or global climate change policies

such as the Kyoto Protocol. The representation of climate in

these two categories is reviewed in Sections 2.3 and 2.4

respectively. More recently, a third category has been

developed in which methods such as the Tolerable Windows

Approach (see Section 2.5) and Safe Landing Analysis have

been applied. The representation of climate in this category

of IAMs is based on the same approach as used in

Biophysical-impacts models and is reviewed in Section

2.5. IAMs can also be categorised as to whether or not they

can be used to analyse adaptation strategies (see Table 3), as

discussed in Section 2.6.

Within these four main categories, IAMs can also be

classified according to their spatial characteristics, i.e.,

global, regional and grid box (Table 3). Care is needed,

however, in identifying the effective spatial scale of climate

information. The baseline climatologies used in many

Biophysical-impacts models, for example, have a spatial

resolution of 0.5� by 0.5�, while the GCM-derived

perturbations have a much coarser resolution, 2.5� latitude

by 3.75� longitude in the case of HadCM2 (Table 2). Simply

interpolating the GCM output to the higher resolution of the

baseline climatology cannot add any physically-based

information about sub-grid scale processes. Thus the

effective spatial scale of climate change information is

limited by the GCM resolution.

2.3. Cost-Benefit Analysis IAMs for Policy
Optimisation

IAMs such as CETA, DICE, FUND, ICAM-3, MERGE and

MiniCAM are primarily concerned with quantifying the

economic costs and benefits associated with climate change,

Table 3. Categorisation (4) of the 13 IAMs reviewed in the paper.? means status is not clear from the published literature.

Spatial coverage Used to analyse adaptation strategies

Global Regional Grid box Global Regional Grid box

Cost-benefit analysis
CETA 4 ?
DICE 4

FUND 4 4 4 4

ICAM-3 4 4 4

MERGE 4.4 4 4

MiniCAM 4 4

PAGE95 4 4 4

Biophysical-impacts
AIM 4 4 4 4 4 ?
CLIMPACTS 4 4

ESCAPE 4 4 4 4

IMAGE 2.2 4 4 4 4 4 ?
MIT 4 4 4

Tolerable windows approach
ICLIPS 4 4 4 4 4 4
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i.e., with the cost of environmental degradation versus the

cost of adaptation and mitigation strategies, in order to

evaluate possible policy options (see the cost-benefit

analysis models in Fig. 1 and Tables 1 and 2). These IAMs

generally consist of economic, climate and damage modules

[65]. They deal with measures of time-dependent global

climate change and provide a global assessment of damage,

usually as a function of the change in global-mean

temperature. Thus observed baseline or two-dimensional

gridded climate data sets are not explicitly referenced or

manipulated in such IAMs (but may be implicitly included

in construction of the damage functions). The global climate

change estimates are derived from predefined emissions

scenarios (such as the IPCC’s IS92 and SRES scenarios, or

those of the Energy Modelling Forum [5]) or from scenarios

created by the IAM. Some of these models, such as FUND,

use the global temperature change defined by GCMs, while

others, such as DICE, MERGE and MiniCAM, use output

from SCMs such as global temperature and sea level change.

One of the key features and strengths of such models is

their ability to incorporate some stakeholder perceptions of

climate change, i.e., those based on monetary proxies such

as ‘willingness-to-pay’ for mitigation strategies. Perceptions

which cannot be treated in monetary terms cannot, however,

be incorporated. The form of damage functions used in

IAMs is well documented in the literature [3–5, 64, 66, 67].

MERGE [67], for example, categorises damage as ‘market’

(easily quantified economically, e.g., damages to agriculture,

forestry and property) and ‘non-market’ (e.g., damages to

biodiversity, human well being and environmental quality).

Market damages are assumed to be a quadratic function of

temperature change, while non-market damages are mod-

elled using an S-shaped function of regional income and

are based on the willingness-to-pay of each of the nine

world regions in order to avoid a specified change in

temperature.

The other strength of these models is their low

computational demand. This means that they can be run on

a PC in a matter of hours, and are thus able to provide many

estimates of the global and regional burden of climate

change, allowing the rapid appraisal of various policy

options such as the Kyoto Protocol [5]. However, their use of

zero-dimensional (i.e., global) climate data highlights two

major weaknesses. First, there is the assumption that the

regional weightings based on the pattern of climate change,

applied when assimilating the global mean changes into

region-specific damage functions, will remain constant

through time. For example, Tol [68] assumes that for the

OECD-America and OECD-Pacific regions, the monetised

loss of species (estimated at US$0.3 billion and US$0.2

billion per year for a temperature increase of 0.04 �C per

annum, respectively) will remain constant with time.

Second, the lack of any dynamic climate simulation model

means that feedback mechanisms in the climate system

cannot be incorporated.

2.4. Biophysical-Impact Based IAMs

for Policy Evaluation

Biophysical-impact based IAMs (see Fig. 1 and Tables 1 and

2) simulate quantitative and regionally explicit biophysical

impacts rather than focusing on policy optimisation and

economic damages [65]. They tend to have a regional focus,

but some can be aggregated to the global level e.g., AIM,

CLIMPACTS, ESCAPE, IMAGE and MIT IGSM [8]. Of

this group of models, IMAGE 2.2 is probably the most

sophisticated. Even those without the ability to aggregate to

the global level, such as CLIMPACTS, retain a global

element, normally concerning (i) the conversion of regional

greenhouse gas emissions to global climate change, and (ii)

economic development and population growth. The majority

of these models determine future climates relative to 30-year

baseline climatologies (typically 1961–1990). However, the

global part of such IAMs tends to be relatively simple. As

Table 2 indicates, this sort of model (like some of the

globally-aggregated economic models) uses an upwelling-

diffusion model, such as MAGICC [51], to calculate global

changes in temperature. These are combined with pattern-

scaling (e.g., SCENGEN [57]) to produce regional time-

dependent climate change scenarios.

The MIT IGSM model also uses a reference baseline

climate from which to create future climates but, unlike

other Biophysical-impact based models, obtains spatially-

resolved scenarios from an Intermediate Complexity Model

(ICM) rather than from the combination of SCM and GCM

described above. The ICM consists of a coupled atmospheric

chemistry=2D-climate model and a 3D-ocean model. It has

24 latitude grid points (7.826� resolution) and nine vertical

levels, whilst the ocean model is a simplified version of the

GISS Ocean Circulation Model. The coupled model is run at

20-minute intervals but output is aggregated to monthly

averages. Comparisons with GCM output indicate that the

ICM is capable of replicating present-day climate, together

with the climate change patterns produced by GCMs using

different emissions scenarios. Emissions are output from the

Emissions Prediction and Policy Analysis (EPPA) model and

input into the ICM. Output from the latter model is

interpolated and used to adjust the observed climatology

employed, for example, in the Terrestrial-Ecosystem Model

at a 0.5� � 0.5� resolution, which estimates the terrestrial

carbon flux, and the Natural Emissions Models at a 1� � 1�

resolution.

A potential advantage of the Biophysical-impact based

IAMs is that they are able to produce estimates of the

regional impacts of climate change at a relatively high

spatial resolution. Thus they are able to provide information

about regional variations in potential impacts and highlight

sub-national scale vulnerabilities, while also assimilating the

influence of global climate change forcing from outside the

immediate region(s) of interest. However, the reliability of

such high-resolution information should be carefully
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assessed by users, and the effective scale of the climate

change information identified (see Section 2.2).

Biophysical-impacts based IAMs also have a number of

shortcomings, which partly stem from their relatively poorly

defined economic modules. For example, stakeholder per-

ceptions cannot be included. In addition, it is not generally

possible to incorporate large-scale feedbacks due to a

mismatch in spatial coverage. For example, while it is

possible to simulate a decrease in biological diversity at the

regional level (for example, New Zealand in the case of

CLIMPACTS), the global increase in carbon release through

enhanced soil respiration is not calculated and does not,

therefore, enhance global anthropogenic climate change (a

feedback quantified by Cox et al. [69] and White et al. [70]).

Thus, although these models incorporate global climate

change, the regional impacts, such as additional carbon

emissions, are not transferred back to the global scale.

Biophysical-impact based IAMs are, however, able to

incorporate some feedback mechanisms. The IMAGE model

[71], for example, incorporates not only population growth

and energy=emission modules but also dynamic ecosystem

and climate modules, which allow the incorporation of some

complex feedback mechanisms, such as carbon cycle-

ecosystem die-back due to climate change, which leads to

increased levels of CO2 in the atmosphere, which in turn leads

to an accelerated rate of climate change [72]. IMAGE

provides an insight into changes in land cover over time due to

climatic, demographic and economic factors and links these

explicitly with CO2 and other greenhouse gas fluxes [39].

The IMAGE model has a global coverage, dividing the

world into 19 political entities (see Table 2), 17 of which

have their own emissions information which can be specified

in the climate module. The other two regions are Antarctica

and Greenland, neither of which contribute significantly in

terms of emissions. The climate module itself is an

upwelling-diffusion model, based on MAGICC [51], which

provides global changes in mean temperature and precipita-

tion. This is combined with a pattern-scaling routine, which

takes into account the role of sulphate aerosols in the

atmosphere, to generate two-dimensional, time-dependent

climate change futures. The standardised patterns used for

scaling come from several coupled atmosphere-ocean

GCMs. The default pattern, for example, is constructed

using HadCM2 output. MAGICC is driven by standard

emissions scenarios such as those published in the IPCC

SRES, however, carbon emissions at the regional level can

be modified within IMAGE by the user if required.

While socio-economic input data (such as emissions,

gross domestic product and population growth) and impact

analyses are reported for 17 world regions in IMAGE, the

climate data (observed and future projections) used in the

agricultural and dynamic vegetation modules are handled at

the gridbox level. The size of the gridbox is determined by

the resolution of the observed baseline climatology:

currently 0.5� � 0.5� [73].

An IAM with the complexity of IMAGE has a number of

advantages. The first is its diverse applications. It can be

used to assess the potential economic costs and benefits of

mitigation and adaptation policies [74] and can also be used

to quantify the potential impacts of climate change on

various exposure units, such as the risk to human health from

the spread of disease, the loss of natural habitats, and

changes in yields of the world’s major crops. However, it still

relies on the use of an SCM and pattern-scaling techniques to

produce climate scenarios. Furthermore, whilst it is able to

calculate climate and the resulting impacts at the individual

gridbox level, the spatial scale is still relatively coarse (i.e.,

0.5� � 0.5� for the baseline climatology and, typically, 2.5�

by 3.75� for the climate change information). Gridboxes are

categorised by the dominant characteristics of the box which

means that broad generalisations regarding factors such as

land cover and soil type are made and no account is taken of

variability within a box. In addition, while mean daily

meteorological data are used in the terrestrial vegetation and

carbon modules of IMAGE, there is no way of assessing the

impacts resulting from changes in variability (on interannual

and decadal timescales, for example). Future monthly mean

daily temperatures are derived from an observed monthly

mean daily temperature series to which the monthly mean

temperature increase is simply added every five years. Thus

changes in the frequency of extreme weather events can only

occur due to changes in mean climate and not due to changes

in variability.

2.5. Policy Guidance IAMs

ICLIPS represents this third group of models and incorpo-

rates elements of both policy-optimisation and policy-

evaluation frameworks whilst also enabling stakeholder

perception, in the form of willingness-to-pay, to be included

in the analysis [75–77]. It starts with the explicit specifica-

tion of ‘‘guardrails,’’ i.e., climate impacts, mitigation costs

and burden sharing schemes that are perceived as intolerable

by stakeholders. Its aims are to identify critical thresholds of

climate change by exploring an extended range of changes in

climate and CO2 concentrations and to determine emission

paths that are compatible with the predefined guardrails. It

produces regionalised impacts projections specified in

biophysical units (such as the percentage of protected areas

(e.g., nature reserves) that are in danger of becoming

unviable). Climate impact response functions are developed

which incorporate elements from both policy evaluation and

optimisation models, such as the regional specificity of

policy evaluation models and the damage functions used in

policy optimisation models [78, 79]. Extensions of the

ICLIPS model have been used to explore the conditions

under which a major change in the thermohaline circulation

could occur [44].

At the core of ICLIPS is the Tolerable Windows

Approach (TWA). This works by allowing policymakers
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and other social actors to specify their willingness to accept

and pay for a certain amount of climate change in their

region. These decisions are made with the assistance of

climate impact response functions [80]. Tolerable climate

windows are then produced which incorporate the accep-

table level of climate change previously identified, for

example, temperature change, precipitation change and sea

level rise. Climate constraints are then input to a greenhouse

gas emissions-climate model to produce sets of emissions

paths that keep the climate within the tolerable climate

window.

2.6. IAMs and Adaptation

As well as being used to assess impacts and mitigation

strategies, IAMs can also be used to analyse adaptation

strategies. Out of the thirteen IAMs reviewed here, seven

(AIM, ESCAPE, FUND, ICAM-3, ICLIPS, IMAGE and

PAGE95) incorporate some element of adaptation (Table 3).

Of these, three deal with adaptation exogenously (ESCAPE,

ICLIPS and FUND). In all seven models, adaptation is only

very crudely incorporated: impacts are only identified when

increases in temperature exceed a time-variant tolerance level.

In the case of PAGE95, for example, the tolerance level

can be raised by the implementation of, or investment in,

adaptive policies, meaning that the magnitude and rate of

climate change required to impact on an exposure unit are

increased. Such policies include the building of sea walls

and the development of drought resistant crops. AIM uses

global and regional climatic impacts generated by the

AIM=impact module to assess the effectiveness of adapta-

tion strategies in terms of their modification of the direct

impacts. AIM can, for example, assess the costs and benefits

associated with the implementation of policy measures such

as short-term mitigation strategies and long-term adaptation

policies (for example, increased use of renewable energy

and energy-saving technologies and reforestation) [81].

ESCAPE feeds adaptive strategies into the ‘climate and

sea level change to impacts’ module. The strategies include,

for example, the adaptation of wheat crops to temperature

change through genetic modification by raising the threshold

temperature for damage.

The adaptive measures mentioned above are all imple-

mented at the governmental or institutional level. IAMs do

not currently take into account local adaptive strategies, nor

do they simulate the role of extreme weather events in

stimulating adaptive behaviour.

2.7. IAMs and Uncertainties

The processes represented in all IAM modules are subject to

uncertainties due to errors or unknown quantities, for

example, errors in data collection, gaps in knowledge and

the inability to model complex processes sufficiently

accurately [65]. The treatment of uncertainty varies from

IAM to IAM, based on the structure and form of the

individual model – there is no standard method. However,

the main methods for dealing with uncertainty include:

(1) using a set of future emissions scenarios which are

selected to span a subjectively-determined range of

representative futures and also by using different climate

sensitivities (thus addressing inter-scenario and inter-

model variability in climate scenarios, see Section 1);

(2) sensitivity analysis to examine the sensitivity of outputs

to changes in key parameters or models or policies

(selected subjectively); and,

(3) specifying probability distributions for many inputs and

running the models many times, sampling over the input

values in some efficient way. This enables the investi-

gator to determine both how uncertain an input value is,

and how sensitive an output value is to that uncertainty.

Biophysical-impact models such as AIM, CLIMPACTS,

ESCAPE and IMAGE, together with the ICLIPS model, take

some account of uncertainty by using different climate

sensitivities, different GCM climate change patterns and

different socio-economic scenarios. AIM uses several

GCMs including GISS, GFDL, HadCM2 and CCC [82].

CLIMPACTS uses only two, drawn from a set of six GCMs

found to accurately replicate observed climate over the

Australian-New Zealand region. The two selected models

are CISIRO4 and GFDLQ, both of which have been shown

to have superior performance over the region of interest [83].

ESCAPE also uses output from a range of GCMs and

examines climate change impacts for different climate

sensitivities. However, uncertainties are not passed on to

other modules. IMAGE 2.2 evaluates uncertainty due to

climate sensitivity by simulating global temperature changes

for 2.5 �C (median IPCC sensitivity value), 1.5 �C (low

sensitivity) and 4.5 �C (high sensitivity). Uncertainty in

regional climate change patterns is evaluated by using

several different GCMs (i.e., ECHAM4, CGCM1, GFDL-

LR15-a, HadCM2 and CSIRO-MK2). ICLIPS takes account

of different climate sensitivities and uses a number of

different emissions scenarios and GCMs [78, 79].

The MIT IGSM carries out a series of runs, varying key

parameters and assumptions by finite amounts from their

initial values. On the climate side, variations can be made in

the EPPA and the coupled 2D chemistry=climate models.

The climate model has recently been used to derive a joint

probability distribution function of three uncertain proper-

ties of the climate system: (i) climate sensitivity; (ii) rate of

heat uptake by the ocean; and, (iii) strength of anthropogenic

aerosol forcing [84]. For climate sensitivity, for example, the

5 to 95% confidence intervals are estimated to be 1.4 to

7.7� K [84].

PAGE95 and FUND use probability distributions to

explore uncertainty. PAGE95 [3, 85], for example, uses a

triangular probability distribution to represent uncertainty in

each input parameter. Between 50 and 108 ‘‘uncertain’’
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parameters are used, depending on the regions and impact

sectors being investigated. For a full assessment, PAGE95

carries out 250 calculations for variables representing global

warming over time, damages, adaptive costs and preventative

costs. Latin hypercube sampling [86–88] is used to select a

different set of values for the ‘‘uncertain’’ input parameters in

each of the 250 calculations in order to build up an

approximate probability distribution. Tol [5, 68] quantifies

the uncertainties in FUND based on expert knowledge, i.e.,

from qualitative interpretation of the appropriate literature and

discussions with relevant experts. He has identified appro-

priate distribution types for different sensitivities, for

example, climate sensitivity is based on a gamma distribution,

as is sea level sensitivity, whilst hurricane and storm sen-

sitivity are based on a normal distribution and the atmospheric

lifetime of methane is based on a triangular distribution. In the

case of FUND, the best guesses are equal to the modal values

of the distribution (the most likely value). The advantages of

this method include a better estimate of mean outputs, a

probability distribution of outputs can be produced and the

relative importance of inputs identified.

The FUND model is unusual in that it not only calculates

annual change in global mean temperature, but also

incorporates some climate extremes such as sea level rise,

hurricane activity, winter precipitation and winter storm

activity [5, 64, 68]. However, the frequency and intensity of

these events are determined solely as a linear function of

global mean temperature (details of how this is done are not

given in the published literature).

None of the current IAMs take into account the influence

of natural climate variability, including interannual and

decadal variability. Only two of the IAMs listed in Table 2

(DICE and FUND) use time-series data for their baseline

climatology although, in both cases, only annual averages

are used. All the other IAMs use annual, seasonal or monthly

long-term averages (typically 30-year normals). Wider use

of time-series data would allow some representation of

natural climate variability. The use of ensembles from the

GCM experiments used to derive climate change patterns

would also be of benefit, because intra-ensemble variability

is a direct reflection of natural climate variability (Section 1).

Thus the inability of IAMs to incorporate extreme

weather events remains a major weakness, although

opportunities for representing scenarios of extremes are

beginning to emerge, as discussed in the next section.

3. EVALUATION OF SCENARIO DEVELOPMENT

METHODS FOR WEATHER EXTREMES

AND THEIR POTENTIAL FOR USE IN IAMs

3.1. Recent Work on Scenario Development
Methods for Extremes

Relatively few studies have focused specifically on the

construction of scenarios of extremes rather than mean

climate, in part, because of the problems associated with the

reliability and availability of high spatial and temporal

resolution climate model output [89, 90]. Initial studies,

particularly of precipitation, have tended to focus more on

changes in interannual variability [23, 91–93] or changes in

distributions rather than specific extreme events. Gregory

and Mitchell [94], for example, examined changes in the

parameters characterising daily temperature and precipita-

tion simulated by the Hadley Centre UKHI GCM, while

Hennessy et al. [95] investigated changes in precipitation

frequency distributions and in the relative contributions of

convective and non-convective precipitation mechanisms in

the UKHI and CSIRO9 GCMs. Wetherald and Manabe [96]

focused on changes in soil moisture (particularly as an

indicator of summer dryness) simulated in four GFDL GCM

experiments.

With the greater availability of daily output from GCMs,

this output has begun to be used directly to construct scenarios

of specific extremes. A number of these studies are sum-

marised in Table 4, focusing on temperature and precipitation

extremes. Some of them use time slices which are relatively

short for the analysis of extremes (10 or 20 years) and some are

based on equilibrium rather than the newer generation of

transient, coupled atmosphere-ocean GCMs.

Most recently, a few studies have used output from regional

climate models (RCMs) to construct scenarios of extremes

[97–102]. Durman et al. [100], for example, focus on the

occurrence of intense precipitation events over Europe and the

UK defined using two different thresholds (15 mm per day and

the upper 1% percentile calculated from the model control

run). A comparison is made of future scenarios (for 2080–

2100) constructed from Hadley Centre HadCM2 GCM and

RCM output in order to determine the added value of using

high-resolution model output [100]. Jones and Reid [101] also

use the HadCM2 RCM to construct future scenarios of

extreme precipitation for the UK, in this case focusing on the

occurrence of the top 10% quantile events (calculated using

the method of Osborn et al. [103]) and 5, 10, 20 and 50 year

return period events. This RCM was also used by Booij [102]

to construct scenarios of return period precipitation events for

the Meuse catchment in western Europe and to compare these

with HIRHAM4 RCM and three GCM-based scenarios. The

most recent generation of the Hadley Centre RCM, HadRM3,

was used to construct the UKCIP02 scenarios for the UK [60]

which provide some information about changes in extreme

events (e.g., ‘‘intense’’ precipitation days and ‘‘extremely’’

warm days).

RCMs allow the dynamical downscaling of GCM output

to the higher spatial resolutions which are more appropriate

for the construction of scenarios of extremes. Statistical

downscaling provides a less computer-intensive method of

downscaling [104–106], but has not been widely used to

investigate changes in extremes. Wagner [107] used a

probability model based on thresholds to show that changes

in temperature extremes are more sensitive to changes in
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variability than mean climate (using output from the

ECHAM GCM and daily temperature data for Berlin). A

similar conclusion was reached using a first order auto-

regressive Markov Chain model [108]. Although statistical

downscaling has rarely been used specifically to construct

scenarios of extremes (exceptions are Brandsma and

Buishand [109] with respect to precipitation and Kysel�yy
[110] with respect to temperature), a number of studies do

include analyses of relevant indicators, particularly as part of

the validation of the methodology (Table 5).

The IPCC TAR gives greater consideration to extreme

events than previous assessments and cites many of the

references identified above. The most concise summary of

observed and projected changes in extreme events is

provided by Table 1 from the Working Group 1 Summary

for Policymakers. It provides an assessment of confidence in

the observed and projected changes based on observational

and modelling studies, as well as the physical plausibility of

future projections across all commonly-used emissions

scenarios, based on expert judgement. Higher maximum

temperatures and more hot days over nearly all land areas,

together with higher minimum temperatures, fewer cold

days and frost days over nearly all land areas, for example,

are considered ‘very likely’ (i.e., 90–99% chance) during the

21st century. More intense precipitation events are also

projected to be ‘very likely’ over many areas, while

increased summer continental drying and the associated

risk of drought are considered ‘likely’ (i.e., 66–90% chance)

over most mid-latitude continental interiors.

While reflecting the advances that have made in the study

of observed and projected changes in extremes since the

SAR, the TAR stresses the continuing problems and

Table 4. Summary of recent studies which use GCM output directly to construct scenarios of temperature and precipitation extremes.

Study Extremes Region GCM

Booij [102] Precipitation: 10, 20,
50, 100 year return periods

Meuse, western
Europe

CGCM1, HadCM3,
CSIRO9
20=30 year time slices

Dai et al. [188] Frequency and persistence
of ‘hot’ days (> 80th percentile)
Storm activity

Global, USA NCAR CSM
Coupled model
2 scenarios
20 year time slices

Delworth et al. [189] Steadman heat index (based on
monthly temperature and
atmospheric moisture)

Global GFDL
Coupled model
20 simulations
30 year time slices

Huth et al. [190] Heat waves=dry spells Czech Republic ECHAM3
Equilibrium model
30 year time slices

Kharin and Zwiers [89] Temperature, precipitation,
wind: 20 year return periods,
thresholds, cooling & heating
degree days

Global, Canada CGCM1
Coupled model
20 ensembles
21 year time slices

Kothavala [191] Precipitation: return periods,
percentiles and Palmer Drought
Severity Index (PDSI)

Midwest USA CCM1-OZ
Equilibrium model
10 year time slices

Kothavala [192] PDSI (based on monthly temperature
and precipitation)

Eastern Australia CCM0
Coupled model
30 year time slices

Kysel�yy [110] Temperature (max=min): 20 and
50 year return periods

Central Europe ECHAM=CCCM
30=20 year time slices

McGuffie et al. [193] Temperature and precipitation: Return
periods and range of descriptive
regional statistics

Global, 5 IPCC regions 20 equilibrium
GCMs

10 year time slices
Palmer and R€aais~aanen [157] Precipitation: ‘Very wet’ winters=summers Europe, Asian

monsoon region
19 coupled GCMs
used in TAR
30 year time slices

Yonetani and Gordon [194] Temperature, precipitation: max=min
1�CO2 seasonal=annual values

Global CSIRO
Coupled model
1�CO2=2�CO2

100=30 year time
slices

Zwiers and Kharin [113] Temperature, precipitation and wind:
20 year return periods and thresholds

Global, Canada CCC GCM2
Equilibrium model
20 year time slices
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uncertainties associated with extreme weather events and

recommends further research effort to address these issues.

3.2. Suitability of Scenario Development Methods

The IPCC TAR identifies five criteria, adapted from Smith

and Hulme [111], for assessing the suitability of each type of

climate scenario for use in impact assessment:

1. Consistency at regional level with global projections.

Scenario changes in regional climate may lie outside the

range of global mean changes but should be consistent

with theory and model-based results.

2. Physical plausibility and realism. Changes in climate

should be physically plausible, such that changes in

different climatic variables are mutually consistent and

credible.

3. Appropriateness of information for impact assess-

ments. Scenarios should present climate changes at an

appropriate temporal and spatial scale, for a sufficient

number of variables, and over an adequate time horizon

to allow for impact assessments.

4. Representativeness of the potential range of future

regional climate change.

5. Accessibility. The information required for developing

climate scenarios should be readily available and easily

accessible for use in impact assessments.

These criteria are all applicable to scenarios of extremes

and their use in IAMs, with the appropriateness of

information, and the associated issues of scale, being of

particular concern (see Sections 1 and 4). Extremes place

additional demands on climate models and scenario devel-

opment methods: higher-order statistics (such as standard

deviations and skewness), together with the tails of

distributions, not just mean values, must be well reproduced.

Different extreme events=variables exhibit different char-

acteristics that must be reliably captured by climate-change

scenarios, and hence place different demands upon climate

models and scenario development methods. For example, the

demands arising from the need to reproduce daily precipita-

tion totals which are typically described by a mixed

statistical distribution are different to the case of variables

with a quasi-Gaussian distribution such as daily temperature.

In both cases, extreme events are highly dependent on spatial

scale, while multi-month drought occurrence is less so,

but instead introduces a need to reproduce the correct

persistence levels. Certain sectors also require that realistic

inter-site relationships are maintained (e.g., hydrological

modelling), while others (e.g., certain crop models [112])

require realistic inter-variable relationships.

While the need to generate scenarios that successfully

reproduce present-day climate variability and extremes and

that also give reliable and plausible estimates of climate

change is paramount, a number of other issues must also be

addressed, particularly with respect to integrated assess-

ment. Ideally, scenarios should have estimates of their

associated uncertainty (see Sections 1 and 3.5) and should be

able to be scaled to reflect a range of possible greenhouse gas

emissions pathways. In the following section, the advantages

and disadvantages of various methods for the construction of

scenarios of extremes are summarised in the light of these

additional criteria.

3.3. Direct Use of Climate Model Output

An overriding problem – and hence the need for more

sophisticated scenario development methods – is that output

from GCMs cannot, in general, be used to directly quantify

future variability and extremes, particularly at the station or

local level, because of bias in simulated means and

variability of present-day climate and weather [90, 113].

This bias may originate from systematic model errors

[94, 95], from spatial scale incompatibilities (area-mean

grid-box output has different statistical properties to station

Table 5. Statistical downscaling studies which include analysis of
extreme event indicators.

Indicators studied Study

Studies which include
analysis of precipitation-
related extreme indicators,
e.g., length of (longest)
wet=dry spells, return
period events, ranked
extremes

Bardossy and Plate [135, 195]
Bates et al. [196]
Beckman and Buishand [152]
Bogardi et al. [138]
Brandsma and Buishand [109]
Charles et al. [159]
Conway and Jones [129]
Corte-Real et al. [143]
Goodess [126]
Hay et al. [133, 136]
Hughes et al. [197]
Semenov et al. [198]
Weichert and Burger [199]
Wilby [149]
Wilby et al. [141, 150]
Wilks [200]
Wilson et al. [134, 137]

Studies which include
analysis of storm-
related indicators,
e.g., storm length,
inter-storm arrival
time

Hughes et al. [139]
Hughes and Guttorp [140]
Schnur and Lettenmaier [130]

Studies which include
analysis of temperature-
related extreme indicators,
e.g., annual maximima=
minima, heat waves and
cold spells, frosts,
threshold exceedence

Hayhoe [201]
Huth et al. [144]
Kysel�yy [110]
Palutikof et al. [131]
Schubert [148]
Schubert and Henderson-

Sellers [145]
Trigo and Palutikof [202]
Winkler et al. [146]
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data [114, 115]) and due to the exclusion of sub-grid-

scale processes.

In the development of scenarios of mean climate change,

the bias in simulated means is the main difficulty and can be

‘‘overcome’’ by assuming that the climate change is

independent of these mean biases and, therefore, applying

climate change fields to appropriate observed baseline

climatologies (as is currently done in IAMs, see Section

2.2). A similar approach can be used for the development of

scenarios that focus on climate variability and extremes

[116, 117], i.e., by assuming that changes in higher-order

statistical parameters (such as variance, skewness and

persistence) are reliable, despite differences between

observed and simulated present-day values of these para-

meters. Additionally, it may be possible to use appropriate

statistical manipulation to reproduce the present-day climate

characteristics. Alternatively, extremes and their changes

can be defined in a relative rather than absolute sense (i.e.,

percentile or quantile values rather than absolute thresholds)

in order to reduce model biases. The advantages and

disadvantages of these various approaches are summarised

in Table 6. Single examples of the implementation of each

approach are given, though it should be noted that the range

of choices that could be made when implementing each

approach is potentially very broad.

For GCMs to become more reliable in their simulation of

variability and extremes as well as means, requires not only an

improvement in the models, but also a solution to the two

major spatial resolution problems of scale incompatibilities

and sub-grid-scale processes. If direct model output is to be

used, then these problems can only be overcome by an

increase in the spatial resolution of climate models together

with improvement in their reliability. Higher-resolution global

(such as timeslice [118]) or regional (nested within a global

model [119, 120]) models have begun to address this problem.

Time-slice simulations have recently been used to explore

changes in intense rainfall and wet=dry day spells [121], but

output from RCMs is more widely available than output from

timeslice simulations and thus provides a more viable

approach. It should not, however, be assumed that the higher

resolution of RCMs automatically provides more meaningful

or reliable spatial detail [60, 100, 122, 123].

RCM output has been less widely used than GCM output

for constructing scenarios of extremes (because the latter is

Table 6. Summary of the advantages and disadvantages of the direct use of General Circulation Model output to construct scenarios of
extremes. 4¼ advantage, 8¼ disadvantage, ?¼ advantage=disadvantage of the method is uncertain.

Advantages=disadvantages of the general approach
4 Provides physically-consistent multi-variate information
8 Spatial-scale problems arise, i.e., grid box rather than point values
8 Even area-averaged extremes (i.e., grid-box values) may not be reliably simulated

1. Diagnosed changes in statistical parameters (mean, plus higher-order parameters, such as variance, scale and shape, etc.) applied to
observed baseline time series. For example of implementation see [203]

4 Simple method
4 Suitable for scaling
8 Non-realistic scenarios, e.g., negative precipitation, may occur when the changes are applied to the baseline climatology
8 Assumes biases will be unchanged in the future

2. As 1, but changes are applied to weather generator parameters, previously tuned to reproduce observed climate. For example of
implementation see [204]

4 Long and=or multiple time series can be generated for analysis of extremes=uncertainties
4 Suitable for scaling
8 Weather generators tend to underestimate variability and persistence, e.g., length of wet=dry spells
8 May be difficult to adjust weather generator parameters in a consistent way

3. Direct model time series used, after appropriate statistical manipulation to reproduce present-day climate characteristics. For example
of implementation see [205]

4 May overcome some model biases
8 May be more difficult to manipulate extremes than mean values
8 Assumes model biases will be unchanged in the future
? Either ‘un-intelligent’ or ‘informed’ manipulation may be applied, the latter using validation=statistical downscaling approaches

to adjust model output for specific physically-identified biases
? Less suitable for scaling

4. Model output used to assess specific extremes (via percentile or extreme value distribution approaches), which are defined in a relative
rather than absolute sense. For example of implementation see [100]

4 May avoid some systematic model deficiencies and facilitates model inter-comparisons
4 May overcome some spatial-scale incompatibilities
8 Assumes model biases will be unchanged in the future (because percentiles or thresholds are defined from the model control

period)
? Less suitable for scaling
? Stakeholders may find it harder to relate to ‘relative’ extremes

REPRESENTING EXTREME WEATHER EVENTS IN IAMs 161



more widely available), however, the advantages and

disadvantages of this general approach are outlined in Table

7. RCM output can be used in the same way as GCM output,

thus the potential advantages=disadvantages of methods 1 to

4 listed in Table 6 are also applicable to RCM output.

GCMs=RCMs must be run off-line rather than on-line in

IAMs because they are so computationally complex and

demanding. Their output is currently utilised in IAMs to

provide information about changes in mean climate, but this

requires pattern-scaling, the advantages and disadvantages

of which are discussed in Section 2.2 with respect to mean

climate. Additional concerns arise with respect to the scaling

of extremes.

The most detailed assessment of pattern-scaling to date is

that of Mitchell [59]. His study, like that of Mitchell et al. [56],

focused on changes in mean climate rather than extremes.

However, a number of its conclusions may be relevant to

scaling extremes. The sources of error identified by the study,

for example, include non-linear grid-box responses to ra-

diative forcing, which undermine the underlying assumption

of linearity. The preferred method is to take the pattern from a

regression based on the full model period rather than from a

short (e.g., 20 year) period at the end of the simulation

because, if the response is non-linear, the magnitudes of any

instantaneous errors will be minimised (though they may

change sign during the course of the simulation).

The Mitchell study [59] also suggests that it is possible to

scale interannual variability (i.e., standard deviations),

although the errors (i.e., due to deviations from linearity)

are larger than for mean values. If, furthermore, it is assumed

that the variable in question has a Gaussian distribution,

changes in the entire probability distribution may be

estimated by individually scaling the mean and standard

deviation. It may also be possible to scale non-Gaussian

variables by estimating secondary parameters: for example,

it may be possible to estimate precipitation by scaling the

mean and standard deviation and estimating from them the

shape and scale parameters of the gamma distribution.

The Mitchell study [59] is, however, largely based on a

single model (HadCM2), which raises a question as to whether

the findings are model dependent. Clearly, the legitimacy of

using scaling techniques for extremes, which may change non-

linearly [10, 108] needs specific investigation. Is it possible,

for example, to capture the non-linearities by using quadratic

rather than linear regression or by using a variable other than

global temperature as the scalar? Another important question

for extremes is whether it is possible to scale daily time series?
And, if temperature and precipitation are scaled separately, is

the spatial coherence of these variables maintained? Thus

there are a number of issues that must be addressed before

GCM or RCM output can be used to provide information

about extreme weather events in IAMs.

3.4. Statistical Downscaling

A range of statistical downscaling methods has been develop-

ed in recent years (see the following reviews: [104–106,

124–126]), though these have not been designed specifically

for downscaling weather extremes. Relationships between

larger-scale climate variables (such as atmospheric circula-

tion) and local surface climate variables (such as daily tem-

perature and precipitation), derived empirically using

observed data, can be applied to the generation of climate

scenarios, under the two assumptions that the larger-scale

climate variables are more reliably simulated by climate

models, and that the relationships remainvalid under a changed

climate. Theoretically, the latter assumption (of stationarity)

should be valid if all the necessary predictor variables (such as

atmospheric circulation, temperature and humidity [125, 127])

are used and the statistical model is appropriately structured to

enable it to represent interactions and non-linearities. In prac-

tice, however, this may be limited by the availability of suf-

ficiently long data series to determine the important predictors

on all necessary time scales (a problem that is exacerbated if

the variables that generate inter-daily to inter-annual vari-

ability are different to those that cause climate change).

Nevertheless, given adequate data, statistical downscaling has

sufficient advantages to warrant consideration as a scenario-

generation method in IAMs. The common advantages and

disadvantages of this approach are summarised in Table 8.

From the range of statistical downscaling methods that

are available, three of the most commonly-used methods are

considered most appropriate for extremes and the needs of

integrated assessment modelling:

� resampling of observed data conditioned by large-scale

climate variables [106, 109, 118, 128–132];

� weather generator (with the option of conditioning

parameters upon large-scale climate variables) [126,

133–144]; and,

� regression-based methods [144–153].

Table 7. Summary of the advantages and disadvantages of the
direct use of regional climate model output to construct
scenarios of extremes. 4¼ advantage, 8¼ disadvantage,
?¼ advantage=disadvantage of the method is uncertain.

Advantages=disadvantages of the general approach. For example
of implementation see [97–102]
4 Provides physically-consistent multi-variate information
4 Higher spatial resolution than GCMs should reduce some

biases (e.g., more intense extremes)

8 Relatively short (e.g., 30 year) runs make it difficult to
assess multi-decadal natural variability

8 Runs may not be available for time periods of interest
(e.g., 2020s)

8 Relatively few simulations=ensembles available
8 Affected by biases in the underlying GCM

? Added value of higher spatial resolution needs to be
demonstrated

? Scaling may be less robust than from GCMs and for mean
climate, in part, because of shorter model simulations
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The specific advantages and disadvantages of these three

methods are summarised in Table 9.

3.5. Scenarios of Weather Extremes

and Associated Uncertainties

Comparative studies of the first three sources of uncertainty

listed in Section 1 indicate that, for changes in mean climate,

inter-model variability tends to be greater than inter-scenario

or internal model variability, particularly over the earlier part

of the 21st century [23, 24, 154, 155]. The uncertainties are,

however, likely to depend on the variable being addressed. In

an intercomparison of four RCMs, for example, Christensen

et al. [156] concluded that inter-scenario uncertainties

dominate in the case of mean temperature in Nordic regions.

Uncertainties in extreme event scenarios have rarely been

studied. A recent exception is Palmer and R€aais~aanen [157]

who used an ensemble of 19 GCMs to construct probabilistic

scenarios of ‘very wet,’ defined as greater than the mean plus

two standard deviations, European winters and Asian

monsoon region summers. In a study of 20-year return

period precipitation values in the Meuse region using output

from a number of GCMs and RCMs, Booij [102] concludes

that the uncertainties due to model errors and inter-model

differences amount to 50% of the present-day return values

(i.e., they are significantly larger than the projected change

of 
18%). Further research is needed to determine which

sources of uncertainty dominate for extremes.

The fourth source of uncertainty identified in Section 1,

sub-grid scale forcings and processes, has not yet been

adequately addressed in the literature, but may be particu-

larly important for extreme weather events with high

temporal and spatial resolutions. RCMs provide information

at the sub-GCM grid scale, so ensemble RCM output

provides one way of exploring this issue [154]. However, the

current resolution of RCMs, 50 km� 50 km for HadRM3, is

still relatively coarse for some extreme event processes, such

as convective precipitation. Statistical downscaling methods

provide station or point values and thus may provide another

way of exploring this issue, but introduce additional

uncertainties due to the methods themselves. Similarly,

statistical manipulation methods which attempt to correct

for model biases (Table 6) are also likely to introduce

new uncertainties.

Another aspect of uncertainty which needs to be

addressed concerns the relationship between the future

climate-change uncertainties discussed above and multi-

decadal climate variability [20], i.e., the issue of signal-to-

noise ratios (which is particularly important for determining

the significance of projected climate changes and for

detection and attribution studies). Changes in extreme events

may be greater than changes in mean climate [10, 108], but

Table 9. Summary of the advantages and disadvantages of three
specific statistical downscaling methods for the con-
struction of scenarios of extremes. 4¼ advantage,
8¼ disadvantage, ?¼ advantage=disadvantage of the
method is uncertain.

1. Resampling of observed data conditioned by large-scale climate
variables

4 Provides self-consistent multi-site, multi-variate scenarios
4 Multiple time series can be generated
4 Relatively simple method
8 Magnitude (but not frequency) of the largest extreme is

limited by the observations
8 Difficult to extend to multiple predictors if sample size

is limited
? Requires climate classification

2. Weather generator (with the option of conditioning the param-
eters upon large-scale climate variables)

4 Long=multiple time series can be generated
4 Provides self-consistent, multi-variate scenarios
8 Variability and persistence tend to be underestimated (the

overdispersion problem)
8 May be difficult to perturb the parameters in a consistent

way for future climates
? Methods are being developed for the production of self-

consistent multi-site scenarios, but tend to be complex
and subject to technical=statistical problems

? May require climate classification for conditioning the
parameters

3. Regression-based techniques
4 Climate classification is not required
4 A wide range of potential predictors can be used
8 Danger of over extrapolation in the future
8 Danger of overfitting
8 Difficult to identify best suite of predictors for present-day

and future climates
8 Tend to perform less well for precipitation than temperature
? Stochastic elements can be introduced, e.g., to increase

variability

Table 8. Summary of the advantages and disadvantages of sta-
tistical downscaling for the construction of scenarios
of extremes. 4¼ advantage, 8¼ disadvantage, ?¼
advantage=disadvantage of the method is uncertain.

4 Provides station=point values of extremes
4 Less computer intensive than dynamical downscaling
4 Can be applied to GCM and=or RCM output

8 Assumes that predictor=predictand relationships will be
unchanged in the future (the stationarity issue)

8 Requires long=reliable observed data series
8 Affected by biases in the underlying GCM

? May be possible to ‘correct’ predictors for systematic
model biases

? Scenarios may indicate changes which differ substantially
in magnitude, and even in direction, from those based
directly on model output

? Ideally, downscaling methods should reflect the underlying
physical mechanisms and processes, but statistical
downscaling is unlikely, for example, to treat convective
rainfall events in a physically realistic way

? Suitability for scaling needs to be investigated
? Sensitive to specific methodology, choice of predictor

variables, etc.
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because the natural variability of extremes is also greater

than that of mean climate, the signal-to-noise ratio may be

lower for extremes than for mean climate, making it more

difficult to identify significant changes in extremes.

The associated uncertainties are dependent on the

variable and spatial=temporal scale considered, generally

increasing with increased resolution. The focus of this

review is temperature and precipitation extremes. The

uncertainties are likely to be greater for other variables such

as wind, hail, fog, lightning, and storm surges. In the case of

the UKCIP02 scenarios, for example, the uncertainties were

considered so large, that the authors could not even assign a

low level of confidence to the wind scenarios [60].

4. OPTIONS FOR IMPEMENTING SCENARIOS

OF EXTREMES IN IAMs

From Sections 1 and 2, it is clear that there is a need for

modification of the representation of climate information in

IAMs in order to include extreme weather events. A range

of potential methods for the construction of scenarios of

extreme events is reviewed in Section 3, focusing on the

advantages=disadvantages of the various methods and the

issues which are most relevant to the needs of integrated

assessment modelling. However, only limited inter-

comparisons of dynamical versus statistical approaches [99,

158–161] or of different statistical approaches [104–106, 124,

125] to downscaling have been carried out. Inter-compar-

isons focusing on extreme events are even rarer [110, 144].

These issues are being addressed by ongoing research

programmes (funded by the European Commission, for ex-

ample (http:==www.cru.uea.ac.uk=projects=mps=)), but there

are currently no systematic or comprehensive inter-compar-

isons or recommendations on ‘best’ methods. Thus, detailed

validation and evaluation studies are required on a case-by-

case basis before any of the methods reviewed in Section 3

can be used with confidence in integrated assessments.

Additional evaluation criteria need to be considered when

using any of these scenario construction methods in IAMs as

it is important that the key characteristics and advantages of

IAMs, i.e., their computational efficiency and comprehen-

sive nature, are not lost. In order to maintain computational

efficiency and to limit the amount of data handled within

IAMs, it is likely that much of the scenario analysis

involving extreme weather events will be carried out offline.

This will be particularly true for those extremes which must

be considered at high spatial and temporal resolutions (see

Section 1). These resolutions mean that large amounts of

scenario data tend to be produced for extremes, compounded

by the need to address the full range of uncertainty, using

Monte Carlo and probabilistic approaches, for example.

Thus considerable care is needed in identifying the key

extreme events which should be incorporated in IAMs.

Ideally, a limited range of indicators of extremes can be

identified which are not highly correlated and which provide

information on all relevant aspects, for example, changes in

different seasons, changes in the magnitude of individual

events and changes in persistence, of the key extremes. The

appropriate extremes will, however, depend on the sectors

being assessed and on the focus of the IAM. For planned

adaptation, for example, projections of changes in the

occurrence of experienced events, such as, for the UK, the

1953 storm surge event and the October 2000 floods, may be

important.

The primary output from both dynamical and statistical

downscaling methods focusing on extremes tends to be in

the form of streams of daily data, which can conventionally

be used in the following ways:

(i) relative changes can be added to baseline daily

climatologies to create scenarios;

(ii) probability distribution functions can be constructed to

reflect the uncertainties;

(iii) time series (either the downscaled series or adjusted

baseline climatologies) can be provided.

Approach (i) could be used directly in IAMs, although

appropriate and reliable global=regional gridded daily

climatologies would be required. Approach (iii) could in

theory be used directly in Biophysical-impact based IAMs

(Section 2.4) and has the advantage of encompassing

interannual variability. Some impacts modules would,

however, need modification in order to handle daily data

and there is a danger that this would make them too

computationally demanding. These potential problems

provide further justification for carrying out more of the

scenario analysis offline, particularly if dynamical down-

scaling is the preferred option.

If extreme event scenario analysis is carried out offline, a

mechanism is needed to tie this in with the IAM, in the same

way that pattern-scaling of mean climate is tied to mean

global temperature change in the current generation of IAMs

(Section 2.2). For extremes, however, it may be appropriate

to use some other large-scale variable (e.g., pressure

patterns) as the scalar and=or to use a non-linear relationship

(Section 3.3).

The structure of cost-benefit analysis IAMs incorporating

damage functions (Section 2.3) is more immediately suitable

for the incorporation of offline analysis of extremes than that

of Biophysical impacts-based models. In the case of flooding

events, for example, the cost-benefit analysis models require

a conditional damage function (CDF) for estimation of the

economic damage associated with a particular flood event

given its probability of exceedence. Such a CDF could be

constructed by: first, generating daily regional precipitation

scenarios using dynamical or statistical downscaling;

inputting these scenarios to a hydrological model in order

to simulate flood peaks; fitting a distribution to the flood

peaks to show the relationship between magnitude and

probability of exceedence; and finally, translating this
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distribution in to the CDF for economic damages=prob-

ability of exceedence (Arnell, personal correspondence).

Ideally, this CDF should reflect the full cascade of

uncertainty. Palmer and R€aais~aanen [157], for example, have

recently demonstrated that use of a single deterministic

scenario underestimates the risk of making the wrong

hypothetical investment decision with respect to flooding,

compared with the use of inter-model ensemble scenarios

(based on output from 19 GCMs). This study focuses on

Europe and the Asian monsoon region: it is concluded that

larger model ensembles would be needed in order to assess

risks at the country, for example, UK or Bangladesh, scale.

Palmer and R€aais~aanen also conclude that GCMs may provide

adequate information for large catchments such as the

Ganges and Brahamaputra (a conclusion supported by Milly

et al. [162] for catchments including the St Lawrence,

Mississippi, Danube and Ob), but downscaling to resolutions

of tens of kilometres is required for smaller catchments.

In order to construct some CDFs (and for some impacts

modules), it may be necessary to consider joint probabilities

of extremes (although it is noted that no general statistical

solutions for such problems are available [163]). It is

estimated, for example, that 50% of the capital value of UK

assets potentially at risk from sea, tidal and fluvial flooding lie

within the River Thames region [164]. Flooding in estuaries

in eastern Britain could occur due to the simultaneous

occurrence of high sea level and high river flow [165]. Thus a

CDF for overtopping of the Thames barrier would need to

consider changes in storm surges (which can be estimated

using a storm surge model combined with GCM=RCM output

[166] or by statistical downscaling [167, 168]), together with

consistent (i.e., based on the same large-scale predictor

variables) changes in river flooding (derived from downscaled

precipitation scenarios input to a hydrological model). The

joint probability of exceedence would then need to be

calculated in order to construct the CDF.

Although the conventional approach for scenarios of

extreme weather is to generate streams of daily data using

dynamical or statistical downscaling and then calculate the

frequency of occurrence and magnitude of extreme events, a

more direct, but untested, approach to statistical down-

scaling could be used to construct CDFs for use in cost-

benefit analysis IAMs. This would entail identification of

statistical relationships between the extremes themselves

and the predictor variables. It has the potential advantage

that these relationships might be stronger and more robust

than those between the underlying daily temperature=
precipitation series and the same predictors. It would

certainly have the advantage of producing smaller volumes

of data and would be particularly suitable for the construc-

tion of probabilistic scenarios.

One of the major issues associated with the representation

of extreme weather events in IAMs is the potential spatial

scale mismatch between the scenario construction methods

described in Section 3 and IAMs (Tables 2 and 3). There are

two questions: first, is it physically meaningful to consider

extremes at the IAM scale, and second, if it is, can the

scenario construction methods provide information at the

necessary scale? With respect to the first question, globally-

averaged extremes are not considered meaningful. Thus in

IAMs that only operate at the global scale, i.e., the CETA

and DICE cost-benefit analysis models (Table 3), it would

not be appropriate to construct global damage functions

using global indices of extremes. Global damage functions

could, however, be constructed off-line using regional

indices of extremes, as described earlier. Although the other

cost-benefit analysis models listed in Table 3 are shown as

having a regional spatial coverage, most of them (FUND,

MERGE4.4 and MiniCAM) only calculate global tempera-

ture changes and would need modification in order to operate

with damage functions incorporating regional climate

information.

All the Biophysical-impacts models listed in Table 3 use

grid-box information. Thus using higher-resolution RCM

output rather than GCM output (i.e., dynamical down-

scaling) to derive the regional patterns of change would

entail an increase in the volume of data handled, but would

not require major modifications. The major constraints

would be the availability of RCM output for all required

regions and reliable gridded baseline climatologies (also

required for validation). Tools such as the PRECIS

(Providing REgional Climates for Impact Studies) regional

modelling system being developed by the Hadley Centre

[169] make this potentially feasible. Although most

statistical downscaling methods focus on the station scale

(because their ability to provide point-specific information is

one of their major advantages), they could be applied at the

grid-box scale of the baseline climatologies used in IAMs.

This would, however, again require the availability of

reliable gridded climatologies for all regions.

Rigorous testing of the methods identified here is needed

in order to implement optimal methods for the incorpora-

tion of information about extreme weather events in

IAMs. However, from the methods reviewed here, it is con-

cluded that the less-computationally demanding statistical

approaches to scenario construction, such as weather

generators and patterns of change derived from RCMs, are

likely to be more suitable for use in Biophysical impacts-

based IAMs, while both dynamical and a number of different

statistical approaches are potentially suitable for use in cost-

benefit analysis IAMs and are likely to be easier to

implement because more analysis can be carried out offline

in these economic-based models.
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