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Klhl31 is an orthologue of Drosophila Kelch and belongs to a family of Kelch-like proteins in

vertebrates. Members of this family contain multiple protein domains, including an amino-

terminal broad complex/tram-track/bric-a-brac (BTB) or poxvirus and zinc finger (POZ)

domain, carboxy-terminal Kelch repeats and a central linker region. We show that Klhl31

is highly expressed in the developing heart, the somite myotome and later in differentiated

skeletal muscle and the myocardium. In developing somites expression of Klhl31 was initi-

ated in the epaxial domain of the myotome, shortly after the skeletal muscle specific bHLH

transcription factor, MyoD, was first expressed. Klhl31 remained expressed in skeletal mus-

cle throughout embryonic and fetal development. Tissue ablations and rescue experiments

that regulate myogenesis also govern expression of Klhl31 expression in somites. In partic-

ular, axial tissues, neural tube, floor plate and notochord, and surface ectoderm, provide

combinatorial cues for myogenesis and the appropriate expression of Klhl31. We show that

a combination of myogenic signals, Shh and either Wnt-1 or Wnt-6, are sufficient for Klhl31

expression in the dorsal somite. Furthermore, ectopic expression of Myf-5 led to expression

of Klhl31 in the developing neural tube, indicating that Klhl31 is a novel and integral part of

vertebrate myogenesis.

� 2009 Elsevier Ireland Ltd. All rights reserved.
1. Introduction

Somites are transient mesodermal structures that arise

from the unsegmented paraxial mesoderm during vertebrate

segmentation. They are arranged in pairs on either side of the

neural tube/notochord. Initially somites consist of columnar

epithelial cells arranged around a central cavity (the somito-

coel) and surrounded by extracellular matrix that forms a

basement membrane. The dorsal somite (the dermomyotome)

is divided into a dorsomedial part, which differentiates into

epaxial back muscle, and a ventrolateral part, which
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contains the precursor cells of the hypaxial muscles of the

ventral body wall and skeletal muscle of the limb. The dermo-

myotome generates the cells of the myotome in successive

waves of growth and differentiation (Gros et al., 2004). The

ventral somite contains the chondrogenic precursor cells of

the vertebral body, pedicles and ribs (Christ et al., 2004; Scaal

and Christ, 2004).

Work from our lab and others showed that tissues sur-

rounding the somite provide signals that promote the differ-

entiation of the various cell lineages (Brent and Tabin, 2002).

The factors derived from the axial midline structures, neural
reserved.
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tube, floor plate and notochord, that pattern the somite along

the dorsoventral axis include Wnt molecules, in particular

Wnt-1 and Wnt-3a, and Sonic hedgehog (Shh) (Borycki et al.,

2000; Münsterberg et al., 1995; Schmidt et al., 2000). In addi-

tion, the surface ectoderm has been shown to provide extrin-

sic cues important for somite epithelialization, including

Wnt-6 (Buckingham, 2001; Geetha-Loganathan et al., 2006;

Schubert et al., 2002).

Kelch and Kelch-like proteins are also known as BTB-

BACK-Kelch (BBK) proteins, based on their characteristic

domain structure. They are composed of a BTB/POZ domain,

a BACK domain and a carboxy-terminal region containing

four to seven Kelch motifs (Supplemental Fig. 1). BTB/POZ

domains can act as substrate specific adaptors for protein

ubiquitination in Cullin based E3 ubiquitin-ligase complexes.

The conserved Kelch repeats generate a propeller comprised

of a number of b-sheets (Bork and Doolittle, 1994). The simi-

larity between the repeats ranges from 25% to 50% identity

(Xue and Cooley, 1993). Finally, the BACK domain may act to

position the Kelch propeller and its bound substrate in Cul3-

E3 complexes (Stogios et al., 2005; Stogios and Prive, 2004).

The prototype of the Kelch-family in Drosophila is required

to maintain actin organization in ovarian ring canals. Kelch

mutant egg chambers have severely disorganized ring canal

actin, leading to a defect in cytoplasm transport and the pro-

duction of small sterile eggs (Xue and Cooley, 1993). The func-

tions of some Kelch-like proteins in vertebrates have been

characterized. For example, KLHL12 interacts with Cullin-E3-

ubiquitin ligases and targets disheveled for degradation, thus

negatively regulating Wnt signaling in cells and embryos (An-

gers et al., 2006). Other family members seem to affect the

cytoskeleton. For example, Muskelin, a more distantly related

and widely expressed protein, causes alterations in the adhe-

sive behavior and cytoskeletal organization in C2C12 myo-

blast (Adams et al., 1998). KLHL20 interacts with F-actin,

and in MDCK cells it is concentrated at cell–cell contact sites

where it may be involved in Rac1-induced actin organization

(Hara et al., 2004).

The function of Klhl31 during embryo development has not

been studied. Experiments in cell culture suggest that KLHL31

protein may act as a new transcriptional repressor in MAPK/

JNK signaling (Yu et al., 2008), and the expression of Klhl31

in skeletal and cardiac muscle in zebrafish (Wu and Gong,

2004) and chicken embryos (this report), and conserved syn-

teny across a number of species suggest an important and

highly conserved function for this protein (Wu and Gong,

2004).

We examined the spatio-temporal expression of Klhl31

during embryogenesis. Klhl31 transcripts were highly re-

stricted and detected in cardiac progenitors, the developing

heart and the myocardium of the left ventricle and atrium.

Klhl31 was strongly expressed during skeletal myogenesis.

Transcripts were first detected in the epaxial myotome of

developing somites. In differentiating myotomes, Klhl31 co-

localized with MyoD and Klhl31 remained expressed in all

skeletal muscles until at least E10 (HH36). Next, we investi-

gated the association of Klhl31 with skeletal myogenesis.

We show that signals known to pattern the dorsal somite

and to induce the expression of skeletal muscle specific bHLH

transcription factors also regulate Klhl31 expression. Tissue
ablations followed by rescue experiments indicate that mem-

bers of the Wnt family, Wnt-1 and Wnt-6, and Shh are in-

volved in the initiation of Klhl31 expression in developing

somites. Finally, ectopic expression of Myf-5, but not myoge-

nin, in the neural tube resulted in ectopic expression of Klhl31

transcripts, demonstrating that Klhl31 is intimately linked to

skeletal myogenesis and is regulated by myogenic signals

and Myf-5.

2. Results

2.1. Identification of Klhl31 full-length coding sequence
and phylogenetic comparison

Initial expression analyses were performed using

ChEST997C15 obtained from MRC/BBSRC genome resources

(Boardman et al., 2002). This EST corresponded to a partial se-

quence of a predicted chicken gene encoding a novel protein

with a BTB/POZ domain. Further analyses using the Ensembl

Genome Browser (www.ensembl.org) revealed that ChEST997

C15 corresponds to the chicken orthologue of human KLHL31.

Sequence alignments showed that Klhl31 protein is highly

conserved in vertebrates (Supplemental Fig. 1A and B), with

particularly strong amino acid identity across species in the

BTB/POZ domain and the Kelch-repeats (Supplemental

Fig. 1A). Phylogenetic comparison of chicken Klhl31 with

other chicken Kelch-like orthologues demonstrated that

Klhl31 is most closely related to Klhl14, Klhl9 and Klhl26 (Sup-

plemental Fig. 1C). Importantly, the functions of many of

these proteins have not been described to date.

2.2. Developmental expression of Klhl31 is closely linked
with cardiac and skeletal myogenesis

To investigate the spatio-temporal expression of Klhl31

during chicken embryogenesis we used whole-mount in situ

hybridization followed by cryosections, as described previ-

ously (Schmidt et al., 2000; Smith et al., 2005). Klhl31 tran-

scripts were first detected at Hamburger–Hamilton (HH)

stage 8 (Hamburger and Hamilton, 1992) in the mesoderm of

the anterior intestinal portal (Fig. 1A–A0 0). By HH10 Klhl31

was expressed throughout the heart and was faintly detected

in anterior somites adjacent to the neural tube (Fig. 1B–B 0 0 0).

As somites matured, Klhl31 transcripts were specifically ex-

pressed in the myotome (Fig. 1C–C 0 0 0 and D–D 0 0). From HH27

Klhl31 was expressed in fore- and hind-limb buds and sec-

tions showed that transcripts were restricted to the develop-

ing dorsal and ventral muscle masses (Fig. 1D and D 0 0).

Klhl31 was also detected in the hypoglossal chord, the bran-

chial arches and some eye muscles (Fig. 1D). In older embryos,

Klhl31 expression was specifically found in the myocardium

of the heart, in differentiating skeletal muscles in the limb

buds (Fig. 1E–E 0 0, K, K 0, L and L 0), and in axial muscles of the

back (Fig. 1I) and neck (Fig. 1J and J 0).

2.3. Klhl31 is expressed after myogenic commitment

Because of the close correlation of Klhl31 with skeletal

myogenesis we next established the timing of expression

relative to the onset of MyoD expression. MyoD is one of

http://www.ensembl.org


Fig. 1 – Klhl31 is expressed in skeletal and cardiac muscle. In situ hybridization with Klhl31 antisense RNA probes was

performed in whole mount followed by cryosections. Hamburger–Hamilton stages are indicated on each panel. The planes of

sections are indicated on the respective whole mount photograph. aip, anterior intestinal portal, ht, heart; myo, myotome; EC,

endocardium; MC, myocardium; EP, epicardium; Ra, right auricle; RA, right atrium; La, left auricle; LA, left atrium; RV, right

ventricle; IV, interventricular septum; LV, left ventricle; CM, carpometacarpus; IID, second digit; II, III, IV, metatarsal bones;

arrow in (H) myocardium; arrows in E 0, E 0 0, K 0, L 0 skeletal muscles.
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the first muscle regulatory factors (MRFs) detected in skele-

tal muscle progenitors in the dorsomedial lip of the myo-

tome in developing chicken somites. Comparing stage-

matched embryos, we found that Klhl31 expression was first

detected in the dorsomedial somite adjacent to the neural

tube, similar to MyoD (Fig. 2C). However, it lagged behind the

expression of MyoD by approximately 6–7 h (Fig. 2). At HH11

or HH13 MyoD transcripts were detected in 10 or 17 somites,

respectively and only two to three most recently formed epi-

thelial somites did not express detectable amounts of tran-

scripts (Fig. 2E and M). In contrast, Klhl31 transcripts were

seen in only 6 or 12 somites at HH11 and HH13 respectively

and could not be detected in seven most recently formed som-

ites (Fig. 2A and I).

Sections showed that Klhl31 transcripts localized to the

medial epithelial somites and then correlated closely with

the expanding myotome (Fig. 2B–D and J–L). In older embryos,

Klhl31 and MyoD expression overlapped in the differentiated

myotome (2R-U, W-Z). Expression was never detected in the

dermomyotome or the sclerotome.

2.4. Redundant signals from the neural tube and the
surface ectoderm are involved in initiating Klhl31 expression
in the developing myotome

We performed tissue ablations in order to determine the

origin of extrinsic cues necessary for the initiation of Klhl31

expression in the developing myotome. Prior to the onset of

Klhl31 expression, we separated the surface ectoderm from

the underlying presegmented mesoderm at HH11–12 with

tantalum foil to create an impermeable barrier (Fig. 3A

and B). After 24 h incubation, somites had formed and

in situ hybridization showed that somite patterning had oc-

curred normally on the operated side and on the control

side. Pax-1 transcripts were expressed in the sclerotome in

the ventral somite, and Klhl31 expression had been acti-

vated in the myotome more dorsally. Next, we removed

the dorsal neural tube leaving the floor plate, notochord

and surface ectoderm in place (Fig. 3C and D). This resulted

in mesenchymal cells fusing across the midline and occa-

sionally in fused myotomes (not shown). In all cases, dorsal

somite patterning and Klhl31 expression was not affected.

Next, we removed both surface ectoderm and dorsal neural

tube and inserted an impermeable barrier (Fig. 3E and F).

This led to complete loss of myotome formation and Klhl31

expression, suggesting that these tissues provide cues that

are important for the initiation Klhl31 expression concomi-

tantly with myogenesis. This result is consistent with the

fact that there are redundant signals derived from surface

ectoderm and neural tube, which are required for dorsal so-

mite patterning, dermomyotome epithelialization and acti-

vation of myogenesis. Pax-1 remained expressed in the

mesenchymal sclerotome owing to the presence of Sonic

hedgehog (Shh) from the notochord (Fan et al., 1995).

To examine whether axial midline tissues are required

for the maintenance of Klhl31 or sclerotomal gene expres-

sion we removed neural tube and notochord (Fig. 3G and

H) adjacent to somites IX–XII (of a HH12 embryo) and re-

placed them with a pellet of RatB1a fibroblasts. These som-

ites already expressed Klhl31 transcripts (Fig. 2). After 24 h
incubation Klhl31 and Pax-1 transcripts were still present.

To determine whether signals from the surface ectoderm

were required we ablated axial midline tissues and surface

ectoderm. This led to the loss of Klhl31 but not Pax-1 tran-

scripts on one side (Fig. 3I and J).

2.5. Wnt-1 and surface ectoderm are not sufficient for
myogenesis or Klhl31 expression, both require additional cues
from axial midline tissues

The neural tube and surface ectoderm are known to pro-

vide Wnt signals important for somite epithelialization and

patterning. Thus we investigated whether Wnt signals could

be sufficient for the activation of Klhl31 expression in the

developing myotome. One half of the neural tube was re-

moved next to epithelial somites II–IV at HH stages 11–12,

before Klhl31 was expressed (see Figs. 1 and 2). Grafting a

large cell pellet (approximately 150 lm in diameter) of Rat-

B1a fibroblasts into the gap prevented the onset of Klhl31

expression on the operated side (Fig. 4B). The concomitant

loss of Pax-1 in the ventral somite indicated that Shh sig-

nals from the ventral midline were not able to diffuse that

far. Therefore, this result showed that surface ectoderm

alone was not sufficient to initiate Klhl31 expression. To

determine whether Wnt-1 is able to substitute for the dor-

sal neural tube to rescue the initiation of Klhl31 expression

in the presence of the surface ectoderm, we implanted a

large pellet of RatB1a-Wnt-1 fibroblasts (Fig. 4D). A pellet

of this size has a barrier effect and prevents signals from

the ventral midline (notochord, floor plate) from reaching

the somite as illustrated in Fig. 4B. Expression of Klhl31 or

MyoD was not observed in this scenario (Fig. 4D and H) sug-

gesting that Wnt-1 plus surface ectoderm are not sufficient

to induce myogenesis and thus Klhl31. Conversely, when a

small cell pellet (approximately 60 lm) was implanted be-

tween the axial midline tissues and paraxial mesoderm,

Klhl31 and markers of ventral somite patterning (Pax-1) were

expressed (Fig. 4E and F). This was consistent with a com-

binatorial role for the ventral midline tissues, notochord

and floor plate and neural tube, surface ectoderm for the

initiation of Klhl31 expression and is reminiscent of the

activation of skeletal myogenesis in response to signals

from these tissues (Fig. 4G–J) (Münsterberg et al., 1995; Mün-

sterberg and Lassar, 1995). In all ablations, the opposite side

served as internal control.

2.6. Sonic hedgehog from the ventral midline is able to
restore Klhl31 expression in the presence of the surface
ectoderm

Next we examined the potential role of Sonic hedgehog

(Shh), which is expressed in the notochord and floor plate,

for the activation of Klhl31 expression and myogenesis. As

shown before removal of half the neural tube followed by

implantation of a large control cell pellet (DF1-RCAS-GFP) pre-

vented expression of Klhl31 transcripts (Fig. 5A and B). How-

ever, grafting a large pellet of DF-1 cells transfected with an

avian retrovirus expressing Shh (RCAS-Shh) restored somite

patterning and expression of Klhl31, Pax-3 (Fig. 5C and D)

and MyoD (not shown). This demonstrated that, whilst the



Fig. 2 – Onset of Klhl31 expression in the epaxial myotome follows myogenic commitment. Stage-matched embryos were

hybridized with probes detecting Klhl31 or MyoD as indicated. Hamburger–Hamilton stages are indicated on each panel. The

planes of sections are indicated on the respective whole mount photograph. Klhl31 was first detected in the dorsomedial

somite (C and D). At HH11 (A–H) and HH13 (I–P) Klhl31 transcripts were detected in more anterior somites when compared to

MyoD transcripts. (Q–Z) In older embryos Klhl31 expression overlapped with that of MyoD and was restricted to the

differentiating myotome.
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Fig. 3 – The neural tube and surface ectoderm are involved in

the activation of Klhl31 expression but are not required for

maintenance. Tissue ablations were performed as indicated

in the schematic drawings (A, C and E). Whole mount in situ

hybridization were performed and cryosectioned. (B, D and

F) Probes have non-overlapping expression patterns and

were developed with NBT/BCIP (purple) or with Fast Red

(red). (A and B) Separation of the surface ectoderm from the

somite by tantalum foil (n = 12), (C and D) removal of the

dorsal neural tube (n = 14) did not result in loss of Klhl31

transcripts. (E and F) However, after removal of surface

ectoderm and neural tube the epithelial dermomyotome

and myotome did not form and Klhl31 expression was lost

(n = 10) whilst sclerotome cells expressing Pax-1 were not

affected. (G and H) Removal of midline tissues adjacent to

older somites of HH11–12 embryos did not affect the

maintenance of Klhl31 or Pax-1 expression (n = 11). (I and J)

However, removal of midline tissues and surface ectoderm

affected the maintenance of Klhl31 expression but not

expression of Pax-1 (n = 10). nc, notochord; nt, neural tube;

se, surface ectoderm.

Fig. 4 – Wnt-1 and surface ectoderm are not sufficient for the

activation of Klhl31 expression, additional signals from the

ventral midline tissues are required. One half of the neural

tube was removed next to somites II–IV, before the onset of

Klhl31 expression. Cell pellets were grafted into the gap. The

opposite side served as internal control. (A and B) A large

pellet of RatB1a fibroblasts formed a physical barrier and

Klhl31 expression was lost on the operated side, indicating

that signal(s) from the midline structures are essential for

Klhl31 activation (n = 21). (C and D) A large pellet of Wnt-1-

expressing fibroblasts was not able to restore Klhl31

expression (n = 22). (G and H) The loss of Klhl31 correlated

with loss of MyoD. The grafting of small pellets of Wnt-1

cells permitted expression of (E and F) Klhl31 (n = 10) and (I

and J) MyoD (n = 9) on the operated side. (E and F) The

expression of Pax-1 under these conditions showed that a

small cell pellet did not prevent ventral midline signals

(Shh) from reaching the somite. Implanted cell pellets are

indicated by a stippled line. lg, large; nt, neural tube; sm,

small.
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notochord on its own (i.e. in the absence of the surface ecto-

derm) is not sufficient (Fig. 3E and F), Shh expressing cells
could substitute for the ventral midline tissues and restore

the initiation of Klhl31 expression in the myotome in the pres-

ence of the surface ectoderm. To exclude the possibility that

Wnt signals derived from the remaining half of the neural

tube were diffusing across to the opposite side, we also re-

placed all of the midline tissues with Shh expressing cells

(Fig. 5E and F). As before in the presence of the surface ecto-

derm this was sufficient for myotome formation and thus

Klhl31 expression.



Fig. 5 – Shh can rescue Klhl31 expression in the presence of

surface ectoderm after neural tube/notochord removal. (A

and B) In situ hybridization and sections showed that Klhl31

expression was lost on the operated side, after removal of

half of the neural tube and implantation of a large control

cell pellet (DF-1 cells expressing RCAS GFP) (n = 16). (C and D)

When half the neural tube was replaced by cells expressing

RCAS-Shh, dorsal somite patterning and the activation of

Klhl31 expression was restored (n = 11). (E and F) Complete

removal of axial midline tissues followed by implanting Shh

expressing cells restored Klhl31 expressing in the presence

of surface ectoderm (n = 12). (B and D) Probes for Klhl31 and

Shh were developed with NBT/BCIP (purple), and probes for

(B) GFP, (D) Pax-3 and (F) Pax-1 were developed with Fast Red

(red). nc, notochord; nt, neural tube.

Fig. 6 – Shh together with Wnt-6 or Wnt-1 can rescue Klhl31

expression in the dorsal somite after tissue ablation. (A and

B) In situ hybridization and sections showed that Klhl31

expression was lost on the operated side, after removal of

the neural tube and surface ectoderm. Pax-1 remained

expressed in the presence of the notochord/Shh (n = 10). (C

and D) Klhl31 expression was lost on the operated side, after

removal of the notochord and floor plate (n = 10). (E and F)

When a large mixed cell pellet containing DF1-RCAS-Shh

and RatB1a-Wnt-6 cells was implanted, dorsal somite

patterning and the activation of Klhl31 expression was

restored in the absence of surface ectoderm (n = 13). (G and

H) When a large mixed cell pellet containing DF1-RCAS-Shh

and RatB1a-Wnt-1 cells was implanted, dorsal somite

patterning and the activation of Klhl31 expression was

restored in the absence of surface ectoderm (n = 12). (B, D, F

and H) Klhl31 probe was developed with NBT/BCIP (purple),

and probes for Pax-1 and Shh were developed with Fast Red.

Implanted cell pellets are indicated by a stippled line and

position of tantalum foil is indicated by a solid line. fp, floor

plate; lg, large; nt, neural tube; se, surface ectoderm.
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2.7. Sonic hedgehog together with Wnt-1 or Wnt-6
mediates the activation of Klhl31 expression in the myotome

The above tissue ablation experiments suggested a role

for neural tube and surface ectoderm as well as ventral

midline tissues, notochord and floor plate, for correct

dorsoventral somite patterning and activation of Klhl31

expression in the myotome. We showed that neither of

these tissues on their own were able to induce a myotome

and thus Klhl31 expression. The notochord was not suffi-

cient to activate Klhl31 expression in the absence of neural

tube and surface ectoderm (Figs. 3E, F and 6A, B). Similarly,

the dorsal neural tube and surface ectoderm was not suffi-

cient to activate Klhl31 expression in the absence of the

notochord and floor plate (Fig. 6C and D). These tissues se-

crete Wnt and Shh molecules, which are known to affect

dorsoventral somite patterning and cell fates. Therefore,

we determined whether Wnt-1 or Wnt-6, expressed in dor-

sal neural tube and surface ectoderm respectively, together

with Shh can substitute in the absence of the inductive tis-

sues and mediate the formation of the myotome and the

initiation of Klhl31 expression. The surface ectoderm and
half of the dorsal neural tube were removed and an imper-

meable barrier (tantalum foil) was inserted. In addition, a

large mixed cell pellet containing Shh and Wnt-6, or Shh

and Wnt-1 expressing cells was implanted between the ax-

ial midline and the paraxial mesoderm (Fig. 6E–H). Embryos

were harvested after 24 h incubation and in situ hybridiza-

tion showed that Klhl31 expression was induced on the

operated side, suggesting that Wnt-6 or Wnt-1 together

with Shh can substitute for the ablated tissues.
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2.8. Ectopic expression of Myf-5 but not myogenin in the
neural tube results in expression of Klhl31

Because the timing of Klhl31 expression closely followed

the induction of myogenesis and the loss of Klhl31 transcripts

was linked to the loss of myotome formation, we asked

whether myogenic regulatory factors (MRFs) were able to acti-

vate Klhl31 expression (Fig. 7). Expression vectors encoding

Myf-5 or myogenin and an IRES-GFP were electroporated into

the neural tube as described (Sweetman et al., 2008). Embryos

were incubated for 48 h and in situ hybridization with probes

detecting GFP demonstrated successful targeting of MRF

expression vectors to the neural tube. Detection of Klhl31

showed that Myf-5 (Fig. 7A and C) but not myogenin (Fig. 7B

and D) led to the ectopic expression of Klhl31 in the develop-

ing neural tube.

3. Discussion

Here, we provide the first characterization of a vertebrate

orthologue of Klhl31 during amniote development. Sequence

comparison showed that Klhl31 is a highly conserved member

of the family of Kelch-like proteins with a typical domain

structure (Supplemental Fig. 1). Biochemical analyses have

shown that the BTB domain may be involved in transcrip-

tional repression (Yu et al., 2008), however, the molecular

functions of Klhl31 and the cellular processes it may regulate

are currently unknown.

The specific expression of Klhl31 transcripts in the early

heart and in developing myoblasts shortly after their commit-

ment to this fate suggest an important role during skeletal

and cardiac myogenesis (Fig. 1). In particular, we show here

that Klhl31 expression is intimately linked to skeletal myo-

genesis in developing somites and is initiated just after MyoD
Fig. 7 – Targeted expression of Myf-5 but not myogenin in the

neural tube led to ectopic expression of Klhl31. (A and B)

Dorsal views of whole mount embryos and (C and D)

sectioned samples hybridized with probes detecting GFP

(red) and Klhl31 (purple) show that ectopic Klhl31 expression

was detected in embryos electroporated with Myf-5 (A and

C, black arrows, n = 20) but not with myogenin (B and D,

n = 18). nt, neural tube; dotted white lines in (A and B)

indicate the electroporated half of the neural tube.
(Fig. 2). Expression remains confined to skeletal muscles and

the myocardium of the heart in late gestation embryos

suggesting possible functions in both, the early phases of

myogenic commitment and during the later muscle differen-

tiation programme.

To determine which inductive tissues and molecular sig-

nals are involved in the regulation of Klhl31 expression, we

performed a series of tissue ablation experiments. The chick-

en embryo is particularly suitable for this type of approach

due to the ease with which it can be accessed throughout

development. These ablations combined with barrier inser-

tion showed that the ventral midline tissues, floor plate and

notochord, together with the surface ectoderm and dorsal

neural tube provide signals important for the activation of

Klhl31 expression during embryogenesis. Notochord and neu-

ral tube (Fig. 3B) or notochord/floor plate and surface ecto-

derm (Fig. 3D) were sufficient to activate Klhl31 expression.

Notochord alone ( Figs. 3F and 6B), surface ectoderm alone

(Figs. 4B, D, H and 5B) or surface ectoderm and dorsal neural

tube (Fig. 6D) were not sufficient. This is consistent with pre-

vious data from many laboratories, which demonstrated a

requirement for all these tissues for dorsal somite patterning

and myogenic differentiation (Borycki et al., 1997; Dietrich

et al., 1998; Münsterberg and Lassar, 1995; Pownall et al.,

1996, 2002). Interestingly, a surface ectoderm derived signal

seems to be required for maintenance of Klhl31 expression

(Fig. 3J), whilst Pax-1 continues to be expressed in the absence

of the floor plate/notochord for at least 24 h (Fig. 3H and J).

We have previously demonstrated that Shh secreted from

the notochord and floor plate together with Wnt signaling

molecules derived from the neural tube and notochord are

important for the activation of myogenesis in somite explants

(Münsterberg et al., 1995). These observations were extended

and confirmed in vivo in amniote embryos (Borycki et al.,

1999; Marcelle et al., 1997; McDermott et al., 2005; Tajbakhsh

et al., 1998). We also demonstrated that b-catenin is specifi-

cally expressed in the epaxial myotome together with Lef/

TCF transcription factors (Schmidt et al., 2004) suggesting

that the Wnt mediated signal acts through b-catenin. This

was further supported by our finding that b-catenin expres-

sion in developing somites is regulated by myogenic signals

(Schmidt et al., 2000). Following the characterization of cru-

cial enhancer elements in mice (Summerbell et al., 2000) it

has been shown that Myf-5 is a direct target of Wnt/b-catenin

(Borello et al., 2006). Furthermore, its full activation requires a

cooperative interaction between the canonical Wnt and the

Shh/Gli pathways in muscle progenitor cells (Borello et al.,

2006).

We show here that the specific expression of Klhl31 in

skeletal muscles is regulated by myogenic signals, highly

reminiscent of what we have previously found for b-catenin

(Schmidt et al., 2000). In particular, a combination of Wnt-1

or Wnt-6 with Shh was able to rescue the ablation or block-

ing of inductive tissues and mediate myotome formation

and initiation of Klhl31 expression in myogenic cells

(Fig. 6F and H). The activity of Wnt-1 and Wnt-6 is consis-

tent with their expression in the dorsal neural tube and

the surface ectoderm respectively (Hollyday et al., 1995;

Schubert et al., 2002). Following tissue ablations, Klhl31

expression was lost concomitantly with the loss of the
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myotome itself suggesting that Klhl31 is a novel, integral

component of vertebrate myogenesis and that it may be

down-stream of the myogenic regulatory factors (MRFs).

This was confirmed by electroporation of Myf-5 into the

neural tube, which has been demonstrated to activate the

myogenic programme ectopically (Delfini and Duprez,

2004; Sweetman et al., 2008) and led to expression of Klhl31.

Interestingly, targeted mis-expression of myogenin did not

result in Klhl31 expression in the neural tube even though

it can often mimic the activity of Myf-5 (Delfini and Duprez,

2004; Sweetman et al., 2008). It will be important to deter-

mine whether Myf-5 directly activates Klhl31, however, this

will need further investigation.

4. Experimental procedures

4.1. Cloning of chicken Klhl31 homologues

The full-length coding region for chicken Klhl31 was ampli-

fied by PCR from cDNA prepared from stage 8–14 chicken em-

bryos using standard molecular biology protocols

(Münsterberg and Lassar, 1995). Primers were designed using

predicted Klhl31 sequences for the chicken orthologue (ENS-

GALG00000016309) derived from the Ensembl Genome Brow-

ser (www.ensembl.org). Klhl31 primer sequences were:

Klhl31-Not1 forward primer: 5 0- GCGGCCGCATGGCACCTAA

GAAGAAGAAC-3 0 and Klhl31-EcoR1-HA tag reserve primer:

5 0-GAATTCTCAAGCGTAATCTGGAACATC GTATGGGTAAATA

CTGACTGGTACAGAAG-3 0. The reverse primer included a

haemagglutonin tag. PCR products were cloned into pGEM-T

(Promega) and sequenced.

4.2. Whole-mount in situ hybridization, cryosections and
photography

Fertilized eggs were incubated at 37 �C until the desired

stage of development was reached (Hamburger and Hamilton,

1992). The embryos were collected into DEPC treated PBS,

cleaned and fixed overnight at 4 �C in 4% paraformaldehyde,

then dehydrated through ascending grades of PTW/methanol

washes and stored in methanol at �20 �C. Antisense digoxi-

genin-labelled riboprobe corresponding to the full-length cod-

ing sequence for chicken Klhl31 was synthesized using

linearized pGEM-T plasmid and Sp6 polymerase. Shh, Pax-1,

Pax-3 and MyoD plasmids were kind gifts from Randy John-

son, Rudi Balling, Martin Goulding and Cliff Tabin. Whole-

mount in situ hybridization was performed as previously de-

scribed (Schmidt et al., 2000). After in situ hybridization, the

embryos were fixed in 4% paraformaldehyde overnight and

photographed. For cryosectioning, embryos were embedded

in OCT (Tissuetec) and 20 lm sections were cut, collected on

TESPA coated slides, washed with PTW, coverslipped with

Entellan (Merck, Germany) and examined on an Axioplan

microscope (Zeiss).

Whole mount embryos were photographed on a Zeiss SV11

dissecting microscope with a micropublisher 3.5 camera and

acquisition software. Sections were photographed using Axi-

ovision. Images were imported into Adobe Photoshop for

labelling.
4.3. Tissue ablations, grafting of cell pellets and
implantation of impermeable barriers

Embryos were incubated to the desired stage (HH11–

HH12), eggs were opened from its broad end using blunt for-

ceps. Surgical manipulations were performed under a stereo

dissecting microscope using flame-sharpened tungsten nee-

dles. To examine effects on initiation of Klhl31 expression tis-

sues were removed adjacent to at least three epithelial

somites (somite stage II–IV/V). To examine the requirement

for the maintenance of Klhl31 expression axial midline tissues

were removed adjacent to somites IX–XII of HH12 embryos.

One to two drops of Dispase (1 mg/ml) were added to facilitate

tissue removal. Wnt-1, Shh, Wnt-1/Shh, Wnt-6 or Wnt-6/Shh

expressing cell pellets were used as a source for signaling

molecules and/or as a physical barrier. The parental cell lines,

RatB1a-LNCX and DF1-RCAS-GFP, were used as controls. Cell

pellets were picked up with a pipette and placed into the

operated site using tungsten needles, large cell pellets were

100–150 lm in diameter, small cell pellets were 40–60 lm in

diameter. After separation of surface ectoderm from the par-

axial mesoderm impermeable tantalum foil (thick-

ness = 0.0075 mm) was implanted to prevent reattachment

of the ectoderm (Alvares et al., 2003; Dietrich et al., 1997). Em-

bryos were incubated for 24 h after microsurgery and then

harvested and processed for in situ.

4.4. Cell culture and transfection

RatB1a fibroblasts expressing Wnt-1 or Wnt-6 and DF-1

cells infected with RCAS-Shh or RCAS-GFP were cultured in

DMEM (GIBCO Paisley UK) containing 10% fetal calf serum.

RatB1a fibroblasts were grown in presence of G418 (250 lg/

ml) as described (Münsterberg et al., 1995). When the cells be-

came confluent they were trypsinized and transferred to a

35 mm bacterial dish with fresh medium. After overnight

incubation cells formed aggregates in suspension, which

were used for grafting. Mixed cell aggregates were generated

by seeding a 1:1 mixture of Wnt-1/Shh or Wnt-6/Shh express-

ing cells in bacterial dishes.

4.5. Electroporation of neural tube

The expression vectors and electroporation procedure

used were as described previously (Sweetman et al., 2008).
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