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Abstract 

There is growing evidence that diet, lifestyle, epigenetic changes, genetic 

mutations and chronic inflammation are main risk factors for colon 

carcinogenesis. In particular, reactive oxygen and nitrogen species play a 

significant role in the pathogenesis of several diseases of the gastrointestinal 

tract, including colon cancer. Also, abnormalities in cytosine methylation such 

as global hypomethylation and regional promoter hypermethylation are 

recognised as hallmarks of gastrointestinal neoplasia. From a dietary point of 

view, two key components are widely believed to exert cancer 

chemopreventive effects: isothiocyanates (ITCs), present in cruciferous 

vegetables, and selenium (Se), which are an integral part of many 

selenoproteins. Therefore, this investigation examined the effect of the ITCs 

sulforaphane or iberin, either individually or in combination with selenium in 

the form of selenite or Se-methylselenocysteine, on the expression of 

antioxidant selenoenzymes thioredoxin reductase-1 (TrxR1) and 

gastrointestinal glutathione peroxidise (GI-GPx) in an in vitro model using 

Caco-2 cells. The results suggest that the simultaneous addition of ITCs+Se 

induced TrxR1 and GI-GPx expression more than either compound alone 

through an Nrf2-dependent mechanism. In addition, a single and double 

TrxR1/GI-GPx knockdown approach demonstrated that both selenoproteins are 

responsible for a synergistic protection against H2O2–induced cell death when 

cells are co-treated with ITC+Se. Furthermore, the impact of ITCs and Se on 

DNA methylation, specifically examining factors modulating gene-specific 

(p16 INK4A, ESR1, APC, HPP1, MGMT) and global (LINE-1) methylation, in 

addition to DNMT expression, were examined in Caco-2 and HCT116 cells. 

However, none of the compounds assessed influenced the methylation status of 

the genes studied. Taken together, these data shed new light on the relevance of 

combining ITC and Se to enhance antioxidant defense mechanisms and 

characterise further their potential role as chemopreventive agents in colon 

cancer.  
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1.1 Nutrition and Cancer  
 

Diet and lifestyle play an important role in cancer aetiology and it has been 

estimated that specific dietary patterns and constituents are key components of 

the environmental influences that may contribute to the development of 1/3 of 

human cancers (WCRF/AICR 2007).  During the early 90s expectations arose 

as increased consumption of fruit and vegetables showed evidence for 

protective effects against cancer. At this time most of the epidemiologic 

literature on the relationship between vegetables and fruit consumption and 

human cancer, at a variety of sites, was associated consistently with a reduced 

risk of cancers (Steinmetz and Potter 1991). Rapidly a number of government 

programmes were created in the United States and Europe to increase fruit and 

vegetable consumption. These include the ‘Five-A-Day for better health’ 

campaign program to encourage people to eat fruit and vegetables –at least five 

servings a day- to reduce the risk of cancer and other diseases. However, the 

evidence for a large preventive effect was based primarily on data from case-

control studies, which are susceptible to recall bias (Holmberg et al. 1996). 

Then in the late 1990s, when the results of prospective cohort studies of diet 

and cancer began to emerge, their outcome did not confirm the strong inverse 

association found in most case control studies. All these studies were 

summarised in a comprehensive report by the World Cancer Research Fund 

(WCRF/AICR 2007) where most of the outcomes obtained from the data 

analyses reversed previous conclusions concerning a strong benefit of fruit and 

vegetable consumption for protection at various cancer sites published 10 years 

previously (WCRF/AICR 1997).  

 

These conclusions were recently confirmed in a prospective analysis of nearly 

400,000 men and women who developed approximately 30,000 cancers at all 

sites combined over nearly 9 years of follow-up from the European Prospective 

Investigation into Cancer and Nutrition (EPIC) cohort to assess relationships 

between intake of fruits and vegetables and cancer risk.  After accounting for 

measurement error, a very weak but statistically significant inverse association 
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was seen, showing that in the best case scenario an increment of 200 g of fruit 

and vegetables each day (which corresponds to an extra two portions) could 

prevent 2.6% of cancers in men and 2.3% of cases in women (Boffetta et al. 

2010).  

 

However, a very weak association between fruits and vegetables and risk of 

cancer does not exclude the possibility that a small group of fruit and 

vegetables, or a specific food compound present in some of these groups, has 

an important protective effect (Willett 2010). In this respect, the emerging 

evidence for a variety of potentially-important components present in plant-

based foods that possess cancer-preventive properties has stimulated interest in 

the concept of chemoprevention and particular attention has been focused on 

particular fruits and vegetables, specifically citrus fruits, dark green vegetables, 

and cruciferous vegetables, that have been shown to influence various stages in 

the development of cancer (IARC/WHO 2004). 

 

Several cellular processes appear to be modulated by some food components 

influencing cancer growth and/or tumour behaviour. These include, but are not 

limited to, carcinogen metabolism, DNA repair, cell proliferation, cell death, 

inflammation, differentiation and angiogenesis (Davis and Milner 2007). Some 

of these associations between higher consumption of fruits and vegetables and 

reduced risk of cancers in epidemiological and mechanistic studies have been 

suggested to be as a result of its content of biologically active chemicals, 

including established nutrients but with greater interest in the bioactive 

constituents named phytochemicals. These compounds correspond to a wide 

range of biologically-active secondary plant metabolites that provide plants 

with colour, flavour and natural protection against pests and have been linked 

to reduction in the risk of major chronic diseases (Johnson et al. 1994). It is 

estimated that >5000 individual phytochemicals have been identified in fruit, 

vegetables and grains, but a large percentage still remain unknown (Liu 2003). 

They are classified according to their chemical structure and functional 

characteristics and include various carotenoids, phenolics and organosulfur 
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compounds within which our group of interest, isothiocyanates, can be found 

(Figure 1.1). 

 
Figure 1.1 Classification of dietary phytochemicals.  

 

1.2 Cruciferous Vegetables and Glucosinolates 
 
Glucosinolates (GSs) are an important group of phytochemicals, present in 

Brassica vegetables including broccoli, watercress, brussel sprouts, cabbage, 

Japanese radish and cauliflower. Within the plant, the GS content can vary 

between and within member of the cruciferous vegetables depending on 

cultivation environment and genotype.  

 

1.2.1 Glucosinolate Metabolism  
 
Glucosinolates are relatively biologically inert, but can degrade to a range of 

bioactive compounds, such as isothiocyanates (ITCs) and indoles, on 

hydrolysis by the plant-based enzyme myrosinase, but in the human diet the 

myrosinase in cruciferous vegetables is often heat-inactivated, and in this 

situation GSs can also be hydrolysed less efficiently by the colonic microflora 

(Fahey et al. 2001) (Figure 1.2). The glucosinolate molecule comprises two 

parts: a common glycone moiety and a variable aglycone side chain derived 

from amino acids. While over 120 GSs have been identified in various plants 

(Fahey et al. 2001), cruciferous vegetables are the principal dietary source of 

ITCs, but the types of crucifers frequently consumed by humans are mostly 

limited to the ones mentioned above and a few others.  

Phytochemicals  

Alkaloids Carotenoid
 

Phenolics Nitrogen-containing 
compounds 

Organosulfur 
compounds  

Isothiocyanates 
Indoles 
Allylic sulfur 

 

Phenolic 
acids 

Flavonoids Stibenes Coumarins Tannins 
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Examples of common crucifers that are particularly rich in certain ITCs 

include: mustard and horseradish, which are rich in allyl-ITC (AITC) found in 

the form of its corresponding GS sinigrin; watercress, which is rich in 

phenethyl-ITC (PEITC), found as gluconasturtiin; broccoli and broccoli 

sprouts, rich in the GS glucoraphanin, which gives rise to one of the most well-

characterised ITCs sulforaphane (SFN). Many other ITCs that are present in 

lower quantities also may contribute to the anti-carcinogenic properties of 

crucifers (Table 1.1). 

 

Table 1.1 Glucosinolates and chemical structures of isothiocyanates found in 

commonly eaten cruciferous vegetables 

Glucosinolates 
Associated 

Isothiocyanates 

Chemical Structure of Isothiocyanates 

and Plant Source 

Glucoraphanin Sulforaphane 

Broccoli, Brussels sprouts 

Glucoiberin Iberin 

Broccoli, some Brussels sprouts and cabbages 

Glucoerucin Erucin 
Rockets 

Sinigrin 
Allyl-ITC 

(AITC) Mustard and horseradish 

Gluconasturtiin 
Phenethyl-ITC 

(PEITC) 
Watercress, radishes, turnips 

Figure 1.2 General scheme of the hydrolysis of glucosinolates to isothiocyanates. Adapted from 
(Nakamura and Miyoshi 2010) 
 

CH3–S–CH2–CH2–CH2–CH2–N=C=S 
        Ⅱ 
         O 

CH3–S–CH2–CH2–CH2–N=C=S 
        Ⅱ 
         O 

CH3–S–CH2–CH2–CH2– CH2–N=C=S 
         
         

CH2=CH–CH2–N=C=S 
         
         

           –CH2–CH2–N=C=S  
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1.2.2 Isothiocyanate Metabolism  
 
Studies in both humans and experimental animals have demonstrated that 

exposure of cells to ITCs can lead to a rapid high intracellular accumulation. 

Reduced glutathione (GSH), the most abundant thiol-carrying molecule in a 

cell, is known to be primarily responsible for the conjugation of ITCs, which 

takes place spontaneously but is further enhanced by glutathione S-transferase 

(GST) resulting in the formation of dithiocarbamates through the mercapturic 

pathway with the excretion of N-acetylcysteine in urine (Zhang and Callaway 

2002) (Figure 1.3).  

 

Glutathione is known to maintain the cellular oxidation-reduction balance and 

protects cells against free radical species. Despite clear evidence that ITCs 

stimulate cellular antioxidant proteins that protect cells against oxidative 

damage and carcinogens (see section 1.3.2 below), it has also become 

increasingly apparent that they induce cellular stress as conjugation with 

glutathione (GSH) render the cells susceptible to oxidative stress and stress-

induced damage (Clarke et al. 2008). Moreover, conjugated ITC-GSH have 

been shown to be removed by membrane transporters including multidrug 

resistant associated protein 1 (MRP-1) and P-glycoprotein-1 (Pgp-1) and are 

transferred back to the extracellular medium (Zhang and Callaway 2002). 

Figure 1.3 Isothiocyanates (R–N=C=S) are conjugated to glutathione by glutathione S-
transferase (GST), metabolized sequentially by γ-glutamyltranspeptidase (GTP), 
cysteinylglycinase (CGase) and histone acetyltransferase (HAT) to form, ultimately, 
mercapturic acid NAc, N-acetylcysteine for urine excretion. Adapted from (Nakamura and 
Miyoshi 2010) 
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These conjugates are thought to release more ITCs for re-accumulation in cells 

which results in further GSH reduction that has been proposed to alter normal 

cellular functions and promote the induction of oxidative stress associated with 

ITC-induced apoptosis (Kim et al. 2003). 

 

1.3 Molecular Basis of the Chemoprotective Effects of 

Isothiocyanates 

 
Understanding  the chemoprotective mechanisms of isothiocyanates is 

important not only because these natural compounds block the formation of a 

wide variety of carcinogen-induced tumours in rodents, but also because 

isothiocyanates and their glucosinolate precursors are widely available in 

human dietary plants and are consumed in significant quantities (Zhang and 

Talalay 1994). 

 

Consumption of cruciferous vegetables has been more strongly associated with 

cancer protection than vegetable consumption in both animal models and from 

available prospective cohort data. Verhoeven et al. (1996) reviewed the 

evidence for Brassica consumption and cancer risk, and reported that 67% of 

all studies showed an inverse association between total Brassica vegetable 

intake and risk of cancer at various sites (Verhoeven et al. 1996) and a wide 

range of studies in humans, animals and in vitro has confirmed this finding 

(IARC/WHO 2004). For instance, cruciferous vegetables have been found to 

reduce morphological markers of colon cancer risk in dimethylhydrazine 

treated rats (Arikawa and Gallaher 2008). Also in  Japan, a public health 

centre-based prospective study carried out to investigate associations between 

fruit and vegetable consumption and risk of oesophageal squamous cell 

carcinoma (SCC), identified that only cruciferous vegetables were associated 

with a significant decrease in the risk of oesophageal SCC (Yamaji et al. 2008). 

Consistent with this study, a case-control study recently found that fruit and 

vegetable intake was unassociated with lung cancer risk among smokers, but 

increased cruciferous vegetable intake was significantly associated with 
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reduction of lung cancer risk among smokers (Tang et al. 2010).  Numerous 

studies suggest that phytochemicals in Brassica vegetables are responsible for 

their chemo-protective effects, and among them, glucosinolates are believed to 

be responsible for this anti-carcinogenic action (Holst and Williamson 2004). 

As mentioned above, following cell disruption they are hydrolysed forming a 

group of biologically active compounds known as isothiocyanates. These 

breakdown products influence the process of carcinogenesis partly by 

modulation of phase I and II enzymes, induction of apoptosis and cell cycle 

arrest (Johnson 2002; Zhang 2004). These properties of SFN and other ITCs 

have led to the view that they are important cancer chemopreventive agents 

capable of inhibiting multiple steps in the carcinogenesis process (Zhang et al. 

2006). 

 

1.3.1 Inhibition of Phase I Enzymes  
 

Many of the dietary and environmental carcinogens to which humans are 

exposed are subjected to enzymatic transformation once they enter the human 

body. This process consists of the addition of oxygen, which causes the 

chemical molecule to become more hydrophilic and consequently more readily 

excreted. Such transformation is referred to as Phase I metabolism and is 

catalysed by cytochrome P450 enzymes (CYPs). Consequently, pro-

carcinogens are usually converted into highly reactive intermediates that can 

react with critical macromolecules such as DNA, RNA and protein, resulting in 

adducts. DNA adducts that persist unrepaired can generate mutations in critical 

genes such as oncogenes and tumour suppressor genes (Hecht 1999; Juge et al. 

2007). Therefore, the inhibition of phase I enzymes is thought to be a 

preventive measure against chemically induced carcinogenesis. A dose-

dependent inhibition of CYP1A1 and CYP2B1/2 by sulforaphane was 

observed in rat hepatocytes, and also the expression of CYP3A4, the major 

CYP in human liver, was markedly decreased at both mRNA and activity 

levels (Maheo et al. 1997). Additionally, treatment of cells with ITCs has been 

shown to reduce adducts produced from exposure to heterocyclic amines 
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(HCAs) derived from cooked meat, which has been implicated in the aetiology 

of certain human cancers including colon, prostate and breast cancer (Takashi 

et al. 2004). In this respect, SFN has been shown to decrease the number of 

adducts caused by one of the most abundant types of HCA formed in cooked 

meat and fish 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) by 

~40%, in a dose-dependent manner in human HepG2 cells pre-treated with 1-

10 µM SFN followed by 10 nM of PhIP. However, there was no decrease in 

DNA adduct formation with post-treatment with SFN, suggesting that SFN had 

no effect on PhIP DNA-adduct repair, but rather prevented PhIP interactions 

with DNA (Bacon et al. 2003). 

 

1.3.2 Phase II metabolism 
 
Blocking carcinogen metabolic activation and promoting carcinogen 

detoxification are two ways to decrease carcinogenesis. As already discussed in 

the preceding section, mammalian cells have evolved mechanisms for 

protection that convert carcinogens to inactive metabolites that are readily 

excreted from the body.  Early evidence suggesting that increased consumption 

of fruit and vegetable was associated with reduced risk of developing cancer 

was initially thought to be due to the presence of phase II enzyme inducers in 

edible plants. However, when the inducer potencies of a variety of frequently 

consumed plants were measured, cruciferous plants were shown to rank higher 

as phase II enzyme inducers (Prochaska et al. 1992).  

 

Much of the evidence points out that a decrease in the expression of 

antioxidant enzymes together with an increase in the production of free radical 

species might render cells susceptible to permanent damage and initiate the 

sequence of events leading to cancer. On the other hand,  elevation of phase II 

enzymes and other antioxidant systems in specific tissues exposed directly to 

bioactive food components, such as the colon, may confer cytoprotection 

against the toxicity of electrophiles and ROS (Talalay et al. 1995). These 

groups of functionally diverse phase II enzymes include glutathione 
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transferases (GSTs), UDP-glucuronosyltransferases (UGTs), and 

NAD(P)H:quinone oxidoreductase 1 (NQO1) (Figure 1.4). The modulation of 

phase II gene expression and enzyme activity by ITCs has been assessed in a 

number of cell lines of different origin, the most commonly utilized being 

derived from liver hepatoma, human HepG2 and mouse Hepa1c1c7. For 

instance, SFN and its glutathione conjugate was found to increased 

significantly in a time-dependant manner both UGT1A1 and GSTA1 mRNA 

levels in HepG2 and HT29 cells (Basten et al. 2002). In another study when 

mouse Hepa1c17 cells were incubated with 2.5 µM of SFN an increase in 

NQO1 activity was observed, reaching a maximum induction of 3 fold over 

control (Matusheski and Jeffery 2001).  

 

 
 
Figure 1.4 Role of oxidative stress and antioxidant systems in a simplified scheme of 
carcinogenesis. Reactive oxygen and nitrogen species (ROSN) such as the superoxide radical 
(O2˙ˉ), peroxynitrite (ONOOˉ or ˙NO2), hydrogen peroxide (H2O2), singlet oxygen (˙O2) and 
the hydroxyl radical (˙OH) are constantly generated in cells as unwanted by-product of aerobic 
metabolism and this together with the inflammatory microenvironment of the tissue acts as a 
predisposing factor to multistage carcinogenesis (Kumar Kundu et al. 2009). Although a low 
physiologic level of ROSN is scavenged efficiently by the cellular antioxidant defence system 
an imbalance between the generation of ROSN and cellular antioxidant capacity, as shown 
above, turns into a state of oxidative stress that contributes to carcinogenesis.  
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Cell-based models have been used extensively for screening and detection of 

novel cancer chemopreventive agents from food compounds. However, the 

induction level and type of phase II enzyme induction vary with different cell 

lines as reported in a study that used seven widely-adopted cell lines, including 

Hepa1c1c7, HepG2, MCF7, MDA-MB-231, LNCaP, HeLa and HT-29 where 

the effects of 25µM of SFN on the enzymatic activity of GST, NQO1, aldo-

keto reductase and glutathione reductase were evaluated (Jiang et al. 2003).  

 

This tissue-specific response has been confirmed in vivo after analysing the 

ability of six plant-derived ITCs (allyl-ITC, iberverin, erucin, SFN, iberin and 

cheirolin) to increase tissue levels of NQO1 and GST in a variety of rat tissues 

at doses of 40µmol/kg/day. The results revealed different levels of enzyme 

induction in the duodenum, forestomach and urinary bladder out of 15 tissues 

analysed, and such responses differed depending on the ITC employed 

(Munday and Munday 2004). Such difference observed at the cell and tissue 

level may be explained by the degree at which different ITCs accumulate in 

cells as demonstrated by Zhang et al (1998), who examined the accumulation 

of nine ITCs with very different structures at 5 µM each in Hepa 1c1c7 for 24 

hours. After measuring two phase II enzymes NQO1 and GST the author 

demonstrated that those ITCs with an increased level of accumulation in cells 

induced higher levels of phase II enzymes, demonstrating that these changes 

were structure-related and influenced by cellular GSH levels (Zhang and 

Talalay 1998).  

 

Also, extracts of a hybrid between broccoli and a wild relative of broccoli, 

Brassica villosa, resulted in a more than 80-fold increase in the induction of 

NQO1 in Hepa1c1c7 cells over that with extracts from standard broccoli 

cultivars. The superior potency was as a result of an increase in glucoraphanin 

and its greater conversion to SFN (Faulkner et al. 1998; Mithen et al. 2003). 

The same group recently carried out a human intervention study in healthy 

volunteers to quantify changes in gene expression in the gastric mucosa 

following a single meal of standard and high glucosinolate broccoli. The single 
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meal of super broccoli caused up-regulation of several xenobiotic genes 

including detoxification enzymes, whereas a single meal of a regular 

commercial variety did not. The glucosinolate content of the super broccoli 

meal was 573 µmol SFN, over 3 fold higher than the conventional broccoli 

meal (170 µmol SFN) (Gasper et al. 2007). In another human study, jejunal 

perfusion of broccoli extracts (equivalent to ~1.2 g dry weight broccoli) 

resulted in an induction of GSTA1 and UGT1A1 in exfoliated enterocytes; the 

changes in gene expression were also confirmed in Caco-2 cells, where 

sulforaphane was responsible for the  induction GSTA1 (3-fold) (Petri et al. 

2003). 

 

Since the initiation of many tumours results from damage to DNA by 

electrophilic carcinogen metabolites or by reactive oxygen and nitrogen species 

(ROSN), the elevation of enzymes that metabolize xenobiotics may be 

particularly relevant to the protective effect of cruciferous vegetables to 

provide protection by increasing the antioxidant capacity of animal cells and 

their ability to handle oxidative stress (Figure 1.4).  

 

1.3.2.1 Transcriptional Regulation of Phase II Enzymes 
 

As described above the stimulation of phase II enzymes is one of the most 

important components of cellular defence mechanisms and the ability of ITCs 

to promote their activation is now understood to be enabled by the Nrf2/ 

antioxidant response element (ARE) system. However, the list of detoxifying 

or antioxidant enzymes stimulated by ITCs is not limited only to the phase II 

group as the Nrf2/ARE signalling pathway targets a variety of enzymes (Table 

1.2). 
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  Table 1.2 Genes induced by Nrf2. Adapted from (Brigelius-Flohe and 
Banning 2006) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 

 

 

 

 

Nrf2 (NF-E2-related factor-2) is a member of the NF-E2 family of basic 

leucine zipper transcription factors (b-zip). Nrf2 protein is found primarily in 

the cytoplasm and interacts with Keap1 (the Kelch-like ECH-associated 

protein-1), which recruits an E3 ubiquitin ligase, resulting in Nrf2 

ubiquitination and therefore degradation by the proteosome preventing its 

activation. Inducers, such as ITCs, react with Keap1 leading to loss of its 

repressor activity and subsequently allowing Nrf2 to undergo nuclear 

translocation where it binds to the ARE, which is present in the promoter 

region of genes encoding phase 2 enzymes and enzymes of the antioxidant 

system and activates their transcription (Thimmulappa et al. 2002; Dinkova-

Kostova and Talalay 2008; Eggler et al. 2008). However, apart from its role in 

the activation of antioxidant and detoxifying enzymes shown in table 2, more 

recently several studies have indicated  a positive role of Nrf2 in cancer 

tumorigenesis and chemoresistance (Lau et al. 2008). 

 

Targets for Nrf2 
Phase 2 detoxifying enzymes 
UDP-glucuronosyl transferase  
microsomal epoxide hydrolase  
glutathione-S-transferases  
NADPH quinone oxidoreductase  
 
Redox-active proteins 
heme oxygenase 1  
ubiquitin/PKC-j-interacting protein 
peroxiredoxin 1  
thioredoxin  
thioredoxin reductase-1*  
dihydrodiol dehydrogenase  
cyclooxygenase-2  
 
GSH-related enzymes 
γ-glutamyl-cysteine synthetase  
cystine/glutamate exchange transport system Xc 
gastrointestinal glutathione peroxidase (GI-GPx)* 
leukotriene B4 dehydrogenase  
* Selenoproteins  
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1.3.3 Cell Proliferation, Apoptosis and Cell Cycle Arrest 

Mediated by Isothiocyanates 

 

Deregulated proliferation and inhibition of apoptosis are two of the main 

consequences of tumour development and represent two potentially important 

mechanisms for dietary chemoprevention (Martin 2006). Survival of all 

somatic cells requires the continuous input of survival signals to suppress 

apoptosis. The central machinery responsible for the initiation and the 

execution of cell death by the cleavage of a variety of intracellular substrates 

that trigger the cell dissolution process is a family of cysteine and aspartyl 

proteases termed caspases (Evan and Vousden 2001). Additionally, the 

progression of the cell cycle through the four phases, G1, S, G2 and M, is 

regulated by cyclin-dependent kinase (CDK) molecules and cyclins, which 

drive the cells from one phase to the next. Elucidation of the critical events 

associated with tumour formation provides the opportunity for dietary 

intervention to target key events during carcinogenesis particularly by 

bioactive agents such ITCs. In this scenario, treatment of cells with ITC leads 

to activation of caspases involved in multiple apoptotic pathways. For instance, 

in HL60 cells, benzyl-ITC (BITC) and allyl-ITC (AITC) at 10 µM activated 

caspase 9 (the mitochondria pathway), caspase 8 (the death receptor pathway, 

DR5) and caspase 12 (the endoplasmic reticulum pathway, ER), with 

subsequent activation of caspase 3 (Zhang et al. 2003) (Figure 1.5).  

 

The classical hallmark of apoptosis such as translocation of phosphatidylserine 

across the plasma membrane and chromatin condensation together with a  

significant accumulation of HT29 cells at G2/M phase was detected at 48-72 h 

after treatment with 15 µM of SFN where the main signalling pathways 

affected were up-regulation of Bax, mitochondrial release of cytochrome c, and 

poly-(ADP-ribose)-polymerase (PARP) cleavage, without affecting p53 

expression (Gamet-Payrastre et al. 2000). In contrast, Shen (2006) found that 

treating HT-29 cells with SFN concentrations ranging from 12.5 to 100 µM for 

12 hours induced G1 cell cycle arrest dose dependently by down-regulating 
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cyclin D1, cyclin A, and c-Myc at both mRNA and protein levels and 

increasing the expression of p21 in a ROS- and MAP kinase-dependent, but 

p53-independent, manner (Shen et al. 2006). Similar results to those obtained 

by Gamet-Payrastre et al., (2000) have been observed in adenocarcinoma 

Caco-2 cells (Visanji et al. 2004), metastatic colon cells SW620 (Andelova et 

al. 2007; Rudolf et al. 2009), prostate cancer cells LNCaP (Chiao et al. 2002), 

and the human leukaemia HL60 cell line and its multidrug-resistant sublines 

(Jakubikova et al. 2005) using a wide variety of ITCs.  

 

Figure 1.5 Mechanisms of isothiocyanate-induced apoptosis of tumour cells. Adapted from 

(IARC/WHO 2004) 

 

Several independent mechanisms seemed to play important roles in this process 

including the activation of MAPK/c-Jun NH2-terminal kinase (JNK), through 

which ITCs induce apoptosis. Activation of all three MAPKs (JNK, 

extracellular signal-regulated protein kinase (ERK) and p38 kinase) by 

phosphorylation (Figure 1.5) was observed in HT29 cells treated with 

phenethyl-ITC (PEITC). However, inhibition of JNK (but not ERK and p38) 
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suppressed apoptosis induced by PEITC (Hu et al. 2003). Another signalling 

pathway that has been found to participate in the induction of apoptosis by 

ITCs is PI3K/AKT. Pre-treatment of Caco-2 cells with a PI3K inhibitor 

(LY294002) was found to significantly decrease cell death induced by benzyl-

isothiocyanates (BITC) (Jakubikova et al. 2005). Phenylmethyl isocyacyanate 

(PMITC) and PEITC were also shown to induce apoptosis in Jurkat  and HL60 

cells accompanied by an increase in the activity of JNK (Chen et al. 1998). 

Conversely, in Caco-2 cells exposed to AITC, BITC and PEITC expression of 

JNK 1/2/3 at the protein level was not affected and no phosphorylation of JNK 

was found; however the compounds induced a time and concentration 

dependent activation of ERK1/2 (Jakubikova et al. 2005). These conflicting 

results show significant variations among cells lines with respect to the 

potential apoptosis targets that are modulated by various ITCs and that more 

research is needed to clarify the mechanisms involved in how ITCs modulate a 

wide variety of cellular events such as proliferation, differentiation, growth 

arrest, and apoptosis. 

 

1.4 Human Cell and Tissue Exposure to Isothiocyanates   
 

An understanding of the hydrolysis of glucosinolates and absorption in human 

subjects would assist in the design of more robust molecular studies to evaluate 

the protective effects of Brassica against cancer and would guide the use of 

physiologically relevant ITC concentrations in human cell lines. Feeding trials 

with human subjects have shown that bioavailability of ITCs is greater 

following ingestion of raw Brassica with active plant myrosinase than after 

consumption of the cooked plant with denatured myrosinase (Conaway et al. 

2000). Substantial amounts of glucosinolates occur in a wide variety of 

vegetables, and their occurrence has been extensively reviewed. For example, a 

minimum of ~12 mg of phenethyl isothiocyanate (PEITC) is released when 2 

oz (56.8 g) of watercress is consumed (Hecht 1999). In a human study where 

volunteers were given a single serving of broccoli sprouts extract containing 

200 µmol of ITCs of closely related chemical structures (composition: 77.2% 
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SFN/iberin and 22.8% erucin) (see Table 1.1) it was found that the ITCs were 

absorbed rapidly with peak plasma concentration of 0.94-2.27 µM 1h after 

ingestion (Ye et al. 2002). Likewise, Ji et al (2003) showed that the maximal 

plasma concentration (Cmax) of PEITC achieved 2.6 h post ingestion of 100 g 

watercress in humans (containing 25 mg of PEITC or 153 µmol if fully 

released), was 0.93 ± 0.25 µM (Ji and Morris 2003). In another study (Gasper 

et al. 2007) human subjects were fed with different broccoli soups (100 g of 

florets+150 ml water), one with standard broccoli containing 170 µmol of SFN 

and the other with high glucosinolate broccoli containing 573 µmol of SFN and 

it was found that the peak concentration of SF in the plasma was 2.2 and 7.3 

µM, for standard and HG broccoli, respectively, and occurred 2 h after 

consumption of the soups.  

 

Also, studies in laboratory animals have indicated that ITCs are promising 

chemopreventive agents against cancers at various sites. For instance, pre-

treatment with SFN and or PEITC significantly decreased the total number of 

azoxymethane (AOM)-induced aberrant crypt foci (ACF) in Ficher rats (Chung 

et al. 2000). Similarly, ApcMin/+ mice fed with a SFN-supplemented diet 

developed significantly fewer and smaller polyps with higher apoptotic and 

lower proliferative indices in their small intestine, in a SFN dose-dependent 

manner equivalent to 5-10 µmol/day (Hu et al. 2006). In another in vivo study, 

benzyl isothiocyanates (BITC)  reduced the incidence of mammary hyperplasia 

and carcinoma in a female mouse model with mammary-specific expression of 

the neu oncogene (Warin et al. 2009). 

 

In conclusion, research conducted to date suggests that cruciferous vegetables 

contain constituents that reduce cancer risk. However, only limited information 

is available regarding the structure-activity relationship of different 

isothiocyanates. Therefore, this research examined if small differences in the 

structure of two related isothiocyanates, sulforaphane and iberin, in 

combination with two different selenium compounds can differentially regulate 

two specific selenoproteins, TrxR1 and GI-GPx, and if these differences 
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provide a guide to understanding their cancer preventive potential through 

modulation of oxidative stress in colon cancer cells. 

 

1.5 Selenium and Cancer Prevention 
 

Another dietary compound that has been shown to have cancer-

chemopreventive roles is selenium (Se). Selenium is a mineral trace element 

that occurs in different chemical forms; it is toxic in large amounts, but 

essential at trace levels. The selenium content and species of both plant and 

animal foodstuffs depend on the quantity and chemical forms of the element to 

which they are exposed in the environment. These factors, affecting selenium 

bioavailability, have recently been the focus of debate and research to derive 

better data on selenium requirements and reliable biomarkers of selenium 

status to ultimately establish dietary recommendations for optimal health 

(Fairweather-Tait et al. 2010; Hurst et al. 2010).  

 

Although dietary selenium intake was shown to have inverse associations with 

cancer mortality as early as the 1960s (Shamberger and Frost 1969), it was not 

until 1996 that an intensive effort was launched to try to understand the 

mechanism of action of Se as a cancer preventive agent. Clark and co-workers 

reported results from The Nutritional Prevention of Cancer (NPC) study, where 

they showed that supplementation with selenized yeast decreased cancer 

incidence by nearly 50% (Clark et al. 1996). After this report extensive 

epidemiological evidence has emerged showing that dietary selenium 

deficiency is linked to an increased risk of cancers in several organs including 

lung (Zhuo et al. 2004), oesophagus (Wei et al. 2004), stomach (Corella et al. 

1996), prostate (Li et al. 2004) and colon (Jacobs et al. 2004). However, results 

are heterogeneous among organs (Rayman 2005). For instance, despite the fact 

that studies investigating an association between selenium and cancer in the 

gastrointestinal tract have produced promising results to support a 

chemopreventive role of selenium, several others have produced inconclusive 

evidence, and as a consequence the World Cancer Research Foundation has 
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concluded in its latest report that there is limited evidence that food containing 

selenium protects against colorectal and stomach cancer, but for other sites, 

such as prostate cancer, such foods probably decrease risk (WCRF/AICR 

2007). In a recent systematic review aimed to study the beneficial and harmful 

effects of antioxidant supplements such as beta-carotene, vitamin A, vitamin C, 

vitamin E, and selenium in preventing gastrointestinal cancers the authors 

concluded that these supplements, with the possible exception of selenium, 

might increase mortality (Bjelakovic et al. 2008). A disappointing outcome 

arose from the recent Selenium and Vitamin E Cancer Prevention Trial 

(SELECT), which demonstrated that selenium (200 µg/d from L-

selenomethionine), vitamin E, or selenium + vitamin E (at the tested doses and 

formulations) did not prevent prostate cancer in the generally healthy, 

heterogeneous population of men in the study and also had no effect on 

secondary endpoints, which included  lung cancer and colorectal cancer 

(Lippman et al. 2009). In addition, these supplementation trials have shown 

recently that a high level of serum selenium correlates with increased 

metabolic risk factors including type II diabetes, blood pressure and lipid levels 

(Stranges et al. 2007; Stranges et al. 2009). 

 

Potential limitations of SELECT include that selenized yeast, as employed by 

Clark et al., was not tested in this trial. It is feasible that this difference proved 

important and that other selenium species observed in the ‘Clark’ yeast (Uden 

et al. 2004; Amoako et al. 2009) were connected to those previous results. In 

fact, in addition to selenomethionine (initially thought to be the major Se form, 

but found later to represent no more than 20%) other compounds identified 

later included selenocysteine, Se-methylselenocysteine and selenomethionine 

(representing ~20%). Thus the selenized yeast actually contained a cocktail of 

selenium in a variety of chemicals forms (Ip 1998). Also, different doses of 

selenium were not tested in the SELECT trial.  

 

In spite of inconsistencies, a large body of experimental evidence in animals 

and cell culture models indicates that this essential trace element exerts 
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anticarcinogenic effects by multiple mechanisms including altered carcinogen 

metabolism, cell cycle regulation, immune surveillance, cell death 

programming, cancer cell migration and angiogenesis (Jackson and Combs Jr 

2008; Zeng and Combs Jr 2008). Some such functions may relate to the crucial 

fact that selenium is a component of the amino acids selenocysteine and 

selenomethionine, which are incorporated into 25 genes encoding over 30 

mammalian selenoproteins, as some genes (such as GPx4) have alternative 

splice variants (Kryukov et al. 2003). Selenoproteins that might be relevant to 

cancer risk include GPx1, GI-GPx, Sep15, SelP and TrxR1 (Bellinger et al. 

2009) Single nucleotide polymorphisms (SNPs) or mutation in some of these 

genes have been related to cancer. For instance, loss of heterozygosity of 

cytosolic glutathione peroxidise (GPx1) was identified in 42% of cases of 

colon cancer and was also a feature of others cancers including  breast, 

prostate, lung, head and neck cancer (Hu et al. 2005). Other polymorphisms in 

GI-GPx, and in SelP, have been associated with colorectal cancer, although 

these SNPs seem to play a minor role in colorectal carcinogenesis (Al-Taie et 

al. 2004), whereas a particular Sep15 SNPs may increase lung cancer risk in 

smokers (Jablonska et al. 2008). 

 

Efficacy of high-level selenium supplementation in cancer prevention studies 

has been proposed to be due to the direct chemical properties of selenium and 

its metabolites rather than being mediated through selenoproteins (Chu et al. 

2004) as will be point out in section 1.5.2. Functions of specific selenoproteins 

during the carcinogenesis process and the interaction of selenium with other 

food compounds, such as isothiocyanates, in the modulation of selenoprotein 

expression awaits further investigation. 

 

1.5.1 Selenoprotein Biosynthesis 

 

The biosynthesis and specific incorporation of selenocysteine (Sec) into 

selenoproteins requires a unique mechanism specified by the UGA codon in 

mRNA. Unlike the other 20 amino acids, biosynthesis of Sec takes place on a 



 
 

21 
 

              Chapter 1 

SECIS 

3’ 

5’ 

Selenoproteins 

unique tRNA species (tRNASec) from selenophosphate as the Se source. 

However, as UGA is also a stop codon this process requires multiple features 

such as the presence of a stem-loop structure in the 3’-mRNA-untranslated 

region, termed the selenocysteine insertion sequence element (SECIS), which 

recruits several protein factors such as the SECIS-binding protein (SBP2) and 

the selenocysteine elongation factor (EFSec) (Figure 1.6) (Hatfield et al. 2006; 

Papp et al. 2007).  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Selenoprotein synthesis.  The SECIS element in the 3' untranslated region of the 

mRNA (stem loop in red) recruits SBP2 (light blue), which in turn recruits EFSec (green) and 

tRNASec (yellow). The complex interacts at the ribosome to decode UGA as selenocysteine. 

Adapted from (Berry 2005). 

 

1.5.2 Metabolism of Different Dietary Selenium Compounds  
 

Most dietary forms of selenium are easily absorbed, but subsequent 

metabolism depends on the form in which they are present. In general 

selenomethionine, selenocysteine, selenate and selenite enter the selenide pool 

to be subsequently used for selenoprotein synthesis or excreted in the urine as a 

selenosugar. The major forms of selenium occurring in food are the organic 

forms selenomethionine (SeMet, found in plants and animal sources) and 

selenocysteine (found in animal sources). Selenocysteine is cleaved by a β-

lyase directly into selenide, whereas SeMet has first to be “trans-sulfurated” 

UGA 



 
 

22 
 

              Chapter 1 

into selenocysteine or, alternatively, SeMet can be incorporated non-

specifically into proteins  (Brigelius-Flohé and Banning 2009). Inorganic salts 

such as selenate and selenite are provided mostly by drinking water and are 

also contained in some foods in low quantities (Fairweather-Tait et al. 2010) 

 

There is extensive evidence that monomethylated forms of selenium are critical 

metabolites for the chemopreventive effect of selenium (Ganther 1999). 

Indeed, Clement Ip and co-workers have produced strong experimental 

evidence that any precursor that will directly generate a steady stream of 

methylselenol (CH3SeH) or its derivate, is more active than selenite or 

selenomethionine in tumour inhibition (Ip et al. 1991; Ip et al. 2000). As 

mentioned above, selenium accumulating plants produces predominantly  

selenomethionine, which is metabolised via the multi-step transsulfuration 

pathway to selenocysteine, in turn degraded to hydrogen selenide (H2Se) for 

subsequent methylation by methyltransferases  that give rise to methylselenol 

(Ip et al. 2002). In this respect, Se-methylselenocysteine (SeMSC) (present in 

plants of the Brassica family) and γ-Glutamyl-Se-methylseloncysteine (present 

in plants of the Allium family), which are known to be converted to 

methylselenol (Dong et al. 2001), have been found to account for the 

anticarcinogenic effect of selenium-enriched broccoli and garlic respectively 

and have proved to be more effective in reducing colon and mammary 

tumorigenesis in rodents than selenate or selenium-enriched yeast, which 

contains mostly selenomethionine (Finley et al. 2000; Ip et al. 2000) (Figure 

1.7). Finally, these studies have made evident that the degree of methylation is 

an important factor affecting the anticarcinogenic activity of selenium and in 

this respect selenomethionine is not as efficient as SeMSC in generating 

methylselenol. Therefore, the chemoprotective properties of these enriched-

vegetables may be a result of the form of selenium present in them that allows 

more selenium to enter the cancer-protective pool.  
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Figure 1.7 Pathways of selenium metabolism. Selenium salts undergo reductive metabolism 
with glutathione reductase and NADPH or can be directed reduced by thioredoxin reductase 
(TrxR1). Selenomethionine and selenocysteine can generate methylselenol through hydrogen 
selenide. The latter is the source for incorporation into Sec-containing proteins by co-
translational incorporation into Ser-tRNAUGA. Diet may also enrich the methylselenol pool 
bypassing the hydrogen selenide pool, by using direct precursors such as Se-
methylselenocysteine or γ-Glutamil-Se-methylseloncysteine, which is converted to SeMSC 
first and then acted upon by a β-lyase to give also methylselenol. Methylation of hydrogen 
selenide constitutes an excretion pathway for selenium (Combs and Lu 2006; Brigelius-Flohé 
and Banning 2009).  

 

1.5.3 Antioxidant Effects of Selenium 
 

Free radicals are known to play an important role in many diseases, including 

cancer. Since free radicals and reactive oxygen species are continuously 

produced in vivo, mammalian organisms have evolved to possess not only 

antioxidant and electrophile defense systems to protect against them, but also 

repair systems that prevent the accumulation of oxidatively damaged molecules 

(Hanausek et al. 2004). Because of the highly cytotoxic and reactive nature of 

reactive oxygen and nitrogen species, their accumulation must be under tight 

control and in this regard selenoproteins has been shown to reduce oxidative 
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stress and limit DNA damage, both of which have been associated with cancer 

risk. 

 

Well-characterised selenoproteins are the families of glutathione peroxidases 

(GPxs), thioredoxin reductases (TrxR) and iodothyronine deiodinases (Beckett 

and Arthur 2005). More recently selenoprotein P has become a focus of 

research, as it has been considered a good index of human selenium nutritional 

status (Burk and Hill 2005), but has also been implicated in tumorigenicity and 

metastasis of colon cancer cells (Irons et al. 2010). However, this section will 

be used to review briefly the function of the first two families, which are 

involved in cell antioxidant systems.  

 

1.5.3.1 Glutathione Peroxidases  
 

There are six known GPxs which contain selenocysteine at the active site. 

Glutathione peroxidise 1 (GPx1), or cytosolic glutathione peroxidase, is a 

highly efficient antioxidant enzyme that catalyzes glutathione-dependent 

hydroperoxide reduction and is also found in the mitochondria. GI-GPx or 

GPx2, also known as gastrointestinal-GPx, has an unusual distribution. In 

rodents, it is exclusively expressed in the gastrointestinal tract (in humans also 

in liver), which suggests a specific function as a primary barrier against the 

absorption of dietary lipid hydroperoxides (Wingler and Brigelius-Flohe 1999). 

This gene has been also found to be expressed in human breast cancer cells 

(Chu et al. 1999). GPx3 is an extracellular GPx from human plasma that can 

reduce H2O2, fatty acids hydroperoxides, and phospholipid hydroperoxides, but 

not cholesterol hydroperoxides (Yamamoto and Takahashi 1993). GPx4, 

present in cytosol and mitochondria, reduces phospholipids, cholesterol, and 

thymine hydroperoxides (Bao et al. 1997). GPx5 and GPx6 are readily detected 

in mouse epididymis and olfactory epithelium, respectively (Kryukov et al. 

2003).  
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Even though ROS are clearly involved in inflammation and selenium has 

cancer protective effects in a variety of experimental system the role of 

selenoproteins in these pathologies was uncertain until mice with disrupted 

GPx1 and GPx2 genes, GPx1/2-KO, were proven to develop ileocolitis at a 

young age as a result of losing virtually all GSH-dependent activity to reduce 

H2O2 (Esworthy et al. 2001). In these animals the lack of GI-GPx was more 

detrimental, since one intact GI-GPx allele was sufficient to prevent intestinal 

inflammation (Esworthy et al. 2005). Similarly, the same group developed an 

ileal and colonic cancer model using bacteria-induced mice in which GPx1 and 

GI-GPx were disrupted (Chu et al. 2004). Furthermore, in transgenic mice 

carrying a mutant selenocysteine transfer RNA gene, which causes reduced 

selenoprotein synthesis, an increased number of preneoplastic lesions for colon 

cancer was observed when compared with wild type mice (Irons et al. 2006). 

Surprisingly, in a study carried out to examine the preventive effect of 

selenoproteins and the selenocompound selenite in transgenic mice with co-

expression of TGFα/c-Myc, which generates an oxidative environment prior to 

hepatocarcinogenesis development, it was found that selenoprotein deficiency 

resulting from a Se-deficient diet containing 0 ppm significantly suppressed 

hepatic tumour formation, whereas a clear correlation between increased 

selenoprotein expression and tumour formation was seen in mice fed with 0.4 

ppm Se (Novoselov et al. 2005), findings consistent with the known inhibitory 

effect of antioxidant selenoproteins on apoptosis (Fu et al. 2001).  

 

These data highlight the complexity of selenoprotein regulation and the need 

for more studies to understand the biochemical basis for the protective effect of 

selenoproteins against cancer. 

 

1.5.3.2 Thioredoxin Reductases  
 

The thioredoxin reductases, with thioredoxin (Trx) as a substrate and NADPH 

as a cofactor, form a powerful dithiol-disulphide oxido-reductase system that 

regulates the cellular redox state of cells (Beckett and Arthur 2005). This 
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system in conjunction with GSH are the two main antioxidant systems that 

reduce thiol (-SH) groups. Three mammalian TrxR selenoenzymes have been 

identified: the cytosolic enzyme TrxR1, the mitochondrial enzyme TrxR2, and 

a testis-specific enzyme thioredoxin-glutathione reductase (TGR/TRxR3), the 

latter also possessing glutathione and glutaredoxin reductase activity 

 

The Trx system provides electrons to ribonucleotide reductase, which is 

essential for DNA synthesis by converting ribonucleotides to 

deoxyribonucleotides, as well as promoting the catalysis of thioredoxin 

peroxidases (peroxiredoxins)—important enzymes in the defence against 

oxidative stress and protein disulfide-isomerase (PDI), which catalyzes protein 

disulfide formation within the endoplasmic reticulum (ER). Additional 

substrates include two ER proteins with Trx-domains, calcium-binding protein 

1 and 2 (CaBP1 and CaBP2) involved in calcium metabolism (Papp et al. 

2007). The thioredoxin system also plays a central role in the regulation of 

gene expression via redox control of transcription factors including NF-κB 

(Matthews et al. 1992), the AP-1/Ref1-dependant pathway (Hirota et al. 1997), 

P53 (Ueno et al. 1999), glucocorticoid receptor, and apoptosis-regulating 

kinase (ASK1), thus indirectly regulating cellular activities such as cell 

proliferation, cell death, and immune-response activation (Saitoh et al. 1998; 

Arnér 2009) (Figure 1.8). In addition, a group of selenium compounds 

including selenite, selenodiglutathione, methylseleninate, selenocystine, and 

ebselen are substrates of TrxR  (Ganther 1999; Zhao and Holmgren 2002). 

Among these compounds selenodiglutathione and selenite are metabolized to 

hydrogen selenide, the selenium donor for Sec biosynthesis (Figure 1.7). 

 

Recently, elevated expression of the thioredoxin system has been implicated in 

increased proliferation of tumour cells, low apoptosis rate, aggressive tumour 

growth, and decreased patient survival (Lincoln et al. 2003; Raffel et al. 2003). 

However, even though Trx and TrxR1 have been found to be over-expressed in 

many malignant cells, this system is very important in the area of redox 

regulation and can bring about direct antioxidant support such as the removal 
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of hydrogen peroxide species during the initial stages of the disease, where the 

thioredoxin system can protect the cells against the oxidative stress associated 

with cancer. However, during the later stages of the disease, the growth-

promoting anti-apoptotic property of the thioredoxin system on cancerous cells 

outweighs its beneficial antioxidant properties (Maulik and Das 2008), as 

shown by Raffael and co-workers in colon cancer patients where increased 

thioredoxin-1 expression was a relatively late event in colorectal 

carcinogenesis (Raffel et al. 2003). 

 

Figure 1.8 Functions of the thioredoxin system  
 

In summary, it is important to continue investigating the cellular functions of 

important selenoproteins such as GI-GPx and TrxR1 involved in the 

maintenance of redox status and signal transduction in colon cancer cell to shed 

light on functions of selenium in cancer development.  
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1.6 Colorectal Carcinogenesis  
 

Worldwide, cancer is still one of the major public health problems and among 

them colorectal cancer is the third most common malignancy in the developed 

world after lung and breast cancer (Acheson and Scholefield 2008). Wide 

geographical variation in cancer incidence and mortality rates is thought to be 

due to lifestyle and environmental factors, including diet (Martinez et al. 2008). 

However, despite all the research input in the past 20 years aimed to study the 

links between diet and cancer, it is still uncertain whether fruit and vegetables 

protect against colorectal cancers (Nomura et al. 2008).  

 

The evolution of colorectal cancer is a multi-step process whereby progression 

stages range from normal epithelium to aberrant crypt foci (ACF) (Roncucci et 

al. 2000), to the development of benign adenomatous polyps, and finally to 

invasive cancer and metastasis (Fearon and Vogelstein 1990). In the 

gastrointestinal tract, intestinal metaplasia precedes the development of 

carcinoma in the stomach and in Barrett’s oesophagus, and in the colon; the 

adenoma is now universally regarded as the immediate antecedent of most 

colorectal carcinomas (Figure 1.9). However, it is becoming increasingly clear 

that colorectal cancer is a more heterogeneous disease than had previously 

been recognized as normal-appearing rectal mucosa from participants with 

adenoma or adenocarcinoma has been reported to have field defects (Alberts et 

al. 2007). This has been evidenced by proteomic, transcriptomic and more 

recently epigenomic analysis (Belshaw et al. 2008; Bernstein et al. 2008).  

 

The initial genetic change in most colorectal adenomas is thought to be somatic 

mutations in the tumour suppressor gene adenomatous polyposis coli (APC) as 

this gene is responsible for binding and down-regulating β-catenin. When APC 

is inactivated it fails to regulate apoptosis, cell cycle progression and 

chromosomal stability, allowing β-catenin to translocate from the lateral cell 

membrane to the nucleus where it promotes transcription of multiple genes 

implicated in tumour growth and invasion through the activation of the Wnt 
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cascade (Humphries and Wright 2008), possibly one of the most important 

pathways for the control of intestinal epithelial stem cell function  (McDonald 

et al. 2006).  

 

However, studies have indicated that APC mutation is not obligatory in all 

cases of colorectal cancer, even as a late event. In addition to this classical 

pathway at least two other different pathways to colorectal cancer have been 

proposed. The first involved the inactivation of genes required to repair base-

base mismatches in DNA, generally referred to as mismatch-repair (MMR) 

genes, primarily MLH1 and MSH2. This inactivation can be inherited, as in 

hereditary nonpolyposis colon cancer (HNPCC), or acquired through 

methylation-associated silencing. In patients with HNPCC, germ-line defects in 

MMR genes confer a lifetime risk of colorectal cancer of about 80%.  Somatic 

inactivation of MMR genes occurs in about 15% of patients with nonfamilial 

colorectal cancer. In these patients, biallelic silencing of the promoter region of 

the MMR genes by promoter methylation inactivates MMR (Markowitz and 

Bertagnolli 2009). These errors, which generate deletions and insertions of 

some nucleotides more frequently at the level of repeated sequences, are named 

microsatellites instability (MSI), in which the inability to repair strand slippage 

within repetitive DNA sequence elements changes the size of the nucleotide 

repeats (Kruhoffer et al. 2005).The second pathway involves the formation of a 

hamartoma as a precursor lesion, in which the mutated bone morphogenetic 

protein (BMP) signalling pathway has been identified to predispose to 

colorectal cancer (Hardwick et al. 2008). Recent data also show that 

suppression of CDK8 gene expression inhibits proliferation of colon cancer 

cells, alleviating β-catenin hyperactivity in the canonical WNT/β-catenin 

pathway that contributes to growth, invasion and survival of cancer cells 

(Firestein et al. 2008). 
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Among the factors affecting mucosal integrity it has been long recognised that 

both exogenous carcinogens and endogenous biological processes are known to 

cause mutations, affecting genes involved in the maintenance of DNA stability 

(Greenblatt et al. 1994). Considering the multiplicity of proteins involved in 

DNA synthesis, DNA repair, mitosis, and the cell cycle, the number of 

potential gene targets that could interfere with replication fidelity in somatic 

cells is large. Abnormalities in some of these processes could result in the 

mutator phenotype (Loeb 2001), which could increase the probabilities of both 

neoplastic transformation and the generation of increasingly malignant 

subclones during tumour progression. For decades the mutational theory of 

cancer was accepted as the main contributor of neoplasia (Nowell 1976; Edler 

and Kopp-Schneider 2005). However, a large amount of data indicating the 

importance of epigenetic processes, especially those resulting in the silencing 

of genetic 
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Figure 1.9 An adaptation of the Vogelstein adenoma-carcinoma sequence. Sequence of 
mutational events that involve the transition from normal colon epithelium to premalignant 
adenoma and then invasive adenocarcinoma. Loss of function of the adenomatous polyposis 
coli (APC) gene, which encodes a protein involved in cell adhesion and transcription, is found 
in up to 85% of all cases of colorectal cancer (CRC). Mutations in the mismatch-repair genes 
MLH1 and MSH2 contribute to genetic instability. The oncogene  K-ras, a GTP-ase that 
controls cell proliferation, is mutated in 50–60% of cases of CRC (Ray 2010). The deleted in 
colorectal cancer gene (DCC) might be involved in normal cell-cell and/or cell extracellular 
matrix interactions. SMAD2/4 is involved in the transforming growth factor-β signaling 
pathway to suppress epithelial-cell growth and P53 mutations tend to be late events and 
increase the resistance of cancer cells to apoptosis. Methylation events are found in early 
cancer stages. Adapted from  (Geenen et al. 2003; Kerr 2003). 
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of key regulatory genes, has led to the realization that genetics and epigenetics 

cooperate at all stages of cancer development (Jones and Baylin 2007). 

 

1.6.1 Caco-2 Cell Line as an in vitro Model to Study Colorectal 

Cancer 

 
Animal models and human studies have been used widely to demonstrate 

underlying mechanisms that link specific dietary constituents to cancer risk. 

However, the simultaneous fluctuations of fuels, hormones, genotypes and the 

complexity of tissue and organ organization in experimental in vivo models 

make it very difficult sometimes to demonstrate molecular mechanisms of 

specific regulation. In addition, in vitro models are costly and not suitable for 

initial antioxidant screening of food compounds (Liu and Finley 2005; Goya et 

al. 2009). Nevertheless, in analysis of data from in vitro experiments one 

should consider a number of limitations, as cultured cells will not be fully 

representative of the tissue from which they were derived due to the different 

cell microenvironment that characterise the in vivo condition. Providing that 

the limitations of the models are appreciated, cell culture is a valuable, if not 

the most valuable, tool in biomedical science (O'Brien et al. 2000). 

 

In cancer biology, cell lines are often used instead of primary tumours because 

of their widespread availability and close reflection of the in vivo state (Kleivi 

et al. 2004). The Caco-2 cell line was established from a moderately well-

differentiated colon adenocarcinoma obtained from a 72-year-old patient (Fogh 

and Orfeo 1977). Undifferentiated Caco-2 cells are characterized by a 

proliferative state where cell cycle, signal transduction, DNA metabolism, 

transcription, nucleocytoplasmic transport and protein biosynthesis are 

predominantly altered by the underlying pathology (Bédrine-Ferran et al. 

2004). Although this is a colonic tumour derived cell line, it differentiates post-

confluence. After this period Caco-2 cells start acquiring an enterocyte-like 

phenotype and develop the capacity to detoxify drugs and xenobiotics, to 

protect the monolayer, and to efficiently transport water and ions, in addition to 
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lipids and amino acids (Bédrine-Ferran et al. 2004; Laitinen 2006). However, 

these studies will be carried out in the undifferentiated cancer colonic 

phenotype of Caco-2 cell rather than in the enterocytic-type to study specific 

antioxidant and epigenetic chemopreventive effects of selenium and 

isothiocyanates.  

 

1.7 Epigenetics  
 
Epigenetics refers to heritable changes in the pattern of gene expression 

without any alteration in the nucleotide sequence (Esteller 2005). Epigenetic 

mechanisms are involved in embryonic development and the establishment of 

tissue-specific expression, X-chromosome inactivation and imprinting patterns, 

and maintenance of chromosome stability (Lopez-Serra and Esteller 2008). The 

factors known to be involved in epigenetic regulation of chromatin structure 

and gene activity are DNA methylation, histone modifications, chromatin 

remodelling factors and non-coding regulatory RNAs (Ross et al. 2008) and 

among these DNA methylation is one of the most important mechanisms for 

epigenetic silencing of gene expression in mammals.  

 

1.7.1 DNA Methylation  
 

Different forms of methylation occur in different organisms. In humans and 

other mammals the most frequent epigenetic modification of DNA bases 

involves cytosine, which is modified reversibly by adding a methyl group 

(CH3) to its carbon 5-position. In this reaction DNA methyltransferases 

(DNMTs) catalyze the transfer of the methyl group from S-adenosylmethionine 

(SAM) to the 5 position of cytosine in DNA, producing 5-methylcytosine and 

S-adenosylhomocysteine (SAH) (Figure 1.10).  
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Figure 1.10 Biochemistry of DNA methylation. Adapted from (Richardson 2007) 

 

 

In humans and other mammals this modification occurs only on cytosines that 

precede a guanosine in the DNA sequence, referred as the CpG dinucleotide 

(Herman and Baylin 2003). This dinucleotide is under-represented in much of 

the genome because it is prone to methylation and spontaneous deamination, 

causing conversion from 5-methylcytosine to thymine, which is subject to 

ineffective DNA repair. However, short regions of 0.5-4Kb in length, known as 

CpG islands, are rich in CpG content. These islands are typically found in or 

near promoter regions of genes where transcription is initiated. In contrast to 

the vast amount of genomic DNA, in which most CpG islands are heavily 

methylated (major fraction), CpG islands in promoters of normal somatic cells 

remain unmethylated (minor fraction), allowing gene expression to occur 

(Baylin 2005) (Figure 1.11). In most cases, gene expression patterns need to be 

maintained during cell division and passed to the daughter cells. For this 

purpose, epigenetic memory mechanisms, which are carefully controlled by 

DNA methyltransferase enzymes, have evolved (Van Steensel 2005). 
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Figure 1.11 Distribution of CpG islands in the human genome. The methylated state in the 
major fraction in normal cells may help suppress unwanted transcription, while the 
unmethylated state of the CpG islands in the 5' end of the gene allows active gene transcription 
(arrow in upper panel). In cancer cells, this pattern of CpG methylation becomes disrupted with 
high level of methylation at the promoter region causing abnormal gene silencing. Adapted 
from (Herman and Baylin 2003) 
 

 

1.7.1.1 DNA Methyltransferases  
 

Patterns of DNA methylation are disturbed in important human diseases such 

as colon cancer and an understanding of how these marks are set up and 

maintained is of great significance. There are three known biologically active 

DNMTs in mammalian cells with different roles: DNMT1, DNMT3A and 

DNMT3B. DNMT1, with preferential activity for hemimethylated DNA, acts 

mainly as maintenance methyltransferase and DNMT3A and DNMT3B are 

mainly involved in de novo methylation (Herman and Baylin 2003). It is 

generally thought that patterns are established during embryonic development 

(DNMT3A and DNMT3B) and are then faithfully inherited in somatic cells by 

a ‘maintenance’ mechanism (DNMT1). However, an updated model for DNA 

methylation maintenance has been proposed in which all three DNMTs not 
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only cooperate but also may possess both de novo and maintenance functions 

in vivo (Jones and Liang 2009). In addition, it is well known that DNA 

methylation can be removed passively by blocking methylation of newly 

synthesized DNA during DNA replication, but recent data also suggest that 

active DNA demethylation is initiated by the same enzymes that establish the 

methylation mark in first place, the DNMT3A and DNMT3B (Ooi and Bestor 

2008), and perhaps by a base excision repair pathway (Zhu 2009). 

 

1.7.1.2 Repression of Tumour Suppressor Genes 
 

Hypermethylation of the CpG islands in the promoter regions of tumour-

suppressor genes (commonly unmethylated) is a major event in the origin of 

many cancers and is correlated with the loss of active gene expression (Figure 

1.11). The large number of genes found to undergo hypermethylation in 

various malignancies has implicated a role for epigenetic changes in the 

initiation and/or progression of cancer affecting many of the cellular pathways 

involved in this process (Table 1.3) (Herman and Baylin 2003; Baylin 2005). A 

gene hypermethylation profile carried out by Esteller and co-workers, to unfold 

the critical aspects related to methylation and cancer,  provided an opportunity 

to examine the pattern of inactivation of such genes among different tumours 

(Esteller et al. 2001), suggesting that the profile of hypermethylation of the 

CpG island in tumour-suppressor genes is specific to the cancer type. For 

instance, gastrointestinal tumours (colon and gastric) have been shown to share 

a set of genes undergoing hypermethylation characterized by p16INK4a 

(Abbaszadegan et al. 2008), p14ARF (Esteller et al. 2000), MGMT (Hee et al. 

2003), APC (Esteller et al. 2000) and hMLH1 (Kane et al. 1997). In addition to 

these genes, there is growing interest in the study of hyperplastic polyposis 

protein 1 (HPP1) as this gene has been found to be silenced in a number of 

tumour types, suggesting a potential role as a tumour suppressor. Methylation 

of this gene is detectable not only in the serum of patients with colorectal 

cancer but also in patients with pre-malignant adenomas and has been 

suggested as a biomarker in gastrointestinal malignancies (Elahi et al. 2008).  
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Among the loci that can undergo aberrant methylation in colorectal cancer 

(CRC), a subgroup seems to become aberrantly methylated as a group and is 

referred to as the CpG island methylator phenotype (CIMP) (Toyota et al. 

1999). In an attempt to establish CIMP as a distinct marker for CRC Laird and 

colleagues analysed the methylation of 195 individual CpG islands in 295 

CRCs and from their results, they proposed a panel of genes to standardize the 

classification of CIMP CRC (Weisenberger et al. 2006). Lack of agreement has 

generated several reports of CIMP subgroups according to the frequency of 

CpG island methylation in CRC (Shen et al. 2007; Nagasaka et al. 2008; Ang 

et al. 2010) 

 

Table 1.3 Pathways Disrupted by Gene-Promoter Hypermethylation and 
Associated Gene Silencing in Cancer. 
 
 

            Pathway              Genes 
Altered cell cycle control  p16, p15, p14, p73 

 
Repair of DNA damage MLH1, MGMT, GST-Pi, BRCA1 

 
Apoptosis DAP Kinase, caspase 8 

 
Tumour-cell invasion or  
tumour architecture 
 

E-cadherin, VHL, APC 

Growth-Factor response  ESR1, RAR-β 
 
 

Other abnormalities in cytosine methylation have been attributed to 

physiologic ageing, which is associated with de novo CpG island methylation 

in human colorectal mucosa and has been suggested as one of the earliest 

mechanisms predisposing to tumorigenic transformation. For example, the 

CpG island associated with the human estrogen receptor (ESR1) has been 

observed to be hypermethylated with ageing in the colonic mucosa (Issa et al. 

1994; Belshaw et al. 2005), altering growth regulation of colonic cells and 

supporting the concept that age-dependent changes in DNA methylation might 

contribute to the global and promoter-specific epigenetic changes in colon. 
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In this regard, studies have shown that global DNA methylation content is 

decreased during colonic carcinogenesis (Shuji et al. 2008) and although 

aberrant methylation changes such as global hypomethylation and regional 

promoter hypermethylation are two processes that occur simultaneously in 

cancer cells no relationship among them has been found, suggesting that the 

contribution of DNA hypomethylation to tumorigenesis is separate from that of 

transcriptional silencing induced by CpG island hypermethylation in colorectal 

neoplasia (Bariol et al. 2003). 

 

Importantly, these aberrant methylation changes have been found to be 

modulated by a diverse range of nutrients, supporting a role of bioactive food 

compounds on the human genome to alter the expression of genes and gene 

products (Trujillo et al. 2006).  It is now well known that essential and 

nonessential food components, such as Se and ITCs, alter a number of cellular 

mechanisms associated with health and disease prevention, including 

carcinogen metabolism, cell signalling, cell cycle control, angiogenesis and 

apoptosis (Keck and Finley 2004; Bertl et al. 2006). Interestingly, these are 

also processes that are likely regulated by epigenetic events to impact gene 

function and chromatin stability. Thus, research identifying links between 

nutrition and cancer progression could address the importance of bioactive 

food components such as ITCs and other essential micronutrients such as Se 

to regulate epigenetic events for cancer prevention.  
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1.8 Diet and Epigenetics 
 

The most widely investigated nutrients to establish causal links between diet 

and the epigenetic role of DNA methylation in cancer are those nutrients 

involved in one carbon metabolism (Figure 1.12) because of their involvement 

in the synthesis of SAM. Early experimental studies found that dietary methyl 

group deficiency leads to liver carcinogenesis in rodents in the absence of any 

additional carcinogenic treatment (Mikol et al. 1983). Similarly, a methyl 

group–deficient diet increased the incidence of colonic neoplasia in 

dimethylhydrazine-treated rats (Cravo et al. 1992). These data were also 

corroborated by epidemiological studies that found an inverse relationship 

between dietary folate and the incidence of colorectal adenomas in humans 

(Giovannucci et al. 1993). Other studies have, however, found no association 

between cancer risk and a combined low folate and high alcohol intake (Flood 

et al. 2002; Harnack et al. 2002). Folate supplementation has been found to 

increase genomic DNA methylation in the liver of ageing rats (Choi et al. 

2005) and to accelerate age-dependent methylation of the ESR1 CpG island in 

mouse colon (Belshaw et al. 2005). In this respect, the effects of folate status 

on DNA methylation and potentially on colon carcinogenesis are still 

controversial as animal studies report a reduction in early markers of colon 

cancer, such as aberrant crypt foci (ACF), when folic acid is administered prior 

to development of cancer (Kim et al. 1996). However, tumorigenesis is 

accelerated if folic acid is given after the lesion has emerged, perhaps through 

provision of DNA precursors for cancer cell growth (Song et al. 2000). 

 

 

 

 

 

 

 



 
 

39 
 

              Chapter 1 

 
Figure 1.12 Folate and one-carbon metabolism: regulation of DNA synthesis, repair and 
methylation. A simplified scheme showing how nutrients involved in one carbon metabolism 
(yellow box) mediate normal DNA synthesis, repair and methylation and how its deficiency 
might impact on colon carcinogenesis. Methylenetetrahydrofolate reductase (MTHFR) 
catalyses the reduction of 5,10-methylene THF to 5-methyl THF. Methionine synthase (MS) 
catalyzes the transfer of the methyl base from 5-methyl THF to homocysteine to generate 
methionine; and 10-formyl THF is a cofactor for purine synthesis (Fang and Xiao 2003). 
Betaine, formed from oxidation of choline, can transfer one of its three methyl groups to 
homocysteine to produce methionine, but this pathway operates mainly in rodents (Lamprecht 
and Lipkin 2003). Folate depletion decreases DNA methylation (global and gene specific) in 
certain human and animals but not in others (Duthie 2010). Zn, Vitamins B6 and B12 serve as 
a co-enzyme in different reactions. SAM, S-adenosyl L-methionine; SAH, S-adenosyl 
homocysteine; TS, thymidylate synthase; DNMT’s DNA methyltransferases.  
 

Other food compounds that have been found to impact upon the epigenome 

through DNA methylation changes include polyphenols such as (-) 

epigallocatechin 3-galleate (EGCG) from green tea and genistein from soybean 

(Fang et al. 2003; Fang et al. 2007). Another group of dietary phenolics that 

have been investigated as food compounds with potential effects on DNA 

methylation are: catechin, epicatechin, quercetin, fisetin, myricetin, cafeic acid 

and chlorogenic acid (Lee et al. 2005; Lee and Zhu 2006). These studies have 

found reactivation of multiple genes in oesophageal cancer cells due to reversal 

of gene-specific CpG methylation at several loci, obtaining similar effects in 

HT-29 human colon cancer cells, PC3 prostate cancer and MCF-7 breast 
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cancer cell lines (Lee et al. 2005; Fang et al. 2007). Likewise, selenium is an 

important micronutrient engaged in the protection of colonic cells against a 

wide range of external and internal stressors (Rudolf et al. 2008) and in 

addition to its chemopreventive roles in the different stages of colorectal cancer 

attributable to its anti-oxidative and anti-inflammatory effects through the 

activity of selenoenzymes, selenium has also been found to be involved in the 

inhibition of  human DNA methyltransferase 1 (DNMT1) (Davis and Uthus 

2004).  

 

Despite the variety of compounds studied so far the apparent common 

mechanisms by which all these compounds reverse DNA hypermethylation and 

reactivate methylation-silenced genes is thought to be through a direct 

inhibition of DNA methyltransferase (DNMT) activity and also by a decrease 

in the concentration of SAM and increased levels of SAH, which is a potent 

inhibitor of DNMT (Lee and Zhu 2006). 

 

Modification of histone acetylation is another epigenetic mechanism whereby 

bioactive food components can influence gene expression and cancer 

susceptibility. In this respect diallyl disulfide, an organosulfur compound 

present in garlic, has been found to inhibit cell proliferation through the 

inhibition of HDAC activity, histone hyperacetylation and increase in 

p21waf1/cip1 in vitro and in vivo (Druesne et al. 2004; Druesne-Pecollo et al. 

2007). Isothiocyanates have also been found to exert similar actions; however 

they will be discussed in detail in chapter 3. Other dietary factors known to 

influence DNA methylation and cancer susceptibility can be found in 

numerous reviews (Ross 2003; Davis and Uthus 2004; Johnson and Belshaw 

2008). 

 

New data highlighting the role of isothiocyanates and selenium in regulating 

the genome machinery through epigenetic mechanisms, and other factors 

altering the expression of antioxidant selenoenzymes, will be presented and 
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discussed in the next chapters in the context of an in vitro model of colon 

cancer. 

1.9 Proposed Investigation 
 

Colon cancer is a disease of the colonic mucosa, caused by a time-dependent 

accumulation of genetic changes that deregulate the normal process of colonic 

tissue regeneration. Although a number of hereditary genetic mutations are 

attributed to high risk of colon cancer it is clear that the majority of colon 

cancers result from a complex interplay of diet, environment, genetic and 

epigenetic factors. However, how different dietary components, in partnership, 

regulate gene expression linked to colon pathology is relatively unknown. It 

has been suggested that the combination of phytochemicals and other nutrients 

in fruits and vegetables is crucial for their potential anticancer activities. 

However, as many responses linked to nutrient-modulated pathways may take 

place simultaneously within the carcinoma process, it is difficult to determine 

which is most important in dictating the overall biological response and hence 

the importance in determining the exact role of each compound that contributes 

to their possible health benefit protection and then proceed to determine 

synergy between nutrients that might enhance their functional properties.  

 

Although the majority of studies suggest that selenium is effective for disease 

prevention the disparity of results obtained in selenium clinical trials indicates 

that a more focused approach to understand the mechanisms of different forms 

of selenium on antioxidant and anticancer activity is needed. Also, the fact that 

abundant experimental evidence has shown anticarcinogenic effect of selenium 

in individuals with apparently full selenoenzyme expression (Combs and Lu 

2006) suggests that other mechanisms could be involved in chemoprevention 

by this mineral. In this respect, as well as analysing the antioxidant properties 

of selenium this study will identify if alterations in DNA methylation may be a 

potential mechanism whereby dietary selenium decreases colon carcinogenesis.  
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Interestingly, for isothiocyanates conflicting evidence exists regarding the 

structure-activity relationship (SAR). While some studies have shown that 

isothiocyanates with longer alkyl chains have greater chemopreventive 

potential (Morse et al. 1989; Morse et al. 1991) others suggest that synthetic 

isothiocyanates with longer alkyl chains and increased lipophilicity do not 

necessarily have enhanced chemopreventive potential (Son et al. 2000). 

Although a proper SAR will involve the study of different isothiocyanates 

structures, my goal in this respect will be to determine if small differences in 

ITC structures (e.g., the alkyl chain length between sulforaphane [C4] and 

iberin [C3]) induce the antioxidant enzymes GI-GPx and TrxR1 differently.     

 

Moreover, specific studies using a wide variety of isothiocyanates in vitro and 

in vivo have shown that one of the primary mechanisms by which this group 

inhibit carcinogenesis is by activation of phase II enzymes (see Table 2), but 

only a few of these studies have addressed other important groups of 

antioxidant enzymes such as GI-GPx and TrxR1 that equally respond to 

transcriptional activation by ITCs through the Nrf2/ARE system, and how 

these selenoproteins respond to different forms of ITCs or selenium is less well 

understood. Furthermore, of these two compounds the former have been found 

to act epigenetically as histone deacetylase inhibitors (Ho et al. 2009), but there 

is a lack of evidence supporting a role at the DNA methylation level.  

 

While most studies have evaluated the impact of single isothiocyanates or 

selenium compounds in the expression of selenoproteins, no studies have 

compared an inorganic and organic form of selenium in combination with 

different forms of isothiocyanates to cross-examine their role in gene 

expression with regard to antioxidant enzyme and DNA methylation changes 

for colon cancer prevention.  

 

In an attempt to understand the direct effect of two isothiocyanates with 

different carbon chain lengths namely sulforaphane and iberin in combination 

with Se-methylselenocysteine (organic Se) and selenite (inorganic Se) this 
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project will aim to establish whether a combination of food components offer 

additive or synergistic chemoprotective effects on the regulation of two 

selenoenzymes (TrxR1 and GI-GPx) and DNA methylation using human colon 

adenocarcinoma Caco-2 cells as a model to understand the cellular mechanisms 

associated with antioxidant enzyme regulation and aberrant CpG island 

methylation.   

 

The possibility that diet could influence the direction and extent of antioxidant 

enzyme expression together with epigenetic changes opens new ways for 

cancer prevention. Since it has been established that the chemopreventive 

efficacy of selenium depends on the chemical form in which it is administered 

(Ganther 1999), and  in view of the fact that Se-methylselenocysteine has been 

found in animal and cell culture models to be the most effective anti-

carcinogenic form of selenium (Ip et al. 1991), this chemical form will be 

employed in this study. Likewise, iberin, a sulfoxide analogue of sulforaphane 

is a naturally occurring member of the isothiocyanate family of cancer 

chemopreventive agents that might hold similar or more potent properties 

against tumour cells than its more widely studied analogue sulforaphane.  

 

Finally, a combinatorial chemopreventive strategy that considers the chemical 

form and structure of different food compounds might help to unravel the 

relative contribution of various components of a plant-based diet to overall 

cancer reduction and provide insight into the potential synergy among essential 

nutrients and non-nutrients that may counteract the genetic and epigenetic 

alterations that initiate and sustain neoplasia. 

 

Initially, this study will present work to evaluate the efficacy of these food 

compounds, either individually or in combination, on the expression of GI-GPx 

and TrxR1 (Chapter 2). Work to investigate effects of these compounds on 

global and gene-specific methylation patterns and epigenetic signals will be 

presented (Chapter 3), followed by an outline of the principles and challenges 

of applying CpG island microarrays in nutrition studies (Chapter 4). The work 
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concludes with a summary of the data presented in this thesis and priorities for 

future research (Chapter 5). 



 

 

 

 

 

 

 
 

2 
Modulation of the Expression of Antioxidant 
Enzymes TrxR1 and GI-GPx by 
Isothiocyanates and Selenium in Caco-2 
Cells
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2.0 INTRODUCTION 
 

Several lines of evidence have implicated chronic inflammation as a key 

predisposing factor for tumour progression, suggesting that oxidative stress is 

likely to play an important role in this process (Colotta et al. 2009).  

Accumulation of reactive oxygen and nitrogen species (ROSN)  generated by 

inflammatory cells is thought to be one of the major mechanisms by which 

chronic inflammation contributes to neoplastic transformation as well as many 

other diseases (Benz and Yau 2008). Both extracellular and intracellular 

antioxidative defence systems protect DNA from oxidative stress. Among 

these, various selenocysteine-containing proteins, so-called selenoproteins, 

have been demonstrated to confer protection from ROSN-related oxidative 

damage (Yoshiyuki et al. 2008). 

 

Different forms of selenium supplementation, either as inorganic Se (sodium 

selenite) or as organic forms such as Se-methylselenocysteine may have 

different efficacies in cancer prevention. As mentioned in Chapter 1 

cruciferous vegetables store glucosinolates but, in addition, they are also able 

to accumulate selenium in different forms. It has been shown that selenium-

enriched broccoli is more effective than traditional broccoli or other selenium 

inorganic forms in protecting against chemically-induced mammary cancer and 

against aberrant crypt formation in Min mice (predisposed to neoplastic lesions 

associated with the APC gene in the intestine) (Finley et al. 2000; Finley et al. 

2001; Davis et al. 2002). These findings and the observation that 

isothiocyanates are able to promote the induction of the selenoproteins 

thioredoxin reductase-1 (TrxR1) and gastrointestinal glutathione peroxidise 

(GI-GPx) brings selenium and isothiocyanates (ITCs) into an interesting focus 

to identify synergistic mechanisms of induction and unravel potential links 

between both dietary factors in the prevention of cancer through the induction 

of the antioxidant system that controls the cellular redox state, thereby 

protecting against oxidative damage.  
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2.1 MATERIALS AND METHODS  
 

2.1.1 Materials  
 

A human colon adenocarcinoma Caco-2 cell line was purchased from the 

American Type Culture Collection (Middlesex, UK). Cell culture media and 

supplements were purchased from Invitrogen (Paisley, Scotland), except for 

fetal bovine serum (FBS) obtained from Biosera, UK. Sulforaphane and iberin 

was purchased from LKT Laboratories (Alexis Biochemicals, UK) and Seleno-

methyl-selenocysteine (SeMSC) from Eburon Organics (Belgium). Dimethyl 

sulfoxide (DMSO), sodium selenite, hydrogen peroxide (H2O2), RT-PCR 

primers and probes used, and all other chemicals were purchased from Sigma-

Aldrich (UK), unless otherwise stated.  

 

2.1.2 Methods 
 

2.1.2.1 Cell Culture 
 

Caco-2 cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM), 

containing 4.5 g/L D-glucose and Non Essential Amino Acids (NEAA), 

supplemented with 10% (v/v) heat inactivated fetal bovine serum (FBS), 1% 

(v/v) of L-glutamine (200 mM) and 1% (v/v) antibiotic solution consisting of 

penicillin (5000 units/ml), streptomycin (5000 µg/ml).  

 

It is important to mention that most mammalian cell culture media require a 

certain concentration of serum, which contains selenium at a concentration that 

is high enough to maintain the expression of cellular glutathione peroxidises. 

The DMEM medium used in this study is a Se-free medium, however, under 

normal cell culture conditions FBS is a major source of selenium. The level of 

selenium in FBS was 13 µg/L (equivalent to a final concentration of 16 nM Se 



  
 

48 
 

              Chapter 2 

when 10% of FBS is added to the cell culture medium, which is still considered 

as a selenium-deficient medium) as determined by Biosera (UK).  

 

Cells were maintained in a controlled atmosphere with 5% CO2 at 37ºC in a 

HERAcell® 150 CO2 incubator. Cells were kept growing in NunclonTM-Δ 

flasks (75cm2) and when confluence reached 80% cells were passaged 

following the standard operating procedures for subculture of adherent cell 

lines. Briefly, medium was extracted and monolayers were rinsed twice with 

10 ml of sterilized Dulbecco’s phosphate buffered saline (PBS), then 600 µl of 

trypsin/EDTA (0.25% trypsin, 1 mM EDTA) were added, rocking the flask to 

ensure that the entire monolayer was covered with the trypsin solution, leaving the 

flask at 37oC for 3-6 minutes until the cells were detached. After this, cells 

were resuspended in 10 ml of fresh serum-containing medium to inactivate the 

trypsin, pipetting the cells up and down until the cells were dispersed into a single 

cell suspension. Cells were treated using a Class II Biological Safety Cabinet. 

All instruments used were sterilized (tips, pipettes) and the cabinet was 

carefully disinfected with TriGene 2% and gloves were always worn. 

 

2.1.2.2 Cell Viability Assay to Determine the Cytotoxicity of 

ITCs and Se  

 

Caco-2 cells were seeded in 96-well plates (BD FalconTM) in DMEM at a 

concentration of 3.0 × 103 cells in a final volume of 100 µl per well, and left to 

adhere to the plastic plates for 24 hours before they were treated with 100 µl of 

DMEM containing different concentrations of sulforaphane and iberin (ranging 

from 1 to 50 µM) or SeMSC and selenite (ranging from 0.2 to 200 µM), using 

five biological replicates per concentration. Isothiocyanate compounds were 

dissolved in DMSO keeping an equal final concentration of 0.05% in all 

treatments and controls. Selenium compounds were dissolved in Milli-Q water 

and filtered through a 0.2 µM syringe filter. All stock and working solutions 

were aliquoted and stored at -80°C. Different time points were used to 
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determine cell viability, also useful for long term experiments carried out for 

DNA methylation experiments described in Chapter 3. Cell viability was 

determined in four independent plates at 24, 48, 72 and 96 hours. For the last 

two plates, media containing food compounds were replaced after 48 hours to 

maintain a constant supply of ITCs and Se to the cells.  Ten microliters of 

WST-1 (Roche, UK) reagent was added to each well to facilitate the reaction 

between mitochondrial dehydrogenase released from viable cells and 

tetrazolium salt of WST-1 reagent. The intensity of the coloured compound 

formed (formazan dye) was then quantified using a micro plate reader (BMG 

Labtech). Initially, the absorption was measured at different time points after 

the addition of WST-1 (e.g. 0.5, 1, 2, 4) to determine the most suitable 

incubation time, determining that 2 hours was the optimal time. The 

absorbance was measured at 450 nm, with the reference at 630 nm. Cell 

viability of treated cells was expressed as a percentage of control as follows: 

(A450 nm - A630nm)sample/(A450 nm - A630 nm)control × 100. The IC50 was 

determined using CalcuSyn software Version 2.0 (Biosoft, Cambridge, UK). 

 

2.1.2.3 Induction of TrxR1 and GI-GPx by Isothiocyanates and 

Selenium 

 

2.1.2.3.1 Cell Culture 
 

Caco-2 cells were cultured following the same conditions described in section 

2.1.2.1 Cells were seeded in six-well plates at 6 × 104 cells/well in a final 

volume of 3 ml and were supplemented with iberin and/or SeMSC when 

confluence reached ~70% (usually after 3 days). For time course experiments 

all different groups were treated at the same time and harvested at appropriate 

intervals using 3 biological replicates per group. All treatments and controls 

contained a final DMSO concentration of 0.05%.  
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2.1.2.3.2 RNA Isolation 
 
Total RNA was extracted from Caco-2 cells using GenEluteTM Total 

Mammalian RNA kit (Sigma, UK) according to the manufacturer’s instruction 

and then stored at -80ºC. The NanoDrop spectrophotometer (Labtech 

International, UK) was used to quantify RNA concentration and purity by 

absorbance measurement at 260 and 280 nm.  

 

2.1.2.3.3 Reverse Transcription 
 

First strand cDNA was synthesised from total RNA. Briefly, 1µg of total RNA 

was incubated with 1 µl of qScript cDNA SuperMix (5×) (Quanta BioSciences, 

USA), which contains optimised concentrations of MgCl2, dNTPs, 

recombinant RNase inhibitor protein, qScript reverse transcriptase, random 

primers and oligo(dT) primer. All components were mixed in a 96-well plate, 

vortexed and centrifuged in a final volume of 10 or 20 µl and incubated in a 

PCR Thermal Cycler (Applied Biosystem, Warrington, UK) using the 

following cycle: 5 min at 25ºC followed by 30 min at 42ºC and 5 min at 85ºC. 

After the cycle was completed, samples were diluted and stored at -20ºC for 

later use. Always, a No Template Control (NTC) reaction was included in 

every PCR assay to rule out reagent or water contamination 

 

2.1.2.3.4 Real-Time PCR   
 

Quantitative real time PCR was performed to measure the mRNA levels of 

target genes. TrxR1 and GI-GPx mRNA quantification was determined by 

TaqMan using the ABI 7500 Fast Real-Time PCR System (Applied 

Biosystems, Warrington, UK). Primers and the fluorogenic TaqMan probes 

were designed using Primer Express® Software (Applied Biosystem, UK)  

based on the human TrxR1 and GI-GPx sequences (Table 2.1). The probes 

were labelled with a 5´ reporter dye, FAM (6-carboxyfluoroscein) and 3´ 
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quencher dye, TAMRA (6-carboxytetramethylrhodamine). Real-time PCR 

reactions were carried out in a 96-well plate in a total volume of 25 µl per well 

consisting of 10 ng of cDNA for target genes (GI-GPx and TrxR1) or 0.05 ng 

for the housekeeping gene 18S rRNA plus 10 µl PrecisionTM MasterMix 

(Primer Design, UK). Primers and probes were added as follow: 100 nM probe, 

200 nM forward and 300 nM reverse primers to amplify TrxR1. For the GI-

GPx and 18S rRNA genes 100 nM probe, 200 nM forward and 200 nM of 

reverse primers were used (Table 2.1). Samples were run using a 10 min hot 

start at 95ºC, followed by 45 cycles of denaturing at 95 ºC for 15 s and 

annealing/extension at 60ºC for 60 s. Reactions were carried out using two 

technical replicates for every biological replicate.  As a quality control 

procedure an NTC reaction from the cDNA conversion (section 2.1.2.3.3) was 

run together with an additional NTC from the reagents and water used for the 

RT-PCR reaction to rule out contamination.  

 

Data were normalised against an invariant endogenous control, 18S ribosomal 

RNA. The threshold cycle number (Ct) obtained was converted into fold of 

relative induction using the ∆∆Ct method (Livak and Schmittgen 2001). To test 

if this method was appropriate for the experimental conditions used, the real-

time PCR efficiency (E) of the target genes was calculated and compared with 

that of the housekeeping gene by running standard curves and using the 

following equation: E = (10
–1/slope 

–1) × 100. The difference of efficiency between 

the genes of interest (GI-GPx and TrxR1) and endogenous control (18S rRNA) 

was less than 5% (McPherson and Moller 2000). 
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Table 2.1 Primers and Probes Sequences Used for Real-Time PCR 

 

 
Gene 

 
 

 
                   Sequence  (5’ – 3’)  

TrxR1 Forward 
Reverse 
Probe 

CCACTGGTGAAAGACCACGTT 
AGGAGAAAAGATCATCACTGCTGAT 
CAGTATTCTTTGTCACCAGGGATGCCCA 
 

GI-GPx Forward 
Reverse 
Probe 

CACACAGATCTCCTACTCCATCCA 
GGTCCAGCAGTGTCTCCTGAA 
CATGCTGCATCCTAAGGCTCCTCAGG 
 

18S 
rRNA 

Forward 
Reverse 
Probe 

GGCTCATTAAATCAGTTATGGTTCCT 
GTATTAGCTCTAGAATTACCACAGTTATCCA 
TGGTCGCTCGCTCCTCTCCCA 
 

 

 

The Real-Time PCR system is based on the detection and quantitation of a 

fluorescent reporter signal. As the fluorescent reporter only fluoresces when 

associated with the amplicon, the increase in recorded fluorescent signal during 

amplification is in direct proportion to the amount of amplification product in 

the reaction, making it possible to monitor the PCR reaction during the 

exponential phase. The higher the starting copy number of the nucleic acid 

target, the sooner a significant increase in fluorescent is observed. A fixed 

fluorescent threshold is set significantly above the baseline that can be altered 

by the operator. The parameter Ct (threshold cycle) is defined as the cycle 

number at which the fluorescent emission exceeds the fixed threshold (Wong 

and Medrano 2005; Nolan et al. 2006).   

 

2.1.2.3.5 Western Blot Analysis 
 

After treating Caco-2 cells with sulforaphane or iberin  (using concentrations 

ranging from 6 to 10 µM) and selenite or SeMSC (using concentrations 

ranging from 25 to 200 nM) or these compounds in combination (ITCs+Se), 

proteins were extracted at different incubation times (8, 24, 48 h) by washing 

cells twice with ice-cold phosphate-buffered saline (PBS) and treating them for 
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2 min with 100 µl of ice-cold cell lysis buffer containing 1% Nonidet P-40, 

Tris-EDTA buffer pH 8.0 (20 mM Tris, 2 mM EDTA), 150 mM NaCl, 10% 

glycerol and 1 × protease mixture (Complete Mini, Roche), before cells were 

collected by the use of a rubber policeman. The lysates were thereafter placed 

in an Eppendorf tube and incubated on ice for 15 min (vortexing the samples 3 

times at full speed during incubation) with a final centrifugation step for 10 

min at 13,000 × g to collect the supernatants. Protein concentrations were 

measured using the 96-well plate Bradford protein assay. Briefly, a standard 

solution of bovine serum albumin (2 mg/ml) was used to generate a standard 

curve using a concentration that ranged between 0.125 – 2 mg/ml. For protein 

samples with unknown concentration duplicates were prepared using a 1:10 

dilution scheme (ensuring that the concentration remained within the linear 

range) by mixing 5 µl of the protein sample with 250 µl of the Bradford 

reagent and leaving the samples to incubate at room temperature (RT) for 15 

min, using as a blank 5 µl of 1:10 diluted buffer. Absorbance was measured at 

595 nm using a microplate reader (BMG Labtech) and the protein 

concentration of the unknown samples was determined using the Omega data 

analysis software by comparing the net A595 values against the standard curve.  

 

Equivalent amounts of protein (40 µg for TrxR1 and 60 µg for GI-GPx ) were 

mixed with loading buffer (0.625M Tris, 2% SDS, 10% glycerol, 20mM DTT 

and bromophenol blue) and heated at 95 ºC for 5 min to be size fractioned in 

12.5% SDS-polyacrylamide gel electrophoresis at 25 mA for 1 gel or  35 mA 

for two gels prior to transfer to Immun-Blot polyvinylidene difluoride (PVDF) 

membrane (Bio-Rad) using a Trans-Blot semi-dry transfer system (Bio-Rad) at 

15 V/gel for 1 hour. To verify that the proteins were transferred efficiently 

from the gel to the membrane, the gel was stained with Instant Blue Coomassie 

reagent (Expedeon, UK). The membrane was blocked for 1 h at RT with 5% 

(w/v) non-fat milk in PBST (1×PBS, 0.5% Tween-20), followed by overnight 

incubation with primary antibody at 4°C with gentle agitation using antibodies 

against TrxR1 (rabbit polyclonal IgG, Santa Cruz), GI-GPx (rabbit anti-human 

GI-GPx kindly donated by Prof. Regina Brigelius-Flohé) and beta-actin (goat 
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polyclonal IgG, Santa Cruz). The dilutions used for TrxR1, GI-GPx and β-

actin antibodies were 1:1000, 1:2000 and 1:20000 with 5% (w/v) non-fat milk 

diluted in PBST respectively. Membranes were washed three times for 10 min 

each with PBST and incubated for 1 hour at RT with permanent agitation and 

appropriate secondary antibody (goat anti-rabbit IgG Santa Cruz) at a final 

dilution of 1:20000 with 5% non-fat milk in PBST, using the same dilution for 

β-actin but rabbit anti-goat IgG instead  (Santa Cruz). Then, the membranes 

were washed three times with PBST for 10 min each, and developed using an 

enhanced chemiluminescence (ECL) system (Amershan, GE Healthcare, UK),  

visualized using a LAS-3000 Fujifilm intelligent dark box. The illuminated 

bands were detected and the image captured using Image Reader LAS-3000 

software. Densitometric analysis of the Western blot was performed using 

Quantity One® Ver. 4.6.3 basic software (Bio-Rad Laboratories, UK). The 

volume rectangular tool was used to create a volume box around an image and 

the average intensity of the pixels in the background volumes was subtracted 

by using the global background subtraction application tool in the Quantity 

One® software. Results were normalised against β-actin to correct for protein 

loading, and the protein expression from the different treatments was 

calculated relative to control.  

 

2.1.2.4 Role of Nrf2 in Isothiocyanate- and/or Selenium-

mediated Antioxidant Enzyme Expression  

 

2.1.2.4.1 Nrf2 siRNA Interference Assay 
 

Nrf2 siRNA (siRNA ID 115764) and scrambled siRNA (Silencer® Select 

Negative Control #1) were obtained from Applied Biosystems and used to 

inhibit Nrf2. Before purchasing the Nrf2 siRNA, the target sequences obtained 

from the company (Sense strand: 5’-CCUUAUAUCUCGAAGUUUUtt-3’; 

antisense strand: 5’-AAAACUUCGAGAUAAGGtg-3’) were checked using 

the Entrez Gene database provided by NCBI to make sure that the siRNA 
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sequence targets the different Nrf2 splice variants as the RT-PCR primers and 

probe were designed to identify all known transcripts for this gene (see section 

2.1.2.4.2). Transfection of siRNA was performed using Lipofectamine 2000 

according to manufacturer’s protocol (Invitrogen). Briefly, the day before 

transfection cells were seeded at 5 × 104 cells/well in a 24-well plate in 500 µl 

of growth medium without antibiotics. On the day of transfection, 3 µM of 

siRNA and 1.5 µl of Lipofectamine were diluted separately in 50 µl culture 

medium without FBS, and incubated for 5 min at RT.  After the 5 min 

incubation, the diluted siRNA was mixed with diluted Lipofectamine 2000 

(total volume=100 µl) and incubated for a further 20 min at RT. Then, the 

transfection complexes were added drop-wise to each well containing cells and 

medium to obtain a final volume of 600 µl to achieve a final siRNA 

concentration of 30 nM, mixing gently by rocking the plate back and forth. For 

siRNA experiments three controls were performed in which a) cells received 

no Lipofectamine 2000 and no siRNA (untransfected cells control), b) cells 

received only Lipofectamine 2000 (mock transfection control), and c) cells 

were transfected with Lipofectamine 2000 and 30 nM (final concentration) of a 

scrambled siRNA sequence (negative control). To study the impact of 

isothiocyanates (ITCs) and/or selenium (Se) on TrxR1 and GI-GPx expression 

when Nrf2 was knocked down, wells used to compare basal levels of 

expression of these genes in the presence of ITCs and/or Se (without Nrf2 

repression) were also transfected with scrambled siRNA to mirror conditions 

used with siRNA Nrf2 transfected cells, allowing a direct comparison with the 

rest of the treatments. Transfected cells were incubated at 37 ºC for 24 h before 

media were removed and cells washed with 600 µl  of PBS, and treatments of 

iberin (6 µM), sulforaphane (6 µM) and selenite (200 nM)  or combinations 

applied in serum-containing DMEM media without antibiotics for 12 hours. 

RNA was then extracted following steps on section 2.1.2.3.2 

 

To obtain the highest transfection efficiency and low non-specific effects the 

transfection conditions were optimised first before the experiment was carried 

out by using different volumes of Lipofectamine 2000  (0.5, 1.0 and 1.5 µl) 
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while keeping the siRNA quantity (30nM) fixed, selecting 1.5 µl of 

Lipofectamine 2000 as the volume that offered the best performance.  

 

2.1.2.4.2 Quantification of Nrf2 by Real-Time PCR 
 

Nrf2 primers were constructed to determine its level of expression after 

silencing. This was done by identifying first its sequence at 

http://www.ncbi.nlm.nih.gov/sites/gene according to the appropriate source 

organism: Homo sapiens. The primers and probes (Table 2.2) were designed to 

amplify the different transcript variants of Nrf2. In order to do this a common 

region between the different splice variants identified (NM_006164.3, 

NM_001145412.1 and NM_001145413.1) was found by aligning the FASTA 

format sequences using the online tool at http://align.genome.jp/ (clicking the 

‘Slow/Accurate’ and ‘DNA’ radio buttons). Then, this common coding region 

was used as the target for Primer Express® software to design primers and dye-

labelled probes that recognize all the splice variants. After the primers were 

designed their sequences were interrogated by using the Basic Local Alignment 

Search Tool (BLAST) from the NCBI website 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/ to search for homology with 

other genes, identifying none.  The RT-PCR set up was similar to that specified 

in section 2.1.2.3.4. However, the concentration of primers and probes 

optimised for this gene to match the housekeeping gene efficiency 

corresponded to 100 nM probe, 200 nM forward and 150 nM of reverse 

primers. 

 

Table 2.2 Primers and Probes Sequences Used for RT-PCR 

 
Gene 

 
 

 
                   Sequence  (5’ – 3’)  

 
Nrf2 

 
Forward 

 
Reverse 

 
Probe 

 
TGGTACAACCCTTGTCACCATC 

 
AATTCTTTCTCTGGTGTGTTCT 

 
   AGCACTCACGTGCATGATGCCCA 

 
 

http://www.ncbi.nlm.nih.gov/sites/gene�
http://align.genome.jp/�
http://www.ncbi.nlm.nih.gov/tools/primer-blast/�
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2.1.2.4.3 Nuclear and Cytoplasmic Protein Extraction  

 
Nuclear and cytoplasmic protein extracts from Caco-2 cells were obtained 

using NE-PER nuclear and cytoplasmic extraction reagents (Pierce, Rockford, 

IL) according to the manufacturer’s instructions. Briefly, Caco-2 cells were 

seeded at 4×105 cells in 10-cm dishes and treated when confluence reached 

80% (usually after 4 days) with vehicle DMSO and SeMSC (200nM), iberin 

(12 µM) or combinations of these compounds for 8 and 24 hours. For the last 

time point iberin (6 µM) was also included in combination with SeMSC. At the 

experimental time points, media were removed, and cells were washed with 

10ml of ice cold PBS, then 500 µl of PBS was added to remove the cells by the 

use of a rubber policeman. Cell were then centrifuged at 500×g for 3 min at 

4°C, supernatant was removed and cells were resuspended in Cytoplasmic 

Extraction Reagent I buffer (CER I) (containing protease inhibitor) by 

vortexing the tube for 15 seconds followed by incubation on ice for 10 minutes. 

Then, CER II buffer was added to the samples, vortexed, and centrifuged at 

16000×g for 5 minutes to separate the supernatant, which contained the 

cytosolic proteins.  The pellet was resuspended in Nuclear Extraction Reagent  

buffer (NER)r (containing protease inhibitor) and vortexed every 10 minutes 

for 40 minutes, and then centrifuged at 16000×g for 10 minutes to separate the 

supernatant, which contained the nuclear proteins. All the extracts were stored 

at -80°C until use. Protein concentrations of cytoplasmic and nuclear extracts 

were determined by the Bradford method. 

 

For detection of Nrf2 by Western blotting, the same steps described in section 

2.1.2.3.5 were followed. However, Nrf2 bands in the nuclear and cytosolic 

fraction were detected using two different rabbit polyclonal anti-Nrf2 

antibodies, namely H-300 and C-20 respectively (Santa Cruz, CA), using a 

1:1000 dilution. After an overnight incubation with the primary antibody the 

membranes were washed three times with PBST and incubated with 

horseradish peroxidase-conjugated goat anti-rabbit antibody (Santa Cruz, CA), 

using a 1:5000 dilution.  Equal loading of Western blots was determined by the 
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use of rabbit polyclonal antibody SAM 68 and goat polyclonal antibody β-

Actin (Santa Cruz, CA) for the nuclear and cytosolic fraction respectively, 

using the appropriate secondary antibody against the species in which the 

primary antibody was raised.  

 

2.1.2.5 Effects of Hydrogen Peroxide on Caco-2 Cells Pre-

treated with Isothiocyanates and/or Selenium Compounds.  

 

2.1.2.5.1 Cytotoxicity of Hydrogen Peroxide  
 
Before determining the protection by ITCs and/or Se compounds in Caco-2 

cells challenged with oxidative stress, cells were treated in a dose-dependent 

manner with the oxidant hydrogen peroxide (H2O2) to determine its effect on 

cells viability. Furthermore, to determine the effect of increasing concentration 

of H2O2 on cell viability when Caco-2 cells were pre-treated with dietary 

constituents, to identify the best concentration to use under these conditions, an 

additional plate pre-treated with selenite was set up before increasing 

concentrations of H2O2 were added. To achieve this, two 96-well plates were 

seeded at 7×103 cells/well using 6 biological replicates per treatment in a final 

volume of 100 µl DMEM and left to grow until confluence reached about 50-

60% (usually after 48 h). Then, media from both plates were removed before 

one of the 96-well plates was supplemented with 100 µl of a stock solution of 

selenite diluted with DMEM to 50 nM and the second plate supplemented with 

100 µl of media containing the vehicle (water). After 24 h, H2O2 stock 

solutions (dissolved in water) and diluted with serum-free DMEM (containing 

only 1% of L-Glutamine and 1% penicillin/streptomycin) were prepared before 

culture media were removed from both plates, which were then incubated with 

100 µl of media containing the vehicle (water) or increasing concentrations of 

H2O2 ranging from 600 to 1200 µM, for the plate treated with selenium, or 

ranging from 200 to 800 µM, for the plate without selenium, for a period of 24 
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h prior to the addition of 10 µl of WST-1 to determine cell cytotoxicity (see 

section 2.1.2.2).  

 

2.1.2.5.2 ITC- and/or Se-mediated Cytoprotection in Caco-2 

Cells  

 

The protective effect of ITCs and/or Se against H2O2-induced cytotoxicity was 

also investigated. Caco-2 cells (7×103 cells/well in a 96-well plate) were grown 

for 48 hours before media was removed and cells were treated with 100 µl of 

DMEM containing the vehicle (DMSO), SFN (6 µM), selenite (50 nM), and a 

combination of ITCs+Se to evaluate its synergistic effect using 12 replicates 

per treatment. After 24 hours stock solution of H2O2 were diluted with serum-

free media to obtain a final concentration of 500 µM before media was 

removed from the cells and 6 replicates were treated with 100 µl of H2O2 and 

the other 6 with an equal amount of the vehicle DMSO (0.05%) to compare the 

viability of cells treated only with SFN and/or selenite against that generated 

by cells treated with the food compounds plus the oxidants for 24 hours. After 

24 h of incubation was completed 10µl of WST-1 was added to the media and 

cell viability was measured at 30 and 60 min following steps on section 

2.1.2.2.  

 

2.1.2.6 Role of TrxR1 and GI-GPx in the ITC- and/or Se-

mediated Cytoprotection in Caco-2 cells 

 

2.1.2.6.1 TrxR1/GI-GPx siRNA Optimisation Assay 
 

To achieve the best results in siRNA transfection of adherent cells, the amount 

of siRNA and the ratio of HiPerFect Transfection reagent to siRNA were 

optimised by combining  1, 5, 25 and 50 nM of siRNA with different 
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concentrations of HiPerFect (1.5, 3.0 and 4.5 µl) using a 24-well plate format, 

followed by optimisation of a single and double knockdown approach, 

selecting 25 nM siRNA and 3.5 µl of HiPerFect for the former (for the 

experiments described in section 2.1.2.6.2 this amount was adapted to a 96-

well plate format). Silencing was monitored at the mRNA level by real-time 

PCR following steps described in section 2.1.2.3.4 and using the same primers 

and probes sequences shown in Table 2.1.  

 

2.1.2.6.2 Cell Viability Effects of TrxR1 and/or GI-GPx 

Knockdown in Caco-2 cells  

 

A single and double knockdown approach was used to investigate the effect of 

the selenoproteins TrxR1 and GI-GPx in cell protection when cells were pre-

treated with SFN+Selenite and challenged with H2O2. TrxR1 siRNA (Target 

sequence: CTGCAAGACTCTCGAAATTAT), GI-GPx siRNA (Target 

sequence: AACCCTCTGGTTGGTGATTCA) and AllStars negative control 

siRNA were obtained from Qiagen. Transfection of siRNA was performed 

using HiPerFect (Qiagen) using the Fast-Forward protocol for adherent cells 

provided by the manufacturer. Briefly, on the day of transfection Caco-2 cells 

were seeded at 1.8 × 104 cells/well of a 96-well plate in 170 µl of 10% FBS 

DMEM medium (containing 1% of L-Glutamine and 1% 

penicillin/streptomycin) and were incubated under normal growth conditions 

until the transfection complex was ready to be dispensed. In order to guarantee 

that the single and double knockdown treatments contained an identical final 

concentration of siRNA, the former was mixed with AllStars negative control 

siRNA (scrambled siRNA). For the experimental set up the following 

treatment groups were prepared: a) cells received only AllStars siRNA (50 nM) 

(control group), b) cells received AllStars siRNA and SFN+Se (second control 

group without TrxR1 or GI-GPx siRNA), c) Cells received TrxR1 siRNA + 

AllStars siRNA and SFN+Se (TrxR1 single knockdown), d) Cells received GI-

GPx siRNA + AllStars siRNA and SFN+Se (GI-GPx single knockdown), e) 
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Cells received TrxR1 siRNA + GI-GPx siRNA + SFN+Se (TrxR1/GI-GPx 

double knockdown). For every experimental group 12 biological replicates 

were prepared.  

 

To prepare the transfection complex of the single knockdown treatments, stock 

solutions of TrxR1 or GI-GPx siRNA and AllStars negative control siRNA 

were diluted in 30 µl of plain DMEM (to give a final siRNA concentration of 

50 nM after adding complexes to cells seeded in 170 µl DMEM). For the 

double KO a similar approach was followed to obtain a final concentration of 

25 nM of TrxR1 plus 25 nM of GI-GPx (50 nM in total) when the transfection 

complex (30 µl) was added to the cells. Likewise, the control groups were 

prepared by adding 50 nM of AllStars negative control siRNA. Once every 

siRNA was diluted in 30 µl of the plain culture medium, 0.875 µl of HiPerFect 

was added, mixed by vortexing and incubated for 5-10 min at room 

temperature to allow the formation of the transfection complexes. 

Subsequently, the complexes were added drop-wise onto the cells, swirling the 

plate gently to ensure its uniform distribution, and then cells were placed in the 

incubator. After 24 h the media were removed and cells were treated with 100 

µl of DMEM containing DMSO (control group) or SFN (6 µM) plus selenite 

(50 nM). After 24 h the medium was removed again and serum-free medium 

containing 400 µM of H2O2 was added only to 6 biological replicates per every 

treatment group. For the remaining 6 wells, only serum-free medium 

containing the vehicle (water) was added (this group served as the control for 

every treatment). After 24 h of incubation with H2O2 or vehicle 10µl of WST-1 

was added to the media and cell viability was measured at 30 and 60 min 

following steps described in section 2.1.2.2.  

 

2.1.3 Statistical Methods  
 

Statistical analyses were carried out using the SPSS 16 statistical program. 

Results are expressed as means ± SD. Statistical comparisons were made using 

Student’s t-test and one-way ANOVA with Dunnett’s post hoc test when 
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treatment samples were compared only against the control group and with 

Bonferroni’s post hoc test when comparisons between groups were made.  

 

2.2 RESULTS AND DISCUSSION 
 

2.2.1 Effect of Isothiocyanates and Selenium on Cell Survival  
 

To ensure that doses used were not toxic to the cells, Caco-2 cells were 

exposed to increasing concentrations of ITCs (ranging from 1 to 50 µM) and 

selenium (ranging from 0.2 to 200 µM) to evaluate cell growth. A profile 
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Figure 2.1 The effect of (A) sulforaphane and (B) iberin on Caco-2 cells as measured by 
cell metabolic assay WST-1. Caco-2 cells were treated for up to 96 h with DMSO (control) 
or with the indicated concentrations of selenium, and cell cytotoxicity was evaluated. Data 
(optical density) represent the mean ± SD of five replicates expressed as percentage of 
control. Significant differences from control are indicated (*P<0.05; **P<0.01; 
***P<0.001). Lines drawn on the graph indicates that all the bars included within the line 
are significantly different different from their corresponding control group.  
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comparison of cell growth inhibition after ITC exposure for up to 96 h revealed 

obvious differences between short and longer exposure times particularly with 

higher ITC concentrations. The viability of Caco-2 cells supplemented either 

with sulforaphane or iberin was similar for both ITCs and cell proliferation was 

not affected by ITCs at the low concentration range (1-8 µM). However, 

concentrations of sulforaphane and iberin above 10 µM reduced significantly 

the viability of cells in a time- and dose-dependent manner, particularly after 

48 h (Figure 2.1). In general, the IC50 value obtained for both ITCs indicates 

that cells are more sensitive to sulforaphane than iberin particularly after 24 h 

treatment, with a similar value thereafter (Table 2.3). These results are in 

agreement with published data (using different cytotoxicity assays), showing 

that treatment of colon cancer cells (Caco-2, SW620, HT-29,) with ITC 

concentrations >10 µM caused a significant decrease in cell viability (Gamet-

Payrastre et al. 2000; Jakubikova et al. 2006; Andelova et al. 2007; Harris and 

Jeffery 2008). However, our results differ markedly from those obtained by 

Traka et el., who report an IC50 value of 85 µM for Caco-2 cells after 24 hours’ 

treatment with sulforaphane. This discrepancy might be explained as a result of 

the different metabolic-dye assay (MTT) employed by them to determine cell 

viability (Traka et al. 2005). 

 

Table 2.3 IC50 values of sulforaphane and iberin obtained after treating Caco-2 

cells from 24 to 96 h 

 IC50
 (µM)* 

Time (h) Sulforaphane ± SD Iberin ± SD 

24 35±2.5 45±2.5 

48 27±2.3 29±2.2 

72 20±2.7 22±3.1 

96 18±2.9 20±2.8 
*IC50 measured using CalcuSyn software (Biosoft, Cambridge, UK). Each point represents the 

mean ± SD of five replicates 
 

Regarding the cell response after selenium treatments, Figure 2.2.A shows a 

sustained increase in the percentage of cell survival when cells were 
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supplemented with increasing concentrations of selenite ranging from 0.2 to 25 

µM for 72 hours. This trace mineral also produced a gradual decrease after 24 

hours with treatment ≥50 µM, with a sudden decrease in cell viability after 

cells were supplemented with ≥10 µM of selenite for 96 h. The effect of 

SeMSC on cell viability (Figure 2.2.B) was comparable to that obtained for 

selenite and no toxicity was observed with concentrations ≤ 10 µM when cells 

were treated for up to 72 h. Treatment with SeMSC only caused a decrease in 

cell viability when cells were treated with concentrations above 100 µM for 72 

or 96 hours. The effective cytotoxic concentrations of selenite and SeMSC that 

inhibited 50% of cell growth are shown in Table 2.4. 
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Figure 2.2 The effect of (A) selenite and (B) SeMSC on Caco-2 cells as measured by 
cell metabolic assay WST-1. Caco-2 cells were treated for up to 96 h with DMSO (control) 
or with the indicated concentrations of selenium, and cell cytotoxicity was evaluated. Data 
(optical density) represent the mean ± SD of five replicates expressed as percentage of 
control. Significant differences from control are indicated (*P<0.05; **P<0.01; 
***P<0.001). Lines drawn on the graph indicates that all the bars included within the line 
are significantly different different from their corresponding control group.  
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In general, the available literature shows that cell culture models show a 

biphasic proliferation response to selenium, which has a stimulatory effect in 

the nanomolar to micromolar range, and a strong inhibitory effect at higher 

concentrations. However, when analysing the selenium literature for cell 

viability studies it is important to keep in mind the form of selenium used, the 

level of selenium to which cells were exposed, the cell type and the 

cytotoxicity assay used.  For instance, Shroterova and colleagues (2009) 

showed that after comparing the toxicity of three common forms of selenium 

(selenite, selenomethionine and SeMSC) using five commonly employed 

cytotoxicity assays (WST-1, XTT, MTT, Brillian Blue and Neutral red assay) 

in three different colon cancer lines (HT-29, SW480 and SW620) and showed 

some differences in the sensitivity of the different cell lines to selenium 

treatment. However, the major observed differences resulted from the use of 

different cytotoxicity assays. Moreover, after using the WST-1 assay the 

viability of neither HT-29 nor SW620 cell lines was affected by selenite 

concentrations of up to 256 µM after 48 h treatment (Schröterová et al. 2009). 

Conversely, SeMSC was found to decrease cell viability by 55 and 40% in HT-

29 and SW620 respectively at 256 µM (Schröterová et al. 2009). These 

findings were not consistent with the earlier literature, which suggests that 

selenite is more toxic than SeMSC (Kim et al. 2001), but different colon cancer 

cell types represent differing stages of the carcinogenesis process (HT-29 

represents cells isolated from primary adenocarcinoma of colon grade 1, 

whereas SW620 correspond to a cell line isolated from metastasis of primary 

adenocarcinoma)  and these cell types might be sensitised differently to various 

forms of selenium. For instance, a comparison of the IC50 value in different 

cancer cell lines (MCF-7, UACC-375, HT-29, DU-145, A-549) using 

selenomethionine found that different levels were required to cause 50% 

growth inhibition, identifying an IC50 value of 130 µM in the human colon 

cancer cell line HT-29 in comparison with the rest, which required less than 40 

µM (Redman et al. 1998). 
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Also, in addition to assessing cell viability in response to individual ITCs and 

selenium, an experiment was set up using increasing doses of iberin (from 6 to 

12 µM) plus SeMSC (from 0.2 to 1 µM) for up to 72 hours to identify changes 

in cell cytotoxicity when both compounds were added together. No levels 

below 95% of the control were detected in any of the treatments (data not 

shown).  

 

Table 2.4 IC50 values of selenite and SeMSC obtained after treating Caco-2 

cells from 24 to 96 h 

 IC50 (µM) * 

Time (h) Selenite ± SD SeMSC ± SD 

24 383±2.2 --- 

48 101±3.4 --- 

72 103±3.5 178±4.9 

96 38±1.8 155±5.3 
*IC50 measured using CalcuSyn software (Biosoft, Cambridge, UK). Each point represents the 

mean ± SD of five replicates 
 

As shown in this study selenium was observed to promote an increase in cell 

viability. This observation is in agreement with previous data, where an 

increase in cell viability after selenite treatment at concentrations in the 

nanomolar to micromolar range has been demonstrated in human sarcoma 

(HT1080) or colon cancer (SW620) cell lines.  In contrast no increase in 

viability was measured in the colon cancer cell HCT116 (Yoon et al. 2001; 

Schroeder et al. 2004). Also, HL-60 cells treated with ~10 µM of SeMSC were 

observed to have increased cell viability compared to controls, but treatment 

above this concentration promoted cytotoxicity (Kim et al. 2001). The 

mechanisms by which selenium promotes cell growth is thought to depend on 

the insulin-like action of Se including: increasing glucose uptake and ATP 

generation through the activation of glycolysis, antiapoptotic Bcl-2 protein up-

regulation, maintenance of mitochondrial membrane potential, stimulation of 

fatty acid synthesis and pentose phosphate pathway activity (Yoon et al. 2002; 

Zeng and Combs Jr 2008). 
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Contrary to promoting cell growth, the increased toxicity that is usually 

observed for selenite in comparison to monomethylated selenium forms is due 

to the fact that selenite causes growth inhibition due to DNA single-strand 

breaks (a genotoxic effect), and increases cell death as a result of both necrosis 

and apoptosis. On the other hand, growth inhibition by a monomethylated 

selenium form such as SeMSC, is due to a decrease in cell proliferation and an 

increase in cell death in which apoptosis is the predominant mechanism, 

without involvement of DNA single-strand breaks (Ip et al. 2002). In general, 

the mechanism for the toxic effect of selenium at high levels has been 

suggested to be due to its ability to catalyse the oxidation of thiols and 

concurrent generation of ROS, which can damage cellular components by lipid 

peroxidation (Spallholz 1994). In fact, sodium selenite has been reported to 

generate oxidative stress in various cell models including colon cancer cells 

(Drake 2006; Kim et al. 2007; Xiang et al. 2009; Králová et al. 2010). In this 

respect, selenite, diselenides and the oxidation products of H2Se, selenium 

dioxide, for example, can each react with glutathione (GSH) to produce the 

selenolate ion (RSeˉ). In the presence of GSH and molecular oxygen, RSē  can 

cycle continuously to generate O2
•ˉ and H2O2, which is thought to be the basis 

of Se-toxicity (Combs and Lu 2006). 

 

At low doses, Se functions as an essential component of SeCys in several 

specific selenoproteins and promotes cell proliferation. At higher doses, but 

still not toxic, Se can reduce cancer risk (Zeng and Combs Jr 2008). SeMSC at 

a concentration of 50 µM induces apoptosis via ROS production in HL-60 cells 

(Jung et al. 2001), whereas in the nanomolar to micromolar range it confers a 

significant protection against an oxidative insult (Cuello et al. 2007).  

 

Therefore, based on our results and taking into consideration other studies 

concentrations of ITCs and selenium compounds used for further experiments 

ranged from 3 to 12 µM for ITCs and 25 to 200 nM for selenium compounds. 

ITC concentrations in this range could be achieved in human plasma by 
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consumption of ITC-rich vegetables or high glucosinolate broccoli (Ye et al. 

2002; Gasper et al. 2007).  

2.2.2 Up-regulation of TrxR1 and GI-GPx by Isothiocyanates 

and Selenium Compounds 

 

In the present study, the effects of isothiocyanates and selenium on TrxR1 and 

GI-GPx gene expression in Caco-2 cells were evaluated. Time course 

experiments were conducted on the expression of these two important redox-

modulating enzymes that have been shown to play an important role during 

Figure 2.3 Time course of isothiocyanate-induced A) TrxR1 and B) GI-GPx mRNA. 
Caco-2 cells were exposed to DMSO (control) or 6 µM of sulforaphane or iberin for 
different times to evaluate gene expression. Results are mean ± SD of triplicate samples 
normalized against 18S rRNA. Significant differences from control are indicated 
(*P<0.05; **P<0.01; ***P<0.001) 
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inflammation and cancer (Mustacich and Powis 2000; Chu et al. 2004). An 

initial experiment was carried out after exposing the cells to 6 µM of 

sulforaphane and iberin for 4, 8, 12, 24 and 48 h to provide information about 

the regulation of mRNA over time. The results showed a significant increase 

after sulforaphane or iberin treatment in a time dependant manner in the 

expression of TrxR1 and GI-GPx when compared to control, with a peak 

induction of 4.5-fold at 12 hours for TrxR1 and a peak of ~3.5-fold at 24 hours 

for GI-GPx, where the amount of mRNA returned to basal levels after 48h for 

TrxR1 but only declined slightly for GI-GPx (Figure 2.3), which imply that the 

mRNA turnover rate for both genes is different. The isothiocyanates tested 

were also showed to promote a significant induction of TrxR1 and GI-GPx 

expression dose-dependently with an increase of ~6- and ~3.5-fold respectively 

for the highest concentration (Figure 2.4), observing always a tendency of 

sulforaphane to promote a greater mRNA induction for both genes in 

comparison to iberin. Similar levels of TrxR1 induction have been observed 

after treating Caco-2 cells for 24 h with 5 µM of iberin (Jakubikova et al. 

2006).  
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Following these results, an experiment was conducted to assess the effect on 

levels of TrxR1 and GI-GPx mRNA expression of selenite and SeMSC, first 

individually and then in combination with sulforaphane and/or iberin (Figure 

2.5 and 2.6).  

 

Figure 2.4 Dose dependent effects of isothiocyanates on mRNA expression. Caco-2 
cells were exposed to DMSO (control) or increasing concentrations of isothiocyanates 
for A) 12 h for TrxR1 and B) 48 h for GI-GPx. Results are mean ± SD of triplicate 
samples normalized against 18S rRNA. Significant differences from control are 
indicated (*P<0.05; **P<0.01; ***P<0.001) 
 

A 
 

B 
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The amount of TrxR1 or GI-GPx mRNA was not increased by either form of 

selenium within 48 h. However, the combination of iberin and selenite 

increased TrxR1 expression by 41% after 8 h as compared with iberin alone 

(p<0.05), without a significant increase when iberin and SeMSC were added 

together. This level of induction of 4-fold was similar to that produced by SFN 

alone after 24 h or SFN+Selenium at 8 or 24 h. After 24 h an increase of ~29% 

was observed when iberin was added with selenite or SeMSC (p<0.05).  

 

Although a significant synergistic induction was not observed when 

sulforaphane was added with either form of selenium, a comparable trend was 

seen, especially at 8 h. TrxR1 mRNA expression tended to decrease after 48 h 

with only SFN plus SeMSC remaining 2-fold significantly increased compared 

with control and also still greater than observed in the presence of only 

sulforaphane or iberin (Figure 2.5). The maximum increase for this gene was 

detected within the sulforaphane group (SFN+SeMSC) at 24 h with a peak of 

4.3-fold. Moreover, the level of induction obtained in this group remained 

significantly different from the iberin group (P<0.01). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Effect of ITCs and/or Se supplementation on TrxR1 mRNA. Caco-2 cells were 
exposed to DMSO (control), 6 µM of ITCs and/or 200nM of selenium and were incubated for 8, 
24 and 48 h to evaluate gene expression. Results are mean ± SD of triplicate samples normalized 
against 18S. Significant differences from control and between treatments are indicated (*P<0.05; 
**P<0.01; ***P<0.001). Although the majority of bars have some degree of significance the 
more relevant only are indicated on the graph. 
 
 

8 h 24 h 48 h 
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In relation to the changes observed in GI-GPx mRNA, although SFN plus 

SeMSC had a significant effect relative to the iberin group after 8 and 48 h, the 

addition of selenium had no significant effect on mRNA expression when 

compared to ITCs alone. GI-GPx mRNA was induced 2-fold with 8 h 

treatment within the iberin group and was increased to 3-fold at 24 h but 

declined thereafter, showing a maximum 4.2-fold induction at 24 h with the 

isothiocyanate sulforaphane, which was significantly different from iberin 

(P<0.01) (Figure 2.6). 

 
To examine whether the mRNA induction of these two selenoproteins is 

translated into functional protein, Caco-2 cells were treated for 48 h with 

different concentrations of ITCs and/or selenium (Figure 2.7 A, B and 2.8 A, 

B) and for 8, 24 and 48 h to carry out a time course experiment (Figure 2.7C 

and 2.8 C), then proteins were extracted and quantified by Western Blotting as 

specified in material and methods.  

 

As mRNA is ultimately translated into protein, one might assume that there 

should be a reasonable correlation between the level of mRNA and that of 

protein. However, ITC treatment is not seen to up-regulate the expression of 

the studied selenoproteins at the protein level as observed at the mRNA level. 

Figure 2.6 Effect of ITCs and/or Se supplementation on GI-GPx mRNA. Caco-2 cells were 
exposed to DMSO (control), 6 µM of ITCs and/or 200nM of selenium and were incubated for 8, 
24 and 48 h to evaluate gene expression. Results are mean ± SD of triplicate samples normalized 
against 18S rRNA. Significant differences from control and between treatments are indicated 
(*P<0.05; **P<0.01; ***P<0.001). Although the majority of bars have some degree of 
significance the more relevant only are indicated on the graph. 
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On the other hand, ITC+Se TrxR1 protein induction pattern (Figure 2.7) was 

seen to correlate comparatively well with the mRNA level observed in Figure 

2.5 in contrast to the GI-GPx protein pattern observed in Figure 2.8 which 

differed clearly from that obtained at the mRNA level, where the former 

appears to be visibly induced by both treatment with selenium alone and 

augmented by co-treatment with ITCs+Selenium in a concentration- and time-

dependent manner.  These results are consistent with those by Brigelius-Flohé 

Figure 2.7 Differential levels of TrxR1 protein expression in Caco-2 cells following 
supplementation of ITCs and/or Se for 48 h (A and B) and for 8, 24, and 48 h (C). Whole-cell 
lysates were harvested and equal amounts of proteins (60 µg) were resolved by SDS/10% PAGE 
for Western blot analysis. The translated TrxR1 product appeared as a band of approximately 55 
kDa and densitometric analysis of these bands were normalized to β-actin signal (42 kDa) and was 
converted into fold of induction relative to control=1  
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and co-workers who found that transcription of the GI-GPx gene was not 

affected by selenium supplementation in Caco-2 and HepG2 cells, but 

produced an increase at the protein level when cells were supplemented with 

50 nM of sodium selenite (Wingler et al. 1999).  

 

Moreover, results in Figure 2.6 showed a trend toward reduced GI-GPx mRNA 

when cells were supplemented with selenite or SeMSC, which also correlates 

with Wingler and colleague’s finding where they showed higher GI-GPx 

mRNA expression during selenium deficiency than under selenium treatment. 

In this respect, according to data shown as Figures 2.7- and 2.8-A, selenium 

Figure 2.8 Differential levels of GI-GPx protein expression in Caco-2 cells following 
supplementation of ITCs and/or Se for 48 h (A and B) and for 8, 24, and 48 h (C). Whole-cell 
lysates were harvested and equal amounts of proteins (60 µg) were resolved by SDS/10% PAGE 
for Western blot analysis. The translated GI-GPx product appeared as a band of approximately 22 
kDa and densitometric analysis of these bands were normalized to β-actin signal (42 kDa) and 
results were converted into fold of induction relative to control=1 
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was shown to be the limiting nutrient, determining the overall synergy at the 

protein level when cells were supplemented with ITCs and selenium dose-

dependently. This observation is in contrast to what was observed at the 

mRNA level where the level of expression appeared to be more responsive to 

ITCs than selenium. The Western blotting data indicated a maximal protein 

induction of 4-fold and 14-fold for TrxR1 and GI-GPx respectively when cells 

were co-treated with 12 µM of iberin and 200 nM of SeMSC.  

 

Immunoblot analyses of protein extracts from Caco-2 cells after treatment with 

both forms of ITCs and/or Se for 48 h (Figure 2.7- and 2.8-B) showed a similar 

pattern where sulforaphane with either form of selenium induced more protein 

than the co-treated iberin group. Furthermore, the SFN+selenite treatment had 

a tendency to be more effective in increasing protein expression than 

SFN+SeMSC for both selenoproteins, with a maximum level of induction of 

12-fold for TrxR1 and a dramatic 53-fold induction for GI-GPx when 

compared to control, which represented an absolute increase of 21% and 32% 

respectively in comparison to the SFN+SeMSC group.  Also, although 

iberin+selenite led to a maximum peak of protein at 24 h (~7-fold) (Figure 

2.7C) the same treatment decreased protein synthesis to 5-fold after 48 h, 

whereas the iberin+SeMSC treatment resulted in a continued increase from 4- 

to 6-fold. Regarding GI-GPx (Figure 2.8-C), it was observed that Caco-2 cells 

supplemented with iberin+SeMSC can sustain a more prolonged increase in 

protein expression than iberin+selenite, increasing from 8-fold (24 h) to 22-

fold (48 h) for the former.  

 

Based on the results obtained with the different forms of selenium used, it 

could be inferred that the species of selenium affects the synthesis rate of 

selenoproteins (Figure 2.7- and 2.8-B) with a higher synthesis rate observed for 

the ITCs+selenite treatment compared to the ITCs+SeMSC treatment. Indeed, 

it has been observed that Se from high-selenium broccoli (mainly Se-

methylselenocysteine) does not accumulate in tissue or increase GPx1enzyme 

activity to the same extent as selenite or selenomethionine, presumably because 
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the SeMSC is metabolised directly to methyl selenol and enters the excretory 

pathway (Finley 2003). In contrast, another research group reported that 

SeMSC induced GPx1 to a similar extent to selenite in a selenium deficient 

Caco-2 cell model (Zeng et al. 2008). In this study, when a time course 

experiment was carried out, SeMSC was able to maintain a more sustained 

protein up-regulation than selenite after 48 h for both genes (Figure 2.7- and 

2.8-C), which represents an unknown advantage over selenite that will have to 

be further investigated and validated. Furthermore, Se from high-selenium 

broccoli has been found to be more effective than selenate or selenite in 

inhibiting colon cancer, which may be directly related to generation of its 

metabolite methyl selenol (Finley and Davis 2001), but might also be due to 

modulation of specific selenoproteins (such as TrxR1 and GI-GPx) differently 

over the long term as seen in our study in Caco-2 cells.  

 

Sulforaphane was shown to exhibit greater up-regulation of TrxR1 or GI-GPx 

when in combination with either form of selenium than iberin plus selenium. 

Most studies examining the structure-activity relationships between different 

isothiocyanates against tumour growth have been conducted in arylalkyl 

isothiocyanates, which contain a phenyl group in their structure, such as 

phenethyl-ITC (PEITC) (Table 1.1). They have shown that the length of the 

phenylalkyl moiety of isothiocyanates affected the inhibitory potency. The 

inhibition of lung tumorigenesis increased as the alkyl chain was increased 

from 1 to 6 methylene groups; the synthetic phenylhexyl isothiocyanate 

(PHITC; [C6]) was approximately 50−100 times more potent than PEITC [C2], 

and this pattern was equally seen for other ITCs: PPeITC [C5] > PBITC [C4] > 

PPITC [C3] > PEITC [C2] > BITC [C1] (Morse et al. 1991; Jiao et al. 1994). 

However, when it comes to study the influence of different ITCs on the 

induction of antioxidant enzymes the level of agreement among researchers 

appears to be different. For instance, Munday and colleagues have stated that 

among isothiocyanates the length of the carbon chain appears to be of little 

importance, since no significant differences in inductive activity were recorded 

between iberverin and erucin or between sulforaphane and iberin after 
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analysing the induction of NQO1 and GST in a variety of rat tissues (Munday 

and Munday 2004). In contrast, structure-activity studies conducted by Zhang 

et al have examined the effects of altering the number of methylene groups in 

sulforaphane in NQO1 in murine hepatoma cells and have found that all of 

these analogues were considerably less potent than the parent sulforaphane 

(Zhang et al. 1992). 

 

The synergy observed in this research has been reported previously in human 

HepG2 cells supplemented with sulforaphane and selenium (Zhang et al. 

2003); after adding each compound separately sulforaphane caused an increase 

in TrxR1 expression, contrasting with selenium, which had no effects. 

However, after adding selenite (120 nM) plus sulforaphane (6 µM) in 

combination, a simultaneous increase in mRNA and TrxR1 activity was 

observed beyond the maximum increase caused by either compound alone, 

corresponding to an induction of 6.5-fold (after 24 h) and 13.2-fold (after 72 h) 

respectively. This enhanced TrxR1 enhanced response was also seen after 

treating human hepatocytes HHL-5 with broccoli sprout extract (70% ITCs 

were SFN and 25% were iberin) and selenite (Li et al. 2008).  

 

Similar results regarding the up-regulation of TrxR1 have been observed in 

another study comparing three dietary ITCs in a human breast adenocarcinoma 

cell line (MCF-7). Although this study found that selenite had no additional 

effect on sulforaphane-induced TrxR1 mRNA, co-addition of 200 nM of 

selenite with 12 µM of either sulforaphane, erucin or iberin after 48 h, 

significantly enhanced TrxR1 protein expression and its activity by 5.1-, 9.0-, 

6.3-fold respectively, showing that erucin and iberin possess superior activity 

to that of sulforaphane (Wang et al. 2005), a difference from the results 

obtained in this study where sulforaphane was seen to exert a greater induction 

than iberin in Caco-2 cells. Likewise, the ability of sulforaphane and selenium 

to modify the mRNA expression of TrxR1, GPx1and GPx4 was assessed in the 

human endothelial cell line EAhy926, identifying that selenite alone increased 

significantly the expression of all the studied selenoenzymes, in contrast to 
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sulforaphane, which only increased TrxR1. This enzyme was also the only one 

that showed a significant synergistic increase when SFN+selenite were added 

to the media.   

 

Key studies have identified that the mRNA levels of the selenoproteins 

evaluated here are transcriptionally modulated via an antioxidant responsive 

element (ARE), which facilitates rapid expression responses unrelated to the 

established Se-dependent induction of selenoproteins (Rundlof et al. 2001; 

Hintze et al. 2003; Banning et al. 2005). In this respect, it has been suggested 

that the modulation of TrxR1 activity by SFN and selenium occurs 

independently.  The former works transcriptionally through the ARE located in 

the promoter region of the gene. This process involves disruption of the Keap1-

Nrf2 complex by inducer SFN leading to Nrf2 migration to the nucleus where 

it binds to the ARE region of TrxR1 or GI-GPx in the promoter region of the 

gene. On the other hand, selenium supply is thought to regulate TrxR1 

expression by post-transcriptional mechanisms that include the provision of an 

adequate supply of selenocysteine for incorporation into the TrxR1 protein, 

delaying its degradation (Gallegos et al. 1997; Hintze et al. 2003; Zhang et al. 

2003). These previously described findings are in agreement with our results 

obtained for TrxR1, but also fit with results observed for GI-GPx were 

selenium was the limiting nutrient at the protein level (Figure 2.7- and 2.8-A), 

indicating a similar mechanism of regulation for both selenoenzymes. 

 

Since GI-GPx and TrxR1 are selenoproteins, their expression and activity are 

regulated by selenium, where adequate selenium supply is critical for synthesis 

of selenoproteins through the selenocysteine insertion mechanism. However, as 

observed in this research, the interrelationships between selenium 

supplementation and selenoprotein expression are complex and will depend 

upon the type of selenium source, the concentration of selenium and, according 

to other studies; it will also depend upon the cell-type under consideration. On 

the other hand, as confirmed here, this regulation occurs at different levels for 

different selenoenzymes, which means that selenoproteins are regulated 



  
 

79 
 

              Chapter 2 

individually through changes in their mRNA and protein levels, as seen for GI-

GPx mRNA, which was not seen to be influenced consistently when selenium 

was combined with ITCs during the different times evaluated, a difference 

from TrxR1 mRNA, which was seen to be more responsive to selenium. This 

variation among selenoproteins is believed to be as a result of differences in the 

3´UTR sequence (where the selenocysteine insertion sequence SECIS is 

present), which might be responsible for differences in relative transcription 

rates and mRNA stability, probably reflecting differences in ability to form a 

complex with Sec-tRNA and the proteins forming the SECIS-binding complex 

(Hesketh and Villette 2002; Reilly 2006). For comparison with the current 

data, some studies have reported that GI-GPx is not influenced during selenium 

deficiency, whereas GPx1 decreases and GPx4 mRNA levels remain 

unaffected (Wingler et al. 1999), with TrxR1 being also reported to decrease 

under conditions of limiting selenium supply (Gallegos et al. 1997; Crosley et 

al. 2007). This corroborates different levels of regulation and might imply a 

‘prioritisation’ of available Se so that synthesis of some selenoproteins is 

maintained more than others. From this phenomenon, called hierarchy of 

selenoproteins, it has been concluded that selenoproteins ranking high in the 

hierarchy, i.e. remaining stable under selenium restriction (such as GI-GPx), 

might have more essential functions than those ranking low (Brigelius-Flohé 

and Banning 2009). 

 

2.2.3 Regulation of Nrf2-mediated Antioxidant Enzyme 

Induction 

 

2.2.3.1 Nrf2 Transcriptional and Translational Expression 

Pattern in ITCs and/or Selenium Treated Caco-2 Cells 

 

The proposed molecular mechanisms through which ITCs activate phase II 

enzymes and the selenoproteins investigated here involve the Keap1-Nrf2-
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antioxidant response element (ARE) (Hintze et al. 2003; Banning et al. 2005). 

In the absence of ARE inducers such as ITCs, Nrf2 protein is found primarily 

in the cytoplasm of cells where its concentration is maintained at low levels. 

An important mechanism controlling the increase of Nrf2 protein level is 

through Keap1, an inhibitor of Nrf2, known to bind Nrf2 and hold it in the 

cytoplasm, where Keap1 recruits an E3 ubiquitin ligase, resulting in Nrf2 

ubiquitination and therefore degradation by the proteosome (Eggler et al. 

2008). Also, an adequate selenium status has for a long time been considered to 

prevent the development of various forms of cancer. Recently it was found that 

selenium deficiency increased the level of reactive oxygen species (ROS), 

activating the Nrf2–ARE pathway in the livers of male Nrf2+/+ mice promoting 

as a result a remarkable over-expression of multiple antioxidant proteins (Burk 

et al. 2008). On the other hand, Nrf2-deficient mice have been shown to display  

reduced expression levels of phase 2 enzymes and an increased susceptibility 

to carcinogenesis (Ramos-Gomez et al. 2001). 

 

However, the underlying mechanisms by which ITCs+Se up-regulate further 

the gene expression of intracellular antioxidants need to be addressed. In order 

to confirm if the mechanisms involved in the induction of antioxidant enzymes 

when Caco-2 cells are co-treated with ITCs and selenium is also Nrf2 

dependent, mRNA and protein levels in combination with knockdown 

experiments were studied in Caco-2 cells treated with iberin and/or SeMSC to 

decipher the implication of this important nuclear factor in the studied synergy 

of TxR1 and GI-GPx.  

 

The results showed no elevation of Nrf2 mRNA when cells were treated in a 

time-dependent manner with ITCs and/or selenium after 8 h (Figure 2.9). 

Significant subtle increased of 1.5- and 1.3-fold were observed at 24 and 48 h 

when cells were treated with SFN or SFN+SeMSC respectively.  



  
 

81 
 

              Chapter 2 

On the other hand, nuclear proteins revealed a different pattern, showing a 3-

fold Nrf2 induction after exposing Caco-2 cells for 8 hours to the 

isothiocyanates SFN or iberin. The concomitant decreased levels of Nrf2 

observed in the cytosolic fraction (Figure 2.10) when cells are treated with 

these food constituents reflect the active translocation of Nrf2 from the cytosol 

to the nucleus due to the treatment of cells with an ARE inducer, such as 

isothiocyanate, that inhibit ubiquitination of Nrf2, leading to its nuclear 

accumulation and activation of cytoprotective enzymes. However, it was 

noticed that the treatment corresponding to ITCs+Se did not increase further 

the expression of Nrf2. This founding may indicate that the synergistic 

induction of TrxR1 at the mRNA and protein level and GI-GPx (observed 

mainly at the protein level) is not Nrf2 dependent. Previous studies have 

suggested that although Se does not induce TrxR1 mRNA, Se can delay the 

degradation of sulforaphane induced TrxR1 mRNA (Zhang et al. 2003). In this 

respect, selenoprotein mRNAs are potential targets for degradation via 

nonsense-mediated decay (a quality-control mechanism that selectively 

degrades mRNAs harbouring premature termination (nonsense) codons (Chang 

et al. 2007)) due to the presence of in-frame UGA codons that can be decoded 

as either selenocysteine (Sec) or termination codons. When UGA decoding is 

Figure 2.9 Effect of ITCs and/or Se supplementation on Nrf2 mRNA. Caco-2 cells were 
exposed to DMSO (control), 6 µM of ITCs and/or 200nM of selenium and were incubated for 
8, 24 and 48 h to evaluate gene expression. Results are mean ± SD of triplicate samples 
normalized against 18S. Significant differences from control and between treatments are 
indicated (*P<0.05; **P<0.01). 
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inefficient, as occurs when selenium is limiting, termination occurs at these 

positions (Squires et al. 2007) favouring mRNA degradation, which means that 

Sec-tRNAsec concentration (see section 1.5.1) control selenoprotein expression 

not only by limiting translation but also by modulating mRNA stability 

(Hatfield 2001). This mechanism might imply that the observed induction of 

TrxR1 and GI-GPx in Caco-2 cells after co-addition of ITC+Se potentially 

responds to a reduced mRNA degradation rate rather than over-stimulation of 

the Nrf2-ARE signaling pathway (induced by ITC) when selenium is added.  

 

 

It should be noted that the theoretical molecular weight of Nrf2 is about 67KDa 

for humans, mice, and rats. But, it has been noted that the apparent molecular 

weight of human or murine Nrf2 in SDSPAGE ranges from 57 KDa to 110 

KDa (Li et al. 2005). The occurrence of the higher molecular mass of Nrf2 in 

Western blot analysis has been suggested to represent a Nrf2-actin complex 

Figure 2.10 Representative images of Nrf2 immunoblots with cytosolic and nuclear 
fractions derived from Caco-2 cells exposed for 8h with DMSO (control), SFN, 
SFN+Selenium, iberin or iberin+Selenium. Cellular fractions (30 µg) were resolved by 
SDS/10% PAGE. Cytosolic and nuclear bands were detected using anti-Nrf2 (C-20) and anti-
Nrf2 (H-300) antibodies respectively and bands were seen at 57- (cytosol) and ~100-kDa 
(nuclear). Densitometric analysis of cytosolic and nuclear bands were normalized to β-actin 
(42 kDa) and Sam 68 (68 kDa) signals respectively and results were converted into fold of 
induction relative to control=1.  
 
 
 
 

Cytosol Nuclear Cytosol Nuclear 
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regulated by the PI3-kinase signalling pathway and the result of sequential 

phosphorylation by protein kinase CK2 after the Nrf2 is transported to the 

nucleus (Kang et al. 2002; Pi et al. 2007).  

 

A discrepancy between mRNA and protein levels for Nrf2 similar to the 

observation made here has been observed previously in freshly isolated 

neonatal rat cardiomyocytes cells treated with 100 µM H2O2 for 10 min, at 

which time the media was changed and cells were harvested at different times 

for a total period of 4 h. Results revealed that semiquantitative or RT-PCR did 

not show an increase of Nrf2 mRNA level, but that Western blot analysis 

showed a rapid accumulation of Nrf2 protein within 10 min, with a peak of 2-

fold at 1 to 2 h after H2O2 treatment (Purdom-Dickinson et al. 2007). Also, 

despite Zhang and colleagues reporting an up-regulation in the Nrf2 mRNA 

and protein levels in Caco-2 cells treated with epigallocatechin-3-gallate 

(EGCG), their reported increase in Nrf2 protein corresponded to subtle changes 

of ~1.3- and 1.4-fold respectively compared to control cells (Zhang et al. 

2009), in contrast to the 3-fold protein increase after iberin+SeMSC treatment 

observed in this study (Figure 2.10).  

 

2.2.3.2 Nrf2 siRNA Interference Assay 

 

To further confirm that the molecular mechanism of action through which ITCs 

modulate TrxR1 (Figure 2.11 A) and GI-GPx (Figure 2.11 B) is Nrf2 

dependent, we knocked down the expression of Nrf2 in Caco-2 cells and 

simultaneously treated them with ITCs and or selenium . The siRNA 

significantly (P<0.05) reduced the expression of Nrf2 by 46% (Figure 2.11 C). 

Although the Nrf2 knockdown efficiency obtained was low, the average 

reduction in TrxR1 and GI-GPx induction after suppressing Nrf2 equalled that 

observed for the knockdown efficiency (~44.8%), except for the treatments 

iberin and iberin+selenite within the TrxR1 and GI-GPx groups respectively, 

where the reduction obtained was only 35 and 15%. These results demonstrate 
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the role of Nrf2 to induce the expression of TrxR1 or GI-GPx in colon cancer 

cells in response to ITCs alone as explained in the previous section.  

 

Many studies have been carried out to understand the mechanism of action 

through which certain chemoprotective agents, among them isothiocyanates, 

promote the translocation of Nrf2 into the nucleus (Jakubikova et al. 2006; 

Jeong et al. 2006) and it has been proposed that sulforaphane prevents the 

phosphorylation of Nrf2 by inhibiting p38 MAPK isoforms in HepG2 cells, 

resulting in a reduced interaction between Keap1 and Nrf2 and subsequent 

Nrf2 activation (Keum et al. 2006). Additional mechanistic studies focussing 

on the Nrf-2–ARE signalling pathway have shown JNK1 as a n upstream 

inducer of Nrf-2 to activate ARE-containing genes by phenethyl isothiocyanate 

in HeLa cells (Keum et al. 2003). 

Figure 2.11 Effect of ITCs and/or selenite treatment on A) TrxR1 and B) GI-GPx expression in 
Nrf2 suppressed Caco-2 cells. Caco-2 cells were exposed to either 30 nM  of silencer negative 
scrambled siRNA (-) or 30 nM of Nrf2 siRNA (+) with the carrier Lipofectamine 2000 for 24 h 
before adding vehicle DMSO, ITCs (6 µM) and/or Selenite (200 nM) for 12 h. Mock transfected 
cells received only Lipofectamine 2000. C) Nrf2 knockdown efficiency. Results are mean ± SD of 
triplicate samples normalized against 18S rRNA. Results were converted into fold of induction 
relative to control (DMSO treated cells containing scramble siRNA (-) depicted in orange). 
Significant knockdown (+) from basal levels (-) are indicated (*P<0.05; **P<0.01). 
 

C 
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2.2.4 Effects of Hydrogen Peroxide on Caco-2 Cells Pre-treated 

with Sulforaphane and/or Selenite.  

 

2.2.4.1 Cytotoxicity of Hydrogen Peroxide  
 

The cytotoxic effect of H2O2 was evaluated by treating Caco-2 cells with 

increasing concentrations of H2O2 from 200 to 800 µM. The results indicated 

that doses above 200 µM of H2O2 evoked a remarkable statistically significant 

decrease in cell viability dose-dependently compared to control (Figure 2.12A). 

In addition, when Caco-2 cells were pre-incubated with selenite (50 nM) for 24 

h followed by exposure of increasing concentrations of H2O2 (ranging from 

600-1200 µM) for an additional 24 h, although a dose-dependent reduction in 

cell viability was observed, pre-treatment of the cells with selenite reduced the 

toxicity of hydrogen peroxide compared to the untreated group. For instance, 

when cells were treated with 600 and 800 µM of H2O2 (Figure 2.12 B) the cell 

protection increased by 34 and 41% respectively compared to the untreated 

selenium group (Figure 2.12 A). Also, the IC50 value for the untreated and pre-

treated selenite group corresponds to ~500 and 950 µM respectively which 

indicates a decrease in cell sensitivity as a result of the increased cellular 

protection offered by selenite.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 The cytotoxic effect of H2O2 on cells A) untreated or B) pre-treated with selenite. 
Caco-2 cells were grown for 48 h, and then treated for 24 h with vehicle (A) or with selenite (50 
nM) (B) followed by treatment with increasing concentration of H2O2 for 24 h as shown above. Cell 
cytotoxicity was evaluated by WST-1 assay. Results are mean ± SD of six replicates (***P<0.001). 
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2.2.4.2 ITCs and/or Se-mediated Cytoprotection in Caco-2 Cells 
 

In this study, co-addition of isothiocyanates and selenium resulted in a 

synergistic induction of TrxR1 and GI-GPx expression in a time- and dose- 

dependent manner at the transcriptional and translational level. Therefore, we 

sought to identify whether this increase was relevant for cell protection against 

an oxidative stress insult after pre-treating Caco-2 cells with sulforaphane (6 

µM) and/or selenite (200 nM) for 24 h followed by treatment with 500 µM 

H2O2. These ITC and/or Se forms were selected as they were shown to be the 

ones offering greater induction of TrxR1 and GI-GPx expression.  

 

The results showed that in the control group H2O2 decreased the cell viability 

of Caco-2 cells by 60%. However, pre-treatment of the cells for 24 h with 

selenite and SFN significantly enhanced cell protection by 35 and 20% 

Figure 2.13 Effect of ITCs and/or selenium on cell viability in Caco-2 cells treated with 
hydrogen peroxide. Caco-2 cells were pre-incubated for 24 h with DMSO (control), SFN (6 
µM) and/or selenite (50 nM) before exposure to H2O2 (500 µM) in serum-free medium for 
24 h. Cell cytotoxicity was measured by WST-1 assay. SFN and/or selenite-mediated 
cytoprotection are shown in red bars as a percentage of the H2O2 untreated group (blue 
bars).  Results are mean ±SD of six replicates. Significant differences from control and 
between treatments are indicated *P<0.05; ***P<0.001  
 

Water 
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respectively compared to the control group without pre-incubation with the 

studied dietary compounds (Figure 2.13). Likewise, others have observed a 

similar level of protection when human hepatoma HepG2 were pre-treated with 

SeMSC for 2 or 20 h prior to being subjected to t-BOOH, a different pro-

oxidant that can decompose to peroxy radicals and generate lipid peroxides and 

ROS (Cuello et al. 2007).  

 

Remarkably, co-treatment with Selenite+SFN abolished completely H2O2-

induced cell damage, providing a synergistic protection of 60% compared to 

H2O2-treated control (Figure 2.13). This level of protection was statistically 

significant compared to that generated by selenite (P<0.05) or SFN (P<0.001) 

alone.  

 

Although this investigation only used as an endpoint a cytotoxicity assay to 

measure the effect of enhancing antioxidant enzymes to protect the membrane 

integrity of Caco-2 cells treated with ROS, others have also looked at the 

genotoxic level to determine the effect of different phytochemicals on DNA 

strand breaks. For instance, exposure of Caco-2 and HepG2 cells to 50 µM 

H2O2 for 30 min generated significant DNA damage, but pre-incubation with 

10, 50 or 200 µM of the flavonoids myrcetin, quercetin and rutin  before H2O2 

exposure significantly protected cells in a dose dependent manner against 

H2O2-induced DNA damage (Aherne and O'Brien 1999). Duthie and co-

workers also pre-incubated human lymphocytes with myricetin or quercetin for 

30 min or 18 hours before exposure to H2O2 (200 µM). Pre-treatment of the 

human lymphocytes with myricetin or quercetin for 30 min reduced H2O2-

induced DNA damage. Interestingly, no protection was seen after 18 hours of 

pre-incubation with quercetin in the human lymphocytes (Duthie et al. 1997), 

emphasising the importance of conducting time- and dose- dependent 

experiments to identify relevant points of protection within the studied system.  
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2.2.5 Role of TrxR1 and GI-GPx in the Synergism between ITC 

and Se-mediated Cytoprotection in Caco-2 Cells 

 

2.2.5.1 TrxR1/GI-GPx siRNA Optimisation Assay 
 

As mentioned in section 2.1.2.6.1 the amount of siRNA and the ratio of 

HiPerFect transfection reagent to siRNA were optimised first (data not shown). 

After this, the amount of siRNA/Hiperfect chosen was used to optimise the 

single and double knockdown prior to measuring the cell viability effects of 

TrxR1 and/or GI-GPx knockdown in Caco-2 cells (section 2.2.5.2). Figure 2.14 

shows that the knockdown efficiency corresponds to about 80% for both single 

and double gene knockdown. The mock-transfected sample (cells treated with 

the transfection reagent HiPerFect without addition of siRNA) showed the 

absence of nonspecific effects.  

A 

B 

Figure 2.14 siRNA knockdown efficiency of A) TrxR1 and/or B) GI-GPx expression.  
Caco-2 cells were exposed to ● 50 nM  of AllStars negative control siRNA; ● 25 nM of 
TrxR1 or GI-GPx siRNA+ 25 nM AllStars siRNA (single knockdown); ● 25 nM of TrxR1 + 
25 nM GI-GPx siRNA (double knockdown) for 24 h; Mock-transfected cells were transfected 
only with HiPerFect, without addition of siRNA . Then, media containing the transfection 
complex was replaced with culture media and left for an additional 24 h, followed by total 
RNA extraction.  Results are mean ± SD of triplicate samples normalized against 18S rRNA. 
Significant differences are indicated (***P<0.001). 
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2.2.5.2 Effect of TrxR1 and/or GI-GPx Knockdown on H2O2- 

Induced Damage in Caco-2 Cells Pre-treated with SFN+Selenite 

 

To investigate if TrxR1 and GI-GPx are the main genes by which 

isothiocyanates and selenium protect against hydrogen peroxide-induced cell 

death in Caco-2 cells, a single and double knockdown approach was used to 

suppress the expression of the aforementioned selenoproteins. Addition of 400 

µM of H2O2 in control cells transfected with AllStars negative control siRNA 

without pre-treatment with dietary components decreased cell viability by 50% 

(P<0.001) (Figure 2.15). In contrast, cells transfected with AllStars negative 

control siRNA but pre-treated with SFN+Selenite, were shown to be 100% 

viable after addition of H2O2, confirming the level of protection observed in 

section 2.2.4.2. However, this level of protection was found to be affected by a 

single knockdown with either TrxR1- or GI-GPx-siRNA prior to a pre-

incubation step with SFN+selenite and followed by an oxidative stress 

challenge with H2O2. The data showed a reduction of 15 and 25% (P>0.05) in 

cell viability after TrxR1 or GI-GPx single knockdown respectively. 

Interestingly, when both selenoproteins were knocked down at the same time a 

~50% reduction in cell viability (P<0.001), equivalent to that obtained in the 

control group without any dietary pre-treatment, was observed. This 

observation indicates that SFN+Selenite mediate their protective synergistic 

effects through both selenoproteins.  
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Zhang and colleagues carried out a similar experiment in HepG2 cells to 

identify the protective effect of sulforaphane and selenite against paraquat-

mediated cytotoxicity, identifying that SFN at 6 µM only inhibited 20% of the 

lactate dehydrogenase (LDH) release, but the combination with selenium 

inhibited 40-60% LDH release (P<0.05) (Zhang et al. 2003). These results 

obtained by Zhang are in line with the data presented in this investigation, 

which has provided further clues to understand the mechanism involved in the 

protection exerted by isothiocyanates and selenium.  

 

Taken together, accumulation of ROS in cells is thought to be a major cause of 

molecular injury leading to cell aging and to age-related degenerative diseases 

such as cancer. Therefore, the anticarcinogenic actions of cruciferous 

vegetables and/or selenocompounds may be attributed, in part, to their ability 

Figure 2.15 Cell viability effects of TrxR1 and/or GI-GPx knockdown on Caco-2 
cells, untreated or pre-treated with SFN+Se followed by incubation with vehicle (blue 
bar) or H202 (red bars). Caco-2 cells were exposed to ● 50 nM of AllStars negative 
control siRNA; ● 25 nM of TrxR1 or GI-GPx siRNA+ 25 nM AllStars siRNA (single 
knockdown); ● 25 nM of TrxR1 + 25 nM GI-GPx siRNA (double knockdown) for 24 h 
before adding vehicle DMSO to samples containing only AllStars or SFN (6µM) + 
Selenite (50 nM) followed by addition of H202 after 24 h. Cell viability was measured 
after 24 h by the WST-1 method. Results are mean ± SD of six samples. Significant 
differences are indicated (***P<0.001). 
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to protect against oxidative stress through the activation of genes involved in 

the enhancement of cellular antioxidant capacity as seen in this study after 

addition of ITCs+Se, which potentiates TrxR1 and GI-GPx expression and 

reinforces the intrinsic cellular defense system to detoxify and promote the 

removal of potential oxidants or carcinogens stressors. However, in recent 

years it has also become more clear the role that TrxR1 plays in cancer. It is 

well cited that TrxR1 is highly up-regulated in human tumours and cancer cell 

lines (Arnér 2009) and its knockdown in a mouse cancer cell line driven by 

oncogenic k-ras has been seen to result in morphological changes characteristic 

of parental (normal) cells (Yoo et al. 2007), demonstrating that over-expression 

of TrxR1 has a direct role in the carcinogenesis process. In addition, TrxR1 is 

the primary enzyme that reduces thioredoxin (Chapter 1; Figure 1.8 ), and 

reduced thioredoxin has been associated with increased cell growth and 

decreased apoptosis, conditions that promote the growth of cancerous cells 

(Powis et al. 1997). Consequently, this enzyme has been suggested as a target 

for anticancer drugs in the inhibition of the malignancy process (Smart et al. 

2004).   

 

Furthermore, the fact that GI-GPx is transiently increased in human colorectal 

adenomas compared with normal adjacent mucosa, with the highest expression 

in pre-cancerous polyps (adenomas) (Mörk et al. 2000) and reducing amounts 

in late stage of carcinogenesis, imply that this selenoprotein might also 

participate in the cancer development process and that its expression might 

depend on the developmental stage of malignant transformation (Brigelius-

Flohé and Kipp 2009). This, combined with high expression in the epithelium 

at the crypt grounds of the small intestine and colon, where the proliferating 

stem cells are located, suggest a role in proliferative processes (Florian et al. 

2001). 

 

Considering that Nrf2 and its upstream signalling cascade play a vital role in 

ARE-driven gene expression, it has been observed that stable over-expression 

of Nrf2 in cancer cells promotes survival of cancer cells during treatment with 
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chemotherapeutic agents, resulting in enhanced resistance of cancer cells to 

such treatments (Wang et al. 2008). Nevertheless, it is important to mention 

that stimulation of the Nrf2-dependent defensive response by Nrf2 activators in 

normal tissue is transient because the negative regulator of Keap1 is only 

transitorily inhibited. However, in cancer tissues, dysregulation of Nrf2 by 

Keap1 due to mutation of the latter results in strong and persistent induction of 

Nrf2 (Ohta et al. 2008).  

 

In line with the previous thought, it seems feasible to think that the mechanism 

of cell protection exhibited by this transcription factor and by selenoenzymes 

studied will depend upon the tissue studied (normal cells vs. tumour cells) 

and/or the stage of the carcinogenesis process. In normal cells, it is well known 

that apart from glutathione reductase, cytosolic TrxR1 is believed to be the 

most important enzyme for control of the cellular redox state, antioxidant 

defense, and redox regulation of cellular processes. In addition, the observation 

that TrxR1 activates the p53 tumour suppressor in cells treated with 

electrophilic lipids (Moos et al. 2003; Cassidy et al. 2006) provides evidence 

for an important mechanism to understand how dietary selenium confers 

protection against cancer through the selenoprotein TrxR1. Likewise, GI-GPx 

has been shown to represent one of the major anti-inflammatory factor 

modulating oxidative stress in the gastrointestinal tract as reported in the 

restoration of one of the GI-GPx (GPx2) alleles in a GPx-1/2 KO mouse, which 

prevented pathological symptoms characteristic of inflammatory bowel 

diseases and intestinal cancer .  

 

However, in emerging tumours, it seems that the aforementioned genes will 

provide signals to sustain the cancerous process. If this is true, then the results 

obtained from this research will be more relevant to normal cells as a cancer 

preventive measure before the cancer process has initiated rather than a cancer 

curative treatment. But, before a more robust conclusion can be drawn,  further 

studies are warranted to determine whether up-regulation of GI-GPx, TrxR1 

and Nrf2 in cancer represents a compensatory mechanism to counteract 
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oxidative damage or if it is part of the proliferative program which is essential 

for carcinogenesis.  



  
 

 

 

 

 

 

 

 

3 
Impact of Isothiocyanates and Selenium on 
Global and Gene-specific Methylation Patterns 
and Effects on DNA Methyltransferase Gene 
Expression in Colon Cancer Cells in vitro
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3.0 INTRODUCTION 
 

Promoter methylation of multiple genes has been reported in several conditions 

of the gastrointestinal tract including Barrett's oesophagus (Peng et al. 2008), 

chronic gastritis  (Kang et al. 2003), ulcerative colitis (Tominaga et al. 2005) 

and colorectal cancer (Xu et al. 2004). Some of these changes have been 

suggested to be age-related (Issa et al. 1994), while others suggested an 

association with environmental risk exposures (Shen et al. 2002) and/or diet 

(Johnson and Belshaw 2008).  Despite the fact that most work on the cellular 

effects of ITCs relate to their influence on detoxifying enzymes, more recent 

new data support the effect of these dietary compounds on the reactivation of 

epigenetically silenced genes in cancer cells, particularly through the inhibition 

of histone deacetylase (HDAC) activity (Dashwood and Ho 2008). These 

enzymes act epigenetically by deacetylating the amino-terminal tails of 

histones producing chromatin changes that regulate transcription and many 

other nuclear events (Minucci and Pelicci 2006). The first in vitro study 

reporting these changes was conducted using SFN on prostate and colon cancer 

cell lines, where the inhibition of HDAC activity was accompanied by global 

increases in histone H3 and H4 acetylation on the promoter regions of p21 and 

bax genes, facilitating cell cycle arrest and apoptosis in the context of cancer 

chemoprevention (Myzak et al. 2004; Myzak et al. 2006). Later, the same 

group confirmed HDAC inhibition by SFN in vivo, using APCmin mice that had 

ingested 443 mg SFN/kg (~6 µmol SFN/day) for 70 days, observing the re-

expression of p21 and bax genes that triggered cell cycle arrest and apoptosis 

in transformed cells and microadenomas, thereby suppressing polyp formation 

compared with controls (Myzak et al. 2006). Although the growing interest in 

the epigenetic regulation mediated by isothiocyanates has focused mainly in its 

HDAC inhibition activity, their potential chemopreventive mechanisms 

involving DNA methylation mechanisms remain relatively unknown.  

 

On the other hand, selenium apart from being an important player in Se-

anticarcinogenesis by way of its intermediary Se-metabolites or as an essential 
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component of antioxidant enzymes that act actively in the removal of reactive 

oxygen and nitrogen species, has been found to affect DNA methylation by 

influencing the activity of DNA methyltransferase enzymes (Fiala et al. 1998). 

However, the efficacy of different forms of selenium, particularly se-

methylselenocysteine (SeMSC), in relation to cancer prevention and therapy 

through DNA methylation mechanisms remains unexplored. This form of 

selenium, which has been found to account for the anticarcinogenic effect of 

selenium-enriched broccoli, was also used in our research to decipher its 

potential to bring about epigenetic changes for cancer chemoprevention. 

 

In the present study we quantitatively explored the effects of the 

isothiocyanates sulforaphane or iberin, either individually or in combination 

with selenium compounds such as selenite and SeMSC, to define the impact of 

these active food compounds on the epigenome, particularly the methylation 

status of 5 CpG islands (p16INK4A, ESR1, HPP1, APC and MGMT) selected for 

their potential involvement in colon cancer. 

 

3.0.1 Analytical Methods Used to Quantify DNA Methylation  
 

There are multiple methods to study DNA methylation. Currently, the gold 

standard technique for fine mapping of methylated cytosines relies on a 

chemical reaction using sodium bisulphite (NaHSO3), which can selectively 

deaminate cytosine but not 5-methylcytosine to uracil and subsequently, via 

polymerase chain reaction, to thymidines (Raizis et al. 1995), which leads to a 

primary sequence change in the DNA that will allow discrimination of cytosine 

from 5-methylcytosine (Figure 3.1A). Following conversion the sequence 

differences between a methylated and unmethylated cytosine can be 

interrogated by various methods.  
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Methylation-specific PCR (MSP) as a novel approach for rapid analysis of the 

methylation status of a CpG Island was initially identified in the mid-90s 

(Herman et al. 1996). In this method, PCR primers are designed to be 

complementary to completely methylated or completely unmethylated target 

DNA  where methylated and unmethylated primers sets differ only in the CG 

position of the bisulphite converted primary sequence. Therefore, the 

methylation status could be discriminated by PCR with sequence-specific 

primers. 

Figure 3.1 Schematic flowchart showing DNA methylation analysis by MethyLight technology. 
A) Firstly, samples are bisulphite converted. Here CpG Methylated cytosines are protected and 
remained unchanged, while unmethylated cytosines are deaminated to uracil after treatment with 
sodium bisulphite. B) Then, Quantitative Methylation Specific PCR or QMSP is applied to the 
initial PCR sample as shown above.  



 ` 
 
 

98 
 

 

              Chapter 3 

An improvement over the original MSP is MethyLight (Eads et al. 2000). This 

method determines the methylation status of a selected CpG island using 

fluorescence-based real-time PCR technology and requires no further 

manipulations after the PCR step and has been proposed for use in high-

throughput methylation analysis, providing another expanding area in the 

DNA-methylation field because of its ability to detect minimal amounts of 

aberrant DNA methylation (Laird 2003). A modified version of this 

methodology, which utilises an initial PCR amplification of the CpG island of 

interest from bisulphite-modified genomic DNA prior to real-time PCR 

analyses, as outlined in Figure 3, was used in our study to interrogate the DNA 

methylation status of specific CpG promoters regions in Caco-2 cells and 

HCT116 (Figure 3.1B). However, as these assays rely on PCR of CG-rich 

DNA, the use of positive and negative control samples for methylated DNA 

(such as in vitro methylated DNA) and unmethylated DNA (noncancerous 

tissue) is always a requirement when using this approach. Another wide range 

of techniques for studying epigenetic changes in cancer cells, such as 

pyrosequencing, restriction landmark genomic scanning and others are 

explained in detail elsewhere (Esteller 2007). 

 

New data highlighting the role of isothiocyanates and selenium in regulating 

the genome machinery through epigenetic mechanisms will be presented and 

discussed in this chapter on in vitro models of colon cancer. 
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3.1 MATERIALS AND METHODS 
 

3.1.1 Materials 
 

All materials and supplements used for cell culture and food compound 

treatments employed in this experimental research correspond to those used in 

work described Chapter 2. The colorectal adenocarcinoma cell line HCT116 

was obtained from the American Type Culture Collection (Middlesex, UK). 

For bisulphite conversion, the QIAquick gel extraction kit and glycogen were 

purchased from Qiagen and Roche, UK respectively. ROX reference dye and 

SYBR green were obtained from Invitrogen, UK. Sodium bisulphite, 

hydroquinone, 5-Aza-2’-deoxycytidine, PCR primers and all other chemicals 

were purchased from Sigma-Aldrich (UK), unless otherwise stated. 

 

3.1.2 Methods 
 

3.1.2.1 Cell Culture and Treatments 
 

Human epithelial colorectal adenocarcinoma Caco-2 cells obtained from the 

American Type Culture Collection (Middlesex, UK) at passage number 21 

were seeded in  6-well plates (BD FalconTM) at a concentration of 8.0×104 

cells/well in 3 ml of Dulbecco's Modified Eagle's Medium containing 4.5 g/L 

D-glucose and non-essential amino acid, supplemented with 10% (v/v)  heat 

inactivated fetal bovine serum (FBS), 1% (v/v) of L-Glutamine and 1% (v/v) 

antibiotic solution consisting of penicillin (5000 units/ml), streptomycin (5000 

µg/ml).Cells were maintained in a controlled atmosphere with 5% CO2 at 37ºC 

in a HERAcell® 150 CO2 incubator.  
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Methylation changes can be observed in culture, although in most cases, this 

process is slow and may occur over many generations (Razin and Cedar 1991). 

To allow these changes to take place Caco-2 cells were treated 24 h after 

seeding to allow cells to adhere to the bottom of the flask and then were 

supplemented for 4, 8 or 12 days with DMEM containing different 

concentrations of sulforaphane and iberin (ranging from 6 to 8 µM) or SeMSC 

and selenite (ranging from 0.2 to 5 µM), using three biological replicates per 

concentration in a final volume of 3 ml per well and replacing media with fresh 

dietary compounds every two days (Figure 3.2). Isothiocyanate compounds 

were dissolved in DMSO at appropriate concentrations so that, after addition to 

cells, all treatments and controls received 0.05% DMSO. Selenium compounds 

were dissolved in Milli-Q water and filtered through a 0.22 µm syringe filter. 

All stock and working solutions were aliquoted and stored at -80°C. 

 

Caco-2 cells were passaged after reaching 70-80% confluence (usually on the 

4th day after treating the cells with food compounds), following the standard 

operating procedures for subculture of adherent cell lines. Briefly, medium was 

removed from the 6-well plates and the monolayer rinsed twice with 2 ml of 

sterilized Dulbecco’s phosphate buffered saline (PBS). Then, 100 µl of 

Trypsin/EDTA (0.25% Trypsin, 1 mM EDTA) were added and mixed to ensure 

that the entire monolayer was covered with the Trypsin solution, the plate was 

incubated at 37oC for 5-6 minutes until the cells were detached. After this, cells 

were re-suspended in 1.5 ml of fresh serum-containing medium to inactivate 

the Trypsin, pipetting the cells up and down until the cells were dispersed into a 

single cell suspension before proceeding to count the cells in the hemocytometer. 

All different treatments, including controls, were normalised by plating an 

appropriate cell number (8.0×104 cells/well) back into a new 6-well plate to 

adjust for any difference in growth, allowing 24 h for cell attachment before 

treatments were continued as mentioned above (Figure 3.2). The remaining 

cells were all processed the same day to extract DNA and RNA and samples 

were stored at -80°C until analysis. 



 ` 
 
 

101 
 

 

              Chapter 3 

In order to compare the DNA methylation results obtained with Caco-2 cells, 

another human-derived colon adenocarcinoma cell line (HCT116) was selected 

and cultured following the same standard operating procedures mentioned 

above for Caco-2 cells. In order to determine the number of cells to be plated to 

match the number of days of treatment for Caco-2 cells before confluence was 

reached, initially their growth was followed over time to obtain the normal cell 

growth characteristics of HCT116, which showed that seeding 6×104 cells/well 

in a 6-well plate would allow for the same cell growth interval.  

 

3.1.2.2 Genomic DNA and RNA Isolation 
 
In order to obtain the most reliable information from different cellular 

structural organizational levels using the same biological source, a 

simultaneous extraction of DNA and RNA from a single sample was carried 

out to allow for a more direct correlation between them. In this regard, DNA 

and RNA isolation from harvested Caco-2 and HCT116 cells was performed 

using the AllPrep DNA/RNA kit (Qiagen, UK), following the manufacturer's 

instructions. The NanoDrop spectrophotometer (Labtech International, UK) 

was used to quantify RNA concentration and purity by absorbance 

measurement at 260 and 280 nm. 

 

Figure 3.2 Schematic design of the schedule followed to treat cells to study DNA 
methylation changes in colon cancer cells. After day 6 and 11 the same steps carried out after 
day 1 were followed. The absolute numbers of days the cells remained in contact with media 
supplemented with food compounds for the days 6, 11 and 16 correspond to 4, 8 and 12 
respectively.  
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3.1.2.3 Bisulphite Treatment of Genomic DNA  
 

Bisulphite treatment of genomic DNA was originally carried out following a 

standard procedure (section 3.1.2.3.1). However, a high throughput method 

was later adopted (section 3.1.2.3.2). In order to compare the efficiency of the 

new adopted method with that previously used, samples were bisulphite 

converted using both methods in parallel and the global level of methylation of 

both samples was compared using a real-time PCR based assay for LINE-1 

methylation, which showed no statistically significant effect of the bisulphite 

conversion method used (data no shown).  

 

3.1.2.3.1 Standard Bisulphite Treatment  
 

A bisulphite/hydroquinone solution containing 5 M sodium bisulphite and 140 

mM hydroquinone was prepared fresh by adding 1.9 g of sodium bisulphite 

(Sigma, UK) to 3 ml of water. The sodium bisulphite was completely dissolved 

after 140 µl of 10 M NaOH and 0.7 ml of 0.75 M hydroquinone (Sigma, UK) 

was added, using regular vortexing until all the material was in solution. The 

genomic DNA was first denatured by alkaline treatment by mixing 17 µl of 

DNA (~400-500 µg) with 3 µl of 2 M NaOH (final concentration 0.3 M) and 

incubating at 37ºC for 15 min. After this, samples were exposed to the 

bisulphite/hydroquinone solution by adding 0.4ml to each sample, followed by 

an incubation at 50ºC for 4.5 hours in a Thermo Hybaid Omn-E PCR 

Thermocycler.  

 

The bisulphite modified samples were purified by using a QIAquick gel 

extraction kit. Briefly, 1.26 ml of QG buffer was mixed with the sulphonated 

DNA and filtered through a QIAquick column using a vacuum manifold, 

followed by an additional 0.5 ml of QG buffer. The column was washed twice 

with 0.7 ml of PE buffer, placed in a collection tube and centrifuged for 5 min 

at full speed in a microcentrifuge to dry the membrane. DNA was eluted by 

pipetting 100 μl of Elution Buffer (EB) directly onto the filter, incubating at 
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RT for 1 min, and centrifuging for 1 min. Following this, an alkali treatment 

was applied to remove the sulphonate adducts by adding 3 μl of 10 M NaOH, 

and incubating at 37ºC for 15 min. The solution was neutralized by addition of 

ammonium acetate (NH4OAc), pH 7, to a final concentration of 5 M and the 

DNA was ethanol precipitated by adding 525 µl of ethanol (1ul of glycogen 

was added as a carrier), and centrifuged at 4ºC for 30 min to pellet the DNA. 

Supernatant was discarded carefully with a pipette and the pellet was washed 

with 200 µl 70% ethanol, centrifuged for 5 min, dried and resuspended in 100 

µl QIAquick elution buffer and stored at -20ºC. 

 

3.1.2.3.2 Bisulphite Treatment: High-throughput  
 

High-throughput bisulphite treatment of genomic DNA was performed with a 

the EZ-96 DNA MethylationTM Kit (Zymo Research, USA), which combines 

bisulphite conversion and DNA clean-up in a 96-well plate format, in 

accordance with the manufacturer’s instructions.  

 

3.1.2.4 Initial PCR Amplification of CpG Islands 
 

After obtaining the bisulphite-modified DNA, 5 µl were used as template in 

PCR reactions to amplify the CpG regions of the genes to be studied (APC, 

ESR1, HPP1, p16 and MGMT). PCR reactions (20 µl) containing 10 µl of 

HotStarTaq master mix (Qiagen), 4 pmol of each forward and reverse primer 

(Table 3.1), and supplemented with MgCl2 to 0.5 mmol/L, were subjected to 

the following cycling conditions: 1 cycle of 95ºC for 15 min, 35 cycles of 95ºC 

for 30s, annealing temperature (Table 3.1) for 1 min, 72ºC for 1 min followed 

by a 5 min extension at 72ºC. A No Template Control reaction (NTC) was 

included in every PCR assay to rule out reagent or water contamination. 

Products from the PCR reactions were used as templates for quantitative 

methylation-specific PCR (QMSP). 
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Table 3.1 Primer Sequences and Annealing Temperatures for Initial PCR and 

QMSP* 

* Information adapted from (Belshaw et al. 2008).  
**Initial= Primers used for an initial amplicon amplification of bisulphite converted samples;  
T= Using non CpG containing primers; M= Uses primers containing CGs; U= The 
unmethylated reaction for LINE-1 uses primers to non CpG containing sites.  
 
 

3.1.2.5 Quantitative Methylation-Specific PCR (QMSP)  
 

The primer pairs for the QMSP assay specifically anneal to bisulphite-

converted genomic DNA. To determine the percentage of methylation, 2 real-

time PCR reactions are carried out, in the first round (Total reaction), primers 

flanking the target region are used to amplify the region of interest independent 

of the CpG content-i.e., the total reaction (T) primers should not include CGs 

and therefore should amplify previously methylated or unmethylated target 

sequences equally, whereas in the second round (Methylated reaction) the 

primers bind to unconverted cytosine and contain CG dinucleotides to quantify 

the number of fragments that were amplified from methylated alleles (Figure 

3.1).  

 

The T and M reactions were carried out on 5 µl of the amplified CGI fragment 

obtained as described in section 3.1.2.4 (diluted 1.0×104 times in duplicate) 

 
Gene 

 
PCR** 

 
             Forward (5’ – 3’) 

 
                Reverse (5’ – 3’) 

Annealing 
T (oC) 

APC Initial 
T 
M 

GTTAGGGTTAGGTAGGTTGT 
GGGTGTTATTGGAGATAGAAT 
TATTGCGGAGTGCGGGTC 
 

CCATAATAACTCCAACACCTA 
CCATAATAACTCCAACACCTA 
TCGACGAACTCCCGACGA 

59.5 
59 
65 

ESR1 Initial 
T 
M 

GGGATGGTTTTATTGTATTAGATTTAAGGG 
GTAGTTTAAGATTTTTTTGGAG 
GCGAGGTGTATTTGGATAGTAGTAAGTTCGTC 
 

CTATTAAATAAAAAAAAACCCCCCAAAC 
AACTTACTACTATCCAAATACACCTC 
GTAAAAAAAACCGATCTAACCGTAAACCTACG 

58 
58 
66 

HPP1 Initial 
T 
M 

AGAGTTTTTTTTTTATGGTAGTAGTT 
AGAGTTTTTTTTTTATGGTAGTAGTT 
GTTTTTCGCGTTTTCGGCGT 
 

ACTCCCACAACACCATAACTA 
AACATCCAAAAACTAAACTCAA 
ATCATCCCGCGAACGACGA 
 

56 
58 
67 

 
p16 Initial 

T 
M 

GGTTTTTTTTAGAGGATTTGAGGGATA 
GGTTTTTTTTAGAGGATTTGAGGGATA 
TTATTAGAGGGTGGGGCGGATCGC 

CTACAAACCCTCTACCCACCTAA 
CCAACCAACCCCTCCTCTTT 
GACCCCCGAACCGCGACCGTAA 
 

62 
63 
74 

 
MGMT Initial 

T 
M 

GGTTTGGGGGTTTTTGATTAG 
GGTATTAGGAGGGGAGAGATT 
CGTAGTCGTTTCGAGTAGGATC 
 

CCTTTTCCTATCACAAAAATAATCC 
CCTTTTCCTATCACAAAAATAATCC 
GTACCCGAATAATCCTAAAAACG 
 

60 
58 
61 

LINE-1 U 
M 

TGTGTGTGAGTTGAAGTAGGGT 
CGCGAGTCGAAGTAGGGC 

ACCCAATTTTCCAAATACAACCATCA 
ACCCGATTTTCCAATACGACCG 

60 
60 
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using 4 pmol of the appropriate primers (Table 3.1), 10 µl Immomix (Bioline, 

London, UK), 0.125µl of 0.01×SYBR green (Invitrogen, Paisley, UK), 0.4 µl 

ROX reference dye (Invitrogen) and supplemented with MgCl2 and bovine 

serum albumin (BSA) to 0.5 mmol/L and 1 mg ml-1 respectively, and water to 

20 µl. Following a 10-min hot start at 95ºC, PCRs were performed for 40 

cycles of denaturing at 95 ºC for 30s, annealing temperature (Table 3.1) for 30s 

and extension at 72ºC for 30s using an ABI 7300 machine (Applied 

Biosystems, Warrington, UK). As a quality control procedure the NTC reaction 

from the initial PCR amplification (section 3.1.2.4) was run together with an 

additional NTC from the reagents and water used for the RT-PCR reaction to 

rule out contamination. 

 

3.1.2.6 Global Methylation  
 

In this study we quantitatively evaluated the global methylation status of the 

long interspersed nuclear element-1 (LINE-1), a highly repeated and widely 

interspersed human retrotransposon, in DNA isolated from Caco-2 cells. In 

normal somatic cells the bulk of methylcytosines, which constitutes a 

substantial portion (~17%) of the human genome, is found in repetitive 

sequences such as LINE-1. Within these regions cytosines are heavily 

methylated to help maintain chromosomal integrity, by preventing 

chromosomal instability, translocation and gene disruption through the 

reactivation of endoparasitic sequences (Esteller 2007). In line with this 

organisation, previous studies have established the overall decrease in 

methylation found in genomic repetitive sequences as a marker of the 5-

methylcytosine level in several malignancies including carcinoma of urinary 

bladder, liver, prostate, and colon (Chalitchagorn et al. 2004; Schulz 2006; 

Ogino et al. 2008).  

 

The assay for LINE-1 methylation was described previously (Iacopetta et al. 

2007) and involves 2 real-time PCRs; one (the unmethylated (U) reaction) uses 

primers to non CpG containing sites to quantify the number of unmethylated 
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LINE-1 elements, whilst the other (the methylated (M) reaction) uses primers 

containing CGs to quantify the number of methylated alleles (Table 3.1). The 

bisulphite-modified genomic DNA was diluted by adding 5 µl of bisulphite-

modified DNA to 45 µl 20 mM TrisHCl pH8 and the real-time PCR conditions 

used correspond to those used above for the QMSP assay. 

 

3.1.2.7 Standard Curve: Quantification of Methylated Alleles 
 

A standard curve obtained from a cloned fragment of the bisulphite-modified 

gene of interest from a completely methylated allele at known concentrations 

was run in every assay of QMSP and global methylation to relate CT values to 

DNA concentration. The percentage of methylation in a sample was calculated 

using the following equations:  

 
QMSP assay: 

                                                     100
T
M % ×=nMethylatio  

 

Where M is the number of methylated copies of the gene and T is the total 

number of PCR fragments (methylated and unmethylated) present in the pool. 

 

Global Methylation assay:  

 

                                                100
MU

M % ×
+

=nMethylatio  

 

Where M and U corresponds to the number of methylated and unmethylated 

copies of the genes present in the pool respectively. 
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3.1.2.8 Preparation of Controls for DNA Methylation 
 

3.1.2.8.1 Non-cancerous Tissue 
 

Placental DNA (Sigma-Aldrich) and a noncancerous colon tissue biopsy of a 

young person (with ethical approval for research use) were used for controls. 

The frozen colon tissue was sliced and transferred to a 1.5 mL microcentrifuge 

tube to be weighed (obtaining ~25 mg). The genomic DNA of the colon 

specimen was isolated using the GenElute™ Mammalian Genomic DNA 

Miniprep (Sigma, UK) following the manufacturer’s instructions.  

 

M.SssI methylase (New England Biolabs, UK) was used to artificially 

methylate 1.5 µg of placental DNA (Sigma-Aldrich) or 1.5 µg of human 

noncancerous colon tissue DNA. The reaction was carried out by combining 2 

µl of M.SssI methylase, 20µl 10×M.SssI buffer, 2 µl of S-adenosylmethionine 

(SAM) (32 mM) and water to 200 µl. Initially samples were incubated 

containing only 1 µl of SAM; an additional 1 µl was added after the first hour 

to give a final SAM concentration of 320 µM and incubation was continued at 

37ºC for a further 1 hour. A similar reaction was prepared with all the previous 

reagents except the M.SssI methylase to serve as an additional, mock-

methylated control. Samples were ethanol precipitated and re-suspended in 17 

µl of EB for bisulphite modification. 

 

3.1.2.8.2 5-Aza-2'-Deoxycytidine Treatment  
 
As an additional control for our experiments cells were treated with 500 nM of 

the pharmaceutical compound 5-Aza-2’-deoxycytidine. This compound is a 

ring analogue of the pyrimidine nucleoside cytidine and differs by having a 

nitrogen atom in place of a carbon group and is widely used as a DNA 

methylation inhibitor to induce gene expression and cellular differentiation 

(Figure 3.3). In order to exert its biological function the drug gets incorporated 
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into DNA. DNA substituted with this cytidine analogue forms covalent adducts 

with cellular DNA methyltransferase (DNMT), thus depleting the cell of 

enzyme activity and promoting demethylation of genomic DNA as a secondary 

consequence (Juttermann et al. 1994).   

 

3.1.2.9 Quantification of DNA Methyltransferases by Real-Time 

PCR 

 

Total RNA extracted from the same biological sample used to extract DNA for 

DNA methylation analyses (section 3.1.2.2) was used to generate cDNA 

according to the steps mentioned in Chapter 2 (section 2.1.2.3.3). Quantitative 

real time PCR was performed to measure the mRNA levels of the DNA 

methyltransferases, DNMT1, DNMT3A and DNMT3B, using the ABI 7300 

Real-Time PCR System (Applied Biosystems, Warrington, UK). Primers and 

probes (Table 3.2) were labelled with a 5´ reporter dye (FAM) and 3´ quencher 

dye (TAMRA). Real-time PCR reactions were carried out in a 96-well optical 

plate in a 20 µl final reaction mixture consisting of 5 µl of template, 4 pmol 

primers and 2 pmol of the appropriate probe, 10 µl Immomix (Bioline, London, 

Figure 3.3 Chemical structure of A) Cytidine and B) 5-Aza-2’-deoxycytidine, highlighting in 
red their main structural difference. Figure C) shows graphically how 5-Aza-2’-deoxycytidine 
acts to inhibit DNMTs. This inhibitor once incorporated into the DNA form covalent bonds with 
the major DNA methyltransferase 1 depleting the enzyme and resulting in passive demethylation 
over successive rounds of DNA replication. Figure C) was adapted from (Egger et al. 2004)   

A) B) C) 
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UK), 0.4 µl ROX reference dye (Invitrogen), supplemented with MgCl2 and 

BSA to 0.5 mmol/L and 1 mg ml-1 respectively, and water to 20 µl. RT-PCR 

quantification was performed following a 10-min hot start at 95ºC, followed by 

40 cycles at 95 ºC for 30s and 60 ºC for 60s. Reactions were carried out using 

two technical replicates for every biological replicate and data were normalized 

against an invariant endogenous control, 18S ribosomal RNA. The threshold 

cycle number (Ct) obtained was converted into fold of relative induction using 

the ∆∆Ct method following the equation: E = (10
–1/slope 

–1) × 100  (Livak and 

Schmittgen 2001). 

 

 

Table 3.2 Primers and Probes Sequences Used for Real-Time PCR 

 
 

Gene 
 
 

 
                   Sequence  (5’ – 3’)  

DNMT1 Forward 
Reverse 
Probe 

CAGCCAACAGAGGACAACAA  
CCGGCTATCCAGGTCCTC 
Universal  LibraryPprobe #1 ( CCTGGAGC ) 
 

DNMT3A Forward 
Reverse 
Probe 

CAATGACCTCTCCATCGTCAAC 
CATGCAGGAGGCGGTAGAA 
AGCCGGCCAGTGCCCTCGTAG  
 

DNMT3B Forward CCATGAAGGTTGGCGACAA 
 Reverse TGGCATCAATCATCACTGGATT 
 Probe CACTCCAGGAACCGTGAGATGTCCCT 
   

18S rRNA Forward 
Reverse 
Probe 

GGCTCATTAAATCAGTTATGGTTCCT 
GTATTAGCTCTAGAATTACCACAGTTATCCA 
TGGTCGCTCGCTCCTCTCCCA 
 

 

 

3.1.2.10 Statistics  
 

Statistical analysis was carried out with SPSS 16 statistical program. Results 

are expressed as means ± SD. Statistical comparisons were made using one-

way ANOVA with Dunnett’s post hoc test.  
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3.2 RESULTS AND DISCUSSION  
 

3.2.1 Effect of Iberin and SeMSC on Epigenetic Modifications: 
A DNA Methylation Screening in Caco-2 cells  
 

In the present study CpG island methylation analysis was conducted in Caco-2 

cells for key genes that have been shown to be involved in colorectal neoplasia 

and to be affected by aberrant CpG island methylation. Numerous studies have 

reported an effect of dietary constituents in different cell lines and animal 

models on the methylation status of genes involved in the cancer process. 

Among such studies, effects of isothiocyanates on aberrant gene-specific 

methylation have been reported. In prostate cancer cells, reactivation of the 

silenced glutathione S-transferase gene (GSTP1) was observed following 

treatment with  phenethyl isothiocyanate (PEITC)  (Wang et al. 2007). In 

oesophageal squamous cell lines, sulforaphane (SFN) treatment led to the 

reactivation of the p16 and MGMT genes, which was further enhanced by a 

combination of both genistein and SFN (Fang et al. 2005).  

 

Many studies have focused on SFN, but here the use of the analogue 

isothiocyanate iberin, which contains one alkyl group less than SFN, was 

investigated to gain insights into the mechanisms involved in the regulation of 

methylation. Synergistic effects of co-treatment with Se-methylselenocysteine 

were also explored.  

 

Initially, we conducted a pilot DNA methylation screening of 5 genes: 

p16INK4A, ESR1 (Oestrogen receptor α), APC (Adenomatous polyposis coli), 

MGMT (O6-methylguanine-DNA methyltransferase) and HPP1 (Hyperplastic 

polyposis protein 1). These genes were selected based on their involvement in 

cell growth control, differentiation, migration, apoptosis and DNA damage 

repair in colon cancer.  
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The data revealed that the CpG islands of p16INK4A and ESR1 in control 

samples (DMSO treated) were heavily methylated (~80%), whereas the 

percentage of methylation for HPP1 and APC genes in the controls were 46% 

and 31%, respectively. The MGMT CpG island was not methylated (Figure 3.4 

A-E). However, it was observed that the methylation status of the vast majority 

of CpG islands were unaffected after incubating Caco-2 cells for 4 days with 

iberin and/or SeMSC when compared with control. Only the methylation status 

of the HPP1 gene was increased significantly by 9% by the iberin+SeMSC 

Figure 3.4 DNA methylation status of A) p16 INK4A; B) ESR1; C) HPP1; D) APC; and E) 
MGMT CpG islands. Caco-2 cells were exposed to DMSO (control), 6 µM of iberin and/or 200 
nM of SeMSC for 4 days before genomic DNA was isolated and bisulphite converted to evaluate 
its effect at the DNA methylation level. The positive control represents DNA from human 
noncancerous colon that was artificially methylated using CpG methyltransferase (M.SssI) as 
stated in the method section. Significant differences from control are indicated (*P<0.05). 
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treatment. Although significant (P<0.05), this increase was not considered 

relevant at first, given the fact that the other genes did not show such an 

increase in DNA methylation under this treatment. 

 

In a study carried out to profile DNA methylation patterns of 70 established 

cancer cell lines using 15 candidate genes (among them two of our target 

genes: p16INK4a and MGMT), although only a qualitative approach was used to 

measure CpG island methylation (Methylation-Specific PCR), it was found 

within the colon cancer cells studied that 100% (11/11) were methylated for the 

p16INK4a gene and 55% (6/11) were methylated for MGMT (Paz et al. 2003). In 

this study, MGMT was unmethylated in the Caco-2 cell line, in agreement with 

the results obtained here (Figure 3.4E). With regards to level of methylation 

found in the APC promoter region in control samples, it is a frequent epigenetic 

alteration in colorectal cancer and the level of methylation has been shown to 

change depending on the stage of the disease and according to the cell line 

studied (Deng et al. 2004; Chen et al. 2005) 

 

3.2.2 DNA Methylation Dynamics Over Time: Influence of 

Iberin and/or SeMSC on DNA methylation Changes in a Time-

Dependent Manner 

 
To explore the possibility that increased incubation times with the food 

compounds may elicit an effect on DNA methylation, the experiment was 

repeated but with two extra time points added (day 11 and 16 depicted in 

Figure 3.2). In this experiment only p16 INK4A and ESR1 were chosen for further 

analysis, as these genes were found to have the highest level of methylation in 

control samples (Figure 3.4 A, B). However, as demonstrated in Figure 3.5 no 

additional changes were observed when Caco-2 cells were exposed to iberin 

and/or SeMSC for up to 12 days (Figure 3.5 A, B). Also, in an attempt to 

identify potential global (genome-wide) epigenetic changes, the methylation 

status of LINE-1 elements, a surrogate marker of genome-wide methylation, 



 ` 
 
 

113 
 

 

              Chapter 3 

was measured. The results showed that methylation of LINE-1 in the control 

group was low (65%), which is a common characteristic of cancer cells. The 

Figure 3.5 DNA methylation status of A) p16 INK4A; B) ESR1; and C) LINE-1. Caco-2 cells 
were exposed to DMSO (control), 6 µM of iberin and/or 200 nM of SeMSC for 4, 8 and 12 days 
before genomic DNA was isolated and bisulphite converted to evaluate its effect at the DNA 
methylation level. As a positive control 500 nM of the DNMT inhibitor 5-Aza-2’-deoxycytidine 
was used. However, because of 5-Aza-2’-deoxycytidine known cell toxicity when used for 
several days in cell culture this treatment was only continued until day 8.  
 

A 

B 

C 
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treatment of cells with the DNMT inhibitor 5-aza-2’-deoxycytidine resulted in 

an expected 80, 70 and 90% reduction in p16 INK4A ESR1 and LINE-1 

methylation respectively after 8 days of treatment. However, no significant 

changes in DNA methylation were seen for LINE-1 when cells were exposed 

to the dietary agents (Figure 3.5C).  

 

3.2.3 Effect of Time and Dose of Different Isothiocyanates and 

Selenium Forms on DNA Methylation and DNA 

Methyltransferase Expression 

 
In order to investigate whether the form and/or concentration of 

isothiocyanates and selenium used were not effective in inducing DNA 

methylation changes, sulforaphane and selenite were also included within the 

experimental design. A potential effect on DNA methyltransferase gene 

expression (DNMT1, 3A and DNMT3B) was also investigated. Cells were 

treated for up to 12 days with SeMSC or selenite (0.2 to 5 µM), SFN (8 µM) 

alone or in combination with SeMSC (1 µM). Initially, only the first two time 

points (4 and 8 days) were evaluated to screen the DNA methylation status of 

the genes of interest. However, as shown in Figure 3.6, no effects were 

observed for the methylation of p16INK4A or ESR1, and only cells treated with 

5-aza-2’-deoxycytidine responded significantly. Similar to our results, Davis et 

al. (2000) found that the tumour suppressor gene p16INK4A was completely 

methylated regardless of treatment with 1 or 2 µM of selenite in Caco-2 cells. 

But, in contrast, the methylation of the p53 promoter region decreased when 

cells were cultured in the absence of selenite.  

 

The methylation status of LINE-1 (Figure 3.7) was equally unresponsive to the 

different concentrations or incubation times compared with control samples, 

which showed significant hypomethylation (~53-58%) in this cell line. Figure 

3.6 and 3.7 also show the evaluation of a mock-methylated control sample 

from normal human colon tissue, in which p16INK4A and ESR1 are not 
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methylated and LINE-1 is hypermethylated as would be expected in “normal” 

tissues. Moreover, we have included as an additional control for our 

experiments human placental DNA, which is known to be globally 

hypomethylated (Reiss et al. 2007). This was confirmed in the mock-

methylated placental DNA sample in Figure 3.7, where a 30% methylation 

value was obtained, corroborating the accuracy of this assay.  

Figure 3.6 DNA methylation status of A) p16 INK4A and B) ESR1 in Caco-2 cells treated 
with  SeMSC, selenite, iberin, SFN, SFN+SeMSC and 5-Aza-2’-D. Cells were treated with 
control (DMSO) and with concentrations of isothiocyanates and/or selenium shown above for 
4 and 8 days, before genomic DNA was isolated and bisulphite converted. As a positive 
control, 500 nM of the DNMT inhibitor 5-Aza-2’-deoxycytidine was used. Additional 
controls included DNA from human noncancerous colon that was artificially-methylated (+) 
or mock-methylated (-) using CpG methyltransferase (M.SssI) as stated in the method 
section. Significant differences from control are indicated (***P<0.001).  
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SeMSC-treatment for 4 or 8 days cells did not change the expression levels of 

the 3 DNMTs studied (Figure 3.8A-C). However, some significant effects were 

observed after selenite treatment for 4 days, particularly for DNMT3A and 

DNMT3B. But, this observed change did not follow a dose- or time-dependent 

pattern. Similarly, of the different isothiocyanates studied, iberin exhibited 

statistically significant but transient up-regulation of the DNMT genes after 4 

days of treatment, which did not continue to 8 days. However, this increased 

expression did not correlate with an increased level of methylation of the 

p16INK4A or ESR1 promoter regions nor of LINE-1. This is compared with the 

significant effect on the methylation status of these genes (Figure 3.6 A, B) and 

LINE-1 (Figure 3.7) following treatment with 5-aza-2’-deoxycytidine, which 

decreased the expression of the DNMTs after 8 days of treatment (Figure 3.8A-

C). The treatment with SFN+SeMSC did not have a synergistic effect at the 

DNA methylation level, confirming that neither iberin nor sulforaphane in 

combination with an organic form of selenium (Figure 3.5 and 3.6 

respectively) modify DNA methylation status of the genes studied in Caco-2 

cells. 

%
 M

et
hy
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n 

Figure 3.7 DNA methylation status of LINE-1 in Caco-2 cells treated with SeMSC, selenite, 
iberin, SFN, SFN+SeMSC and 5-Aza-2’-D. Cells were treated with control (DMSO) and with 
concentration of isothiocyanates and/or selenium shown above for 4, 8 and 12 days, before 
genomic DNA was isolated and bisulphite converted. As a positive control, 500 nM of the 
DNMT inhibitor 5-Aza-2’-deoxycytidine was used. Additional controls included DNA from 
human noncancerous colon and human placenta that was artificially-methylated (+) or mock-
methylated (-) using CpG methyltransferase (M.SssI) as stated in the method section. The 
treatments iberin, sulforaphane and 5-Aza-2’-deoxycytidine were only continued until day 8 
due to a decrease in cell viability. Significant differences from control are indicated 
(***P<0.001).  
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To exclude the possibility that an effect might have taken place on the 

remaining time point (Day 12), it was decided to examine first the methylation 

status of LINE-1 (Figure 3.7) and the expression of the different DNMTs 

Figure 3.8 Effect of SeMSC, selenite, iberin, SFN, SFN+SeMSC and 5-Aza-2’-D on 
DNMTs mRNA: A) DNMT1; B) DNMT3A; C) DNMT3B in Caco-2 cells. Cells were treated 
with control (DMSO) and with concentration of isothiocyanates and/or selenium shown 
above for 4, 8 and 12 days. The treatments iberin, sulforaphane and 5-Aza-2’-deoxycytidine 
were only continued until day 8 due to a decrease in cell viability. Significant differences 
from control are indicated (*P<0.05; **P<0.01; ***P<0.001).  
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(Figure 3.8), but no significant changes were observed. It was therefore 

considered unnecessary to proceed with the CpG island methylation analyses 

of p16INK4A and ESR1 for this time point. 

 

3.2.4 DNA Methylation Status of HCT116 Cells  
 

HCT116 cell line was used to address whether the lack of effect of selenium 

and/or isothiocyanates on DNA methylation in Caco-2 cells is a common 

phenomenon that occurs in other colorectal cancer cell lines. Previous studies 

have shown that exposure of human colon carcinoma HCT116 cells to 

phenylenebis-(methylene)-selenocyanate (p-XSC) (another organoselenium 

compound) for 24 h caused DNMT inhibition with an IC50 of ~20 µM. In 

addition, the same study found that the in vitro effects of the chemopreventive 

compounds, sodium selenite, benzyl selenocyanate (BSC) and p-XSC on the 

activity of DNMT in nuclear extracts of a human colon tumour resulted in a 

concentration dependent inhibition of activity with an IC50 of 3.8, 8.1 and 5.2 

µM respectively (Fiala et al. 1998). However, the previously described 

research only measured DNMT enzyme activity and did not investigate the 

impact of this inhibited enzyme activity on DNA methylation levels. Therefore, 

in an attempt to expand the results obtained by Fiala et al., and in order to 

corroborate our results, HCT116 cells were exposed to SeMSC or selenite (2 

µM) and sulforaphane or iberin (6 µM) for 8 days. Synergistic effects between 

the compounds were also explored. Although the treatment with SeMSC and/or 

isothiocyanates was successfully completed for 8 days, the cells supplemented 

with selenite were only continued until day 4 as a reduction in cell viability 

was observed. As a consequence, an additional treatment with 500 nM of 

selenite was set up for 4 days in order to identify potential epigenetic changes 

that may have been masked as a result of the sodium selenite toxicity. It is 

important to mention that such toxicity with selenite was not found in Caco-2 

cells in which doses of up to 5 µM of selenite were tolerated.  
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In the present investigation we have found that the level of methylation of our 

target genes in HCT116 control cells corresponds to 40-50% and 80-90% for 

p16INK4A and ESR1, respectively (Figure 3.9A, B). Whereas most colon cancer 

cell lines have been shown to contain only hypermethylated p16INK4A alleles (as 

observed in Figure 3.6A for Caco-2 cells), the cell line HCT116 has been 

reported to be heterozygous for a frameshift mutation in the first exon of 

p16INK4A resulting in a premature stop codon (Okamoto et al. 1994). 

Consequently, the methylation status of the CpG island in the promoter region 

of this gene has been found to be ~50%, which corresponds only to the wild-

type allele of the p16INK4A as the remaining mutated allele is unmethylated 

(Myohanen et al. 1998). Importantly, the percentage of methylation identified 

in the control sample (Figure 3.9A) matched accurately the methylation status 

of p16INK4A previously reported. Similarly, other reports have identified  the 

ESR1 CpG island to be hypermethylated in the HCT116 cell line (Xiong and 

Laird 1997; Eads et al. 2000) as found here (Figure 3.9B). In relation to the 

global methylation status of HCT116 (Figure 3.9C), two studies have identified 

that the methylation status of LINE-1 is between 66 and 77% (Yang et al. 

2004; Aparicio et al. 2009). Although the LINE-1 methylation levels found in 

our study are higher (90%) than those reported earlier for HCT116, this 

percentage was consistently higher throughout the different treatments and 

more importantly the results obtained from the different controls used (normal 

colon tissue, placental DNA and 5-aza-2’-deoxycytidine) validated our 

findings, ruling out any isolated  problem within our technology (Figure 3.9C) 

and suggest that the difference between LINE-1 methylation measured here 

and in previous reports may reflect the differences in the methodologies used 

for its quantification.  

 

.  
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The results from the current study with HCT116 cells suggest that the different 

forms of selenium and/or isothiocyanates used did not affect the gene-specific 

nor global methylation status when compared with untreated cells. A 

p16INK4A 

  ESR1 

 LINE-1 

Figure 3.9 DNA methylation status of A) p16 INK4A, B) ESR1 and C) LINE-1 in HCT116 
cells treated with SeMSC, selenite, iberin, SFN, and its combination. Cells were treated with 
control (DMSO) and with concentration of isothiocyanates and/or selenium shown above for 
4 and 8 days, before genomic DNA was isolated and bisulphite converted. The graph on the 
left side represents HCT116 cells supplemented with SeMSC and/or ITC, whereas the one 
on the right side includes the selenite and/or ITC treatments.  As a positive control, 500 nM 
of the DNMT inhibitor 5-Aza-2’-deoxycytidine was used. Additional controls included DNA 
from human noncancerous colon and placental DNA (the latter used only for LINE-1) that 
was artificially-methylated (+) or mock-methylated (-) using CpG methyltransferase 
(M.SssI) as stated in the method section. Significant differences from control are indicated 
(***P<0.001).  
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significant increase in the level of DNMT1 and DNMT3B mRNA expression 

was observed for some of the treatments of HCT116, particularly at day 4 

(Figure 3.10A, C), which was also demonstrated in the iberin-treated Caco-2 

cells (Figure 3.8). However, this increase in expression was also transient and 

did not parallel an increase at the gene-specific or global LINE-1 methylation 

level. Interestingly, previous studies have found that most cases of frequent 

hypermethylation of CpG islands in human colorectal tumours do not result 

from a simple transcriptional up-regulation of any of the three known DNMT 

genes indicating, perhaps, that one or more of these genes are up-regulated 

post-transcriptionally (Eads et al. 1999). Moreover, previous studies have 

demonstrated that the levels of DNMT1 mRNA are regulated with the cell 

cycle at the post-transcriptional level, with a peak in S phase attributable to the 

change in the mRNA stability (Szyf et al. 1991; Szyf and Detich 2001). 

Importantly, isothiocyanates and selenium have been shown to posses 

anticarcinogenic properties by modulating the cell cycle (Visanji et al. 2004; 

Zeng and Combs Jr 2008) and it might be the case that the altered level of 

mRNA expression seen responds to changes in cell cycle progression caused 

by the food constituents. In addition, others have shown that the PI3K/PKB 

pathway elevates cellular DNMT1 protein expression independently of mRNA 

levels (Sun et al. 2007).  

 

The regulation of DNMT3A and 3B has not been studied as extensively as that 

of DNMT1, but it has been shown that DNMT3B mRNA is also regulated with 

the cell cycle, and its expression profile is similar to that of DNMT1 

(Robertson et al. 2000). This observation correlates well with the data 

presented here with similar patterns of mRNA expression between DNMT1 

and DNMT3B observed with the different treatments (Figure 3.10 A, B). 

 

Previous studies with DNMTs have also tried to establish associations between 

their level of expression at the transcriptional and translational level with 

pathologies. For instance, Saito and co-workers (2001) found no significant 

relationship between DNMT mRNA levels and DNA hypermethylation of CpG 
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islands in hepatocellular carcinomas, but the same group later reported a 

significant relationship between DNMT1 protein expression and the malignant 

Figure 3.10 Effect of SeMSC, selenite, iberin, SFN and its combination on DNMTs 
mRNA: A) DNMT1; B) DNMT3A; C) DNMT3B in HCT116 cells. Cells were treated with 
control (DMSO) and with concentration of isothiocyanates and/or selenium shown above for 4 
and 8 days. The graph on the left side represent HCT116 cell supplemented with SeMSC 
and/or ITC, whereas the one on the right side includes the selenite and/or ITC treatments.  As 
a positive control, 500 nM of the DNMT inhibitor 5-Aza-2’-deoxycytidine was used. 
Significant differences from control are indicated (*P<0.05; **P<0.01; ***P<0.001) 
 
 

   DNMT1 

 DNMT3A 

 DNMT3B 

A 
 

B 
 

C 
 



 ` 
 
 

123 
 

 

              Chapter 3 

potential and poor prognosis of human hepatocellular carcinomas (Saito et al. 

2003), reflecting the importance of measuring both mRNA and protein level of 

DNMTs to accurately determine its expression status in cancer cells. 

 

Overall, the present study clearly demonstrates that the food compounds used 

in this study did not reverse the DNA methylation status of 4 important genes 

involved in carcinogenesis (with the exception of MGMT that was shown to be 

unmethylated). Moreover, this lack of effect on aberrant DNA methylation 

patterns, including CpG island hypermethylation and repetitive region 

hypomethylation, was also confirmed when dose- and time-dependent 

experiments were conducted. Other studies in LNCaP prostate cancer cells 

have demonstrated that 1.5 µM of selenite treatment for 4 days did not cause 

significant changes in DNMT mRNA, but after 8 days a significant reduction 

of DNMT1, DNMT2 and DNMT3A mRNAs were seen with a concomitant 

reduction of DNMT1 at the protein level and reactivation of the silenced 

GSTP1 gene (Xiang et al. 2008). However, as shown here, colon cancer cells 

did not respond in terms of altered DNA methylation patterns after 12 days of 

continuous treatment using up to 5 µM of an organic or inorganic form of 

selenium. Although there were some effects on the expression of the DNMTs 

studied, including an increase in the expression of these enzymes in both cells 

lines and particularly with the selenite form. However, this up-regulation of 

expression of DNMT1 (Figure 3.10A) and DNMT3B (Figure 3.10C), after 4 

days of treatment, was transient and returned to the level of the control group 

after 8 days of treatment. Additionally, after 8 days of treatment with iberin or 

the ITCs+SeMSC group a significant down-regulation of DNMT3A mRNA 

was observed (Figure 3.10B). In contrast to Caco-2 cells, HCT116 cells did not 

show a down-regulation of the different DNMTs mRNA levels after 4 days of 

treatment with the DNMT inhibitor 5-aza-2’-deoxycytidine, reflecting 

differences in DNA methylation regulation among cell types.  

 

Reports from other investigators have indicated that dietary selenium can 

inhibit DNMT1 activity in vitro from rat liver, Friend erythroleukemic cells 
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and colon cancer (Cox 1985; Cox and Goorha 1986; Fiala et al. 1998). All 

these studies have primarily focussed on DNMT enzyme activity using high 

concentrations of selenium. For instance, Fiala et al. reported that p-XSC 

showed a dose-dependent inhibitory effect of DNMT activity with an IC50 of 

20 µM in HCT116 cells. In contrast, nutritionally-relevant doses of different 

forms of selenium and/or isothiocyanates were employed here. Although the 

study conducted by Fiala et al. has showed a reduction in the level of DNMT1 

by p-XSC, recently it has been reported that targeted disruption of DNMT1 

alleles in HCT116 and in other human colon cancer cells did not disrupt 

aberrant CpG island hypermethylation status (Ting et al. 2004). This important 

finding implies that targeting the DNMT1 enzyme alone may be insufficient to 

re-activate epigenetically silenced tumour-suppressor genes and restore normal 

cellular growth in colorectal cancer cells due to the compensatory functions of 

other DNA methyltransferases in establishing and maintaining epigenetic gene 

silencing (Jones and Liang 2009). In support of this theory, Figure 3.8 shows 

that although Caco-2 cells treated with SFN for 4 days caused a statistically 

significant downregulation of DNMT3A and DNMT3B mRNA, there was no 

effect on DNMT1 expression, suggesting that the downregulation of these two 

enzymes by SFN was not sufficient to modify the methylation status of the 

CpG islands studied (Figure 3.6 and 3.7). 

 

In relation to the epigenetic effects of isothiocyanates, a study has revealed the 

importance of cruciferous vegetable consumption in relation to DNA 

methylation in primary gastric carcinomas. This study analysed the methylation 

status of the caudal type homeobox transcription factor-2 gene (Cdx2), a gene 

known to be positively correlated with the development of gastric cancer when 

its expression is lost. After comparing the level of methylation with the past 

lifestyle of the patients, including dietary habits, an increased intake of 

cruciferous vegetables was significantly associated with decreased frequency 

of Cdx2 methylation in male patients (Yuasa et al. 2005).  There are no direct 

human studies available on the effect of food compounds on the epigenome. 

However, there is one pilot human study reporting changes in HDAC activity 
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in healthy volunteers who consumed single doses of SFN-rich broccoli sprouts 

(68 g, one cup), in which blood was drawn after sprout consumption, showing 

that HDAC activity was inhibited in peripheral blood mononuclear cells 

(Myzak et al. 2007).  

 

On the other hand, studies carried out in a human myeloma cell line have found 

that phenylhexyl isothiocyanate (PHI) induced histone H3 hyperacetylation  

and p16 hypomethylation in a concentration dependent manner, suggesting that  

PHI has dual epigenetic modulating effects on both DNA methylation and 

chromatin (Lu et al. 2008). However, the authors concluded that, additional to 

the effect of this ITC on HDAC inhibition, the demethylation of p16 might 

involve an effect of PHI on DNA methyltransferase. Comparable results were 

obtained in prostate cancer cell lines, where PEITC inhibited the activity and 

level of histone deacetylases and promoted GSTP1 promoter demethylation 

(dual action) (Wang et al. 2007), but this study similarly did not elucidate if 

this ITC acted directly on the DNA methyltransferase enzyme. Another study 

identified a 1.8-fold downregulation of DNMT1 after conducting a microarray 

analysis of human Caco-2 cells exposed to SFN (Traka et al. 2005). However, 

the concentrations of SFN used in this study ranged between 25-50 µM, which 

as shown in section 2.2.1 are toxic and promote a decrease in cell viability.  

 

More recently the involvement of isothiocyanates on DNMTs has recently been 

confirmed in a study in which sulforaphane was found to inhibit DNMTs in 

breast cancer cells. Meeran et al. (2010) showed that sulforaphane treatment 

dose- and time-dependently inhibited human telomerase reverse transcriptase 

(hTERT), the catalytic regulatory subunit of telomerase, in both MCF-7 and 

MDA-MB-231 human breast cancer cells and that it had insignificant effects 

on normal control cells. Furthermore, DNMT protein expression (particularly 

DNMT1 and DNMT3A), was also reduced in SFN-treated breast cancer cells. 

Additionally, site-specific CpG demethylation was observed primarily in the 

first exon of the hTERT gene. This facilitated binding of CCCTC-binding 
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factor (CTCF), which is associated with hTERT repression, leading to cellular 

apoptosis of the breast cancer cells (Meeran et al. 2010). 

 

Imbalances of nutrients have been shown to lead to global DNA 

hypomethylation. Dietary methyl deficiency of folate, choline, and methionine 

has been shown to reduce the global methylation status of the genome (Duthie 

et al. 2000; Wasson et al. 2006). A depletion in selenium has also been shown 

to cause a similar effect, as shown by the induced global hypomethylation in 

Caco-2 or HT-29 cells lines and in rat liver and colon (Davis et al. 2000; Davis 

and Uthus 2002). In this respect, genome-wide DNA hypomethylation has been 

shown to play an important role in genomic instability by reactivating 

transposable DNA sequences during colorectal carcinogenesis (Ogino et al. 

2008). However, the results obtained for Caco-2 and HCT116 cells showed the 

5-methylcytosine content in the genome was unchanged following selenium 

and/or isothiocyanate treatment. There was a difference in methodology for 

quantifying global methylation between this study, which measured LINE-1 

methylation, and the previous studies by Davis et al (2000) and others, which 

used the in vitro methyl acceptance method. This uses tritium-labelled S-

adenosylmethionine [3H-methyl] as a methyl donor in the presence of the 

M.SssI DNA methyltransferase, so that the number of radiolabeled methyl 

groups incorporated into DNA is inversely proportional to DNA methylation 

status. Additionally, apart from differences due to specific DNA methylation 

measurement techniques employed, it is also likely that other factors affecting 

the DNA methylation status of the cell such as: cell passage number, cell 

confluence by the time of harvesting, treatment exposure time and cell type 

may have influenced the results obtained and their comparability. However, 

several controls were included in this investigation that validated the results 

obtained. 

 

In conclusion, dysregulation of methylation patterns is a common characteristic 

in tumour cells observed in almost all types of cancer. Several previous studies 

suggest that diet-derived factors offer great potential for the prevention and 
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therapy of a wide variety of cancers by altering various epigenetic 

modifications. However, the literature and our results suggest that, while some 

tissues may respond effectively to particular food compounds by impacting 

levels of gene-specific methylation, others do not respond. Also, even within 

the same tissue some promoter region CpG islands are affected but others 

remain unaltered. Although for some genes it has been suggested that 

methylation occurs in an ‘all-or-none’ manner (Belshaw et al. 2005), it is also 

apparent that particular cytosines within a CpG island can have a distinct 

likelihood of being methylated (Mund et al. 2005). This raises the question of 

whether there are regions of the epigenome that are more susceptible than 

others to dietary constituents.  

 

This study has consistently shown that treatment of colon cancer cells with 

selenium and/or isothiocyanates, either individually or in combination, does 

not impact abnormal methylation patterns of key genes involved in the 

complex multistep process of colon carcinogenesis. Therefore, more research is 

warranted in this area to determine the ability of these food compounds to alter 

the complete epigenetic setting of the transformed cell, including histone 

modifications and DNA methylation, chromatin remodelling factors and CpG 

binding proteins, which have been shown to work in concert to establish DNA 

methylation patterns in the colorectal genome. 



 

 

 

 

 

 

 

 

4 
Applications and Challenges of Genome-
wide DNA Methylation Analysis using CpG 
Island Microarrays in Nutrition Studies
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4.0 INTRODUCTION  
 

As shown in the previous chapter, targeted DNA methylation assays can 

provide important insight into the effects of dietary compounds on the 

methylation status of designated CpG islands. However, cancer is a disease of 

the genome and as a result generates an accumulation of genetic and epigenetic 

disorders altering the balance between cell proliferation and apoptosis, 

affecting several types of genes including oncogenes and tumour suppressor 

genes. Before the advent of ‘OMIC’ technologies, studies were limited to the 

interpretation of changes in DNA methylation only by analysis of total 5-

methylcytosine content and by examination of selected small regions of DNA 

(usually in or near the promoter region of genes) chosen on the basis of 

probable relevance to tumour development.  

 

Currently, a more efficient way of linking the different pathways involved in 

cancer epigenetics and nutrition at the genome-wide scale involves the use of 

CpG island microarrays to allow the determination of the methylation levels of 

a large number of CpG island loci, potentially modified as a result of the action 

of bioactive food compounds. To increase our understanding of the epigenetic 

mechanisms of colon cancer chemoprevention by Se-methylselenocysteine, 

iberin and their action in combination we attempted to conduct a novel CpG 

island microarray analysis to elucidate their effects on the epigenome of Caco-

2 cells.  

 

The initial focal point of this chapter was to determine the impact of these 

bioactive food constituents upon the epigenome through the use of genome-

wide CpG island methylation analyses together with pioneering statistical 

models to provide clues for understanding their chemoprotective effect in colon 

cancer and potentially detect novel genes that are regulated through DNA 

methylation marks. As a result of the findings, however, we tackle the 

imperative need to continue the search for new statistical models and 
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microarray platforms to assist in the optimal estimation of methylation changes 

in CpG island microarray studies. Such models are particularly important in the 

 field of nutrition, in which it is expected that many dietary bioactive agents at 

nutritionally-relevant concentrations will probably elicit subtle DNA 

methylation changes that may be critically important in biological terms but 

will be difficult to detect reliably. 

 

This chapter is structured as follows. In the first section an introduction to the 

initial microarray protocol applied to interrogate the methylome is outlined, 

followed by a description of an additional microarray approach adopted in 

order to dissect causes accountable for the lack of correlation observed 

between the data generated by the CpG island microarray platform and genes 

selected for validation. Finally the results and conclusions generated from this 

investigation will be presented.  
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4.1 MATERIALS AND METHODS 
 

4.1.1 Materials 
 

CpG island microarrays (HCGI12K-Human) consisting of 12192 CpG Island 

clones were purchased from the Microarray Centre, University Health Network 

(UHN) in Toronto. For the microarray set-up and validation random primers, 

dNTP and Human Cot-1 DNA were purchased from Invitrogen, UK. Klenow 

Fragment (3’5’ exo), McrBC and all the different methylation-sensitive 

restriction enzymes used for the microarray validation were obtained from New 

England Biolabs, UK. IllustraTM CyScribe GFX purification kit, CyDyes (Cy3 

and Cy5) and HyPer5 Dye were acquired from GE healthcare. tRNA from 

baker’s Yeast, Aminoallyl-dUTP and all other chemicals were purchased from 

Sigma-Aldrich (UK), unless otherwise stated. 

 

4.1.2 Methods 
 

4.1.2.1 Cell Culture and Treatments 

 

Caco-2 cells and treatment protocols used for this investigation correspond to 

those specified in Chapter 3 (section 3.1.2.1).  

 

4.1.2.2 First Microarray Protocol  

 
A schematic diagram containing all the steps involved for the investigation of 

differentially methylated CpG islands using microarray-based DNA 

methylation profiling is presented as Figure 4.1.  

 

 

http://nar.oxfordjournals.org/content/34/2/528.short�
http://nar.oxfordjournals.org/content/34/2/528.short�
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4.1.2.2.1 Amplicon Preparation  
 

4.1.2.2.1.1 MseI Restriction  
 
Genomic DNA from two biological replicates per treatment was isolated from 

Caco-2 cells treated for 4 days with either SeMSC (0.2 µM), iberin (6 µM) or 

in combination (IB+SeMSC) according to the protocol specified in chapter 3 

(section 3.1.2.2). Two biological replicates per treatment were included for this 

experiment. The genomic DNA (500 ng) was digested with a four-base 

frequent cutter MseI [thymine/thymine/adenine/adenine (5’-TTAA)], which 

produces small fragments (≤200 bp) and generally cuts outside of CpG islands. 

The digestion mixture included 5 µl 10×NE buffer 2, 0.5 µl bovine serum 

albumin (BSA, 10 mg/ml), 1 µl MseI (10 U/µl) and water to 50 µl. The 

digestion was allowed to proceed overnight at 37ºC and the digested product 

was then purified using a slight modification of the QIAquick® PCR 

purification kit instruction manual. Briefly, 5 volumes of buffer PBI were 

added to 1 volume of the sample and the mixture was placed into the QIAquick 

column and centrifuged for 60 sec. To wash, 0.75 ml of buffer PE were added 

twice to the column and centrifuged for 60 sec each time. The flow-through 

was discarded and centrifuged for an additional 5 minutes and then the DNA 

was eluted by adding 100 µl of buffer EB to the centre of the QIAquick 

column, which was then centrifuged for 1 min. After this step, DNA was 

precipitated by adding one-tenth volume of 3M NaOAc, pH 5.2 to the nucleic 

acid solution followed by two and a half volumes of 95% cold absolute 

ethanol; this solution was placed at -80°C for at least 30 min, or at -20°C 

overnight, and centrifuged at 4ºC for 30 min to pellet the DNA. Supernatant 

was discarded carefully with a pipette and the pellet was washed with 200 µl 

70% ethanol and spun for 5 min, dried and resuspended in 10 µl QIAquick 

elution buffer and stored at -20ºC.   
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4.1.2.2.1.2  Annealing of Oligonucleotides  
 

2 nmol of each oligonucleotide that formed the linker (upper strand sequence, 

5'-TAGAATTCAGATCTCCCG-3'; lower strand sequence, 3'-

CTTAAGTCTAGAGGGCCCAGTGGCG-5') were mixed with 30 µl of Tris-

EDTA buffer (10 mM Tris, pH 7.5–8.0, 50 mM NaCl, 1 mM EDTA) and 

placed in a thermal cycler (Biometra T-Gradient, UK) to complete the 

following cycles: I) heating to 96ºC for 5 min. II) ramp cool to 85ºC for 5 min 

and gradually cool down by 1ºC for 5 min until 75ºC is reached. III)  ramp cool 

to 74 for 15 min and gradually cooled in 1ºC steps for 15 min until 55ºC is 

reached (Table 4.1).  

 

 

Table 4.1 Thermocycler Programs for Annealing Complementary 

Oligonucleotides 

 
 

4.1.2.2.1.3 Linker Ligation to MseI-Digested DNA  
 

The annealed linker primers (6 µl/sample) were added to 10 µl of MseI-

digested DNA to allow subsequent amplification of all fragments in the ligated 

DNA samples. The reaction was carried out in the presence of 2.5 µl of T4 

ligase (1 U/µl) and 1.5 µl of 10×ligase buffer. The ligation reaction was 

completed by incubating the samples overnight at 16ºC in a thermal cycler 

(Biometra T-Gradient, UK). The linker-ligated DNA was then purified using 

the QIAquick modified protocol, eluting into 30 µl of EB.   

 Cycles Temperature Time 
Step 1 : 1 96 ºC 5 min 
Step 2 : 1 85 ºC 5 min 
Step 3 : 10 85 ºC  (-1ºC/cycle) 5 min 
Step 4 : 1 74 ºC 15 min 
Step 5 : 19 74 ºC  (-1ºC/cycle) 15 min 
  until it reaches 55 ºC  
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4.1.2.2.1.4 Digestion of Linker-Ligated DNA ± McrBC 
 

To proceed with the McrBC digestion an aliquot of 14 µl of the linker- ligated 

DNA was added to 6 µl of +McrBC mix and an additional aliquot was added to 

6 µl of –McrBC mix. The +McrBC mix contained 2 µl 10×NE buffer 2, 2 µl 

McrBC (20 units), 0.2 µl bovine serum albumin (BSA, 10 mg/ml), 0.2 µl GTP 

(100 mM) and water to 6 µl, whereas the –McrBC mix contained the same 

except McrBC. To determine the efficiency of the digestion a methylated DNA 

control (New England Biolabs, UK) was included by adding to each mix 

(+McrBC and –McrBC) 1 µl control DNA and water to 20 µl.  The linker-

ligated DNA was then digested overnight at 37°C. Twenty microliter of each 

digested control was analyzed on a 1% agarose gel. A diffuse smear between 

2500 and 1500 bp indicated a successful McrBC digestion. The digested 

samples were QIAquick purified and ethanol precipitated as above and 

resuspended in 10 µl of EB for PCR amplification.   McrBC is a methylation-

specific endonuclease, which cleaves DNA containing 5-methylcytosine on 

one or both strands but will not act on unmethylated DNA. The low-specificity 

of the recognition site for McrBC (RmeC..N40-3000..RmeC, in which R is A or G) 

suggests that McrBC-based analysis can reveal DNA methylation at almost any 

methylated CpG island in the genome.  The digested and mock-digested DNA 

was then used as template for PCR amplification, using the lower strand 

sequence linker-primer. Cleavage of methylated DNA by McrBC induced 

DNA strand breaks and abrogated PCR amplification. Conversely, the presence 

of unmethylated cytosines in DNA prevented enzyme cleavage and could be 

detected by PCR amplification. Each PCR reaction contained 20 ng of linker 

ligated DNA ± McrBC, 50 pmol of primer, 200 µM each dNTP, 2 µl 10×PCR 

reaction buffer with MgCl2 (Roche), 0.2 µl BSA and 0.2 µl Taq (5 U/µl) 

(Roche) in a total volume of 20 µl. The cycling conditions consisted of an 

initial 5 min at 72ºC to fill in the protruding ends of the ligated DNA, followed 

by 22 cycles of 1 min at 95°C and 1 min at 60°C, ending with an extension at 

72°C for 1 min. The final PCR product was QIAquick purified into 50 µl EB.  
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4.1.2.2.2 Labelling and Hybridization  
 

4.1.2.2.2.1 Aminoallyl-dUTP Incorporation 
 

For labelling and hybridization the methodology established by the Microarray 

Centre at UHN was followed. Briefly, 4 µg of purified PCR-amplified, 

digested linker-ligated DNA ± McrBC was mixed with 20µl of 2.5X random 

primer buffer (125 mM Tris–HCl, pH 6.8; 12.5 mM MgCl2; 25 mM 2-

mercaptoethanol; 1250 μg/ml random primers) and Arabidopsis DNA 

(10ng/µl), which was used as a control for signal normalization, in a final 

volume of 40 µl. The mixture was denatured at 95ºC for 5 min. The denatured 

sample was placed on ice for 10 min and 5 µl of NEB buffer 2, 5 µl of 

aminoallyl-dUTP-dNTP mix (containing 5 mM of each dinucleotide, except 

dTTP 1 mM and 4 mM of aminoallyl-dUTP) and 1.5 µl of high-concentration 

Klenow fragment (50 U/µl) were added. The sample was incubated overnight 

at 37ºC. The resulting product was purified using the CyScribe GFX 

purification kit according to manufacturer's directions. Briefly, 50 µl RNase-

free water was added to each sample and mixed with 500 µl of capture buffer 

by pipetting up and down and the sample was transferred onto a GFX column. 

Samples were centrifuged at 13,800 x g for 30 sec, discarding the flow through. 

Following this step, 600 µl of 80% ethanol were added to the column,  which 

was centrifuged for 30s at 13,800 × g, repeating this step twice for a total of 

three washes. The column was transferred to a new 1.5 ml tube to elute with 60 

µl of pre-warmed (65ºC) RNase-free water followed by an incubation step of 

10 min. Samples were centrifuged for 1 minute at 13,800 × g and 60 µl of 

NaHCO3 pH 9.0 were added on the top of the column to increase the yield, 

centrifuging again for an additional 1 minute. DNA was dried down in a 

SpeedyVac at medium setting and re-suspended in 8 µl of RNase-free water.  
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4.1.2.2.2.2 Cy Dye Coupling 
 

Cy3 and Cy5 dye packs were obtained from GE Healthcare. As these dyes are 

very sensitive to light and moisture, each dye pack containing 40.000 pmol/vial 

was reconstituted in 16 µl of DMSO and equally aliquoted into 4 microtubes. 

The DMSO was removed subsequently by drying in a SpeedyVac and reagents 

were then stored at -20°C in the presence of silica. To prepare the coupling 

reaction an aliquot of each dye was re-suspended in 2 µl of DMSO and added 

to each aminoallyl-labeled sample. For instance, the + McrBC was mixed with 

Cy5 dye and the – McrBC mixed with Cy3 dye, followed by an incubation step 

at room temperature for 2 hours in the dark. After this step, the two fractions 

were combined in a tube and 45 µl of water was added to the sample and 

gently mixed. The uncoupled Cy dye was removed by using the CyScribe GFX 

purification kit (as described above), but eluted with 60 µl of 65°C pre-warmed 

elution solution. Finally, 5 µl of CotI DNA (1 µg/µl) was added per sample and 

samples were dried in a SpeedyVac at high setting to 2.5 µl. 

 

4.1.2.2.3 Microarray Hybridization  
 
Samples were added to 80 µl of a hybridization mixture containing 80 µl DIG 

EasyHyb (Roche) and 4 µl Yeast tRNA (10mg/ml). Prior to adding to the 

samples the mixture was denatured at 65ºC for 3 minutes and cooled at room 

temperature for at least 15 min. After adding 80µl of this master mix to each 

labelled target the mixture was denatured further at 65ºC for 2 minutes and 

cooled briefly before being applied to the microarray slide. To prepare the 

hybridization slides, the microarray slide was placed face to face with a 

microscope slide to act as ‘coverslip’ and left offset by about 2 mm along their 

length. The entire labelled cDNA mixture was pipetted onto the resulting ledge 

and once the solution had spread through capillary action the slides were reset 

to be completely aligned and were placed in a humidified hybridization 

chamber and incubated overnight at 37°C. 
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Figure 4.1 Schematic flowchart for the preparation of amplicon:. 1) Genomic DNA was 
digested with MseI. 2) The digested DNA was ligated to oligo linkers. 3) The linker ligated DNA 
samples were divided in two: one sample was digested with a methyl-specific restriction enzyme 
(McrBC), and the other was mock digested. 4) Each sample was PCR amplified using linker 
primers. Cleavage of methylated DNA by McrBC induced DNA strand breaks and abrogated 
PCR amplification. Conversely, the presence of unmethylated cytosines in DNA prevented 
enzyme cleavage and could be detected by PCR amplification. 5) Samples were labelled and 
hybridized to the microarray slides.  
 
 
  
 



  
 

138 
 

 

              Chapter 4 

4.1.2.2.4 Washing and Scanning  
 

The microarray slide was inverted in 1 × SSC to separate from the ‘coverslip’. 

Each microarray slide was placed in a slide rack containing also 1 × SSC. Once 

all the cover slips were removed the slides were washed three times for 15 

minutes each in 1 × SSC and 0.1% SDS solution at 50ºC, agitating the slides 

half way through each step.  The slides were then rinsed with 1 × SSC at room 

temperature (by moving the slides back and forth about four times) to remove 

all traces of SDS. After this step, an additional quick rinse was performed at 

room temperature using 0.1 × SSC. The slides were dried by centrifuging at 

500 rpm for 5 minutes and scanned immediately with the AGILENTGenePix 

Pro 6.0 scanner with a scan resolution of 5-microns and a photomultiplier tube 

(PMT) saturation set to 100% for the green and red channel. The red and green 

channel images were separated into TIFF files using the TIFF splitter utility 

from the software.  

 

4.1.2.2.5 Data Processing 
 

After obtaining the images they were analysed in the GenePix Pro 6.0 software. 

Each spot was defined by the positioning of a grid template (obtained from 

UHN Toronto website) over the array image. Within the array images different 

fluorescent signals (colours) were obtained according to the initial methylation 

status (Figure 4.1). For instance, if within the McrBC digested sample (labelled 

with Cy5) a gene was methylated the locus would fail PCR amplification as a 

result of the enzyme digestion that cleaved the methyl-cytosine regions, failing 

to produce a labelled target for microarray hybridization and generating as a 

result a Cy3/Cy5 ratio (undigested/digested) greater than one, which would 

produce a green feature. Likewise, if methylation was absent the enzyme 

would not act upon the strand and the signal intensities of Cy5 and Cy3 would 

be equivalent, generating as a result a yellow spot.                         
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4.1.2.2.6 Data Normalization 
 
All the analysis of the data and normalization was carried out in collaboration 

with the University of Maastricht in the department of Bioinformatics, BiGCaT 

by Michiel Adriaens. Briefly, quintile normalization was used on the signal 

intensity values. The log-ratio of the Cy3 and Cy5 channels were used as a 

measure for methylation and the differences in log-ratio between the treatment 

groups and the control arrays were used as a measure for differential 

methylation. For instance:  

 
1. Selenium 1 vs. Control 1 

2. Selenium 2 vs. Control 2 

3. Selenium 1 vs. Control 2 

4. Selenium 2 vs. Control 1 

 

For statistical significance a one-way ANOVA was used to calculate p-values. 

To avoid falsely-significant results the Benjamini-Hochberg False Discovery 

Rate (FDR) test for multiple comparisons was applied, using a p-value cut-off 

of 0.05. This process leads to all genes with an FDR-adjusted value of less than 

0.05 being considered as differentially methylated (Curtis et al. 2005). In 

addition, probes were filtered on probe length (>25 bp), probe quality (verified 

sequence) and proximity of the probes to genes (i.e within 2000 bp) before all 

analysis procedures were carried out.  

 

A value of 0% methylation was used when the red signal equalled the green 

signal and 100% methylation if the red signal was equal to zero.  
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4.1.2.2.7 Validation of Detected Methylation Differences 
 

A modified combined bisulphite restriction analysis (COBRA) assay (Xiong 

and Laird 1997), was initially chosen to validate several loci that displayed 

statistically significant differences in methylation. This method is based on the 

restriction digestion of a PCR product amplified from bisulphite-modified 

DNA with an enzyme for which the recognition sequence is affected by the 

methylation state in the original DNA. Additionally, a second method that 

involves the digestion of genomic DNA using methylation-sensitive restriction 

enzymes followed by real-time PCR was adopted.  

 

4.1.2.2.7.1 COBRA 

4.1.2.2.7.1.1 COBRA PCR Primer Design  

 

To design the primers for the genes selected for validation the NCBI website 

(Entrez Gene) was used to identify the CpG island sequence spotted onto the 

microarray slide (provided by the UHN Microarray Centre's CpG Island 

Database) using the sequence viewer in the NCBI website. After this, as the 

library for the microarray was generated by the manufacturer by cutting the 

genomic DNA with MseI, the sequence was transferred onto Webcutter version 

2.0, (http://users.unimi.it/~camelot/tools/cut2.html) to map the MseI restriction 

sites within the sequence and identify the CGI array probe. Likewise, the 

Webcutter website was used to identify potential recognition sites for 

restriction enzymes commonly used in the COBRA assay (containing cytosines 

only in the context of CpG). It is important to mention that the restriction-

enzyme cleavage itself is not methylation-dependent as PCR products from 

bisulphite converted DNA do not contain 5-methylcytosine. The methylation 

status is revealed by the presence or absence of a restriction-enzyme site.   

 

http://users.unimi.it/~camelot/tools/cut2.html�
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Once the gene sequence and their accompanying restriction maps were 

generated, PCR primers were designed for bisulphite treated genomic DNA. 

The bisulphite-converted methylated sequence was used to facilitate the 

avoidance of CpG dinucleotides within the primer sequences, ensuring equal 

annealing and therefore amplification of DNA regardless of original 

methylation status. 

 

4.1.2.2.7.1.2 PCR Annealing Temperature Optimization 
 

To determine optimal annealing temperatures of the primers a thermal cycler 

(Biometra T-Gradient, UK) that generates a thermal gradient of up to 12 

different temperatures was used. Each PCR reaction was prepared according to 

the details provided in section 3.1.2.4 (Chapter 3) and then all the reactions 

were electrophoresed on a 4% agarose gel electrophoresis to identify the 

annealing temperature that produced a single bright band.  

 

4.1.2.2.7.1.3 Outline of the COBRA Protocol 
 
Genomic DNA isolated from the experimental samples was initially bisulphite 

converted following the steps outlined in Chapter 3 (section 3.1.2.3.1). In order 

to interrogate the methylation status of the CpG island at the locus specified in 

Table 4.2 from the 10 genes selected for validation, products from the primary 

PCR were precipitated with ethanol followed by an overnight digestion at the 

recommended temperature. Reactions contained the purified PCR product, 5 µl 

10× NE enzyme buffer, 2 µl of the chosen restriction enzyme (Table 4.2), 0.5 

µl BSA (if required) and water to 10 µl.  The digested DNA was separated on 

8% (product size <350 bp) or 6% (product size > 350 bp) polyacrylamide gels 

in TBE. After electrophoresis, the gels were stained using SYBR green I and 

imaged using the Pharos FX+ Imaging System (Bio-Rad, UK) at 100-µm 

resolution; images were saved as TIFF files and band intensities were 

quantified using TotalLab 2D analysis software (Nonlinear Dynamics, 



  
 

142 
 

 

              Chapter 4 

Newcastle-upon-Tyne, United Kingdom). The proportion of methylated versus 

unmethylated DNA was determined from the relative intensities of cut and 

uncut PCR product. 

 

 Table 4.2 Primer Sequences and Annealing Temperatures for the Analysis of 

Methylation at the Indicated CpG islands 
 

*CpG locus interrogated by the restriction enzyme 
 
 
 

4.1.2.2.7.2 Methylation-Sensitive Restriction Enzymes (MSRE) 
 

At present there are a variety of methods available for the determination of 

methylation patterns and the quantitative assessment of gene-specific 

methylation in sample tissues. These include the previously mentioned 

COBRA technique for interrogating methylation status of individual CpG sites 

present in a gene and several others as mentioned in Chapter 3 (section 3.0.1). 

Gene PCR Primer Sequence (5’ – 3’) Ann Temp 
optimized 

Product 
Size (bp) 

Restriction 
Enzyme 

(Cuts at)* 
 
COL1A1 
 

F GTTTTGAGATAGGAGGGAGTTTA 57.6 
 

257 Mae II (158) 
R AATCTTTCCTTATAAATCATCCCA 

  
 

 
DUSP10  

F GGTTTTATTGATTTTTAGTAGTAATATAGTTAT 55 
 

223 Hinf I (77) 
R CCTCCTTAAAAAAATAAAACCA 

  
 

 
PDCD10 

F GGGGATTGGGATAGAATAGTTAT 58.8 
 

300 Aci I (253) 
R TCTCCTACTATTAACTAAAAATATCACCA 

  
 

 
TIRAP 

F GTTTGGGTTTTAGAGTTT 51.6 
 

396 BstUI (46) 
R AAAAAAATAACATTCTCCTC 

  
 

 
PIK4CB 

F GAAGTATGGATATATGTATATTTTTAGAAGTA 54 
 

382 Sau3AI (58) 
R TCACAAACTACCCAAACAAA 

  
 

 
EPHA7  

F GTGATGTAGTTATTTATAGTTTAAATTTTAG 54 
 

279 Sau3AI  (138) 
R CCTATATAAATACTAAACCCATTCA 

  
 

 
IL4R 

F TTAAAGTTAGTTTGGGTGTTGTAAT 57 
 

275 Hinf I (99) 
R CCCCTAACACTTTAACTAAACAAA 

  
 

 
SIRT2  

F GGGTTTGTAGTATTTAGTTAGGTT 58 
 

468 Pvu I (116) 
R CCCTTTACCAACATAACTACTAA 

  
 

 
DISHEVELLED-3 

F TTTTGGTTTTTAAGGGATGA 56 
 

112 Taq I (32) 
R CTAAAACCAAAAAAACCCAA 

  
 

 
MYST1  

F GAGGTTGAGGTTGGTAGA 54.8 
 

215 EcoR I (158) 
R CCCAAACTAAAATACAAAAA   
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Currently, a large number of available techniques used for studying genome-

wide methylation differences involve the use of methylation-sensitive 

restriction enzyme(s) (MSRE) thereby limiting these approaches to profile 

genomic regions containing these restriction site motifs. Among these methods, 

an improved quantification of DNA methylation using methylation-sensitive 

restriction enzymes and Real-Time PCR was reported (Hashimoto et al. 2007) 

and was adopted in this investigation as an alternative approach to confirm the 

methylation status of one or more CpG islands within the genes chosen for 

validation. The MSRE cleaves DNA when the CpG site is not methylated and 

subsequent PCR amplification is abrogated. However, if the CpG site is 

methylated, the enzyme cannot cut and the DNA strand is amplified by PCR. 

 

4.1.2.2.7.2.1 PCR Primer Design for Real-Time PCR Following 

MSRE Digestion of Genomic DNA 

 

Unlike the COBRA technique mentioned above, this methodology avoids the 

bisulphite treatment which is cumbersome, labour-intensive and might generate 

incomplete conversion and loss of DNA in the sample. In order to design the 

primers for the genes chosen for validation and to identify the number of 

restriction sites cleaved by the selected methylation-sensitive restriction 

enzyme used in this study:  HpaII (C↓CGG), similar steps to those described in 

section 4.1.2.3.1.1 were followed. However, as this methodology does not rely 

on bisulphite conversion of genomic DNA, primers were designed (Table 4.3) 

according to the standard principles for successful quantitative PCR and their 

annealing temperature was similarly optimized as described in section 

4.1.2.3.1.2.  
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Table 4.3 Primer Sequences and Annealing Temperatures used for 

Methylation-sensitive RT-PCR 

 

4.1.2.2.7.2.2 Outline of the MSRE Protocol 
 
 
To digest the genomic DNA with HpaII the reaction mixture contained 2 units 

of HpaII per 20 ng of genomic DNA, 1 µl 10 × NE enzyme buffer and water to 

10 µl. The non-enzyme control or mock-digested reaction was identical except 

HpaII was not added. All prepared samples were incubated overnight at 37̊C 

followed by heat inactivation at 65˚C for 20 minutes. The proportion of 

DNA/HpaII employed here has been previously reported to be optimal by 

Hashimoto and colleagues (2007). This author has recommended using more 

than 10 ng/reaction to avoid false negatives and to use low restriction enzyme 

concentrations (2 units) to prevent non-specific digestion.  

Gene PCR Primer Sequence (5’ – 3’) Ann Temp 
optimized 

Product 
Size (bp) 

Number of 
Restriction sites  

the Enzyme  
HpaII Cuts at 

 
 
VASP 
 

F CGCTCCGCACACAATCTGCTT 
 

65.9 
 

310 4 
R TCCAGCTCCCCCTCCTCCA 

   
 
CTNND2  

F TGGGAAAAGTCTCTTCTGGA 57.5 
 

73 1 
R ATAAGCACTCAGAACCTTCCAG 

   
 
CBX5 

F GGGTAGATAAGACTGTCTGCCA 57.5 
 

204 3 
R GTAGTGGGCGGAGAAAAAA 

   
 
PIK4CB 

F GATGGACGCTGGGTTCCTAGAA 65 
 

728 2 
R GCAGGGAAGATGGCATTCAA 

   
 
CHD2 

F TCAGAAATTAAGAATTCAGAAAAGT 57.5 
 

382 2 
R AAAGTGACCCTAGCTATGTCTAACT 

   
 
FUS  

F CTCGTGTTGGTTCAGCTTTCTGT 65 
 

686 2 
R GAACAAGATCAACTCATCCTCCCA 

   
 
DKFZP564O0823 

F ACTGCAGGTAATTGGCGCCAT 65 
 

592 6 
R ACGATTGCGAGCCTGACCA 

   
 
GALNT7  

F CACTGTAGGACATGATTCAAGA 57.5 
 

750 1 
R TGCTTACTAACATCATACCCATCTT 

   
 
ATOH 

F TGTCCTCTGGGAACATAGAA 59 
 

641 2 
R TTTCCGCTTGAGCTTCTTA 
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The Real-Time PCR was performed on the digested and mock-digested 

samples to determine the methylation status as a percentage. Reactions were 

mixed in a total volume of 20 µl with 5 µl of template DNA. The remaining 

components and conditions used to run the plate correspond to those described 

in Chapter 3 (section 3.1.2.5). The optimized annealing temperature used for 

every gene analysed is presented in Table 4.3 Serial dilutions of DNA of 

known concentration (250-0.05ng) were run in every reaction plate to produce 

standard curves for the determination of the DNA content of each sample. 

Changes in the DNA content of the digested samples were expressed relative to 

the mock-digested sample and multiplied by 100 to determine the percentage 

of methylation. As a quality control procedure DNA was artificially methylated 

according to the steps described in Chapter 3 (section 3.1.2.8.1) and included in 

every reaction to estimate nonspecific digestion. Initially, optimization 

experiments were conducted with this fully methylated DNA to determine to 

what degree actual measurements differed from the expected results and the 

results obtained were close to 100% indicating a high degree of accuracy for 

this analytical tool. 

 

4.1.2.3 Second Microarray Protocol  

 
A lack of correlation between the results of the microarray analysis and the 

validation process was observed as will be seen in the results section.  A 

second microarray set-up was therefore performed as described in the sections 

above but with adaptations taken from another study (Ordway et al. 2006) to 

tackle potential drawbacks in the previously described microarray protocol. 

These introduced changes were limited to the in-house protocol for amplicon 

preparation detailed in section 4.1.2.2.1, retaining the original steps as 

described in sections from 4.1.2.2.2 and onwards.  
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4.1.2.3.1 Sample Preparation  
 
In order to determine the sensitivity of the chosen microarray-based 

methylation analysis platforms a mixture of fully methylated and non-

methylated DNA was prepared to contain different ratios of methylated DNA 

fragments: 0%, 30%, 60% and 100%. The DNA source from the non-

methylated sample used from which the 0% fraction was derived, was the 

normal colon tissue biopsy of a healthy young person described in Chapter 3, 

which was artificially methylated (section 3.1.2.8.1) to create the fully 

methylated fraction (100%). Every fraction contained 15 µg of DNA in 300 µl 

of water (Table 4.4). 

 
 

Table 4.4 Methylated and non-methylated DNA fractions used to generate 

specific DNA methylation profiles  

 

Set DNA Methylation 

Profile (%) 

Fully Methylated 

DNA fraction (µg) 

Non-Methylated 

DNA fraction (µg) 

100 15 0 

60 9 6 

30 4.5 10.5 

0 0 15 

 

 

4.1.2.3.2 Amplicon Preparation  
 

4.1.2.3.2.1  DNA Fractionation  
 

Colon DNA obtained from the human tissue sample was mechanically sheared 

to a uniform molecular weight distribution using a HydroShear® DNA 

shearing device (GeneMachines, Washington USA) (Figure 4.2). The principle 

of this system relies on hydrodynamic shearing forces that stretch the DNA 
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until its molecular bonds begin to break and the DNA snaps into fragments 

(Oefner et al. 1996).  

As the DNA fragment size required corresponded to approximately 2 kb, 

different settings of the HydroShear DNA device were optimized first to obtain 

the desired length. To achieve this, DNA isolated from Caco-2 cells was run at 

various Speed Code values and Number of Cycles (Table 4.5). The sheared 

samples were then run on an agarose gel to verify fragment sizes (Figure 4.3). 

 

Table 4.5 Settings applied to the HydroShear machine to optimize DNA 

fragment size (see corresponding Figure 4.3) 

 

Gel 
Lane Number of Cycles Speed Code 

2 10 5 
3 10 6 
4 10 7 
5 10 8 
6 10 9 
7 10 10 
8 10 15 
9 15 8 
10 20 8 
11 20 8 

1, 12 Hyperlader I 

Figure 4.2 HydroShear DNA shearing device used to fractionate the DNA into smaller 
fragments. 
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From these results the settings that were selected to be applied to the samples 

with different DNA methylation profiles (Table 4.4) correspond to those shown 

in Lane 3 (Number of Cycles =10; and Speed Code=6). Three separate 

biological replicates per DNA fraction were used.  

 

4.1.2.3.2.2 McrBC Digestion 
 

After DNA samples were mechanically sheared into a uniform molecular 

weight distribution samples were measured using a NanoDrop (Labtech 

International, UK). For each sheared genomic DNA sample 5 µg were obtained 

and split into two equal portions of 2.5 µg each. One portion was digested with 

McrBC in a reaction containing 10µl 10×NE buffer 2, 5 µl McrBC (50 units), 1 

µl bovine serum albumin (BSA, 10 mg/ml), 1 µl GTP (100mM) and water to 

33 µl. The remaining portion was mock-digested under identical conditions 

except that 5 µl water was added instead of McrBC. Treated and mock-treated 

reactions were incubated at 37ºC overnight and digestion was confirmed by 

running the control DNA sample supplied with the McrBC enzyme kit on a 1% 

   1      2       3      4      5     6      7      8       9     10    11    12 

2 Kb 

 Lane 

Figure 4.3 The HydroShear DNA shearing device generates different fragment sizes 
depending on the setting applied (see Table 4.5). The figure corresponds to a 1% agarose gel 
in 1 × TAE stained wtith Ethidium Bromide, run at 95V for 1 hour. 1µg of DNA sample was 
loaded per lane in a final volume of 20 µl containing loading buffer. 
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agarose gel (data not shown). All reactions were treated with 5 µl proteinase K 

(50 mg/ml) for 1 h at 50ºC, and precipitated with ethanol under standard 

conditions. Pellets were washed twice with 200 µl ethanol, dried and 

resuspended in 20 µl water. A total of 2.5 µg of each fraction was resolved in a 

1% agarose gel. McrBC-treated samples and mock-treated samples were 

resolved side-by-side. HyperLadder I was run adjacent to each 

treated/untreated pair to guide accurate gel slice excision. Gels were visualized 

with long-wave ultraviolet (UV), and gel slices including DNA within the 

modal size range of the untreated fraction (~1-4 kb) were excised with a clean 

razor blade (Figure 4.4). DNA was extracted from gel slices using the 

QIAquick Gel extraction kit protocol (Qiagen, UK). Then, samples were 

analyzed for total concentration using the NanoDrop. A total of 300 ng of 

fractionated template DNA for dye labelling and microarray hybridization was 

used following steps described in section 4.1.2.2.2. Since the signal intensity 

generated from the Cy5 dye during the first microarray carried out was noticed 

to be lower than that generated by the Cy3 dye and considering that others have 

also detected that Cy5 is highly susceptible to ozone-induced degradation 

(Branham et al. 2007), HyPer5 from GE Healthcare, a red fluorescent dye 

resistant to degradation from light and ozone exposure, was included instead of 

Cy5. 

Figure 4.4 Different DNA methylation fractions (0, 30, 60, 100%) were McrBCdigested 
(D) and mock-digested (M) and resolved on a 1% agarose gel. HyperLadder I was run 
adjacent to each treated/untreated pair to guide accurate gel slice excision (section cut is 
highlighted with a white line). Gel was stained with ethidium bromide, run at 40V for 2 
hours. 2.5 µg of DNA sample was loaded per lane in a final volume of 20 µl containing 
loading buffer. 
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4.2 RESULTS AND DISCUSSION  
 

4.2.1 First Microarray Protocol Validation  
 

In the present investigation we sought to develop a new microarray strategy to 

query the methylation status of ~12000 CG-rich fragments in Caco-2 cells to 

determine variations in methylation status after treatment with the bioactive 

food compounds iberin and/or Se-methylselenocysteine. Initial statistical 

analysis revealed ~200 genes that were hyper- or hypomethylated in each of 

the different treatment groups (Figure 4.5). 

For the validation process 10 loci from the selenium group that displayed 

hyper- or hypomethylation changes compared with the control group (FDR P-

value <0.05) were preliminarily screened to validate if their methylation status 

corresponded to the same methylation pattern seen in the CpG island 

microarray. For all the genes evaluated the methylation change was assessed by 

the COBRA assay as described in section 4.1.2.2.6.1. For instance, Figure 4.6 

was obtained after digesting the IL4R gene with the restriction enzyme Hinf I 

(Table 4.2) and running the product in 8% polyacrylamide gel before the 

density of the bands was quantified (Table 4.6). The differences in the 

percentage of methylation between the control and selenium group were 

calculated by using the equation shown below Table 4.6.  

 Figure 4.5 Chart displaying numbers of genes with statistically significant epigenetic 
changes per treatment group.  
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Table 4.6 Results from IL4R Band Quantification 
 

 
 

% Methylation = 100
C Band  B Band A  Band

C Band  B Band
×

++
+  

 

Methylation Change: 88.88 – 94.65 = -5.77% 

  

 

The results shown above indicate a reduction in the level of methylation from 

95% in the control sample to 89% in the selenium treated group. The same 

steps were carried out for the remaining 9 genes shown in Table 4.2. However, 

as shown in Tables 4.7 and 4.8, the results obtained for the COBRA assay 

differ substantially from the results obtained by the microarray, for instance 

 Control 1 Control 2 Selenium 1 Selenium 2 
Band A 558,333.31 98,773.67 712,383.50 1,349,995.33 
Band B 3,374,606.50 1,380,633.31 3,546,819.56 4,576,974.00 
Band C 3,641,883.50 1,490,043.00 3,522,149.48 4,394,192.13 

% Methylation 92.63 96.67 90.84 86.92 
Average 94.65% 88.88% 

C
on

tro
l 1

 

C
on

tro
l 2

 

Se
M

SC
  1

 

Se
M
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  2

 

A 

B 

C 

275 bp 

176 bp 

99 bp 

Figure 4.6 COBRA assay showing bands obtained after enzyme digestion. Products from 
the IL4R primary PCR were precipitated prior to an overnight digestion with the Hinf I 
enzyme. The digested DNA was separated in an 8% polyacrylamide gel and stained with 
SYBR green I before detecting its fluorescence as described in the methods section. The 
proportion of methylated versus unmethylated DNA was determined from the relative 
intensities of cut and uncut PCR products.  

Methylated  
Bands (Cut PCR 

product) 

Unmethylated Bands 
(Uncut PCR product) 
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PIK4CB and DVL3 from the hypermethylated list were not methylated as 

assessed by the COBRA assay. Although some genes used for validation seem 

to follow the same pattern as the microarray result (COL1A1, TIRAP, EPHA7, 

MYST1), the methylation change obtained with COBRA is markedly different 

(Table 4.7 and 4.8). For instance, the methylation level of EPHA7 changed 

from 10% in control samples to 95% after SeMSC treatment (methylation 

change= +85% according to the microarray analysis), but after validating this 

CpG island using COBRA the variation in methylation detected corresponded 

only to 4% (from  12 to 16%). Furthermore, according to the microarray results 

observed in the hypomethylated list the SIRT2 gene was found to decrease in 

level of methylation from 99 to 88% (methylation change= -11). However, as 

shown in Table 4.8 this gene showed no methylation by COBRA analysis.  

 

 
Table 4.7 Candidates Genes from the Hypermethylated Group  

 

Gene Symbol Methylation Change 
 Microarray (%) COBRA (%) 

COL1A1 +33 1.01±2.4 
TIRAP +43 5.66±2.5 
EPHA7 +85 4.07±4.9 
PIK4CB +58 No Methylation 
DVL3 +17 No Methylation 
IL4R +63 -5.77±3.1 

 
 
 
 

Table 4.8 Candidates Genes from the Hypomethylated Group 
 
 
 
 
 
 
 
 
 
 

 

Gene Symbol Methylation Change 
 Microarray (%) COBRA (%) 
SIRT2 -11 No methylation 
MYST1 -17 -2.38±5.17 
PDCD10 -33 No methylation 
DUSP10 -28 No methylation 
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At first, it was hypothesised that this lack of correlation seen might be due to 

the COBRA assay sensitivity. Despite the fact that COBRA is a quantitative 

method to detect methylated alleles, it is not highly sensitive and has been 

calculated to have a limit of detection of 1 methylated allele in 200 

unmethylated alleles (Belshaw et al. 2004). In addition, this assay has been 

found to offer a narrow dynamic range leading to underestimation of 

methylation changes based on strong signals, and secondly the fluorescence 

background of gel images is often variable (from gel to gel or from lane to lane 

within the same gel), affecting the calculations and thus making it difficult to 

reliably compare DNA methylation levels across a sample set (Brena et al. 

2006). 

 

In an attempt to identify whether the COBRA assay was hindering the 

detection of DNA methylation changes due to the previous methodological 

problems mentioned, we utilised a more robust and sensitive validation method 

termed Methylation-Sensitive Restriction Enzyme digestion (MSRE) described 

in section 4.1.2.2.6.2. A difference from the strategy used during the COBRA 

validation assay, where only genes from the SeMSC group were selected, 

validation of genome-wide DNA methylation changes using MSRE was based 

on genes from the different treatment groups (Table 4.9). Additionally, for the 

majority of genes selected for validation, their methylation change was greater 

than 50%, with the exception of ATOH8 and GALNT7. From these two genes 

the former was selected because its CpG island was significantly 

hypermethylated throughout the different treatments and the latter was chosen 

to further verify if our methodology was sensitive enough to detect subtle DNA 

methylation changes (10-20%).  

 

Comparable to the criteria used for COBRA validation, every CpG island 

considered for MSRE validation had a FDR P<0.05 with the exception of 

DKFZP564O0823 in which the SeMSC and IB+SeMSC group had a P value 

>0.05 (P=0.07), but the iberin group had a P value <0.05. In this respect, the 

first two groups were considered for evaluation as it was the only gene that 
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showed the same pattern of hypermethylation within the 3 treatment groups. 

However, these results were interpreted with caution considering their marginal 

significance levels. In addition, genes identified as hypermethylated (+) or 

hypomethylated (-) in a single treatment (iberin or SeMSC) and its 

combination (IB+SeMSC) were selected (CTNND2, CBX5, FUS).  

 

 

Table 4.9 Candidates Genes Selected for Validation and Methylation Changes 
Obtained Using Microarray and MSRE *  
 

*Genes showing next to their values a + or – symbol indicates that their CpG island were 
identified as hypermethylated or hypomethylated respectively when compared with controls. 
Boxes showing no results within specific treatment groups indicate either a FDR P <0.05 or 
that the treatment was not selected for validation. Those boxes depicting “No Meth” indicate 
the CpG island was detected as unmethylated by MSRE.    
 
 

The results presented in Table 4.9 clearly indicate that the results obtained 

from the MSRE validation assay did not follow the same pattern observed in 

the CpG island microarray. This is despite the fact that some of the genes 

selected were seen to be differentially methylated in two (CTNND2, CBX5, 

FUS) or three (ATOH8, DKFZP564O0823) treatments in an attempt to increase 

the likelihood that the outcome seen at the microarray level for that particular 

gene was a true effect. In addition, the results provided by the MSRE showed 

that most of the loci evaluated were unmethylated even though the majority of 

CpG islands selected for validation had a methylation change according to the 

microarray analysis of >50%.  

 

Gene 
Iberin SeMSC IB+Se 

Microarray 
(%) 

MSRE 
 (%) 

Microarray  
(%) 

MSRE  
(%) 

Microarray  
(%) 

MSRE 
 (%) 

CTNND2  +81 - 5.36± 1.02  - -  +80 - 3.44± 0.85 
CBX5 - 51 No Meth  - -  - 93 No Meth 
FUS  - -  +54 No Meth  +64 No Meth 

ATOH8 +15 No Meth +16 No Meth  +37 No Meth 
DKFZP564O0823 +55 No Meth +71 No Meth  +87 No Meth 

GALNT7 - -  +21 - 6± 9.35 -   - 
CHD2 - 55 - 24±11.61 - - - - 
VASP  - -  -  -  -70 No Meth 

PIK4CB  - -  - -   +60 - 6.6± 4.27 
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4.2.2 Second Microarray  
 

In order to try to identify root causes responsible for the lack of correlation 

observed between the microarray and the validation process, a second CpG 

island microarray set-up containing DNA from normal, healthy colon tissue 

with known methylation percentages was designed to evaluate if the 

microarray platform employed in this investigation can reliably and accurately 

detect genome-wide DNA methylation changes. Although the experimental 

design used for the second microarray differed from the first microarray set-up 

as a result of adapting the amplicon preparation from (Ordway et al. 2006), the 

underlying strategy of both microarray platforms, which is based on the 

enrichment of the unmethylated fraction through the use of the methylation-

dependant endonuclease McrBC, remained unaltered.  

 

After analysing the array data and fitting models with methylated and 

unmethylated components across the different groups to derive a methylation 

score to be compared with the known percentage of methylation, it was found 

that the group with 0% of methylated DNA fragments could be interpreted by 

the modelling as anywhere between 0 and 100% methylation, as the curve of 

the frequencies for the methylated and unmethylated fraction was almost a 

normal distribution.. Regarding the rest of the groups containing 30, 60 and 

100% of methylated alleles, the estimated methylation score identified with 

this model corresponded to 60, 67 and 75% respectively (Figure 4.7). These 

results indicate that small changes in methylation (0-30%) are difficult to 

detect with this technology. In addition, the fact that the 0% group could be 

identified as either fully methylated or unmethylated will certainly introduce 

severe bias to data analysis when an average methylation score for individual 

CpG islands within this group is derived. Concerning the middle-to-high 

methylation group, it could be inferred that this methodology can detect with 

more sensitivity high levels of methylation (60-100%) than low levels (0-30%). 

However, it was estimated that this technology can detect relatively large 

changes of methylation levels only when a CpG island goes from low 
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methylation (<30%) to high methylation (>60%) levels or vice versa,. Smaller 

changes could only be detected if the level of methylation of a hypermethylated 

CpG island (>60%) decreased or increased.  

 

 After selecting some CpG islands from the microarray data for further analysis 

it was observed that although some genes showed a gradual increase in their 

A B 

C D 

Figure 4.7 Histogram of signals with model overlay from groups with known percentage of 
methylation: A) 0% B) 30% C) 60% and D) 100%. The blue bars indicate the log-ratio 
distribution of the methylated (red line) and unmethylated (green line) fractions.  The overall 
methylation score for each fraction is depicted within each graph.  
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methylation status within every artificially generated methylated fraction 

(Figure 4.8A), other genes showed an increment in their content of 5-

methylcytosine only partially as shown in Figure 4.8B, where a continuous 

enrichment of the methylated fraction was not seen to occur from 60 to 100%. 

Furthermore, some CpG islands were resistant to augmentation of their 

methylation status (Figure 4.8C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Even though there is a theoretical possibility that the enzyme reaction with 

M.SssI methylase did not go to completion, the artificially methylated DNA 

was assessed before we created the different methylated fractions by checking 

the methylation status of FUS by MSRE (one of the genes validated in Section 

4.1.2.2.6.2) obtaining 93% methylation. Nevertheless, the artificial methylation 

A B 

C D 

Figure 4.8 Graphs A-C illustrate measured percentage of methylation (methylation scores) for 
various CpG islands and their expected percentage of methylation based on in vitro methylation of 
human colon DNA. Graph D represents a scatter plot of 150 random CpG islands depicting the 
inability of the methylation score model and/or microarray platform to predict expected percentages 
of methylation adequately. The 0% fraction was excluded from the graphs for the reasons mentioned 
above. 

Expected % of Methylation  Expected % of Methylation  

Expected % of Methylation  Expected % of Methylation  



  
 

158 
 

 

              Chapter 4 

process is not perfect and there are likely to be gene-specific differences in the 

efficiency of methylation. Finally, some of those genes shown in Figure 4.8B 

and C might belong to a small proportion of genes that will be normally 

methylated in noncancerous colon tissue, which are unlikely to be affected by 

in vitro methylation.   

 

Previous studies using microarray-based DNA methylation profiling 

technologies have tried to ascertain levels of methylation by identifying only 

hypermethylated or hypomethylated extreme groups with high methylation 

changes when compared with controls, overlooking potentially relevant subtle 

DNA methylation changes. However, this research has attempted to derive a 

quantitative system using the global methylation level of all sequences on the 

array (i.e area under the curve in Figure 4.7), relative to the total area under the 

complete log-ratio density curve to estimate individual methylation levels 

referred to as a methylation score.    

 

Overall, this assay has been shown to be neither accurate nor reproducible 

across the entire range of possible methylation levels. Figure 4.8D shows the 

calculated methylation score for 150 random CpG islands plotted against their 

assumed methylation state and indicates the high variability, lack of natural 

clustering structure and low levels of precision obtained for the microarray 

derived methylation score. This analysis indicates that either the algorithms 

applied do not produce reliable results and/or the microarray platform used 

does not accurately reflect the methylation status of the sample studied when 

these algorithms are applied. This analysis suggests that the absence of 

correlation between the microarray results and the validation data encountered 

during the first microarray set-up was likely to be due to the inconsistencies 

with the statistical model and the inherent limitations of the McrBC microarray 

approach used rather than internal experimental conditions and/or methods 

selected for validation. 
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Methylation changes induced by bioactive food compounds have the potential 

to alter the methylome and shift the abnormal methylation pattern seen during 

carcinogenesis to that belonging to non-cancerous cells. However, a more 

comprehensive analysis of the results is required to detect global changes in the 

cancer epigenome after addition of food compounds to identify, integrate and 

interpret pathways disrupted in a meaningful manner.    

  

Taken together, there is a need to increase the sensitivity and specificity of the 

current microarray detection platform used in this investigation. Therefore, 

further research should be directed towards evaluating suitable statistical 

models or normalization algorithms in order to identify CpG islands with 

differential fluorescence ratios that would accurately allow for a more refined 

recognition of various methylation profiles. A number of microarray-based 

technologies are already available. However all of these methods have some 

limitations, which render them unsuitable for some experimental setups 

(Estecio and Issa 2009).  

 

Additionally, many technological parameters such as the influence of DNA 

sequence variation, amplification conditions and effective coverage and 

resolution of enzyme-based array hybridization platforms, which depend on the 

distribution of potential cleavage sites and the composition of the hybridization 

array, have recently been investigated to shed light on the advantages and 

limitations of array-based DNA methylation analyses. These studies have 

reported that that although the McrBC assay performed the best among other 

microarray-based platforms such as MeDIP (Weber et al. 2005) and HELP 

(Khulan et al. 2006), its sensitivity reached only 60%, which makes it 

vulnerable to the generation of false positive and false negative results (Irizarry 

et al. 2008; Irizarry et al. 2009). Furthermore, the McrBC method cannot 

differentiate between unmethylated and polymorphic cytosines. In humans, 

~2.16 million SNPs are detected in CpG dinucleotides, and such CpG SNPs are 

6.7-fold more abundant than expected (Tomso and Bell 2003). Depending on 

the restriction enzyme combination used, previous CpG island array-based 
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studies have demonstrated that 10–30% of all outliers initially detected as 

methylation differences contained SNPs (Schumacher et al. 2006).  

 

All the previously mentioned drawbacks have resulted in the optimization of 

tiling array designs incorporating novel genetics smoothing algorithms to 

measure methylation from raw microarray data resulting in improved 

performance for McrBC digestion-based techniques. This optimized workflow 

is referred to as comprehensive high-throughput arrays for relative methylation 

(CHARM) (Irizarry et al. 2008). 

 

Current emerging technologies in genome-wide methylation profiling as well 

as the development of computational tools and resources for DNA methylation 

analysis is accelerating rapidly and promises to revolutionize every field in 

which, as in genomic research, DNA methylation information is of use (Laird 

2010). 



  
 

 

 

 

 

 

 

 

 

5 
Discussion & Future Perspectives
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5.0 GENERAL DISCUSSION 
 

The present investigation has demonstrated the relevance of combining two 

bioactive food constituents namely isothiocyanates and selenium in an in vitro 

model of colon cancer using Caco-2 cells to synergistically enhance the  

expression of specific selenoproteins known to play a major role in controlling 

redox-regulated processes in colon cells. In addition, this study has investigated 

the impact of these dietary factors to modulate genome-wide (Line-1) or gene-

specific aberrant DNA methylation pattern present in colon cancer cells, 

observing a lack of effects when administered either individually or in 

combination in Caco-2 and HCT116 colon cancer cell lines. However, a long-

term exposure to these chemicals in diet might potentially lead to an effect on 

DNA methylation patterns that will ultimately impact upon gene expression 

and cancer susceptibility. Strategies that use a combinatorial approach of 

bioactive food components offer an exciting opportunity to strengthen efforts 

into preventive programs rather than focusing primarily on treatment of end-

stage disease. Consequently, results from this research are potentially 

significant in terms of providing an attractive chemopreventive strategy for 

future studies applying isothiocyanates and selenium to inhibit or reverse 

carcinogenesis at its earliest stages.  

 

The association between fruit and vegetables and the risk of colon cancer is 

complex and has been the focus of a large number of case control and cohort 

studies with inconsistent and disappointing results to date as discussed in 

Chapter 1. An interesting hypothesis that may explain the weak or absent 

associations found in these studies could be that only specific types of fruit and 

vegetables or their related bioactive constituents/nutrients confer protection 

against colon cancer risk, suggesting that a protective effect of certain 

fruit/vegetable subgroups or anticarcinogenic food constituents could be 

diluted when all of these food groups are considered as a whole.  
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Until recently most of the research carried out on interaction of diet and 

genetics has focused mainly on a single dietary factor. However, given the 

nature of tumour biology and multiple mechanisms involved in colon 

carcinogenesis, it has been widely recognised that there may be advantages in 

combining a variety of food constituents to benefit from their complementary 

mechanisms of action to prevent the accumulation of alterations during 

neoplastic transformation that lead to uncontrolled cell growth and loss of 

genomic stability. 

 

Normally, the balance between cell proliferation and apoptosis in colonic 

mucosa is tightly controlled in order to preserve a constant cell number (Anti et 

al. 2001). The interruption of this balance results in an escape from the normal 

homeostasis of colonocytes, which favours the survival of the mutated and 

undifferentiated cells. Chemoprevention is an attractive concept in colon 

cancer prevention and its success lies in the understanding of the molecular 

basis of carcinogenesis. In this respect, food compounds can exert their 

chemopreventive actions at various stages of colon cancer development by 

preventing the genotoxic damage of cellular DNA upon exposure to 

endogenous or exogenous carcinogens (initiation phase), inhibition of clonal 

expansion of initiated cells by induction of apoptosis and modulation of signal 

transduction (promotion phase) and blockade of tumour with invasive and 

metastatic potential (progression phase).  

 

In the light of evidence from previous studies, the present study addressed the 

anticarcinogenic bioactivities of the glucosinolate hydrolysis products 

sulforaphane or iberin either individually or in combination with an inorganic 

(selenite) or organic (SeMSC) form of the mineral selenium to elucidate 

plausible mechanisms of action to prevent colon cancer at key stages in the 

cancer process. For example, results presented in this thesis indicate that after 

combining the ITCs and selenium, sulforaphane and selenite were the most 

effective chemical forms that elicit a greater time- and dose-dependent increase 

in the expression of the selenoproteins TrxR1 and GI-GPx than either 
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compound alone. The importance of these findings relate to the fact that in the 

pre-initiation/early stages of colon carcinogenesis the disruption of cellular 

defense mechanisms (consisting of a battery of detoxifying or antioxidant 

enzymes) would make cells/tissues more susceptible to DNA damage by both 

unwanted by-products of normal cellular metabolism, or other environmental 

sources of ROS, which in rapidly dividing cells, e.g., the epithelial cell of the 

colon, can escape repair mechanisms resulting in somatic mutations (Stone et 

al. 2004). Therefore, an increase in the cellular antioxidant defense 

mechanisms may prevent the deleterious effects of free radicals that would 

otherwise affect important biomolecules and render colon cells to accumulation 

of genetic alterations that lead to cancer progression.  

 

Isothiocyanates are promising chemopreventive agents that have been shown to 

activate the redox-sensitive Keap1-Nrf2 signaling pathway involved in the 

transcriptional activation of genes encoding phase II enzymes and 

selenoproteins such as TrxR1 and GI-GPx. This activation normally takes 

place through the antioxidant response element (ARE) present in their 

promoter region. To investigate whether the mechanisms associated with the 

synergistic induction of these selenoprotein after simultaneous addition of 

ITC+Se was attributed to Nrf2 activation, nuclear protein extracts obtained 

after culturing Caco-2 cells with these food compounds indicated that this 

synergistic up-regulation was not Nrf-2 dependent, indicating that selenium can 

delay the degradation of ITCs-induced TrxR1 and GI-GPx mRNA, favouring 

therefore more protein synthesis as indicated in section 2.2.3.1. 

 

Furthermore, after conducting time- and dose-dependent experiments, 

contrasting mechanisms of regulation were observed for each individual 

selenoprotein at the mRNA level. Whilst TrxR1 was shown to respond in a 

synergistic manner after addition of ITCs+Se at both the transcriptional and 

translational level, the GI-GPx transcript remained unaltered after co-addition 

of selenium. In contrast, a clear up-regulation of GI-GPx after supplementing 

cells with ITC+Se was observed at the protein level. This unchanged or stable 
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expression of GI-GPx at the transcriptional level ranks this selenoenzyme high 

in the hierarchy of selenoproteins in colon cells (Banning et al. 2005), 

indicating that under limited selenium supply conditions the mRNA of GI-GPx 

can even increase and become preferentially translated when selenium supply 

is restored again (Brigelius-Flohe 2006). The contrasting results of GI-GPx and 

TrxR1 mRNA regulation obtained in this study indicate that the former may 

have more vital functions in colon cancer cells than the latter as the relative 

position of selenoproteins within its hierarchy is believed to reflect their 

relative biological importance within the studied system. However, although 

the ranking of TrxR1 may be lower in colon cancer cells, others have shown 

that over-expression of TrxR1 in human embryonic kidney cells  (HEK-293) 

led to a decrease in GPx1, indicating that enhanced TrxR1 transcripts withdraw 

selenium from the biosynthesis of less important selenoproteins (Nalvarte et al. 

2004). This suggests that selenoproteins are regulated differently across 

different cells and/or tissues. Interestingly, the factor that distinguishes 

between the different selenoprotein mRNAs to elicit varying expression levels 

of the corresponding proteins is the SECIS-binding protein 2 (SBP2), a factor 

required for incorporation of selenium into selenoproteins (Berry 2005). 

 

The contribution of oxidative stress towards the aetiology of colon cancer has 

been recognised widely. It is well known that incidence of colon cancer is at 

least 30-fold higher than that of the small intestine (Chadwick et al. 1992). In 

contrast to the small intestine, the colon is exposed to high levels of superoxide 

radicals (O2˙ˉ), hydroxyl radicals (˙OH), nitric oxide (NO˙), hydrogen peroxide 

(H2O2) and other powerful mutagenic reactive nitrogen species as a result of 

the presence of fecal bacteria and bile pigments (Babbs 1990; Bernstein et al. 

2005; Valko et al. 2006). These oxidants, under normal conditions, are 

scavenged efficiently, but when their production outstrips antioxidant 

protection mechanisms (e.g., inflammatory bowel diseases or ageing), the 

accumulation of somatic mutations can give rise to colon cancer. As a result, 

the ratio of glutathione and oxidised glutathione (GSH/GSSG), which is a good 
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measure of oxidative stress (Hwang et al. 1992), has been found to be reduced 

significantly in the blood of patients with colon cancer (Pastore et al. 2003).  

 

Important findings in this thesis show that after challenging Caco-2 cells with 

the endogenous oxidant H2O2, simultaneous addition of sulforaphane (6 µM) 

plus selenite (50 nM) evoked greater cell protection from hydrogen peroxide-

induced cell injury than when either compound was added in isolation. 

However, sulforaphane is one of the most powerful dietary inducers of several 

genes containing an ARE in their promoter region such as phase II enzymes, 

redox-active proteins, GSH-related enzymes and several other novel enzymes 

recently identified (Malhotra et al. 2010). Therefore, in order to investigate 

whether the protection exerted by sulforaphane and selenite after H2O2 

treatment was driven by TrxR1 and GI-GPx, or if other Nrf2-

dependent/antioxidant genes may have influenced the results, Caco-2 cells 

were transfected with siRNA to generate a single and double knock-out 

approach by using TrxR1 and GI-GPx siRNA before addition of food 

constituents and H2O2. The results demonstrated that both selenoproteins were 

essential to preserve cell integrity after a significant reduction in cell viability 

in the double knock-out model, similar to that observed in control cells without 

treatment, was observed. 

 

Increasing understanding of the effect of isothiocyanates and selenium on 

TrxR1 and GI-GPx expression has many implications. For example, previous 

studies have supported the notion that expression of selenoproteins can be 

mutually exclusive as shown by the contrasting expression patterns of GPx1 

and TrxR1 in both human and mouse cells (Gladyshev et al. 1998), as well as 

of GI-GPx and GPx3 or selenoprotein P in gastrointestinal cancers (Mörk et al. 

2000; Mörk et al. 2003). However, our results suggest that once these 

selenoenzymes have been stimulated synergistically by the studied dietary 

factors they will act in concert under oxidative stress conditions (regardless of 

their selenoprotein hierarchy) in order to re-establish the delicate intracellular 

redox balance. This adds another level of regulation previously unknown. 
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Thus, ITC+Se-mediated synergistic selenoprotein protection might be 

beneficial to avoid cancer initiation in normal colonocytes and might be 

achieved through the incorporation in the diet of specific food sources rich in 

both of these bioactive food compounds. In this respect studies have shown 

that broccoli grown on selenium-fertilized soil inhibited the development of 

chemically induced preneoplastic lesions in rat colon (Finley et al. 2000), of 

spontaneous development of intestinal tumours in mice (Davis et al. 2002) and 

of mammary tumours in rats (Finley et al. 2001).  

 

The concentrations of selenium used in this study (25 to 200 nM) are thought 

to maximise the activity of the seleno-dependent enzymes assessed in this 

study using Caco-2 cells grown in low selenium cell culture media (16 nM). 

Although these selenium concentrations used are low when compared to the 

average selenium concentrations found in humans (between 1 and 5 µM) 

(Gallegos et al. 1997) following a mean selenium intake of 60-75 µg per day 

(reference nutrient intake for selenium, UK) and above, the total available 

selenium in cell culture is determined not only by the selenium concentrations 

but also the volume of medium or the ratios of medium to number of cells.  

This in vitro study aimed primarily to investigate critical doses and forms of 

selenium to determine their biochemical, molecular and cellular responses in 

the regulation of antioxidant enzymes (TrxR1 and GI-GPx). In addition, the 

aim was to establish mechanistic associations among different dietary 

constituents that can provide useful insights to formulate further hypotheses 

that can be later tested in vivo or through the design of appropriate intervention 

studies to decipher their potential anticancer activities. For instance, the results 

presented in this thesis shed light into the potential mechanisms responsible for 

the decreased tumour incidence observed in mice by Finley and colleagues 

after administering high selenium broccoli. 

 

However, regarding the incorporation of dietary constituents to prevent cancer 

mentioned above, the biochemistry underlying associations between diet and 

cancer is exceptionally complex, and the response to specific nutrients and 
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specific dietary components will likely differ depending on a range of factors 

including an individual’s genotype. For instance, individuals with common 

deletion polymorphisms in Glutathione S-transferases M1 and T1 (GSTM1 and 

GSTT1) might benefit more in terms of cancer protection from a diet rich in 

isothiocyanates than those with non-null genotype as the former may 

accumulate higher ITC levels in cells/tissues due to their lower rates of ITC 

excretion (Lin et al. 1998; London et al. 2000). 

 

Data presented in Chapter 3 refer to the influence of isothiocyanates and 

selenium compounds on DNA methylation in a gene-specific and global 

manner. Key studies from different experimental models indicate that 

epigenetics abnormalities may take place during the early stages of neoplastic 

progression (Jones and Baylin 2007). This particular characteristic and the 

distinctive methylation profile pattern among tumours (tumour-type 

specificity) (Esteller et al. 2001), make it an excellent cancer biomarker and the 

target for both diet-derived chemopreventive agents and targeted 

chemotherapy. Unfortunately, the applicability of the commonly used 

chemotherapy treatment 5-Aza-2'-deoxycytidine (decitabine) for cancer 

patients is hampered by its highly toxicity, side effects and instability in 

physiological solutions (Esteller 2005). As a result, there has been considerable 

interest in the development of effective and non-toxic inhibitors of DNMTs not 

only for therapy but also for chemoprevention. In this respect, the chemical 

components of edible fruits and vegetables are promising chemotherapeutic 

agents that have been widely used in an attempt to reverse abnormal DNA 

hypermethylation patterns in cancer and restore the expression of silenced 

genes. 

 
Although the role of selenium as an integral part of cellular antioxidant 

enzymes and as an essential factor for regulating a multitude of cell signalling 

pathways in cancer has been studied extensively (Lu et al. 2009), there is still 

significant debate as to what mechanisms account for the anticancer activity of 

selenium in humans. A plausible mechanism of action might involve alteration 

of epigenetic signals in gastrointestinal neoplasia through inhibition of DNMT 
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activity. Likewise, isothiocyanates remain relatively unexplored within the 

field of DNA methylation as the focus has been mainly diverted towards their 

impact upon chromatin remodelling factors.  

 

In this study we have evaluated the ability of different forms of selenium 

(including SeMSC as it is currently thought to offer the most promise as 

potential anticarcinogenic among selenium compounds) and isothiocyanates to 

influence DNA methylation processes. These data show that following 

exposure of Caco-2 and HCT116 cells to different concentrations of 

sulforaphane and iberin (ranging from 6 to 8 µM) or SeMSC and selenite 

(ranging from 0.2 to 5 µM) either alone or in combination to investigate their 

impact on both genome-wide (LINE-1) and gene-specific DNA methylation, 

no significant changes were observed. Only a transient change in DNMT 

mRNA expression, which occurred mostly in the treatment groups containing 

isothiocyanates, was observed. However, these changes that took place only for 

specific DNMT transcripts and did not modify the aberrant methylation status 

present in the cells, e.g. coexistence of global hypomethylation and local gene-

specific hypermethylation.  These results suggest that dietary compounds 

would have to target preferentially the activity of all the principal DNA 

methyltransferase enzymes in order to affect the methylation of cytosines at 

CpG dinucleotides. The observation may also indicate that in most cells 

different DNMTs cooperate  with one another at all levels to propagate DNA 

methylation changes, which is in line with the current model suggested for the 

establishment and inheritance of DNA methylation patterns (Jones and Liang 

2009).  

 

In agreement with our observations, a study investigating the impact of 12 

dietary phytochemicals on CpG hypermethylation in the MCF7 breast cancer 

cell line showed no reduction in the DNA methylation status of RASSF1A, 

GSTP1 and HIN-1. Further, all the phytochemicals inhibited the global DNA 

methyltransferase activity (de novo and maintenance), but neither of them 

affected the DNMT1 transcript nor its protein level, with the exception of 
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rosmarinic acid (Paluszczak et al. 2010). In contrast, another study showed that 

genistein (one of the major isoflavones present in soy) caused CpG 

demethylation and active histone modification of the tumour suppressor gene 

BTG3 in different renal cancer cell lines after inhibiting protein levels and 

activity of both DNMT1 and DNMT3. In addition, a decreased methyl-CpG-

binding domain protein 2 (MBD2) and increased histone acetyltransferase 

(HAT) activity was observed (Majid et al. 2009). Together these data suggest 

that dietary cancer chemopreventive agents must target key components of the 

epigenetic machinery to effectively re-establish the expression of silenced 

genes.  

 

Since up-regulation of GI-GPx and TrxR1 by co-treatment of ITCs and 

selenium was observed in the early stages of this investigation, it was initially 

hypothesised that changes, if any at all, in the methylation status of the target 

genes studied after adding ITCs and/or Se to the cells could be related to a 

decreased oxidative stress, and considering that previous studies have linked 

oxidative stress with an increased expression of DNMT, it was a feasible 

proposal. For instance, Campo et al. suggested that oxidative stress regulates 

DNA methylation through DNA methyltransferase expression modifications in 

murine nontumourigenic melanocyte lineage (Campos et al. 2007). 

Additionally, renal cancers induced by oxidative damage in a rat model were 

found to have a relatively high rate of methylation associated inactivation of 

the gene p16 (33.3%) (Tanaka et al. 1999). Likewise, oxidant-induced 

transformation of fibroblasts was observed to be associated with an unusual 

pattern of DNA methylation in an intronic region of the c-abl gene (Cerda and 

Weitzman 1997). However, no changes at the DNA methylation level of the 

genes studied were observed in response to these food compounds to add 

support to this hypothesis.  

 

Chapter 4 shows an attempt to design a CpG island microarray together with 

tailored bioinformatics analysis to unveil DNA methylation changes at specific 

loci using a methylation-specific restriction enzyme methodology. In view of 
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the fact that current assessment of genome-wide CpG islands relies mostly on 

the identification of significantly hypermethylated or unmethylated DNA with 

elevated methylation differences relative to control and considering that 

nutritional research often generates subtle changes in DNA methylation that 

will not be detected accurately by current statistical approaches we sought to 

develop a new methodology to maximise the number of assayed CpG islands 

by generating a methylation score for each locus. However, the sensitivity and 

specificity of the algorithms and/or technique used to detect differentially 

methylated DNA were found to be low after validation.  

 

Since only selected sites targeted by the restriction enzyme of use can be 

studied in the technology applied in this study, it has been recognized that the 

implementation of restriction-enzyme-based methods can be biased to genome 

compartments (for example CG-rich versus CG-poor areas). However, recently 

developed methodologies applied to whole human genome DNA methylation 

analysis as well as novel statistical procedures and array design algorithms 

have circumvented these limitations and promise to revolutionise the field of 

methylation. For instance, early analytical difficulties associated with an 

inability to estimate absolute methylation levels in immunoprecipitation-based 

methods for DNA methylome analysis, such as MeDIP, (Weber et al. 2005) 

have been currently bypassed  by transforming normalised MeDIP-chip log2-

ratios into a quantitative measure of DNA methylation across a wide range of 

CpG densities in an algorithm tool termed Bayesian tool for methylation 

analysis (Batman) (Down et al. 2008). This analytical tool represents a suitable 

statistical platform that can be employed to measure subtle statistical changes 

in future nutritional studies and is more sensitive than the previous analytical 

tool mentioned in Chapter 4 termed CHARM (Irizarry et al. 2008), which 

requires the use of a particular array design and does not estimate absolute 

DNA methylation levels and suffers to some degree in the ability to 

discriminate highly methylated from highly unmethylated CpG islands (Down 

et al. 2008). 
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5.1 FUTURE PERSPECTIVES  
 

The chemopreventive effects of cruciferous vegetables and selenium 

compounds have been studied widely, demonstrating strong cancer-preventive 

activity in vitro and in vivo but inconsistent levels of protection has been 

reported in intervention human studies. Despite significant progress in our 

understanding of multistage carcinogenesis, much remains to be known in 

relation to the mechanisms of action of most chemopreventive agents and their 

potential effectiveness. 

 

Although growing evidence from the literature supports the hypothesis that 

antioxidant enzymes protect against colon cancer by means of counteracting 

ROS levels to maintain physiological homeostasis, the overall picture is far 

from understood. Data emerging from in vivo and in vitro studies suggest that 

TrxR1 and GI-GPx are up-regulated in cancer. These observations provide 

evidence that TrxR1 is critical for self-sufficiency in growth of malignant cells, 

in which this selenoprotein acts predominantly as a pro-cancer protein (Yoo et 

al. 2007). Likewise, GI-GPx mRNA has been found elevated in human 

colorectal adenomas and carcinomas (Lin et al. 2002), and appears to support 

the proliferation of established cancer cells. Consequently, simultaneous 

inhibition of more than one antioxidant system (including TrxR1 and 

GSH/GSSG) has recently been shown to be a promising target for cancer 

therapy (Mandal et al. 2010). 

 

In the light of findings from previous studies it is most likely that results from 

this research may be potentially exploited as a cancer prevention treatment 

before the tumour process has been initiated. Therefore, results obtained from 

this study should be replicated employing normal parental cell lines as well as 

cancer cell lines to compare the level of expression of TrxR1 and GI-GPx after 

co-addition of ITCs+Se and establish similarities with the data gathered here. 

Also, identification of ROS using H2DCFDA (a ROS-sensitive fluorescent dye) 

to confirm the importance of the synergistic up-regulation of both 
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selenoenzymes on their ROS scavenging activity will be imperative in addition 

to the study of the protective effects of ITC+Se against ROS-induced DNA 

strand breakage by employing the comet assay to understand different aspects 

of protection exerted by these important bioactive dietary compounds and their 

associated selenoprotein up-regulation.  

 

Previous studies have used mice with combined disruption of GPx1 and GI-

GPx, resulting in the development of mice with inflammatory bowel diseases, a 

risk factor for colon cancer (Esworthy et al. 2001) to assess the importance of 

selenoproteins. New mouse model systems could be devised to examine the 

regulation of TrxR1 and GI-GPx in the colon of mice restricted to diets 

supplemented with nutritionally relevant amounts of ITCs or Se, either 

individually or in combination, to assess the protective effect against intestinal 

cancer susceptibility in response to treatment with the chemical carcinogen 1,2-

dimethylhydrazine. This study would be useful to establish important 

associations between the level of selenium concentrations in the plasma and 

liver, glutathione peroxidase enzyme activity, selenoprotein expression in 

colonocytes and number of tumours developed. In addition, since a greater 

understanding of the role of diet on DNA methylation in cancer will likely be 

gained from genome-wide studies and considering the absence of studies of 

this kind in the literature to date, samples from such a study could be assessed 

by CpG island microarray using a more robust microarray analysis platform 

such as MeDIP-Batman to decipher the methylome of healthy and diseased 

mouse colon tissues. 

 

In addition, taking into account that the selenoprotein TrxR1 carries a putative 

CpG island close to the transcriptional initiation site (Rundlof et al. 2001) that 

has not been characterised as affected by CpG island methylation to date, and 

the influence of promoter polymorphism of Nrf2 on aberrant DNA methylation 

in gastric epithelium (Arisawa et al. 2008) in addition to the recently 

recognised role of DNA methylation mechanisms controlling the expression of 

Nrf2 in TRAMP prostate tumours (Yu et al. 2010), it is an attractive idea to 
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identify if these genes are regulated by ITCs and/or Se with regard to 

epigenetic mechanisms in colon cancer. 

 
Although it has been generally accepted that, among the mechanisms 

controlling epigenetic changes, DNA methylation prevails over histone 

modifications (Esteller 2005), it has recently become apparent that both 

pathways can be dependent on one another (Cedar and Bergman 2009). 

Moreover, it has been found recently that DNA hypomethylation is necessary 

but not sufficient for gene reactivation. Rather, local chromatin structure 

modification is a key determinant of actual gene re-expression (Si et al. 2010). 

In this respect, it would be valuable to carry out determination of gene 

expression in control and treated samples, even though the DNA methylation 

status of specific genes is not decreased by specific bioactive food compounds, 

to identify changes in transcript levels that might be potentially related to 

changes in chromatin architecture. In addition, it would be essential to measure 

both protein and activity of DNMTs to confirm the results obtained at the mRNA 

level.  

 

To date, relatively few epidemiological association studies have examined the 

effects of consumption of cruciferous vegetables on risk of developing cancer 

and precancerous lesions (IARC/WHO 2004; Zhang 2004; Herr and Büchler 

2010).  Most epidemiological association studies investigating the relationship 

between diet and cancer have relied on dietary information collected with food 

frequency questionnaires, which suffer from recall bias that can lead to 

inaccurate exposure estimation.  Considering the recent development of stable 

biomarkers that can be used as potential surrogate markers for the long term 

effect of ITCs at the cellular level, and which may more accurately reflect 

longer term exposure to ITCs (Kumar and Sabbioni 2010; Kumar et al. 2010), 

new case-control studies can be planned on the effect of dietary ITC intake and 

colon cancer.  Individuals could be categorised for GSTM1 and GSTT1  

polymorphisms, and stratified according to their level of plasma/serum 

selenium and/or selenium intake to detect potentially significant associations 
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between cruciferous vegetables, selenium status/intake and risk for colon 

cancer. In addition, long-term cohort studies, with large and well-powered 

sample sizes and controlling for important lifestyle confounding variables are 

recommended to investigate and confirm previously reported anti-cancer 

effects of cruciferous vegetables and/or selenium. Investigations into the 

potential synergistic effects of isothiocyanates and/or selenium in humans, 

taking advantage of newly developed biomarkers for ITCs (Kumar et al. 2010) 

and/or the establishment of more sensitive selenium status biomarkers, such as 

SePP (Fairweather-Tait et al. 2010), together with standardisation in 

methodology, would assist in the comparison of studies and also contribute 

critical information to improve our understanding  of the chemopreventive 

mechanisms of ITC and/or Se.  

 

Finally, whilst this study has shown that SeMSC was more effective than 

selenite in maintaining a sustained selenoprotein up-regulation after 48 h of 

treatment, others have hypothesised that although selenite and SeMSC induce 

GPx1 more rapidly than SeMet (Zeng et al. 2008) the latter is retained and non-

specifically incorporated into proteins and might be used in the long term for 

selenoprotein biosynthesis. Therefore, further studies are warranted to elucidate 

this issue by using different forms and concentrations of selenium to confirm 

the data presented in this investigation and confirm the author’s hypothesis.  

Taken together, the experiments carried out in this thesis have provided novel 

insights into potential mechanisms of cancer chemoprevention by sulforaphane 

and selenium both individually and synergistically through regulation of key 

selenoproteins responsible for the removal of damaging reactive molecules, 

which are implicated in the progression and development of colon cancer. 

However, future studies should address both the potential cancer prevention 

activity of antioxidant enzymes such as TrxR1 and GI-GPx in addition to their 

contrasting role in the promotion of cancer. Results from these studies will 

undoubtedly help in refining the optimal intakes of selenium and cruciferous 

vegetables to prevent cancer development in the future. In addition, the precise 

role of these food constituents in the aberrant methylation that accompanies 
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              Chapter 5 

tumorigenesis needs to be further addressed in light of the fact that there are 

regions of the genome that are methylation-prone and methylation-resistant 

(Feltus et al. 2003). Although the factors that contribute to methylation 

susceptibility are not completely known, this phenomenon rises the question of 

whether there are regions of the epigenome that are more susceptible than 

others to dietary compounds that could explain the lack of effect of ITCs and 

selenium observed in this study. Therefore, the influence of these bioactive 

compounds on factors affecting the complete epigenetic setting of the 

transformed cell, including DNA methylation, chromatin remodelling factors, 

histone modifications and CpG binding proteins are warranted to decipher their 

impact on DNA methylation patterns in colon cancer.  
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