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ABSTRACT

A simple guide to the new technique of empirical mode decomposition (EMD) in a meteorological–
climate forecasting context is presented. A single application of EMD to a time series essentially acts as a
local high-pass filter. Hence, successive applications can be used to produce a bandpass filter that is highly
efficient at extracting a broadband signal such as the Madden–Julian oscillation (MJO). The basic EMD
method is adapted to minimize end effects, such that it is suitable for use in real time. The EMD process
is then used to efficiently extract the MJO signal from gridded time series of outgoing longwave radiation
(OLR) data.

A range of statistical models from the general class of vector autoregressive moving average (VARMA)
models was then tested for their suitability in forecasting the MJO signal, as isolated by the EMD. A
VARMA (5, 1) model was selected and its parameters determined by a maximum likelihood method using
17 yr of OLR data from 1980 to 1996. Forecasts were then made on the remaining independent data from
1998 to 2004. These were made in real time, as only data up to the date the forecast was made were used.
The median skill of forecasts was accurate (defined as an anomaly correlation above 0.6) at lead times up
to 25 days.

1. Introduction

The Madden–Julian oscillation (MJO) is the domi-
nant mode of intraseasonal tropical convective variabil-
ity (Madden and Julian 1994; Zhang 2005) having a
significant influence on precipitation patterns over the
tropical Indian Ocean, the Maritime Continent and the
western Pacific warm pool region. The MJO also ac-
counts for approximately 50% of the variability of the
“active” and “break” phases of the South Asian mon-
soon (Goswami 2005) and has a strong influence on the
phases and intensity of the Australian summer mon-
soon (Wheeler and McBride 2005) and a significant

influence on the genesis of tropical cyclones (Maloney
and Hartmann 2000; Hall et al. 2001). The MJO can
essentially be characterized as an eastward propagation
of tropical deep convective precipitation anomalies
over the warm pool from the equatorial Indian Ocean
over the Maritime Continent into the western Pacific
region. One complete cycle of the MJO lasts between
30 and 60 days.

The ability to accurately forecast such a significant
tropical mode as the MJO will be crucial to the success
of medium- to extended-range numerical weather pre-
diction (Hendon et al. 2000). The limit of predictability
of a quasi-periodic phenomenon may be expected to be
approximately equal to its period, that is, approxi-
mately 45 days for the MJO. This concept of inherent
predictability was examined by Waliser et al. (2003)
through a series of twin predictability experiments in a
general circulation model that approximately identified
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intrinsic predictability limits of rainfall and 200-hPa ve-
locity potential related to the MJO to be 10–15 days
and 20–30 days, respectively. Hence, statistical models
may have the potential to provide an alternative or
complementary approach to forecasting the MJO (Wa-
liser et al. 1999).

However, numerical weather prediction models are
not attaining anywhere near the limits of useful skill we
might expect in predicting the MJO (Jones et al. 2000;
Waliser 2005). Ferranti et al. (1990) and Hendon et al.
(2000) have demonstrated that the medium- to ex-
tended-range forecast skill of dynamical models in the
extratropics and tropics can be significantly improved if
the errors associated with the shortcomings in repre-
sentation of tropical convection associated with the
MJO are reduced. Useful forecast skill of the MJO in
operational dynamically based numerical models is cur-
rently obtained up to lead times of about 7–10 days
(Jones et al. 2000). Forecast skill is improved when an
atmospheric model is coupled to an ocean mixed layer
model with high vertical resolution, allowing an accu-
rate simulation of surface flux anomalies (Woolnough
et al. 2007). This current limit is probably a symptom of
the dynamical model’s inability to correctly represent
and parameterize deep tropical cumulus convection
and associated diabatic heating in numerical models,
rather than the reaching of some intrinsic limit of pre-
dictability of the MJO.

However, statistical models are able to produce skill-
ful forecasts out to relatively long lead time (Waliser et
al. 2006). Waliser et al. (1999) used singular value de-
composition (SVD) to forecast pentad maps of outgo-
ing longwave radiation (OLR) anomalies from the pre-
vious two pentad maps and obtained useful forecast
skill out to 4 pentads. Similarly, Lo and Hendon (2000)
used the first two principal components of OLR and the
first three principal components of streamfunction with
a lagged regression model to give useful forecast skill
out to 3–4 pentads during boreal winter. Jones et al.
(2004) used a combined empirical orthogonal function
(EOF) analysis and multiple regression to obtain useful
forecast skill out to 5 pentads over the bulk of the trop-
ics. In contrast to the other models mentioned and the
majority of atmospheric forecasts that work iteratively
(i.e., forecast one step into the future from known data,
then forecast the next step from this result and past
data), this model used a stepped forecast where a set of
models was parameterized for each forecast step into
the future. In other studies, Mo (2001) used singular
spectrum analysis and maximum entropy methods,
while Wheeler and Weickmann (2001) used wave
theory to filter and forecast convectively coupled
modes in the tropics. All these statistical model studies

obtained useful forecast skill out to approximately 4
pentads. Despite the similar performance of these mod-
els, we cannot be sure that they indicate the limit of
inherent predictability we can expect from empirical
and numerical models.

However, many of these forecast models could not
be applied in real time as they relied on filtered input
data. This filtering produced unwanted end effects,
such that the beginning and, more importantly, the end
sections of filtered time series are distorted, or even
missing. Conversely, if no filtering is applied, the MJO
signal may be lost among other weather or climate
“noise.” Wheeler and Hendon (2004) recently devel-
oped an MJO index based on the first two EOFs of
equatorially averaged OLR and 850- and 200-hPa zonal
wind. These EOFs were projected onto daily maps of
OLR, from which the annual cycle and a component of
the interannual variability had been subtracted. Hence,
the necessity for time filtering was reduced and the
resulting principal component time series could be cal-
culated in real time. A seasonally varying lagged linear
regression technique was then applied to produce real-
time forecasts of the two MJO EOFs (http://www.bom.
gov.au/bmrc/clfor/cfstaff/matw/maproom/RMM/).

In this paper, we build on the existing literature of
the statistical prediction of the MJO. The new Huang–
Hilbert transform method (Huang and Shen 2005) has
recently been applied to meteorological data (Wu et al.
1999; Duffy 2005; Coughlin and Tung 2005). Here we
apply the empirical mode decomposition technique
from the Huang–Hilbert transform to the MJO to pro-
duce a real-time intraseasonal filtered index of the
MJO, and then input this to a powerful nonlinear vector
autoregressive moving average (VARMA) model to
skillfully forecast the MJO out to 25–40 days.

The paper is essentially divided into two sections,
covering first the real-time intraseasonal data filtering
and second the statistical modeling. Section 2 describes
the data used in this study. The EMD methodology and
its use as a real-time intraseasonal filter is described in
section 3, then the selection and application of a
VARMA model to forecast the MJO is described in
section 4. Conclusions are presented in section 5.

2. Data

The region of interest for this study was defined as
the box bounded at 60° and 180°E and between 20°N
and 20°S, representing the tropical regions of major
MJO activity, the Indian Ocean, Indonesia, and the
western Pacific Ocean. The data used in this study are
the interpolated 2.5° longitude by 2.5° latitude gridded
set of daily means of OLR (Liebmann and Smith 1996).
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These satellite-measured data are a good proxy for
rainfall in the tropics, and have been used many times
as a measure of the state of the MJO (e.g., Lo and
Hendon 2000; Waliser et al. 1999). The dataset runs for
27 yr, from 1 January 1979 to 31 December 2005. The
annual cycle (calculated from the mean and the leading
three annual harmonics) at each grid point was sub-
tracted from the raw data to produce daily anomaly
maps.

As a further introduction to the MJO, Fig. 1 shows
the leading two EOFs of OLR after they have been
passed through an empirical mode decomposition to
isolate the intraseasonal variability. Further details are
in section 3. EOF1 (Fig. 1a) extracts the well-known
dipole phase of the MJO cycle when negative (positive)
OLR anomalies, indicating a maximum (minimum) in
precipitation, peak over the eastern Indian Ocean
(western Pacific). EOF2 (Fig. 1b) then extracts the
quadrature phase of the MJO cycle, with enhanced pre-
cipitation over Indonesia. These results are very similar
to previous EOF analyses of conventional bandpass-
filtered data (e.g., Matthews 2000) and confirm the ef-
fectiveness of the EMD process as a bandpass filter.

The days corresponding to the maxima in the princi-
pal component time series (PC1) of EOF1 were then
found, and lagged composite maps were calculated
from this list of dates. Equating negative (positive)
OLR anomalies with positive (negative) precipitation
anomalies, the MJO cycle as defined here has a positive
OLR anomaly, that is, dry area, over the Indian Ocean
at day �20 (Fig. 2a). This dry area then moves slowly
eastward across Indonesia by day �15 (Fig. 2b), and a
wet anomaly then appears behind it over the western
Indian Ocean at day �10 (Fig. 2c). This “dipole” (wet–
dry) phase of the MJO then also moves eastward
through day �5 to 5 (Figs. 2d–f). Note that day 0 (Fig.
2e) corresponds to the maxima in the first principal
component time series. When the dry anomaly reaches
the date line it decays. Days 10–20 (Figs. 2g–i) cover the

second part of the cycle when a new dry anomaly ap-
pears over the western Indian Ocean and subsequently
propagates eastward. The Hovmöller diagram in Fig. 2j
summarizes this eastward propagation of the wet and
dry anomalies.

3. Empirical mode decomposition

a. Rationale

The ideal input to a statistical forecast model for the
MJO would be a dataset that only contained the MJO
signal, with a minimum of noise due to other unrelated
weather and climate systems. As the MJO is the dom-
inant mode of variability on intraseasonal time scales,
an intraseasonal (e.g., 30–70-day bandpass) filter is a
simple method of doing this. However, such filters have
undesirable end effects. They either lose the last section
of a time series or otherwise alter the signal at the end
of the time series, such that they cannot be used in real
time, as the end of the time series contains the most
recent information, which is necessary for a successful
forecast.

Wheeler and Hendon (2004) have successfully made
real-time forecasts of the MJO, which now form part of
the operational output of the Australian Bureau of Me-
teorology. They first subtracted the annual cycle from
their input data, and then removed some of the low-
frequency variability, particularly that associated with
ENSO. However, their input data still contained some
undesirable high-frequency variability that was not as-
sociated with the MJO.

As an alternative to this approach, we utilize a recent
development in data analysis, the Hilbert–Huang trans-
form and specifically the aspect of it known as empirical
mode decomposition (EMD) developed by Huang et
al. (1998). This is an adaptive empirical method that has
a continuously changing data-dependent basis function.
It is used here as an efficient filter to extract the MJO
signal, without introducing large unwanted end effects.

FIG. 1. (a) EOF1 and (b) EOF2 of “IMF2 filtered” OLR anomalies. Contour interval is 2 W m�2. Negative contours are dashed,
and the zero contour is suppressed. See legend for shading.
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FIG. 2. Composite OLR anomaly maps, composited onto PC1 of IMF-filtered OLR, at day (a) �20,
(b) �15, (c) �10, (d) �5, (e) 0, (f) 5, (g) 10, (h) 15, and (i) 20. Contour interval is 5 W m�2. Negative
contours are dashed, and the zero contour is omitted. (j) Hovmöller diagram of equatorial (averaged
from 10°N to 10°S) OLR anomalies.
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In contrast to some other popular methods, EMD does
not linearly decompose the data into a set of modes;
hence nonlinearities in the input data are preserved.

b. Standard methodology

The decomposition works on the assumption that the
raw data consist of a number of simple, intrinsic modes
of oscillation. These intrinsic mode functions (IMFs)
have a simple empirical definition. If x(t) is a time series
of raw data at time t (Fig. 3a), then a cubic spline-fitted
function can be found that passes through all the local
maxima in this time series. The maxima are defined as
those points that have a higher value than their imme-
diate neighbors. Similarly, a second cubic spline-fitted
function can be found that passes through all the
minima (Fig. 3b). The mean function m1(t) of these two
spline-fitted functions can then be calculated (Fig. 3c).
The first IMF e1(t) is then equal to the difference
between the raw time series and this mean function
(Fig. 3d):

e1�t� � x�t� � m1�t�. �1�

The mean function is then recycled and becomes the
raw data for the calculation of the second IMF (Fig. 3e).
Hence, maximum and minimum spline-fitted functions
are fitted to it (Fig. 3f), the mean function m2(t) of these
two spline-fitted functions is calculated (Fig. 3g), and
this mean function is then subtracted from the input
time series to give the second IMF (Fig. 3h):

e2�t� � m1�t� � m2�t�. �2�

A similar process is then carried out to calculate the
third IMF (Figs. 3i–l):

e3�t� � m2�t� � m3�t�. �3�

The remainder [m3(t), Fig. 3m] then once more be-
comes the input data for the next cycle, and

e4�t� � m3�t� � m4�t�, �4�

and so on, until the remaining data are either a constant
or a simple monotonic function with some additional
insignificant white noise, which here typically happens
after the sixth IMF. Note that, at any stage, the original
time series can be reconstructed as the sum of the IMFs
calculated so far, and the remainder (the last mean
function). For example, after calculation of the first
three IMFs,

x�t� � e1�t� � e2�t� � e3�t� � m3�t�. �5�

The IMF is a simple oscillatory mode that consists of
the locally highest frequencies of the time series input
to each decomposition, but its form is much more gen-
eral than a normal oscillatory mode and can have an

amplitude and frequency that varies continuously in
time.

The large amplitude intraseasonal anomalies in the
raw time series x(t) of OLR at 0°, 80°E (Fig. 3a) can
be seen to be part of eastward-propagating MJO events
in a Hovmöller diagram of 20–200-day bandpass-
filtered OLR anomalies (Fig. 3j). However, in the
EMD analysis, these “MJO” anomalies can appear in
any of the first three IMFs (Figs. 3d,h,l). For example,
the positive intraseasonal OLR anomaly during March
1997 appears in IMF1 and IMF2, but the positive in-
traseasonal OLR anomaly in early December 1996 is
largely accounted for by IMF3.

c. Adapted methodology

As the MJO is split between three IMFs, the basic
EMD method is not yet an adequate intraseasonal fil-
ter. Some empirical adaptations are made to the EMD
process, so it can be used practically. These are con-
cerned with isolating the MJO signal in a single IMF
with minimal additional noise, and also minimizing the
degradation at the end of the data record that we refer
to as the “end effect.”

1) ISOLATION OF THE MJO IN A SINGLE IMF

Consider first the issue of isolating the MJO signal in
a single IMF. Since the EMD method essentially selects
the locally highest-frequency components from a time
series to create each IMF, then our desired signal can
be split between more than one IMF, as discussed in the
previous section.

As the IMFs and final remainder (the last mean func-
tion) can be summed together to recreate the original
signal, it is possible to add individual IMFs together to
create new joint IMFs containing all of the desired sig-
nal. However, in practice such a joint IMF invariably
includes unwanted high-frequency variability as well as
the MJO signal, and is of little practical use in this
particular scenario since the purpose of the decompo-
sition is to provide a cleanly filtered MJO signal for a
forecast application. So the primary objective must be
to isolate the target oscillation in a single IMF.

This was partially achieved by making a slight change
to the EMD methodology. After some empirical ex-
perimentation, the input daily mean time series was
prefiltered by passing it through a 7-point running
mean, then a 3-point running mean, equivalent to a
single 9-point running mean with a (1, 2, 3, 3, 3, 3, 3, 2,
1) weighting (Fig. 4a). The running means were modi-
fied near the ends of the time series, to ensure that the
input and filtered time series were the same length. For
the 7-day running mean, the points 3 and 2 days from
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FIG. 3. The process of EMD, shown using a section of daily mean OLR time series (annual cycle subtracted) between 1 Jul 1996 and
1 Jul 1997 at 0°, 80°E. The decomposition is actually performed from 1 Jan 1996 to 31 Dec 1997, so no end point effects are shown. (a)
The raw data. (b) The same data with maxima and minima spline-fitted functions. (c) The same data with the mean function. (d) IMF1.
(e) The mean function/new raw dataset. (f) Maxima and minima spline-fitted functions. (g) The raw data with the mean function.
(h) IMF2. (i)–(l) The process for IMF3. (m) Remaining signal. (n) Hovmöller diagram (60°–180°E) of 20–200-day filtered OLR anomalies
at 0°. Shading is shown by the legend. The thick horizontal line at 80°E indicates the longitude of the raw time series in (a).
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the ends were passed through 5- and 3-day running
means, respectively, while the end points were just
passed as they were (i.e., a 1-point running mean). Simi-
larly, for the 3-day running mean, the end points were
passed as they were. If this adaptation is made to the
basic EMD methodology, then most of the high-
frequency variability is contained in IMF1 (Fig. 4b),
and most of the MJO variability is accounted for by
IMF2 (Fig. 4c), while the remainder (Fig. 4d) accounts
for the low-frequency variability.

To illustrate the effectiveness of the EMD method as
an intraseasonal filter, space–time power spectra (e.g.,
Wheeler and Hendon 2004) of 30–70-day Lanczos
bandpass-filtered OLR data (Fig. 5a) and IMF2 of the
intraseasonally EMD-filtered OLR data (Fig. 5b) are
compared. The spectra were calculated from a 1000-
day-long section (1 January 1980 to 26 September
1982). The data were averaged from 5°S to 5°N, then
passed through a Fourier transform in longitude and
time. The modified EMD process has efficiently ex-
tracted the MJO signal. Its space–time power spectrum
(Fig. 5b) is very similar to that of the conventional 30–
70-day filtered data (Fig. 5a). Nearly all the power is
concentrated in the 30–70-day (0.014–0.033 cycles per
day) band in eastward-propagating zonal wavenumbers
1–4, consistent with the MJO (Salby and Hendon 1994).
There is very little power outside this frequency range
or in the westward-propagating waves.

At this point the data were split into two sets: a 18.5-
yr training dataset from 1 January 1979 to 30 June 1997,
and an independent 8.5-yr validation dataset from 1
July 1997 to 31 December 2005. All the development of

FIG. 5. 2D space–time power spectra of equatorial (averaged
from 5°S to 5°N) (a) 30–70-day Lanczos bandpass-filtered OLR
data, (b) EMD-filtered IMF2 OLR data. Positive (negative) zonal
wavenumbers correspond to eastward- (westward) propagating
waves. Frequency axes units are cycles per day.

FIG. 4. (a) The daily input time series of Fig. 3a passed through a 7-point running mean and then a 3-point running mean, (b)
IMF1 and (c) IMF2 of the time series in (a), and (d) remainder.
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the EMD and forecasting methodology was done with
the training dataset, while the validation dataset was
reserved to validate the forecasts on. The details of the
running means were determined pragmatically based
on the skill score from the training dataset, when the
IMFs were used later in conjunction with a forecast
model (section 4).

2) REDUCTION OF THE END EFFECT

The EMD method also has a significant end effect at
the end of the data record, even when the running mean
adaption is used. This is illustrated in Fig. 6 with refer-
ence to extracting the MJO signal, by taking as an ex-

ample input the data after one cycle of EMD has been
carried out. Hence, the input time series is m1(t), the
remainder after IMF1 has been subtracted from the
prefiltered (7-point, then 3-point, running mean) time
series of daily OLR anomalies at 0°, 80°E. The IMF of
this example time series will then be IMF2 of the origi-
nal time series.

The thick solid line in Fig. 6a shows a section within
this long input time series. High-amplitude intrasea-
sonal (MJO) variability can clearly be seen. Maximum
and minimum spline-fitted functions are then fitted as
part of the EMD process (solid lines in Fig. 6a). How-
ever, if the input time series is truncated at 2 December
1996, as shown by the thick vertical line in Fig. 6a, then

FIG. 6. The end effect of the EMD process. (a) Section of an input time series [the remain-
der after IMF1 has been subtracted from the prefiltered (7-day, then 3-day, running mean)
daily OLR anomalies at 0°, 80°E; thick line], together with the maximum and minimum
spline-fitted functions. The dotted lines show the fitted maximum and minimum spline-fitted
functions when the input time series is truncated at 2 Dec 1996, shown by the thick vertical
line. (b) Extension of the time series past its end point at 2 Dec 1996. See text for details. (c)
IMFs of the input time series: true IMF of the full input time series (solid line), IMF of the
input time series when it is truncated at 2 Dec 1996 (dotted line), IMF of the input time series
when it is truncated at 2 Dec 1996, and additional maxima and minima have been created as
in (b) (dashed line).
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the last maximum is at 9 November 1996 and the last
minimum is at 7 October 1996. The cubic spline-fitted
functions fitted to the maxima and minima (dotted lines
in Fig. 6a) then differ significantly from hose previously
fitted to the time series when information was available
after 2 December 1996. This end effect can then signifi-
cantly affect the value of the mean function and the
IMFs.

Again, we employ a simple empirical adaptation to
the basic EMD methodology to reduce the end effect.
As cubic splines are sensitive to the end point over
which they are fitted, we can attempt to extend the
record of maxima and minima over which the splines
are fitted. From a practical standpoint, if we were able
to make perfect forecasts of the next few maxima and
minima we would have a zero end effect. There are
several possible methods that have been proposed
(Huang and Shen 2005) for defining these additional
extrema which can generally be grouped into three cat-
egories. Creating the new additional extrema can be
based around the mean climatology, autoregressive
forecasts, or linear methods. However, there is cur-
rently no consensus as to the best procedure, and re-
search on the topic is ongoing. The choice of procedure
by which the end effect is minimized is one that the
users should decide, ultimately based on their intuitive
knowledge of the system.

The procedure adopted in this study is as follows. If
the gradient between the penultimate point and the end
point is positive and the end point is also positive, then
the end point is deemed to be a maximum. If this gra-
dient is negative and the end point is also negative, then
the end point is deemed to be a minimum (label A in
Fig. 6b). Next, the time separation between the last two
maxima, �tmax, is calculated. Similarly, the time sepa-
ration between the last two minima, �tmin, is also cal-
culated. For the example shown here, �tmax � 64 days,
and �tmin � 56 days, that is, within the broad range of
the period of the MJO.

The input time series is then extended beyond its end
point by adding another maximum, at a time interval of
�tmax after the last maximum in the input time series,
and with an amplitude of 0.9 of the last maximum (label
B in Fig. 6b). A second additional maximum is then
added at �tmax after, and with an amplitude of 0.8 of,
the first additional maximum (label C in Fig. 6b). Simi-
larly, a third additional maximum is added with an am-
plitude of 0.7 of the second additional maximum (label
D in Fig. 6b), and so on. Additional minima are then
also added beyond the end point of the time series by
the same method (labels E, F, and G in Fig. 6b). A
cubic spline-fitted function is then fitted to all the
maxima, including the new maxima beyond the end

point, and similarly another cubic spline-fitted function
is fitted to all the minima (Fig. 6b). The mean function
and IMF are then calculated in the usual way.

The reduction in the end effect can be clearly seen by
comparing the three IMF time series in Fig. 6c. The
solid line shows the “true” IMF calculated from the full
example input time series. By definition, this has no end
effect. The dashed line shows the IMF calculated when
the input time series is truncated at 2 December 1996.
The large differences in the last 30 days between this
and the true IMF are the errors due to the end effect.
Finally, the dotted line shows the IMF calculated when
the input time series is truncated at 2 December 1996,
but when additional maxima and minima have been
created as in Fig. 6b. This IMF follows the true IMF
much more closely, showing the substantial reduction
in the error due to the end effect.

This reduction in the error due to the end effect was
quantified by taking 1241 overlapping long (300 day)
segments from a full 6940-day input time series (daily
OLR anomalies at 0°, 80°E from the training dataset).
Each successive 300-day segment was advanced from
the previous one by 5 days. For each segment, prefil-
tering was applied, the original EMD methodology
(i.e., with no additional maxima or minima) was carried
out and IMF1 and IMF2 time series were calculated. In
addition, an EMD analysis was carried out on the full
6940-day time series, and the IMF1 and IMF2 time se-
ries of this were calculated.

As a measure of the end effect, the correlation coef-
ficient between the last value of the IMF2 of each 300-
day segment and the corresponding IMF2 value from
the full 6940-day time series were calculated, that is, the
correlation coefficient between 1241 pairs of data. The
correlation was effectively zero (0.03). If there was no
end effect, its value would be 1. Similarly, the correla-
tion coefficient between the 300-day segment IMF2 val-
ues 15 days before the end and the corresponding value
from the full IMF2 was only 0.29. The dotted line in Fig.
7 shows the correlation coefficient as a function of time
before the end of the segment. It is approximately 1
before about 50 days before the end, indicating that the
end effect is negligible here, but the correlation then
decreases steadily down to effectively zero (0.03) at the
end, indicating the increasing size of the end effect.
Given that the useful information for MJO forecasting
is likely to be in the last 20 days or so of the input time
series, these low correlations imply that the end effect
will severely limit the skill of forecasts if it is left un-
corrected.

However, the solid line in Fig. 7 shows the corre-
sponding correlations when the adapted EMD method-
ology with the extra maxima and minima was used, as
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described earlier in this section. The correlations are
much higher, with a value of 0.66 at the end of the
segments, rising to near 1 (no end effect) at about 25
days before the end of the segments. Hence, the adap-
tations to the EMD methodology have significantly re-
duced the end effect.

Although significant effort has been made to reduce
spurious deviations at the end of the data record, a
consequence of adding the additional extrema is that
the amplitude of the MJO signal in IMF2 tends to be
slightly damped over the last 5–10 days. Hence, the
final step in the preparation of the time series to input
to the forecast model is to compensate for this effect by
applying simple amplitude boosting factors. At this
point the daily data are averaged into nonoverlapping
pentad (5 day) means. The amplitude boosting factors
are applied to the last two pentads of the time series.
The amplitude boosting factors are 1.21 and 1.14 for the
end and penultimate pentads, respectively. The values
of the amplitude boosting parameters were optimized
in a pragmatic way to give the highest mean anomaly
correlations over the first six forecast pentads of “real
time” forecasts (4) performed on the training dataset.
Note that, although the amplitude boosting factors in-
creased the anomaly correlations of the forecasts, they
had a slightly detrimental effect on the root-mean-
square errors, increasing them by 13%. This concludes
the real-time intraseasonal filtering section of the pa-
per.

4. Statistical forecast modeling

a. Vector autoregressive moving average model

The state of the MJO at any particular time can be
reasonably represented by the amplitudes of the prin-

cipal component time series of the leading two EOFs of
intraseasonally filtered OLR (Fig. 1). The MJO fore-
cast problem is then reduced to forecasting the ampli-
tudes of these two time series, PC1 and PC2. At time t,
we define the bivariate vector

xt � �PC1t, PC2t�. �6�

Previously, Maharaj and Wheeler (2005) have em-
ployed a vector autoregressive (VAR) model, and
Jones et al. (2004) and Wheeler and Hendon (2004)
have developed multiple linear regression models to
forecast the MJO. Here, we introduce a more powerful
general class of statistical models: VARMA models
(Box and Jenkins 1970). We apply this technique to
model the bivariate MJO time series as a VARMA
process with autoregressive order P and moving aver-
age order Q,

xt � �
p�1

P

�pxt–p � �
q�1

Q

�q�t�q � �t, �7�

where �p and 	q are 2 
 2 matrices containing VAR
and vector moving average (VMA) parameters, respec-
tively, and � is a two-dimensional vector of white noise
processes. For the purpose of parameterization, � are
the residuals, the difference between the predicted and
actual values of x.

The autoregressive and moving average parameters
are found by a maximum likelihood method. The like-
lihood function is calculated using a Kalman filter al-
gorithm (Shea 1987), and then a quasi-Newton algo-
rithm to find the maximum of the log-likelihood func-
tion (Gill and Murray 1972). A reparameterization
technique (Ansley and Kohn 1986) is used to enforce
stationarity (a necessary condition of the autoregressive
process) and invertibility (a necessary condition of the
moving average process). An important condition on
the maximum likelihood estimates being equal to their
true values is that the estimates of the residual series
are white noise; that is, they are uncorrelated, with zero
mean and constant variance. This condition is used to
help select the order of the VARMA process.

b. Model validation

To summarize the analysis so far, a total of 27 yr of
OLR data were available, from 1 January 1979 to 31
December 2005. At each grid point, the daily OLR data
had the annual cycle subtracted and were passed
through a 7-point, then a 3-point running mean. The
data were then split into the 18.5-yr training dataset
from 1 January 1979 to 30 June 1997, and the 8.5-yr
validation dataset from 1 July 1997 to 1 December 2005.

FIG. 7. Correlation coefficient as a function of time before the
end of the time series, between IMF2 of a segment of the input
time series (prefiltered daily OLR anomalies at 0°, 80°E), and
IMF2 of the full time series. Original EMD methodology (dotted
line) and adapted EMD methodology (solid line).
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At each grid point in the training dataset, an EMD
analysis was carried out, and IMF2 was selected, as it
contains the MJO signal. The IMF2 time series at each
grid point were then averaged into pentad means, and
combined to make 18.5 yr of pentad maps of IMF2.
These maps are essentially maps of intraseasonally fil-
tered OLR anomalies, similar to conventional maps of
bandpass-filtered data. At this point, the first year and
last six months of the training dataset were discarded
because of the end effects from the EMD analysis.

The remaining 17 yr (1980–96) of pentad maps of
IMF2 were then subjected to an EOF analysis. Consis-
tent with many other previous MJO studies (e.g., Hen-
don and Salby 1994; Matthews 2000), the two leading
EOFs describe the MJO structure (Fig. 1). These were
described in section 1. The spatial structures of EOF1
and EOF2 were then projected onto the pentad maps of
IMF2 in the training dataset to obtain the PC1 and PC2
time series, which then form the bivariate vector time
series xt that is the input to the VARMA model. Best
estimates of the autoregressive � and moving average 	
parameters were made using the maximum likelihood
method described in section 4a, using the input xt from
the training dataset.

The same EMD analysis was then carried out on the
8.5-yr validation dataset, and the first six months and
last year were discarded. The spatial structures of
EOF1 and EOF2 previously calculated from the train-
ing dataset were then projected onto the pentad maps
of IMF2 in the validation dataset to obtain a 7-yr (1998–
2004) validation dataset of xt.

“Real time” model predictions (hindcasts) were then
made within the independent dataset using a VARMA
model. For a hindcast made on a given pentad, only
data up to that date were used. The running mean and
adapted EMD methodology with extra maxima and
minima were used to calculate the IMF2 time series at
each grid point up to that date; then the PC1 and PC2
amplitudes (of the training dataset EOF1 and EOF2)
were calculated from the maps of IMF2; then the
VARMA model was used to predict values of PC1 and
PC2 for the next few pentads. Then, using the training
dataset, a set of monthly pairs of regression maps (one
pair for each month: January, February, . . . , Decem-
ber) were created from a regression of the PC1 and PC2
time series to the gridded IMF2 time series. Finally the
forecast values of PC1 and PC2 were projected onto
their appropriate regression maps and the two maps
summed to create the forecast map. Verification maps
were similarly produced by projecting the respective
PC1 and PC2 amplitudes, calculated from the IMF2-
based validation dataset, onto the regression maps. A

total of N � 511 hindcasts were made over the 7-yr
period of the independent dataset. The model hindcasts
were then verified on the independent 7-yr validation
dataset. All statistics and measures of the model per-
formance were calculated from predictions made on the
validation dataset.

c. Choice of model order

The next task is to choose the order of the VARMA
model to be used, that is, the values of the integers P
and Q in Eq. (7). As the order of the model is increased
and more terms are included the model performance
may be expected to increase, until at some point the
extra parameters become unnecessary and the model
performance plateaus or even decreases as the model
begins to overfit to noise. Striking this balance between
model performance and parsimony (i.e., not including
more parameters than is necessary) is the key to the
choice of model order.

There are a number of statistics that can be calcu-
lated to identify the best choice of model order. Each
has their own advantages and disadvantages, but all are
based on an examination of the residuals �. The most
commonly used statistics are variations of the informa-
tion criteria (e.g., the Akaike information criterion).
However, these can be very restrictive and do not al-
ways allow users to apply their knowledge of the sys-
tems’ behavior (i.e., MJO quasi periodicity) and subse-
quently include higher-order terms. For this reason a
more forecast skill–orientated approach to model selec-
tion was adopted.

An initial investigation of lagged autocorrelations
and partial autocorrelations indicated that a model of
autoregressive order 4–5 and a moving average order of
1–2 was probably required. This was backed up by an
analysis of the variance of the residuals for a pure au-
toregressive model, with no moving average process
(Q � 0). As the autoregressive order P is increased, the
variance of the residuals � decreased (Fig. 8), indicating
a more accurate model. However, there is little im-
provement beyond an order of 4 or 5, implying that
higher-order terms are unnecessary.

To make the selection, a measure of model skill
called the anomaly correlation was used. For a given
forecast lead time, a pattern correlation coefficient was
calculated between the grid points of the forecast map
and the grid points of the observation map. For a num-
ber of forecasts over the training dataset these anomaly
correlation coefficients can be sorted and the median
and upper and lower quartiles found.

The final choice of model order was made by calcu-
lating the median, lower quartile, and upper quartile

5328 J O U R N A L O F C L I M A T E VOLUME 21



anomaly correlations between nonreal time (no end ef-
fect) model forecasts and validation observations over
the first 6 forecast pentads, using the training dataset.
These were compared with the Li–McLeod Portman-
teau statistic (Li and McLeod 1981) for each model:

Q*LM �
m�m � 1�

2N
� N �

k�1

m

rk
2, �8�

where rk is the correlation coefficient between residuals
(�) at lag k, N � 1241 is the number of samples, and m
is the maximum lag considered (m � 20 was chosen as
a sufficiently high value). The Portmanteau statistic es-
sentially tests the null hypothesis that the residuals are
independent up to lag m. This independence of the
residuals (i.e., they are uncorrelated) was a condition
on the estimated model parameters being equal to their
true values.

The simplest VARMA model has order (1, 0), a pure
autoregressive model of first order. This model has a
low “combined” anomaly correlation (mean of the me-
dian anomaly correlations over the first 6 forecast pen-
tads) of 0.68, indicating it has low forecast skill, and a
high Li–McLeod Portmanteau statistic of 4600, indicat-
ing that the residuals (difference between model fore-
cast and validation observations) are not independent
and therefore there is still information in the residuals
that this particular VARMA (1, 0) model has not cap-
tured. As the orders of the autoregressive and moving
average parts of the VARMA model are increased, the
combined anomaly correlations consistently increase,
indicating higher forecast skill, and the Portmanteau
statistic decreases, indicating that there is less infor-
mation left in the residuals. However, when the com-
bined model order reaches 6—that is, VARMA (6, 0),
VARMA (5, 1), VARMA (4, 2), etc.—the Portman-

teau statistic continues to decrease but the anomaly
correlations reach a plateau or decrease, indicating that
the model is overfitting.

From this analysis we identify a VARMA (5, 1)
model (combined anomaly correlation 0.93 and Port-
manteau statistic 160) as the model with the optimum
balance between forecast skill and parsimony.

d. Consistency of forecasts

The frequency distribution of the anomaly correla-
tions of the N � 511 hindcasts was then examined to
ascertain the consistency of the forecasts. The median
and the upper and lower quartiles of this distribution
are shown as a function of forecast lead time by the
solid lines in Fig. 9. The median anomaly correlation is
0.92 for the 1 pentad forecast. It then decreases fairly
slowly, to 0.64 at 5 pentads and 0.43 at 8 pentads. The
upper quartile anomaly correlation is much higher, and
is still 0.86 even at a lead time of 8 pentads. By defini-
tion, a quarter of the forecasts performed even better
than this at that lead time. Conversely, the anomaly
correlation of the lower quartile was only 0.66 at 1 pen-
tad, decreasing rapidly to near zero (0.19) at only 3
pentads.

At this point, we present further justification of the
realism of assuming the MJO signal is contained in
IMF2. A conventional 30–70-day Lanczos bandpass-
filtered dataset was used as an alternative validation
dataset. The PC1 and PC2 time series were again cal-
culated from the IMF2-based validation dataset, but
this time projected onto regression maps of the regres-
sion between the PC1 and PC2 time series and maps of
the 30–70-day filtered data. The real-time forecasts

FIG. 8. Sigma values as a function of autoregressive order P of
bivariate VAR models of PC1 and PC2 of the leading two EOFs
of real-time IMF2.

FIG. 9. The median (circles), and upper (diamonds) and lower
(squares) quartiles of the distribution of anomaly correlations be-
tween forecasts and validation maps of real-time data as a func-
tion of forecast lead time. Solid lines: forecast against IMF2-based
validation dataset. Dotted lines: forecast against 30–70-day-based
validation dataset.
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were then verified against this alternative validation
dataset (dashed lines in Fig. 9). The median and the
upper and lower quartiles of the anomaly correlations
between the real-time hindcasts and the 30–70-day-
based validation dataset are very similar to those with
the IMF2-based validation dataset (solid lines in Fig. 9),
confirming the effectiveness of the EMD method in
extracting the MJO signal.

e. Example forecasts

While anomaly correlations are useful as an overall
summary of forecast skill, they are not very intuitive.
Here, we present spatial forecast maps of OLR anoma-
lies from three individual example forecasts.

The first example forecast was made from 18 Decem-
ber 2002. Its anomaly correlation as a function of lead
time is shown by the solid line in Fig. 10. By comparison
with Fig. 9, it can be seen that this forecast is represen-
tative of a forecast with median skill. The forecast maps
for this particular forecast are in the left-hand panels in
Fig. 11, together with the verification maps in the right-
hand panels. The high anomaly correlation of 0.93 at
forecast pentad 1 is consistent with the high degree of
agreement between the forecast and verification spatial
maps in Figs. 11a,i. As the forecast lead time increases,
the anomaly correlation tends to decrease, and the
agreement between the forecast and verification maps
also decreases. However, this decline in forecast skill is
not monotonic for an individual forecast. In this case it
increases slightly at pentad 4. There is still clearly con-
siderable skill at pentad 6 in this forecast, as shown by
the strong agreement between the forecast and verifi-
cation maps (Figs. 11f,n) and summarized by the
anomaly correlation of 0.66. At pentad 7 the anomaly
correlation is high but the amplitudes of the forecast

and verification anomalies are very different. The
model appears to be quite successful in predicting the
phase of the MJO, that is, the locations of the OLR
anomalies, but is not so skillful at predicting the ampli-
tudes. In this example, the amplitude of the forecast is
larger than the amplitude of the verification anomalies.
Finally, at pentad 8, the model skill has decreased to the
point where it is no longer useful (Figs. 11h,p).

It should be noted that the close match between the
forecast and verification maps is not quite as impressive
as it first appears. Even though there are over 800 grid
points in each map, there are only effectively 2 degrees
of freedom, from the amplitudes of PC1 and PC2. How-
ever, the forecasts can be presented in a more acces-
sible way by the use of these maps, rather than by the
use of PC time series.

The second example forecast was made from 11 July
2004. It has high anomaly correlations above 0.82
throughout the whole 8 pentad forecast (dotted line in
Fig. 10) and is representative of a forecast from the
upper quartile. The forecast maps of OLR (Fig. 12)
closely match the verifications. This is an example of an
MJO event that was accurately forecast over almost
one whole period.

The third example forecast, made from 22 January
2004, is representative of a forecast from the lower
quartile (dashed line in Fig. 10). Its anomaly correlation
falls to near zero quickly, by pentad 5. This can be seen
in the forecast map which predicts a region of enhanced
convection over Indonesia (Fig. 13e), compared to the
verification map that shows weakly reduced convection
over the Indian Ocean and weakly enhanced convec-
tion over the western Pacific (Fig. 13m). As the forecast
progresses, the forecast MJO gets further “behind” the
observed event until, at pentad 8, the forecast and ob-
served MJO are completely out of phase (Figs. 13h,p),
with a strongly negative anomaly of �0.68. Clearly, this
particular MJO forecast has little skill.

Hence, the overall skill of the model is very promis-
ing, with a median anomaly correlation over 0.6 at a
forecast time of 5 pentads. However, there is consider-
able spread in the skill of individual forecasts, with the
upper quartile showing very high skill (anomaly corre-
lations over 0.85) out to 8 pentads, but the lower quar-
tile having low skill beyond 1 pentad. It would be of use
to attach some confidence to the skill of a forecast when
it was made. Given that the only inputs to the statistical
model are the amplitudes of PC1 and PC2, it is likely
that the model will perform poorly when these ampli-
tudes are low. At these times the next MJO event may
emerge spontaneously and may not depend on the am-
plitude and timing of the previous cycle, or the precur-
sor MJO signal may be weak and lost in noise. Also, as

FIG. 10. Anomaly correlations as a function of forecast lead
time, for three individual forecasts, beginning on 18 Dec 2002
(solid line), 11 Jul 2004 (dotted line), and 22 Jan 2004 (dashed
line).
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FIG. 11. Maps of OLR anomalies created by projecting the amplitudes of PC1 and PC2 onto their respective
regression maps: a forecast typical of the median skill, made from 18 Dec 2002 with lead times of (a) 1, (b) 2, (c)
3, (d) 4, (e) 5, (f) 6, (g) 7, and (h) 8 pentads. (i)–(p) Corresponding validation maps. Contour interval is 3 W m�2,
the zero contour is suppressed, and shading is shown by the legend.
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the final amplitudes of the IMFs are small, the end
effect will be largest at this time.

Hence, the MJO forecasts were stratified according
to the initial magnitudes of PC1 and PC2. The solid

lines in Fig. 14 show the median and lower quartile
anomaly correlations as a function of forecast lead
time, when all (100%) of forecasts are retained. These
are replications of those in Fig. 9. We then define the

FIG. 12. As in Fig. 11 but for a forecast typical of the upper quartile skill, made from 11 Jul 2004.
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initial strength of the MJO as the sum of magnitudes of
the two PCs, that is, |PC1| � |PC2|, on the pentad the
forecast is made. Strong initial MJOs are defined as
those above the median value of this measure. If only

those forecasts with a strong initial MJO are retained,
the anomaly correlations rise considerably (dotted lines
in Fig. 14). Hence, a strong MJO does generally lead to
a better forecast. However, this is not a panacea. The

FIG. 13. As in Fig. 11 but for a forecast typical of the lower quartile skill, made from 22 Jan 2004.

15 OCTOBER 2008 L O V E E T A L . 5333



lower quartile of the forecasts from the initially strong
MJO events still loses skill (anomaly correlation below
0.6) after 2 pentads.

5. Conclusions

The process of empirical mode decomposition (EMD),
together with a modification to reduce end effects, has
been shown to be a powerful technique to cleanly ex-
tract a broadband signal such as the MJO from a time
series, in a form suitable for real-time monitoring and
forecasting. There is much scope to apply it to other
atmospheric and oceanographic phenomena, such as
synoptic variability, other intraseasonal variability, and
interannual variability such as ENSO.

The MJO signal, extracted using EMD, was then in-
put to a VARMA (5, 1) statistical model to predict its
future development in real time. This nonlinear model
showed considerable skill, with a median anomaly cor-
relation between forecast and verification data of above
0.6 at a forecast lead time of 25 days. The forecast skill
improved when only those forecasts with a strong initial
MJO were considered. This could imply that the MJO
is inherently less predictable when it is weak. However,
the end effects of the EMD process are more severe
and would lead to larger forecast errors at these times
also. Use of both (first order) moving average and
higher-order autoregressive terms in the VARMA (5,
1) model gave a considerable increase in skill when
compared to just using a lower-order autoregressive
model. The model uses a relatively simple input, in the
form of OLR data only. Hence, the model only receives
information about the current and past state of deep
convection or precipitation; although, because of the

thermodynamical balances in the tropics, this will also
contain implicit information on vertical motion and
horizontal divergence. Work is in progress to incorpo-
rate other information, such as dynamical (e.g., wind)
fields from analysis data and sea surface temperatures,
and to investigate other classes of statistical models
such as neural networks. The intention is to implement
these forecasts operationally in the near future.

The skill of statistical forecast models of the MJO is
still increasing and does not appear to have reached the
limit of predictability yet. These statistical models have
set a high benchmark against which to measure the
performance of MJO forecasts by dynamically based
models.

Operational forecasts of the current MJO using this
method are available in real-time at http://envam1.env.
uea.ac.uk/mjo_forecast.html.
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