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Impact of Dietary Long-Chain Polyunsaturated Fatty Acids on the Survival of 

Probiotic Bacteria in Colonic Cell Lines 

Abstract 

 

Probiotic bacteria have been shown to be potentially useful in maintaining colonic 

health and improving mucosal immune homeostasis.  In addition, polyunsaturated 

fatty acids (PUFAs) are known to be potentially beneficial in this respect and so 

manufacturers may try to combine both ingredients in „functional foods‟ but we know 

nothing about how these two factors interact.  

 

Two in vitro approaches were used in these studies. Firstly the impact of 

physiologically relevant doses of dietary PUFAs on growth rates of different strains of 

lactobacilli were measured using turbidity measurements (Bioscreen). Secondly, the 

same strains of lactobacilli were co-cultured with human colon cell lines (HT29, 

HT29-MTX-mucin secreting & Caco-2). Confluent cell cultures were pre-treated with 

a range of different PUFAs to modify cell lipid profiles prior to exposure to lactobacilli 

and measurement of bacterial cell adhesion and mammalian cell cytokine release will 

be measured. Data from gas chromatographic analysis of PUFA incorporation into 

human and bacterial cells will be used to gain further insight into the how they might 

influence the end-points being assessed.  

 

Results showed that human isolates survive in concentrations of PUFAs that are 

biologically relevant in the colon suggesting a mechanism to avoid the anionic 

detergent agents of PUFAs. 

Secondly that docosahexaenoic acid up-regulates lactobacilli adhesion to human 

epithelial cells.  However, arachidonic acid up regulates adhesion of some lactobacilli 
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to mucus secreting HT29-MTX cells, possibility involving modification of mucin 

production or composition to favour binding. Therefore these results suggest that 

DHA and AA act through different mechanisms to support the beneficial effects of 

lactobacilli in the colon.   In regulation to immune modulation, lactobacilli can up-

regulate TGF-β that maybe involved in survival by down-regulation of inflammatory 

signalling, thus avoiding recognition and removal from the host cell surface.  While 

EPA can enhance the production of TGF-β and therefore may aid in lactobacilli 

survival. 

 
 Studies have indicated that all PUFAs tested had a positive impact on adhesion of 

certain strains of lactobacilli to at least one cell line tested. Although it is likely that 

each predominately acts through a different mechanism. 
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CHAPTER 1: General introduction 

 

SECTION 1.1 The Colon 

 

The colon is the most colonised region of the gastrointestinal tract, containing 

approximately 1012 bacteria per gram of gut contents and therefore is an obvious 

choice for human microbiological research.  Many species of bacteria provide a 

mutual relationship with the colon and can support its function, for example the 

fermentation of complex carbohydrates into short chain fatty acids used as an 

energy source for colonic cells.  Although the colon and its bacteria have been 

thoroughly studied, there is still much to learn and even to this day there are many 

undiscovered species and strains.   

 

1.1.1 Structure and function 

 

The wall of the whole gastrointestinal tract follows a general structure (figure 1). 

Along the tract is a layer of epithelial cells and amongst these, exocrine cells secrete 

mucus into the lumen and endocrine cells secrete hormones into the bloodstream.  

The epithelial layer consists of some invaginations into the underlying tissue forming 

exocrine glands that secrete acid (stomach), enzymes, water and ions.  Typical of 

such epithelial cell layers these cells have an apical brush border membrane to 

increase surface area. Below the epithelial cells layer there is the lamina propria 

consisting of blood vessels, nerve fibres and lymphatic ducts. The muscularis 

mucosa is a thin layer of smooth muscle that sits beneath the lamina propria and all 

three of these layers form the mucosa. 

 

A connective tissue layer lies below the mucosa termed the submucosa, this 

contains submucous plexus (nerve cells) and blood lymphatic vessels that penetrate 
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both mucosa and muscularis externa (smooth muscle below).  Muscularis externa 

consists of two types of muscle, circular (narrows lumen) and longitudinal (shortens 

tract), between which lies the myenteric plexus nerve cells. Outside these layers 

connective tissue exists named the serosa which is attached to the abdominal wall 

thus supporting the gastrointestinal tract in the abdominal cavity[1]. 

 

Regulation of the reflexes is by luminal stimuli such as: 

 Distension of wall by volumes of luminal contents. 

 Chyme osmolarity.  

 Chyme acidity. 

 Chyme concentrations of specific digestive products, i.e. fatty acids and 

amino acids. 

The stimuli act on mechanoreceptors, osmoreceptors, and chemoreceptors in the 

tract wall. 

 

The enteric nervous system is the digestive systems specific local nervous system 

consisting of the myenteric plexus and the submucosal plexus. The nerves end at 

epithelial cells or smooth muscle cells and glands (effectors). It should be noted that 

the central nervous system can also impact upon the motility and secretory activities 

of the tract.  In addition to signals in the tract stimulating neural reflexes, sight, smell 

and emotional state have significant impact via autonomic neurons mediated by the 

central nervous system. Hormones also regulate the gastrointestinal tract, this 

having influence predominately in the stomach region and small intestine. 
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Figure 1 The structure of the gastrointestinal wall in general is made up of many 
layers.  The mucosal surface is pitted with invaginations into the underlying tissue 
forming exocrine glands.  Below the surface epithelial layer are the lamina propria 
consisting of blood vessels, nerve fibres and lymphatic ducts. Beneath are 
subsequent layers of muscularis mucosa, submucosa, circular muscle and 
longitudinal muscle (image by C. Hogan [2]). 

 

The colon, otherwise known as the large  intestine, extends from the Cecocolic 

ostrium (caecum) to the rectum. It is approximately 70 to 75 cm long and is dark 

green in colour when full. In the colon the highly convoluted surface has a layer of 

epithelial cells positioned along it linked together with tight junctions (figure 2). At the 

base of the crypts mucus is secreted hence preventing bacterial adhesion in the 

crypts.  The colon is divided into three parts 

 Ascending colon - decreases in diameter, and runs close to the caecum. It 

loops to form a spiral, with two centripetal coils, and two centrifugal coils;  

 Transverse colon - running left, and dorsally to the duodenum;  

 Descending colon - on the left side, and is quite straight. The surface is finely 

folded. 
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 Figure 2 Colonic crypts along the surface of the colon wall. The highly convoluted 
surface consists of epithelial cells linked together with tight junctions. At the base of 
the crypts mucus is secreted out onto the surface as a mechanism of protection 
from pathogen (Image by Claudia Lötsch, Institute of Food Research, Norwich). 

                                                                                                                                                                                           

The large intestine is a highly specialized organ that is responsible for processing 

waste so that emptying the bowels is easy and convenient.  The stool passes 

through the colon by peristalsis; it consists of mostly food debris and commensal 

non-pathogenic microflora. These types of bacteria perform several useful functions, 

such as synthesizing various vitamins, processing waste products and food 

particles, and protecting against harmful bacteria.  A vast number of the gut bacteria 

are vital for the development of the intestine. The array of ingested antigens and the 

gut flora form the major constituents of the gut lumen. This is particularly true for the 

distal ileum and the colon where the resident anaerobic bacteria exist in very high 

(108 to 1012 bacteria/gram of luminal contents) concentrations. To deal with this 
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continuous and diverse antigenic exposure, a unique immune system exists at the 

surface of the gastrointestinal tract, which is distinct from the systemic immune 

system [1]. 

Secretions from the large intestine consist of mucus and fluid containing bicarbonate 

and potassium ions transferred from the blood during the processing of faecal 

material.  The main absorptive process is active transport of sodium from lumen to 

the blood system coupled with the osmotic absorption of water. Other materials 

absorbed include products of the microflora, such as fibre which is metabolized to 

short chain fatty acids (neutralised by bicarbonate) and absorbed by passive 

diffusion.  Vitamin K is also produced from microflora and is absorbed into the blood, 

thus being an integral part of vitamin K intake if dietary intake is low.  Gases are 

produced by intestinal bacteria via fermentation of undigested polysaccharides; 

carbon dioxide and nitrogen being most predominant.  

Overall the structure of the colon is highly specific to its function and due to this, its 

contact with the outside world results in it being very susceptible to mutation 

possibly leading to cancer.  Much research is being undertaken on the colon to find 

prevention and cures for colonic diseases, many of which could be related to 

optimising the diet [3-4].  

  



6 
 

SECTION 1.2 Polyunsaturated fatty acids 

 

1.2.1 Structure and function 

 

The characteristic feature of fatty acids is the carboxy group attached to the aliphatic 

body.  Long chain fatty acids are those with 14-26 carbons and the majority of these 

sit in cis formation, some contain carbon-carbon double bonds and their number, 

type and position all affect their metabolic properties.  In particular, polyunsaturated 

fatty acids (PUFAs) will contain more than one double bond between carbon atoms.  

Two families of PUFAs are the n-3 fatty acids (double bond between 3rd and 4th 

carbon from acyl end) and the n-6 fatty acids (double bond between 6th and 7th 

carbon from acyl end). These essential fatty acids are of particular importance in 

normal human functions and must be sourced from the diet.  A major source of n-3 

fatty acids is fish oil, although linolenic acid is found in several seed oils; while n-6 

fatty acids are present in vegetable oils, such as sunflower oil.  One affect these 

PUFAs can have on the human system is via immunomodulatory mechanisms and 

these can be split into six main avenues[5]. 

 

 Modulation by eicosanoids- Eicosanoids from arachidonic acid (AA), 

derived from omega-6, is more pro-inflammatory than those derived from fish 

oils, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).  

Increased levels of EPA derived eicosanoids in the blood, result in significant 

effects on platelet aggregation, vasoconstriction, neutrophil function, 

inflammation and immunity[6]. 

 

 n-3 PUFAs, membrane fluidity and lipid rafts-An increase in membrane 

fluidity is found in response to increased n-3 consumption[7].  Evidence 

suggests that in vitro omega-3 PUFAs suppress T cell activation by 
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displacing acylated signalling proteins from lipid rafts (place in membrane 

where signalling in immune cells occur) by altering the rafts composition[8]. 

 

 n-3 PUFAs and signal transduction-Lipids are involved in intracellular 

signalling pathways[5].  For example, phospholipids such as 

phosphatidylserine, containing fatty acid chains, can generate secondary 

messengers that are involved in activating enzymes, i.e. activation of protein 

kinase C (PKC). However, omega-3 fatty acids can inhibit PKC as they 

decrease the generation of the relevant secondary messengers[9]. 

 

 n-3 PUFAs and gene expression- Fatty acids effect the expression of 

genes for proteins involved in hepatic fatty acid and lipoprotein metabolism, 

by covalent modification, redox state, proteolytic modification or through 

binding of peroxisome-proliferator activated receptors (see section 1.2.5). 

 

 n-3 PUFAs- modulation of antigen presenting capacity- Dietary fish oil 

supplementation for 21 days decreases the intensity of expression of MHCII 

antigen presenting molecules on peripheral blood monocytes [10]. 

 

 n-3 PUFA- modulation of the gastrointestinal flora- May affect  the 

mucosal adhesion sites for gastrointestinal bacteria by modifying the 

composition of the intestinal wall [5]. 

 

1.2.2 Digestion, absorption and transport 

 

The digestion, absorption and transport of lipids has been well summarised by 

Kohlmeier [11].  On consumption of fats the triglyceride components are hydrolysed 

by lipases in the upper digestive tract to monoglyceride and free fatty acids.  The 
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dietary triglycerides, monoglycerides, bile phospholipids and bile acid mix to form 

micelles and are further hydrolysed by bile-salt activated lipase in the small 

intestine.  Free acids and monoglycerides from the micelles transfer to enterocytes 

of the small intestine by diffusion and facilitated transport.  During transfer through 

epithelial cells they are re-synthesised into triacylglycerol, this lowers free acid 

concentration that can maintain diffusion.  Inside the cell fat aggregates are formed 

and amphipathic proteins emulsify.  To exit the cell vesicles containing a fat droplet 

pinch of the endoplasmic reticulum and are processed through golgi apparatus, they 

then bind the plasma membrane and the fat is released into the interstitial fluid.  The 

extracellular fat droplets are called chylomicrons and are transported via lacteals 

lymphatic capillaries in the intestinal villi.  The free fatty acids are released by 

endothelial lipoprotein lipase, enter adipocytes and combine with α-glycerol 

phosphate to form triacylglycerols. Much of these are oxidised to produce energy for 

organs and some is stored.   

 

Long chain fatty acids (LFCAs) are used in cell processes, including membrane 

synthesis, intracellular signalling, transcriptional regulation, post-translational protein 

modification and metabolism. The latter is used by most vertebrate tissues in 

situations of metabolic stress. LFCAs are insoluble in aqueous environments and 

are bound with high affinity to proteins in plasma, predominantly albumin. Inside 

cells LFCAs are bound to cytosolic fatty acid binding proteins (FABPs), that assists 

solubility and play a role in intracellular movements of these molecules to various 

organelles. Intestinal FABP binding affinities are similar to aqueous partition for 

many fatty acids. However, DHA appears to have a lower affinity than predicted [12]. 

Another protein involved in fatty acid uptake in mammalian cells was identified by 

Abrumrad et al. [13], named fatty acid translocase (FAT). This binds long chain fatty 

acids and has no preference for particular fatty acids.  More recently another fatty 

acid transport protein (FATP) has been identified [14], suggested to act with fatty 
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acyl CoA synthease (FACS),that prevents efflux of fatty acids. FATP is regulated by 

peroxisome proliferator-activated receptor (PPAR) ligands, which include many 

LFCAs, therefore can be up regulated by the substrate it binds. 

 

Inside the cell LFCAs are esterified by long chain FACS and the long chain fatty acyl 

CoAs subsequently transported to the mitochondria to be degraded by β oxidation 

or very long chain fatty acids are transported into peroxisomes. In β oxidation the 

resulting acyl coA diffuses across the outer mitochondrial membrane and is 

transformed to carnitine by palmitoyl-coA: L-cartinine O-palmitoyltransferase I to 

cross the inner membrane.  Once inside the carnitine is transferred back to coA.  

During each round of β oxidation two carbons are removed and one acetyl-coA is 

released.  The process is repeated until two acetyl-coAs are formed or one acetyl 

coA and one propionyl-coA. In addition to the process in the case of PUFAs the 

double bonds are oxidised by microsomal cytochrome P450-enzymes. 

 

As mentioned previously fatty acid can cross the plasma membrane by simple 

diffusion, followed by lateral movement within the membrane and flip-flop to their 

inner leaflet.  For accelerated dissociation from albumin that is bound by high 

affinity, intracellular proteins or enzymes that bind or metabolise LCFA may shift 

equilibrium towards uptake.   

 

1.2.3 Arachidonic acid metabolism 

 

Fatty acids are not always subject to oxidation and can play a role in many immune 

responses.  Important PUFAs such as arachidonic acid are incorporated into 

membrane phospholipids prior to being used as a precursor for prostaglandins, 

prostacyclin and thromoxanes.  The primary step of the process involves Cox-1, 

Cox-2 and arachidonate 5-lipoxygenase catalysing the first step in leukotriene 
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synthesis.  Both enzymes can accept other long-chain fatty acids, such as EPA, 

resulting in a variety of eicosanoids with differing characteristic activity profiles. 

 

1.2.4 Eicosapentaenoic acid and Docosahexaenoic acid metabolism 

 

α linolenic acid, EPA and other n-3 fatty acids can be converted to DHA via 

elongation and desaturation, predominately by the liver.  Tetracosahexaenoic acid is 

produced by the endoplasmic reticulum and then the 24 carbons are shortened via 

peroxisomal β-oxidation to DHA. The synthesis requires supply of many substrates 

including B vitamins and iron and conversion can be limited.  DHA can undergo β 

oxidation in mitochondria and peroxisomes (described in section 1.1.2). 

Approximately one tenth of consumed DHA is shortened to EPA. EPA is a precursor 

of 3-series prostaglandins and 5-series leukotrienes and inhibits the formation of 

omega-6 prostaglandins by direct competition for key enzymes[15]. 

 

1.2.5 Peroxisome-proliferator activated receptors (PPARs) 

 

PPARs have been shown to bind PUFAs and give a potential mechanism through 

which PUFAs act [16].   

 

PPAR cDNA was isolated relatively recently [17], since then several isoforms of 

PPAR protein have been discovered, i.e. PPAR α, β and γ.  They are members of 

the nuclear receptor family and form heterodimers with RXR, resulting in an active 

conformation in the presence of an agonist [18].  Following activation co-activator 

proteins recruit to create a complex that binds peroxisome proliferator response 

elements (PPRE) in target genes, stimulating their expression (PPAR can also 

function without RXR [19]). 
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The mammalian isoforms have varied tissue distribution: PPAR α, found in muscle, 

heart, kidney and small intestine is important for fatty acid uptake and oxidation; 

PPAR γ, found in fat, large intestine and macrophages is important for adipocytes 

differentiation and PPAR δ, which is found in most cell types, is important in cell 

differentiation in the nervous system, colon and other organs.  For my studies I have 

been interested in the latter two isoforms, due to the characterised localisation in 

colonic and immune cells.  The ligand binding structure is varied between isoforms 

and results in varied binding affinities of PUFAs.  All isoforms fold into a single 

domain containing 13 helices and a 4-stranded β sheet.  Between helices H2 and 3 

is a very flexible loop situated at the binding site entrance, allowing adaption to 

ligand size [20].   

 

Dietary ligands of PPARs include conjugated linoleic acid (CLA), which has been 

shown to induce PPARs γ and δ, and result in repression of inflammatory cytokine 

TNF-α and induce immunomodulatory cytokine TGF-β [21].  The latter being a 

molecular target for PPAR δ only [22].   Studies have detailed fatty acid properties 

i.e. chain length in relation to PPAR binding and have distinguished variance in 

isoforms for which fatty acid binds with the greatest affinity [23].  For example PPAR 

α will efficiently bind saturated fatty acids of 14 to 16 carbons. However, PPAR γ 

failed to have any interaction with unsaturated fatty acids of fewer than 20 carbons.  

Saturated fatty acids bound neither PPAR γ nor δ isoforms.  In contrast, long chain 

unsaturated fatty acids (C>20) bound to all isoforms, in particular AA and EPA 

interacted efficiently with PPAR γ and δ, whilst PPAR α did not bind them anymore 

than the saturated analogue.  Detailed co-crystal structure of PPAR δ revealed that 

EPA occupied the ligand-binding pocket in two conformations, completely burying it 

within the domain, further stability resulted through hydrogen bonds and 

hydrophobic interaction, which would not be present if the fatty acid was 14 carbons 

or fewer.  In addition longer chain fatty acids, greater than 20 carbons (i.e. DHA 
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C22:6) would not fit the binding pocket and thus be destabilized by solvent.  

However DHA is shown to bind PPAR γ with greater affinity than AA and EPA [24], 

giving complex examples on how fatty acids may modulate immune responses via 

PPARs using very different mechanisms, hence resulting in varied end products, 

with potential to affect immune responses.  Thus, binding affinity is not a good 

predictor of receptor activation. 
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SECTION 1.3 Probiotic bacteria 

 

1.3.1 Commensal bacteria 

The human body contains more commensal bacteria than its own cells.  In the colon 

alone an estimated 2 x 1013 bacteria are present, most of which are uncultured and 

unknown.  Bacteria are the majority of microorganisms present in the colon and are 

dominated by phyla; Firmicutes, Bacterioidetes, Proteobacteria and Actinobacteria.  

They survive on polysaccharides and other left-overs from the diet, that reach the 

colon and in return food may confer benefits to the host, including competitive 

exclusion, whereby occupying space and taking nutrients that would otherwise be 

available to pathogenic bacteria. 

 

Probiotics are defined as “ live microbes that when administered in adequate 

amounts confer a health benefit on the host” [25]. In infants Bifidobacterium is 

mostly dominant, particularly in breastfed babies, until about the age of four when 

they have become a minority group found in faeces.  The colonisation of the gut in 

early life has been associated with immune development, since children that had 

numerous antibiotic treatments tend to have a Th2 cells skew, leading to a 

proneness of allergies [26-27] 

 

1.3.2 Bacterial adherence to epithelial cells 

 

Commensal bacteria living in the colon provide a symbiotic relationship with the host 

through: metabolism of nutrients and organic substrates, development of intestinal 

epithelium, resistance of pathogens and a range of other mechanisms [28].  

However, problems can occur i.e. in Crohn‟s disease where an inappropriate 

immune response to the bacteria results in inflammation of the mucosa [29]. 
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Up to now very little work has been published on commensal adhesion to the colonic 

mucosa.  However we can deduce likely mechanisms or interaction between 

bacteria and the epithelial layer from work published on pathogens in the small 

intestine. The epithelial layer provides a barrier linking the outside and internal 

environment of the human body.  If antigens do in fact manage to cross the 

enterocytes of the epithelium while being presented signals are sent producing T 

cell activation, cytokine production and release, thus aiding protection from antigen 

damage.  The barriers to antigen adsorption in the intestine are either non 

immunological or immunological mechanisms, such as mucus and IgA respectively 

(figure 3).  Commensals compete for substrates and receptor binding along the 

colonic epithelium and the binding differs widely between species of bacteria. 

However, many pathogenic bacteria share similar binding factors with certain 

commensals.  An example of commensal bacteria inhibiting a pathogen is 

Bifidobacterium profringins that compete for mannose sugar with pathogenic E.coli 

in attachment to the epithelium [30]. 

 

Bacterial-epithelial cross talk is defined by the interaction between epithelial cells, 

(particularly enterocytes) and micro-organisms.  To colonise bacteria must adhere to 

epithelial cells, for example to glycoconjugates on their cell membrane (figure 4).  

The glycoconjugate is often a receptor for a physiological ligand, such as a growth 

factor that‟s domain is linked to a signal transduction pathway and can activate 

genes through transcription factors.  Therefore by co-opting the receptor the 

bacteria can facilitate its translocation into the host‟s intravascular space, resulting in 

inflammation and tissue destruction. 
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Figure 3 Barriers of the gastrointestinal tract used to prevent bacterial and antigen 
invasion, such as mucus containing IgA and M antibody.  Subsequently methods of 
defence are illustrated following bacteria contact, giving protection if bacteria 
breakthrough the external barriers set in place.  These will predominately lead to T 
cell activation and phagocytosis of invading bacteria. 

 

Figure 4 Glycoconjugate receptors of human cells can act as adhesion molecules 
for bacteria.  Following the attachment bacteria could facilitate its translocation into 
the host resulting in tissue destruction. 
 

Glycoconjugate 
receptor

Bacteria
Binding to 
receptor
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Bacterial components also interact with enterocytes to produce pathogenic 

responses e.g. lipopolysaccharide components (endotoxin) of gram negative cell 

walls. Endotoxin can interact with enterocytes to activate transcription and 

translocation of inflammatory cytokines i.e. TNF and IL-8, which help recruit 

neutrophils, thus leading to the inflammatory response.  The endotoxin signals 

induce a pathway leading to transcription factor NF-κB that leads to an increase in 

mRNA transcription for these cytokines. 

 

Buck et al. [31] studied Lactobacillus acidophilus for its adhesion factors in the 

gastrointestinal tract by inactivating surface layer genes and measuring the rate of 

attachment.  A fibronectin binding protein was found to reduce attachment 

significantly but not completely, suggesting another binding protein is involved.  This 

was found to be a mucin binding protein, which alone would most probably be easily 

washed away with the flow of mucus but along with the fibronectin binding protein, 

produces good binding affinity, hence taking space that pathogens can not access.  

It is also thought that the mucin binding may be essential to the host‟s realisation of 

certain properties that distinguishes many commensals as beneficial bacteria. 

 

Different strains of bacteria possess different binding abilities. This new area of 

research is currently limited to investigating a few bacterial types and a limited 

number of binding mechanisms.  The diversity of the binding mechanisms of 

bacteria makes their study complex. However it is this diversity in commensals that 

leads to an advantage in their inhibition of a wide range of pathogens aiming to 

adhere to host cells. 

 

1.3.3 Lactobacilli 

Lactobacilli belongs to the phylum Firmicutes, class Bacilli, order Lactobacillales and 

family Lactobacillaceae.  They are gram positive, rod shaped bacteria.  Their optimal 
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growth conditions are between 30 and 40°C in temperature and a pH between 5.5 - 

6.2. These anaerobes can tolerate an aerobic environment. Most lactobacilli have 

one or more plasmids ranging from 1.2 - 150 kb.  They contain genes for lactase 

metabolism, drug resistance and bacteriocin synthesis.  Lactobacilli prefer to grow in 

habitats with high levels of soluble carbohydrates, protein breakdown products and 

vitamins, in addition to low oxygen.  The production of lactic acid reduces the pH of 

the surroundings which can suppress the growth of other bacteria.   

 

Lactobacilli are commonly used as probiotics, because of their safety, functional and 

technological aspects.  Many lactobacilli strains are considered commensal 

microorganisms with no pathogenic potential.  For the majority of their commensal 

functions they must adhere and colonise well, under a particular physiological 

condition present in the designated area. These aspects have been closely related 

to their immune effects due to the prolonged contact with the lymphoid tissues.  

Their antimicrobial protection including production of bacteriocins, as well as lactic 

acid and hydrogen peroxide is thought to be important in preventing pathogen 

colonisation.  The ability to adhere to epithelial cells has been shown to be an 

important factor in colonisation of mucous membranes, through involvement of cell 

surface glycoproteins, carbohydrates and lipoteichoic acid [32]. Increasing evidence 

has indicated that lactobacilli can modulate immunity by enhancing the local and 

systemic immune function [33-36]. 

 

1.3.4 Bacterial recognition by host 

 

Toll-like receptors (TLRs) are important in immune activation by bacteria in the 

colon.  They are transmembrane receptors that recognise repetitive patterns termed 

pathogen-associated molecular patterns (PAMPs) present on a diverse range of 

microbes, including gram positive and gram negative bacteria (figure 5). There are 
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10 TLRs identified to date that have been discovered in mammals, each with 

differing recognition products.  Most commonly studied are TLR 2,3,4,5 and 9 whose 

recognition products are shown in table 1[37-46]. TLR4 signalling involves CD14 

and MD-2 (lipopolysaccharide binding protein) and mice deficient in either protein 

are resistant to the effects of injected lipopolysaccharide (LPS)[47]. Combinations of 

TLRs are used to recognise certain PAMPs, for example TLR2 and TLR6 to 

recognise peptidoglycan and TLR1 and TLR2 to recognise triacylated bacterial 

lipopeptide, although in the case of over-expression systems TLR1 can inhibit TLR2 

and TLR4[38, 48]. TLRs 2 and 4 can be inhibited by Tollip, an inhibitory adaptor 

protein that interferes with IL-1R-activated kinase (IRAK) [49].  Thus could be a 

possible mechanism used by commensal bacteria in allowing tolerance towards 

them in the human colon. TLRs are mainly expressed on innate immune system 

cells such as macrophages and dendritic cells; their activation results in the TLR‟s 

attached cell becoming mature, thus enhancing adaptive immunity via an increase in 

antigen uptake, cell surface presentation and cytokine production[50]. 

 

Table 1 Toll-like receptors and the foreign particles they detect. 

TLR2 Gram positive products (LTA, PGN, STFa) and mycobacterial 

pathogens 

TLR3 Double stranded viral RNA 

TLR4  Lipopolysaccharide (Gram negative bacteria) 

TLR5 Flagella 

TLR9 Bacterial DNA 

aLTA-Lipotechoic acid, PGN-Peptidoglycan (Requires TLR6 also) and STF-Soluble 
tuberculosis factor 
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Figure 5 The differences between gram positive and gram negative bacterial 
envelopes, to show that different receptors are often required to label and possibly 
destroy the varying types.  The most distinguishing feature of gram negative 
bacteria are the lipopolysaccharides that can initiate immune response on 
attachment to many immune cells, although this layer can give protection against 
lysozymes and penicillin.  Gram positive bacteria differs from gram negative bacteria 
predominately through its contents of teichoic acid and lipoteichoic acid, which can 
be used as chelating agents or for adherence to immune cells. 
 
Signalling is mostly documented to be through the Toll/IL-1R domain leading to the 

TIR domain recruiting TIR-containing adaptor molecules, including MyD88.  This 

recruits IRAK and then TRAF6 making up the IKK complex.  The subunits of the 

complex phosphorylate I-κB-α that inhibits  NF-κB subsequently activating the 

molecule that translocates from the cytoplasm to the nucleus and drives expression 

of pro-inflammatory genes, such as cytokines, for example  neutrophil 

chemoattractant IL-8 [51] (figure 6).   

 

Figure 7 demonstrates a variety of pathways in which the TLRs can signal, showing 

that TLR4 also can lead to a MyD88 independent pathway.  Eisenbarth et al. [52] 

found low LPS can cause a T helper 2 cell (Th2) response of IgE and an increase of 

IL-4, IL-5 and IL-13 but high LPS gives a T helper 1 cell (Th1) response with 
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neutophils and IgG2a.  This research was supported by Kaisho et al. [53] that 

discovered the MyD88 independent pathway that may be the instruction for the Th2 

development for response to LPS, whereas the MyD88 dependant pathway results 

in the Th1 response.  Mast cells are an example of cells that respond to Th2 

cytokines when TLR4 is exposed to its ligands[54-55].  It must be noted that TLR 

activation predominately favours a Th1 response as will be described later.  

Kalliomaki et al. [56] and Dabbagh et al. [57] proposed that this contradictory effect 

of responses can still be beneficial to prevent atopic disease (produced by an 

enhanced Th2 response,) since Th2 cytokine IL-10 does down regulate Th2 and 

Th1 responses that will not only halt allergic disease, but also could be valuable for 

inhibition of autoimmune disease (produced by a predominant Th1 response). 

 

 

 

Figure 6 TLR4 signalling, leading to the recruitment of MyD88 through the TIR 
domain. MyD88 aids IRAK and TRAF6 to form IKK complex resulting in the 
phosphorylation of  I-κB-α that subsequently inhibits NF-κB. The result is expression 

of pro-inflammatory genes via NF-κB translocation to the nucleus. (Takada et al. 

[58]) 
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Figure 7 Alternative pathways of TLR signalling that can bypass MyD88.  The TLR4 
signalling through the TIR domain leads to recruitment of TRAM followed by TRIF.  
As shown TLR3 also signals through TRIF, and both TLR 3 and 4 result in induction 
of type I interferons (IFNs) and IFN-inducible genes via IFN regulatory factor 3 
activation. A recently identified adaptor molecule, Toll-IL receptor domain
containing adaptor protein/MyD88 adaptor like, may participate in the MyD88-
independent pathway[59]. (Takada et al. [60]) 
 

TLRs trigger the secretion of antimicrobial peptides [61] and provide interactions 

between the innate and adaptive immune response by attracting adjacent lamina 

propria immune cells for the adaptive responses [62].  It has been more recently 

noted that commensally-derived TLR signalling can maintain intestinal homeostasis 

via enhanced barrier function, promotion of intestinal epithelial cells (IECs) 

proliferating and differentiating and a possible role in repair mechanisms following 

colonic cell injury [63].  The colonic IECs produce a low constitutive expression of 

key TLRs 2 and 4, but also TLR4s cofactors CD14 or MD-2, therefore limiting 

excessive TLR signalling [64] .  Another protection from the stimulation from the 
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normal microfloral environment is that TLR5 is expressed only on the basolateral 

part of surface epithelial cells in the gut, thus requiring flagellin translocation or 

bacterial penetration of the epithelial barrier for stimulation [65]. 

 

Following TLR activation CD4+ cells may differentiate into either Th1 or Th2 cells as 

depicted in figure 8. Subsequently Th1 cells produce TNF-α, TNF-β (both lead to 

colitis), ref A, IL-2, IL-12 and IFN-γ. IFN-γ promotes TLR4 and MD-2 signalling, 

leading to IL-8 secretion in the presence of gram negative LPS, and the subsequent 

inflammation that can also inhibit Th2 proliferation.  Th2 cells produce IL-4, IL-5, IL-

6, IL-9, IL-13 and IL-10, that inhibits Th1 function which can be beneficial in halting 

colitis [66]. Th1 cells give immunity against intracellular pathogens and are important 

for the activation of macrophages [67], whereas Th2 cells result in increased 

antihelminthic immunity, elevated allergic inflammation and production of IgE and 

IgG1, although IL-10 acts by suppressing atopy by anti-inflammatory actions [68].  

 

 Mueller et al. [69] observed cytokine affects in TLR mRNA expression. Th2 

cytokines IL-4 and IL-13 gave a marked decrease in TLR3, TLR4 and MD-2 in T84 

and HT29 cells. Also a 23 % and 29 % decrease in TLR2 by IL-4 and IL-13 was 

observed respectively, therefore giving a potential role in desensitising cells to viral 

RNA, gram negative bacteria and gram positive.  This could be a positive effect in 

probiotic binding but can make the cell susceptible to bacterial and viral infection. 

However, the experiment showed that IFN-γ (Th1) increased mRNA expression of 

TLR2, TLR3, TLR4, TLR5 and MD-2 in T84 and HT29 cells, hence the potential of 

increasing sensitivity to bacteria and viruses. Highlighting that the ratio of Th1 to Th2 

is important to obtain the correct efficiency of TLRs, so as to benefit both, tolerance 

to probiotics yet sufficient immunity against pathogens.  In fact once competition 

between IL-4 and IFN-gamma was studied, IL-4 could almost completely attenuate 



23 
 

IFN-γ up regulation of TLRs and MD-2 mRNA. Comparison of TLR4 protein in IL-4, 

IL-13 but not IL-5 primed T84 and HT29 cells reflects TLR4 mRNA expression; the 

reasoning behind the lack of response by IL-5 is possibly due to absence of IL-5 

receptor on the cell lines [69]. 

 

 

Figure 8 T Helper Cell Differentiation into either T helper cell 1 or 2, each producing 
a different set of cytokines.  Each cytokine has its own specific roles but many roles 
overlap between cytokines so they can act together, such as the T helper 1 
cytokines all give immunity against intracellular pathogens.  IFN-γ has a highly 

important role in detection of gram negative bacteria via increasing TLR4 signalling 
giving rise to inflammation and removal of the bacteria from intracellular 
compartments. 
 

Signal transducers Stat 4 and 6 are essential in differentiating Th1 or Th2 cells as 

shown in figure 9.  IL-12 stimulates stat 4 to produce IFN-γ producing cells that lead 

to Th1 cell differentiation subsequently inducing more IFN-γ which can suppress Th2 

differentiation.  IL-4 leads to transcription of stat 6 leading to Th2 cell differentiation 

and blocking IFN-γ [68].   TLR activation increases Th1 response due to the 
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production of IL-12, IL-23 and IL-27 that also inhibits Th2 responses [70].  It has 

been found that MyD88 and Rip2 are important components in pathways leading to 

the Th1 response. Bacterial DNA and DNA containing unmethylated CpG motifs act 

as adjuvants to stimulate Th1 responses and this is through TLR9 activation that 

leads to CD4+ T cell stimulation to increase IFN-γ in response to the antigenic 

stimuli and therefore elevate Th1 cell differentiation [71]. 

 

TLR activation leads to antigen presenting cell (APC) maturation and expression of 

CD80/CD86, which are members of the B7 family that interact with CD28 on T cells.  

These are critical for the co-stimulation signal for activation and differentiation of 

naïve CD4+ T cells plus accelerated APC maturation and activation in an indirect 

manner where CD154 (a CD40 ligand on CD4+ T cells), binds to APC‟s CD40 

resulting in APCs production of cytokines that increases it‟s own expression.  APCs 

particularly dendritic cells can favour CD4+ differentiation into Th1 or Th2 cells 

dependant on cytokine milieu. Il-12, IL-23 and IL-27 give rise to Th1 cells producing 

IFN-γ and IgG2a, while IL-4 and other poorly understood factors produce Th2 cells. 

TLR‟s predominately induce IL-12 cytokine production and thus Th1 cell types are 

favoured [57].  
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Figure 9 Signal transducers involved in T helper cell differentiation.  Certain 
cytokines produced by the specific T helper cell type play a role in their 
differentiation, for example T helper cell 1 (Th1) cytokine products IL-12 and IFN-γ.  
The pathways are linked by the inhibitory action of Stat 6 on IFN-γ resulting in more 

T helper 2 (Th2) and less T helper 1. 
 

More recently other molecules have been shown to be involved in the innate 

immune response such as nucleotide-binding olligomerisation domain (Nod) 

molecules. To date, the cytoplasmic surveillance molecules Nod1 and Nod2 have 

been discovered, both recognising peptidoglycan (PGN) that exists on the outer 

layer of gram positive bacteria but also under the outer membrane of gram negative 

bacteria.  Nod1, present in intestinal epithelial cells[72] detects muropeptide PGN 

that presents diaminopilemicacid (DAP) which is derived from gram negative 

bacteria. Nod2, present in macrophages, dendritic cells and induced on 

enterocytes[72], detects muramyl dipeptide (MDP) fragment of PGN that derives 

from both gram positive and negative bacteria [73].  The stimulatory activity of MDP 

is poor and a vehicle such as mineral oil or lipid modification is required to enhance 

its activity and these factors possibly aid the internalisation of the molecule into cells 

for interaction with Nod2[73].  Patients with Crohn‟s disease have been found to lack 
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Nod2 and possibly Nod1, a loss of this surveillance activity may result in the inability 

of local responses, therefore intestinal mucosa cannot control bacterial infection 

resulting in systemic response and aberrant inflammation [74].  For infection, a 

pathogen must gain access to the internal environment of the host by invading 

tissue or closely interacting with the cells.  In the colon it has been previously 

discussed that there is a low level of bacterial detection due to the requirement of 

commensal bacteria colonisation.  These alone provide a variety of mechanisms to 

eliminate pathogenic bacteria, but in the event of pathogen invasion the Nods have 

an important role in the detection of them.  Macrophages and dendritic cells (DCs) 

within the submucosa are surveillance cells ready to engulf bacteria that cross the 

epithelial barrier and destroy the microbes. If this mechanism fails the systemic 

immune response is activated [73]. 
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SECTION 1.4 Interactions between Polyunsaturated fatty acids and lactic acid 

bacteria. 

 

1.4.1 Current evidence 

 

Previous studies have shown that PUFAs can modify adhesion of lactobacilli in the 

intestinal mucosa.  In particular Bomba et al. showed that diets fed to gnotobiotic 

piglets, containing high n-3 PUFAs, increased adhesion of inoculated Lactobacillus 

paracasei  to jejunal mucosa [75].  In addition Ringo et al. showed n-3 linolenic acid 

fed arctic charr have a higher frequency of intestinal lactic acid bacteria [76].  Both 

studies suggest that PUFAs may affect adhesion sites of lactobacilli by modifying 

the lipid composition of the intestinal epithelial cell membrane.  Studies by 

Kankaanpaa et al. showed an inhibitory effect of PUFA on the adhesion of many 

Lactobacillus sp. However, one strain, Lactobacillus casei Shirota, adhered better to 

human intestinal epithelial cells grown with n-3 α linolenic acid [77].  Kankaanpaa et 

al. suggest that within the genus of lactobacilli there are many strain specificities and 

there is a possibility that the beneficial effects of PUFAs on the adhesion of 

lactobacilli are not effective in human epithelial cells.  Broiler chickens are another 

model used for studying the effects of PUFAs on lactobacilli and studies have shown 

that diets high in PUFAs can change Lactobacillus sp. profile in the intestinal 

contents[78].  This evidence supports the hypothesis that adherence of lactobacilli is 

strain specific and some adhere better to epithelial surfaces following PUFA 

exposure. 

 

In humans it is estimated that 2 % of ingested PUFAs reach the colonic 

contents[79], thus they will have direct contact with the resident bacteria.  

Kankaanpaa et al. showed that direct interaction of n-3 PUFAs with lactobacilli 

inhibited their growth, although n-6 arachidonic acid in low concentrations (5 µM) 
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promoted growth[77]. Additional studies have also shown that: bacterial strain, fatty 

acid concentration and fatty acid type, all affect the result of interaction of PUFAs 

and lactic acid bacteria.  For example n-6 linoleic acid inhibited L. reuteri ATCC 

55739 growth, while there was no effect on L. reuteri ATCC 23272 [80]. 

 

In conclusion, there are only a few studies to support the varied effects of PUFAs on 

lactic acid bacteria, either in relation to survival or adhesion.  More strains need to 

be studied to give a clearer picture of strain specificities and the mechanisms of 

PUFAs actions need to be explored.  For example, looking at the uptake of fatty acid 

in human epithelial cell membranes and also experimenting on other avenues that 

could influence an effect of PUFAs on bacteria, such as immune modulation. 

 

1.4.2 Modification of immune responses 

 

Probiotics have been shown to reduce dietary antigens and allergens by 

degradation and modification, thus leading to the Th1/Th2 shift to move towards Th1 

(figure 10) [81].  This alteration towards Th1 domination is aided by probiotics ability 

to increase TGF-β that can suppress Th2 cells in the colon and induce oral 

tolerance (beneficial to probiotic survival when in large numbers)[68], but can also 

suppress TNF-α (Th1 cytokine) aiding in the prevention of increased intestinal 

permeability, thus inhibiting pathogen  invasion. This is modulated further by 

probiotic enhancement of tight junctions that can increase protection from 

pathogens gaining entry to cells beneath the epithelial layer of the colon [82].  An 

elevation of IgA is a response to probiotic leading to protection against pathogens 

on the mucosal surface [83].  Probiotics produce an anti-bacterial substance, and 

compete for enterocyte adherence with pathogens, explaining protective 

mechanisms in which probiotics enhance the immune function [82].  In newborns, 
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Th2 responses are dominant; therefore probiotics are important to move the shift 

towards Th1 responses to give elevated pathogenic immunity. 

 

 

Figure 10 Probiotics shift T helper cells towards Th1 via an increase in TGF-β 
subsequently inhibiting Th2 cell differentiation, leading to a decline in inducer Stat 6 
that can inhibit IFN-γ and subsequently stop Th1 cell differentiation.  Alternatively, a 

decrease in dietary antigen and allergens through probiotic innate surveillance will 
lead to the production of more Th1 cells as Th2 cell production will not be required 
to remove them. 
In contrast, Das et als. reviewed [68] PUFAs effects on the Th1/Th2 shift and found 

that γ-linolenic and AA, both n-6 fatty acids, and EPA and DHA, both n-3 fatty acids, 

suppressed immune response by reducing cytokines IL-1, IL-2 and TNF-α, 

predominately in blood cells[84-85].  However, this effect is enhanced in the EPA 

and DHA treated cells.  Thus n-3s are shown to induce immune suppression more 

than n-6s.  This effect is verified when considering individual PUFAs.  AA 

significantly increased pro-inflammatory leukotriene B4 and prostaglandin E2 but 

had no effect on Th1 cytokines whereas n-3 fatty acids decrease TNF-α by 

peripheral blood monocytes and reduction of inflammatory mediators thromboxanes 
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B2 and B3, but n-6 gave no change [86].  EPA and DHA augmented TGF-β that, as 

mentioned previously can suppress the Th2 cytokines, but also suppresses TNF-α 

(Th1 cytokine) biosynthesis and release[87], hence giving comparable effects 

between long chain polyunsaturated fatty acids (LCPUFAs) and probiotics, through 

an ill-defined characterisation of the Th1/Th2 shift.  Even though the many other 

factors involved mostly favour the fact that probiotic will give a Th1 shift while n-3 

PUFAs give a Th2 shift in theory.  This may be problematic when considering 

immunity against pathogens via Th cell differentiation, but there is protection through 

PUFAs antibiotic-like actions [88].   Interesting, evidence summarised in Calder et 

al. [89], showed fish oils decrease inflammatory eicosanoids and adhesion 

molecules i.e. VCAM1, possibly revealing a reason for n-3 fatty acid elevation of 

probiotic adhesion via a decrease in cytokines.  Although, if VCAM1 were to be 

shown to be a factor in certain probiotic adhesion it may have the opposite effect. It 

is important to note that this work was in endothelial cells and that the effects maybe 

very different in the colonic mucosa as Lima-Storegjerde et al. [90] previously 

described. 

Figure 11 N-3 PUFAs shift T helper cells to Th2.  EPA and DHA fatty acids 

suppress Th1 cytokines IL-1, IL-2 and TNF-α, also inflammatory mediators; 

thromboxane B2 and B3.  Although n-6 PUFA’s increase pro-inflammatory 
leukotriene B4 and prostaglandin E2.  The elevation of TGF-β can inhibit Th2 cell 
differentiation, although there is evidence that it can also inhibit TNF-α biosynthesis 

and release.  
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Although, probiotics and LCPUFAs have been shown to act together by promoting 

the adhesion of probiotics to IECs,  this area is a new field of research. However, 

Kankaanpaa et al. [77] demonstrated elevated adhesion of Lactobacilli casei by α-

linolenic (n-3) fatty acid.  The increased adhesion to intestinal mucosal cells may 

enhance development of gut-associated lymphoid tissue by direct interaction and by 

probiotics and LCPUFAs ability to augment growth factors, such as TGF-β and 

various cytokines. Overall both are necessary for gut development and physiological 

balance between Th1 and Th2 responses[68]. 

 

Prebiotics are becoming increasingly studied as the non-digestible oligosaccharides 

fermented by probiotics.  These augment the levels of short chain fatty acids that 

again elevate IFN-γ (Th1 cytokine) [91], up regulate TLR expression and are an 

energy source for colonocytes, thus aiding in maintenance of the intestinal 

epithelium [92].  Another important role is their ability to decrease the pH of the 

environment, which favours the survival of probiotics in the colon, therefore on 

administering probiotics it is equally as important to include prebiotics to raise the 

potential beneficial effects. 

  

There is currently a focus on research investigating the recognition of probiotic 

bacteria and their protection from our immune systems, as yet poorly understood 

tolerogenic mechanisms.   At birth the immune system is compromised, one reason 

being delayed maturation of CD4+ cells and  inhibition of self-reactive T cells by α-

fetoprotein present in the foetus.  In neonatal life Th2 cells are dominant, thus 

humans lack immunity against pathogens at this time of life [93].  It is therefore 

possible that when Th1 cells develop the microflora has already become resident 

and due to adhesions with self cells is also recognised as self.  The innate immune 

response will ignore self cells unless they change their surface structure and the 
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adaptive immune response allows immature clones of lymphocytes with antigen 

receptors resulting in an unresponsive state on interaction with an antigen.  This 

gives reasoning to the fact that it is hard to modulate microflora content during later 

life supported by long-lived T cell memory [94], although there are ways of gaining 

acquired tolerance.  One path is via active suppression by Th2 cells due to the 

production of inhibitory cytokines TGF-β and IL-10. Since probiotics lead to TGF-β 

production, this is an interesting potential mechanism by which probiotics can 

survive host immune response.  Another route of acquired tolerance is by 

administering high doses of antigen leading to T cell tolerance [95], this explains the 

binding of probiotics by a high dose live yogurt for example [96].  This is still thought 

to be short lived giving protection for only up to one week, thus finding ways to 

increase their adhesion would be useful in enhanced probiotic protection.   

 

As discussed previously (section 1.3.4), TLRs are used for recognition of bacterial 

components and thus will not distinguish between probiotics and pathogenic 

bacteria. Fortunately TLR2 and TLR4 are inhibited in the colon by Tollip [49] 

allowing avoidance of immune response towards probiotics. Although Tollip is not 

present in the lamina propria with macrophages expressing these receptors, 

therefore if a pathogen invades the epithelial layer recognition can still occur by 

TLRs. 
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SECTION 1.5 Cell lines 

 

1.5.1 Isolation and characterisation 

 

Development of normal colon cell lines has been difficult, due to lack of viability and 

loss of differentiation markers [97].  This has resulted in the wide use of colorectal 

tumour cell lines that most importantly have immortality. The first human colon 

carcinoma cell line to be developed was HT29 [98] and since then many lines have 

been developed from human carcinomas, giving a highly diverse range of cell type 

and differentiation.  By varying culture conditions some of the cell lines were able to 

express differentiation characteristics of mature intestinal epithelial cells, e.g. mucus 

secretion (HT29-MTX) [99].  These cell lines are important models for intestinal 

biological research and provide a basis for many studies since they are relatively 

inexpensive and produce replicable results.  Currently they are used extensively in 

experiments involving adhesion and penetration of bacteria and viruses.  Although, 

in many cases studies will need to be followed up by primary cell line, animal 

models or human testing before results can be verified, the tumour models can give 

a good idea of what is worth focusing future research on and what may benefit 

humans or animals. 

 

1.5.2 Caco-2 cells 

 

Caco-2 cells were isolated from a well differentiated tumour; however in early culture 

the cells remain undifferentiated.  Once confluent, the monolayer become polarised 

and are joined by tight junctions that result in resistance much higher than that of the 

normal colon [100].    As cells differentiate apical microvilli become well developed 

and cells produce disaccharides and peptidases commonly associated with small 

intestinal cells.  The cell line is of particular interest to those studying transport 
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properties, since Caco-2 cells transport ions and water to the basolateral membrane 

[101]. 

 

1.5.3 HT29 and HT29-MTX cells 

 

HT29 cells were isolated from a human adenocarcinoma.  With glucose and serum 

supplementation as standard culture conditions they remain undifferentiated and 

grow as a multilayer of un-polarised cells, often described as exhibiting human fetal 

colon analogies [102-103].   However, changes in culture condition can lead to 

differentiation, for example treatment with the anticancer drug methotrexate (MTX) 

with increasing concentration up to 10-7 mol/L results in a mixed population of 

adsorptive and goblet cells.  Higher concentrations (10-6 mol/L) result in the goblet 

cells secreting gastric mucins, whilst 10-4 mol/L results in differentiation from mucus 

to adsorptive phenotype.  The changes have been linked to amplification of a gene 

encoding the target enzyme for MTX, named dihydrofolate reductase [104]. 

 

 1.5.4 Innate immune responses 

 

In the normal healthy colon mRNA levels of TLR3, TLR4, TLR5 and TLR7 are 

expressed [105] and a low level of mRNA for TLR2 is reported expression of the 

protein does not occur in IECs due to the presence of Tollip. However, 

macrophages in the lamina propria do express TLR2; thus allowing adherence of 

gram positive bacteria to IEC while maintaining protection if the pathogen enters the 

cells to reach lamina propria. Inflammation has been shown to increase levels of 

TLR2 and TLR4 by decrease of TLR1 rather than change in mRNA expression 

[106].  It is important to note that mRNA levels do not always match the level of the 

protein expressed and are therefore not a realistic view of TLR activity. 
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Experimental lines HT29 and Caco-2 revealed differing levels of TLR mRNA. The 

undifferentiated HT29 cell line increased TLR2 mRNA in response to gram positive 

bacteria, TLR3 with Bifidobacterium bifidum and TLR 4 with Escherichia coli faecalis 

only, indicating possible interference with probiotic bacteria adherence.  Since the 

HT29 cells have been compared to newly formed crypt cells [103] it is hypothesised 

that probiotics only have an effect in newly formed cells and no later effects as 

shown via Caco-2‟s more mature cells. Caco-2 showed no significant difference in 

TLR 1, TLR2, TLR3 and TLR4 mRNA levels and even a slight decrease in TLR 2 

and TLR4 on addition of a selection of bacterium. Also it is important to note that in 

this experiment only live bacteria affected the HT29s [103].  Melmed et al. [106] 

showed no presence of TLR2 protein expression in the HT29 cell line. Therefore it is 

likely there are inhibitors of TLR2 in HT29 as in human IECs, again showing they 

are potentially more similar and a better line to study for TLR work in the colon.  

However, Caco-2 showed that TLR2 protein was present with a lower TLR1 level, 

thus this is likely to be the important receptor for bacterial immune recognition.   

Melmed et al. [106] also compared Caco-2 cells to the cells of the small intestine 

while HT29s are similar to colonic cells, thus experimental results demonstrate a 

varied response to bacteria along the intestine. 
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SECTION 1.6 Objectives 

 

The project aims to assess the impact of dietary PUFAs such as those found in plant 

and fish oils on probiotic bacterial survival in the colon. Probiotic bacteria have been 

shown to be potentially useful in maintaining colonic health and improving mucosal 

immune homeostasis, an effect which may be important in relation to healthy ageing 

as well as ameliorating the symptoms of inflammatory bowel disease (Ulcerative 

Colitis & Crohn‟s disease). PUFAs are also known to be potentially beneficial in this 

respect and so manufacturers may try to combine both ingredients in „functional 

foods‟ but we know nothing about how these two factors interact.  

 

Two in vitro approaches will be used in these studies. Firstly, the impact of 

physiologically relevant doses of dietary PUFAs on growth rates of different strains 

of lactobacilli will be measured using turbidity measurements (Bioscreen). Secondly, 

the same strains of lactobacilli will be co-cultured with human colon cell lines (HT29, 

MTX-mucin secreting & Caco-2). Confluent cell cultures will be pre-treated with a 

range of different PUFAs to modify cell lipid profiles prior to exposure to lactobacilli 

and measurement of bacterial cell adhesion and mammalian cell cytokine release 

will be measured. Data from gas chromatographic analysis of PUFA incorporation 

into human and bacterial cells will be used to gain further insight into how they might 

influence the end-points being assessed. Thus this study is particularly novel in that 

it investigates the three way interaction of: host-bacteria, diet-host and diet-bacteria 

in considering the colon as a complex system integrating knowledge from three 

different biological specialities (figure 12). 
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Figure 12 The interactions between dietary PUFAs, prebiotics, commensals and 
colonic mucosa with regards to systemic health. 
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CHAPTER 2: Methods 

 

2.1.0 Cell culture 

 

2.1.1 Maintenance of cell stocks 

 

Stock cultures of HT29◊, HT29-MTX† and Caco-2◊ cells (European collection of 

cultured cells◊ and Dr. T. Lesuffleur, INSERM, France†) were grown in 75 cm2 

flasks at 37°C with 5%CO2/95% atmospheric air at constant humidity in RPMI 

+Glutamax (Invitrogen) supplemented with 10%v/v foetal calf serum (FCS) (Sigma-

Aldrich) and 2%v/v streptomycin penicillin (Invitrogen). The volume of medium in 

each flask was 20 ml and was changed every two days.  Cells were used between 

passages 1-10 from purchased stocks. 

 

2.1.2 Cell passaging and seeding 

 

Cell lines were passaged at 5-7 days at 80-90% confluence by removing medium 

from cells and adding 6 ml of 1xTryspin EDTA (Invitrogen).  Cells were then 

incubated at 37°C for 5 minutes and 1xTryspin EDTA was deactivated by 6 ml RPMI 

+Glutamax.  In the case of HT29-MTX, cells were scraped using a cell scraper after 

tryspin treatment. Cell suspensions were centrifuged at 1000 rpm for 5 min, after 

which the medium was removed. 10 ml fresh medium was added to the resultant 

cell pellet and mixed thoroughly by titration to break-up cell clumps and give a 

homogenous cell suspension.  A 10 µl sample of the cell suspension was then 

counted using a bright line haemocytometer with 4 fields counted and averaged. 

 

The resulting cell count was corrected by multiplying by 10,000 to obtain the amount 

of cells in 1 ml of cell suspension.  The figure was used to calculate the volume of 
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cell suspension needed for a specific cell seeding density in a flask, well plate or 

Transwell.  The µl volume of cell suspension required for a seeding density follows a 

formula of Z= (1000/n) x; where Z =µl volume of cell suspension; n=cell count/ml 

and x= total number of cells required. 

 

2.1.3 Freezing and thawing cells 

Cells were harvested with tryspin (see section 2.1.2) at 70-100% confluency.  900 µl 

cell suspension were aliquoted to a 1 ml cryopreservation vial (Nunc) and 10 % (v/v) 

DMSO added.  Tubes were place in “Mr Frosty” (Fisher Scientific, Leicestershire, 

UK),  and placed in -80°C for 24 h after which tubes were transferred to liquid 

nitrogen. 

Frozen vials of cells were taken from liquid nitrogen and warmed at 37 °C until 

partially defrosted.  Cells were then added to pre-warmed medium and centrifuged 

at 1000 rpm for 5 minutes.  Finally the cells were resuspended in 20 ml fresh 

medium and seeded in a 75 cm2 culture flasks.  

2.2.0 Bacterial culture 

2.2.1 Strains 

 

The following strains were used in this study 

 

 Lactobacillus johnsonii FI9785 (L. FI9785) -Chicken faecal isolate from in 

house culture collection, Institute of Food Research. 

 

 Lactobacillus gasseri ATCC 33323 (L. gasseri) -Human isolate from the 

German Resource Centre for Biological Material. 



40 
 

 Lactobacillus casei R1 (L. R1) -Human faecal isolate from Carmen Nueno-

palop, Institute of Food Research. 

 

 Lactobacillus casei 44 (L. 44) -Human faecal isolate from in house culture 

collection, Institute of Food Research. 

 

 Lactobacillus L2 (L. 2) -Human faecal isolate from in house culture collection, 

Institute of Food Research. 

 

 Lactobacillus L10 (L.10) -Human faecal isolate from in house culture 

collection, Institute of Food Research. 

 

2.2.2 Maintenance of cell stocks 

 

Stock cultures were grown in De Mann, Rogosa and Sharpe media (MRS) 

inoculated at 1%v/v for 9 or 16h at 37°C. 

 

2.3.0 Fatty acid uptake 

 

2.3.1 Cell preparation 

 

HT29, HT29-MTX and Caco-2 cells were grown in 75 cm2 flasks and seeded at 50 x 

104 cell/ml until confluent (approximately 2 days). HT29 cells were treated with 50, 

100, 150, 200 µM EPA, DHA, AA or 10 µl ethanol (control) in RPMI + Glutamax 

(5%v/v FBS and 2%v/v streptomycin penicillin) for 48 h, whilst HT29-MTX and 

Caco-2 cells were treated with 50 µM fatty acid treatments only.  Cells were 

removed with 6 ml tryspin-EDTA, washed in RPMI + Glutamax and pelleted to 

remove RPMI.  Cells were frozen at -20°C until further analysis.  
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2.3.2 Bacterial preparation 

 

L. FI9785, L. 44 and L. R1 were inoculated at 1 % in MRS and grown for 24 h with 

supplementation 20 µM EPA, DHA, AA or oleic acid (OA) 0.06 % ethanol (control)  

in 20 ml bijous. Cells were washed in phosphate buffered saline (PBS) 3 times and 

pelleted.   

 

2.3.3 Total fatty acid extraction 

Lipids were extracted using the Bligh and Dyer method (1959)[107]. Cells were 

homogenised with 0.8 ml water in a 2 ml dram vial (bacterial samples were boiled 

for 10 mins at 100 °C), 1 ml of chloroform/BHT (49:1) and 1 ml of methanol was 

added to each sample and vortexed.  1 ml of water and 1 ml of chloroform/BHT 

(49:1) was added to the dram vial and vortexed.  Samples were centrifuged at 1800 

rpm at 4oC for 5 mins.  The bottom layer was extracted via pipetting and added to a 

pre-weighed 2 ml dram vial. To non-lipid residue 1 ml of chloroform/BHT (49:1) was 

added and centrifuged at 1800 rpm at 4oC for 5 mins and the bottom layer was 

extracted once again into the pre-weighed dram vial. The extract was dried under 

oxygen-free nitrogen and stored at -20 oC. 

2.3.4 Phospholipid extraction 

1 ml of chloroform/BHT was added to the dried extracts (section 2.3.2) and 0.5 ml of 

the mixture was set aside for phospholipid extraction, prior to re-drying the 

remainder for total lipid analysis of samples. The phospholipid fraction was extracted 

using Sep-Pak Light silica cartridge columns (Waters Corporation, Milford, 

Massachusetts, USA). A vacuum tank was assembled with 2 dram vials in place for 

each sample; a syringe was placed above the cartridge column of dram vial 1.  The 

syringe was rinsed with chloroform without allowing it to run dry.  1 ml chloroform 
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was added to the syringe followed by 0.5 ml total lipid extraction sub-sample. 1 ml 

chloroform was added, then 2 ml chloroform/methanol (49:1).  The syringe was 

moved to a 2nd position on the vacuum and phospholipid fraction collected with 2.5 

ml methanol x 2 added to the syringe until dry.  Samples are then dried under 

oxygen free nitrogen and stored at -20 oC. 

2.3.5 Fatty acid methylation 

 

The extracted phospholipid and total lipid samples were converted to fatty acid 

methyl esters (FAMES) by acid methylation prior to gas chromatography (GC) 

analysis[108]. 0.5 ml dry toluene was added to dried lipid extractions and vortexed 

to dissolve lipid.  1 ml of 2 % (v/v) sulphuric acid in methanol was added and the 

solution was heated at 50 °C for 2h. After cooling, 1 ml neutralising solution (0.025M 

KHCO3 AND 0.5M K2CO3) and 1 ml dry hexane was added and the solution was 

vortexed. The sample was centrifuged at 1000 rpm for 2 mins at room temperate 

with low brake and the upper phase collected in a dram vial.  The methylated 

sample was dried under oxygen-free nitrogen at 40 °C and resuspended in 150 µl 

hexane.  The sample was then transferred to a gas chromatography vial and stored 

at -20 °C[109]. 

 

2.3.6 Gas Chromatography analysis 

 

Lipids were quantified by GC using Trace MS plus with GC ultra and triplus 

autosampler (Thermo Electron Corporation).  GC column specifications were 30m x 

0.22 mm x 0.25mm (SGE BPX70) and samples were injected split flow 22 ml/min.  

Program temperature was 140 °C to 200 °C at 5 °C/min and held for 11 mins, then 

to 220 °C at 10 °C/min and held for 5 mins with a helium flow rate at constant 

pressure (1 ml/min).   Samples were calibrated using a standard FAME mix 
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(Supelco PA-USA, F.A.M.E Mix GLC-10) and each peak using mass spectrometer 

data to predict the compound using NIST mass spectral  library with search program 

(version 2.0). Areas beneath each peak were converted to percentages of the total 

area of all fatty acid methyl ester peaks, those found not to be a fatty acid methyl 

ester were omitted from total area.  

 

2.4.0 Method development  

 

2.4.1 Scanning electron microscopy 

 

HT29, HT29-MTX and Caco-2 cell were seeded at 50 x 104 cell/ml in 24 well 

transwell plates until confluent, washed 3 times with RPMI + Glutamax, followed by 

48 hours in RPMI + Glutamax (5 % fetal calf serum only), followed by 4 washes with 

RPMI + Glutamax leaving the final solution on the cells prior to fixing with 3 % 

glutaraldehyde (Agar Scientific, Stansted, UK) in 0.1 M cacodylate buffer (pH 7.2) 

for 2 hours. The fixative was then replaced with 3 changes of 0.1M cacodylate 

buffer. The cells were then dehydrated in a series of ethanol solutions (10, 20, 30, 

40, 50, 60, 70, 80, 90, 3x 100 %) for at least 30 mins in each.  Samples were dried 

in a Polaron E3000 critical point drier using liquid carbon dioxide as the transition 

fluid. The filters were then removed from the wells and attached, using sticky tabs, 

to aluminium SEM stubs (Agar Scientific, Stansted, UK) with the cell layer facing 

upwards. The samples were coated with gold in an Agar high resolution sputter-

coater apparatus. Scanning electron microscopy was carried out using a Zeiss 

Supra 55 VP FEG SEM, operating at 3kV. 
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2.4.2 Bacterial identification using 16S rDNA gene sequencing 

 

To determine the species of faecal isolates L. 44 and L. R1 16S sequencing was 

preformed to compare with the 16S genome database (NCBI, Blast search). 16S 

sequence of the DNA was amplified using 1 µl of each primer 08F 5‟-

AGAGTTTGATCATGGCTCAG-3‟ (forward) 1391R 5‟-GACGGGCGGTGTGTRCA-3‟ 

(reverse) mixed with 1 colony of L. 44 or L. R1 suspended in 39 µl sterile water, 5 µl 

10 x buffer, 4 µl dNTP (2.5mM), 0.2 µl Taq polymerase (Qiagen). A PCR  program 

heated sample at 94°C for 5 minutes, followed by 30 cycles of 94°C for 1 min, 56°C 

for 1 min and 72°C for 11 min.  PCR product was checked by running on an agarose 

gel and purity was assessed by nanodrop. PCR product was cleaned with Qiagen 

RNA/DNA maxi kit following manufacturer‟s instructions prior to sending to John 

Innes Centre for sequence analysis.  Forward and reverse sequences were aligned 

using DNA star (SeqMan NGen v2.1) to generate a consensus, prior to input of the 

sequence into a NCBI Blast search. 

 

2.4.3. Quantification of optical density 

 

To allow estimation of bacterial colony forming units (CFUs), calibration curves were 

constructed to produce equations that would predict bacterial numbers from the 

optical density of a solution in PBS.  L. FI9785, L. gasseri, L. 44 and L. R1 grown for 

16 h were washed 3 times in PBS.  Dilutions of 1/2, 1/4, 1/16 and 1/32 were made 

and optical densities were read.  1/10 dilutions of each previous dilution were made 

until 107 and 3 times 20 µl 104-107 dilutions were added to MRS plates to CFUs.  

These were converted to actual bacterial numbers/ml by the equation Z=50yx; 

where Z= actual bacterial number; y= dilution and x= average of three CFUs.  

Number of bacteria was plotted against optical density read for each bacterial strain 

and the equation for the curve was calculated in Microsoft Excel (2003). 
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2.4.4 Growth in PBS 

 

To check whether bacteria number would not increase during a 3 h incubation 

period in PBS, which was the planned time that subsequent adhesion experiments 

would use for exposure to bacteria, approximately 109 CFUs of L. FI9785, L. 44 and 

L. R1 where added to 1 ml PBS.  Growth was assessed by counting CFUs after 

plating a series of dilutions on MRS plates following 0, 1, 2 and 3 h. 

 

2.4.5 Numbers of washes required to remove un-adhered bacteria 

 

To assess the number of washes required for sufficient removal of un-adhered 

bacteria following 3 h exposure of human colonic cells to bacteria, thus to obtain an 

accurate adhesion number, 109 CFU s L. FI9785, L. 44 and L. R1 in 1 ml PBS were 

added to confluent 24 well plates of HT29 cells for 3 h.  Bacteria were removed with 

2- 5 washes of 1 ml PBS followed by addition of 1 ml of 1% triton (Sigma-Aldrich).  

HT29 cells with un-adhered bacteria were removed with magnetic fleas on a 

magnetic stirrer for 10 mins.  Dilutions were plated on MRS plates to determine cell 

numbers, the wash that gave no significant difference in bacteria number from the 

previous number of washes was taken as the washes required. 

 

2.5.0 Adhesion experiments 

 

2.5.1 Cell preparation 

 

HT29, HT29-MTX and Caco-2 cells were grown in 24 well plates seeded at 50 x 104 

cells/ml until confluent.  Cells were washed in RPMI + Glutamax 3 times to remove 

antibiotic medium and treated with 50 µM EPA, DHA, AA or 0.3 µl ethanol (control) 
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in RPMI + Glutamax (5 % FCS) for 48 h.  Cells were washed in RPMI + Glutamax 3 

times prior to bacterial adhesion. 

 

2.5.2 Bacteria viable count method 

 

L. FI9785, L. 44 and L. R1 were inoculated at 1 % in MRS and grown for 16 h. The 

bacteria were washed 3 times in PBS and diluted to 1 x 109 CFU/ml using optical 

density conversion graphs (method section 2.2.3). 1 ml of bacterial solution in RPMI 

+Glutamax were added to each fatty acid pre-treatment in triplicate and allowed to 

adhere for 3 h of incubation at 37°C.  Bacteria were washed 4 times in PBS followed 

by 1 ml of 1% triton (Sigma-Aldrich) and a magnetic flea.  Plates were placed on a 

magnetic stirrer for 10 mins to remove bacteria and cells.  The bacteria were diluted 

to 107 and plated 3 times 20 µl on MRS plates.  Average CFUs were used to 

quantify bacteria adhered. 

 

2.5.3 Radiation method 

 

L. 44, L. R1 and L. FI9785 were inoculated at 1 % in MRS and grown for 9 h at 37 

°C. 2 ml of all bacteria were then inoculated separately into 8 ml MRS media 

followed by addition of 25 ul tritiated methyl thymidine, concentration 37 MBq/ml (GE 

healthcare) and incubated for 3 h at 37 ° C.  Bacteria were washed 3 times in PBS 

by centrifugation at 4000g for 10 mins, followed by suspension in 1 ml PBS.  

Bacteria were diluted to approximately 1 x 109 CFU/ ml and 1 ml of radioactively 

labelled bacteria were added to 10 ml scintilent and 1 ml Tryspin-EDTA for obtaining 

a total radioactivity of bacteria added to human cells.    

 

 HT29, HT29-MTX and Caco-2 cells were grown in 24 well plates seeded at 50 x 104 

cells/ml until confluent at 37 °C, 5 % CO2 (approximately 48 h), washed in RPMI + 
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Glutamax 3 times to remove antibiotic and treated with 50 µM EPA, DHA, AA or 0.3 

ul ethanol (control) in RPMI + Glutamax (5 % fetal calf serum) for 48 h at 37 °C, 5 % 

CO2.  Cells were washed in RPMI + Glutamax 3 times and 1 x 109 CFUs of tritiated 

labelled L. 44, L. R1 or L. FI9875 in RPMI were added for 3 h and incubated at 37 

°C. Un-attached bacteria were removed by washing in RPMI (4 times) and cells with 

attached bacteria were removed using 1 ml Trypsin-EDTA. Cell/bacterial solutions 

were added to 10 ml scintilent and numbers of bacteria were quantified after 

measurement of radioactivity using a Liquid scintillation analyzer Tri-Carb 27000TR 

(Packard). 

 

2.6.0 Immunomodulatory gene expression in intestinal cell lines 

 

2.6.1 Culture of human cell lines 

 

Human intestinal cell lines; HT29 and HT29-MTX were grown in RPMI + Glutamax 

(10 % fetal calf serum, 2 % Penicillin-Streptomycin) used unless stated otherwise. 

After at least 2 passages cells were grown in 6 well transwell plates seeded at 50 x 

104 cells/ml until confluent. Then washed in RPMI + Glutamax 3 times and treated 

with 50 uM EPA, DHA, AA or 0.6 ul ethanol (control) in RPMI + Glutamax (5 % FCS) 

to apical side and 1.9 x 106 cells/ml peripheral blood mononuclear cells (PBMC) in 

RPMI + Glutamax (5 % FCS) to basolateral side of cells for 12 h. PBMC were 

isolated from 500 ml blood (New Zealand Blood Service, Wellington) pooled for 4 

adult individuals, using 1.077 g/mL Histopaque (Sigma-Aldrich) following 

manufacturer instructions. The apical side of cells were then washed 3 times in 

RPMI +Glutamax without FCS or antibiotics prior to bacterial adhesion. 
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2.6.2 Bacterial culture 

 

Human isolates; L. gasseri, Escherichia coli LF82 (E. coli) and Staphylococcus 

aureus 8325-4 (S. aureus) were grown in MRS, Trypticase soy broth (TSB) or Brain 

heart infusion broth (BHI) respectively. L. gasseri were inoculated at 1 % in MRS 

media and grown overnight and E. coli and S. aureus at 0.1 % into refresh broth.  

Bacteria were then washed 3 times is PBS and re-suspended in 1ml RPMI + 

Glutamax. 

 

2.6.3 Co-incubation of bacteria with human cell lines  

The cell culture assay included three bacterial treatments (L. gasseri, E. coli, S. 

aureus) as well as a no-bacteria control group for each cell line (HT29 and HT29-

MTX), each incubated with four PUFA treatments (AA, DHA, EPA, and ethanol 

negative control).  Each PUFA treatment was represented by three biological 

replicates (wells) in a tissue culture plate. 

After at least 2 passages, cells were grown in 6 well transwell plates seeded at 50 x 

104 cells/ml until confluent. Then washed in RPMI + Glutamax 3 times and treated 

with 50 uM EPA, DHA, AA or 0.06 % ethanol (control) in RPMI + Glutamax (5 % 

Fetal calf serum) to apical side and 1.9 x 106 cells/ml PBMC in RPMI + Glutamax (5 

% FCS) to basolateral side of cells for 12 h. PBMC were isolated from 500 ml blood 

(New Zealand Blood Service) using 1.077 g/mL Histopaque (Sigma-Aldrich) 

following manufacturer instructions. 

   

After pre-treatment with PUFAs for 12 hours, L. gasseri (approximately 1 x 109 

CFUs), E. coli LF82 (approximately 1 x 106 CFUs) and S. aureus (approximately 1 x 

106 CFUs) in RPMI + Glutamax were added to thrice washed cell monolayers 

(apical) and incubated for 3 hours at 37˚C and 5% CO2.  Unattached bacteria were 
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then removed by washing in RPMI 3 times.  Cells were re-suspended in RPMI + 

Glutamax for a further 6 h to allow for mRNA expression of cytokines after which 

supernatants were collected for protein ELISA s for cytokines that have significant 

variation in their mRNA expression.  Cells were removed by applying 300uL RNA 

extraction lysis buffer (QIAGEN –Rneasy Mini Kit) directly onto the cell insert 

membrane.  Samples were stored at -80˚C. 

 

2.6.4 Gene expression analysis 

RNA was extracted using the RNeasy Mini Kit (QIAGEN) in combination with the 

RNase-free DNase kit (QIAGEN) carried out according to the manufacturer‟s 

instructions.  RNA yield and purity (1.8< OD260/OD280 <2.0) was measured using a 

NanoDrop® ND-1000 (NanoDrop Technologies Inc., Wilmington, DE  USA) while 

RNA integrity was determined by gel electrophoresis.  All reverse transcription 

reactions were done using 1 µg of total RNA with the Transcriptor First Strand cDNA 

Synthesis kit (Roche) according to manufacturer‟s instructions for oligo-dT primed 

reactions.  cDNA were stored at -20˚C. 

A sample of cDNA from each sample in a cell line set was pooled and all target 

genes; glyceraldehyde 3-phosphate dehydrogenase (GAPDH), beta actin (ACTB)  

heat shock protein 25 ( HSP 25),heat shock protein 72 (HSP 72), transforming 

growth factor beta (TGF-β1), interleukin-8  (IL-8), tumour necrosis factor alpha 

(TNF-α), interleukin-10  (IL-10),interleukin-2 ( IL-2),  nucleotide-binding 

oligomerization domain 2 (NOD-2), toll-like receptor 4 (TLR-4),  interferon (IFN-γ) 

and  GATA binding protein 3 (GATA-3) were analysed.  Genes of interest were 

selected from those showing fluorescent signals prior to 30 cycles (see below 

information on Real-time PCR techniques used). Target genes analysed include IL-

8, TNFα, TGFβ1, HSP25, HSP75 with reference gene GAPDH.  Primers and primer-

probe combinations (table 1) were designed online using the Universal probe library 
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system assay design centre (Roche Applied Science).  Dual-hybridization probes 

from the Universal Probe Library (Roche Diagnostics) were paired with unmodified, 

desalted primers (Invitrogen New Zealand Ltd).  A manually set-up, 96-well format, 

reverse-transcription qPCR (RT-qPCR) assay was performed using the Lightcycler® 

480 system (Roche) with three reactions (technical replicates) for each sample.   

Each reaction contained 5µL of cDNA template, primers (200mM), probes (100mM), 

and Lightcycler® 480 Probes Master (FastStart Taq DNA Polymerase, 6.4 mM 

MgCl2; Roche).  Real-time PCR parameters are as follows: 10 minutes (0:10:00) 

pre-incubation at 95˚C, 40 cycles of amplification from 95˚C (0:00:10), to 58˚C 

(0:00:20), to 72˚C (0:00:01), followed by cooling at 40˚C (0:00:10).  No-template-

controls included in reverse-transcription reactions and RT-qPCR runs were 

negative for amplification products.  Standard curves for each gene and cell line 

were generated on separate runs using up to 7 serial dilutions (1/10-1/1000) of 

pooled cDNA samples.   
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Table 2  qPCR oligonucleotides and RT-qPCR efficiencies for (i) HT29, (ii) HT29-
MTX, and (iii) Caco-2 assays 
 
Gene name Genebank 

access n° 
 

Primer and probe 
sequences 
 5’-3’ 

Amplicon 
size 

PCR efficiency, 
 slope (y-
intercept) 

GAPDH 
Glyceraldehyde-3-
phosphate 
dehydrogenase 

NM_0020
46.3 

F: 
AGCCACATCGCTCA
GACAC 
R: 
GCCAATACGACCAA
ATCC 
Probe #60: 
TGGGAAG 
 

66 1.942
i
, -3.470 

(20.83) 
1.933

iii
, -3.495 

(23.24) 
1.937

iii
, -3.482 

(16.61) 

HSPA1A 
Heat shock 70kDa 
protein 1a, 
(HSP72) 

NM_0053
45.4 
 

F: 
GGAGTCCTACGCCT
TCAACA 
R: 
CCAGCACCTTCTTC
TTGTCG 
Probe #88: 
GGAGGATG 
 

89 1.841
i
, -3.772 

(24.68) 
1.849

ii
, -3.745 

(21.46) 
1.836

iii
, -3.788 

(19.89) 

IL8 
Interleukin 8 

NM_0005
84.2 
 

F: 
AGACAGCAGAGCAC
ACAAGC 
R: 
ATGGTTCCTTCCGG
TGGT 
Probe #72: 
GCCAGGAA 
 

62 1.773
i
, -4.021 

(26.16) 
1.801

ii
, -3.913 

(17.89) 
1.833

iii
, -3.800 

(22.53) 

TGFB1 
Transforming 
growth factor B1,  

NM_0006
60.3 
 

F: 
GCAGCACGTGGAGC
TGTA 
R: 
CAGCCGGTTGCTGA
GGTA 
Probe #72: 
TTCCTGGC 
 

64 2.107
i
, -3.090 

(29.18) 
1.782

ii
, -3.987 

(23.57) 
1.797

ii
, -3.927 

(23.46) 
 

     

 

2.6.5 Protein expression Enzyme-linked Immunosorbent assay (ELISAs)                  

 

IL-8 and TGFβ1 protein expression were analysed according to manufacturers‟ 

instructions using enzyme-linked immunosorbant assay (ELISA) kits from Invitrogen 

(Catalog No. KHC0081 and KAC1688 respectively). 
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2.7.0 Exploring theories behind immunomodulation results 

 

2.7.1 Peroxisome proliferator-activated receptor (PPAR) ELISA 

 

HT29, HT29-MTX and Caco-2 cells were grown in 75 cm2 cell culture flasks, 

standard culture media with 5 % fetal calf serum until confluent.  Cells were treated 

for 48 hours with either 50 µM AA, EPA, DHA or 0.06 % ethanol (control) in 

duplicate and removed with 6 ml 0.05% Trypsin 0.53mM EDTA.4Na (Invitrogen).  

Nuclear extracts were isolated using a Nuclear Extraction Kit (Cayman Chemical, 

Catalog No. 10009277) and samples were tested for protein concentration using 

BCA Protein Assay Kit (Pierce).  Nuclear extracts were added to the PPARα, δ, γ 

Complete Transcription Factor Assay plate (cayman Chemical, Catalog No. 

10008878) using each biological replicate testing for each PPAR (δ and γ) following 

manufacturers instructions.  Samples optical densities‟ (450 nm) were corrected for 

protein concentration.  

 

2.7.2 Lactate dehydrogenase (LDH) assay 

 

HT29, HT29-MTX and Caco-2 cells were grown in 24 well plates until 90 % 

confluency in experimental culture conditions (i.e. 5 % FCS), omitting phenol red. 

Cells were treated for 48 h with 50 µM AA, EPA, DHA or ethanol (control) in 

triplicate.  A background control of culture media and a high control of cells to be 

lysed were included in the plate design for % cytotoxicity calculations.  LDH 

cytotoxicity Assay Kit (ams Biotechnoglogy, Catolog No. K6330400) was used to 

obtain optical density 490 nm and values were used to calculate (exp. Value-low 

control)/ (high control-low control) x 100 = % cytotoxicity. 
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2.7.3 Transepithelial electrical resistance (TEER) reading 

 

HT29, HT29-MTX and Caco-2 cells were grown in 6 well transwell plates seeded at 

50 x 104 cells/ml until confluent, then washed in RPMI + Glutamax 3 times and 

treated 0.06 % ethanol (control) in RPMI + Glutamax (5 % Fetal calf serum) to apical 

side for 12 h, using RPMI + Glutamax without supplementation in the bottom 

compartment.  An epithelial voltohmmeter was used to complete TEER readings by 

placing the split probe so that one prong was in each compartment.  A control well 

without cells was used to measure resistance of the transwell membrane and this 

was deducted from each result. 

 

2.7.4 PUFA transport through cell lines 

 

HT29, HT29-MTX and Caco-2 cells were grown in 6 well transwell plates seeded at 

50 x 104 cells/ml until confluent, then washed in RPMI + Glutamax 3 times and 

treated with 50 uM EPA, DHA, AA or 0.06 % ethanol (control) in RPMI + Glutamax 

(5 % Fetal calf serum) to apical side of cells, using RPMI + Glutamax without 

supplementation in the bottom compartment.  After 12 h media in the bottom 

compartment was collected for fatty acid extraction (section 2.3.3), fatty acid 

methylation (section 2.3.5) and gas chromatography (section 2.3.6). 

 

2.8.0 Bioscreen 

 

L. FI9785, L. 44, L.2, L.10 and L.R1 were inoculated at 1 % in MRS and grown 

aerobically at 37 °C overnight prior to experiments. Each species of bacteria was 

inoculated at approximately 108-109 CFUs (10 % inoculum)  in MRS and grown for 

24 h at 37 °C in the presence of 0, 5, 10, or 20 µM AA, EPA, DHA or OA in 100 

honeycomb well plates (Thermo Scientific, USA). Optical density (OD) was 
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measured at 600 nM over 24 h every 20 min using the Bioscreen –C Microbiology 

Reader (Transgalactic New Jersey, USA).  Conversion from OD values to bacterial 

numbers was estimated by measuring the number of colony forming units on MRS 

plates at 0 (lag growth phase), 8 (log growth phase) and 24 h (stationary growth 

phase), associated with known OD values. PUFAs were made up in 1 ml ethanol 

prior to addition to growth media to give a final ethanol concentration of 0.03 %. 

 

The concentrations of PUFAs used in this study were estimated from  typical dietary 

intakes  of PUFAs [110-112], the assumption that  2 % escape absorption based on 

the  ileostomy study described in the introduction [79] and an approximate  volume 

of the colon of 700 ml.  We estimated the physiological concentrations of AA, EPA 

and AA reaching the colon to be 16 µM AA, 18 µM EPA and 17 µM DHA as a 

consequence of consuming a typical western diet, where as potentially 61 µM EPA 

and 57 µM DHA could be present if recommended amounts where consumed.  

Taking into consideration the potential errors relating to these estimates in 

concentration four different concentrations were used in the study ranging from 0-20 

µM to observe how lactobacilli would react directly to the PUFAs used. 
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CHAPTER 3: Method development 

 

3.1.0 Introduction 

 

Many cell lines and bacteria cells undergo rapid growth and in a short period of time 

it is inevitable that some mutations in copied genes will occur.  Therefore the same 

cell lines at different passage number or bacteria that have been through many 

inoculations may vary significantly and it is important to characterise the cell that will 

be used in the subsequent experiments. 

 

3.1.1 Cell culture 

 

Human epithelial cell lines used during the course of experiments all vary in their 

characteristics (described in 1.5.1).  However in addition, the cells used in my 

experiments may differ further to those described in the literature, due to a number 

of factors including: passage number; culture conditions and time allowed following 

confluency.  My experiments are kept consistent by maintaining these conditions as 

closely as possible when using all cell lines.  This has resulted in Caco-2 cells being 

used for experiments earlier in confluency than often stated in literature to maintain 

the time allowed post confluency between all cell types used.  For example if HT29 

were to be left for longer periods, instead of becoming more columnar like a Caco-2 

cell, they start to climb on top of each other forming an uneven monolayer.  Due to 

the differences that may exist between previous images shown in the literature and 

cells used in my experiments I observed cell growth on transwell membranes for 

scanning electron microscopy to determine visible characteristics of the cells. 
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3.1.2 Microbiology 

Lactobacilli used during the course of my studies vary slightly in their growth rates 

and thus a simple way to perform estimates of bacterial number required for 

experiments is via OD 600 nm readings using known numbers of bacteria.  The 

results can then be plotted on graphs (x= OD, y= bacterial number) and an equation 

is determined to allow prediction of bacterial number from subsequent OD 600 nm 

readings.   

 

With respect to strains L. R1 and L. 44, 16S rDNA gene sequencing was employed 

to identify which specific species of lactobacilli they maybe, via database matching 

of gene sequences that have previously been identified.  In addition, factors that 

may influence bacterial number during the course of experiments were investigated.  

In particular growth whilst bacteria are suspended in PBS and number of washes 

required to remove un-adhered bacteria from human epithelial cells. 

 

3.2.0 Methods 

 

3.2.1 Scanning electron microscopy (SEM) 

 

Cells were grown as stated in section 2.1.4 and prepared for SEM photography as 

described. In addition cells were grown to confluence (as in 2.1.4) with 

approximately 109 CFUs of L. FI9785, L. R1 or L. 44 added following the 48 hour 

incubation with RPMI + Glutamax (5% fetal calf serum).   The subsequent steps in 

2.1.4 were followed as described. 

 

3.2.2 Species identification 

 

16 S rRNA gene sequencing was preformed as described in section 2.4.2. 
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3.2.0 Microbiology method development 

 

Methods stated in 2.4.3, 2.4.4 and 2.4.5 were completed to: quantify the number of 

bacteria from optical density readings, find if bacteria grow in a 3 h incubation period 

at 37 °C when suspended in PBS and to find the number of washes required to 

remove un-adhered bacteria. 

 

3.3.0 Results  

 

3.3.1 SEM 

 

Cells show difference in morphological phenotypes between the more differentiated 

cell lines Caco-2 and HT29-MTX compared to the HT29 line, with regards to the 

closeness of individual cells (figure 13).  For example, although cells were always 

used when they appeared confluent using the cell culture inverted light microscope, 

SEM revealed that under my cell culture conditions HT29s have clear gaps between 

the cells, apparently linked by filaments.  In contrast, Caco-2 and HT29-MTX cells 

have no visible gaps at the same 10000 X magnification.  Despite this, all differ from 

each other when observing the brush border membrane that covers the cell.  For 

example Caco-2 and HT29-MTX cells have many more projections near where the 

cells join where as HT29 cells are consistently covered across the cell.  The least 

coverage is found in the HT29-MTX line where large patches on the cell surface 

remain completely flat. 

 

Bacterial adhesion SEM pictures were selected as those showing clearest bacterial 

adhesion and therefore only show lactobacilli on either HT29 and Caco-2 cells.  The 

chicken strain (L. FI9785) looks very different to the human isolates (figure 14).  



58 
 

Firstly they appear to be longer, at approximately 2 μM; however, it may be the 

result of its straightness compared with L. R1 and L. 44.  Secondly it remains 

singular when adhered to the surface of cells, unlike the human isolates that seem 

to curl around each other in clumps.   
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Figure 13 SEM pictures of cell lines a) Caco-2 b) HT29 c) HT29-MTX, grown 2 day 
post confluency. 
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Figure 14 SEM pictures of cell lines a) Caco-2 with L. FI9785 b) HT29 with L. R1 c) 
HT29 with L. 44, grown 2 day post confluency. 
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3.3.2 16S rRNA gene sequencing 

 

16S Sequences obtained for L. R1 and L. 44 were 100 % identical and results from 

NCBI Blast database revealed that they were identical matches to many L. casei 

species. 

 

3.3.3 Survival of lactobacilli in PBS 

 

During 3 h incubation in PBS there were no significant differences between numbers 

of bacteria at 0 h and 3 h for all lactobacilli tested (figure 15). 
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Figure 15 Numbers of lactobacilli (Log10) CFU/ml added to PBS between 0-3 h of 
incubation, showing standard deviations of three biological replicates. Each graph 
represents a strain of lactobacilli a) L. 44 b) L. R1 c) L. FI9785. 
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3.3.4 Numbers of washes required to remove un-adhered bacteria 

 

The lactobacilli that were tested required four washes to remove un-adhered 

bacteria, following 3 h incubations of the bacteria on human colonic cell lines.  Wash 

number 5 showed that there was no significant difference in carrying out an extra 

wash (figure 16). 

 
 
Figure 16 Numbers of lactobacilli (Log10) CFU/ml per well (1.74 cm2) adhered to 
HT29 cells after 3-5 washes in PBS, showing standard deviations of three biological 
replicates. Each graph represents a strain of lactobacilli a) L. 44 b) L. R1 c) L. 
FI9785. 
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3.3.5 Calculation of formulas to estimate bacterial number from OD 600 nm 

 

Results primarily fitted an exponential curve with best accuracy, however this was 

modified further by a statistician to y= Aexpk.x +Bexp k2x, where A is the value prior to 

exp (exponential) calculated after adding an Excel exponential equation, k is the 

value prior to x calculated after adding an Excel exponential equation and B is 

predicted using solver (Excel 2003) to minimize the sum of the squares between the 

actual and predicted results.  The modifications result in an R2 range between 

0.9987-0.9999.  The extended curve shows that OD 600 nm will reach a maximum 

although bacteria number could still increase in the presence of adequate media.  

Equations were used for subsequent methods to estimate 1 x 109 from OD 600 nm 

and are shown in figure 17. 
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Figure 17  Equations and graphs showing the association between optical density 
and lactobacilli number (CFUs). Dilutions of bacterial suspensions in PBS gave a 
range of OD (0.2-1.5) that were quantified using colony forming units grown on MRS 
plates. Results for each bacteria a) L. FI9785 b) L. R1 c) L.44 d) L. gasseri e) L. 2 f) 
L. 10 were plotted OD against bacteria number and the best curve was fitted to give 
a formula for conversion of OD (600 nm) to bacterial numbers.  
 

3.4.0 Discussion  

 

Cells lines used have clear differences between them; therefore it is important to 

analysis further experimental results in view of these variations.  SEM images 

display three distinctly different cell lines, in particular the HT29-MTX cells have 

many fewer brush border projections.  Certain bacterial species have been shown to 
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affect the number of bacteria that adhere.  Also HT29 cells have clear gaps between 

cells, whilst the same magnification of more differentiated cells: HT29-MTX and 

Caco-2 cells are more tightly packed.  This factor may impact on adhesion due to 

the additional exposure of structures that may support adhesion of specific bacteria 

or due to weaker tight junctions they may make the cell more susceptible to invasion 

of certain bacteria. 

 

Species identification of bacteria has shown that both L.R1 and L.44 are likely to be 

the same species of lactobacilli, therefore any variation in results using these 

bacteria will demonstrate a strain specific difference.  It is clear from SEM pictures 

(figure 14) that L. FI9785 differs from the human isolates (L. R1 and L. 44); the 

curling and clumping formed by the latter species indicate either co-aggregation or 

dividing of cells.  The assumption from these pictures would imply that the human 

isolate may show higher adhesion due to their ability to form clumps together and 

thus increase numbers that would adhere. 

 

Quantification of bacteria during microbiology method development revealed a 

second series of exponential equation fits data points from experiments comparing 

OD readings to bacterial number and describes the OD saturation when bacteria will 

not let light pass through, but can still gain higher numbers in solution.  Experiments 

involving observation of survival in PBS showed that bacterial numbers were not 

significantly different between 0 and 3 hours, therefore PBS was used when adding 

bacteria to cells with confidence that the added numbers of bacteria will be 

maintained throughout the course of the experiment.  Experiments observing 

number of washes required to remove un-adhered bacteria, revealed that an excess 

of 4 washes did not change adhered numbers of bacteria significantly and therefore 

4 washes will always be used in experiments requiring removal of un-attached 

bacteria. 
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All experiments in this chapter have either shaped subsequent methods or have 

given additional information to support interpretation of results.  
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CHAPTER 4 Polyunsaturated Fatty Acid treatment affects adhesion of 

lactobacilli  

 

4.1.0 Introduction 

 

Probiotic bacteria are “Live microorganisms which when administered in adequate 

amounts confer a health benefit on the host’[114].” Lactic acid bacteria are most 

commonly used as probiotics.  They were initially used to convert sugars into lactic 

acid, which lowers pH and prevents the growth of spoilage organisms.  They have 

been extensively studied for treatment of bacterial infection[115-116] , prevention of 

colon cancer[117] and reducing inflammation in inflammatory bowel disease[115].  

Lactic acid bacteria have been shown to kill pathogenic bacteria through stimulation 

of the immune system, by increasing IgA plasma cells, T lymphocytes and 

competition for  substrates[115]. 

 

Lactobacilli are gram positive bacteria and a member of the lactic acid family.  They 

are extensively used in probiotic research and numbers in the healthy colon can 

reach approximately 109 CFUs [118].  Many lactobacilli are highly resistant to and 

can produce hydrogen peroxide giving a competitive advantage when this is 

present.  Some have been shown to produce antimicrobial agents that can aid in the 

destruction of many pathogenic bacteria [119-120].  The adhesion of lactobacillus to 

intestinal surfaces is an important part of pathogen exclusion since another barrier is 

formed on the apical surface of the gut blocking invading microbes.  Adhesion 

promotes survival in the harsh gut environment, thus this is one of the first 

characteristic identified when selecting probiotic strains.  Adhesion of bacteria to 

epithelial cells involves non-specific, i.e. reversible hydrophobic interactions[121] 

and specific  irreversible ligand –receptor adhesion[122].  Adhesion is species 
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specific in many lactobacilli as proven by the wide range of adhesion abilities of 

different bacterial strains[123].   

 

N-3 PUFAs have also been shown to have antimicrobial activities[124] along with 

other beneficial effects on colonic health such as reducing colitis.  These n-3 

PUFA‟s, often labelled omega 3‟s, use the same enzymes in fatty acid metabolism 

as the n-6 PUFA‟s (omega 6‟s) but they result in different end products including 

opposing inflammatory signals.  Omega 6‟s found in vegetable oils and meats give 

more pro-inflammatory signals where as omega 3‟s found in oily fish results in less 

inflammatory products.  This can help in the prevention of atopic disease.  Another 

mechanism in which n-3 PUFA‟s act is in lipid membranes making them more 

fluid,[7] this can alter the activity of membrane bound receptors and enzymes.  

Additionally there is also evidence of PUFAs improving the condition through 

immunomodulation[68]. However it is known that the chemistry of PUFAs allows 

them to act as anionic detergents and play a part in denaturing commensal bacteria 

cell walls[125]. Therefore if we consider foods as part of a normal diet combining 

PUFAs and probiotics could be potentially counter productive.   Despite the negative 

effects that PUFAs may have on probiotic bacteria, there is good evidence of 

symbiotic effects in which PUFAs have been shown to increase adhesion of 

lactobacilli in the intestines of Piglets[75] and Arctic Charr[76], these actions may 

mean that the foods need to be consumed separately to preserve their benefits to 

the host.  

 

Bomba et al[75] and Ringo et al[76]  analysed lactic acid bacteria following n-3 

PUFA diets and have discovered that adhesion of beneficial lactic acid bacteria can 

be enhanced by omega 3‟s in animal models.  A proposed mechanism is that 

increased membrane fluidity from higher dietary omega 3‟s can alter epithelial 

surface receptors favouring the binding of lactobacilli [76].  Another  mechanism in 
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which n-3 PUFA‟s can influence adhesion proteins is that many are nuclear receptor 

ligands hence giving them the potential to affect the gene transcription of adhesive 

proteins on the host cell surface[126]. 

 

There is limited information on the impact of PUFA‟s on the bacterial adhesion to 

human colonic cells.  I therefore proposed to test the adhesion of three species of 

lactobacilli with three different intestinal epithelial cell lines: HT29, HT29-MTX and 

Caco-2 cells pre-treated for 48 hours with n-3‟s; EPA, DHA and an n-6; AA.   

 

4.2.0 Methods 

 

4.2.1 Uptake of fatty acids into total cell and phospholipid layer 

 

Methods 2.3.1 and 2.3.3-6 were followed to assess the uptake of fatty acids into 

HT29, HT29-MTX and Caco-2 cells. 

  

4.2.2 Fatty acids concentration in media supplemented with 5% fetal calf 

serum 

5 % fetal calf serum was analysed to assess amount of AA, EPA and DHA in media 

prior to additional treatments.  Fatty acids were extracted (2.3.3), methylated (2.3.5) 

and run on GC (2.3.6).  Results from triplicates were averaged to obtain percentage 

amounts of AA, EPA and DHA and amounts were adjusted for total lipid content 

assessed by weight. Amounts for each PUFA were as follows: AA, 7.39 µg; EPA, 

1.37 µg; DHA, 5.79 µg, resulting in concentrations of: AA, 30 µM; EPA, 6 µM; DHA, 

22 µM. 
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4.2.3 Adhesion experiments 

 

Cell lines were prepared as stated in 2.5.1. Two methods were then used to assess 

the adhesion number of bacteria; the bacteria viable count  method is stated in 2.5.2 

and allows for quantification of living bacteria alone that has adhered to cell lines. 

The radiation method, shown in 2.5.3 was used to find all bacteria that adhered to 

the cells and produces a more accurate method of quantification. 

 

4.2.4 Statistical analysis 

 

Data were analysed by ANOVA using the General Linear Model (GLM) with Tukey 

post-hoc comparisons (Mini tab version 15). Values were considered statistically 

different when p<0.05 or highly significant when p<0.01.  

 

4.3.0 Results 

 

4.3.1 Adhesion of lactobacilli strains to HT29, HT29-MTX and Caco-2 

 

Using the viable counts method to analyse percentage adherence of Lactobacillus 

strains, L. FI9785, L. R1 and L. 44 gave significantly lower percentage adhesion 

(figure 18) results when compared with the radiation method (figure 19).  Lactobacilli 

adhere at a higher percentage to cell lines HT29 and HT29-MTX when compared to 

Caco-2 using the radiation quantification method.  Comparison of different 

lactobacilli strains indicated that L. FI9785 showed a higher percentage adhesion 

using the radiation method.  Cell lines showed varied affects of PUFAs on adhesion 

to lactobacilli. Lactobacilli adhesion to HT29 cells increased in the presence of DHA 

with all bacterial strains, whereas EPA has an affect on adhesion of L. FI9785 only 

(figure 19 a).  Adhesion of lactobacilli to HT29-MTX cells were largely unaffected by 
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AA, however EPA and DHA or DHA alone affects L. FI9785 and L. 44 respectively 

(figure 19 b). Additional statistical analysis showed that AA significantly increased 

percentage adhesion of L. FI9785 (p=0.003) and L.44 (p=0.000) in mucus secreting 

HT29-MTX cells when compared to the same lactobacilli to HT29 cells. Caco-2 cells 

have a varied response to PUFAs in relation to lactobacillus adhesion, as with HT29 

cells, DHA gives increased adhesion of L. FI9785 and L. 44 (figure 19 c). 

 

Uptake of AA, EPA and DHA in to Colonic cells 

 

The percentage PUFA uptake of AA into total lipids and phospholipids is much lower 

than for both EPA and DHA (figure 20).  Interestingly when AA is added to the HT29 

cell line, DHA declines more rapidly than would be expected from percentage shifts 

caused by the addition of more PUFA (table 3).  EPA and DHA both increase after 

increasing concentrations are added to the media in both total lipids and 

phospholipids; however the phospholipid increase seems to plateau after 100 µM 

(figure 20 e-f).  Percentage AA in the phospholipid layer decreases on addition of 

increasing concentrations of AA along with DHA (figure 20 d). 

 

Percentage AA uptake is much higher in HT29-MTX cells compared to HT29 cells; 

in fact it has the greatest percentage increase of all PUFA treatments in the total 

lipid samples (figure 21 a).  EPA percentage uptake into HT29-MTX cells remains 

the same as HT29 cells, whilst DHA is lower. However, in the case of DHA pre-

treatment EPA percentage significantly increases in media samples (table 3).  Caco-

2 cells have the greatest percentage uptake of all PUFAs compared to both HT29 

and HT29-MTX cells (figure 22). 
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4.4.0 Discussion 

In this study I have shown that adhesion of lactobacilli to three different cell lines is 

generally increased by pre-treatment with DHA, but AA also increases adhesion of 

two strains to the mucus secreting cell line, HT29-MTX.  I have investigated the 

possibility that this is associated with difference in the uptake of PUFAs into the cell 

lines. 

 

Uptake of AA, EPA and DHA varies between cell lines and the differences may be 

the result of variation in expression of proteins involved in fatty acid uptake in 

different cell lines [127]. HT29 cells treated with concentrations of AA higher than 50 

µM consistently showed up to a 1 % decrease in DHA.  The result could be 

explained by the similar affinities of both of these PUFAs for intestinal fatty acid 

binding protein (i-FABP).  EPA has a 3.5 fold higher kd for i-FABP lessening the 

chance of competition with AA [12].  Also in the fetal calf serum used there were 

similar levels of both AA (30 µM) and DHA (22µM); whilst EPA was much lower at 6 

µM.  Interestingly in the control samples (no PUFA added) HT29 cells have a higher 

percentage of DHA compared with EPA and AA, although in the control media 

concentrations of AA and DHA were similar; suggesting that fatty acid uptake and 

subsequent metabolism favours the retention of DHA.  AA pre-treatment of cells 

decreased percentage AA in the phospholipid bilayer.  This could reflect the tight 

control cells have over their phospholipid membrane, since fluidity is essential for 

function of many membrane proteins, i.e. the six double bonds in DHA makes the 

membrane more fluid than the four in AA [128].  The tighter control over 

percentages of PUFAs in the membrane is seen with increasing concentrations of 

EPA and DHA added to HT29 media; while total lipid percentage of these fatty acids 

continue to climb, the phospholipid content plateaus  after approximately 100 µM.  

HT29 media samples show a general increase in PUFA levels after addition of the 

particular PUFA; however large variation between triplicates is seen, indicating a 
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problem with sampling from 20 ml media, possibly due to uneven dispersion of fatty 

acids.  

 

In HT29-MTX cells AA is taken up into total lipids and phospholipids between 13-15 

fold more than in HT29 cells.  This could be the result of varied expression of fatty 

acid transport proteins after cells are more differentiated by MTX treatment.  There 

is also evidence of DHA being metabolised to EPA due to an increase in EPA after 

DHA pre-treatment in total lipid, phospholipid and media samples.  The percentage 

DHA in the media is consistently lower than AA and EPA, suggesting that HT29-

MTX cells are actively metabolising DHA more than the other PUFAs.  Caco-2 cells 

consistently have the highest percentage uptake compared to the other cell lines 

after PUFA treatments.  This could be due to reduced control of PUFA uptake and 

intracellular transport by i-FABP which is expressed at only 10% of that found in rat 

enterocytes [127]. Unfortunately there is no information available on the levels of i-

FABP in the other cell lines to compare.   

 

In this study I have shown that n-3 PUFAs, particularly DHA, can modify adhesion of 

the lactobacilli to human colonic epithelial cells; an effect which may depend on the 

concentrations of PUFAs in the cells. Adhesion experiments (figures 18 and 19) 

show a large variation in results when comparing the two methods of quantification 

i.e. CFU and radiation methods.  The CFU method gives significantly lower 

percentage adhesion compared to the 3H-thymidine labelling method. This is likely 

to be as a result of the CFU method only quantifying the viable bacteria attached to 

the cell line while radio-labelling reflects all bacteria. Interestingly the adhesion of L. 

FI9785 shows the greatest percentage adhesion in general using the 3H-thymidine 

labelling method whilst the CFU method shows a lower percentage adhesion 

indicating that this bacteria maybe sticking to the cells but it is not surviving.  This 

could have implications for its beneficial affects which require production of 
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substances from the lactobacilli i.e. antimicrobial production [129].  Caco-2 cells 

have a lower range of percentage adhesion compared to HT29 and HT29-MTX 

cells; this could be due the specific nature of adhesion to specific molecules on the 

cells surface.  It is known that confluent Caco-2 cells have a more differentiated 

phenotype than HT29 cells with a well developed brush-border membrane [101-

102].  It maybe that the type of molecules lactobacilli is adhering to is much more 

abundant on the cell surface of the HT29 and HT29-MTX cells. Another explanation 

for the lower percentage adhesion is the sensitivity of Caco-2 cell to fatty acids [130] 

and the ethanol in which they are diluted (chapter 7 figure 33), resulting in potential 

loss of cells. Analysis of PUFAs affects on adhesion highlights cell line differences, 

some responses could be explained by the varied amount of PUFAs taken up into 

the cell.  With HT29 cells, DHA gave an increased adhesion of all lactobacilli tested 

whilst AA had no significant affects; this could be the result of HT29 cells not taking 

up as much AA as DHA.  These effects are similar to those reported by Ringo et al. 

[76] in arctic charr following fish oil diets. Possible explanations include; increased 

membrane fluidity from an influx of n-3 PUFAs in the cell walls altering receptor 

activity that may change binding abilities to lactic acid bacteria.  HT29-MTX cells 

differ in that AA treatment of cell increased bacterial adhesion.  This maybe due to 

AA increased uptake into the total cell allowing it to have a greater impact on 

mechanisms driven by the presence of PUFAs i.e. PPARs or production of 

prostaglandins.  Since the HT29-MTX cell line differs from the others by secretion of 

a mucous layer it is possible that AA may exert its affects by modifying this layer.  In 

Katoh et als. review [131] Trefoil factor families (TFFs) mRNA is shown to be up-

regulated by AA, these soluble peptides play a role in enhancing mucous secretion, 

thus AA maybe increasing the secretion of mucus by HT29-MTX cells and therefore 

trapping more lactobacilli. Caco-2 cells similarly to HT29 showed increased 

adhesion of L. FI9785 and L. 44 following DHA treatment, this is likely to be 

explained by alterations in adhesion protein/receptors on the epithelial surface by 
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membrane fluidity or via PUFAs being nuclear receptor ligands that have potential to 

alter expression of adhesive proteins [75-76, 126]. When considering the sensitivity 

of Caco-2 cells, increased adhesion maybe due to a combination of a damaging 

effect of PUFAs on monolayer integrity [130] combined with an effect of DHA on 

bacterial adhesion to the basolateral surface.  

 

In conclusion, this study suggests that PUFAs can modify bacterial adhesion to 

human colonocytes. These effects are dependent on the PUFA tested and the cell 

line used, such that effects are different in the mucus secreting HT29-MTX cell line. 

The results indicate that a balanced diet of a range of PUFAs may be beneficial to 

maximise probiotic potential.  However, further analysis needs to be conducted 

using primary cells including mucus secreting cells to observe whether the effects 

are retained.   
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Table 3 Percentage PUFA left in media after 48 h treatments of HT29 cells with 0-
200 µM AA, EPA or DHA.  HT29-MTX and Caco-2 cells are treated with 50 µM AA, 
EPA or DHA. *Significance P<0.05 compared with control, ns signifies non-
significant. 
 

ns= not significant 
  

 
 

Fatty acid 
treatment 

Percentage  
 Significance AA EPA DHA 

HT29 

Control 1.47 +/-0.99 0.69+/-0.21 2.25+/-1.96       

AA 50 µM 9.53+/-6.46 2.80+/-2.32 2.18+/-1.03 ns ns ns 

AA 100 µM 14.53+/-2.42 1.00+/-0.98 2.25+/-0.34 * ns ns 

AA 150 µM 24.60+/-5.84 1.47+/-0.80 1.75+/-0.74 * ns ns 

AA 200 µM 8.26+/-4.78 1.17+/-1.03 1.45+/-0.56 ns ns ns 

  
   

      

EPA 50 µM 1.21+/-0.64 7.02+/-2.77 2.08+/-0.97 ns ns ns  

EPA 100 µM 5.02+/-5.31 16.08+/-7.86 2.46+/-1.37 ns ns ns 

EPA 150 µM 1.01+/-0.25 30.23+/-1.53 0.71+/-0.36 ns * ns 

EPA 200 µM 4.19+/-5.20 25.48+/-20.60 3.65+/-4.83 ns ns ns 

  
   

     
ns DHA 50 µM 2.73+/-2.24 6.42+/-6.41 3.00+/-2.25 ns ns 

DHA 100 µM 2.18+/-2.88 1.37+/-1.36 18.07+/-11.50 ns ns ns 

DHA 150 µM 1.58+/-0.77 1.89+/-1.88 8.03+/-8.34 ns ns ns 

DHA 200 µM 1.83+/-0.46 2.18+/-2.18 27.67+/-3.08 ns ns * 

  
   

      

HT29-MTX 

Control 2.98+/-0.01 7.05+/-1.29 0.64+/-0.13       

AA 50 µM 6.75+/-2.58 0.57+/-0.01 0.54+/-0.52 ns * ns 

EPA 50 µM 4.04+/-0.18 5.29+/-0.33 1.09+/-0.06 ns * ns 

DHA 50 µM 3.92+/-0.34 9.51+/-0.37 1.53+/-0.36 ns * ns 

  
   

      

Caco-2 

Control 3.87+/-0.26 6.87+/-0.53 1.06+/-0.38 
   AA 50 µM 12.59+/-4.89 6.93+/-2.66 0.53+/-0.49 ns ns ns 

EPA 50 µM 2.74+/-1.25 11.94+/-0.54 0.26+/-0.26 ns ns ns 

DHA 50 µM 3.56+/-0.48 2.82+/-0.34 13.23+/-3.63 ns ns * 
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Figure 18 Percentage adhesion of three lactobacilli strains; L. FI9785, L. R1 and L. 
44 to HT29 cells using the bacterial viable method of quantification. No significant 
differences were found. 
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Figure 19 Percentage adhesion of three lactobacilli strains; L. FI9785, L. R1 and L. 
44 to a) HT29 cells b) HT29-MTX cells c) Caco-2 cells, using β counts from H3 
Thymidine treated lactobacilli. *significantly different from Control group P< 0.05 
**significantly different from Control group P<0.01.  
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Figure 20 Percentage uptake of PUFAs in HT29 cells after treatment of 0, 50, 100, 
150 and 200 µM AA, EPA or DHA pre-treatment for 48 h. a-c) Total lipids, d-f) 
Phospholipids only, after 48 h. a and d) show HT29 cells after pre-treatment with 
AA, b and e) after pre-treatment with EPA, c and f) after pre-treatment of DHA. Each 
bar represents the mean +/- SD (n=3-5) of each condition.  Values for individual fatty 
acids are compared across treatment groups.  Those that do not share a letter are 
significantly different (P<0.05).  
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Figure 21 Percentage uptake of PUFAs in HT29-MTX cells after treatment of 50 µM 
AA, EPA or DHA pre-treatment for 48 h. a) Total lipids, b) Phospholipids only, after 
48 h. Each bar represents the mean +/- SD (n=3-5) of each condition.  Values for 
individual fatty acids are compared across treatment groups.  Those that do not 
share a letter are significantly different (P<0.05). 
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Figure 22 Percentage uptake of PUFAs in Caco-2 cells after treatment of 50 µM 
AA, EPA or DHA pre-treatment for 48 h. a) Total lipids, b) Phospholipids only, after 
48 h. Each bar represents the mean +/- SD (n=3-5) of each condition.  Values for 
individual fatty acids are compared across treatment groups.  Those that do not 
share a letter are significantly different (P<0.05). 
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 CHAPTER 5 Impact of polyunsaturated fatty acids on the survival of probiotic 

bacteria 

 

5.1.0 Introduction  

 

The benefits of both probiotic bacteria and fish oil (n-3 PUFA) consumption on 

colonic health are well recognized [132-133]. It is possible that these two dietary 

factors may interact, and indeed two previous studies have shown that PUFAs 

increase probiotic adhesion in the colon of fish and pigs [75-76] . It is assumed that  

as most fatty acids are absorbed in the small intestine  the observed effects are due 

to systemic delivery to colonic cells, thus influencing their membrane properties , 

and  that n-3 PUFAs may aid in the adhesion of probiotic lactobacilli.  Adhesion of 

Lactobacillus sp. to the colonic surface has been linked with many of their beneficial 

affects, i.e. exclusion of pathogenic bacteria.  However, a few studies have 

observed that PUFAs directly interact with lactobacilli [77, 134-135], in terms of their 

growth and death which may be due to modification in hydrophobicity. Previous 

experiments  have shown that PUFAs have  bactericidal properties [136] and these 

may also be important in influencing the survival of beneficial bacteria in the 

gastrointestinal tract. In contrast to the reported bactericidal effects of  

polyunsaturated fatty acids at 1660 uM – 4470 uM  on a range of pathogenic 

bacteria [137], the monounsaturated fatty acid, OA  has been reported to support 

lactobacilli growth[135, 138] at concentrations of 18 µM and 76 mM, and is known to 

modify lipid metabolism in a manner dependant on the lipid composition of the 

growth media [134].  The two octadecenoic acids found in lactobacillus membranes: 

OA [cis-9-octadecenoic acid; 18:1(9c)] and cis-vaccenic acid [cis-11-octadecanoic 

acid; 18:1(11c)] have previously been shown to be methylated into dihydrosterculic 

acid [9,10-methyleneoctadecanoic acid; cyc19:0(9c)] and lactobacillic acid [11,12-

methyleneoctadecanoic acid; cyc19:0(11c)] respectively [139]. 
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It is known that many species of lactobacilli can survive in the human 

gastrointestinal tract [140-141].  However, although the bactericidal effect of PUFAs 

on pathogens has been studied, the susceptibility of commensals to PUFAs has not 

previously been reported. In the colon survival may depend on a number of selective 

pressures. For example bacteria from chickens are unlikely to be exposed to high 

concentrations of fish oils, although plant based feed will contain the shorter chain n-

3 fatty acid, linolenic acid. The consumption of fish oils by humans is very variable 

(0.5 +/- 0.7g/d) [142-143] and that in standard chicken feed 4-8 mg/d[78].  Bacteria 

are not only exposed to n-3 fatty acids but also to n-6 PUFAs which also have 

bactericidal properties, in particular AA [136]. The concentrations of these in the 

chicken and human diets are in the region of 15 mg/d[78] and 130 mg/d. The 

purpose of this study was to assess whether specific strains of lactobacilli can avoid 

the bactericidal activities of biologically relevant amounts of PUFA. In addition, 

bacteria are exposed to bile acids which are also well recognized to have damaging 

effects. It has been proposed that the effect of deoxycholic acid is counteracted by 

increases in the percentage of C18:1 which is suggested to increase membrane 

stabilisation [144]. 

 

To test the hypothesis that selection for bile acid resistance in probiotics is 

associated with tolerance to PUFA exposure I have chosen to use two species 

selected for their ability to survive in the human digestive tract from an adult human 

faecal sample.  Lactobacillus casei 44 and R1 were selected from human faecal 

sample at the Institute of Food Research, for being both tolerant to low pH and bile 

acid resistant and compared to two species isolated from the same human faecal 

samples which showed high susceptibility to bile acids. In addition I have looked at a 

chicken strain (Lactobacillus johnsonii FI9785) selected for probiotic activities in the 

upper GI tract [145] and has not been selected on the basis of resistance to bile 

acids [146]. 
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An estimate of the concentration of PUFAs that enter the colon, and thus influence 

the microbiota directly, can be calculated based on data from ileostomy studies that 

report the concentrations of PUFAs which escape absorption in the small intestine.  

Based on values obtained in a study using linolenic acid[79], the percentage of  

PUFAs  not absorbed prior to entry into the colon is estimated to in the region of  2 

%.  However, values from these studies may be an underestimate as sloughing of 

epithelial cells from the lining of the gut will also be a source of PUFAs in the 

luminal.  We have therefore chosen to measure susceptibility to fatty acids in De 

MRS over a range of 0-20uM, reflecting physiological concentrations. Furthermore I 

have hypothesised that tolerance to PUFA exposure may be dependent on how 

different species of bacteria take up and metabolise these fatty acids and have 

therefore analysed lipid composition of the cells and culture media. 

 
5.2.0 Methods 
  
 

5.2.1 Bioscreen  

 

Bioscreening was used as a method to observe growth/death patterns of bacteria in 

MRS every 20 mins over 24 hours following treatment of AA, EPA, DHA, OA or 

equal volumes of ethanol (control).  Section 2.8.0 was followed. 

 

5.2.2 Determination of PUFA that escape digestion 

 

The concentrations of PUFAs used in this study were estimated from  typical dietary 

intakes  of PUFAs [110-112], the assumption that  2 % escape absorption based on 

the  ileostomy study described in the introduction[79] and an approximate  volume of 

the colon of 700 ml.  We estimated the physiological concentrations of AA, EPA and 

AA reaching the colon to be 16 µM AA, 18 µM EPA and 17 µM DHA as a 
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consequence of consuming a typical western diet, where as potentially 61 µM EPA 

and 57 µM DHA could be present if recommended amounts where consumed.  

Taking into consideration the potential errors relating to these estimates in 

concentration four different concentrations were used in the study ranging from 0-20 

µM to observe how lactobacilli strains would react directly to the PUFAs used. 

  

5.2.3 Uptake of fatty acids into total cell of probiotic bacteria 

 

To investigate the different responses to PUFA treatment in bioscreen experiments 

between bacterial species methods 2.3.2, 2.3.3, 2.3.5 and 2.3.6 were followed 

consecutively. 

 
 

5.2.4Statistical analysis 

 

Data were analysed by ANOVA using the General Linear Model (GLM) with Tukey 

post-hoc comparisons (Mini tab version 15). Values were considered statistically 

different when p<0.05.  

 

5.3.0 Results 

 

5.3.1 Bioscreen experiments 

 

 The survival and growth of lactobacilli strains differed between human (figure 23 b 

and c) and chicken isolates (figure 23 a).  Human strains continued to grow in the 

presence of 5 μM PUFAs, while the chicken strain failed to increase in number from 

4 hours.  Initial experiments using higher PUFA concentrations, 10 μM and 20 μM, 

showed no additional effect on survival (data not included). Analysis over the full 
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time course of each growth curve, comparing cell number to that of untreated cells 

at the same time point, shows that all PUFAs slow the growth of human isolated 

lactobacilli, apart from L. 10 following EPA and DHA addition (table 4).   In the case 

of L. 44 the effects of EPA & DHA were less significant than for L. R1 (figure 23, 

table 4).  In L. FI9785 bacteria, a chicken isolate, this effect was also observed but 

to a much greater extent (figure 23a) such that analysis of individual time points 

shows a significant effect relative to the control at that time point from 12h (table 4).  

In addition, L. 2, human isolate not selected for bile acid resistance, showed 

significant difference from the control following AA treatment at specific time points 4 

and 8 h, demonstrating a more pronounced growth inhibition than other human 

strains, however after 12 h the strain was able to recover and not differ from the 

control growth numbers, unlike L. FI9785.  

 
5.3.2 PUFAs concentrations in lactobacilli  

 

The percentage of each fatty acid in bacteria was measured at 8h after treatment 

with no fatty acid added to the MRS or 20µ AA, EPA, DHA, OA (figure 23 and table 

5).  Fatty acids found to be present in one or more of the samples are as follows: 

14:0; myristic acid, 14:1; myristoleic acid,  16:0; palmitic acid,16:1; palmitoleic acid, 

18:0; stearic acid, 18:1(9c); OA, 18:2; linolenic acid, cyc19:0(11c); lactobacillic acid, 

cyc19:0(9c); dihydrosterculic acid and 20:4; AA. 

 

The fatty acid composition of untreated cells was different between different bacteria 

such that myristoleic, OA and linolenic acid are significantly higher in L.FI9785 than 

in L. R1 and L. 44. However L. R1 and L. 44 have a higher percentage of 

lactobacillic acid and stearic acid than the other strain.   
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Treatment with OA did not increase the percentage of OA in bacteria and in the 

case of all strains the percentage OA was significantly reduced; although, L. FI9785  

contained the highest percentage OA when compared to other species. Interestingly 

after OA addition, lactobacillic acid was completely absent, however dihydrosterculic 

acid was found in its place following a similar pattern in percentage amounts 

between bacteria as Lactobacillic acid in the control group, i.e. 3.6 % in L. FI9785, 

11.5 % in L. R1 and 8.4 % in L. 44.  Other change when comparing OA and control 

treatment groups is the absence of myristic and myristoleic acid in L. FI9785 

following OA treatment, however palmitic and stearic acid are significantly higher 

after treatment in L. FI9785 and L. 44 when compared to the control. 

 

Treatment with AA resulted in AA being found in all bacteria when compared to in 

untreated cells, although AA percentage was significantly higher in L. FI9785. L. R1 

and L. 44 were found to have significantly higher myristic and myristoleic acid than 

L. FI9785, in the later case this opposes the control where myristoleic acid is only 

found in L. FI9785.  Similar to the control OA and linoleic acid are present in 

significantly lower percentages in L. R1 and L. 44 compared to L.FI9785, however in 

this case it does not correspond with a higher percentage lactobacillic acid in L. 44. 

Treatment with EPA did not result in EPA being present in lactobacilli.  In the 

majority of fatty acids present the results comparing between bacteria mirrored the 

control, the exceptions being myristic and myristoleic acid where they are absent in 

L. FI9785 following EPA treatment.  However comparing percentage amounts with 

the control EPA treatment is shown to increase stearic and palmitic acid, whilst 

decreasing oleic and palmitoleic acid in all bacteria. 

 

Treatment with DHA did not result in DHA in any bacteria cells following 8 h 

treatment, however comparison of percentages of  myristic and myristoleic acid with 

control for each bacteria showed that L. FI9785 significantly decreased percentages 
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of these fatty acids, while L. R1 and L. 44 increased them.  The reverse is apparent 

for stearic and palmitic acid, i.e. 16.4 % and 24.6 % are found in L. FI9785 while 4.5-

4.9 % and 11-11.9 % respectively. 

 

In addition to fatty acid composition analysis of bacteria, MRS after 8 h was also 

analysed for its fatty acid composition (table 5). Fatty acids found to be present in 

one or more of the samples are as follows: 16:0;palmitic acid, 18:0; stearic acid  

18:1(11c); cis-vaccenic acid, 18:1(9c);OA, 18:2; linolenic acid, 20:4; AA, 22:6; DHA.  

In untreated MRS these fatty acids previously mentioned fatty acids are present 

apart from AA and DHA, although there are no significant differences found between 

bacteria. 

 

Treatment with OA did not result in an increase of OA in the media after 8 h, in fact 

in the presence of L. 44 OA decreased in the media when compared with untreated 

cells, whilst there were no changes in other strains tested.  Despite this, the other 

octadecenoic acid, cis-vaccenic acid resulted in a higher percentage left in media 

when compared to control following exposure to L. R1 and L. 44.      

Treatment with AA resulted in AA left in the media of all bacteria; however L.44 

contained the highest percentage followed by L. FI9785.   

 

Treatment with EPA resulted in no EPA being found in bacteria or media; however 

DHA was present in media of all bacteria tested.  When comparing significant 

percentage differences between bacteria species within the EPA treatment group 

cis-vaccenic acid was found in a higher percentage in L. FI9785 exposed media 

than L. R1 and L. 44. In contrast the latter two strains of lactobacilli had decrease 

percentage oleic acid when compared to the control group. 

Treatment with DHA resulted in absence of DHA in media of all bacteria.  Similar to 

EPA treatment cis-vaccenic acid was found in a higher percentage in L. FI9785 
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media than L. R1 and L. 44, however only L. FI9785 is significantly different to the 

control. 

 
MRS media prior to addition of PUFAs contains approximately 85 % OA, whilst AA, 

EPA and DHA are not present (table 5).  Following addition of 20 µM of OA, AA, 

EPA and DHA all percentages increased, however to differing extents.  It must be 

noted that these percentages do not represent final amounts of each fatty acid and 

data can be skewed by differing total areas under the peaks, in fact on observation 

of total areas the increased amount represented by these figures are similar (data 

not shown).  The results confirm that DHA has disappeared from media during 

experiments with this treatment and more interestingly supports the notion that EPA 

is converted to DHA by all bacterial strains. 

 

5.4.0 Discussion 

 

When considering the affects of PUFAs on adhesion of lactobacilli, it is important to 

analyse what affects the PUFAs may have directly on lactobacilli present in the 

colon.  Although a large percentage of fat is absorbed before the colon there is 

evidence that approximately 2 % can reach colon from the diet [79] and therefore 

directly influence the bacteria present.  Fatty acids have been shown to have 

bactericidal properties and can aid in protection from pathogenic species [136], 

however fatty acids will undoubtedly affect some commensal species unless they 

possess mechanisms to avoid their destructive actions.  After examining the 

growth/death of five lactobacilli in biologically relevant amounts of PUFAs that could 

reach the colonic contents, I found that four out of five survived throughout the 

experiment, while one strain showed signs of death after 4 h incubation (figure 23).  

Interestingly the species that did not survive was isolated from chicken, while the 

surviving four came from human faeces, suggesting that human strains had 
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developed the ability to survive in the PUFA concentration found in the colon.  

Studies have previously shown that fatty acids can induce changes in the lactobacilli 

populations in broiler chickens [78], however my results for this potential chicken 

probiotic leads to some concerns about it probiotic potential use in chicken fed high 

n-3 diets (used for production of high omega 3 eggs). Past studies have shown that 

EPA and DHA at 7.6 nM have strongly inhibited lactobacilli growth and OA 

stimulated growth of some strains [135], these high concentrations suggest that 

lactobacilli are very varied in their response to different PUFAs and death from 

PUFAs may not be isolated to those derived from chickens. However this highlights 

an area of concern to be analysed further, since many chicken producers are 

moving towards the use of probiotic strains (particularly lactobacilli) for the control of 

bacterial infections, following the ban of many antibiotics in chickens.  In addition to 

Bioscreen results, it must be noted that in my experiments I did not observe growth 

enhancement of lactobacilli after addition of OA as expected [134-135, 138].  Due to 

the complex differences between lactobacilli at the level of each strain, it is possible 

that all strains are not adapted to metabolising oleic acid in a way that promotes 

growth.  Another study supports the variance of PUFA activity on lactobacilli by 

observing difference in PUFA uptake in bacteria and subsequent variances in 

hydrophobicity [77].  The human strains selected included two that were selected for 

bile acid resistance and two that were not, to explore the theory that bile acids act 

upon certain sensitive strains of lactobacilli in a similar mechanism to fatty acids.  

This was proved not to be the case in my experiments as they all survived, however 

bile acid sensitive L. 2, showed increased sensitivity to AA compared with other 

human isolates, but recovered to result in similar numbers of bacteria by stationary 

phase. 

 

To investigate the different responses to PUFAs, uptake of fatty acids into L. FI9785, 

L. R1 and L. 44 were analysed after 8 h incubation (control samples log phase) with 
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biological relevant concentrations of PUFAs.  The results suggest complex 

mechanisms in which different lactobacilli strains can convert PUFAs in to 

shorter/longer more saturated/unsaturated PUFAs.  In particular I wanted to analyse 

differences in species that did survive in PUFAs added and L. FI9785 that did not.  

Since a small amount of growth was observed before 4 h incubation of PUFA (figure 

23 a) I had expected some uptake of PUFA prior to death, however I did not predict 

that the L. FI9785 cells would contain a much  higher percentage  AA following its 

addition to media.  The possible reasoning behind these results may be a lack of 

control over PUFA influx, thus resulting in high proportions of these antibacterial 

agents inside the cell and possible cell death.  Another explanation maybe that 

damage caused to the bacterial cell membrane by PUFAs, in the case of their 

bactericidal activities can produce holes in the outer membrane [147], leading to the 

possibility of  the influx of PUFAs prior to the analysis of PUFA uptake.  More 

recently it has been suggested that biohydrogenation of PUFAs can occur in 

Butyrivobrio fibrisolvens to enable their survival from PUFAs toxic effects, however 

suggest the cause of toxicity as being mediated through a metabolic effect rather 

than disruption of membrane integrity [148].  

 

Following addition of EPA and DHA to MRS media it was interesting to find that the 

PUFAs added were not found in the media of cells or any bacteria, suggesting its 

prompt metabolism to another compound, in the case of L. FI9785 before its death.  

Interestingly in all lactobacilli tested following addition of EPA, a significant increase 

in DHA was found, showing the potential for EPA‟s elongation and saturation to 

DHA.  This is of major significance since humans convert EPA to DHA at a very low 

efficiency although it is of major importance to body function[149],  and it may be 

that enzymes involved in the conversion in lactobacilli could be isolated and used as 

an additional supplement to efficiently convert EPA to DHA from natural sources, 

such as fish. 
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OA was added into Bioscreen experiments as it has been shown to stimulate 

lactobacilli growth [138].  Johnsson et al. [134] studied its presence in the culture 

medium during lactobacilli growth and deduced that low levels in culture medium 

resulted in more lactobacillic acid and high levels resulting in higher amounts of 

dihydrosterculic acid, meaning that changes in amount of one PUFA can have an 

affect of the mechanisms in which lactobacilli can convert/metabolise the fatty acid.  

A similar observation is present when analysing survival of L. FI9785 following a 

small increase in percentage of OA present in the media.  An increase of 0.4 % 

results in cell death after 4 h incubation compared to the control growth in normal 

media that continues to grow normally.  The results shows that this Lactobacillus 

strain is particularly sensitive to slight changes to the standard culture conditions 

and possible explanations may be due to a tight control on the amount of PUFA that 

can be converted/metabolised and in the presence of additional amount a build up 

of PUFA inside the cell maybe the cause of cell death.  Interestingly there is a 

variation in the percentages of OA found in the bacteria of the control, OA, AA and 

EPA treatments of L. R1 and L. 44 compared with L. FI9785, since OA percentage 

is significantly higher in L. FI9785 cells.  This corresponds with the increase in either 

lactobacillic or dihydrosterculic acid, that is found at higher percentages in both 

human strains; L. R1 and L. 44 compared to chicken; L. FI9785, suggesting an 

increased methylation of the octadecenoic acids to their respective cyclopropane 

forms in human strains, however this affect is observed in control samples 

eliminating L. FI9785‟s early demise as an explanation.   

 

In conclusion, experiments have revealed clear differences in the way PUFAs are 

taken inside lactobacilli and are metabolised/ synthesised in species that can 

survive in small concentrations of PUFAs and those that cannot.  Some bacteria 

have known enzymes that can synthesis PUFAs, however there are mainly marine 

species[150]. Therefore due to lack of studies looking into biosynthetic routes in 
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lactobacilli there is an opportunity to discover how the species may avoid 

antibacterial actions of PUFAs leading to increased selection criteria when looking 

for potential probiotics expected to be used when PUFAs will be present in the diet.  
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Table 4 Lactobacilli following treatment with 5 µM PUFA: AA, EPA, DHA and OA shown as bacterial number relative to control over a 
20 h growth peroid. Values are expressed as mean relative to control (n=3)  ±SD at 4 hourly time points throughout the experiment  for 
each treatment group. Data where there is a significant difference between treatment and control at that time point are shown in the 
main table as *p<0.05 and **p<0.01. Comparison between control and PUFA treatment over the whole time course (n=12)  was 
analysed by two-way ANOVA and the results of the TUKEY post-hoc test for effect of treatment is shown at the bottom of the 
table(*p<0.05 and **p<0.01). 
 

PUFA Time L. 44 L. R1 L. FI9785 L. 2 L. 10 

AA 0h 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 
  4h 0.70 ±0.02 0.46 ±0.24 0.79 ±0.17 0.85 ±0.21 0.76 ±0.10 
  8h 0.52 ±0.24 0.29 ±0.29 0.54 ±0.25 0.82 ±0.16 0.69 ±0.15 
  12h 0.58 ±0.32 0.35 ±0.37 0.36 ±0.21* 0.86 ±0.02 0.77 ±0.15 
  16h 0.67 ±0.29 0.41 ±0.37 0.28 ±0.16** 0.90 ±0.02 0.84 ±0.15 
  20h 0.60 ±0.30 0.46 ±0.37 0.28 ±0.20** 0.92 ±0.05 0.86 ±0.10 

EPA 0h 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 
  4h 0.75 ±0.15 0.51 ±0.30 0.78 ±0.16 0.85 ±0.19 0.85 ±0.10 
  8h 0.61 ±0.30 0.38 ±0.30 0.54 ±0.25 0.76 ±0.11 0.79 ±0.13 
  12h 0.68 ±0.40 0.41 ±0.33 0.36 ±0.21* 0.84 ±0.03 0.80 ±0.04 
  16h 0.75 ±0.45 0.37 ±0.37 0.27 ±0.16** 0.92 ±0.05 0.87 ±0.05 
  20h 0.64 ±0.39 0.38 ±0.32 0.27 ±0.16** 0.97 ±0.03 0.95 ±0.06 

DHA 0h 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 
  4h 0.77 ±0.12 0.51 ±0.24 0.77 ±0.14 0.79 ±0.12* 0.87 ±0.05 
  8h 0.63 ±0.29 0.37 ±0.25 0.55 ±0.23 0.78 ±0.08* 0.87 ±0.15 
  12h 0.64 ±0.34 0.37 ±0.33 0.38 ±0.22* 0.89 ±0.08 0.93 ±0.09 
  16h 0.73 ±0.39 0.40 ±0.38 0.30 ±0.15** 0.90 ±0.11 0.97 ±0.08 
  20h 0.66 ±0.36 0.43 ±0.40 0.30 ±0.18** 0.92 ±0.08 0.99 ±0.18 

OA 0h 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 nd  nd  
  4h 0.72 ±0.08 0.47 ±0.13 0.83 ±0.22 nd nd 
  8h 0.52 ±0.02 0.28 ±0.16 0.55 ±0.24 nd nd 
  12h 0.60 ±0.30 0.37 ±0.31 0.36 ±0.20* nd nd 
  16h 0.67 ±0.34 0.45 ±0.35 0.28 ±0.28* nd nd 
  20h 0.61 ±0.33 0.58 ±0.46 0.29 ±0.19* nd nd 

Control                       
AA   ** ** ** * ** 

EPA   * ** ** * ns 
DHA   * ** ** ** ns 
OA   ** ** ** nd nd 

nd= no data 
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Table 5 Percentage PUFAs: 16:0=palmitic acid, 18:0=stearic acid  , 18:1(9ca)=OA, 
18:2=linolenic acid, 20:4= AA, 20:5= EPA, 22:6= DHA  additon of OA, AA, EPA or 
DHA into MRS media prior to introduction of bacteria. 
 

PUFA Control OA AA EPA DHA 

16:0 3.9 5.3 21.0 6.2 4.5 

18:0 3.0 2.9 14.6 3.5 3.3 

18:1 (9c)
a 

85.0 86.1 37.1 80.6 83.7 

18:2 8.0 5.7 17.7 5.8 5.9 

AA 0.0 0.0 9.6 0.0 0.0 

EPA 0.0 0.0 0.0 3.9 0.0 

DHA 0.0 0.0 0.0 0.0 2.5 
a9c-double bond in position 9 and cis (c) configuration 
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Table 6 Percentage values for individual fatty acids: 14:0, 14:1, 16:0, 16:1, 18:0), 18:1(9c), 18:2,cyc19:0(11c), cyc19:0(9c) and 20:4 
expressed as mean+/-SD,  present in  lactobacilli: L. FI9785, L.R1 or L.44 cells following 8 h incubation with a variety of PUFAs (20 
µM). Within the table significance between treatment groups and control, for each fatty acid within a bacterial species is shown and 
significance differences are labelled *P <0.05 and **P<0.01. 
 

Bacteria Fatty acid Percentage 

    Control  OA AA  EPA DHA 

L. FI9785 14:0 0.78 ± 0.30 BDL** 0.33 ± 0.08* BDL** BDL** 

 
14:1 0.15 ± 0.03 BDL** BDL** BDL** BDL** 

 
16:0 14.47 ± 0.66 27.13 ± 2.25** 12.08 ± 1.73 25.35 ± 0.53** 24.61 ± 0.77** 

 
18:0 4.25 ± 0.27 14.09 ± 0.93** 5.68 ± 0.42 13.86 ± 1.01** 16.38 ± 2.14** 

 
16:1 0.27 ± 0.03 BDL** BDL** BDL** BDL** 

 
18:1(9c)

a 
76.03 ± 0.06 54.51 ± 2.62** 75.06 ± 1.07 55.78 ± 0.76** 54.05 ± 1.59** 

 
18:2 0.86 ± 0.03 0.65 ± 0.02** 0.34 ± 0.02** 0.77 ± 0.01* 0.73 ± 0.04** 

 
cyc19:0(11c) 3.19 ± 0.27 BDL** 2.67 ± 0.50 4.25 ± 0.22* 4.23 ± 0.28* 

 
cyc19:0(9c) BDL 3.61 ± 0.41** BDL BDL BDL 

  20:4 BDL BDL 3.33 ± 0.22** BDL BDL 

L. R1 14:0 0.52 ± 0.16 0.54 ± 0.05 2.52 ± 0.29** BDL* 2.85 ± 0.21** 

 
14:1 BDL BDL 0.09 ± 0.01 BDL 0.21 ± 0.07** 

 
16:0 13.45 ± 1.97 29.40 ± 1.45** 12.28 ± 0.59 21.72 ± 0.43** 11.92 ± 0.13 

 
18:0 14.48 ± 1.04 20.31 ± 0.33** 5.78 ± 1.01** 20.05 ± 0.69** 4.92 ± 1.08** 

 
16:1 2.54 ± 0.43 BDL** 16.06 ± 2.74** BDL 22.89 ± 1.06** 

 
18:1(9c) 58.18 ± 2.05 38.14 ± 2.45** 54.06 ± 0.96 44.40 ± 1.10** 48.00 ± 4.71** 

 
18:2 0.49 ± 0.11 0.11 ± 0.02 0.18 ± 0.02 0.43 ± 0.19 0.34 ± 0.31 

 
cyc19:0(11c) 10.34 ± 0.77 BDL** 8.67 ± 0.89 13.39 ± 1.25 8.87 ± 4.99 

 
cyc19:0(9c) BDL 11.49 ± 3.60** BDL BDL BDL 

  20:4 BDL BDL 0.36 ± 0.05** BDL BDL 

L. 44 14:0 1.16 ± 0.85 0.40 ± 0.21 1.62 ± 0.65 0.30 ± 0.08 2.83 ± 0.34* 

 
14:1 BDL BDL 0.07 ± 0.01** BDL 0.07 ± 0.02** 

 
16:0 10.93 ± 2.58 34.53 ± 4.88** 9.91 ± 0.98 26.36 ± 2.07** 10.96 ± 3.25 

 
18:0 8.69 ± 1.85 21.66 ± 3.07** 4.38 ± 1.43 19.32 ± 1.61** 4.50 ± 0.77 

 
16:1 8.79 ± 2.47 BDL** 33.77 ± 1.75** BDL** 24.07 ± 2.73** 

 
18:1(9c) 60.04 ± 0.89 39.66 ± 5.07** 49.54 ± 0.80* 40.88 ± 1.94** 48.42 ± 4.45* 

 
18:2 0.28 ± 0.22 0.09 ± 0.06 0.14 ± 0.04 0.06 ± 0.01 0.18 ± 0.05 

 
cyc19:0(11c) 10.11 ± 4.80 BDL** 0.12 ± 0.03** 13.08 ± 3.48 8.97 ± 0.23 

 
cyc19:0(9c) BDL 8.38 ± 4.89** BDL BDL BDL 

 
20:4 BDL BDL 0.43 ± 0.07** BDL BDL 

a9c-double bond in position 9 and cis (c) configuration, BDL= below detection limit
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Table 7 Percentage fatty acids expressed at means +/-SD (16:0=palmitic acid, 18:0=stearic acid  18:1(11c)=cis-vaccenic acid, 
18:1(9c)=OA, 18:2=linolenic acid, 20:4= AA, 22:6= DHA found in media following L. FI9785, L. R1 or L. 44 cells 8 h incubation with a 
variety of PUFAs (20 µM). Significant difference between PUFA treatment and control for each of the following: 16:0, 18:0, 18:1(11c), 
18:1(9ca), 18:2, 20:4 and 22:6 is shown within the table, split by bacteria type and  significant difference between L. FI9785 and L. R1 
or L. 44 are shown for each PUFA:  16:0, 18:0, 18:1(11c), 18:1(9c), 18:2, 20:4 and 22:6 in the bottom 2 rows.  Significant results are 
labelled *P <0.05 and **P<0.01 
 

Bacteria Fatty acid Percentage 

    Control OA AA EPA DHA 

L. FI9785 16:0 4.51 ± 0.51 5.47 ± 0.99 4.32 ± 0.44 5.59 ± 0.16 5.31 ± 0.56 
  18:0 4.93 ± 0.22 8.75 ± 0.81* 3.75 ± 0.29 7.25 ± 0.75 7.06 ± 2.26 
  18:1(11c) 0.87 ± 0.09 1.86 ± 0.49 0.65 ± 0.24 2.55 ± 0.50** 2.60 ± 0.39** 
  18:1(9c) 81.52 ± 0.57 76.84 ± 1.60 82.85 ± 0.46 78.29 ± 1.65 78.54 ± 4.15 
  18:2 8.17 ± 1.25 7.08 ± 0.81 7.60 ± 1.08 5.86 ± 0.46 6.49 ± 1.79 
  20:4 BDL BDL 0.83 ± 0.06** BDL BDL 
  22:6 BDL BDL BDL 0.47 ± 0.07** BDL 

L. R1 16:0 3.42 ± 0.47 5.63 ± 0.67* 3.73 ± 0.66 5.85 ± 0.12** 4.72 ± 0.92 
  18:0 5.34 ± 0.80 6.44 ± 0.84 4.30 ± 0.31 8.35 ± 1.47* 5.87 ± 0.44 
  18:1(11c) 0.56 ± 0.43 2.62 ± 0.35** 1.05 ± 0.01 1.37 ± 0.33* 0.59 ± 0.06 
  18:1(9c) 82.37 ± 1.00 78.75 ± 2.12 82.45 ± 1.79 77.27 ± 0.92* 80.32 ± 1.21 
  18:2 8.29 ± 1.03 6.56 ± 0.43 7.96 ± 2.61 6.65 ± 2.33 8.50 ± 2.53 
  20:4 BDL BDL 0.50 ± 0.08** BDL BDL 
  22:6 BDL BDL BDL 0.51 ± 0.09** BDL 

L. 44 16:0 3.49 ± 0.55 5.59 ± 0.49 3.78 ± 0.97 5.81 ± 1.14 5.39 ± 1.04 
  18:0 4.76 ± 0.55 8.22 ± 0.18* 4.96 ± 0.24 9.73 ± 2.35** 5.17 ± 0.13 
  18:1(11c) 0.72 ± 0.10 2.29 ± 0.95* 1.02 ± 0.58 1.49 ± 0.25 0.54 ± 0.06 
  18:1(9c) 81.64 ± 0.60 77.29 ± 0.67* 80.75 ± 1.16 75.96 ± 2.55* 79.02 ± 2.10 
  18:2 9.39 ± 0.80 6.62 ± 0.39* 8.44 ± 0.62 6.43 ± 1.30* 9.87 ± 0.96 
  20:4 BDL BDL 1.05 ± 0.15** BDL BDL 
  22:6 BDL BDL BDL 0.59 ± 0.02** BDL 

L.R1 16:0 ns ns ns ns ns 
  18:0 ns * ns ns ns 
  18:1(11c) ns ns ns * ** 
  18:1(9c) ns ns ns ns  ns 
  18:2 ns  ns ns  ns  ns 
  20:4 ns  ns  ns  ns  ns  
  22:6 ns  ns  ns  ns ns  

L. 44 16:0 ns  ns  ns  ns  ns  
  18:0 ns  ns  *  ns  ns  
  18:1(11c) ns ns  ns  *  **  
  18:1(9c) ns  ns  ns  ns  ns  
  18:2 ns  ns  ns  ns  ns  
  20:4 ns  ns  *  ns  ns  
  22:6 ns  ns  ns  ns  ns 

ns= non significant, BDL= below detection limit
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Figure 23 Numbers of bacteria (Log10) CFU/ml of 10 % (approximately 108-109 
CFU/ml)  innoculated in MRS media at 0 mins every 20 mins until stationary phase. 
a) L. FI9785 b) L. R1 and c) L. 44, after treatment of 20 μM AA, EPA, DHA, OA or 
equal volumes of ethanol (Control). 
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Figure 24 Percentage  values for individual fatty acids: 14:0, 14:1, 16:0, 16:1, 18:0), 
18:1(9c), 18:2,cyc19:0(11c), cyc19:0(9c) and 20:4 taken up by  Lactobacillus 
species          L. FI9785         L. R1        L. 44 after 8 hour incubations with 20 μM AA 
(20:4), EPA (20:5), DHA (22:6), OA (18:1) or ethanol (control). Each bar represents 
the mean +/- SD (n=3) of each condition.  Treatment groups are compared for 
individual fatty acids and between bacterial types.  Those that do not share a letter 
are significantly different (P<0.05).  
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CHAPTER 6 Immunomodulatory effects of PUFAs on colorectal cell lines 

(HT29 and HT29-MTX) in response to commensal microbes versus pathogenic 

bacteria 

 

6.1.0 Introduction  

 

It is now well recognised that  probiotic bacteria can modulate immune responses 

and can improve conditions such as inflammatory bowel disease (IBD)[151]. There 

is also evidence PUFAs may modify the risk and impact of IBD through their 

immunomodulatory effects [152-154].  

 

Furthermore, there is good evidence of a symbiotic effect between dietary PUFAs 

and probiotic bacteria in which n-3 PUFAs have been shown to increase adhesion of 

lactobacilli in the intestines of piglets and arctic charr [75-76].  Both pro- and anti-

inflammatory   effects of lactobacilli and PUFAs have previously been reported [155-

162].  These studies suggest that these food groups function in an 

immunomodulatory homeostatic manner rather than completely inhibiting or 

increasing a particular type of inflammatory response.  In a healthy individual, a 

compromise between pro- and anti-inflammatory responses is needed to maintain 

appropriate immune surveillance to prevent invading pathogens, while at the same 

time allowing the survival of beneficial commensal bacteria through the avoidance of 

an excessive immunological response, and removal of foreign organisms. 

Therefore, the human epithelial cells lining the colon must be able to distinguish 

between potential threats from pathogenic bacteria and benefit from resident 

commensals, although much of the components recognised by the innate immune 

responses are similar in both cases. 
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Immunomodulatory effects may be mediated through TLR signalling, allowing 

recognition of specific bacterial antigens.   TLR 2 can recognise peptidoglycan 

present in gram positive bacteria, such as Lactobacillus sp [163].  The result of 

activation can lead to transcription of NF-κB regulated genes that produce many 

pro-inflammatory signals that aid in the clearance of the bacteria by attracting 

immune cells to the site of activation.  However, TLRs have also been implicated in 

mediating control of tissue homeostasis and commensal binding to surface epithelia. 

Additionally, they can up-regulate HSPs that are well established to play a 

cytoprotective role in intestinal epithelial cells [63].  

 

The immunomodulatory effects of PUFAs may arise as a result of a number of 

potential mechanisms [154]. For example PUFAs will tend to increase membrane 

fluidity and thus the function and activity of cell surface proteins [164-165].  

Alternatively they may modify gene expression. For example, they and their 

eicosanoid and docasanoid metabolites are recognised ligands for PPARs. For 

example, DHA binding to PPAR γ can lead to activation which in turn has been 

reported to signal increased expression of anti-inflammatory cytokines, such as IL-

10, that can dampen the pro-inflammatory response [24].   Of particular relevance to 

the present study, are the reports that PPAR δ activation up-regulates TGF- β [22] 

which is involved in oral tolerance of bacteria, thus aiding the survival of bacteria 

[166-167].   

 

To observe immunomodulation of food groups using a model system, it is necessary 

to have components of the immune system present, such as the white blood cells, 

since IECs can regulate innate and immune responses by directly interacting with 

DC, lamina propria lymphocytes and intra-epithelial lymphocytes.  To achieve this, 

Haller et al. [168] previously  employed  a co-culture transwell system with intestinal 

epithelial cell lines to represent the gut epithelium in the top compartment and 
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PBMC to  represent immune cells present in the lamina propria in the bottom 

compartment of the transwell plate [168].  This system allows cross-talk between the 

two compartments, theoretically modelling cross-talk between gut epithelium and 

immune cells close by. As I am particularly interested in the immunomodulatory 

effects of commensals and PUFAs in relation to colonic health, I selected to use 

HT29 cells that do not differentiate into small intestinal cells after reaching 

confluence. However, I was also interested in how the presence of mucin might 

impact on the epithelial cell response to bacteria as this may modify adhesion or 

access to the apical surface [169].  

 

Since both PUFAs and lactobacilli have strong immunomodulatory effects I wanted 

to observe if PUFAs could modify the immune responses to lactobacilli and if there 

was potentially a common pathway by which these two components might play a 

role in physiological immune homeostasis and potentially also improve IBD 

pathogenesis. To allow the comparison with a more pathological response, I also 

included potentially pathogenic strains (gram positive and gram negative) in the 

transwell system.  Therefore the aim of this study was to observe changes in 

immunomodulatory signalling in colorectal cells treated with combinations of 

lactobacilli or pathogenic bacteria and PUFA incorporation [170] in the presence of 

an immune cell compartment. Furthermore, I wished to explore the possibility that 

differences in gene expression could be linked to differences in PPAR expression in 

different cell lines and in response to different PUFAs. 
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6.2.0 Methods 

 

6.2.1 Gene and protein expression analysis 

 

Methods in section 2.6.0 were followed to explore release of immunomodulatory genes and 

proteins that maybe be modified by bacterial exposure and/or PUFA treatment. 

 

6.2.2 PPAR Transcription Factor Assay 

 

Methods described in 2.7.1 were used to determine PPAR expression in HT29 and HT29-

MTX cells. 

 

6.2.3 Statistical analysis 

 

qRT-PCR results were analysed using inbuilt relative quantification software (Light –Cycler 

480 software version 1.0), using the standard curve for both target and reference (GAPDH) 

gene, the software then determines the target to reference ratio.    

Triplicate ratios of each sample were analysed by Two-Way ANOVA using the General 

Linear Model with Tukey comparisons (Mini tab version 15). Difference with P<0.05 (*) and  

P<0.01 (**) were considered statistically different.   

 

6.3.0 Results 

 

6.3.1 Gene expression in response to different bacteria (figure 25) 

Responses to L. gasseri exposure resulted in an increase in TGF-β1 mRNA compared with 

control (no bacteria) in HT29 and HT29-MTX cells.  Exposure to E. coli LF82 had no effect 

on TGF-β1 expression in either cell line while S. aureus reduced expression only in HT29 

cells.  
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L. gasseri exposure consistently increased cytokine IL-8 mRNA in both HT29 and HT29-

MTX cells, however the gram negative pathogen E. coli LF82 failed to up regulate IL-8 in 

HT29 cells, whilst there was an increase in mRNA levels of this cytokine after exposure to 

the gram positive S. aureus.  Exposure of the more differentiated cell line HT29-MTX to E. 

coli LF82 and S. aureus resulted in contrasting effects; where E. coli LF82 led to an elevated 

mRNA for IL-8, S. aureus exposure resulted in no change compared to control levels in 

absence of bacterial exposure.  Furthermore the expression of IL-8 relative to GAPDH in 

HT29 cells exposed to S. aureus was considerably higher than in cells exposed to L. 

gasseri.    

 

L. gasseri exposure resulted in no change in HSP72 in either cell line, while both E. coli 

LF82 and S. aureus down regulated HSP72 in HT29-MTX cells and E. coli reduced HSP72 

mRNA in HT29 cells. In addition, TNF-α mRNA was produced by HT29-MTX cells following 

E. coli and S. aureus, although higher levels were obtained in E. coli exposed cells (table 8).  

However L. gasseri exposure failed to induce TNF-α gene expression to detectable levels 

(standard curve fewer than 30 cycles) in both HT29 and HT29-MTX cells (data not shown). 

 

6.3.2 Polyunsaturated fatty acids modify immunological responses 

 

In HT29 cells pre-treatment with 50 μM AA increased HSP72 mRNA expression in control 

group (no bacteria) and L. gasseri exposed cells (table 8).  TGF-β1 mRNA was raised by all 

PUFAs in the control group (no bacteria), however after L. gasseri exposure only EPA gave 

a significant increase above the effect of L. gasseri (figure 26). AA treatment resulted in 

increased HSP72 mRNA in the control group (no bacteria) but PUFA pre-treatment did not 

modify the effect of L. gasseri (p<0.02, table 9). No affects of PUFAs were found on HSP25 

mRNA (table 8). EPA and DHA treatment of HT29 cells resulted in an increase level of 

HSP72 mRNA after E. coli LF82 exposure (table 9).   
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In HT29-MTX cells EPA significantly increased TGF-β1 mRNA in the control group, whereas 

EPA increased TGF-β1 mRNA compared with AA with L. gasseri treated cells, but not the 

control (figure 26).  PUFAs did not affect HSP25, HSP72 or IL-8 mRNA production (table 8). 

PUFAs did not affect immune protein mRNA tested following S. aureus exposure similarly to 

HT29 cells. However, following E. coli LF82 exposure, AA treatment resulted in a small but 

significant increase in HSP72 in HT29-MTX (table 9).   

 

6.3.3 Protein expression 

 

L. gasseri exposure led to a three-fold increase in IL-8 (1.11 +/- 0.02 ng/ml) compared to 

control HT29 cells (0.38 +/- 0.09 ng/ml) while data could not be obtained from HT29 cells 

exposed E. coli LF82 and S. aureus due to lack of protein. However, expression in HT29-

MTX was increased relative to the control following exposure to gram negative E. coli LF82, 

whilst there was no change after gram positive L. gasseri or S. aureus exposure (figure 27).   

Protein expression of TGF-β1 was raised relative to the control (no bacteria) by L.gasseri in 

both HT29 and HT29-MTX cell lines, whilst E. coli LF82 did not significantly change TGF-β1 

from control levels. S. aureus increased TGF-β1 protein in HT29 cells, however failed to do 

so in the more differentiated HT29-MTX (figure 28).  Differences in TGF-β1 protein between 

PUFA treatment and control with no PUFA were tested in L. gasseri exposed cells, although 

no significant difference was found, similar patterns to those for mRNA expression following 

PUFA pre-treatment were observed. For example EPA increased TGF-β1 expression but not 

significantly in both cell lines following L. gasseri exposure (table 10).  

 

6.3.4 PPAR expression 

 

HT29-MTX cells expressed high levels of PPAR δ, and PPAR γ compared to HT29 cells 

(relative ratio 3.08, 2.94 respectively).  However, there was no difference in response to 

PUFA treatments in HT29 cells and in HT29-MTX. 
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6.4.0 Discussion 

 

The gut surface is constantly exposed to commensal bacteria that elicit no adverse immune 

responses in healthy, tolerant individuals. However, to control the levels of pathogenic 

bacteria entering the host on a daily basis a certain degree of immune response is required 

to remove them efficiently. Therefore it has been proposed that an active immune system is 

required, although this must be tolerant to non-pathogenic bacteria that can confer many 

benefits to the host.  A single in vitro system cannot effectively represent the complexity of 

the human gastrointestinal tract, therefore to obtain more physiologically relevant results; 

separate cell lines isolated from the human colon were used in a co-culture system with 

PBMC.  This model, developed from that described by Haller et al. [168] allows for cell to cell 

cross talk that is an important part of many cytokine responses.    

 

Results show that colonic epithelial cells can differentially respond to commensal and 

pathogenic bacteria.  However, the responses to bacteria can be cell line specific, for 

example HT29 cells exposed to S. aureus expressed higher levels of IL-8 mRNA than those 

exposed to L. gasseri while this effect was not observed in the more differentiated HT29-

MTX. Responses to E. coli showed a contrasting pattern, in that IL-8 mRNA was up-

regulated in HT29-MTX but not HT29 cells.  The results for IL-8 protein level in response to 

E. coli and S. aureus reflected gene expression patterns in HT29-MTX. TGF-β1 expression 

of mRNA and protein level was increased in both cell lines in response to L. gasseri, but not 

in response to E. coli. In relation to TGF-β1 expression, the only difference between the cell 

lines was following exposure to S. aureus where only HT29 cells showed increased 

expression. The differences in response between the cell lines maybe the result of HT29-

MTX being a more differentiated cell line that produces mucin as well as other proteins 

involved in immune responses, for example TLRs [103]. Additionally, it could be the result of 

differences in adhesion of bacteria to different cell types [171].   
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In HT29-MTX cells, IL-8 protein was not up-regulated compared with the control following 

exposure to either gram positive bacteria; L. gasseri or the opportunistic pathogen S. aureus, 

supporting the concept that neither causes damage to the intact epithelial layer.  Tolerance 

to non-invasive bacteria is proposed to be due to the lack of apical TLR-2, therefore to 

stimulate an immune response bacteria would need to enter or bypass the epithelial cell to 

elicit a response via TLR-2 at the basolateral membrane or on macrophages [105].   The 

lack of response in HT29 cells when exposed to gram negative E. coli LF82 could be 

explained by a down-regulation of apically expressed TLR-4 that would recognise the LPS in 

a gram negative bacterial membrane and initiate a local immune response as shown by 

Furrie et al. using  E. coli co-culture with HT29 cells [103].  In addition, more differentiated 

cell lines maybe more adept at detecting differences in pathogenic capabilities.  However, 

HT29 cells did respond to gram positive bacteria L. gasseri and S. aureus with increased 

production of IL-8 mRNA, again contrasting with the negative responses in HT29-MTX cells.  

This result is consistent with the suggestion by Furrie et al.(2005)  that undifferentiated HT29 

cell are similar to newly formed crypt cells, both showing an up regulation of TLR-2 in 

response to gram positive bacteria.  

 

Consistent with the increase in IL-8 expression, I also observed an increase in TNF-α mRNA 

expression in HT29-MTX cells when exposed to E. coli.  However, whilst L. gasseri showed 

a high level of IL-8 mRNA, a significantly lower amount of TNF-α mRNA was produced.  

These results may explain lack of protein production  from lactobacilli treated cells as 

reported by McCraken et al. [172], and also maintenance of  HT29-MTX IL-8 protein 

compared to the control, since TNF-α enhances production of IL-8 protein [173]. 

The increase in  TGF-β1 expression in colonic cells exposed to L.gasseri is consistent with a 

previous mouse study in which increased  TGF-β1 in BALB/c mice was attributed  to an 

increase in CD4+differentiation into T regulatory cells (Tr1) in response to secreted 

lactobacilli bacterial components [174].  Firstly, Tr1 cells are known to secrete large amounts 

of TGF-β1 and have been proposed to have a role in oral tolerance to bacteria in the gut via 
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an inhibitory feedback effect on IL-12 that drives CD4+ differentiation to TH1 cells. Secondly, 

TGF-β1 may facilitate tolerance, through Smad signalling leading to degradation of TLR-2. 

The inclusion of leukocytes  below the epithelial layer as used in the current study allows for 

the first possibility and also suggests a reason why Vizoso Pinto et al. [175] did not observe 

expression of TGF-β1 from HT29 cells alone.  

 

Another potential mechanism by which commensal bacteria may modify TGF-β signalling is 

by modifying PPAR regulated pathways. There is evidence that TGF-β1 is a molecular target 

for PPAR δ [22] and PPAR γ shares a down stream target gene with TSC-22 (transforming 

growth factor stimulated clone 22) [176].  This mechanism could result in a negative 

feedback response that down-regulates pro-inflammatory cytokines, such as IL-8, through 

inhibition of NF-κB [177-178].  This mechanism would help to distinguish between 

pathogenic and non-pathogenic gram positive bacteria where-by lack of TGF-β1 production 

would lead to an enhanced inflammatory response to clear the invading pathogen. This 

hypothesis is supported in the current study by the observation that TGF-β1 mRNA is 

undetectable following pathogen exposure and no increase of TGF-β1 protein from E. coli 

and opportunistic pathogen S. aureus in HT29-MTX cells.  Furthermore, this may explain 

why we observe an increase in IL-8 gene expression exposed to L. gasseri, but not protein 

expression, in HT29-MTX.  Although in the current study an increase in IL-8 gene expression 

is reported, several authors have previously suggested that lactobacilli can down-regulate IL-

8 in TNF-α or LPS sensitized cell lines [159, 179].  This difference is likely to be due to the 

presence of white blood cells in the transwell model, where stimulation of immune cells such 

as the differentiation of CD4+ cells to a TH1 phenotype could lead to an increase in IL-8 

production [168].  Additional modulation in gene expression by bacterial type is shown for 

HSP72, where E. coli LF82 and S. aureus both down-regulated mRNA levels in HT29-MTX, 

while E. coli alone decreased levels in HT29 cells.  HSP72 production can be stimulated by 

TLR-2 activation and NF-κβ signalling [180] and in HT29 cells E. coli has been shown to 

down regulate TLR-2, resulting in possible HSP down-regulation in HT29s [103].       
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Modulations of immunological responses to PUFAs showed cell lines increasing TGF-β1 

mRNA after pre-treatment with EPA.  EPA is well recognised to be a ligand for PPARs and 

although these receptors tend to bind most efficiently to the most unsaturated fatty acids, (in 

this experiment DHA), in the case of PPAR δ EPA has a conformation that binds more 

efficiently than DHA [23]. Fish oil diets, high in EPA and DHA,  have been shown to up-

regulate the PPAR δ responsive  gene UCP3, resulting in increased wound healing after 

dextran-sodium sulphate induced colitis in pigs [21], supporting a mechanism in which TGF-

β1, involved in colitis wound healing [181], may be up-regulated by EPA via PPAR δ[22].  A 

similar, but non-significant, increase in TGF-β1 protein was observed in EPA loaded cells 

exposed to L. gasseri. 

 

Another immunomodulatory gene that PUFAs significantly changed was HSP72.  HT29 and 

HT29-MTX cells, exposed to L. gasseri and E. coli respectively showed a significant 

increase in HSP72 after AA treatment (table 8 and 9).  This may arise as a result of 

increased production of prostaglandin 15-deoxy- ∆12/14  (PGJ2) from its substrate AA . PGJ2  

has previously been shown to induce HSP72 expression , possibly through a mechanism 

involving PPAR γ [182].  Interestingly, in HT29 cells, EPA and DHA treatment results in 

HSP72 mRNA increase following E. coli exposure, and it is possible that the mechanism in 

which this effect is caused is also via PPAR γ as a result of the ability of PUFAs to act as 

ligands for this receptor [183].  However, individual  PUFAs differentially affect HSP 

expression from HT29 cells following gram positive and gram negative bacteria, for example 

AA increases HSP72 in cells exposed to L. gasseri, while EPA and DHA increase HSP in 

cells exposed to E. coli. A possible explanation maybe through TLR signalling, since ligand 

activation can inhibit PPAR γ through the NF-κB pathway [184-185] and since TLR-4 is 

down-regulated by E. coli  in HT29 cells [103] this inhibition is reduced, thus allowing 

subsequent downstream targets to be produced, such as HSP72.  In addition, E. coli 

damage may lead to disruption of PGJ2 formation from AA, and as AA itself is a relatively 

weak ligand for PPAR γ the effects of EPA and DHA, as stronger PPAR γ ligands, may then 
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dominate. This hypothesis would suggest a complex interaction between PUFAs and 

bacteria, with respect to HSP72, as shown in table 8 and 9.   

 

This study builds on the observation that bacterial signalling at the mucosal surface is 

dependant on the presence of the underlying leukocyte population by examining the effects 

of pathogenic bacteria.  I have demonstrated that the previously recognised complex 

mechanisms that exist to distinguish between pathogen and commensals are likely to 

involve TGF-β1, IL-8 and TNF-α.  Secondly I show that these responses are differentially 

modified by n-3 and n-6 PUFAs, suggesting a subtle effect of these dietary components on 

colonic mucosal immune responses. 
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Figure 25 HT29 and HT29-MTX cells were exposed to; L. gasseri  (a and b) or  control with 
no bacteria (none); E. coli,  S. aureus (c and d) or control with no bacteria (none).  PUFA 
treated cells were omitted to observe bacteria effects only. Each bar represents the mean 
relative to GAPDH (fold change)  +/- SD (n=3) of each bacterial treatment split for mRNA of 
each target/reference gene.  Significance is relative to control (none) *P<0.05 **P<0.01 
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Figure 26 Cell lines (HT29 and HT29-MTX) production of TGF-β/reference gene were 
compared between treatment groups of PUFAs; AA, EPA, DHA or Con (no PUFA).  Data 
was split further into L. gasseri exposed and none bacteria (none) exposed groups. Each bar 
represents the mean relative to GAPDH (fold change) +/- SD (n=3).  Significance relative to 
control *P <0.05 and different symbols represent significance between the two bars labelled 
†◊ P<0.05. 
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Figure 27 HT29-MTX cells production of IL-8 protein (pg/ml) relative to experimental 
controls (control=1).  Each bar represents the mean of fold change when compared to the 
control  +/- SD (n-3).  Significance is shown between the control and each bacterial 
treatment (*P<0.05). 
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Figure 28 Cell lines a) HT29 b) HT29-MTX production of TGF-β1 protein (pg/ml) relative to 
experimental controls (control=1).  Each bar represents the mean of fold change relative to 
control +/- SD (n-3).  Significance is shown between the control and each bacterial treatment 
(*P<0.05). 
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Table 8 Immunomodulatory protein gene expression that was modified by PUFAs/L. gasseri and not shown as a figure.  Results were 
expressed as means of fold change compared to house keeping gene GAPDH  (+/- SD). Significant difference between PUFAs and control for 
each gene are shown on the right column of the table excluding the bottom quadrant and differences between L. gasseri being present or not 
are shown in 4th column bottom row.  The bottom right quadrant shows significance of an interaction between bacteria and PUFAs.  Significant 
results are labelled * <0.05 and highly significant **<0.01 
 

Cell lines Fatty acid 
No bacteria (none) 

 
L. gasseri 

 
Significance 

 

    HSP 25 HSP 72 IL-8 HSP 25 HSP 72 IL-8 HSP 25 HSP 72 IL-8 

HT29 Control 0.143 0.059 0.006 0.097 0.428 1.035       

    (0.03) (0.07) (0.01) (0.03) (0.37) (0.26)       

  AA 0.115 1.390 0.232 0.188 2.296 1.162 ns ** ns 

    (0.04) (0.57) (0.14) (0.05) (1.33) (0.22)       

  EPA 0.149 0.887 0.007 0.160 0.592 1.439 ns ns ns 

    (0.09) (0.26) (0.01) (0.08) (0.43) (0.22)       

  DHA 0.073 0.764 0.027 0.104 1.561 0.857 ns ns ns 

    (0.06) (0.40) (0.03) (0.03) (0.74) (0.04)       

HT29-MTX Control 1.167 2.396 0.434 1.676 3.152 4.326       

    (0.46) (0.45) (0.38) (0.59) (1.75) (1.14)       

  AA 1.266 2.804 0.071 1.107 2.046 1.361 ns ns ns 

    (0.08) (0.26) (0.03) (0.22) (0.94) (1.03)       

  EPA 1.920 1.575 1.654 1.535 2.599 4.183 ns ns ns 

    (0.57) (0.56) (1.40) (0.20) (1.33) (2.19)       

  DHA 0.624 0.341 0.043 0.000 8.802 0.364 ns ns ns 

    (0.01) (0.12) (0.06) (0.01) (6.71) (0.01)       

HT29         ns ns ** ns ns ns 

                      

HT29-MTX         ns ns ** ns * ns 

                      

ns= non significant 
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Table 9 Immunomodulatory protein gene expression from cell lines that were modified by PUFAs/E. coli  or S. aureus and not shown as  figure 
25.  Results were expressed as means of fold change compared to housekeeping gene GAPDH (+/- SD). Significant difference between 
PUFAs and control for each gene are shown on the right column of the table for E. coli and S. aureus bacterial exposures (excluding the bottom 
quadrant). Differences in protein gene expression between E.coli being present or not are shown in 4th column bottom row, while differences 
occurring after S. aureus  exposure compared to no bacteria control (none) are shown in 5th column bottom row.  The bottom right quadrant 
shows significance of an interaction between bacteria and PUFAs.  Significant results are labelled *P <0.05 and highly significant **<0.01 
 

Cell lines 
 

Fatty 
acid 

  

No bacteria (none)  E. coli LF82 S.aureus Significance - E. coli/S.aureus 

HSP 
72 IL-8 TNF-α 

HSP 
72 IL-8 TNF-α 

HSP 
72 IL-8 TNF-α HSP 72 IL-8 TNF-α 

HT29 
  
  
  
  
  
  
  

Control 5.863 0.610 nd 2.664 1.416 nd 7.262 8.426 nd       
  (1.71) (0.72)   (0.26) (0.81)   (3.40) (2.87)         

AA 8.426 0.246 nd 1.513 1.187 nd 2.689 2.027 nd ns/ns ns/ns nd/nd 
  (0.94) (0.05)   (1.05) (0.11)   (0.530) (1.33)         

EPA 11.40 2.517 nd 8.258 7.610 nd 5.368 3.242 nd */ns ns/ns nd/nd 
  (1.63) (0.19)   (1.50) (1.13)   (0.65) (1.93)         

DHA 18.40 0.204 nd 4.498 4.515 nd 3.171 2.944 nd **/ns ns/ns nd/nd 
  (4.06) (0.03)   (1.69) (0.18)   (0.39) (1.19)         

HT29-
MTX 

  
  
  
  
  
  
  

Control 1.492 0.073 0.073 0.502 2.398 2.419 0.809 0.187 0.189       
  (0.13) (0.01) (0.02) (0.04) (0.84) (0.95) (0.07) (0.03) (0.04)       

AA 1.692 0.046 0.046 0.597 3.469 2.809 0.845 0.221 0.142 */ns ns/ns ns 
  (0.13) (0.01) (0.01) (0.06) (0.54) (0.57) (0.03) (0.09) (0.04)       

EPA 1.425 0.010 0.083 0.578 2.428 2.701 0.897 0.331 0.324 ns/ns ns/ns ns 
  (0.04) (0.01) (0.02) (0.03) (0.41) (0.58) (0.17) (0.08) (0.09)       

DHA 1.479 0.058 0.059 0.560 1.915 1.932 1.003 0.239 0.229 ns/ns ns/ns ns 

  (0.03) (0.01) (0.02) (0.08) (0.33) (0.37) (0.16) (0.10) (0.09)       

HT29 
 

    
** ns nd ns * nd **/** ns/ns nd/nd 

            
  

HT29-
MTX 

 

    
** ** ** ** ns ns ns/* * /ns ns/ns 

          
 

              

 
ns= non significant, nd= no data
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Table 10 TGF-β1 protein expression (pg/ml) by cell lines treated with PUFAs: AA, 
EPA and DHA with and without L. gasseri exposure. Results are shown as means 
(pg/ml)  (+/- SD). 
 

Cell lines Fatty acid No bacteria 
(none) 

L. gasseri 

HT29 
 

Control 62.09 58.03 

(10.1) (0.75) 
AA 

 
56.24 59.81 

(8.93) (5.10) 
EPA 

 
42.48 71.62 

(3.81) (22.04) 
DHA 

 
nd 52.59 

  (14.68) 

HT29-
MTX 

Control 100.86 99.95 

(5.96) (20.2) 
AA 

 
74.98 109.87 

(12.1) (3.68) 
EPA 

 
80.51 120.54 

(12.2) (33.0) 
DHA 89.53 67.96 

(12.3) (40.4) 

nd= no data 
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CHAPTER 7 Immunomodulatory effects of PUFAs on colorectal cell line 

(Caco-2) in response to commensal microbes versus pathogenic bacteria 

 

7.1.0 Introduction  

 

The diet comprises of many different components, many of which have been show 

to modify the immune system, i.e. PUFAs [5] , lactobacilli[186] and 

sulphoraphane[187].  Studies often focus on one food-component‟s interaction with 

the immune system; however in our complex diets it is inevitable that the 

components will interact or oppose each other by influencing immune regulation 

differently.  For example, commensal lactobacilli can up-regulate inflammatory TH1 

cell responses[188] , while PUFAs have been shown to up-regulate anti 

inflammatory mediators, such as resolvins[189].  The results of these opposing 

affects show immune regulation, rather than completely inhibiting or elevating one 

type of response.  In healthy individuals a balance between both anti and pro 

inflammatory mechanisms are necessary for non-recognition of beneficial 

components entering the gastrointestinal tract and appropriate immune surveillance 

to prevent pathogen invasion. 

 

Detection of pathogens often starts with innate immune cells, which can initiate a 

pro-inflammatory cascade to aid removal, via activation of TLRs.  These can be 

present on epithelial cells, for example in the colon TLR-4s (LPS recognition) among 

others are present [105].  In contrast down regulation of pro-inflammatory signalling 

can be linked to mechanisms involving PPAR signalling, shown to reduce levels of 

pro-inflammatory products, such as TNF-α [21].   

 

PUFAs and lactobacilli have both been linked with immunomodulatory mechanisms 

[155-162].  Previous studies have demonstrated that PUFAs interact with lactobacilli 
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by increasing their adhesion in intestines of piglets [75] and arctic charr [76], 

therefore this study proposes to use intestinal epithelial cells to explore 

immunomodulation of both PUFAs and lactobacilli by employing a co-culture 

system, described by Haller et al. [168].  This system comprises of immune cells 

isolated from human blood incubated below a monolayer of epithelial cells to allow 

cross-talk between the two cells types and theoretically model cross-talk between 

the gut and immune cells of the lamina propria.  This work supplements similar 

studies using HT29 and HT29-MTX cells to analyse difference in colonic epithelial 

cell models (chapter 6). 

 

7.2.0 Methods 

 

7.2.1 Gene and protein expression analysis 

 

Methods in section 2.6.0 were followed to explore release of immunomodulatory 

genes and proteins that maybe be modified by bacterial exposure and/or PUFA 

treatment. 

 

7.2.2 Exploring theories behind immunomodulation results 

 

Methods in 2.7.0 were followed with the omission of HT29 and HT29-MTX cells in 

section 2.7.1. 
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7.2.3 Statistical analysis 

qRT-PCR results were analysed using inbuilt relative quantification software, using 

the standard curve for both target and reference (GAPDH) genes, the software then 

determines the target to reference ratio.    

Triplicate ratios of each sample were analysed by General linear model with Tukey 

comparisons (Mini tab version 15). Difference with P<0.05 (*) where considered 

statistically different P<0.01 (**) very significant for qRT-PCR and PPAR ELISAs.  

Difference with P<0.05 in LDH assays are indicated by a different letter. 

 

7.3.0 Results 

 

7.3.1 Immunological response to Lactobacillus gasseri, Escherichia coli LF82 

and Staphylococcus aureus 

 

Following exposure to E. coli LF82,   IL-8 mRNA levels rose 5 fold compared to the 

no bacteria control (figure 29 b), whilst S. aureus and L .gasseri showed no 

significant changes in IL-8 expression compared to control levels.  Heat shock 

proteins; HSP 25 and HSP 72; were up regulated compared to controls following L. 

gasseri exposure (figure 29 a), however S. aureus and E. coli LF82 caused no 

changes in HSP 72. 

 

7.3.2 Polyunsaturated fatty acids modify immunological responses 

 

EPA modulated the response of Caco-2 cells to S.aureus by down-regulating HSP 

72 mRNA expression (table 12), whilst there were no effects of PUFAs following 

exposure of cells to either L. gasseri or E. coli LF82 (table 11 and 12).  
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Both EPA and DHA caused down regulation of TGF-β1 mRNA expression by Caco-

2 cells compared with no PUFA controls without bacterial exposure (figure 30). 

However following incubation with bacteria these PUFA effects were lost.  None of 

the PUFAs tested were found to affect expression of HSP 25 or IL-8 either alone or 

following exposure to any of the bacteria species tested.  

 

7.3.3 Protein expression 

 

Contrary to the mRNA expression patterns seen for IL-8 in Caco-2 cells, IL-8 protein 

production was significantly increased following exposure to L. gasseri  (figure 31).  

However, no significant differences were observed in TGF-β1 protein levels  from 

Caco-2 cells following incubation with any of the bacteria compared with controls 

either with or without PUFA treatment. 

 

7.3.4 Transepithelial resistance and fatty acid analysis of media  

 

Caco-2 cells had the highest TEER reading resulting in 74 Ω.cm2, followed by 

HT29-MTX (43 Ω.cm2) and HT29 (29 Ω.cm2) in control treatment groups. 

Interestingly this result did not represent transfer of PUFAs to the basolateral side of 

cells since Caco-2 cell were the only cells that transported  PUFAs across the cell 

layer into the baso-lateral  compartment of the transwell; 3.5 % AA, 15.6 % EPA and 

18.4 % DHA were detected . 

 

7.3.5 PPAR expression 

 

PUFAs significantly affect expression of PPAR δ, whereby they tend to decrease the 

expression relative to the control. A similar trend is seen for both PPAR α and γ 

whilst not significant (figure 32). 
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7.3.6 LDH assay 

 

 Both ethanol (control) and AA treatment groups induce significantly higher 

percentage  cytotoxicity in Caco-2 cells, when compared with other colonic cell lines 

(figure 33). 

 

7.4.0 Discussion 

 

The gut surface is continuously being exposed to foreign components many of 

which are beneficial to gut health, for example lactobacilli that can aid pathogen 

exclusion [190].  However often bacteria can pose a threat and therefore complex 

mechanisms are required to give an active immune response to remove pathogens, 

but maintain tolerance toward commensals.  My previous experiments conducted in 

HT29 and HT29-MTX cells have shown that responses to cytokines can be cell 

specific (chapter 6) and this could be the result of varied adhesion of L. gasseri to 

different cell types or different expression of certain proteins involved in immune 

responses.  The elevation of genes compared to GAPDH is also likely to be 

explained by varying adhesion abilities or sensitivity of cells, for example high 

expression from Caco-2‟s maybe the result of increased sensitivity [130] to the 

PUFA treatment and even the small quantity of ethanol solution they are diluted in 

(figure 33).  

 

Caco-2 cells respond to E. coli LF82 with a large increase in IL-8 mRNA compared 

with control (none), however this does not result in an increase of IL-8 protein.  The 

response to E. coli LF82 could be due to a small change in levels of TLR-4 

compared to HT29 cells (no response to E. coli LF82-chapter 6) as shown for Caco-

2 cells previously [103] .  The lack of protein production maybe the result of a delay 

in its production or alternative signalling that blocks its transcription.  However, it 
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must be noted that Caco-2 cells do produce a large amount of IL-8 protein after 

commensal L. gasseri exposure, this could be explained by the higher numbers of L. 

gasseri (109 CFUs) used in incubations compared with E. coli LF82 (106 CFUs).  

 

In my experiments Caco-2 cells exposed to L. gasseri showed increased HSP 72 

and 25 production relative to control, these proteins are shown to be linked with 

repair therefore increased production from commensal bacteria alone suggests a 

symbiotic mechanism between lactobacilli and gut epithelial cells.   Tao et al. [191] 

suggested one possible mechanism is that protein kinases from lactobacilli are 

released and bind to HSF-1, which up regulated HSP 72 between 4-6 h.  Johnson et 

al. [192] reviews HSPs and highlights that they can be released even if only minor 

stressors have occurred.  Thus the documented evidence that Caco-2 cells are 

particularly sensitive to stress either via ethanol or PUFAs [130]  (figure 33), could 

explain the increase in HSPs, which in not seen in HT29 and HT29-MTX cells 

(chapter 6).  Another mechanism in which lactobacilli may up-regulate HSPs is 

through TLR-2 activation and stimulation of NF-κβ, that results in HSP 25 and 72 

production [180] supported by the higher levels of TLR-2 mRNA found in Caco-2 cell 

compared to HT29 cells [103].  In comparison, E. coli LF82 down regulated mRNA  

levels of HSP 72 in HT29 and HT29-MTX (chapter 6), while no change was 

observed in Caco-2 cells, these results could be explained by decreases in TLR-2 

following co-culture with E. coli in HT29 cells but not Caco-2 cells [103]. 

 

Modulations of immunological responses to PUFAs are cell specific.  The biggest 

variation in results is from Caco-2 cells after L. gasseri exposure, where mRNA 

TGF-β1 and protein is not up-regulated by PUFAs, unlike in HT29 and HT29-MTX 

cells (chapter 6). The reason could be attributed to the affects small quantities of 

ethanol or PUFAs have on this cell line in terms of membrane leakage (figure 33), 

whereby movement of PPARs in to the nuclear fraction on addition of RXR and for 
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example a fatty acid, would not occur if the cell was responding to damage as a 

priority.   This movement of PUFAs through the cells is supported by the results from 

fatty acid extraction indicating that Caco-2 cells are the only cell line tested to result 

in added PUFA being found in the bottom compartment, maybe as a result of 

effective transepithelial transport mechanisms. Alternatively, this may arise due to 

cell damage as indicated by LDH release, even though in control conditions these 

cells maintain the highest TEER reading indicating preservation of tight junction 

integrity.  Unfortunately TEER readings were not completed in the PUFA treated 

cells to make comparisons.  As a cell model for the colon TEER results suggest that 

under normal growth conditions and the time allowed following confluence that HT29 

and HT29-MTX cells are within the normal range for human colon 12-69 Ώ.cm2 

[100], whilst Caco-2 cells gave a higher resistance possibly causing discrepancies 

between the cell lines and must be taken into account on analysis of other data 

presented within this study.   

 

Caco-2 cells exposed to EPA and S. aureus resulted in a decreased HSP 72 mRNA 

level, possible reasoning behind the change in PUFA affects after this opportunistic 

pathogen exposure may be the additional damage caused by the bacteria resulting 

in disruption in the cells protective mechanism.  Another explanation may be due to 

the high evolutionary conservation of HSPs across species [193], therefore since the 

pathogens are most likely to be able to invade the colonic cell, the RNA samples 

may include bacterial HSP 72. In Caco-2 cells a much larger percentage of PUFAs 

are found inside the cell following PUFA treatment (chapter 4), therefore due to 

PUFAs anionic detergent actions these can aid in killing bacteria.  After the addition 

of EPA more of the pathogenic bacteria could have been destroyed, resulting in less 

HSP 72 in the RNA samples.  
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Experiments looking at expression of PPARs show a lowering of PPAR δ following 

AA treatment in Caco-2 cells. This maybe due to the sensitivity of the cell line 

towards AA or ethanol, causing leakage [130] (figure 32) and thus preventing the 

translocation of PPARs into the nuclear fraction of the cell.  Another mechanism 

could be due to the presence of cyclooxygenase-2 (COX-2), that converts PUFAs 

into a variety of prostaglandins.  Caco-2 cells express a large amount of COX-2 

[194-195], hence plenty would be available for conversion of PUFAs into 

prostaglandins and thus less PUFAs may be available to bind the PPAR-RXR 

complex and subsequent translocation into the nucleus. That is, there would be 

competition for PUFAs between COX-2 and PPAR activity.  However, 

prostaglandins has also been shown to bind the PPAR-RXR complex and this 

theory would only stand if the PUFAs were more efficient at binding to PPARs 

affecting translocation rate to the nucleus. 

 

When summarising all suggested possible mechanisms in which PUFAs and 

bacteria may act it shows that their immunomodulatory affects are likely to work 

through different mechanisms. However, resulting affects can oppose or enhance 

each others interaction. The experiments suggest that PUFAs and lactobacilli can 

either up or down regulate pro or anti-inflammatory immune responses, suggesting 

that foods containing these constituents can play a part in normal immune 

regulation. That is, a balance is needed between pro and anti-inflammatory 

responses to allow immune surveillance to recognise threats from pathogens, but 

support tolerance to commensal microbes.
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Table 11 Immunomodulatory protein gene expression that was modified by PUFAs/L .gasseri and not shown as a figure.  Results were 
expressed as means of fold change compared to housekeeping gene GAPDH (+/- SD). Significant difference between PUFAs and control for 
each gene are shown on the right column of the table excluding the bottom quadrant and differences between L. gasseri being present or not 
are shown in 4th column bottom row.  The bottom right quadrant shows significance of an interaction between bacteria and PUFAs.  Significant 
results are labelled * P<0.05 and highly significant **P<0.01. 
 

Fatty acid No bacteria (none) L. gasseri Significance 

HSP 25 HSP 72 IL-8 HSP 25 HSP 72 IL-8 HSP 25 HSP 72 IL-8 

mean SD mean SD mean SD mean SD Mean SD mean SD    

Control 1.01 0.19 0.25 0.06 0.27 0.17 2.72 0.10 3.28 0.76 5.39 3.87    

AA 1.29 0.01 0.42 0.12 0.35 0.01 2.54 1.03 2.15 1.50 3.24 3.58 ns ns ns 

EPA 1.36 0.10 0.37 0.02 0.29 0.21 2.87 0.47 2.41 0.74 5.16 5.24 ns ns ns 

DHA 1.02 0.20 0.35 0.10 0.29 0.11 3.54 0.71 3.64 1.44 11.66 0.37 ns ns ns 

Significance (p =)       **  **  **  ns ns ns 

ns= non significant 
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Table 12 Immunomodulatory protein gene expression that was modified by PUFAs/E. coli  or S. aureus and not shown as a figure.  Results 
were expressed as means of fold change compared to housekeeping gene GAPDH (+/- SD).  Significant difference between PUFAs and control 
for each gene are shown on the right column of the table combining all bacterial exposures (excluding the bottom quadrant). Differences in 
protein gene expression between E. coli being present or not are shown in 4th column bottom row, while differences occurring after S. aureus 
exposure compared to no bacteria control (none) are shown in 5th column bottom row.  The bottom right quadrant shows significance of an 
interaction between bacteria and PUFAs.  Significant results are labelled *P <0.05.  
 

Fatty acid No bacteria (none) E. coli LF82 S. aureus Significance E. coli/S. aureus 

 

HSP 72 IL-8 HSP 72 IL-8 HSP 72 IL-8 HSP 72 IL-8 

 

mean SD mean SD mean SD mean SD mean SD mean SD 
  

Control 1.29 0.39 0.42 0.16 1.52 0.19 2.42 0.81 1.32 0.07 0.68 0.26 
  

AA 0.90 0.15 0.26 0.03 1.24 0.13 2.17 0.41 0.85 0.13 0.77 0.04 ns/ns ns/ns 

EPA 0.81 0.12 0.24 0.03 1.08 0.30 2.66 0.56 0.66 0.22 0.49 0.06 ns/* ns/ns 

DHA 1.44 0.47 0.14 0.13 1.01 0.24 1.38 0.33 1.30 0.29 0.65 0.29 ns/ns ns/ns 

Significance (p =0)   
 

  
 

ns 
 

* 
 

ns 
 

ns 
 

ns/ns ns/ns 

ns= non significant 
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Figure 29 Caco-2 cells exposed to; (a) L. gasseri  or  control with no bacteria 
(none);(b) E. coli, S. aureus or control with no bacteria (none).  PUFA treated cells 
were omitted to observe bacteria effects only. Four immunological protein mRNA 
were found to be significantly altered by the presence of L.gasseri, whilst pathogenic 
E. coli and S. aureus were shown to alter HSP 72 and IL-8 in all cell lines.  Each bar 
represents the mean of fold change compared to housekeeping gene GAPDH +/- 
SD (n=3) of each bacterial treatment split for mRNA of each target/reference gene.  
Significance is relative to control (none) *P <0.05 **P<0.01 
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Figure 30 Caco-2 cell production of TGF-β/reference gene compared between 
treatment groups of PUFAs; AA, EPA, DHA or Con (no PUFA).  Data was split 
further into L.gasseri exposed and none bacteria (none) exposed groups. Each bar 
represents the mean of fold change compared to housekeeping gene GAPDH +/- 
SD (n=3).  Significance relative to control *P <0.05 and different symbols represent 
significance between the two bars labelled †◊ P<0.05. 
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Figure 31 Caco-2 cell production of IL-8 protein, shown at relative to control (no 
bacteria), following exposure of L. gasseri, E. coli or S. aureus.  Each bar represents 
the mean of fold change compared to control treatment with no bacteria +/- SD 
(n=3).  Significance between bacteria are shown as *P <0.05  
 
  

0

2

4

6

8

10

12

14

16

18

20

Gasseri E-coli S.aureus

R
e

la
ti

ve
 t

o
 c

o
n

tr
o

l

IL-8 protein 

*



132 
 

 
 
 
Figure 32 Caco-2 cell expression of PPAR α, δ and γ following AA, EPA or DHA 
treatment. Each bar represents the mean of fold change relative to control with no 
PUFA treatment +/- SD (n-3).  Significance is shown for differences between the 
control and each PUFA treatment within each cell line (* P < 0.05). 
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Figure 33 Percentage cytotoxicity of HT29, HT29-MTX and Caco-2 cells, when 
treated with different PUFAs or ethanol (control). Each bar represents the mean +/- 
SD (n=6-8) of each condition and cell line.  Values for cell lines are compared 
across treatment groups.  Those that do not share a letter are significantly different 
(P<0.01). Caco-2 cell line results are significantly different to both HT29 and HT29-
MTX results in that more LDH is present after addition of ethanol or/and PUFAs. 
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CHAPTER 8: Final discussion 

 

To summarise; I have studied the effects that PUFAs can have on lactobacilli, via 

direct contact and systemic delivery into the colonic epithelia.  I have observed 

uptake of PUFAs into the phospholipid membrane and found that their influence is 

limited due to a tight control of the percentage range taken up of each PUFA, even 

at concentrations as high as 200 µM.   I have studied adhesion of three strains of 

lactobacilli in the presence of PUFA and my data supported results by Bomba  et al. 

[75] in piglets and Ringo et al. [76] in arctic charr; that is, my findings demonstrate 

that generally n-3 PUFAs increase adhesion to human colonic cell lines.   I have 

explored PUFAs effects when immune cells are present to model the epithelial cells 

of the colonic tissue and their cross-talk with the lamina propria. I have been able to 

explore some of my own ideas into the ability of epithelial cells, with immune cells 

present, to differentiate between a pathogen and commensal bacteria.  With each 

study completed more questions rather than answers have emerged and in this 

chapter I aim to summarise my findings and suggest further experiments to give a 

more detailed understanding. 

 

Consistently throughout the studies there has been evidence of Caco-2 cells inability 

to tolerate PUFAs and ethanol that PUFAs are dispersed in.  This work has 

supported findings from Dommels et al. [130] and poses issues for the use of this 

cell line in studies that may involve excess PUFA or ethanol, for example drug 

development analysis of uptake[196].  Results may not accurately model true in vivo 

intestinal epithelial cells, since Caco-2 sensitivity to PUFAs and probable cell 

membrane damage would allow a greater influx of drug into the cell.   

 

Low adhesion number of bacteria to Caco-2 cells when compared to HT29 and 

HT29-MTX cells is most likely caused by cell damage from the PUFA and/or ethanol 
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pre-treatment of the cells.  However a positive effect on adhesion was found for 

some lactobacilli compared to control treatments.  There is no clear evidence from 

my LDH assay that DHA is less damaging to the cell compared with other PUFA 

types, thus even if some damage arises following PUFA treatment some beneficial 

effects on adhesion can still be observed. 

 

With the Caco-2 cell line being a poor model for PUFA research, I have focused on 

comparing the HT29 and HT29-MTX cells results to predict outcomes from in vivo 

colonic epithelial cells.  The HT29-MTX cell line is more differentiated than HT29 

cells as would be seen in the in vivo adult colon.  I believe the model that most 

accurately represents the in vivo results is using HT29-MTX cells with the Haller et 

al. [168] model with PBMC representing additional cross-talk between different cell 

types present in vivo. However, additional results from the HT29 cell line suggests 

this is a good model for the effects seen in newly formed crypt cells [103], 

particularly when looking at mechanisms involving apical TLRs.  In view of this HT29 

cell comparison I have interpreted results as equivalent to bacteria adhering to 

neonatal colonic cells. 

 

When modelling the human colon most PUFAs will have been absorbed in the small 

intestine, thus are most likely to enter the colonic epithelial cells by systemic 

delivery.  This has been modelled in the current study by pre-treating cell lines with 

PUFAs and allowing 48 h of uptake prior to addition of any bacteria, however while 

my confluent monolayers take PUFAs through their apical surfaces in vivo this 

would most likely be through the basolateral side of cells.   

 

The highest adhesion of bacteria found in my experiments was approximately 1 % of 

the total added bacteria.  In the human colon many lactobacilli pass straight through 

to faecal matter although some must adhere if only for a short time to produce 
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beneficial effects on human health as is widely documented.  Thus adhesion of 5.2 x 

106 per cm2 would be predicted to have a beneficial effect.  In addition the increased 

0.1 % or 5.2 x 105 per cm2 of L. FI9785 adhesion following DHA pre-treatment of 

cells should result in additional beneficial effects of these bacteria.  In conclusion, 

the adhesion studies suggest  that systemically delivered DHA can improve the 

effectiveness of probiotic lactobacilli in humans.  The mechanisms involved in DHAs 

ability to increase lactobacilli adhesion, has been previously suggested to be due to 

modification in membrane fluidity. Membrane fluidity controls the position of 

adhesive apical surface molecules in the lipid bilayer and thus exposure to bacteria 

may be increased [76].  The results support this theory by showing that DHA is 

actively taken up into the phospholipid layer of human cell lines.  However, I now 

believe that there are additional influences on adhesion that may act in addition to 

modulation of cell membrane fluidity, for example modification the immune system.  

Previously well studied mechanisms of prostaglandin production from PUFAs, show 

that fish oils: DHA and EPA, produce less inflammatory product when compared to 

n-6 AA[197].  This may promote maintenance of lactobacilli, since fewer numbers of 

immune cells will be activated and therefore it is less likely for bacteria to be 

removed by immune cells from the epithelial surface. In addition, my studies suggest 

that the role of TGF-β up-regulation is important in lactobacilli survival at the colonic 

mucosal surface and it may form part of a critical mechanism that can distinguish 

commensal bacteria from pathogens.  Literature review has allowed me to 

summarise pathways that involve inhibition of inflammatory processes by up-

regulating TGF-β, in particular, focusing on the inhibition of IL-8 protein as found in 

my transwell co-culture study, with PBMC present and following lactobacilli 

exposure (figure 34). 

 



137 
 

 

Figure 34 The complex interactions between polyunsaturated fatty acids (PUFAs), 
lactobacilli products and the up-regulation of TGF-β.  It also shows how downstream 
targets, associated with inflammatory pathways can be inhibited by TGF-β. 
 

 

During initial literature reviews I came across a study that suggested 2 % of PUFA 

can enter the colon directly, thus the idea of studying direct interaction of small 

amounts of PUFA on lactobacilli arose. Interestingly, my results suggest that human 

isolates that would regularly be exposed to PUFA in the diet survived, whilst a 

chicken isolate did not. It is unlikely that standard chicken feed would include many 

PUFAs, particularly fish oils, EPA and DHA, thus the potential chicken probiotic 

[145] could be introduced to a chicken feed without a problem.  However, the current 

trend towards production of eggs high in n-3 fatty acids may add an additional 

problem for the survival of probiotic lactobacilli in chickens.  Therefore, dependant 

on the foreseeable use of chicken probiotics, I would suggest that screening for 

survival in small concentrations of PUFA, with the possibility of mutant development 
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for lactobacilli that survive, in the view that beneficial probiotic mechanisms remain 

intact. 

A time dependant aim of my studies was to produce a mutant form of the chicken 

Lactobacillus johnsonii FI9785, which can survive in the presence of small 

concentrations of PUFAs.  During an experiment using bioscreen (chapter 5) one 

well including lactobacilli and DHA showed a small amount of growth toward the end 

of the 24 h incubation period.  This demonstrated the possibility that mutant 

development was feasible and I could therefore develop a mutant by slowly 

increasing small concentrations of PUFA and select strains that survived. Following 

development I would have liked to complete microarray analysis in mutant versus 

wild type L. FI9785 and look for pathways which may be involved in tolerance 

towards PUFAs. Unfortunately I was unable to pursue this line of investigation. 

Additional ideas of mine were to knockout cell surface molecules in human cells and 

assess adhesion capabilities.  However, with the high number of possible candidate 

surface molecules I believe the task to be outside the scope of a PhD, possibly 

resulting in few positive results.  An idea that developed and would produce novel 

results would be to assess adhesion capabilities of a number of lactobacilli to normal 

colonic tissue obtained from surgical procedures.  This tissue would represent more 

accurately the normal surface molecules in the colon and my have also presented 

the opportunity to collect some colonic mucus for additional adhesion experiments.  

This experiment was well in development stage with ethics preparations and 

surgeons at the Norfolk and Norwich Hospital had been contacted to be involved 

with tissue harvesting.  However, during this time the opportunity to complete 

experiments at Plant and Food, New Zealand arose using the method by Haller et 

al. [168] that they had used previously worked with.  Although I took the latter 

opportunity to work in a different country, I believe the colonic tissue experiments 
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would give a true incite of adhesion capabilities to normal colonic tissue and 

hopefully in the future I can get the opportunity to complete this study. 

 

I have depicted an overview of mechanisms that I have considered to affect 

maintenance of lactobacilli at the colonic mucosa, in attempt to present my results in 

relation to the wider literature (figure 35).  Direct contact with unabsorbed PUFA 

should not have an affect on human isolates of lactobacilli, since they possess a 

mechanism to survive PUFA‟s anionic detergent affects.  Therefore systemic 

delivery of PUFAs to colonic cells has the predominate effect on survival of human 

lactobacilli present to the colonic mucosa.  One mechanism may involve up 

regulation of TGF-β, involved in tolerance, possibly via PPAR signalling. My 

experiments predict that EPA has the largest impact via this mechanism when 

compared with AA and DHA.  However, it is important to mention that PPAR 

signalling can be through PUFA‟s prostaglandin products, in particular PGJ2 [182], 

although I found no evidence of this in my studies.  An additional mechanism, 

reviewed in the literature, is immune modulation directly by prostaglandin products 

of n-3 and n-6 PUFAs, the latter being most inflammatory [197]. As discussed 

previously higher inflammatory signalling may increase immune surveillance and 

subsequent removal of bacteria from the colonic mucosa. Thus EPA and DHA 

production of prostaglandins that result in fewer inflammatory signals may have a 

positive affect on survival of lactobacilli present on colonic cells [197]. 

AA (n-6) can induce inflammatory signalling via its prostaglandin products, however, 

as mentioned previously these products can bind PPARs, leading to inhibition of 

inflammatory responses [198], thus exhibiting a negative feedback mechanism.  In 

my study I found that AA can increase adhesion to mucus secreting cells. As the 

literature suggests opposing effects of AA through prostaglandin and PPARs, I 
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suggest an alternative mechanism of action through alterations in mucus 

composition or production.  This idea is highly speculative and would involve 

analysis of mucin type and number following AA pre-treatment to assess this 

mechanisms viability. 

In addition to immunomodulatory mechanisms that may increase lactobacilli survival 

and adhesion, I have suggested that PUFAs function by modulating the exposure of 

colonic cell surface molecules to which lactobacilli adhere.  In my study I found DHA 

to be highly incorporated into the phospholipid layer and that this PUFA increased 

adhesion of many lactobacilli strains tested to a range of cell lines.  Indicating that 

this mechanism had the biggest impact on adhesion and therefore promoted 

survival at the colonic mucosa. 

Interestingly, my studies have indicated that all PUFAs tested had a positive impact 

on adhesion of certain strains of lactobacilli to at least one cell line tested. Although 

it is likely that each predominately acts through a different mechanism. 
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Figure 35 Overview of PUFAs potential effects on bacteria adhesion. 1. PUFAs not 
absorbed in the small intestine can come into direct contact with bacteria in the 
colon. 2. Systemic delivery of PUFAs following absorption in the small intestine. 3. 
PUFAs and their prostaglandin products bind PPARs leading production of TGF-β 
and subsequent inhibition of the NF-κB pathway, resulting in less inflammatory 
responses and thus aid in bacteria maintenance at the colonic surface.  4.  N-3 
PUFAs; EPA and DHA, are precursors for series 3 prostaglandins that lead to lower 
inflammatory responses than the series 2 type. 5. n-6; AA, lead to series 2 
prostaglandins, these can enhance inflammatory products, however these products 
can bind PPARs and result in inhibition of inflammatory products also. 6. 
unsaturated PUFAs lead to a more fluidic membrane composition, which can affect 
the position of proteins etc. on the cell surface, these can lead to potential adhesion 
molecules being more or less available for binding.  

 

The area of lactobacilli adhesion research is not fully understood and with the 

complexity of lactobacilli adhesion specificity even between strains there is a lot of 

future work to fully elucidate mechanisms involved in binding to human cell 

membranes or mucus.  I hope that my work has highlighted some additional ideas of 

mechanisms involved in binding of lactobacilli and has highlighted a potential 

concern of probiotic use in chickens.  I also believe my ideas for additional studies 

into this area can one day be completed to advance knowledge. 
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CHAPTER 9: CONCLUSION 

 

 DHA up-regulates lactobacilli adhesion to human epithelial cells and 

part of the mechanism may involve modification of host cell surface 

receptors. 

 

 AA up regulates adhesion of some lactobacilli to mucus secreting 

HT29-MTX cells, possibility involving modification of mucin production 

or composition to favour binding. 

 

 Lactobacilli can up-regulate TGF-β that maybe involved in survival by 

down-regulation of inflammatory signalling, thus avoiding recognition 

and removal from the host cell surface. 

 

 EPA can enhance the production of TGF-β and therefore may aid in 

lactobacilli survival. 

 

 Results suggest that AA, EPA and DHA act through different 

mechanisms to support the beneficial effects of lactobacilli in the 

colon. 

 

 Lactobacilli isolated from chickens may not survive in small 

concentrations of PUFA.  This may be due to lack of adaptation to 

PUFAs through a lack of exposure in chicken gut, since a standard 

feed is low in fish oils.  Could this pose a problem when lactobacilli 

probiotics are added to feed, high in fish oils, as currently a trend? 
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List of Abbreviations 

 

PUFA 

 

 

Polyunsaturated fatty acid 

AA Arachidonic acid 

EPA Eicosapentaenoic acid 

DHA Docosahexaenoic acid 

PKC Protein kinase C 

LCFA Long-chain fatty acid 

FABP Fatty acid binding protein 

FAT Fatty acid translocase 

FATP Fatty acid transport protein 

FACS Fatty acyl CoA synthease 

PPAR Peroxisome-proliferator activated receptors 

PPRE Peroxisome proliferator response element 

CLA Conjugated linoleic acid 

TLR Toll-like receptor 

PAMPs Pathogen-associated molecular patterns 

LPS Lipopolysaccharide 

IRAK Interleukin 1 receptor activated kinase 

IECs Intestinal epithelial cells 

APC Antigen presenting cell 

PGN Peptidoglycan 

DAP Diaminopilemicacid 

MDP Muramyl dipeptide 

DC Dendritic cell 
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LCPUFA Long chain polyunsaturated fatty acid 

FCS Fetal calf serum 

L. FI9785 Lactobacillus johnsonii FI9785 

L. gasseri Lactobacillus gasseri ATCC 33323 

L. R1 Lactobacillus casei sp.R1 

L. 44 Lactobacillus casei sp.44 

L. 2 Lactobacillus casei sp.L2 

L. 10 Lactobacillus casei sp.L10 

MRS De mann, Rogosa and Sharpe media 

PBS Phosphate buffer saline 

OA Oleic acid 

FAMES Fatty acid methyl esters 

GC Gas Chromatography 

CFU Colony forming units 

PBMC Peripheral blood mononuclear cells 

E. coli Escherichia coli LF82 

S. aureus Staphylococcus aureus 

TSB Trypticase soy broth 

BHI Brain heart infusion broth 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

ACTB β actin 

HSP 25 Heat shock protein 25 

HSP 72 Heat shock protein 72 

TGF-β Transforming growth factor β 

IL-8 Interleukin 8 
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TNF-α Tumour necrosis factor α 

IL-10 Interleukin 10 

IL-2 Interleukin 2 

NOD-2 Nucleotide oligomerization domain 2 

TLR-4 Toll-like receptor 4 

IFN-γ Interferon γ 

GATA-3 GATA binding protein 3 

ELISA Enzyme-linked immunosorbant assay 

LDH Lactate dehydrogenase 

TEER Transepithelial electrical resistance 

OD Optical density 

SEM Scanning electron microscopy 

iFABP Intestinal fatty acid binding protein 

TFFs Trefoil factor family 

GLM General liner model 

IBD Inflammatory bowel disease 
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