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Abstract

The development of different computer technologies and software methods has contributed

to a large number of applications in the medical visualisation field. Two of the technolo-

gies that have rapidly evolved within the operating theatreare known as augmented reality

and surgical navigation. The former aims to superimpose in real time computer-generated

models on top of images of a real scene acquired by optical devices. This results in an

image-enhanced view of the real world. In the case of surgical navigation, it allows the

surgeon to identify the location of surgical instruments that are inserted in a patient’s body.

The combination of both technologies is known as image-enhanced surgical navigation, in

which the digitally-reconstructed anatomy of a patient is overlaid on real images captured

by optical devices such as an endoscope or a surgical microscope.

This thesis is focused on the importance of the accuracy of different stages required to

produce an overlay in an image-enhanced surgical navigation system targeted to ear, nose

and throat interventions. These stages comprise camera calibration, registration between

the patient’s real anatomy and its virtual counterpart, andmotion tracking. A series of

optimisations are presented that improve the accuracy of each stage based on the use of

a rigid endoscope and a stereoscopic surgical microscope. In particular, improvements

are first made to the underlying image-enhanced surgical navigation system, regarding

endoscopic camera calibration, motion tracking and stereoscopic visualisation. This is

followed by a method to optimise the focal length and consequently improve the accuracy

of the final calibration error using a pair of cameras connected to a surgical microscope.

Finally, a technique is introduced to correct the misregistration between real and virtual

anatomical structures of a patient as observed by the surgical microscope. This technique

can be used when the problem is caused by accumulated positional errors produced by a

motion tracking device during the intervention.
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Chapter 1

Introduction

Since the introduction of computing science in the field of medicine a few decades ago,

the means by which practitioners diagnose and treat diseases have changed considerably.

Traditional methods required that doctors learnt surgicalprocedures based on information

found in books or a patient’s particular X-ray image data. Nowadays, doctors rely on

technological developments to perform a great number of surgical procedures. These

include the use of robotic arms to execute minuscule movements, obtain visual feedback

from a computer in real-time, and remotely collaborate in anoperation, among others.

The technological approach of using computer systems in theoperating room is known

as computer-assisted surgery or computer-aided surgery (CAS). According to the Inter-

national Society for Computer-Aided Surgery, the range of CAS“encompasses all fields

within surgery, as well as biomedical imaging and instrumentation, and digital technol-

ogy employed as an adjunct to imaging in diagnosis, therapeutics, and surgery.” [1]. The

main objective of CAS within the operating theatre is aimed atimproving precision levels

during the surgical intervention and to shorten operation times and, most importantly, to

reduce patient recovery times. Diverse CAS systems are implemented according to dif-

ferent surgical phases. The following describe some uses ofcomputer-based techniques

in the operative stages:
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• Pre-operative stage. This phase includes an analysis of the patient’s anatomy

around specific areas or the entire body. A set of X-ray computed tomography

(CT) or magnetic resonance imaging (MRI) scans are obtained and stored in a

database. With the help of a computer, these images can be used to generate three-

dimensional models of a patient’s body. The practitioner can navigate within the

representation and plan a surgical procedure.

• Intra-operative stage. The patient information is constantly acquired, updated and

presented to the doctor during surgery in order to reflect anychanges as the in-

tervention progresses. This stage can be considered as the most critical period

because any failure in the system could lead to serious consequences in the pa-

tient’s health. Time delays and lack of precision are among the issues that CAS

applications may present in the operating room.

• Post-operative stage. Once surgery has finished, the doctor can analyse the results

using an up-to-date reconstructed 3D model of the patient. This new model can

also be compared to other patients’ results to evaluate the recovery process. Also,

the surgical procedure can be recorded and presented to the same doctor or to

different practitioners in order to evaluate their performance.

Figure 1.1 illustrates the use of CAS applications in different surgical phases.

There are several technologies that can be used to help a doctor visualise the patient’s

anatomy in the different operative phases. Virtual reality(VR) and augmented reality

(AR) technologies are among the latest advances in the field. In VR, different virtualisa-

tion levels can be employed to represent three-dimensionalmodels [3]. The basic level

displays 3D objects on flat surfaces such as PC monitors, in which the user can control a

model through simple devices (i.e. mouse and keyboard) or more specialised tools (i.e.

haptic devices). In higher virtualisation levels, the usercan be enclosed in an entirely

computer-generated world with no possibility to perceive the real world. This is known
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Figure 1.1: Relation of Computer-Assisted Surgery systems in different operating stages [2].

as a fully-immersive environment. In either level, VR can beemployed to train surgeons

in specific procedures, diagnose and plan a surgical intervention or evaluate the results

after operation.

Whereas VR exclusively presents virtual models to the user, AR combines real and

virtual worlds in the same scenario. This is achieved by superimposing virtual images on

the user’s world view. The enhanced vision allows the user toobtain extra information on

screen about specific elements of the real world. In the case of medical applications, visual

cues can be used to assist the practitioner during surgery inreal time. Thus, the visual

perception of the patient’s anatomy can be extended throughthe insertion of computer-

generated images of bones or organs corresponding to the subject. These images are

usually extracted in a pre-operative stage by scanning the patient through CT or MRI

modalities.

Surgical navigation (SN) systems are used to provide information about the global lo-

cation of surgical tools introduced in the patient’s body during the intra-operative stage [4].
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Specifically, when a surgeon inserts an instrument, such as an endoscope, the computer

system displays on a computer monitor the exact position of the instrument tip with re-

spect to the patient’s anatomical structure. Therefore, the system allows the surgeon to

guide or navigate a surgical tool through the human body. SN can also be referred to as

image-guided surgery (IGS).

The combination of AR, also known as image enhancement (IE), and SN systems

yields a technology denominated image-enhanced surgical navigation (IESN). IESN sys-

tems allow the surgeon to navigate an instrument while visualising superimposed virtual

models on real images. As these virtual models correspond tointernal structures lying

underneath the observed anatomy, it is said that the surgeonacquires so-called “X-ray

vision” during the intervention. IESN systems are typically employed for minimally inva-

sive surgery (MIS) or surgical operations in which additional optical devices are required

(e.g. surgical microscope).

1.1 Research objective

As in any other computer-assisted application, technologymust be used to extend the

user’s abilities rather than to replace them. Therefore, IESN systems are not intended

to make surgeons more competent within the operating theatre, but to assist them and

improve their medical accuracy during the intervention. The use of an IESN system may

give a surgeon confidence in the procedure. However, the surgeon must confirm that the

accuracy of the system is maintained at all times [5].

One of the factors that influence the success or failure of an IESN system consists

in the accuracy to overlay real and virtual images throughout the surgical intervention.

The accuracy relies on the technologies employed to acquireinformation from the real

environment and the software methods required to relate thereal world with its virtual
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counterpart.

Depending on the particular surgical application, the maximum accuracy achieved by

an IESN system will differ due to the observed patient’s anatomy. In specialties that deal

with organs and soft-tissue areas, the average accuracy obtained is within 10 mm [6–10].

This is mainly because these areas are deformed during the intervention as a result of

respiration and heartbeat. Therefore, shape differences are constantly found between pre-

and intra-operative anatomies. In the case of ear, nose and throat (ENT) procedures, the

target areas involve bony structures and tissue adjacent tobones that tend to maintain their

shape throughout the operation. Because there is little difference between the scanned and

real anatomies, higher accuracies in the IESN system are obtained. Specifically, the over-

all accuracy achieved in ENT surgery is in the range of 2 - 3 mm [11–16]. Nevertheless,

the tolerance error for each particular procedure has to be decided during the interven-

tion [7].

The objective of this thesis is to optimise different aspects of an IESN system that

influence the overlay accuracy between pre- and intra-operative images. The research

is focused on surgical interventions for ENT using a stereoscopic surgical microscope

and a rigid zero-degree endoscope. A previously developed IESN application called

ARView [17] served as the basis for the research described inthis thesis.

1.1.1 Targeted ENT procedures

Two particular ENT surgical procedures are targeted as potential applications during this

research: sinus surgery and mastoidectomy. The former involves the treatment of si-

nusitis — the inflammation of the sinus cavities surroundingthe nose — as a resource

when medication or other treatment options prove to be ineffective in relieving the symp-

toms [12, 13]. Sinus surgery is typically carried out using an endoscope that is inserted
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into the nasal openings in order to remove the mucus and treatthe cause of the illness.

This type of procedure is called endoscopic sinus surgery (ESS). In cases of persistent

symptoms after an endoscopic intervention, a surgical microscope can be used to access

the sinus cavities through incisions on the skin [18]. It must be mentioned that, in compar-

ison to an endoscope, the use of a surgical microscope provides a stereoscopic view that

enhances depth perception during the operation. For this reason, in some cases surgeons

prefer the use of direct microscopy as the rate of incidence of the disease is comparable

to that of an endoscopic approach [19].

In the case of mastoidectomy, the objective of the intervention is to eliminate the in-

fection of the mastoid bone, which is a bone situated behind the ear at the base of the

skull. This operation it is often performed when medicationis not effective, as in the case

of sinusitis. The procedure involves the removal of the mastoid bone using a special drill

and observed through a surgical microscope. Other reasons to carry out mastoidectomy

include providing a path for interventions in the lateral skull, such as the allocation of

hearing implants [20]. The main risks associated to this type of operation include detect-

ing and avoiding the facial nerve and surrounding jugular veins [21].

It should be noted that other procedures that rely on bony structures in ENT and skull

base surgery could also find application by this research. This is true in the case that

the overlay is aimed at rigid-body anatomies, which are assumed to be non-deformable

during the surgical intervention.

1.2 Relevance of the research work and main

contributions

As described previously, the accuracy of an IESN system differs on the type of surgical

procedure and the underlying anatomical structures. For general IESN applications, the
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overlay accuracy between real and virtual models is affected by the deformations that oc-

cur in the patient’s anatomy as organs and soft tissues move during the intervention. The

use of IESN is simplified in surgical specialties where non-deformable structures are in-

volved, such as ENT procedures. However, the problem of generating an accurate overlay

between rigid real and virtual anatomical models has not been satisfactorily solved.

The procedure to superimpose virtual imagery on the view of the real world is based

on a workflow that consists of four basic steps: camera calibration, registration, motion

tracking and visualisation. In the first step, the camera used to capture the view of the sur-

gical scene is calibrated in order to determine its optical properties and its location in the

real world. This is followed by the registration phase that aligns both the real and virtual

anatomical models, producing an initial static overlay between them. Subsequently, the

camera and/or patient are tracked to reflect their movementsduring the operation. The

final step involves the visualisation of the AR scene throughdisplay devices.

The original contributions provided by this research are mainly focused on the opti-

misation of the first two steps in the workflow. The selection of these two steps rely on

the fact that they are the main stages in which the development of new software-based

methods can improve the accuracy of the overall overlay. Being targeted to ENT proce-

dures, the different experiments performed throughout this research seek to achieve higher

accuracy levels than the accuracy currently obtained by general IESN systems. The exper-

iments also aim to evaluate external factors that independently affect the system accuracy

in the stages of camera calibration and intra-operative registration. As the experiments in-

volve the use of a surgical microscope, the levels of magnification produced by the optical

device must be taken into consideration.

With respect to the first step of the workflow, a new hybrid technique is introduced that

combines a photogrammetric calibration procedure for one camera and a self-calibration

method for a stereo pair of cameras. This hybrid procedure allows optimising the estima-
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tion of the focal length of the cameras and subsequently improving the accuracy of the

calibration in the stereoscopic microscope. A new 3D calibration object is specifically

designed and manufactured for its use in surgical microscopy.

Concerning registration, this research presents a method that intra-operatively aligns

virtual and real models when the overlay is affected by accumulated tracking errors. The

method uses a similarity metric known as photo-consistencythat relies only on the visual

information obtained by the pair of cameras connected to a microscope. Unlike previous

studies based on photo-consistency, the registration allows the use of magnified views of

volumetric anatomical models instead of full-sized views of polygonal objects.

Besides the contributions previously described, additional work has been carried out

aimed to improve the performance of the IESN system and studydifferent issues that are

directly related to the overall accuracy. The following list summarises the most relevant

topics among the research work:

• A series of software optimisations are applied to the original IESN system imple-

mentation. The optimisations include the reduction of feature segmentation in 2D

calibration markers used for endoscopy and the visualisation of volumetric models

using stereoscopic display devices.

• An evaluation of the sensitivity of the photogrammetric calibration method towards

the detection of 2D markers in the projected calibration image and the markers’

positional accuracy on the calibration object.

• A study of the accuracy of an optical tracking device in a working laboratory sce-

nario in comparison with the nominal accuracy provided by the manufacturer. Ad-

ditionally, a synchronisation method is introduced to ensure the integrity of the

positional data when camera and patient are tracked at the same time.

The research presented in this thesis is based on experiments carried out in a laboratory
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setup that simulates a surgical environment. At this stage,the collaboration of a medical

team able to evaluate the performance of the IESN system has been relatively limited.

In order to improve the current research, a series of clinical trials could be performed

within the operating theatre as to validate the system accuracy in a real scenario. This

would allow obtaining immediate feedback from practitioners during the intervention.

Nevertheless, ethical approval and other requirements need to be obtained prior to the

evaluation.

1.3 Thesis outline

The present chapter has introduced the subject area of this thesis and established the re-

search objective. The remaining body of this thesis is contained in the following chapters:

Chapter 2. Background

The second chapter introduces the reader to the technology known as augmented re-

ality (AR), including a review of research projects related to the field of medical AR. A

general study of the hardware components and software techniques required to generate

an AR environment is also presented.

Chapter 3. General optimisation within the IESN system

This chapter describes the series of optimisations implemented in the IESN system,

including the areas of endoscopic camera calibration, motion tracking systems and stereo-

scopic visualisation. An evaluation of optical tracking accuracy is also explained.

Chapter 4. Camera calibration

In this chapter, analysis of performance of a camera calibration method for a single
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camera is presented. In addition, the new hybrid technique to improve the accuracy of the

calibration error using a stereoscopic surgical microscope is introduced.

Chapter 5. Intra-operative registration

The fifth chapter describes the method for intra-operative registration between virtual

and real models based on photo-consistency that aims to compensate alignment errors

produced by a tracking device.

Chapter 6. Conclusions and future work

The last chapter concludes the thesis with a summary of the research work and indi-

cates possible areas that could be further investigated.
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Background

2.1 Augmented Reality

Back in 1993, one of the first publications describing the concept of Augmented Reality

(AR) defined it as computer-augmented environments that “merge electronic systems into

the physical world instead of attempting to replace them” [22]. However, the foundations

of this technology go back to the work of Sutherland in the 1960’s, in which he developed

a head mounted display (HMD) to overlay graphical information directly on the user’s

vision [23].

AR can be conceived as a hybrid between the real and virtual worlds. Milgram and

Kishino [24] described a virtuality continuum where a relationship exists between the

objects generated by the computer and the physical environment. This continuum (shown

in Figure 2.1) presents the different levels in which a user can interact with genuine and

artificial objects.

Azuma [25] defines an AR system as having three important features: The first one

combines real and virtual objects in a real environment. Thesecond property establishes

that it must run in real time and interactively, trying to perform the required actions within
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Figure 2.1: Virtuality continuum as described by Milgram and Kishino [24].

a short time delay. The last feature depicts that real and virtual objects have to be regis-

tered in 3D, which means that they must be properly aligned with each other in order to

create the illusion that both worlds coexist. Different methods to achieve these character-

istics will be described in the following chapters of this thesis.

A large number of applications based on AR have been researched during the past

years, all of them aiming at enhancing the visual information that a user perceives with

the “naked” eye. The following examples present some AR applications in several areas

(for a comprehensive survey of AR based applications the reader is referred to [26,27]):

• Design and manufacturing: AR can provide users with real-time visual informa-

tion while performing industrial maintenance. Virtual indicators assist a technician

about the location of components inside an engine or guide the user through the

necessary steps to perform complex maintenance tasks. For example, Riess et

al. [28] present a personal digital assistant (PDA) that records video images of a

machine and recognises the device by comparing its featuresagainst a computer-

aided design (CAD) database. In industrial design, AR can help to plan the de-

velopment of factory environments by superimposing virtual machinery on the

printed construction layout or directly on the real view of the assembly floor [29].

• Entertainment: Some AR applications have been developed recently within the

field of computer games and recreation. A video game for PlayStation 3 called

“The Eye of Judgment” (www.eyeofjudgment.com) uses a camera attached to the
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game console pointing towards a special table mat. The players place printed cards

on the mat and the game superimposes virtual characters on each card. During the

game, the characters battle among them and also interact with the user’s move-

ments. Another example was developed by the company Total Immersion (www.t-

immersion.com). Their products have been used to enhance visual interactivity

by overlaying people’s faces while waiting in a theme park queue. In a live con-

cert performed by the rock band Duran Duran, AR was used to project computer-

generated avatars next to the lead singer [30]. Visual effects were also projected

above the audience in real time throughout the show.

• Education: AR based educational systems permit users to learn or reinforce skills

without the necessity of totally immersing them in a new environment, as VR

does. Virtual animated objects superimposed on real objects can be presented to

the student in order to enhance the perception of how they work. The technology

can be used together with multimedia web content to display visual information

stored remotely and augment the local real world [31]. Otherapplications targeted

at children allow them to play with patterned cubes that showdifferent sections

of a larger object in order to build a 3D jigsaw puzzle or narrate a virtual story

based on the position of the different cube faces [32]. Educational applications

can also be implemented in historical sites such as ancient Pompeii [33], where

virtual characters can be projected on real scenes to provide the visitor with a

more realistic experience than traditional audio commentary.

Particularly in the field of medicine, AR has proven to be of great potential during

surgery due to the enhanced visual information it provides to practitioners. Convention-

ally, surgeons had to mentally reconstruct a three-dimensional patient’s anatomy from a

set of 2D X-rays. AR allows them to perceive the imagery in situ and in real time. The

practitioner indirectly visualises the inner anatomy of a patient through video cameras
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Figure 2.2: Examples of AR based SN: (left) placement of virtual ribs on the patient’s body surface,
(right) visual cues locate the organs that are affected by a disease. (Images from Marescaux et
al. [34]).

attached to medical equipment — such as an endoscope or surgical microscope — and a

corresponding CT or MRI version of the anatomy is overlaid. Thus, the superimposition

aims to provide visual clues during the SN procedure. This approach is known as AR

based SN or simply as IESN. Figure 2.2 illustrates the use of AR in surgical procedures.

The use of AR in the operating theatre has been introduced in several medical disci-

plines over the last years. As described by Shuhaiber [35], the main surgical specialties

that have adopted this technology are:

Neurosurgery. This sub-field has attracted most of the research in IESN systems. The

procedures can employ a stereotactic frame surrounding theoperating area to allow for

the 3D location of specific targets inside the body. Modern approaches, as described in

the next section, have withdrawn frames for more comfortable environments. Some of

the interventions within neurosurgery aim to resolve brainhaemorrhages, skull fractures,

brain tumours and spinal hernias, among others [36,37].

General surgery. It focuses on organs located in the abdomen and deals with bowel

diseases, colon infections, inflammation of the pancreas, etc. However, other patholo-

gies can be covered as well, such as breast cancer. In CAS systems, liver and kidney

surgeries have been the most promising procedures where most of the research has been

focused [10,38–40]. It is predominantly based on the use of laparoscopic devices, leading
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to MIS interventions.

Orthopaedic surgery. Orthopaedics is focused on the musculoskeletal or locomotor

system. Some research has been performed on fracture reduction, tumour removal, min-

imally invasive joint arthroscopy [41] and implant alignment for knee replacement and

hip resurfacing [42,43]. Current efforts are directed to restore and enhance the surgeon’s

perceptive capabilities in the operating room [44].

Maxillofacial surgery. It concerns the surgical field of diagnosing and correcting

pathologies that affect head, face, neck, mouth and jaws. ARbased surgery includes tu-

mour resection [45], mandibular joint rectification [46], dental injuries and implants [47],

etc. Virtual anatomical structures can be superimposed on the real target in order to guide

the surgeon during bone or splint translocation.

Otorhinolaryngology. Also known as ear, nose and throat (ENT) surgery, it deals with

the treatment of diseases such as sinusitis, mastoiditis, oral and larynx cancer, etc. Among

the most common surgical applications, AR can be used to assist the surgeon in diagnosis,

biopsies, removal of carcinoma and orbital decompression [48–50]. IESN in this area has

the advantage of dealing mainly with bony structures, whichprovides a higher level of

accuracy during the intervention as the anatomical shapes do not deform over time.

Cardiovascular and thoracic surgery. It involves medical procedures inside the chest

to treat lung cancer, tumours and heart disease, among others. It is based on operating

robots that assist the surgeon in the manipulation of MIS instruments. An example of

a robotic-assisted surgery system is theda VinciSurgical System developed by Intuitive

Surgical, Inc. (www.intuitivesurgical.com). This systemallows the surgeon to control

surgical micro-instruments, attached to articulated arms, from an external console. In

IESN, the main difficulty relies on the alignment between virtual and real models due to

the continuous movement and deformation of heart and lungs.Although some research

has been carried out during the last years in this specialty [51–53], no real-time application
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has been found in the current literature.

2.2 Previous work in medical AR

The first steps of combining computer-based imagery with real surgical procedures were

taken in the 1980’s in the field of neurosurgery. Kelly et al. [54, 55] developed a medical

AR system in frame-based stereotactic microsurgery for theremoval of brain neoplasms.

Soon after, Roberts et al. [56] and Friets et al. [57] introduced a related system for the

same specialty, although it was targeted to a frameless stereotactic microscope. Other

approaches [58, 59] independently applied image-guided neurosurgical systems to plan

and perform removal or ablation of tumours. The systems allowed visualisation of both

CT and MRI patient data.

Bajura et al. [60] presented an ultrasound-based AR system that allowed the practi-

tioner to carry out obstetric examinations in a pregnant woman. The patient’s captured

images were acquired pre-operatively and displayed in realtime. However, the system

was only able to show a few ultrasound slices at a low frame rate. State et al. [61] im-

proved the visualisation system by reconstructing the fetus model in 3D during an off-line

stage. Nevertheless, the research group still faced many problems due to the technology

available at the time. A few years later, the system was extended to a stereo setup [62,63],

allowing real-time ultrasound-guided needle biopsies using up-to-date hardware and al-

gorithms to compensate for some previous limitations. Using a hardware configuration

similar to the ultrasound-based approach, Fuchs et al. [64]implemented a visualisation

system for laparoscopic surgery purposes. They employed a structured light pattern that

was projected on the patient’s body in order to extract 3D anatomical structures. Then,

images corresponding to internal anatomy were superimposed on the real view of the

body surface.
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A research group from King’s College London implemented an ARsystem called

MAGI (Microscope-Assisted Guided Interventions) [65–67]. Their approach encom-

passed the overlay of 3D structures directly on the optics ofa stereoscopic surgical mi-

croscope. For this purpose, a semi-transparent lens was adapted inside the microscope

eyepieces. The system was targeted to ENT and neurosurgicalinterventions. Aschke et

al. [68] developed a similar idea by connecting special micro displays to the microscope

optics. However, the system was focused on the intra-operative planning stage of neu-

rosurgery. Ẅorn et al. [45] and Marmulla et al. [69] extended Aschke’s microscope by

using a robotic camera that projected target position images on the patient’s body surface.

This projector-based AR system allowed the practitioner tofollow the visual cues during

SN directly into the facial surgical area.

More recent research by Caversaccio et al. [70] enhanced the surgical view inside a

single microscope eyepiece. They attached an optical mini-tracker to the surgical micro-

scope to read tools and patient’s position during the intervention. This provided a similar

field of view (FOV) of the scene. Garcı́a et al. [11] continued the research by using infra-

red light-emitting diodes that act as markers during cameracalibration and registration

between real and virtual models simultaneously (both techniques will be described in

section 2.4).

Blackwell et al. [71] employed a semi-transparent (half-silvered) mirror glass to pro-

duce an image overlay by reflecting the images generated by anupside-down monitor

located above the glass. The user observes the real patient underneath the mirror, while

perceiving at the same time the overlaid computer-generated images. They required a

HMD to show the images onto each eye and a tracking device to record the user’s head

movements. Similarly, Liao et al. [72] uses a half-silveredmirror upon which the virtual

models are projected. The most significant difference of their system is based on the use

of a stereoscopic monitor and lack of user tracking. This frees the user of wearing special

equipment that can constrain their movements.
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The project Medarpa (Medical Augmented Reality for Patients) [73, 74] introduced a

monoscopic AR window. This system includes a see-through liquid crystal display (LCD)

panel connected to a swivel arm in which the patient’s virtual structures are displayed. Its

main advantage is its ability to place the window around the patient’s body. Another

development based on an AR window was introduced by Mischkowski et al. [46] which

uses a wireless LCD panel with a connected camera that recordsreal images. It is aimed

at superimposing CT or MRI anatomy for maxilla positioning.

Birkfellner et al. [75, 76] developed a head-mounted operating binocular microscope

known as Varioscope AR, which is based on a commercial solution. This system provides

a larger FOV and lower magnification levels in comparison to asurgical microscope due

to the use of miniature VGA (video graphics array) displays.The authors claim that this

reduces noise effects and calibration errors usually foundin microscopes. A research

group from Siemens [77, 78] introduced another HMD-based ARapplication. However,

its main difference relies on using an infrared camera attached to the HMD device in

order to record the user and tools movements during the procedure. All cameras are

synchronised in order to avoid any flicker effect during the augmentation.

Lapeer et al. [79, 80] presented an AR based training system for obstetric forceps in

child delivery. The application calculates and diagnoses the level of deformation in the

virtual baby skull as result of the manipulation of real forceps. Sielhorst et al. [81] de-

veloped a delivery simulator that allows the user to receiveauditory and haptic (sensitive)

feedback, as well as visual information during the medical training.

In the endoscopic field, Freysinger et al. [48] described an intra-operative guidance

system using a viewing wand for sinus surgery. The system wasbased on a probe at-

tached to a mechanical arm that allowed determining the position of an endoscope tip

inside the patient’s body. Shahidi et al. [50] presented an image-enhanced endoscopy sys-

tem for head and neck surgery using a wireless configuration.However, their approach
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consisted in displaying corresponding real and virtual images side-by-side, instead of fus-

ing them in a single view. Lapeer et al. [13] and Thoranaghatte et al. [15] introduced

independent AR systems for endoscopic sinus interventions, each of them using different

approaches regarding the techniques to overlay the virtualimagery. The former also pre-

sented an in-depth evaluation of the accuracy obtained by the methods required for image

enhancement.

2.3 Classification of components in AR

Since the introduction of the first AR application, different technologies have been devel-

oped in order to enhance the visual perception that a user obtains from the real world. The

selection of different physical components varies according to the environment require-

ments. However, all AR based systems (regardless of the application field) share the same

essential hardware that provides user interaction with thevirtual entities. The hardware

components can be broadly divided in two categories:

• Display technologies

• Motion tracking devices

In the following sections the reader will be presented with an overview of each element

within AR.

2.3.1 Display technologies

Eye sight is the most important sense when perceiving the environment in an AR appli-

cation. For this reason, the diversity of technologies available to visualise the enhanced

world is vast. Shamir et al. [82] presents five classes of display devices based on previous

work in AR, these are:
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Augmented medical imaging devices

This type of equipment aims to merge virtual data on the view of an intra-operative im-

age acquisition device, such as a CT scanner or ultrasound probe. It provides intuitive

interfaces to surgeons in order to view hidden structures inreal-time while capturing the

patient’s anatomy. Due to the inherent imagery generated bythe medical devices, the

overlay is composed mostly of two-dimensional slices instead of 3D volumes. An exam-

ple of such method is a camera-augmented fluoroscopic C-arm (CamC) system [83, 84].

The system simulates the X-ray view obtained by the capturing equipment according to

the C-arm frame position. This allows the practitioner to aimthe device to the correct

body part even before taking an actual X-ray, reducing the dose of radiation exposure to

the patient.

Augmented optical devices

They provide an enhanced view directly on the images obtained by the optical surgical

tools, such as microscopes [66, 68]. The solution requires adirect modification of the

oculars and other hardware additions in order to superimpose the virtual models on the

real view, which can be presented as a stereo pair or in a monoscopic view. As the scan

is performed pre-operatively, the overlay can consist of 2Dimage slices or a complete

3D reconstruction of the organs/bony structures. The main advantage of this approach

relies on using current equipment that surgeons are alreadyaccustomed to. Thus, the

learning curve for the utilisation of this technology is short in comparison with other

devices. Moreover, the user is not required to look away fromthe surgical target, which

may interrupt the operating workflow. The disadvantage of augmented optical devices is

the difficulty to modify existing surgical tools to enhance the user’s view.
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AR monitors

The augmented view can be achieved using standard CRT (cathode ray tube) or LCD

computer monitors, making them the easiest, and perhaps thecheapest, method to merge

real and synthetic worlds. For a monoscopic view, it is only necessary to capture the

video image and blend it with its virtual counterpart using asoftware-based transparency

technique, provided both view perspectives are similar. However, to obtain stereoscopic

vision, special monitors must be used. Such monitors allow depth perception from a pair

of images by diverting each independent view to its corresponding eye. Whereas initial

CRT stereoscopic monitors were too heavy and large for its usein the operating room,

newer devices based on LCD technology provide an affordable and ubiquitous solution.

The accuracy of stereoscopic displays have been under studysince early 1990’s. Dras-

cic and Milgram [85] firstly pointed out the advantages of stereoscopic video (SV) in

comparison to monoscopic video (MV). Moreover, they demonstrated the potential of su-

perimposing stereoscopic graphics (SG) on stereo video images (SV+SG) for a diversity

of environments such as telemanipulation or microscopy. Chios et al. [86] and Lapeer

et al. [87] analysed the use of autostereoscopic technology(which allows stereo vision

without the need to wear any specialised viewing hardware) as an alternative of directly

observing through a pair of stereo microscope eyepieces.

AR window systems

These semi-transparent devices permit a direct visualisation of real objects placed behind

them while overlaying synthetic images on the screen. The superimposition of virtual

imagery is achieved by using a see-through LCD panel that renders the virtual objects

on its screen or by reflecting the images from a monitor onto a half-silvered surface. An

example of the latter configuration is a project developed atthe Department of Maxillo-

facial surgery at the Technical University in Munich. The system called ARSyS-Tricorder
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(www.arsys-tricorder.de) aims to provide the user with a three-dimensional stereoscopic

view of CT anatomical structures. Stetten et al. [88] presented an image guidance tech-

nique for needle biopsy using an AR based ultrasound device.They attached a small

mirror and a monitor to the ultrasound transducer in order tooverlay the visual imagery

on the hand-held device.

Head-mounted displays (HMDs)

HMDs have become the most common visualisation device for ARpurposes since their

introduction in the 1960’s. There are two different technologies for HMDs: video-based

and optical displays. The former capture the real world using a pair of cameras and

overlay the virtual models on small screens in front of the user’s eyes, blocking the

line-of-sight between operator and real scene. Optical see-through devices employ semi-

transparent mirrors or screens that reflect the projection from a pair of monitors. Each

technology has advantages and disadvantages regarding their display quality, time delay

due to rendering, level of physical constraint for the user,among others. Rolland and

Fuchs [89] extensively compare optical and video HMDs in thefield of 3D medical visu-

alisation. They acknowledge that each device performs the best according to the type of

application and its requirements.

Head-mounted projective displays (HMPDs) use a pair of projectors that are focused

on a half-silvered mirror located in front of the user’s eyes. However, the computer-

generated projection is not directed towards the viewer butto a special retro-reflective

screen. This screen allows augmenting the objects placed underneath and projects back

the virtual imagery to the viewer. Rolland et al. [90, 91] present different applications

using HMPDs for the medical discipline as well as in other areas.

Several other display technologies are currently available for AR. For example, virtual

retinal displays (VRDs) project images directly on the user’s retina. A low-power laser is
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used to scan the eyes and the pixels that comprise the images are cast inside the eye. The

visual perception is similar to looking at a screen floating in space. Projection-based dis-

plays aim to enhance physical objects such as walls or special desks in order to provide

them with texture and other visual information. This approach is denominated Spatial

Augmented Reality [92]. However, these AR displays are not designed for their imple-

mentation in the medical field. An in-depth survey of displays within the AR domain is

presented by Bimber and Raskar [93].

2.3.2 Motion tracking devices

Because an AR environment is not static, it is necessary to register the movements of

physical entities that permit the user to have a level of interactivity with the enhanced

world. For this reason, a tracking device is used to detect the different individual posi-

tions and orientations performed by each element and to maintain a relationship among

them through a global frame coordinate system. The elementsrequired to be tracked

in a medical procedure include surgical instruments, optical devices (i.e. endoscope or

microscope) and possibly the patient.

Different technologies can be used in the operating theatreto record the ongoing pose

of objects and subject during the intervention. All of them provide six degrees of freedom

(DOF) with respect to a reference point: three for translation and three for rotation. The

main different categories of tracking devices for surgicalinterventions are electromag-

netic, electromechanical and optical.

Electromagnetic

This type of motion tracker works by generating an electromagnetic field from a central

transmitter and a set of sensors or receivers attached to theobject of interest that record
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their relative changing voltage or current. Electromagnetic trackers can be classified in

three different generations [94]: The first generation — based on alternating current (AC)

technology — has the disadvantage of being highly susceptible to the interference of

metallic objects or electric equipment. The second generation presents lower sensitivity

to interference by employing direct current (DC) transmission. A third generation of

trackers includes special transmitters that block distortions originating from below the

tracking volume. They also provide more advanced calibration and processing techniques

to increase their accuracy levels.

The main advantage of electromagnetic motion trackers is that they do not require a

clear line-of-sight between transmitter and receivers. Thus, the sensors can be visibly

obstructed in the environment by other objects. In the case of surgical procedures, minia-

turised sensors can be introduced inside specific instruments and within the patient’s body.

Electromagnetic devices for medical applications are currently manufactured by North-

ern Digital Inc. (www.ndigital.com), Polhemus (www.polhemus.com) and Ascension

Technology Corporation (www.ascension-tech.com).

Electromechanical

These trackers are based on a set of jointed appendages that record position and orien-

tation using sensors, such as potentiometers or encoders, in each of its joints. When the

limbs are connected to a human body part, they form exoskeletons to capture six DOF

movements. However, in the case of medical applications, electromechanical arms are

attached to surgical tools to perform robotically assistedsurgery.

Similar to electromagnetic trackers, electromechanical devices have the advantage that

they are not affected by line-of-sight occlusion. However,they are restricted to a maxi-

mum physical range of the arm limbs regarding length and rotation. A mechanical arm
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can also be obtrusive during the manipulation of instruments in specific circumstances.

Moreover, an electromechanical tracker can only register the movements of a single ob-

ject.

Optical

Optical trackers employ two or more cameras that recognise the pose of target objects

through computer vision algorithms. The camera system captures video images of the

scene and detects a set of active or passive markers attachedto the object of interest [95].

Active markers consist of visible light emitting diodes (LEDs) or infrared emitting diodes

(IREDs) that are constantly activated by an electric signal.The electrical current can be

either provided by a main controller box (wired configuration) or by the target surgical in-

strument or batteries (wireless set up). Passive markers comprise retro-reflective spheres

that bounce back infrared light projected by the cameras. Both active and passive optical

systems require at least three markers in order to locate objects within a 3D volume, al-

though a fourth marker can be used to increase reliability. Additionally, a new generation

of passive trackers use standard camera hardware that recognises flat target patterns (cir-

cular or user-defined shapes) in the scene [96]. Table 2.1 provides a list of commercial

vendors, their optical tracking products and the reported accuracy of each system.

The main advantage of optical tracking devices is the accuracy achieved by the com-

bination of hardware components and computer vision techniques. However, their main

drawback is the requirement of a clear line-of-sight between the camera system and mark-

ers. Thus, performance can decrease in case of occlusion by other objects or individuals.

Similar to AR medical applications, the use of tracking technologies in SN systems is

required in order to provide the surgeon with positional data of different surgical devices

and/or patient during the intervention. The selection of a specific tracking technology in

the operating room mainly depends on the requirements of thesurgical procedure. En-
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Company Product Type
Accuracy

(mm RMSa)

Northern Digital Inc.
(www.ndigital.com)

hybrid Polaris / Spectra Passive & Active ≤ 0.35
Polaris Vicra Passive 0.25

Boulder Innovation
FlashPoint 5500 Active ≤ 0.25Group, Inc.

(www.imageguided.com)

Atracsys LLC.
(www.atracsys.com)

easyTrack Active < 0.30
accuTrack Active < 0.25
infiniTrack Passive < 0.50

Claron Technology Inc.
MicronTracker2 family Passive ≤ 0.35

(www.clarontech.com)
A.R.T. GmbH.

ARTtrack / SmARTtrack Passive
Not

(www.ar-tracking.de) available

aRoot mean square

Table 2.1: Commercial optical tracking devices.

quobahrie et al. [97] described some factors that must be considered when choosing a

tracking modality, these are: line-of-sight requirements, accuracy of the device and its

update rate, maximum number of entities to be tracked simultaneously, measurement vol-

ume limitations, implementation and running costs, and general conditions in the operat-

ing environment. Some examples of commercial SN systems arepresented in Table 2.2,

describing their tracking technology and the surgical specialties that they are aimed at.

2.4 Methods in AR

The previous section introduced the hardware components required to display a visually-

enhanced world and track the movements of entities in an AR environment. However, a

series of software techniques need to be applied in order to produce the overlay between

real and virtual imagery. In this section the reader will be introduced to the concepts of

each method, although a deeper explanation of theory foundations and algorithms will be

covered in the following chapters of this thesis.
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Company Product Tracking Surgical
technology specialty

Aesculap AG
OrthoPilot Optical Orthopaedics

(www.orthopilot.com)
Acrobot Co. Ltd.

Acrobot Navigator Electromechanical Orthopaedics
(www.acrobot.co.uk)
BrainLAB AG
(www.brainlab.com)

VectorVision
Optical

Neurosurgery
Kolibri ENT

Collin SA
Digipointeur Electromagnetic ENT

(collin.axepartner.com)
Elekta AB

SonoWand Invite Optical Neurosurgery
(www.elekta.com)
General Electric
(www.gehealthcare.com)

InstaTrak
Electromagnetic

Neurosurgery/ENT
ENTrak ENT

Medtronic Inc.
(medtronicnavigation.com)

StealthStation
Optical and

Several
electomagnetic

Smith & Nephew
AchieveCAS Optical Orthopaedics

(www.smith-nephew.com)
Stereotaxis, Inc.

NIOBE Electromagnetic Cardiovascular
(www.stereotaxis.com)
Stryker
(www.stryker.com)

Navigation System II
Optical Several

eNlite
Zimmer, Inc.

ORTHOsoft Optical Orthopaedics
(www.zimmer.com)

Table 2.2: Examples of commercial SN systems.

Camera calibration

This technique involves the derivation of the true parameters of one or more cameras

by obtaining visual information from the real world. Becausethe parameters can not

be directly measured, a relationship must be established between features located on 3D

objects and their projections on 2D video images. The parameters of a camera model

can be divided in two categories: external and internal. External or extrinsic parameters

represent the position and orientation of the device in relation to a specific point in the

world coordinate system. Internal or intrinsic parametersdenote the configuration of the

inner optical system and include focal length, scale factor, radial distortion and optical

centre of the image.
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Different computer vision techniques can be implemented toperform the calibration

according to the number of cameras attached to the AR based system. Once the camera

parameters have been computed, the information is interpreted by the AR application

which aligns the virtual world perspective with its real counterpart. This procedure is

usually carried out in a pre-operative stage.

Segmentation

The generation of 3D models from a set of CT or MRI scans can lead to volumes with

extra information not required during surgery. The aim of segmentation is to find mean-

ingful regions in the volumetric model that represent specific areas without compromising

the dataset quality. A general segmentation method extracts structures around a region of

interest, which can include tissue, bones or blood vessels.

In AR based medical applications, segmentation allows sectioning out portions of the

virtual data that are not required to match to a real model. This can involve noisy areas

in the reconstructed volume or extra features of the anatomical structure. Because the

procedure reduces the number of volume elements (voxels), it also helps to decrease the

number of calculations to be executed in the registration step. In some IESN procedures,

segmentation can be regarded as optional or merged with registration.

Registration

Once the segmented model has been obtained, it is required tobe matched to the patient’s

anatomy. The process can use information obtained from physical structures (known as

natural landmarks) found in both dataset and real model. Alternatively, fiducial markers

can be attached to the patient during the pre-operative scanand compare the location of

their real and virtual counterpart in the generated volume.The correspondence between

real and virtual landmarks/markers produces a transformation matrix that is used to align

28



Chapter 2. Background

the entities in the AR medical procedure.

Registration can be classified in four categories: manual, interactive, semi-automatic

or automatic. Manual registration allows the user to translate and rotate the virtual (target)

model. The interactive approach requests the user for inputbefore attempting to find a

similar pose in the real (source) data set. Semi-automatic registration executes the align-

ment automatically and then asks for user feedback. The automatic method does not need

any user input throughout the process in order to compute thealignment.

Once the techniques of calibration, segmentation and registration have been performed,

a static overlay is obtained which comprises the aligned real and virtual models. A track-

ing device is then used to capture the dynamic pose of the models throughout surgery and

update the overlay.

2.5 Summary

In this chapter, a literature survey has been presented thatincludes diverse research re-

lated to the use of AR for medical purposes. An introduction to AR technology and

its applications in several surgical specialties has been covered. A classification of the

main hardware components that allow an image-enhanced viewin SN systems was also

described. Additionally, the reader was introduced to the software methods required to

produce an overlay between real and virtual imagery, which comprise the calibration of

the camera used to acquire images, segmentation of CT or MRI data, and registration

between real and virtual models.
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General optimisation within the IESN

system

3.1 Introduction

IESN systems are based on the use of different hardware components and software method-

ologies that aim at visually enhancing the patient’s anatomy during surgery. The integra-

tion of these technologies must rely on a central computer application that generates an

AR environment through managing the information provided by the external components.

Therefore, the software can be considered as the most important means of communication

between the SN system and the surgeon in the operating room.

The computer program employed as the basis for this researchis denominated ARView,

which is an extension of a PC-based medical volume rendering software named 3DView [98];

developed using C++, Microsoft foundation classes (MFC) and OpenGL. While 3DView

allows the visualisation and manipulation in real time of volumetric models obtained from

CT or MRI data, ARView extends these features by providing support to IESN functions.

ARView can be used for MIS procedures through the utilisation of an endoscope or
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for open interventions using a stereoscopic surgical microscope. Thus, the IESN applica-

tion allows capturing video from a single or a pair of camerasconnected to the surgical

devices. The display technology used to present the augmented view consists of a stereo-

scopic monitor that allows the user to alternate between single and stereo display mode.

Additionally, the software permits the use of motion tracking devices during the intra-

operative stage.

Part of the research in this thesis involved the optimisation of different functions within

ARView that contribute to the overall visual augmentation.This chapter will present the

techniques applied to various aspects of the original IESN system described by Chen [17].

The following sections focus on several improvements regarding the use of ARView as

a SN system for ESS, and 3D stereo visualisation using stereoscopic monitors. Also,

a validation of accuracy of two optical tracking devices (i.e. hybrid Polaris and Polaris

Vicra) in a simulated surgical scenario is investigated.

3.2 Marker detection for endoscopic camera calibration

In order to display real video images in conjunction with computer-generated data in AR,

it is necessary to align a virtual camera system with the realcamera device. If the resulting

alignment is correct, a virtual object will be observed fromthe same camera position and

angle as the equivalent real object. Although camera calibration will be discussed in

more detail in the next chapter, it is important to mention that an IESN system requires a

calibration object to relate a set of physical features to their corresponding projections on

the captured image.

The IESN system for ESS involves a rigid zero-degree endoscope that is calibrated by

pointing it towards the calibration object and acquiring a still video image through a frame

grabber. The detection of physical features relies on the design of the calibration object,

which comprises a number of squared shapes printed against acontrasting background
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(a)

(b)

Figure 3.1: Physical equipment used in the IESN system for ESS purposes: (a) rigid zero-degree
endoscope with mounted passive optical markers for tracking; (b) planar calibration object as seen
by the endoscope.
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hence forming a 2D grid pattern. Figure 3.1 shows the rigid endoscope and the image of

the calibration pattern as seen by the optical device.

As the captured image can present different noise levels produced by the internal op-

tical components or other external factors, a Gaussian filter [99] is applied in order to

reduce their unwanted effects. Subsequently, Canny’s edge detection algorithm [100] is

employed to identify the borders of the squared features on the printed pattern. This

produces a binary image, where the background is represented by zero values and the

detected edges by non-zero values. The binary image is used as an input for a region

identification procedure denominatedconnected component labelling[101].

The first step in connected component labelling scans the entire binary image row by

row and assigns a numerical identificator, or label, for eachpixel different than zero. The

value of a label depends on the neighbouring pixels that havebeen previously labelled, if

any. This is determined by an eight-neighbourhood mask, where pixels can be connected

horizontally, vertically or diagonally. Three different options during labelling are:a) If

all neighbouring pixels have zero values (corresponding tothe background), a new label

value is assigned to the current pixel;b) If only one of the pixels in the neighbourhood has

a non-zero label, assign this label value to the current pixel; c) If there is more than one

pixel among the neighbours with a label different than zero,select arbitrarily one of the

label values and assign it to the current pixel. In case that the neighbouring labels are dif-

ferent (colliding labels), store the label pair in a separate structure known as equivalence

table for subsequent evaluation.

The next step of the procedure involves merging, into the same region, the contiguous

edges that have been identified as having colliding labels. For this reason, the binary

image is scanned a second time, where the label of each pixel is compared against the

label pairs in the equivalence table. If the pixel label is found, its value is replaced with

the lowest element of the pair. At the end of this step, the setof pixel labels with the same
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Figure 3.2: Example of segmented figures during the feature detection process, where fractured
regions lead to independent bounding boxes within the same feature marker.

identificator must correspond to individual regions. As an additional stage, each resulting

region is fitted with a bounding box that provides a graphicalrepresentation of a feature

marker during camera calibration.

A problem found during the procedure is that, depending on the image noise level

and the control parameters used to reduce its effects, in some circumstances the detected

contours can present gaps along the borders. This issue leads to imperceptible segmented

regions in the squared shape, which in turn generates independent bounding boxes for

the same feature as illustrated in Figure 3.2. Although thisproblem can be solved by

manually modifying the control parameters using tolerancevalues, the overall process to

correct this problem for all segmented features tends to be cumbersome.

In order to reduce feature segmentation and, consequently,bounding box partition-

ing, it was decided to analyse the original implementation of the connected component

labelling. It was noticed that the two steps of this procedure, pixel labelling and edge
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Figure 3.3: Example of connected components during feature segmentation. (a) Boundaries of
two squared markers of a calibration pattern and (b) their corresponding pixel labels. (c) Col-
liding label pairs missing in the equivalence table and an extra detected region. (d) Bounding
boxes associated to independent detected regions. (e) Colliding labels detected in the improved
implementation using search filters, and (f) resulting regions with corrected bounding boxes.

merging, were performed on the same data structure used to store the input binary image.

This caused incorrect data indexing, which affected the eight-neighbourhood identifica-

tion and led to data corruption. Figure 3.3 exemplifies the pixel labelling applied to the

contours of two squared markers of a calibration pattern. Asit can be observed in Fig-

ure 3.3(a), the squared marker in the left presents small gaps along its boundary (top-left

corner and bottom edge); whereas the square in the right has all edges connected. After

the first scan of the procedure, independent edges are detected with colliding labels along

the boundaries of both squared markers (Figure 3.3(b)). In the original implementation,
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the eight-neighbourhood mask could not detect the diagonalconnection between neigh-

bouring pixels such as in the top-left corner of the left square. Therefore, the label pair

corresponding to pixel values{1,3} is not included in the equivalence table presented in

Figure 3.3(c). Because of this, it is not possible to merge theedge with its respective

neighbour, resulting in an isolated region (shown as circle3), whereas the rest of the label

pairs are merged into two individual regions (circles 1 and 2). It must be mentioned that,

during the second step of the procedure, the comparison between each pixel and the label

pairs is performed sequentially along the entire equivalence table (this is represented by

connection lines among equivalent label pairs). Finally, the detected individual regions

(circled numbers 1, 2 and 3) are fitted with bounding boxes as shown in Figure 3.3(d).

Due to the detected isolated region (circle 3), two boundingboxes are generated for the

same feature marker in the left.

An optimisation of the original implementation was carriedout. In a first stage, an

additional data structure was used to temporarily store theset of individual edges with

unique labels that were generated during the first scan. Thisensured that the operations

required for image processing did not interfere among themselves and data integrity was

maintained throughout the procedure. Thus, issues relatedto the detection of diagonal

neighbouring pixels (e.g. top-left corner of the left square) were solved. Figure 3.3(e)

shows the diagonal label pair{1,3} of the top-left corner included in the equivalence

table. As an additional stage, a dynamic data structure was used as a “search filter” during

the merging of colliding labels. For this purpose, all labels in the equivalence table with

equal values in the first or second element of each pair were combined into individual

search filters, as illustrated in the middle of Figure 3.3(e). Then, during the second scan

of the procedure, each pixel in the image was compared to the search filters rather than to

the entire equivalence table, reducing the number of total comparisons. Also, each search

filter corresponds exclusively to an individual detected region (circled numbers) hence to

a unique bounding box as seen in Figure 3.3(f).
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Furthermore, the partitioning of bounding boxes was also analysed. It was noticed

that, if the separation between detected regions that are related to the same squared marker

on the calibration object is lower than a specific threshold,the corresponding bounding

boxes could be merged without affecting the feature detection accuracy. A final stage was

performed based on an underlying statistical technique that takes into account the aspect

ratio of the bounding boxes, as described in [17]. This technique is based on the fact that

bounding boxes that are associated to calibration markers have more consistent aspect

ratio and area values in comparison with the bounding boxes corresponding to foreign

objects. Therefore, if the aspect ratio and area do not fall within a certain threshold, the

bounding box can be discarded. This prevents other shapes inthe image that do not belong

to the printed pattern to be identified as possible calibration markers.

3.2.1 Experiment

Influence of markers segmentation in endoscope calibration

This experiment was aimed at evaluating the influence of segmentation in the detection

of feature markers within the ESS camera calibration. A comparison was carried out by

calibrating the endoscopic camera using the original feature detection procedure and the

optimised implementation that reduces fractures on the pattern squares. The accuracy was

assessed by calibrating the endoscope using the well-established Tsai’s algorithm [102].

For this purpose, a relationship is established between the3D features found on the physi-

cal calibration object and the pixel coordinates corresponding to the centres of the detected

bounding boxes. The error values returned by Tsai’s method indicate the exactness of the

overall calibration procedure (including marker localisation). In addition, a qualitative

evaluation is obtained by overlaying a virtual pattern on the image of the real calibration

object, where the alignment between models reflects the level of accuracy.

The results obtained by Tsai’s method report a mean calibration error of 1.50 pix-
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els in image coordinates when the feature marker detection include fragmented regions.

Figure 3.4(a) illustrates the detected features in the calibration pattern, where their cor-

responding bounding boxes are numbered for easier recognition. It can be observed that

several shapes are segmented in two different regions. Thiscauses the detected marker

centres to be offset from the central points in the real squares, especially at squares number

5 and 7. The effects of the segmentation is shown in Figure 3.4(b) in which the resulting

overlay presents a misalignment between the virtual and real patterns, predominantly at

the top-left and bottom-right corners of the grid. In the case of the optimised implemen-

tation, the marker centres agree with their respective central points in the real calibration

object, as illustrated in Figure 3.4(c). The calibration error value decreases to 0.66 pixels

with respect to the original procedure. Also, a better alignment between real and virtual

features is obtained in the final overlay (Figure 3.4(d)).

It must be noted that there is still a slight misalignment between the real calibration

object and its corresponding virtual overlay in Figure 3.4(d). This is because the rota-

tional angle applied to the calibration object is around 25◦ with respect to the camera’s

image plane, whereas it has been demonstrated that a planar calibration object must be ro-

tated between 30◦ and 45◦ in order to provide more accurate results [102,103]. Although

the rotational position used in this experiment is not optimal, it has been selected only to

illustrate the influence of marker detection. If a higher angle had been used, the marker

centres would be more difficult to visualise in the image due to perspective, especially

in the squares located in the last column of the calibration grid. The effects of this rota-

tional issue will be further evaluated and discussed in the next chapter concerning camera

calibration.

This experiment demonstrated that segmented regions in feature marker detection can

affect the final accuracy in camera calibration. Although the segmentation accuracy can

be difficult to assess, its influence can be noticed in the resulting overlay between real and
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virtual calibration patterns. Therefore, appropriate methods to avoid feature segmentation

errors must be validated and tested throughout the implementation procedure.

(a) (b)

(c) (d)

Figure 3.4: Comparison of endoscope calibration before and after reduction of feature segmen-
tation. (a) Detection of feature markers when figures on the calibration are fragmented and, (b)
resulting misalignment in the calibration overlay. (c) Marker detection when the segmentation of
features is corrected and its corresponding overlay with aligned patterns (d).
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3.3 Use of an optical tracking device within the IESN

system

Another factor that affects the accuracy of an IESN system includes the technology used

to track the movements performed by the surgical tools and patient. Although not exclu-

sively, optical tracking systems are mostly employed within the operating theatre due to

their high accuracy levels in comparison with other technologies (see Table 2.1 for a list

of commercial optical tracking devices). Optical trackersalso provide the surgeon with

the ability to freely manipulate instruments without beingobtrusive.

Two optical tracking devices developed by Northern DigitalInc. were used during the

research to track the motion of a dummy patient and surgical imaging devices (endoscope

and microscope), i.e. the hybrid Polaris and Polaris Vicra (Figure 3.5). The former is

aimed at general surgical interventions, which require a large measurement volume to

track the tools within its FOV. The volume boundaries for tracking are defined between

140 cm (near plane) and 240 cm (far plane). This volume is large enough to cover the full

length of the operating table and the entire patient body. Onthe other hand, Polaris Vicra

has a smaller measurement volume than the hybrid Polaris, and is defined between 55.7

and 133.6 cm for the near and far planes, respectively. Thus,Polaris Vicra can be used

for more targeted procedures such as ENT and Head and Neck surgery.

The accuracy specifications provided by the manufacturer are reported to be≤ 0.35

mm root mean squared (RMS) error for hybrid Polaris and 0.25 mmfor Polaris Vicra.

It should be noted that each manufacturer carries out accuracy assessments under con-

trolled laboratory conditions which may not strictly correspond to typical working envi-

ronments [104]. Moreover, different protocols and statistical measurements are selected

in order to highlight the product’s capabilities. In the case of both Polaris, the nominal

accuracy levels are based on a coordinate measuring machine(CMM) volumetric proto-

col, where optical markers are placed at different locations inside the device’s operational
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(a)

(b)

Figure 3.5: Optical tracking devices used during the research: (a) hybrid Polaris; (b) Polaris Vicra.

volume. For each position, the difference between the real (ground truth) location and the

coordinates given by the tracking device is computed. The 3Derror vector is then reduced

to a 1D distance error, which is regarded as the overall RMS error value.
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Figure 3.6: Illustration of a tracked object that is parallel to the xy-plane of the tracking device.

The accuracy tests based on the CMM protocol involve the recording of a single op-

tical marker around the volume region. Increasing the number of markers (attached to a

rigid body) can help to increase the reported accuracy levels, although this depends on the

markers’ layout and their distance to the object’s point of interest (e.g. probe tool tip). As

described by Wiles et al. [105], the accuracy tends to increase when the markers attached

to the rigid body are parallel to thexy-plane of the Polaris’ volume. Figure 3.6 illustrates a

parallel-aligned tracked object with respect to the tracker’s coordinate system. Following

this approach, Khadem et al. [106] evaluated the accuracy ofdifferent optical tracking

systems by placing passive optical markers in parallel to the xy-plane of the camera sen-

sors. Their results showed that the RMS error for all trackingdevices was less than 0.11

mm. Nevertheless, during surgery, it is practically impossible to maintain the rigid bodies

parallel to the Polaris’ cameras due to the manipulation of tools. This is also true if the

tracked region of interest (ROI) changes its original orientation during the procedure, or

if the ROI can not be positioned in parallel to the Polaris’ cameras from the beginning

of the operation. In any case, the accuracy levels obtained by an IESN system will differ

from the manufacturer’s specifications.
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3.3.1 Experiment

Accuracy of the tracking device in a laboratory setup

The purpose of this experiment was to evaluate the accuracy of the three translational com-

ponents reported by the optical tracking devices in a scenario that resembles the placement

of such systems in the operating theatre, i.e. the cameras are not strictly parallel to the

surgical area, as shown in Figure 3.7. For this purpose, a setof passive markers were

attached to a support that was placed on a measurement bench of 381 x 381 mm, which

allows a physical positioning accuracy of 0.05 mm. Because hybrid Polaris and Polaris

Vicra have different measurement volume dimensions, the grid plane was located at two

different distances from the centre of the motion tracker inorder to ensure that all data

points were collected within the central measurement volume. The distances were 195

cm in the case of hybrid Polaris, and 110 cm for Polaris Vicra.

The three translational DOFs were set to zero during initialisation and registration of

the first tracked position. Then, the support object was moved around the grid while

recording the ground truth 3D positions and the coordinatesreported by the tracking de-

vice. Five readings for each of five positions around the gridwere registered, making a

total of 25 data points. The variation of the tracking signalprovided by the tracking de-

vice for each DOF under static conditions was smoothed usinga finite impulse response

(FIR) filter in order to reduce signal noise during the assessment.

The evaluation involved fitting a plane through the 25 collected data points using eigen-

value decomposition, where the eigenvector with the smallest eigenvalue represents the

normal to the plane which goes through the centroid of the data points. The average dis-

tance to the fitted plane across all data points was calculated as a measure of tracking

accuracy. This procedure, regarded as an orthogonal distance regression plane, is used

to minimise the perpendicular or orthogonal distances to the plane when there are error

levels in the measurements of the 3D coordinates. Particularly, the procedure to compute
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Figure 3.7: Typical setup during the intervention in which the tracking device is oriented towards
the surgical area. Patient and tracker coordinates are not aligned.

the plane fitting comprises the following steps:

1. Calculate the centroid (x0, y0, z0) of then recorded data points

(x0, y0, z0) =

∑

(xi, yi, zi)

n
,

wheren is the number of points, andi = 1 . . . n.

2. Create a matrixM that includes the difference of each point coordinate to the

centroid, such that:

M =



















x1 − x0 y1 − y0 z1 − z0

x2 − x0 y2 − y0 z2 − z0
...

...
...

xn − x0 yn − y0 zn − z0



















.
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Figure 3.8: Eigenvector defined as the normal vector ~n orthogonal to the set of data points (Image
adapted from Schneider and Eberly [108]).

3. Use the singular value decomposition (SVD) method [107] to calculate the eigen-

vector related to the smallest eigenvalue in the matrixM = UDV T , where the

last column ofV T corresponds to the smallest eigenvalue element in the diagonal

matrixD. The resulting eigenvector represents the normal (~n = [A B C]T ) to the

planeP as shown in Figure 3.8.

4. Each point in the data is substituted into the normal-point form of the plane equa-

tionAx+ By + Cz +D = 0, as follows

n
∑

i

(Axi + Byi + Czi +D) = 0,

A

n
∑

i

xi + B

n
∑

i

yi + C

n
∑

i

zi + n ·D = 0,

D =

−
(

A
n
∑

i

xi + B
n
∑

i

yi + C
n
∑

i

zi

)

n
,

whereD is the average distance to the fitted plane used as a measure for tracking

error.
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The results obtained indicate that the hybrid Polaris produces an average error of 1.2

mm (standard deviation SD±0.48 mm), while the average error generated by Polaris Vi-

cra is 0.80 mm (SD±0.18 mm). These translational errors differ from the manufacturer’s

specifications and provide information about the tracking accuracy levels that can be ex-

perienced in a surgical scenario. This proves that the methodology used for evaluation

greatly influences the device’s precision. Specifically, the difference in methodologies

relies on the fact that the manufacturer’s protocol measures the positional error of a sin-

gle marker tracked around the operational volume region, where the positions are parallel

to thexy-plane of the device’s coordinate system. In contrast, thisexperiment measured

the distance of a set of markers attached to a rigid body usingan orthogonal distance

regression plane, where the positions were recorded withinthe central tracking volume

and oblique to the Polaris’ coordinate system. The results also indicate that the overall

accuracy obtained by the optical trackers can differ among specific surgical applications.

3.4 Data synchronisation of motion tracking in the IESN

system

As described previously, an IESN system requires tracking the positions of different phys-

ical entities within the operating room (i.e. optical devices, surgical instruments and pa-

tient). In the case of the implemented IESN application, themotions are registered by the

optical tracking device based on a set of passive markers attached to each entity. The data

is then transferred to ARView in order to calculate the dynamic updates corresponding to

the tracked objects.

The procedure used for reading the positional data from the tracking device is imple-

mented as a thread running concurrently and with the same priority as other processes,

including video image display and volume rendering. Additionally, the variation in the
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tracking signal obtained from the optical tracking device is smoothed to reduce noise.

Chen [17] established that using a FIR filter could reduce the signal fluctuation during the

surgical intervention. In particular, the filter produces an output signalxn based on the

weighted sum of a set of previous tracking dataxn−i as follows:

xn =
n
∑

i=1

wixn−i,

wheren is the number of past data samples, and the value of the weightwi is chosen as

1/n in order to act as the moving average coefficient.

The disadvantage of using a FIR filter is that it introduces high levels of latency when

the involved objects are in motion. This is caused by the timerequired to perform the

calculations each time that a new sample is polled from the tracking device. An alternative

consists of using a threshold that controls the signal variation based on a velocity value.

This value is computed as the difference between two consecutive readingsxi andxi−1 of

the same tracked object. As described by Chen [17], the positional change produced by

signal fluctuation is relatively smaller than the displacement generated by genuine motion.

Therefore, if the variation between two consecutive readings is higher than the velocity

threshold, the tracking data is considered as a real displacement of the object and applied

to the corresponding virtual model. Otherwise, the data is regarded as noise and can be

ignored. It is important to mention that although the use of the velocity threshold can

produce latency, the generated lag is considerably lower than the delay obtained through

the FIR filter. This is because only two consecutive trackingvalues are taken into account

using the velocity threshold, whereas a larger number of past samples are required in the

computation of the FIR filter to perform effectively.

A problem noticed in the implementation of this procedure isthat, when two objects

were tracked simultaneously, the data obtained from the tracking device became corrupt.

This issue, in turn, affected the signal filter and caused therendered volumetric model to
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be displayed intermittently on screen. The source of error was found to lie in the func-

tion employed to maintain a list of class objects that correspond to the different tracked

entities. In this function, the calls used to acquire data from the motion tracker had over-

lapping time intervals. This caused the software buffer that temporally stores the tracking

data to be cleared between calls.

In order to ensure that the integrity of the data was maintained, it was decided to

implement a synchronisation method in order to control the calls that have access to the

tracking data. The synchronisation mechanism implementedwas based on the use of

semaphores, in which a global variable represented a statusflag. This flag was used to

provide information about the availability of the trackingdata. Thus, the function call

was required to read the flag value before attempting to access the positional data from

the tracking device. In order to avoid data corruption, the flag value could only be changed

by the object class that initiated the call. For this reason,an additional variable was used

to register which object class activated the flag.

A further optimisation method used separate data structures to store the motion data

corresponding to the different tracked entities. These data structures replaced the original

software buffer and prevented the tracking data from being cleared between function calls.

Finally, data validation was applied to the signal filter to avoid an erroneous computation

of the velocity threshold value.

3.4.1 Experiment

Influence of process synchronisation in motion tracking

In this experiment, the influence of thread synchronisationduring motion tracking was as-

sessed. A comparison was performed between the original andthe optimised implementa-

tions that allowed registering simultaneously the movements of different tracked objects.
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Figure 3.9: Human skull used to simulate a real patient. A set of passive markers are attached to
a mouthpiece to register the skull’s position over time.

The experimental setup simulated an ESS procedure, which comprises a rigid zero-degree

endoscope (Figure 3.1(a)) and a human skull representing a patient (Figure 3.9). A set of

passive markers were attached to both entities to detect their positions. It is worth noting

that this experiment is aimed at evaluating the effects of process synchronisation in the

IESN system, which affects both the hybrid Polaris and Polaris Vicra. As the difference

of tracking performance between the two optical tracking devices does not influence the

results of this experiment, the assessment was based solelyon the use of the Polaris Vicra.

In order to relate the different coordinate systems pertaining to the endoscope and hu-

man skull, the relative transformations between them are established using the following

steps (Figure 3.10):

1. Skull to endoscope - initial:

Mse,0 = Me,0Ms,0
−1.

2. Skull to endoscope - in motion(the pre-multiplication with the inverse of the initial

skull-to-endoscope matrix (Mse,0) is used to set the system to coordinates (0,0,0)
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Figure 3.10: Relative transformation among the coordinate systems used to track simultaneously
an endoscope and a human skull.

before the start of motion):

Mse,i = Mse,0
−1(Me,iMs,i

−1),

where indicese ands refer to the endoscope and skull coordinate systems, respec-

tively.

Both endoscope and human skull were placed on a flat bench at a distance of 110

cm from the tracking device, ensuring that all passive markers were located within its

central measurement volume. The three translational components corresponding to the

skull position were initialised to zero (using step 2 above). Thus, the endoscope served as

the world reference frame upon which the skull coordinate system was related to. How-

ever, the tracked objects were maintained static in order toavoid the influence of external

motions in the evaluation.

For each original and optimised implementation, four individual tests were performed

with different velocity threshold values to smooth the variation in the tracking signal. A
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set of 120 frames were recorded to compare the effects of synchronisation during the sig-

nal filtering. Figure 3.11 presents the results of tracking filtering with no synchronisation

for theTz translational component of the skull (translations alongTx andTy produced a

similar trend and therefore are not shown). It can be observed from the graphs that when

the raw data is obtained from the tracking device (threshold= 0.0) there is a consider-

able variation in the recorded tracked position. Additionally, there are some breaks in the

plotted curves that correspond to corrupted data, which consequently affects the display

of the volumetric model on screen. These breaks become more constant as the veloc-

ity threshold value increments, causing a severe instability during the tracking procedure

when the velocity threshold reaches a value of 0.30. Figure 3.12(a) - 3.12(d) illustrate the

results obtained for the translation alongTz using signal filtering with the synchronisa-

tion method applied. The graphs do not show breaks in the curves, and the variation in

tracking is effectively smoothed when the velocity threshold value increases.

It must be mentioned that the fluctuation of the tracking dataobserved in this exper-

iment can be caused by external factors. In particular, lighting conditions can affect the

detection of passive markers due to background infrared light produced by some electric

lamps. However, it was noticed that modifying the ambience luminance in the laboratory

setup did not reduce the fluctuation levels of the tracking signal. Another factor could

involve slight vibrations on the floor that affect the steadiness of the tracking device that

stands on a tripod.

The use of a velocity threshold to smooth the signal fluctuation could introduce latency

during the movements of tools in the operating theatre. In practice, this latency may be

acceptable as a surgeon does not tend to move tools while inspecting a ROI, and the

patient shows little or no motion during surgery.

This experiment determined the importance of process synchronisation during the reg-

istration of motion tracking when two (and possibly more) objects are tracked simulta-
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neously. A velocity threshold value was used to smooth the signal noise received by the

tracking device without perceived latency.
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Figure 3.11: Motion tracking along the Tz component with no data synchronisation.
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0 20 40 60 80 100 120
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Frames

T
z 

(m
m

)

Velocity threshold = 0.30

(d) Velocity threshold value = 0.30 mm/sec

Figure 3.12: Motion tracking along the Tz component with data synchronisation.
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3.5 Stereoscopic visualisation of virtual models in the

IESN system

ARView supports the rendering of a scene as a single view or asa pair of stereo views for

surgical procedures. A single view, or monoscopic vision, is targeted to IESN systems

with only one camera (e.g. endoscope). In the case of stereo visualisation, surgical de-

vices that have two eyepieces, such as stereoscopic microscopes, can be used to provide

depth information to the user during the intervention. Stereoscopic visualisation has been

demonstrated to improve the surgeon’s performance when compared to the use of monoc-

ular vision [109]. In the case of AR based SN systems, Johnsonet al. [110] identified

that depth perception can be affected by the manner in which real and virtual models are

presented to the user when the stereo overlay is displayed directly on the optics of a stereo

microscope. In particular, if a virtual model that is situated below a real surface is ren-

dered on top of it, the depth can be incorrectly estimated. The error in depth estimation

can last during the entire surgical procedure or only occasionally. This problem can be

reduced if a virtual rendering of the real surface is presented simultaneously with the vir-

tual model; however, the problem cannot be completely eliminated. A temporary solution

could consist in disabling the rendering of virtual models in the scene when the surgeon

considers that depth estimation in the IESN system is compromised. This would allow the

surgeon to regain the appropriate depth perception of the real scene and activate the virtual

rendering when necessary. Alternatively, a video-based IESN system could be employed

instead of an optical see-through microscope, allowing theclinician to interactively select

the level of blending between virtual and real views during the intervention.

While the system presented by Johnson et al. [110] enhanced the surgeon’s view using

the microscope optics, the presented IESN system is a video-based AR application that

requires the use of stereoscopic monitors in order to generate stereo vision. Two types

of stereo devices were used during this research: LCD autostereoscopic and mirror-based
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Figure 3.13: Schematic representation of stereoscopic technologies: (a) LCD austostereo-
scopic monitor; (b) Mirror-based stereo monitor (Image adapted from Planar Systems Inc.
http://www.planar3d.com).

monitors. The former is based on internal optical mechanisms behind the screen that

do not require the user to wear special viewing devices. Commercial mirror-based stereo

monitors employ a pair of LCD screens positioned in a special configuration and polarised

glasses to produce stereoscopic images. Both types of monitors work by displaying hor-

izontally shifted images of the same scene to the left and right eyes. The brain processes

the visual information acquired by the eyes into a single merged image, creating the illu-

sion of depth. For this reason, the virtual imagery is rendered twice from two independent

viewports that are displayed side by side in a single rendered window. Autostereoscopic

monitors project each viewport to alternate pixel columns across a mask behind the LCD

screen. The resulting interlaced image is then directed to the corresponding left and right

eyes. In the case of mirror-based devices, the rendered window is expanded to two differ-

ent monitors in order to display each viewport on a separate screen. A semi-transparent

mirror (or half-mirror) is placed between the screens and a pair of polarised glasses filter

the respective images intended for each eye. Figure 3.13 illustrates the operation of both

stereoscopic technologies.
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Figure 3.14: Comparison of original and improved 3D stereoscopic visualisation (only the case
of autostereoscopic monitor is presented for illustration purposes). The arrows above the LCD
screens in the images on the right column indicate the perceived direction where the 3D model is
projected to.

The underlying implementation in OpenGL involves rendering the stereo scene from

two virtual cameras that are aligned to the real optical devices by means of camera cal-

ibration. Additionally, a full volumetric model can be displayed in stereo for inspection

purposes using a set of pre-defined virtual cameras. Although the original software im-

plementation seemed to produce an acceptable display regarding depth visualisation, the

configuration of the viewports corresponding to the left andright eyes was considered to

be incorrect. Specifically, the left and right virtual cameras and viewports were aligned

with the corresponding eye during initialisation (Figure 3.14(a)). However, when apply-

ing a cross-viewing effect required to produce stereo vision on the stereoscopic monitor,

the cameras exchanged position and were no longer associated to the intended eyes, as

illustrated in Figure 3.14(b). Interestingly, during qualitative observations, it was noticed

that this implementation caused the 3D image to be pushed towards the back of the mon-

itor (a “pop in” effect).
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In order to correct this issue, the procedure involved initialising the left and right view-

ports to their opposite locations. Similarly, the positions corresponding to left and right

virtual cameras were exchanged (Figure 3.14(c)). Althoughthe new configuration ap-

pears to be paradoxical, it conforms to the stereo cross-viewing method, where the left

and right virtual cameras are aligned with the corresponding user’s eyes. Also, the cam-

eras point towards the desired image viewports as shown in Figure 3.14(d). Qualitative

observations were performed using a DTI (Dimension Technologies Inc.) autostereo-

scopic monitor (Figure 3.15(a)) and a mirror-based Stereoscopic/3D monitor by Planar

Systems Inc. (Figure 3.15(b)). The qualitative observations involved comparing the orig-

inal implementation and the improved version of the stereoscopic visualisation methods.

Three different 3D volumetric datasets that were availableduring the research were used

for visual inspection. The datasets, shown in Figure 3.16, comprised an MRI fetus model

with a resolution of 127 x 158 x 125 voxels, a 256 x 256 x 109 MRI human head, and a

256 x 256 x 374 CT volume of the scanned human skull introduced in section 3.4.1. This

allowed evaluating the stereo capabilities of the two visualisation methods using different

MRI/CT modalities and volumetric resolutions.

A group of five volunteers from the School of Computing Sciences at the University

of East Anglia participated in the qualitative evaluation.All the participants were familiar

with the concepts of medical visualisation and volumetric models. In should be mentioned

that at this stage, no medical practitioners were availablefor the system evaluation. The

subjects were presented with the volumetric models loaded independently into ARView

using both the original implementation and the improved version. The participants were

able to freely rotate the datasets in order to observe the models’ anatomy from different

angles. No control was imposed regarding the time a user could inspect each of the volu-

metric models; however, it was estimated that the maximum time spent was, in average, a

couple of minutes per model.
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(a)

(b)

Figure 3.15: Stereo devices used during this research: (a) LCD autostereoscopic monitor (Di-
mension Technologies Inc.) showing two viewports side by side; (b) Mirror-based stereo monitor
(Planar Systems Inc.) where the two viewports are located on different screens.
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(a) (b) (c)

Figure 3.16: 3D volumetric datasets used for qualitative observations in stereoscopic visualisation:
(a) MRI fetus model; (b) MRI human head; (c) CT human skull.

Based on the observed volumetric models, the participants were asked which stereo-

scopic visualisation method provided higher depth information and the perceived direc-

tion where the 3D model was projected to. For all observers, in the original implementa-

tion the datasets were perceived as being projected towardsthe back of the stereoscopic

displays and producing low depth information. On the contrary, the users considered that

the 3D images were displayed towards them using the improvedvisualisation method,

which effectively produced the effect of “popping out” of the screen and allowed higher

depth perception.

3.6 Summary

This chapter presented a series of optimisations applied tovarious aspects of the origi-

nal IESN system. A software optimisation involved the reduction of segmentation error

during the detection of feature markers in ESS camera calibration, increasing the overall

calibration accuracy. Also, synchronisation between function calls that obtain data from

the motion tracking device was implemented. This improved the system stability when

a signal filter was applied to two objects tracked simultaneously. A final optimisation
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was based on the stereo visualisation of virtual models using stereoscopic monitors. The

modifications provided a correct representation of a stereoimage that allows the user to

observe a 3D model protruding from the screen.

Additionally, an evaluation of tracking performance compared the accuracy of transla-

tional components between two optical tracking devices — the hybrid Polaris and Polaris

Vicra. The results indicate that, in a setup that simulates asurgical scenario, the accuracy

substantially differs from the values described by the manufacturer. This supports the fact

that the precision of a tracking system relies on the methodology used for its assessment.
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Camera calibration

4.1 Introduction

A camera can be described as an optical system that is employed to capture images of the

real world and allow them to be displayed on a variety of output devices. From the point

of view of computer vision, a camera is the central tool used to obtain information of the

surrounding environment that will be analysed. Two of the main goals in computer vision

are focused on1) determining the position of objects in the scene, and2) reconstructing

the scene in three dimensions.

These principles of computer vision can be applied to other fields. For example, in

robotics, the path that a robot must follow has to be dynamically updated. Video tracking

recognises objects in a set of images and locates their position throughout the video se-

quence. In AR, the understanding of how the optical system works allows replicating the

real camera to accurately superimpose computer-generatedgraphics on the acquired real

images. As described by Tuceryan et al. [111], one of the factors that influence the suc-

cess of blending real and virtual worlds consists in the exactness in modelling the optical

camera used to perceive the real world.
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As it will be described in the following sections, two different methods to compute

camera configuration parameters are available. The first onerequires special devices that

allow the system to determine where the camera is placed withrespect to the real world.

The second method uses detected features in a set of images captured by a pair of cam-

eras in order to compute their relative orientation. In bothcases, the internal attributes

of the camera(s) are also estimated. The purpose of this chapter is to demonstrate that

merging the above techniques can improve the accuracy of thecalibration procedure in a

stereoscopic surgical microscope setup.

4.2 Methodology

4.2.1 Camera calibration

The process of calibrating a camera involves mathematically determining the parameters

related to the physical characteristics of the optical system. Depending on the manufac-

turer specifications, a camera has different features such as maximum possible resolution,

type of optical lens, number and size of light sensors (knownas charge-coupled devices

or CCDs), among other variables. These parameters produce different results in the image

quality and projective factors within an AR application.

In order to calculate the projection parameters from pointslocated in the 3D world

to 2D picture elements on screen, orpixels, the calibration procedure relies on a camera

simplification model known aspinhole cameraor general perspective model. This ap-

proach considers the camera aperture as a single minuscule point with no lens attached to

it. Thus, the computation can be described as the ideal mapping between an object and its

representation on an image or retinal plane. Although this approximation does not take

into account possible visual effects produced by lenses, the pinhole model provides the

foundation for camera calibration in computer vision. Figure 4.1 illustrates the geometry
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of the general perspective model, where a three-dimensional point M is projected on the

image pixelm.

y

x

z

M
m

Image plane

Camera
centre

Optical axis

c

Figure 4.1: Geometry of the pinhole camera model (Image adapted from Hartley and Zisser-
man [112]).

The parameters to be determined during camera calibration are divided in two cate-

gories [113]:

External parameters: Also known as extrinsic parameters, describe the camera po-

sition in the real world, involving its distance and orientation with respect to a defined

point or set of points in space. These parameters correspondto the six possible DOFs in

a three-dimensional space: three variables for translation alongtx, ty, andtz and three

for rotation around the coordinate axes,rx, ry, andrz. The external parameters can be

represented by a rotation matrixR and a translation vectorT as follows:

R =













r11 r12 r13

r21 r22 r23

r31 r32 r33













, T =













tx

ty

tz













, (4.1)

where the 3x3 rotation matrix can also be expressed in terms of rotations around the

coordinate axes as:

R =











cosry cosrz sinrx sinry cosrz − cosrx sinrz cosrx sinry cosrz + sinrx sinrz

cosry sinrz sinrx sinry sinrz + cosrx cosrz cosrx sinry sinrz − sinrx cosrz

−sinry sinrx cosry cosrx cosry











.
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Thus, a 3D point (Xw, Yw, Zw) in a world coordinate system can be described in the

camera coordinate system (Xc, Yc, Zc) by the following notation:













Xc

Yc

Zc













= R













Xw

Yw

Zw













+ T, (4.2)

which can be expanded to components as:

Xc = r11Xw + r12Yw + r13Zw + tx

Yc = r21Xw + r22Yw + r23Zw + ty

Zc = r31Xw + r32Yw + r33Zw + tz.

Internal parameters: The internal or intrinsic parameters define the optical components

that affect how the light is projected inside the camera. Theinternal parameters relate to

the following variables:

• Focal length(fx, fy). Distance from the image plane to the point in which all

projected rays of light converge, called the focal point.

• Skew parameter(γ). Degree of slant between horizontal and vertical dimensions

of picture elements on the image plane.

• Principal point (u0, v0). Also known as camera centre, represents the intersection

of the optical axis with the image plane, measured in pixels.

The variablesfx andfy correspond to the focal length measured in millimeters and

multiplied by a pixel scale factor inx andy dimensions,sx andsy respectively. In prac-

tice, pixels are assumed to be squared and the aspect ratio betweensx andsy equal to

1. Therefore, the focal length can be considered as being thesame for both variables

fx = fy, or simplyf . Also, the orthogonal skew parameterγ is zero for current cameras
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Figure 4.2: Geometry of similar triangles in the projective camera model here shown for the Y
coordinate (Image adapted from Hartley and Zisserman [112]).

due to high precision in CCD components. Similar to the external parameters, intrinsic

parameters can be defined by a matrix of the form:

K =













f 0 u0

0 f v0

0 0 1













.

A point in 3D space, expressed in camera coordinates is mapped to the 2D image plane

as follows (see Figure 4.2):

[

Xc Yc Zc

]

7→
[

f Xc

Zc

+ u0 f Yc

Zc

+ v0 1

]

,

whereu0 and v0 are the image coordinates of the principal point. Writing theabove

mapping in matrix form using homogeneous coordinates:













x

y

1













=













f 0 u0 0

0 f v0 0

0 0 1 0































Xc

Yc

Zc

1



















.
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Substituting Eq. 4.2 into the above equation, the projection of a 3D point in world

coordinates to pixel coordinates is described as follows:













x

y

1













= KR



















Xw

Yw

Zw

1



















+KT.

Here, the internal and external camera matrices can be combined into a 3x4 matrixP

called theprojection matrix, whereP = K[R|T ].

Radial Distortion

An extra parameter taken into account during camera calibration is the distortion pro-

duced by using imperfect camera lenses. This optical aberration affects the projection

of points on the image by expanding or contracting their trueprojected position, an ef-

fect denominated radial distortion. Radial distortion is determined by the two following

polynomials:

x = xd(1 + k1r
2 + k2r

4)

y = yd(1 + k1r
2 + k2r

4),

where(xd, yd) and(x, y) represent the distorted and undistorted image coordinatesof a

point, respectively. The variabler indicates the euclidean distance between a distorted im-

age point and the camera centre(u0, v0), and is calculated asr =
√

(xd − u0)2 + (yd − v0)2.

The coefficientsk1 andk2 are known respectively as second and fourth-order degree fac-

tors. However, it has been proven that coefficients higher than a second-order degree can

be neglected during lens correction because their effect inthe distortion is of no consid-

erable importance [102].

Two different radial distortion effects are produced according to the distortion coeffi-
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(a) Barrel distortion (b) Pin-cushion distortion

Figure 4.3: Radial distortion effects.

cientk: a) barrel distortion, which expands the image from the projection centre (outward

effect) and corresponds to a negative value, andb) pin-cushion distortion that contracts

the image projection towards the camera centre (inward effect) and relates to a positive

distortion coefficient. Figure 4.3 exemplifies the two radial distortion effects.

Although the distortion factor computation is important tocorrect projection aberra-

tion; especially in “fish-eye” systems such as endoscopes; the distortion model cannot

be included within the camera calibration matrix. Instead,it is computed as an indepen-

dent non-linear stage. In camera systems with high focal length values such as surgical

microscopes, the distortion factor tends to be small.

4.2.2 Classification of camera calibration techniques

Camera calibration methods can be broadly categorised into two classes according to

the nature of physical features located in world space. According to Zhang [114], these

categories can be divided as:

Photogrammetric calibration: This type of method requires the use of a calibration

object with a pre-defined geometry, where a certain number offeatures on the object are

placed at a known distance from each other. These features usually consist of squares or

circular figures which can be identified through the detection of corners or by geometric
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centres, also known as centroids. A photogrammetric procedure can use two variants

of calibration objects:planar gridsandnon-planar objects. The former involve a high-

quality pattern printed on a 2D surface, such as a chequerboard sheet. The latter contain

geometric features at different depth levels and require a more complex construction.

It is worth noting that although a planar grid can be used for the determination of the

camera parameters, it is recommended that the grid is rotated between 30◦ and 45◦ with

respect to the image plane to obtain accurate results [102, 103]. This provides enough

depth information in order to derive the focal length andTz (distance between the calibra-

tion grid and the camera) values.

Self-calibration: Also known as auto-calibration, this technique does not useany

pre-defined calibration object in order to compute the camera parameters. Instead, the

procedure involves determining a variety of objects’ features found in the real world —

either indoors or outdoors. Features can include edges, corners, and regions of interest,

among others.

Because the position of 3D features are not known in advance, self-calibration requires

using different images of the same scene in order to derive depth information. For this

purpose, a set of feature points located on one image must be also detected on the other

views in order to associate the independent viewpoints. Theso-calledcorresponding

pointsprovide the basic input to perform camera calibration. Figure 4.4 represents a set

of corresponding points on two different views of the same scene.

As described previously, the calculation of the 3x4 projection matrixP — compris-

ing the 11 internal and external parameters — defines the necessary information between

metric world coordinates and 2D image coordinates. The advantage of using a photogram-

metric calibration methods relies on1) well-established procedures to recover the cam-

era’s geometry, and2) knowledge about the physical world (with respect to the calibration

object). However, for systems with multiple camera configurations, each group of 11 pa-
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Figure 4.4: Illustration of corresponding points on two independent views.

rameters has to be determined independently for each optical device (e.g. in a stereo

setup, 22 different parameters need to be estimated).

4.2.3 Stereo camera calibration

Stereo calibration involves determining the camera parameters based on the relationship

between a pair of images. This relationship is achieved through the calculation of a ge-

ometric constraint between two cameras looking at the same scene. Such constraint is

known asepipolar geometry.

The epipolar geometry, shown in Figure 4.5, includes the image planes of each cam-

era, where a 3D pointM is projected on the left and right views asm andm̂, respectively.

The line that joins the two camera centresC andĈ is called the baseline, and the inter-

section points between baseline and image planes are calledepipoles (ep andep̂). The

line between the left epipole and its related image point is known as epipolar linelm (re-

spectivelylm̂). The epipolar constraint indicates that for a pointm in the left image, its

corresponding point̂m must lie on the epipolar linelm̂ and vice versa.
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Figure 4.5: Diagram of epipolar geometry for two cameras (Image adapted from Trucco and
Verri [115]).

Fundamental matrix

The epipolar geometry can be represented algebraically as aspecial 3x3 matrix known

as thefundamental matrix[116]. The fundamental matrixF encodes the relationship be-

tween the two cameras using only the projective informationfrom a set of corresponding

image points. Thus, the epipolar constraint that is used to associate a pointm = [x, y, 1]T

to its corresponding point̂m = [x̂, ŷ, 1]T is defined as:

m̂TFm = 0. (4.3)

The mapping of a point on the left view to its related epipolarline on the right image is

given bylm̂ = Fm, whereaslm = F T m̂ represents the mapping between a right point

and its left eplipolar line. In the case of a calibrated setup, where the intrinsic camera

matrices are known, a similar representation can be obtained by substitutingF by its

counterpartessential matrixE [117]. However, the corresponding pixelsm andm̂ are

replaced by pointsp andp̂ with respect to the camera coordinate system, known as points

in normalised coordinates[112]. Therefore, the epipolar constraint becomes

p̂TEp = 0,
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whereE = [t]×R comprises the translation and rotation between camera positions. The

notation[t]× is defined as a skew-symmetric matrix:

[t]× =













0 −tz ty

tz 0 −tx

−ty tx 0













.

Finally, the relationship between the fundamental and essential matrices given both in-

trinsic camera matricesK andK̂ is the following:

E = K̂TFK, (4.4)

or in terms of the essential matrix as:

F = K̂−TEK−1,

also expanded of the form

F = K̂−T [t]×RK−1.

In practice, the difference between fundamental and essential matrices relies on the fact

that the former encodes the internal and external parameters based only on the information

obtained from corresponding image points. On the other hand, the essential matrix cap-

tures only the relative orientation between a pair of cameras based on the known intrinsic

parameters and normalised image points.

Estimation of the fundamental matrix

As described in the previous subsection, the estimation of the fundamental matrixF de-

pends on satisfying the epipolar constraint between a pair of points. Thus, Equation 4.3
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can be expanded as:

[

x̂ ŷ 1

]













f11 f12 f13

f21 f22 f23

f31 f32 f33


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








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







x

y

1













= 0.

The calculation involves solving a homogeneous system of equations from a set of cor-

responding pointŝmi ↔ mi, where at least a minimum of seven correspondences are

required in order to find a solution (n ≥ 7). A linear equation is established for each pair

of points using thex andy coordinates as coefficients of the form:

x̂xf11 + x̂yf12 + x̂f13 + ŷxf21 + ŷyf22 + ŷf23 + xf31 + yf32 + f33 = 0. (4.5)

If Equation 4.5 is considered as a product between two vectors, it can be expressed as

[

x̂ x x̂ y x̂ ŷ x ŷ y ŷ x y 1

]
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






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= 0.
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For a set ofn corresponding points in two images, a similar number of linear equations

are obtained of the formAf = 0, where

Af =













x̂1 x1 x̂1 y1 x̂1 ŷ1 x1 ŷ1 y1 ŷ1 x1 y1 1

...
...

...
...

...
...

...
...

...

x̂n xn x̂n yn x̂n ŷn xn ŷn yn ŷn xn yn 1
















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




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
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
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











= 0.

Different techniques have been developed in order to determine the fundamental matrix.

Each method has different implementation complexities andsensitivity to wrong point

localisation. A survey of available methods can be found in the literature comparing their

accuracy as well as their advantages and disadvantages [113, 118, 119]. The following

subsection will introduce the reader to three techniques selected from the established al-

gorithms.

Linear method

In order to estimate the fundamental matrix by a linear technique, seven point correspon-

dences can be used to provide enough information about the scene. However, in case of

bad point localisation produced by Gaussian noise, the method behaves erratically. In

practice, eight or more corresponding points are used to create an overdetermined sys-

tem of equations, which allows redundancy of points in case of poor point localisation.

The technique, originally introduced by Longuet-Higgins [117], is known as the8-point

algorithm.

The 8-point algorithm produces a solution by applying a least-square technique that

finds the eigenvector corresponding to the smallest singular value of matrixA. The com-

putation can be performed through the SVD method [107]. The factorisation of matrixA
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becomesA = UDV T , whereU andV are orthogonal matrices andD is a diagonal ma-

trix with nonnegative values. The last column ofV T relates to the eigenvector that solves

the least-squares problem by minimising the algebraic error ‖Af‖ under the constraint

‖f‖ = 1. This eigenvector corresponds to the desired fundamental matrix.

An extension of the 8-point algorithm consists in normalising the corresponding points

before solving the system of equations. As Hartley [120] pointed out, the lack of unifor-

mity in image coordinates produces instabilities in the algorithm. Specifically, if a pair

of corresponding pixel pointsm and m̂ lie on image coordinates (100,100,1), the row

of matrixA related to the vector multiplication between them (see Equation 4.5) will be

of the order of magnitude (104, 104, 102, 104, 104, 102, 102, 102, 1). This affects the

computation of least squares as the difference between the entries in the linear equation

is notably high.

Point normalisation comprises the translation of the origin of image coordinates from

the left hand corner to the centre of the image. Additionally, point coordinates are scaled

so that their average distance from the image centre is equalto
√
2, which forces corre-

sponding points to have a similar magnitude [115]. Because ofthe resulting improvements

and the simplicity of implementation, point normalisationis also used in other non-linear

algorithms to find the fundamental matrix.

Gradient-based technique

A gradient-based method is an iterative technique that requires an initial estimation of the

fundamental matrix in order to find an optimal solution. A basic approach for optimisation

involves minimising the residual of Equation 4.3 based on the costminF

∑

i(m̂
T
i F mi).

However, this procedure may generate an inaccurate estimation due to the fact that the

variance of each point is not always equivalent — an optimal situation for least-squares

methods [119]. In order to overcome this problem, the minimisation is based on the
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gradient of the fundamental matrix as follows:

minF

∑

i

(m̂T
i F mi)

2/g2i , (4.6)

wheregi =

√

l2
1
+ l2

2
+ l̂2

1
+ l̂2

2
is the gradient ofF , andl1, l2 are the first two compo-

nents of the epipolar line:Fm̂i = [l1, l2, l3]
T , andF Tmi = [l̂1, l̂2, l̂3]

T . The minimisation

method involves eigen analysis to iteratively compute the fundamental matrix through

SVD, as described previously. Each step reduces the residual of Equation 4.6 until the

objective function reaches a specific threshold. Similar tothe linear 8-point algorithm,

gradient-based methods can deal with bad point localisation produced by noise. Never-

theless, gradient-based techniques tend to be more accurate than linear algorithms due to

the inherent iterative optimisation.

M-Estimator

M-estimator, where M stands for maximum likelihood, is a technique that optimises an

initial fundamental matrix by reducing the effect of outliers or improper matches between

a pair of corresponding points. The optimisation is achieved by calculating the residual

r of each point correspondencei, obtained using the equationri = m̂T
i Fmi. A weight

functionwi modifies the effects ofri for each correspondence, becoming:

minF

∑

wi(m̂
T
i F mi)

2.

Among the different proposed weight functions, the one introduced by Huber [121] is

defined as:

wi =























1 |ri| ≤ σ

σ/ |ri| σ < |ri| ≤ 3σ

0 3σ < |ri|

,
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in whichσ is a robust standard deviation that indicates the median of the absolute values

of the residuals. This standard deviation estimate is obtained by the formula [118, 119]:

σ = 1.4826(1 + 5/(n− p))mediani |ri|, where the coefficient1.4826 is a constant value

used in the assumption that Gaussian noise corrupts the data. Specifically, this constant

corresponds to the median of absolute random values obtained from a Gaussian normal

distribution that is≈ 1/1.4826. The expression5/(n − p) is used to compensate for the

effect of a small number of data points, wheren is related to the size of the data set andp

corresponds to the dimension of the parameter vector.

M-estimators are considered as robust methods because theyaim at overcoming out-

liers produced by wrong localisation. Also, their accuracyis higher in presence of Gaus-

sian noise in comparison with linear methods due to the inherent standard deviation com-

putation.

4.2.4 Estimation of intrinsic parameters in stereo cameras

The fundamental matrixF encapsulates a certain number of DOFs that relate to the pos-

sible camera parameters to be calculated. Being a 3x3 homogeneous matrix with nine

elements, there are only eight independent parameters because the projective scale fac-

tor f33, or scalar value, is not a significant parameter. Moreover, the determinant ofF

is equal to zero (since the determinant of[t]× is also zero), which eliminates an extra

parameter [112]. Thus, only seven DOFs are available for estimation in a stereo camera

configuration.

From the seven DOFs, five of them are related to the relative position between cam-

eras. In fact, three correspond to the relative rotation andthe other two to the relative

direction of translation (because of the projective homogeneous condition). Therefore,

the remaining degrees of freedom can be used to estimate two out of the ten intrinsic

camera parameters (five for each camera) in both optical devices. From these intrin-
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sic parameters, pixels can be considered rectangular and accurate enough to avoid skew

effects. Additionally, Bougnoux [122] demonstrated that during self-calibration, the prin-

cipal point can be regarded as lying in the centre of the image. If these assumptions are

taken into account, the camera parameters can be reduced to the computation of two focal

lengths in the pair of optical devices.

The extraction of focal lengths from two views can be derivedfrom different ap-

proaches. One of the first stereo-based techniques was developed by Hartley [123] using

algebraic manipulations of the fundamental matrix, which was subsequently redefined

based on projective geometry [124]. A more recent method given by Newsam et al. [125]

extends the idea of decomposing the fundamental matrix using SVD. This technique pro-

vides a linear system of equations in which the pair of focal lengthsf and f̂ can be

different. The pseudocode of Newsam’s method is presented in Code 4.1.
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1. Compute the SVD ofF , written in the form

F = UDV T =
[

u1 u2 u3

]





σ1 0 0
0 σ2 0
0 0 1





[

v1 v2 v3

]T

whereui andvi represent the columnsi of matricesU andV , respectively.
The diagonal matrixD contains the non-negative singular valuesσ1 andσ2.

2. Establish the linear system of equations

σ2

1
= (uT

1
f3)2w1 + ((uT

1
i3)2 + (uT

3
i3)2)w2 + w3

0 = (uT
2
f3)(uT

1
f3)w1 + (uT

1
i3)(uT

2
i3)w2

σ2

2
= (uT

2
f3)2w1 + ((uT

2
i3)2 + (uT

3
i3)2)w2 + w3

in which f3 corresponds to the last column of the fundamental matrixF , i3 is
a unit vector[0, 0, 1]T , andwi (wherei = 1 . . . 3) are the desired variables.

3. Group and solve the previous linear equations in the following form

Ax = b,





a11 a12 1
a21 a22 0
a31 a32 1









w1

w2

w3



 =





σ2

1

0
σ2

2





where
a11 = (uT

1
f3)2 a12 = (uT

1
i3)2 + (uT

3
i3)2

a21 = (uT
2
f3)(uT

1
f3) a22 = (uT

1
i3)(uT

2
i3)

a31 = (uT
2
f3)2 a32 = (uT

2
i3)2 + (uT

3
i3)2

4. The resulting variablesw1, w2 andw3 relate to the quantities

w1 = −µ, w2 = λv, w3 = λ,

whereµ = f−2 − 1 andv = f̂ 2 − 1.

5. Finally, the focal lengths are obtained by working out thevalues

f =
1√

−w1 + 1
, and f̂ =

√

w2

w3

+ 1.

Code 4.1:Pseudocode for Newsam’s focal length estimation [125].
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Bougnoux [122] developed a closed-form solution to obtain unequal focal lengths

based on a constraint between the camera internal parameters and an imaginary conic

lying on the plane at infinity, known as theabsolute conic. The projection of the abso-

lute conic in two views determines an algebraic correspondence with the epipolar lines.

The resulting polynomial equations are calledKruppa equations[112,113] which can be

represented as:

Q = KKT =













f 2 + u2

0
u0v0 u0

u0v0 f 2 + v2
0

v0

u0 v0 1













,

whereK =

[

f 0 u0

0 f v0
0 0 1

]

is the intrinsic matrix of one camera. The estimation of the

pair of focal lengths is described in Code 4.2.

1. Compute the SVD of the fundamental matrix,F = UDV T

2. Obtain the epipolee on the left image, which corresponds to the right null
vector ofF (last column of matrixV T that relates to the null singular value of
the fundamental matrix).

3. Similarly, the epipolêe on the right image is obtained from the left null vector
of F (last column of the matrixU that corresponds to the null singular value).

4. Estimate the focal lengthf for the left camera using the formula:

f =

√

−ĉT [ê]×ĨF c(cTF T ĉ)

ĉT [ê]×ĨF ĨF T ĉ
,

in which Ĩ =

[

1 0 0
0 1 0
0 0 0

]

, andc = [u0, v0, 1]
T and ĉ = [û0, v̂0, 1]

T are the

principal points related to the left and right camera, respectively.

5. The computation for the second focal lengthf̂ is calculated by transposing the
fundamental matrix and inverting the position of the cameras as follows:

f̂ =

√

−cT [e]×ĨF T ĉ(ĉTFc)

cT [e]×ĨF T ĨF c
.

Code 4.2:Pseudocode for the estimation of focal length based on Bougnoux’s method [122].
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Another method introduced by Sturm [126] and Sturm et al. [127] aims at estimating

identical focal lengths from a pair of cameras. The fundamental matrixF is multiplied

by an intermediate matrix with initial values based on assumed intrinsic parameters; the

resulting matrixG is called a semi-calibrated fundamental matrix. The involved steps in

the calculation are described in Code 4.3.

1. Calculate the initial fundamental matrix and obtain the semi-calibrated matrix

G ∼





1 0 0
0 1 0
û0 v̂0 1



F





1 0 u0

0 1 v0
0 0 1





whereu0, v0 andû0, v̂0 are the principal points on left and right cameras, re-
spectively.

2. The matrixG is multiplied by an additional scaling matrix in order to work in
normalised image coordinates. The scaling has the form





f0 0 0
0 f0 0
0 0 1



G





f0 0 0
0 f0 0
0 0 1





in which f0 is a scale factor with a value significantly larger (of the order of
103) than the highest expected focal length. The purpose of thisadditional
scaling is to improve the stability and numerical conditioning of the focal
length computation.

3. Calculate the SVD of matrixG (G = UDV T ) and construct one quadratic
and two linear equations based on the extracted coefficientsu31, u32, v31, v32
of matricesU andV T , and singular valuesσ1 andσ2:

f2(σ1u31u32(1− v231) + σ2v31v32(1− u232)) + u32v31(σ1u31v31 + σ2u32v32) = 0

f2(σ1v31v32(1− u231) + σ2u31u32(1− v232)) + u31v32(σ1u31v31 + σ2u32v32) = 0

f4[σ2

1(1− u231)(1− v231)− σ2

2(1− u232)(1− v232)] +

f2[σ2

1(u
2

31 + v231 − 2u231v
2

31)− σ2

2(u
2

32 + v232 − 2u232v
2

32)] + [σ2

1u
2

31v
2

31 − σ2

2u
2

32v
2

32] = 0

4. Solve any of the previous equations. The obtained focal length will be multi-
plied by the inverse off0 in order to undo the scaling factor of Step 2.

Code 4.3:Pseudocode for focal length estimation based on Sturm’s technique [126,127].
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As pointed out by Sturm, the solution is generally obtained by solving the quadratic

equation. However, the linear equations can be used to find false or erroneous results.

Although other closed-form solutions have been described by Kanatani and Matsunaga

[128] and Ueshiba [129], their work is restricted to theoretical analysis and do not pro-

vide proof of practical results. Nevertheless, they agree with other authors about the

significance of avoiding special cases in which the calculation of focal lengths leads to

singularities in the equations. These so-calleddegenerateor critical configurationsrise

when the focal length can not be solved by any means. General critical configurations

occur in the following cases:

1. When the optical axes of the two cameras and the baseline arecoplanar, either by

a) having parallel optical axes orb) presenting an isosceles triangle setup in which

the optical axes intersect at a finite point and principal points are equidistant from

this point.

2. The plane defined by one optical axis and the baseline, and the plane defined by

the baseline and the other optical axis are orthogonal.

These critical configurations are illustrated in Figure 4.6

In practice, degenerate configurations produce negative values in the focal lengths in

the case of linear equations, or imaginary complex numbers when using squared roots to

estimate the solution. As described by Hartley [124] and Kanatani et al. [130], a procedure

to assess if there is a critical configuration between the pair of cameras involves determin-

ing whether the epipolar line (e.g.lm) of one camera passes through the principal point

of the second camera. This can be visually represented in Figure 4.7

Sturm et al. [126, 127] described a practical method to avoidsingularities between a

pair of cameras in a stereo setup, specifically in the case of parallel optical axes. The

approach involves capturing one image at an arbitrary position and tilt slightly the other
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Baseline

Optical
axis

Optical
axis

(a) Parallel optical axes

Baseline

(b) Intersection at a finite point

Baseline

(c) Planes defined by the baseline and
optical axes are orthogonal

Figure 4.6: Critical configurations which prevent the calculation of focal length.

camera upwards or downwards before taking the second image.The results presented

indicate that even a slight elevation angle between 2◦ and 3◦ off the base plane produce

favourable results. Additionally, when the convergence angle between optical axes is

around 10◦ or higher the focal length error decreases considerably. Figure 4.8 represents

the tilt (elevation) and convergence rotations between a stereo pair of cameras.
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lm

(a) Diagram of the two-camera setup

principal
point

lm

(b) Visual assessment in one view

Figure 4.7: Critical configuration when the epipolar line lm of one camera passes through the
principal point of the second one.

q

(a) Elevation angleθ

a’

a

(b) Convergence anglesα andα′, whereα 6= α′

Figure 4.8: Methods to avoid critical camera configurations as proposed by Sturm et al. [126,127].
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4.2.5 Focal length optimisation in a stereo camera setup

One of the limitations of estimating the focal length through self-calibration is that, in

order to recover a reliable solution, the effects of radial distortion for each of the cameras

must be corrected. Tordoff and Murray [131] demonstrated that in the case of rotating

cameras, even a low pin-cushion distortion value results inunderestimated focal lengths,

whereas barrel distortion either produces overestimated quantities or makes the computa-

tion fail. Moreover, it is customary to fix other internal parameters (e.g. principal point)

in the pair of cameras for the calculation of focal lengths. As it was described by Vigueras

et al., fixing intrinsic parameters “only makes sense when optical distortion is considered.

Otherwise, the use of constant intrinsic parameters is not well founded” [132]. There-

fore, a sensible procedure involves “pre-calibrating” each camera independently through

a photogrammetric technique before calculating the fundamental matrix and focal length

values. Besides correcting the influence of radial distortion, the obtained pre-calibrated

parameters can be used as ground truth for further analysis.

The pair of focal lengths computed by any of the methods described in Section 4.2.4

can be refined through an optimisation algorithm. As the initial extrinsic and intrinsic

camera parameters have already been estimated at the pre-calibrated stage, such knowl-

edge can be included in a cost function in order to improve thesolution. The cost function

that has been selected relies on a metric known as the Sampsondistance [112], which is a

first-order approximation to a geometric, or reprojection,error measured in left and right

images. The cost function is defined as:

∑

i

(p̂Ti Epi)
2

(Epi)21 + (Epi)22 + (ET p̂i)21 + (ET p̂i)22
, (4.7)

whereE relates to the essential matrix obtained from Equation 4.4 and it is based on

the pair of pre-calibrated intrinsic camera matricesK and K̂. p and p̂ represent thei

corresponding image pointsm andm̂ in normalised coordinates, which are obtained from
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p = K−1m and p̂ = K̂−1m̂, respectively.(Epi)
2

j refers to the square of thej-th entry

of the vectorEpi (similar for the vectorET p̂i). Therefore, the parameters to optimise

involve the intrinsic camera matrices with respect to the pair of focal length values. A

similar cost function has been used by Rodehorst et al. [133] for relative pose estimation

in multi-camera scenarios, while Stoyanov et al. [134] employed the Sampson distance

error for stereo laparoscopy in terms of the fundamental matrix.

The overall procedure for focal length optimisation in a stereo camera setup can be

summarised as follows:

1. Calculate the fundamental matrix,F , from at least seven corresponding points

on the calibration object, in the left and right images. The three methods con-

sidered include: linear (8-point algorithm), the gradient-based technique and the

M-estimators.

2. Compute the focal length for each of the cameras from the previous estimated

fundamental matrix. The self-calibration based methods presented are: Newsam

(Code 4.1), Bougnoux (Code 4.2) and Sturm (Code 4.3).

3. The focal lengths obtained can be refined through an optimisation algorithm that

uses the Sampson distance as a cost function, as defined in Equation 4.7. Two

evolutionary algorithms (i.e. Self-adaptive Differential Evolution and CODEQ,

described in Appendix B) and the well-known Levenberg-Marquardt method can

be used among the different optimisation methods.
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4.2.6 Camera pre-calibration using a non-coplanar calibration

object

As explained earlier, photogrammetric techniques requirethe use of a calibration object

with known coordinates in order to estimate the camera parameters, while stereo self-

calibration only involves a set of corresponding features at different depths for the pair

of views. The adopted approach utilised a non-coplanar 3D calibration object in order to

perform both pre-calibration and focal length optimisation.

Previous research described in [13,17] comprised an evaluation of single camera cali-

bration between coplanar and non-coplanar calibration devices in an endoscopic surgical

configuration. The non-coplanar calibration object consisted of a modified pin-art setup

with pins positioned at various depths. In the case of a surgical microscope, the mag-

nification level is of a higher degree than the magnification obtained by an endoscope.

Because of this, the considerable large dimensions of the non-coplanar object designed

for endoscopic use could not be employed in the microscope setup. This issue led to the

creation of a different 3D calibration object, with the purpose of reducing its physical

dimensions and improving its precision.

The manufactured calibration object consists of a set of blocks at different levels that

provides enough depth information to perform a non-coplanar calibration procedure. On

top of each block, a circular shape with a contrasting colourwas inscribed in order to

be detected at various orientations. Although an alternative solution could involve the

use of squared shapes to detect corners, the current resolution of the manufacturing de-

vice (3D Zprinterc© 450 - Z Corporation) limits the output quality by producing irregular

edges. The length and width of the resulting manufactured calibration object (shown in

Figure 4.9) are 24 mm and 19 mm, respectively. In the case of height, the range of depth

levels varies between 2.5 mm and 12 mm from the base of the calibration object, with a

mean difference of 1.6 mm among contiguous blocks.
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Figure 4.9: 3D non-coplanar calibration object manufactured with 3D Zprinter c© 450 - Z Corpora-
tion.

Based on the current object design, the localisation of visual markers on the calibra-

tion object is performed through detecting the contours of each circular shape. These

contours are determined by applying a Gaussian filter [99] inorder to eliminate image

noise, followed by a Canny’s edge detection algorithm [100] and connected component

labelling [101]. Because of the possible inclinations that the calibration object will be

positioned at, the printed circular markers can be projected on the image as perfect circles

or ellipses. Therefore, a method based on the work by Ho and Chen [135] is used to detect

circular/elliptical shape centres. The technique works bylinearly scanning the image in

two stages, one horizontal and one vertical. Each scan finds the contours corresponding

to individual shapes and calculates the middle point between the extremes of each figure’s

cross section line. A Hough transform line [136] is fitted through the set of middle points,

which results in a symmetric vertical (Lv) or horizontal (Lh) line that divides the shape

in two equal parts. Finally, the intersection between both symmetric lines determines

the central pointC of the shape. Figure 4.10 illustrates the procedure to detect elliptical
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Lv
(a) Horizontal scan

Lh

(b) Vertical scan

Lv

Lh

C

(c) Centre detection

Figure 4.10: Method to detect the centre of elliptical figures [135].

centres. The calibration object as observed by the microscope before and after detecting

marker centres is shown in Figure 4.11. It must be noted that,in some instances, pro-

jective distortions can affect the detection of circular markers if the disks are not parallel

to the image, causing that the physical and projected circular/elliptical centres no longer

coincide. Nevertheless, it has been proved that the coordinates of elliptical centres can be

corrected to correspond to disk circle centres even if the disks are not orthogonal to the

image plane [137].

The camera pre-calibration procedure is based on the non-coplanar algorithm pre-

sented by Tsai [102]. This photogrammetric technique determines the camera parameters

in two steps, which are summarised as follows: The first step estimates the orientation

and part of the position (Tx andTy) of the camera with respect to the calibration object,

followed by the calculation of the scale factor. These parameters are obtained through the

use of a least-squares fitting technique. The second step computes the focal length value,

along with the distortion coefficients andTz. Finally, all camera parameters are refined

iteratively using a non-linear optimisation method that finds the best solution between the

projected image points and the spatial points located on thecalibration object.
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(a)

(b)

(c)

Figure 4.11: Detection of marker centres on the non-coplanar calibration object: (a) image of
the calibration device as seen by the microscope; (b) detection of elliptical centres, numbered for
easier recognition; (c) overlay of detected centres on the original image of the calibration object,
for illustrative purposes only.

89



Chapter 4. Camera calibration

4.3 Experimental Results

4.3.1 Analysis of single camera calibration

The purpose of this section is to evaluate how the accuracy of2D image marker detection

affects the camera calibration process. The experiments were carried out using a single

camera in order to evaluate the stability of Tsai’s photogrammetric algorithm, which pro-

duces the initial camera parameters to be optimised during self-calibration. These tests

also serve to analyse the influence of the rotational position of the calibration object for

the estimation of focal length, and consequently, the corresponding camera calibration

errors.

Accuracy with respect to image marker detection

For this experiment a black and white camera was connected toone of the eyepieces of

the surgical microscope, positioned perpendicularly to a flat bench. The non-coplanar

calibration object was placed on a rotating gauge that allows measuring the positional

orientation at different angles with respect to the bench surface (which in turn is parallel

to the camera image plane). This rotational instrument was attached to a height gauge

to control the translational distanceTz between the calibration object and the microscope

lens (See Figure 4.12). At this stage there is no ground truthdata to compare the results

with; however, the intention of the experiment is to evaluate the variation of focal length

and calibration errors based on 2D marker detection at different inclination angles.

A set of ten camera calibrations were performed for each slope angle, which varied

from 0◦ to 25◦ at 5-degree steps. Inclination angles larger than 25◦ were excluded because

at those orientations calibration markers went out of focus, affecting the localisation of

circular shapes. Table 4.1 shows the mean focal length and calibration errors based on

the calculation of ellipse centres. Two different calibration errors are calculated for dis-
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Figure 4.12: Rotational gauge used to control the calibration object inclination.

torted and undistorted image coordinates, measured in pixels. A third object calibration

error is based on the difference between nominal 3D marker position and its projected

estimation, measured in millimetres (mm). It can be noticedthat focal length increases

as the orientation angle between the calibration object andwork bench rises as shown in

Figure 4.13. These results are in agreement with the findingspresented by Chen [17].

On the other hand, as the inclination becomes higher, calibration errors in pixels and

millimetres have a tendency to decrease. This proves that there is an intrinsic relation

between the estimation of focal length and the resulting calibration errors obtained by the

photogrammetric method. Although the manufactured calibration object comprises a set

of markers with different heights, the magnification provided by the microscope requires

higher depth levels among the physical features. Due to current limitations in the fabri-
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Angle
(degrees)

Focal length (mm) Distorted
Error (pixels)

Undistorted
Error (pixels)

Object Error
(mm)

0 202.233 (±4.255) 1.372 (±0.129) 1.381 (±0.128) 0.061 (±0.006)
5 228.248 (±6.161) 1.358 (±0.261) 1.363 (±0.262) 0.060 (±0.012)
10 265.933 (±10.717) 1.109 (±0.068) 1.111 (±0.068) 0.049 (±0.003)
15 283.946 (±11.055) 1.087 (±0.057) 1.089 (±0.058) 0.048 (±0.003)
20 303.636 (±6.448) 1.074 (±0.081) 1.073 (±0.081) 0.047 (±0.004)
25 317.421 (±5.070) 1.074 (±0.028) 1.074 (±0.028) 0.047 (±0.001)

Table 4.1: Focal length and calibration errors mean and standard deviation (±SD) of single cam-
era calibration at different inclination angles using ellipse centres over ten trials.
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Figure 4.13: Focal length estimation through detection of ellipse centres.

cation of the 3D device, large depth differences can not be achieved. However, this issue

can be compensated by modifying the angular position of the calibration object.

The relation between focal length and translational distanceTz was also assessed for

the same inclination angles as described previously. The results in Table 4.2 show that

distance valuesTz raise as the rotation between camera and calibration objectincreases,

similar to the focal length case. This inherent correlationbetween both parameters can

be noticed from the ratiof/Tz, proving that there exists some compensation between

focal length and the translation along the optical axis. However, this ratio still grows with

respect to the orientation angle.
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Angle (degs) Focal lengthf (mm) Tz f /Tz

0 202.233 (±4.255) 178.541 (±3.473) 1.133 (±0.003)
5 228.248 (±6.161) 199.169 (±5.191) 1.146 (±0.001)
10 265.933 (±10.717) 229.256 (±8.958) 1.160 (±0.001)
15 283.946 (±11.055) 242.690 (±9.367) 1.170 (±0.002)
20 303.636 (±6.448) 258.168 (±5.412) 1.176 (±0.000)
25 317.421 (±5.070) 268.983 (±4.220) 1.180 (±0.000)

Table 4.2: Mean and standard deviation (±SD) values (over ten trials) of focal length, Tz distance
and ratio between focal length and Tz at different inclination angles.

In addition, the remaining five DOFs were evaluated with the purpose of determining

possible variations in the computed parameters at each inclination angle. The results

shown in Table 4.3 demonstrate that the values obtained are consistent among all slope

angles for parametersTx, Ty, Rx andRz. In the case of the rotational parameterRy, the

estimated values correspond to each inclination angle applied to the calibration object.

Angle (degs) Tx Ty Rx Ry Rz

0 -10.253 8.720 173.055 0.841 -0.567
(±0.027) (±0.010) (±0.106) (±0.197) (±0.024)

5 -9.977 8.693 172.905 5.650 -0.705
(±0.058) (±0.020) (±0.179) (±0.505) (±0.044)

10 -10.261 8.960 172.601 10.999 -0.470
(±0.005) (±0.006) (±0.037) (±0.051) (±0.019)

15 -11.142 9.232 172.459 16.313 0.526
(±0.005) (±0.007) (±0.065) (±0.066) (±0.011)

20 -10.726 9.303 172.308 21.133 0.510
(±0.019) (±0.012) (±0.073) (±0.193) (±0.027)

25 -10.752 8.957 172.145 24.689 0.732
(±0.007) (±0.008) (±0.043) (±0.040) (±0.013)

Table 4.3: Mean and standard deviation (±SD) values for five different DOFs in a single camera
calibration at different inclination angles over ten trials.

As observed in the previous tables, a remarkable output is the variation in the standard

deviation corresponding to each static position. From the results analysed, the value most

affected by such instability is the focal length. A simple experiment was performed to

evaluate the accuracy of the calibration method by acquiring a single image and perform-

ing several calibrations. The results were constant for allvalues in each test (i.e. standard
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deviation equal to zero), which indicates the robustness ofthe camera calibration algo-

rithm when using the same input image.

Although there is no clear explanation for the variation in the results among the indi-

vidual calibrations at static poses, a reasonable cause might be due to an imperceptible

noise caused by the optical device, which could not be reduced by the Gaussian filter ap-

plied in the shape detection process. Another reason might be a variation of lighting or

thermal conditions during the calibration process. Moreover, subtle vibration of the bench

surface or measuring instruments could affect the positionof the calibration object during

image acquisition. This would cause the captured image to beslightly blurred and affect

the detection of circular/elliptical centres by several pixels. It must be mentioned that

all measures have been observed to prevent any kind of external interference concerning

ambience luminance and steadiness of the hardware setup.

Effect of projected marker localisation on accuracy

This experiment investigated the influence of marker localisation inaccuracies on camera

calibration errors. The set of projected marker points wereaffected to Gaussian noise

with 0 mean and three differentσ standard deviation levels: 1.0, 0.5 and 0.3 pixels. For

each noise level, ten independent calibrations were carried out at the same inclination

angles than the above-mentioned tests. The results were averaged and compared to a

ground truth obtained from an initial calibration at each orientation. Figure 4.14 shows

absolute errors for focal length and calibration error values. As seen from the plots, there

is no linear relation among the results at different noise levels. However, absolute errors

in image (pixels) and object space (mm) follow similar patterns [Figures 4.14(b) and

4.14(c)]. Whenσ = 0.3, there is less instability during calibration in comparison to higher

noise levels, as expected. The effect ofσ = 0.3 also decreases when the inclination angle

is higher than 10◦, especially in terms of the focal length. In the case of the ratio between
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(b) Image space absolute error
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(c) Object space absolute error
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(d) Ratio between focal length andTz

Figure 4.14: Absolute errors in localisation of image markers under different noise levels.

focal length andTz [Figure 4.14(d)], a similar decrement is noticed when the inclination

angle is higher than 10◦ for σ = 0.5 andσ = 0.3; whereas the absolute error decreases

beyond 15◦ for all σ levels.

Effect of 3D marker localisation on accuracy

Additionally, the localisation of 3D marker points was tested under the effect of noise.

This evaluates the performance of the algorithm in case of aninaccurate construction of

the calibration object. Gaussian noise with 0 mean and threestandard deviations of 0.3,

0.1 and 0.05 mm were added to the nominal coordinates of the constructed model. Similar
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(b) Image space absolute error
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(c) Object space absolute error
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Figure 4.15: Absolute errors in localisation of 3D marker points under different inaccuracy levels.

to preceding experiments, the tests were performed at different positional angles and the

mean values compared to a calibration ground truth. As seen from Figure 4.15(a) the focal

length error is relatively constant whenσ = 0.05 at all inclinations, whereas the fluctuation

is greater at higher noise levels. Figures 4.15(b) and 4.15(c) respectively show absolute

differences in image and object space errors. Figure 4.15(d) shows the ratio between focal

length andTz, which presents a comparable tendency to image space errors. In general

it can be observed that, even at a low noise perturbation in 3Dmarkers localisation, the

inaccuracy is considerably high.
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The outcomes of the previous two experiments conclude that the calibration object

must be manufactured at high precision standards in order toobtain an accurate estimation

of the focal length. Consequently, calibration errors in image and object space are also

affected by a poor 3D construction even at submillimetre scale.

4.3.2 Analysis of stereo camera calibration

It was determined in the previous subsection that focal length is the most affected pa-

rameter in a single camera calibration. Consequently, in a stereo microscope setup, the

estimation of focal parameters can greatly differ if left and right cameras are calibrated

individually, even though both focal lengths are very similar in magnitude. This section

aims at evaluating different methods to regularise the focal length calculation and min-

imise the final calibration errors in a stereoscopic setup.

Three different techniques for the estimation of the fundamental matrix between the

pair of cameras were evaluated; namely linear, gradient-based and M-estimator methods

as described in Section 4.2.3. Additionally, three methodsfor computation of focal length

as proposed by Bougnoux [122], Sturm [126, 127] and Newsam [125] were also taken

into consideration for the analysis.

Accuracy of focal length estimation in a synthetic environment

The purpose of this experiment was to evaluate the precisionof focal length computa-

tion against a known ground truth value. A pair of simulated cameras was modelled in

OpenGL with internal parameters similar to the values reported by Tsai’s method [102]

using a single microscope camera. The same external parameters (translation and rota-

tion) in both cameras were used, while the baseline distancewas set to 25 mm in order to

match the physical horizontal separation between microscope lenses.

A set of 225 corresponding points was placed in the virtual space, lying at different

97



Chapter 4. Camera calibration

a

q

25 mm

Figure 4.16: Schematic representation of a synthetic scenario using a set of points at different
depth distances from a pair of virtual cameras (the points are situated within a bounding box for
illustration purposes). Convergence angle (α) around the optical axis and elevation angle (θ) off
the base plane are shown. Baseline distance between cameras is 25 mm.

depth distances from the cameras and within an area that could be visible on the pair of

viewpoints (see Figure 4.16). Focal lengths with a value of 250 mm were initially used as

ground truth for left and right cameras. Subsequently, the right focal length was increased

in 5-millimetre steps until reaching 270 mm in order to evaluate the accuracy of the meth-

ods at unequal setups. In addition, convergence (α) and elevation (θ) angles between

the two cameras were modified for each focal length combination to assess degenerate

configurations in a surgical microscopic environment.

It was noticed that, among the three different approaches tocalculate the fundamental

matrix, the variation in the produced results was negligible at this particular synthetic

scenario (the average relative error among the corresponding entries of the fundamental

matrices was of the order of10−10). Because it was considered that any of the three

methods would provide the same accuracy in the calculated fundamental matrix, the linear

method was selected to estimate the relationship between the two cameras. The selection

was based on the fact that the iterative nature of the other methods would not provide a

considerable degree of improvement to the final results.
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The accuracy of the techniques introduced by Bougnoux, Sturmand Newsam was

evaluated based on a percentage error calculated between the ground truth focal length

and the value produced by each method at different elevationand convergence angles;

where a lower percentage error indicates a higher accuracy in focal length estimation.

The graphs corresponding to the results obtained by each independent method for both

cameras in equal and unequal focal length setups are presented in Appendix A.1. It is

worth mentioning that at elevation angles between 0◦ and 2◦ all methods failed to produce

a result, which indicates a critical configuration. Therefore, elevation at those specified

angles are not shown in the graphs.

Bougnoux’s method (Figure A.1) performs consistently when the cameras are only

rotated around the elevation angle, whereas the error increases when the convergence ro-

tation increments, especially at unequal focal lengths. Itcan be seen that the best results

are obtained when the convergence rotation between camerasis fixed at 0◦. Figure A.2

represents percentage errors obtained by Sturm’s technique, which are considerably high

for unequal focal lengths. This is because the method has been designed for similar fo-

cal values. For such equal configuration, Sturm’s method achieves a small error during

the different convergence rotations as long as the elevation angle remains low. Finally, the

method introduced by Newsam, illustrated in Figure A.3, presents a low error for a 0◦ ele-

vation in the case of similar focal lengths. Interestingly,percentage errors slightly increase

as cameras converge around 4◦. Beyond this angle, focal length accuracy is recovered. In

the case of unequal focal lengths, the lowest errors are found almost diagonally between

elevation and convergence angles.

The results of this experiment demonstrate the performanceof each method during the

recovery of the true focal length in a controlled synthetic setup. For all techniques, the

best solutions are found when both cameras have the same focal length value. Specifically,

the methods by Bougnoux and Newsam estimate accurate values during elevation, while

Sturm’s technique does at convergence angles. In the case ofunequal focal configurations
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the techniques behave significantly different, although Bougnoux’s method maintains a

low error rate at elevation angles.

Focal length optimisation in a pair of real cameras

This experiment investigated the use of different methods for the calculation of funda-

mental matrix and focal length estimation in a real-camera stereo configuration. The

setup involved a stereoscopic surgical microscope placed on a flat work bench and two

cameras connected to the microscope eyepieces, which are placed in a parallel position.

It is worth mentioning that this setup leads the self-calibration to fail because the relative

alignment between cameras belongs to a degenerate configuration.

In order to avoid this critical configuration, it was decidedto acquire each individual

image of the calibration object at two different positions using the rotational gauge used

in tests 4.3.1 and 4.3.2, which was adapted to provide an extra rotation around an ele-

vation axis (Figure 4.17 presents the microscope and rotational gauge setup). The tests

involved acquiring the left camera image at a still pose while changing both convergence

and elevation on the right view. Ten independent focal length estimations were executed

for each convergence and elevation positions, within a range from 0◦ to 30◦ in the case of

convergence and 0◦ to 15◦ for elevation, both at 5-degree steps. Higher inclination levels

affected the detection of elliptical centres and were excluded from the evaluation.

For each pair of calibrated images, the obtained focal length values were refined

through three different optimisation methods, including two evolutionary algorithms: Self-

adaptive Differential Evolution (SDE) and CODEQ, which are described in Appendix B,

and the Levenberg-Marquardt algorithm. Thus, a complete evaluation comprised nine

combinations among the fundamental matrix and focal lengthtechniques for each op-

timisation algorithm (see Table 4.4). Because self-calibration methods do not provide

information about accuracy errors by themselves, the refined focal lengths were fed back
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Figure 4.17: Stereoscopic surgical microscope and rotational gauge experimental setup.

into the original Tsai’s method and a recomputation of camera calibration on both cameras

was carried out (maintaining the other pre-calibrated parameters). This provided a means

to compare the accuracy with respect to the initial calibration errors. The parameters

used for the optimisation involved a maximum number of 400 iterations for Levenberg-

Marquardt algorithm, whereas a maximum of 20 generations with a population size of

20 individuals was selected for both evolutionary algorithms. The tolerance threshold in

the cost function (Equation 4.7) comprised a value of10−16 for all optimisation meth-

ods based on an initial function value of1.8−7. In general, the time taken for the three

optimisation algorithms to refine the focal length parameter was a couple of seconds.

Among the different elevations, the most favourable case was obtained at an eleva-

tion angle of 15◦, where the absolute difference between Tsai’s ground truthand mean
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Method

Fundamental matrix estimation
• Linear method
• M-estimators
• Gradient-based algorithm

Focal length estimation
• Bougnoux’s method
• Sturm’s method
• Newsam’s method

Optimisation algorithm
• Levenberg-Marquard
• Self-adaptive Differential Evolution (SDE)
• CODEQ

Table 4.4: List of methods used for the optimisation of the focal length.

image calibration errors is more noticeable. Therefore, the analysis of these experiments

is focused at this orientation for the diverse fundamental matrix, stereo focal length and

optimisation methods. A complete list of graph results for the entire set of tested combi-

nations is presented in Appendix A.2.

Figure 4.18 illustrates the image calibration errors measured in pixels using the linear

algorithm for fundamental matrix estimation. The top row represents the Levenberg-

Marquardt (LM) method in left and right cameras. The second row corresponds to the

SDE optimisation technique, and CODEQ results are shown in the bottom row. It can

be noticed that LM produces unstable results in comparison with the other two methods,

fluctuating above and below Tsai’s ground truth at differentinclination angles. The results

obtained by both SDE and CODEQ methods are similar. Although both left cameras also

show some fluctuation in the accuracy, it is not as pronouncedas in LM. In the right

camera, image errors decrease almost in parallel with respect to Tsai’s; where the average

accuracy improvement is 0.130 pixels for SDE and 0.136 pixels for CODEQ among all

focal length methods.

Absolute image errors using M-estimators are presented in Figure 4.19. Results shown

in the top row, corresponding to the LM algorithm, indicate that there is limited improve-

ment in accuracy for both images as most focal length estimation methods give error

values higher than the ground truth. SDE and CODEQ calibration errors have the same
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trend in accuracy; however CODEQ produces closer results to Tsai’s values, especially

in the left camera. Remarkably, there is a break in the curves representing the methods

of Sturm and Newsam at 25◦ of inclination (convergence) angle, which means that both

techniques failed to estimate a focal length. Although thisis not caused by a critical

configuration (e.g. parallel camera setup), it is assumed that this is produced by certain

instabilities within these algorithms as can be seen from other graphs in Appendix A.2,

where additional breaks appear at different elevation/convergence angles.

The results illustrated in Figure 4.20 show absolute errorsusing the gradient-based

method for the fundamental matrix. The outcomes are analogous to the previous tech-

niques; however there are no breaks in the plotted curves at this elevation. Calibration

errors using Bougnoux, Sturm and Newsam’s methods are closerto each other when us-

ing CODEQ optimisation than in the case of SDE or LM for the fundamental matrix

calculation. An exception is noticed at 30◦ where they slightly spread out due to the

calibration object being partially out of focus, hence affecting ellipse centre detection.

The overall accuracy improvement for all focal length methods is less than 0.05 pixels

in the left camera using both SDE and CODEQ, whereas in the right camera the mean

improvement is 0.131 pixels using SDE and 0.138 pixels for CODEQ.

The results obtained have shown that there is an improvementin the accuracy of the

calibration error as compared to the accuracy obtained by Tsai’s method, especially for

the right camera. In order to investigate the statistical significance among the estimation

methods (i.e. fundamental matrix and focal length) in both cameras, it was decided to test

whether there are differences between the means of calibration error values for each pair

of optimisation methods. For this purpose, a two-tailed t-test was performed for each pair

of result sets. The null hypothesis is stated as the means of calibration errors between

each pair being similar and not providing any statistical significance.

Because the set of results include a range of different convergence angles, the statistical
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test involved two inclination levels that correspond roughly to the positions that provide

a balance between good and bad accuracy errors for the three focal length methods. Such

selection avoids bias in the overall evaluation among the techniques. In the case of the lin-

ear fundamental matrix the chosen angles were 20◦ and 25◦, for M-estimators the selected

inclinations were at 5◦ and 15◦, and for the gradient-based method at 15◦ and 25◦.

Tables A.1 - A.6 in Appendix A.3 present the reader with the results of the evaluation.

Each table compares the statistical significance for left and right cameras, providing the

computed t-value, statistical degrees of freedom (df) and significance level (P-value). If

the P-value is found to be less than 0.05 it can be determined that there is a statistically

significant difference at the corresponding observation. As it can be seen from the tables,

there is little difference between SDE and CODEQ methods among the three fundamental

matrix estimation techniques. On the other side, LM statistically differs from SDE and

CODEQ in the majority of the comparisons, except at 20◦ in the linear method and 15◦

using the gradient-based method. Although this implies that the final results at such incli-

nations do not produce a meaningful difference among the methods, it only confirms that

at specific rotations the accuracy errors can be similar for all the combinations.

The outcomes of this experiment indicate that there is an improvement in the accu-

racy of focal length estimation using self-calibration techniques in a pair of real cam-

eras as compared to the accuracy obtained by Tsai’s method, particularly for SDE and

CODEQ methods. Among the three algorithms used to compute thefundamental matrix,

the gradient-based method provided slightly better results than the linear counterpart and

proved to be more stable than the M-estimators method. The most noticeable improve-

ment is on the right camera, where a decrease of about 10% in the calibration error is

obtained against the ground truth (Tsai’s method) for all focal length techniques. In this

regard, the results obtained by the different methods of Bougnoux, Sturm and Newsam

perform similarly when using the CODEQ and gradient-based strategies.
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Table 4.5 shows a summary of the results of the statistical evaluation presented in

Appendix A.3. From this statistical evaluation, the null hypothesis stating that the ex-

perimental sets are the same can be accepted only in the case of the SDE - CODEQ

combination for M-estimators and gradient-based techniques; whereas in the case of the

linear technique, SDE and CODEQ are found to be different for both cameras in two dif-

ferent trials. On the other hand, the combinations between SDE - LM and CODEQ - LM

tend to be statistically different for the linear and gradient-based methods at the highest

convergence angle of the statistical evaluation, corresponding to 25◦. In the case of M-

estimators, the best statistical difference was obtained at 5◦. In general, it can be observed

that SDE and CODEQ are statistically similar (central part ofthe table) and that SDE

and CODEQ statistically differ from LM (top and bottom sections of the table), largely

obtaining better accuracy of the final calibration error than LM.

Camera Method
Linear technique M-estimators Gradient-based

20◦ 25◦ 5◦ 15◦ 15◦ 25◦

(bad) (good) (good) (bad) (bad) (good)

SDE vs LM

Left
Bougnoux N Y Y Y Y Y

Sturm Y Y Y Y Y Y
Newsam Y Y Y N Y Y

Right
Bougnoux N Y Y Y N Y

Sturm N Y Y Y N Y
Newsam N Y Y Y N Y

SDE vs CODEQ

Left
Bougnoux N N N N N N

Sturm N Y N N N N
Newsam Y N N N N N

Right
Bougnoux N Y N N N N

Sturm N Y N N N N
Newsam Y N N N N N

CODEQ vs LM

Left
Bougnoux N Y Y Y Y Y

Sturm Y Y Y Y Y Y
Newsam Y Y Y N Y Y

Right
Bougnoux N Y Y Y N Y

Sturm N Y Y Y N Y
Newsam N Y Y Y N Y

Table 4.5: Summary of statistically significant results of the hypothesis that two optimisation meth-
ods display different calibration error values using three techniques for fundamental matrix (Linear,
M-estimators and Gradient-based) and three methods for the focal length estimation (Bougnoux,
Sturm and Newsam). Two different convergence angles are shown that roughly correspond to
good accuracy (good) and bad accuracy (bad) in the calibration error values. Full statistical re-
sults are listed in Appendix A.3.
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Figure 4.18: Absolute errors using the linear technique for fundamental matrix calculation for each
of the three focal length estimation methods (Bougnoux, Sturm and Newsam) compared to the
ground truth (Tsai’s method [102]). (Top row) Levenberg-Marquardt, (middle row) SDE, (bottom
row) CODEQ optimisation algorithms. Left and right columns represent image errors (in pixels)
after optimisation on left and right cameras, respectively.
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Figure 4.19: Absolute errors using M-estimators for fundamental matrix calculation for each of the
three focal length estimation methods (Bougnoux, Sturm and Newsam) compared to the ground
truth (Tsai’s method [102]). (Top row) Levenberg-Marquardt, (middle row) SDE, (bottom row)
CODEQ optimisation algorithms. Left and right columns represent image errors (in pixels) after
optimisation on left and right cameras, respectively.
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Figure 4.20: Absolute errors using the gradient-based technique for fundamental matrix calcu-
lation for each of the three focal length estimation methods (Bougnoux, Sturm and Newsam)
compared to the ground truth (Tsai’s method [102]). (Top row) Levenberg-Marquardt, (middle
row) SDE, (bottom row) CODEQ optimisation algorithms. Left and right columns represent image
errors (in pixels) after optimisation on left and right cameras, respectively.
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4.4 Summary

This chapter focused on the study of camera calibration for the calculation of intrinsic

and extrinsic parameters required to superimpose virtual imagery in an AR based surgi-

cal guidance scene. Firstly, an analysis of Tsai’s photogrammetric calibration in a single

camera was performed using a non-coplanar calibration object. It was found that the sta-

bility of the algorithm is significantly influenced by the precision of the object’s physical

construction and the detection of image markers. In addition, focal length is the most

affected parameter with respect to external conditions, the orientation of the calibration

device being one of them.

Secondly, an evaluation of different methods for the estimation of focal length in a

stereoscopic setup was carried out. The purpose was to optimise the focal length and

consequently improve the accuracy of the final calibration error. The results indicate that

the use of an evolutionary algorithm can decrease the original calibration errors obtained

by the photogrammetric method when one of the cameras is rotated about 15◦ around the

elevation axis (tilt) in addition to the convergence rotation. This 15◦ around the elevation

axis presents the most favourable angular position as it provides higher depth information

of the calibration object’s view in combination with the convergence angles. However, by

increasing the elevation angle beyond 15◦, the calibration accuracy is affected as not all

calibration markers can be brought into focus. Among the different algorithms, the best

combination comprised the use of the gradient-based methodfor the fundamental matrix

and CODEQ optimisation, where the three techniques for the computation of focal length

(i.e. Bougnoux, Newsam and Sturm) produced similar results.A further improvement to

the overall calibration error could be made by increasing the manufacturing accuracy of

the non-coplanar calibration object as to yield sub-pixel calibration errors.
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Intra-operative registration

5.1 Introduction

Registration is a technique with the objective to find a geometrical or spatial transforma-

tion that aligns two independent models in a scene. The process is achieved by establish-

ing a correspondence of a set of features on each model and matching their position and

orientation into a single frame coordinate system. Registration can be applied to a variety

of fields such as computer vision, cartography, and medicine, among others. In AR based

applications, registration aligns the position of a real model with its computer-generated

counterpart in order to visually enhance the scene. In the case of IESN systems, the im-

agery involves the scanned anatomy of a patient, using CT or MRI, superimposed on top

of images captured by an endoscope or surgical microscope.

Registration is typically performed in a pre-operative stage after camera calibration,

resulting in a static overlay between real and virtual models. Additionally, a third step re-

quires the use of an external tracking device to record the dynamic position of the models

throughout surgery. Nevertheless, a problem found in AR is that each stage introduces

a certain degree of error to the procedure. The combination of these errors produce vi-
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sual misalignments between the models. This chapter will focus on a technique to correct

such mismatch in the intra-operative stage of an AR based system, using a surgical stereo

microscope for ENT surgery.

5.2 Image Registration

The process to find an optimum registration between models greatly differs among appli-

cation areas, where different requirements and visual information are available. However,

the basic approach involves a source model that must be mapped to a target entity using

the best possible transformation. Zitova and Flusser [138]describe four main steps found

in the majority of registration methods:

• Feature detection. It represents the selection of distinctive characteristics on the

2D or 3D models to be registered. The features can include points, lines, edges,

corners, intensity patterns, etc. Although feature detection can be performed au-

tomatically on images with high level of detail, in the medical field the selection

of features is usually carried out by an expert practitionerwho manually selects

anatomical structures.

• Feature matching. A correspondence between each pair of previously-selected

features on both models is determined in this step. For this purpose, similarity

measures and control rules must be specified to match unique pairs while avoiding

possible outliers. Feature matching methods include intensity values, geometrical

location or neighbourhood topology.

• Transform model estimation. It defines a transformation function to map the cor-

responding set of features on the source entity to the targetmodel’s pose. The

transformation function depends on the geometric deformation of the imagery, the

method of image acquisition and the required alignment accuracy. Examples of
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transform estimation include rigid transformation, non-rigid transformation and

image rectification.

• Image resampling and transformation. The transformation function is applied to

the source imagery and the alignment is achieved between models. The process

involves an interpolation step that maps pixels on the source image to the target

coordinates. Additionally, the final image can undergo a subsample or supersample

procedure in order to match the target image size.

5.2.1 Classification of medical image registration methods

In the clinical domain, different classifications about image registration have appeared in

the literature. In this subsection, a broad summary of the main classification proposed by

Maintz and Viergever [139] is presented. This will serve as the basis to introduce image

registration within the surgical field.

Dimensionality describes the spatial dimensions involved in the registration process.

The models to be aligned can be 3D/3D datasets pre-operatively scanned such as CT

or MRI, or involve a 2D/2D registration which comprises X-rays or single tomographic

slices. In 2D/3D registration, the procedure is mostly intra-operative and includes 2D

images to volumetric data. An extra dimension can also be included in the registration of

models during a certain period of time (e.g. tumour growth).In this case a volumetric

dataset is regarded as 4D (3D + time).

Nature of registration basisrefers to the different feature-based methods upon which

the imagery will be registered. They can be divided inextrinsicand intrinsic methods.

The former include external or foreign objects attached to the patient’s body (e.g. stereo-

tactic frames, dental adapters, skin markers). Intrinsic methods are based only on visual

information detected on images of a model using for example anatomical landmarks.
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Nature of the transformation depicts the diverse geometrical transformations re-

quired to map two models in the scene. This criterion dividesthe transformation in:

a) rigid, when only rotations and translations are possible; b)affine, if the registration

mapping preserves parallel lines during the transformation; c) projective, when lines are

projected onto lines but parallelism is not maintained; andd) curved, if lines are trans-

formed onto curves. On the other hand, thedomain of the transformation describes

how the mapping will affect the registration;global if the process is applied to the entire

image, orlocal if subsections of the image undergo separate transformations.

Interaction describes the interactivity level that a user provides during the registration

procedure. The method can range from fully-automated to completely manual interaction,

based on the nature of the registration and application requirements.

Optimisation refers to the algorithms used to find the global optima that correspond

to the best alignment pose between models. Methods based oncomputationare oriented

to applications where sparse data are found (e.g. point sets), whereassearchtechniques

try to find a solution based on a mathematical formulation of the problem.

Modalities involved relates to the origin of the imagery to be registered. When both

models are acquired using the same imaging source they are referred to asmonomodal

(e.g. CT/CT, MRI/MRI). If different devices are used to obtain the models, the registration

is denominatedmultimodal, such as CT/MRI or X-ray/CT. The criterion denominated

object simply depicts the anatomical structure to be registered, which can include head,

limbs, thorax, spine, etc.

The subject classification includes: a)intra-subjectregistration, in cases where the

models to be registered belong to the same patient; b)inter-subjectregistration, if the

procedure aims at registering models which belong to different subjects; and c)atlas,

when one model belongs to a patient and the other model is generated from a database

obtained from many subjects.
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5.2.2 Image registration for SN in head and neck surgery

The first SN systems for brain surgery required the use of stereotactic frames rigidly at-

tached to a patient’s head during surgical interventions. These external frames provided

the surgeon with a local coordinate system upon which the patient’s anatomy was associ-

ated. The surgeon could refer to external reference points on the frame in order to locate

specific regions inside the human brain. This association oflocal coordinate systems

led to the first step towards a registration procedure between X-ray images of the patient

wearing the frame and the internal anatomy itself. Subsequently, 2D stereotactic image

registration adopted other technologies such as CT, MRI and angiography.

The development of a frameless procedure was introduced in the 1980’s. The purpose

was to minimise the effects of invasiveness that rigid frames represented to the patient

and the obtrusiveness for the practitioner to manipulate surgical instruments inside the

body parts. This approach involved the use of individual fiducial markers mounted on the

patient’s head. The registration relied on comparing the real markers’ position, localised

by a pointing device, against the 2D coordinate image systemon CT or MRI slices.

With the evolution of volume rendering — where a set of slicescan be reconstructed

as a 3D model on a computer screen — registration has mostly become a 3D/3D process.

The method requires finding a linear, or matrix, transformation between real and virtual

models based on the attached fiducial markers, which involves the calculation of rota-

tion and translation parameters. Other techniques includemarkerless registration, where

anatomical landmarks (e.g. eye corners, tip of the nose, etc.) are detected on both mod-

els. However, the final matching accuracy obtained by a markerless method is generally

lower than the precision achieved by fiducial markers. Another method involves surface

matching that is used to align mesh models generated during the pre-operative and intra-

operative stages. This method takes into account the entiresurface structure rather than a

set of fiducial markers or natural landmarks. A general review of registration techniques
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for SN in head surgery is presented by Eggers et al. [140] and Luebbers et al. [141].

5.2.3 Overlay accuracy in IESN systems

IESN systems suffer from overlay inaccuracies because of the inherent loss of resolution

produced by digitising models in the real world into a digital format with the purpose

of enhancing intra-operative visual information. More precisely, image registration ex-

periences inaccuracy levels produced by CT/MRI acquisition,3D volume or surface re-

construction, anatomical landmarks and fiducial markers localisation, etc. Therefore, the

transformation matrix produced after registration can notbe regarded as an error-free so-

lution, but as an estimation of the true correspondence between source and target models.

Other errors within IESN systems originate from the determination of internal and

external camera parameters, limitations of accuracy provided by motion tracking systems,

and time delays while displaying the augmented world. The interested reader is referred

to Holloway [142] for a mathematical treatise of accuracy errors in AR. Although each

independent stage generates a certain level of imprecisionon its own, the resulting overlay

accuracy is further affected when these stages are combinedas the errors accumulate.

Moreover, the superimposition is aggravated by the use of the tracking device over a

prolonged period of time throughout surgery, which eventually results in an unacceptable

overlay accuracy as described by Lapeer et al. [13].

5.3 Methodology

5.3.1 Intra-operative registration for ENT procedures

In order to rectify the misalignment produced by the use of a tracking device, a naı̈ve

method would involve interrupting the surgical procedure and repeating the initial cam-
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era calibration and registration. Nevertheless, such approach is inappropriate due to time

restrictions and efficiency requirements during surgery. For this reason, it has been pro-

posed that an additional registration step can be carried out during the intra-operative

stage. The selected approach aims at re-aligning virtual and real models based only on

the visual information acquired from a pair of cameras connected to a stereoscopic sur-

gical microscope. It involves a cost function which compares intensity value differences

between the captured images and evaluates the registrationaccuracy through a similarity

metric called photo-consistency.

The concept of photo-consistency was first introduced in thefield of computer vision

as a method for the reconstruction of 3D models from a set of colour or greyscale images

in which the real scene is considered as and subdivided into voxels [143, 144]. This vol-

umetric scene reconstruction method known as shape-from-photoconsistency is based on

the visual property of real surface models. If a point on the surface is seen from different

perspectives the point’s colour should be the same, provided there is no occlusion.

Clarkson et al. [145] employed photo-consistency as a novel similarity measure to

match the projection of a set of 2D images to a 3D surface modelof a human head, either

acquired by a laser scanner or converted from an MRI data set. In their work, the align-

ment process was performed under controlled lighting and the cameras were previously

calibrated. The selected optimisation function was based on intensity differences using a

gradient ascent search algorithm. Later, Jankó and Chetverikov [146,147] generalised the

technique by finding the registration pose and performing a camera calibration procedure

at the same time. A full-sized polygonal mesh was obtained from a 3D laser scanner and

manually pre-registered to a pair of views as a starting point. The optimisation method

involved a genetic algorithm to refine the registration.

In the field of medical applications, Figl et al. [148] introduced a photo-consistency

cost function to align a sequence of video images of a beatingheart model. The images
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were obtained by a calibrated stereo endoscope connected toa static robotic arm. The

real model was under the influence of a heart cycle motion which required multiple sur-

face models reconstructed from CT volume data. Thus, the registration involved a 2D/4D

process. Chen et al. [17, 149] implemented an intra-operative registration between cali-

brated endoscopic images and a volumetric model of a human skull. Several images were

captured by placing the single-camera endoscope at different positions. Powell’s method

was selected as the optimisation procedure for its simplicity of use. Although the align-

ment was successful using synthetic imagery of the completeskull, the algorithm failed

to converge in close-up areas due to the lack of variation in intensity.

5.3.2 Estimation of photo-consistency based cost function

The estimation of the photo-consistency metric relies on the comparison between colour

or intensity values in a visible set of a 3D object’s points that are projected on two or more

images. Thus, the corresponding pixels which are related tothe same point should ideally

possess the same colour or intensity attibutes on each image. The images are considered

photo-consistent if the difference among all related pixelvalues is null or near zero. It is

assumed that the scene complies with a Lambertian model in which the lighting is static

and the visible object maintains an equal luminance regardless of the point of view.

For the implementation of intra-operative registration, apair of black and white cam-

eras were connected to the eyepieces of a surgical microscope for ENT interventions.

Each camera needs to be calibrated in advance in order to estimate the internal parame-

tersK and external parametersS, whereK is a 3x3 upper triangular matrix andS is a 3x4

matrix which combines the orientation and position of the optical device. Therefore, a

composed projection matrixP = KS (See Chapter 4) is used to calculate the projection
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of a model’s 3D pointM on each camera viewport in the following form:

ml ∼ PlM , and mr ∼ PrM , (5.1)

wherePl andPr are the 3x4 projection matrices for the left and right cameras, respec-

tively; andml andmr are the corresponding projected pixels of the same pointM . The

sign∼ indicates that the projection is defined up to a scale factor.

The photo-consistency based cost functionPC is determined by comparing the pixel

intensity levelsI in the pair of captured images:

PC =
1

N

N
∑

i=1

‖I(ml,i)− I(mr,i)‖2 , (5.2)

in whichN represents the total number of visible projected pixelsi in both images. Clark-

son et al. [145] provide an alternative similarity measure for the computation of photo-

consistency by first determining a mean of pixel values. In the case of two viewpoints it

follows as:I(m̄i) = (I(ml,i) + I(mr,i))/2.

Consequently, the total sum of squared differences is calculated according to the fol-

lowing equation:

PCsquared =
1

N

N
∑

i=1

(I(ml,i)− I(m̄i))
2 + (I(mr,i)− I(m̄i))

2

2
. (5.3)

A final cost function, also described in [145], intends to reduce the effect of outliers

through the calculation of the inverse of squared differences. This is achieved by using a

thresholdǫ related to the noise level found in intensity images. The resulting equation is:

PCinverse =
1

N

N
∑

i=1

ǫ2

ǫ2 +
(

(I(ml,i)− I(m̄i))
2 + (I(mr,i)− I(m̄i))

2
) . (5.4)
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5.3.3 Photo-consistency based registration

An initial registration step must be carried out at the beginning of the medical procedure

in order to align both real and virtual models. This initial registration is usually performed

after camera calibration and provides a static overlay within the IESN system. The steps

required for visual enhancement involve pre-operatively scanning the patient with a VBH

mouthpiece [150] which is also worn during surgery. Attached to the mouthpiece there

is a calibration and registration block that is used as a point of reference for the initial

alignment. A virtual version of the block is segmented from the subject’s CT data set

using a watershed segmentation algorithm [151] and a corresponding isosurface model is

obtained through the marching cubes method [152]. The resulting model is registered to

a pre-defined 3D block with known world coordinates. As the pre-defined block and the

segmented isosurface model have inherently the same shape and size, the iterative closest

point (ICP) algorithm [153] is used to perform the initial 3D/3D surface registration. Fig-

ure 5.1 illustrates the steps involved during the pre-operative registration using a human

skull.

Once the initial registration is obtained and the surgery isin progress, an optical track-

ing device is used to capture the movements of cameras and/orpatient. As mentioned

earlier, the accumulated errors generated over time tend toaffect the original alignment

due to tracking. For this purpose, the photo-consistency based cost function is used to cor-

rect the mismatch between real and virtual models by evaluating the best registration pose

that corresponds to the lowest intensity difference between the captured images. Because

both cameras have been calibrated in an earlier stage, the cost function only requires to

determine six DOFs; i.e. three translational and three rotational.

In order to perform the intra-operative registration, a setof visible voxels in the virtual

model is selected through back-projecting screen pixels (u,v) of that model within a user-

defined selection window; similar to a raycasting projection. Then, a voxel is detected for
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Figure 5.1: Stages within the pre-operative registration; a) real human skull object, b) volumetric
dataset with its own coordinate system, c) selection of points to perform segmentation, d) resulting
segmented isosurface block, e) final pre-operative registration after ICP.

each ray of sight that collides on the volumetric model (See Figure 5.2). It is important

to note that several screen pixels will map to a single voxel due to the magnification pro-

vided by the microscope. For this reason, duplicated voxelsare neglected in the selection.

Subsequently, a forward projection ray is cast from the selected voxel to each camera im-

age with the purpose of determining the corresponding pixelcoordinates on both images.

This forward projection requires a series of transformation matrices as follows:

1. Voxel 3D coordinates[Xw, Yw, Zw]
T to initial 3D registration pose (Ticp).

2. Initial static 3D pose to dynamic model 3D position (Ttracking).

3. Dynamic 3D voxel position to 2D pixel image coordinates[u, v]T for each camera

(Tcam,i).

120



Chapter 5. Intra-operative registration

Selected voxel
(x , y , z )w w w

World Coordinate
System (w)

y

x

z

z=0

z=n

Back projection ray

Image pixel

Volumetric model
Screen coordinate

system (s) u

v

Figure 5.2: Selection of voxels by backprojecting screen pixels.

The final concatenation of these matrices results in:
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(5.5)

wherei = 1, 2 is the number of cameras.

During the process of projecting voxels to pixel coordinates it is essential to evalu-

ate any potential occlusion that could obstruct the visibility of a voxel on both camera

viewports. In the case of surface models, a technique can be used to compute surface

normals in order to avoid comparing areas of the model that are not oriented towards the

cameras, as described in [146,147]. A different technique uses a z-buffer to allow render-

ing only the external visible points of the mesh model [145].Nevertheless, none of the

above methods can be directly applied to CT or MRI models as these are made of voxels

with different transparency levels. Instead, it is more suitable to perform a direct check

of possible voxels that can partially obstruct the forward-projected ray from a selected
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Figure 5.3: Occlusion detection through a forward projection ray; a) visible voxel V is projected
on both camera images at x1 and x2, b) voxel V1 is visible from camera Image1 but occluded by
voxel V2 on camera Image2 (Image adapted from [145]).

3D point. If the projected ray collides with a voxel that has ahigher transparency level

than a certain threshold, it is considered as an occlusion and the corresponding pixels are

ignored in the evaluation of the photo-consistency cost function. Figure 5.3 illustrates the

occlusion detection using a forward projection ray.

Due to magnification, a projected voxel does not relate to a single pixel on the pair of

captured images (voxel-to-pixel relation is 1:many) as described previously. In order to

establish a unique correspondence, it is necessary to determine the voxel dimensions on

the model and project the vertices of the voxel face that is oriented towards each of the

cameras. From this set of four vertices it is possible to create a 2D sub-window that is

associated to the visible voxel and determine the number of projected pixels, as shown in

Figure 5.4. Finally, a median filter is applied to the pixels inside the convolution window

to reduce any noise on the captured images and minimise the number of outliers in the

cost function.
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(a)

(b)

Figure 5.4: Selection of voxel-sized sub-windows around the skull orbit: (a) microscope perspec-
tive; (b) zoom-out view of selected area.
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5.4 Experiments and results

Analysis of photo-consistency based registration

The objective of this section is to evaluate the use of photo-consistency as a registration

metric based on the cost functions described in Equations 5.2 – 5.4. In addition, three

optimisation algorithms (i.e. Powell’s method, SDE and CODEQ) were compared in or-

der to assess the convergence of the registration through the minimisation of the different

cost functions. The procedure comprised a set of laboratorytests using a human skull as

a dummy patient which was CT scanned and subsequently reconstructed as a volumetric

model within the IESN system.

5.4.1 Registration of models in a simulated environment

This experiment was aimed at evaluating the performance of the three photo-consistency

similarity metrics in a synthetic configuration. For this purpose, the reconstructed CT

skull model was positioned at the origin of the virtual scene. A pair of virtual cameras

were created in OpenGL and oriented towards the CT skull at a distance where the com-

plete model could be visible in both images. The simulated 2Dcamera images were

obtained by rendering each viewpoint directly on a texture image, equivalent to captur-

ing real images through a frame grabber device. A set of voxels was selected by back-

projecting pixels towards the volumetric model, as mentioned in the previous section;

where the selected area covered the entire visible model. Atthis stage it was certain that

the 3D skull model was registered with the pair of virtual images hence its current pose

was regarded as the ground truth.

In order to compare the registration accuracy among the costfunctions, the procedure

involved evaluating independently each DOF to avoid any possible influence of the other

pose parameters. For translation, the CT model was placed at an arbitrary position along
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each axis and gradually moved to the opposite location passing through the origin of the

scene within a range of [-60, +60] mm. In the case of rotation,the model was initially

oriented at -45◦ with respect to the original straight pose and increasinglyrotated at 5-

degree steps until reaching +45◦ for each of the axes. Figures 5.5 - 5.7 show the results

of the photo-consistency based cost functions for the six DOFs, where the ground truth

position is represented in the graph as a vertical dashed line.

As it can be seen from the plots, the cost functionsPC andPCsquared, corresponding

respectively to Equations 5.2 and 5.3, generate the lowest photo-consistency error value

(PC error) when all rotations pass through the ground truth position at 0◦. Similarly, both

cost functions produce the lowest error values for the translation along the X axis (Tx) at

the ground truth. In the case of the Y axis (Ty), the lowest error is found on the graph at

1 mm to the left of the ground truth usingPC andPCsquared. The results forTz show

that there is a misalignment of 3 mm1 apart from the correct position using both similarity

metrics. The reason for this more limited accuracy lies in the fact that at small steps, the

different motions alongTz are visually negligible. However, the results are considered to

be close to the ground truth. On the other hand, the cost functionPCinverse (Equation 5.4)

provides inaccurate results for all DOFs. The registrationin Rx generates the lowest PC

error at -40◦, whereas the lowest errors forRy andRz are offset around 10◦ in comparison

with the ground truth. The translational components are also incorrect as the lowest PC

errors are found within 10 mm forTx andTz, and near 55 mm forTy with respect to the

true position.

Interestingly, it can be noticed that the lowest photo-consistency error, relating to the

global minimum, for each of the cost functions does not necessarily correspond to a null

or near zero value as expected. The lowest PC error value found in thePC cost function is

approximately 350 and forPCsquared is close to 10 units. The only exception isPCinverse

in which the inverse of the squared differences is computed and the resulting error tends

1The accuracy of the measurement is based on the model’s voxelsize
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to zero. The reason for not obtaining null values among the cost functions is due to the

nature of the volumetric model, which contains different transparency levels that affect

the projected intensities on the pair of images.

The outcomes of this experiment demonstrate that the best results are obtained byPC

andPCsquared cost functions for the registration of a full-sized CT model in an artificial

environment. Although the projection of CT models on the camera images are affected

by inherent transparency levels, global minima are accurately found at the three rotational

parameters; whereas there is a slight deviation in the translational components,Tz being

the least precise variable. Conversely,PCinverse is unable to find the global minima at the

correct pose for any of the six DOFs.
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Figure 5.5: Registration errors for six independent DOFs based on the PC cost function using a
full-sized CT model.
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Figure 5.6: Registration errors for six independent DOFs based on the PCsquared cost function
using a full-sized CT model.
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Figure 5.7: Registration errors for six independent DOFs based on the PCinverse cost function
using a full-sized CT model.
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5.4.2 Analysis of convergence of optimisation methods

The objective of this experiment was to analyse the convergence of different optimi-

sation algorithms that attempt to find the global minimum within the search space. The

setup involved the use of a stereoscopic surgical microscope in which the pair of cameras

connected to the eyepieces were pre-calibrated and the initial registration was obtained

through the ICP algorithm [153]. These two tasks were performed using the VBH mouth-

piece [150] attached to the skull. The ROI was decided to be one of the eye sockets,

where the voxels on the CT model were selected through the back-projection procedure.

The resulting selection is similar to the window area shown in Figure 5.4(a).

Because at this point the virtual skull was aligned to the pairof real images, the current

position was recorded as the ground truth. Additionally, the photo-consistency error was

computed at this stage and used as the objective value. Then,the CT-based model was

manually offset 2 mm along the X axis and -2 mm along the Y axis in object space. This

position is regarded as a “starting pose”. The root mean squared distance (RMSD) was

calculated with respect to the ground truth, producing a combined displacement of 2.82

mm. These offset values were chosen because the overall accuracy of current conventional

SN systems is of the order 2-3mm. Moreover, the selected offset provides enough visual

misalignment between real and virtual models at the magnification level (x6) produced

by the microscope. It is worth mentioning that offset valueslarger than 3 mm caused

the virtual model to be displayed outside of the visible image. Therefore, those levels of

initial misalignment were excluded from the experiment.

The optimisation methods work by iteratively changing the registration position for a

number of iterations until a global minimum value is found. Nevertheless, as the shape of

the global function is unknown, the optimisation techniques can not rely on the calcula-

tion of derivatives. Two initial options were identified which comply with such restriction,

Powell’s method and Quasi-Newton Without Derivatives. Although the latter is consid-
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ered to perform faster, it was found that Powell’s algorithmprovides a greater control in

the modification of parameters over the six DOFs during the optimisation process. This is

because the Quasi-Newton technique does not provide a method to control independently

the changes of translation and rotation within registration. The other two approaches

based on evolutionary algorithms, SDE and CODEQ, were evaluated for the optimisa-

tion of the photo-consistency cost function. These two methods are further described in

Appendix B.

For this experiment, it was decided to select a single cost function among the similar-

ity metrics based on the results of the previous tests. This allows focusing only on the

performance of the optimisation methods and their convergence accuracy rather than on

the effects of the similarity metrics. Thus, the cost functionPC was chosen for the eval-

uation due to finding a more precise global minima thanPCinverse. It also shows higher

gradients in the vecinity of the global minimum than thePCsquared cost function, as seen

from previous graphs, particularly for the translation components.

The results obtained using Powell’s method are shown graphically in Figure 5.8. The

two plots at the top row illustrate the convergence for both translationsTx andTy. In

the left one,∆Tx decreases from 0 mm to around -2 mm, corresponding to the changes

in registration from the initialTx offset to the final registration position. For the vertical

translation,∆Ty shows the alignment rectification that is obtained from the initial -2 mm

offset to the correct pose. It can be noticed that registration is performed independently

for each DOF at a time, whereTx is carried out initially until the correct alignment is

found at iteration 14. Subsequently, the optimisation continues overTy from iteration 15

onwards. The two plots at the bottom row illustrate the photo-consistency error value and

RMSD convergence. In the case of the former, the overall errorvalue decreases from 200

at the initial position to a value close to the ground truth (PC error = 121.69). The RMSD

value converges to sub-millimetric accuracy for the combinedTx andTy translations in

object space.
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Figure 5.9 presents the convergence results using SDE. The stochastic nature of the

method is reflected in the spikiness of the curves, where the average data is fitted as a

smooth curve to demonstrate the general trend. The convergence in both∆Tx and∆Ty

shows an appropriate rectification from the initial offset.However, SDE executes the

optimisation simultaneously for both translations in comparison with Powell’s method.

Concerning PC error and RMSD results, the trends decrease almost linearly towards the

ground truth, especially for the latter which converges to asub-millimeter error as in

Powell’s technique. It can be observed that the SDE algorithm involves a higher number

of computational iterations to find the global minimum than the previous method due to

its inherent random-based search.

The performance obtained by the CODEQ algorithm is illustrated in Figure 5.10. The

results indicate that while the final convergence of∆Tx is close to the correct value,∆Ty

partially converges towards the ground truth. This limitedregistration overTy is reflected

in the overall convergence of the final RMSD, which is less accurate than the results

obtained by SDE and Powell’s method. In general, convergence graphs show that the

search space covers a wider area within registration than previous techniques. This wider

search space is represented by high and low spikes. In the case of PC error, these spikes

correspond to large misalignments between real and virtualmodels. This is caused by the

disposition of CODEQ to search in the opposite direction of the current pose, which also

leads to extra cost function evaluations in each generation.

The results of this experiment present the overall convergence of different optimisation

strategies to correct a misregistration in two dimensions.Among the techniques evaluated,

SDE and Powell’s method provide the best performance by closely approaching to the

ground truth. Additionally, their final convergence reaches sub-millimetric levels. On the

other hand, the convergence obtained by CODEQ seems to be limited to a certain extent

in the tested registration. It also involves more computational load than the other two

methods. The main cause for this is because CODEQ tends to cover a wider search space
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to avoid stagnation in local minima.
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Figure 5.8: Overall convergence in PC photo-consistency based cost function using Powell’s
method.
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Figure 5.9: Overall convergence in PC photo-consistency based cost function using the SDE
algorithm.
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Figure 5.10: Overall convergence in PC photo-consistency based cost function using the CODEQ
algorithm.
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5.4.3 Intra-operative registration laboratory test

This experiment investigated the accuracy obtained through the combination of differ-

ent techniques for intra-operative registration in a controlled laboratory setup. Specifi-

cally, the assessment involved a comparison among the threesimilarity metrics and three

optimisation algorithms described earlier in this chapter. The procedure was carried out

in a similar fashion to the previous experiment. A pair of cameras was calibrated and an

initial ICP registration was performed to align real and virtual skull models. Then, the

ROI was directed to an eye socket and the selection of voxels was obtained through back-

projection. The current PC error and 3D pose were recorded asthe registration ground

truth values. Finally, the CT-based virtual model was manually offset for the purpose of

simulating a misalignment during surgery due to tracking. In this regard, the offset PC

error and RMSD values with respect to the ground truth were calculated.

The intra-operative registration procedure was implemented as a process thread that

could run concurrently with the IESN system. The parametersused for the SDE and

CODEQ optimisation techniques included a maximum number of ten generations and a

population size corresponding to ten times the number of evaluated DOFs. In the case

of Powell’s method, the maximum number of iterations comprised a value of 100. In all

optimisation algorithms, the tolerance threshold for the calculation of the cost function

was selected as10−6 for thePC andPCsquared metrics, from initial function values of

the order of100 and102, respectively. This ensured that the cost function approached

to a value small enough as to be considered null. In the case ofPCinverse, the tolerance

threshold value was set to10−10 from an initial PC error value of10−3.

It must be noted that in an IESN system, the world coordinate system is typically de-

fined by the optical tracking device that registers the motions of all entities during surgery.

Therefore, the misalignment between tracked cameras and patient is directly related to

the tracker’s world reference frame. Nevertheless, the concatenation of independent ref-
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erence frames within the IESN system (e.g. camera, ICP registration) also influences the

intra-operative registration. For this reason, it was decided to test the procedure using

the cameras’ coordinate system as the basis for pose transformation. A justification for

this choice lies in the fact that the objective of the procedure is to obtain a visual match

between real and virtual models, regardless of the coordinate system.

In order to carry out the photo-consistency registration under the camera coordinate

system, the virtual object’s coordinate system was mapped to the cameras’ 3D position;

which is based on the extrinsic parameters obtained in the calibration stage. This makes

the reference frame of the virtual model to be aligned to the reference frame of the cam-

eras. This system conversion was denominated object-to-camera coordinate transforma-

tion.

Five different offsets were applied to the virtual model in order to evaluate the ef-

fectiveness of the photo-consistency based registration to recover the initial alignment

from different “starting poses”. Each offset simulates a combination of the various DOFs

which may affect the misregistration. Among all the possible combinations, the selected

offsets evaluated in this experiment wereTxTy, TxTyTz,Rz, TxTyRz andTxTyTzRxRyRz.

Depending on the DOFs involved, the offset values varied between 1 and 2 mm for trans-

lation and between 1◦ and 2◦ for rotation. This adjustment of offset values ensured thatthe

virtual model remained inside the visible image before registration (larger initial offsets

caused the model to be outside the image, as described earlier).

The results in Tables 5.1 - 5.5 present the mean registrationaccuracy obtained from a

set of ten independent tests starting at different offset positions and comprising all com-

binations among photo-consistency metrics and optimisation techniques. The Initial PC

column relates to the ground truth PC error with a corresponding initial RMSD value

(not shown) of 0.00 mm for all combinations. Offset PC and Offset RMSD columns in-

dicate the values at the “starting poses” that simulate accumulating tracking errors. The
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final mean PC error (Final PC) and registration values (Final RMSD) are presented along

with their standard deviations (±SD); where a lower RMSD means more accuracy in the

optimisation. Final RMSD values lower than the Offset RMSD areshown in bold and

the lowest Final RMSD is shown between brackets. The last column corresponds to the

time taken to execute the procedure in seconds based on an Intel Core2 Quad processor

computer at 2.4Ghz.

From the results it can be noticed that the overall performance of the registration using

the object-to-camera coordinate transformation is moderately limited. Specifically, the

difference between the initial RMSD value and the best registration forTxTy is slightly

less than 1 mm (Table 5.1); whereas in the case ofTxTyTz (Table 5.2) and the six DOFs

(Table 5.5), the difference corresponds only to 0.11 and 0.43 mm, respectively. In Ta-

bles 5.3 and 5.4 the final registrations present a small improvement with respect to the

initial offset RMSD values. Among all tests, the lowest RMSD values were obtained us-

ing SDE with different cost function combinations, except in the case of the six DOFs

where SDE was second after Powell-PC.
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Initial Offset Offset Final Final Time
PC PC RMSDa PC RMSD (secs)

Powell-PC 226.487 301.892 2.83 247.053 (±16.356) 4.30 (±2.01) 30
Powell-PCsquared 7.45016 8.57234 2.83 8.18116 (±0.152) 2.48 (±0.88) 22
Powell-PCinverse 0.00134 0.001422 2.83 0.000220 (±6.57x10−6) 6.76 (±0.34) 24

SDE-PC 229.625 301.357 2.83 247.162 (±0.825) [1.99 (±0.04)] 130
SDE-PCsquared 7.50339 8.65891 2.83 7.82220 (±0.025) 2.00 (±0.05) 120
SDE-PCinverse 0.001493 0.001422 2.83 0.000091 (±1.89x10−5) 4.68 (±0.77) 264

CODEQ-PC 223.188 303.322 2.83 149.811 (±8.810) 5.79 (±0.32) 591
CODEQ-PCsquared 7.55097 8.64487 2.83 6.43033 (±0.408) 5.58 (±0.53) 767
CODEQ-PCinverse 0.001545 0.001422 2.83 0.000135 (±2.41x10−5) 5.93 (±0.84) 328

aOffset:Tx,Ty = 2.0 mm

Table 5.1: Comparison of photo-consistency (PC) cost functions and optimisation algorithms. PC
mean error values and RMSD (±SD) in mm over Tx and Ty axes using the object-to-camera
coordinate transformation.

Initial Offset Offset Final Final Time
PC PC RMSDa PC RMSD (secs)

Powell-PC 220.867 369.917 3.46 154.534 (±9.533) 10.03 (±0.34) 22
Powell-PCsquared 7.38829 9.75845 3.46 6.21945 (±0.038) 10.19 (±0.38) 21
Powell-PCinverse 0.001516 0.001321 3.46 0.000182 (±4.92x10−6) 6.15 (±0.06) 22

SDE-PC 224.906 393.367 3.46 159.394 (±5.789) 4.15 (±0.49) 170
SDE-PCsquared 7.55953 10.07327 3.46 6.49344 (±0.056) [3.35 (±0.42)] 139
SDE-PCinverse 0.001571 0.001321 3.46 0.000068 (±7.60x10−6) 4.70 (±0.41) 141

CODEQ-PC 222.893 396.577 3.46 148.353 (±5.750) 7.04 (±2.34) 291
CODEQ-PCsquared 7.53526 10.08447 3.46 5.95028 (±0.060) 5.82 (±0.85) 456
CODEQ-PCinverse 0.001513 0.001392 3.46 0.000064 (±1.48x10−5) 5.33 (±1.79) 449

aOffset:Tx,Ty,Tz = 2.0 mm

Table 5.2: Comparison of photo-consistency (PC) cost functions and optimisation algorithms. PC
mean error values and RMSD (±SD) in mm over Tx, Ty and Tz axes using the object-to-camera
coordinate transformation.
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Initial Offset Offset Final Final Time
PC PC RMSDa PC RMSD (secs)

Powell-PC 137.850 229.123 7.75 154.873 (±1.900) 5.60 (±0.03) 28
Powell-PCsquared 5.82275 7.58986 7.75 6.22327 (±0.030) 5.57 (±0.02) 29
Powell-PCinverse 0.001187 0.001479 7.75 0.000392 (±1.59x10−4) 6.31 (±1.88) 29

SDE-PC 133.179 222.661 7.75 159.819 (±0.591) 5.50 (±0.03) 231
SDE-PCsquared 5.82275 7.47922 7.75 6.28205 (±0.044) 5.49 (±0.03) 243
SDE-PCinverse 0.001098 0.001294 7.75 0.000321 (±0.000) [5.43 (±0.00)] 223

CODEQ-PC 137.860 231.360 7.75 153.567 (±0.506) 5.58 (±0.01) 444
CODEQ-PCsquared 5.77283 7.46797 7.75 6.15973 (±0.007) 5.55 (±0.03) 410
CODEQ-PCinverse 0.001098 0.00137 7.75 0.000319 (±2.68x10−6) 6.91 (±3.28) 428

aOffset:Rz = 2.0 degrees

Table 5.3: Comparison of photo-consistency (PC) cost functions and optimisation algorithms. PC
mean error values and RMSD (±SD) in mm over Rz axis using the object-to-camera coordinate
transformation.

Initial Offset Offset Final Final Time
PC PC RMSDa PC RMSD (secs)

Powell-PC 224.875 457.534 8.62 413.315 (±3.515) 9.81 (±0.06) 57
Powell-PCsquared 7.45330 10.62090 8.62 10.11158 (±0.038) 9.71 (±0.09) 40
Powell-PCinverse 0.001413 0.00064 8.62 0.000277 (±4.84x10−5) 9.67 (±0.46) 48

SDE-PC 216.175 444.076 8.62 318.691 (±5.034) [6.53 (±0.29)] 240
SDE-PCsquared 7.25072 10.48566 8.62 9.07228 (±0.149) 6.67 (±1.09) 336
SDE-PCinverse 0.001493 0.00064 8.62 0.000233 (±1.07x10−5) 10.42 (±0.94) 265

CODEQ-PC 217.730 443.504 8.62 174.039 (±7.872) 9.57 (±3.11) 967
CODEQ-PCsquared 7.29993 10.44767 8.62 6.43297 (±0.125) 8.24 (±3.07) 438
CODEQ-PCinverse 0.001602 0.00064 8.62 0.000198 (±4.73x10−5) 10.91 (±5.76) 402

aOffset:Tx,Ty = 2.0 mm;Rz = 2.0 degrees

Table 5.4: Comparison of photo-consistency (PC) cost functions and optimisation algorithms. PC
mean error values and RMSD (±SD) in mm over Tx, Ty and Rz axes using the object-to-camera
coordinate transformation.
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Initial Offset Offset Final Final Time
PC PC RMSDa PC RMSD (secs)

Powell-PC 246.404 149.108 6.85 125.118 (±6.267) [6.42 (±0.11)] 44
Powell-PCsquared 7.93547 6.15121 6.85 5.55142 (±0.024) 6.96 (±0.23) 43
Powell-PCinverse 0.00161 0.001471 6.85 0.000175 (±3.81x10−5) 11.35 (±1.71) 39

SDE-PC 249.679 150.587 6.85 129.870 (±0.749) 7.17 (±1.22) 238
SDE-PCsquared 7.76605 6.16244 6.85 5.76665 (±0.028) 6.63 (±1.14) 324
SDE-PCinverse 0.00159 0.001471 6.85 0.000130 (±1.52x10−5) 15.50 (±1.94) 220

CODEQ-PC 240.162 143.893 6.85 134.088 (±1.917) 7.40 (±0.91) 444
CODEQ-PCsquared 7.57979 6.07271 6.85 5.66134 (±0.098) 9.10 (±1.46) 381
CODEQ-PCinverse 0.00161 0.001471 6.85 0.000044 (±3.63x10−5) 19.09 (±4.18) 290

aOffset:Tx,Ty,Tz = 1.0 mm;Rx,Ry,Rz = 1.0 degree

Table 5.5: Comparison of photo-consistency (PC) cost functions and optimisation algorithms. PC
mean error values and RMSD (±SD) in mm over 6 DOFs using the object-to-camera coordinate
transformation.
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The second set of experiments involved applying the pose transformations directly to

the virtual object’s own coordinate system during registration. Therefore, no mapping

was required between different reference frames. The same initial offsets were applied

to the CT model as in the preceding tests. Likewise, a set of tenindependent trials were

performed for each offset comprising the nine possible combinations among the photo-

consistency metrics and optimisation methods.

It can be observed from the results in Tables 5.6 - 5.10 that the best accuracy among the

experiments was obtained with the SDE-PCsquared combination. The only exception was

for TxTyTz where it was outperformed by CODEQ-PC, as seen in Table 5.7. However,

the latter required a considerable longer time to execute. In the case ofTxTy andTxTyRz

offsets (Tables 5.6 and 5.9, respectively), the final registration achieved sub-millimetre ac-

curacy using the same SDE-PCsquared combination. In the results of Table 5.8, a slightly

lower accuracy seems to be obtained in the registration overRz, which produced a final

RMSD of 1.52 mm. However, if the initial RMSD value (7.74 mm or a 2-degree offset) is

taken into consideration, the resulting mismatch corresponds to less than 0.4◦ away from

the ground truth.

The best RMSD accuracy obtained by registering a misalignment over the combined

six DOFs (Table 5.10) was 2.81 mm from an initial offset of 6.80 mm. Although this

final accuracy value is relatively high in comparison with the other five tests, it has to

be considered that even a small angle deviation can affect the final RMSD accuracy as

in the case ofRz. Specifically, the average RMSD for a 1-degree rotation over the three

rotational components was determined to be equal to 3.09 mm in the target area.

Overall, the registration based on the virtual object’s coordinate system produced bet-

ter results than using the object-to-camera coordinate transformation. The difference in

performance to recover the original alignment between models can be observed in the

simplest case overTxTy, where the lowest RMSD obtained was 1.99 mm using SDE-PC
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from a starting position at 2.83 mm using the object-to-camera approach. In contrast, the

same experiment under the object coordinate system obtained sub-millimetre accuracy.

Initial Offset Offset Final Final Time
PC PC RMSDa PC RMSD (secs)

Powell-PC 123.383 195.826 2.82 127.309 (±0.470) 0.40 (±0.11) 21
Powell-PCsquared 5.65127 6.97168 2.82 5.65981 (±0.036) 0.51 (±0.26) 25
Powell-PCinverse 0.00153 0.001374 2.82 0.000136 (±2.68x10−6) 4.34 (±0.16) 24

SDE-PC 122.776 187.579 2.82 122.674 (±0.954) 0.27 (±0.15) 142
SDE-PCsquared 5.48221 6.73800 2.82 5.46522 (±0.008) [0.25 (±0.10)] 190
SDE-PCinverse 0.00153 0.001374 2.82 0.000157 (±7.85x10−6) 4.21 (±0.55) 307

CODEQ-PC 118.924 179.710 2.82 121.507 (±0.339) 0.63 (±0.22) 308
CODEQ-PCsquared 5.44176 6.68142 2.82 5.47530 (±0.020) 0.32 (±0.14) 284
CODEQ-PCinverse 0.001584 0.001448 2.82 0.000149 (±5.50x10−6) 4.18 (±0.16) 254

aOffset:Tx,Ty = 2.0 mm

Table 5.6: Comparison of photo-consistency (PC) cost functions and optimisation algorithms. PC
mean error values and RMSD (±SD) in mm over Tx and Ty axes using the object coordinate
system.

Initial Offset Offset Final Final Time
PC PC RMSDa PC RMSD (secs)

Powell-PC 128.231 196.205 3.46 108.396 (±3.173) 2.94 (±0.07) 24
Powell-PCsquared 5.71403 7.03834 3.46 5.18594 (±0.024) 3.01 (±0.14) 24
Powell-PCinverse 0.001657 0.000148 3.46 0.000135 (±3.89x10−6) 3.16 (±0.16) 28

SDE-PC 129.473 196.688 3.46 142.810 (±5.896) 3.91 (±1.08) 239
SDE-PCsquared 5.66093 7.02389 3.46 5.22263 (±0.015) 2.37 (±0.19) 128
SDE-PCinverse 0.001637 0.000155 3.46 0.000132 (±2.73x10−6) 2.90 (±0.09) 136

CODEQ-PC 131.508 192.059 3.46 111.455 (±2.016) [2.12 (±0.73)] 336
CODEQ-PCsquared 5.78088 7.00121 3.46 5.62237 (±0.238) 2.85 (±1.50) 388
CODEQ-PCinverse 0.00166 0.000155 3.46 0.000083 (±2.27x10−5) 9.95 (±1.65) 396

aOffset:Tx,Ty,Tz = 2.0 mm

Table 5.7: Comparison of photo-consistency (PC) cost functions and optimisation algorithms. PC
mean error values and RMSD (±SD) in mm over Tx, Ty and Tz axes using the object coordinate
system.
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Initial Offset Offset Final Final Time
PC PC RMSDa PC RMSD (secs)

Powell-PC 138.145 256.442 7.74 124.004 (±1.450) 1.89 (±0.35) 28
Powell-PCsquared 5.80756 8.00074 7.74 5.59683 (±0.025) 2.10 (±0.17) 32
Powell-PCinverse 0.001441 0.001777 7.74 0.000651 (±4.04x10−5) 3.07 (±0.98) 50

SDE-PC 140.499 263.122 7.74 127.420 (±0.131) 1.93 (±0.21) 228
SDE-PCsquared 5.78668 8.03974 7.74 5.52660 (±0.007) [1.52 (±0.09)] 300
SDE-PCinverse 0.001196 0.001821 7.74 0.000287 (±0.000) 5.04 (±0.04) 212

CODEQ-PC 132.202 254.865 7.74 120.348 (±0.209) 1.76 (±0.22) 458
CODEQ-PCsquared 5.83353 7.99179 7.74 5.56560 (±0.013) 1.62 (±0.11) 460
CODEQ-PCinverse 0.001441 0.001799 7.74 0.000271 (±0.000) 5.17 (±0.04) 465

aOffset:Rz = 2.0 degrees

Table 5.8: Comparison of photo-consistency (PC) cost functions and optimisation algorithms. PC
mean error values and RMSD (±SD) in mm over Rz axis using the object coordinate system.

Initial Offset Offset Final Final Time
PC PC RMSDa PC RMSD (secs)

Powell-PC 116.478 304.159 8.54 119.332 (±1.462) 2.60 (±0.54) 39
Powell-PCsquared 5.43060 8.68608 8.54 5.48735 (±0.027) 3.16 (±0.10) 37
Powell-PCinverse 0.001598 0.001415 8.54 0.000300 (±4.34x10−5) 9.53 (±0.10) 37

SDE-PC 118.770 298.237 8.54 121.288 (±0.444) 0.78 (±0.26) 235
SDE-PCsquared 5.36922 8.56755 8.54 5.42337 (±0.023) [0.68 (±0.48)] 333
SDE-PCinverse 0.001603 0.000238 8.54 0.000139 (±9.34x10−6) 3.96 (±0.64) 240

CODEQ-PC 132.419 343.275 8.54 123.765 (±1.843) 2.44 (±2.64) 423
CODEQ-PCsquared 5.75915 9.34433 8.54 5.60431 (±0.018) 1.61 (±0.96) 527
CODEQ-PCinverse 0.001465 0.000409 8.54 0.000109 (±5.68x10−5) 7.22 (±7.73) 396

aOffset:Tx,Ty = 2.0 mm;Rz = 2.0 degrees

Table 5.9: Comparison of photo-consistency (PC) cost functions and optimisation algorithms. PC
mean error values and RMSD (±SD) in mm over Tx, Ty and Rz axes using the object coordinate
system.

Initial Offset Offset Final Final Time
PC PC RMSDa PC RMSD (secs)

Powell-PC 124.982 162.216 6.80 116.646 (±2.90) 3.13 (±0.56) 45
Powell-PCsquared 5.66781 6.43791 6.80 5.35676 (±0.128) 3.36 (±0.61) 47
Powell-PCinverse 0.001388 0.000216 6.80 0.000133 (±3.03x10−6) 7.23 (±0.19) 49

SDE-PC 122.508 152.960 6.80 108.177 (±1.221) 2.86 (±0.97) 268
SDE-PCsquared 5.48056 6.35041 6.80 5.22126 (±0.019) [2.81 (±0.82)] 204
SDE-PCinverse 0.001465 0.000195 6.80 0.000122 (±2.22x10−5) 7.74 (±3.48) 282

CODEQ-PC 125.193 157.573 6.80 110.081 (±1.466) 4.86 (±3.16) 380
CODEQ-PCsquared 5.57853 6.46819 6.80 5.30166 (±0.033) 5.26 (±5.14) 405
CODEQ-PCinverse 0.001468 0.000253 6.80 0.000033 (±2.44x10−6) 15.05 (±3.44) 409

aOffset:Tx,Ty,Tz = 1.0 mm;Rx,Ry,Rz = 1.0 degree

Table 5.10: Comparison of photo-consistency (PC) cost functions and optimisation algorithms.
PC mean error values and RMSD (±SD) in mm over 6 DOFs using the object coordinate system.
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Chapter 5. Intra-operative registration

For both types of coordinate systems tested (object and object-to-camera) the results

obtained by CODEQ generally produced the highest RMSD values after registration,

which means that it partially converged during registration. Moreover, CODEQ required

the longest time to finish the procedure in comparison with SDE and Powell’s method. As

it was discussed in the previous analysis, CODEQ aims at searching in the opposite direc-

tion of the current position for each step in the process. This behaviour can be problematic

as in specific cases the virtual model goes out of scope withinthe visible image, causing

the final position to be visually misregistered. On the otherhand, Powell’s method occa-

sionally stagnates at incorrect areas in the image that present low intensity levels. Such

incapability to avoid stagnation is caused by evaluating each DOF at a time in a sequential

manner. However, the main advantage of Powell’s method is its speed to converge to a

solution.

Regarding the similarity metrics,PC andPCsquared proved to be convenient cost func-

tions for intra-operative registration.PCsquared slightly outperformedPC in the exper-

iments using the object coordinate system. However, it was found that the difference

between them was of no statistically significance based on a two-tailed t-test with a P-

value of 0.05 (t=0.203, df=7, P>0.05). The use ofPCinverse negatively affected the final

convergence accuracy in most trials by producing the largest RMSD among the combi-

nations. Furthermore, in some cases the final value obtainedby PCinverse exceeded the

RMSD corresponding to the starting offset position.

The outcomes of this experiment demonstrate the performance of different similarity

functions and optimisation algorithms for intensity-based registration purposes. The best

results were obtained by modifying the registration position in the virtual object coordi-

nate system using SDE together withPCsquared. Figures 5.11 - 5.15 illustrate the initial

and final registration overlays around the eye socket at different DOFs as seen by one

camera connected to the surgical microscope. It can be noticed that although the virtual

and real models are close from each other after registrationover six DOFs (Figure 5.15),
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there is a small rotational deviation in the corners of the anatomical structure. This small

rotation produces high values in the computation of the finalRMSD in the target area.

(a) before registration (b) final registration

Figure 5.11: Photo-consistency based registration of real and virtual models around the skull
eye socket using SDE optimisation and PCsquared cost function over a TxTy misalignment.
White/dashed lines indicate contour features in the real model. Green/solid lines show contour
features in the virtual model.
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(a) before registration (b) final registration

Figure 5.12: Photo-consistency based registration of real and virtual models around the skull
eye socket using SDE optimisation and PCsquared cost function over a TxTyTz misalignment.
White/dashed lines indicate contour features in the real model. Green/solid lines show contour
features in the virtual model.

(a) before registration (b) final registration

Figure 5.13: Photo-consistency based registration of real and virtual models around the skull eye
socket using SDE optimisation and PCsquared cost function over a Rz misalignment. White/dashed
lines indicate contour features in the real model. Green/solid lines show contour features in the
virtual model.
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(a) before registration (b) final registration

Figure 5.14: Photo-consistency based registration of real and virtual models around the skull
eye socket using SDE optimisation and PCsquared cost function over a TxTyRz misalignment.
White/dashed lines indicate contour features in the real model. Green/solid lines show contour
features in the virtual model.

(a) before registration (b) final registration

Figure 5.15: Photo-consistency based registration of real and virtual models around the skull eye
socket using SDE optimisation and PCsquared cost function over six DOFs. White/dashed lines
indicate contour features in the real model. Green/solid lines show contour features in the virtual
model.
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5.5 Summary

In this chapter, the use of photo-consistency as a cost function for intensity-based registra-

tion was introduced. The first experiments demonstrated that the use ofPC andPCsquared

similarity metrics provide comparable results in the alignment of full-sized models within

a synthetic environment. Subsequently, photo-consistency was applied as a technique for

intra-operative registration based solely on the visual information obtained from a pair of

cameras connected to a stereo surgical microscope. The results showed the potential of

this method to compensate for tracking errors during ENT surgery without resorting back

to the initial camera calibration and ICP registration procedures and setup.

Among the optimisation algorithms evaluated, SDE proved tobe the most suitable for

the alignment between real and virtual models of a human skull, particularly when using

the PCsquared cost function during registration in the object coordinatesystem. SDE

provides a balance between the best registration accuracy and the overall time required

to execute the procedure. However, it must be taken into consideration that, as in any

other optimisation technique, the resulting accuracy depends on the initial parameters. In

the case of registration, these parameters involve the initial offset distance and the DOFs

involved in the mismatch.

The performed experiments were based on the use of a human skull as a dummy patient

and a pair of black and white cameras. In a real surgical environment, specular reflection

caused by the use of the microscope light could affect the registration procedure as the

scene would no longer conform to a Lambertian model. A methodto solve this issue

could consist in employing colour cameras to capture the real images. Subsequently, a

filter such as the ones described by Tan et al. [154] and Yoon and Kweon [155] could be

applied to neutralise the specularities by extracting the diffuse component of the colour

images and omitting the specular component. Then, photo-consistency could be either
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carried out in the resulting images using colour differences, or converting the images to

greyscale values in order to compare intensity levels.
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Chapter 6

Conclusions and future work

6.1 Summary and conclusion

Image-enhanced surgical navigation (IESN) systems aim to enhance intra-operative im-

ages, acquired through endoscopes or surgical microscopes, with computer-generated

medical images obtained at a pre-operative stage. Therefore, the accuracy provided by

an IESN system is of vital importance for the assistance of a practitioner in the operating

theatre. An appropriate visual overlay between real and virtual imagery can reassure the

surgeon’s judgement and improve the surgical performance.

The objective of this research, as presented in this thesis,was to optimise different

aspects of an IESN system that directly affect the overall accuracy during a surgical pro-

cedure targeted at ear, nose and throat (ENT) interventions. First, a study of augmented

reality (AR) in the field of medicine was introduced, followedby a description of the

different hardware components used in AR: display technologies and motion tracking de-

vices. In the case of the former, a monitor can be regarded as the standard output device to

view the imagery captured by an endoscope; whereas a stereoscopic monitor can be used

to display the images obtained through a stereo surgical microscope. For the IESN sys-
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tem used in this research — which allows the use of both endoscope and microscope —

a balance in the visual requirements is achieved by using a stereoscopic monitor that per-

mits alternating between single and stereo display mode. Concerning the motion tracking

devices, an optical tracker employs markers that can be attached to surgical instruments,

cameras and patient. Besides allowing the detection of movement of different entities si-

multaneously using a single central detector, optical trackers are not obtrusive as opposed

to electromechanical trackers. Also, the volume of detection offered by the optical device

is larger than the volume provided by electromagnetic tracking technology.

Chapter 3 presented a detailed description of a number of optimisations made to the

software application in which the IESN system is based upon —ARView. The procedure

to detect feature markers of a calibration object for endoscopic sinus surgery (ESS) was

analysed. It was found that the segmentation of features deeply affects the calibration re-

sults, both quantitatively and qualitatively. A procedureto reduce segmentation problems

during feature detection was carried out, which improved the overall calibration accuracy.

Additionally, a validation of the accuracy of two optical tracking devices (i.e. hybrid

Polaris and Polaris Vicra) was performed in a working environment that represented a

surgical scenario. The results obtained were compared to the accuracy levels described

by the manufacturer. It was found that the average difference for both devices was around

0.7 mm higher than their corresponding specifications. Subsequently, the software imple-

mentation associated to the motion tracking was optimised in order to resolve problems

that occurred when two objects were registered simultaneously and a filter was applied

to smooth signal noise. The solution involved the synchronisation of the function calls

used to read the positional data from the optical tracker. Another area of improvement

involved the stereo visualisation of virtual models. While the underlying implementation

allowed the use of stereoscopic displays, it was consideredthat the three-dimensional

“pop-out” effect produced by the software was inappropriate. This was caused by a mis-

alignment between the pair of virtual cameras and renderingviewports that correspond to
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the user’s eyes. The description of the implemented solution — based on the stereoscopic

cross-viewing method — was explained.

A method to optimise the estimation of the focal length for procedures involving a

stereoscopic surgical microscope was described in Chapter 4. This work initially evalu-

ated the sensitivity of Tsai’s photogrammetric calibration method towards 2D marker de-

tection of the projected calibration image and the 3D positional accuracy of the markers

on a non-coplanar calibration object. It was demonstrated that these two factors greatly

affect the accuracy of the calibration procedure, in particular the focal length estimate.

Then, the work presented a new hybrid approach that uses the photogrammetric method

as a pre-calibration step and a self-calibration method in order to optimise the focal length

calculation. For this purpose, an evaluation was carried out involving three different tech-

niques to calculate the fundamental matrix from a pair of cameras (i.e. linear, gradient-

based and M-estimators) and three self-calibration methods for the computation of the

focal length (i.e. Newsam, Bougnoux and Sturm’s methods). Furthermore, three opti-

misation algorithms were employed for the refinement of the focal length values, com-

prising two evolutionary algorithms, i.e. Self-adaptive Differential Evolution (SDE) and

CODEQ, and the Levenberg-Marquardt method. The results indicate that when one of the

camera views is rotated about 15◦ around an elevation axis, the use of an evolutionary al-

gorithm can increase the calibration accuracy originally obtained by the photogrammetric

method. An improvement in the calibration error of around 10% was obtained by com-

bining the gradient-based and CODEQ techniques, using any ofthe three algorithms for

the computation of the focal length.

Chapter 5 investigated the use of an intensity-based metric,known as photo-consistency,

for the intra-operative registration of virtual and real models to compensate for accu-

mulating tracking errors in an IESN system. The technique was based on the intensity

difference between images acquired from a pair of cameras connected to a stereo surgi-

cal microscope. First, an evaluation of three different photo-consistency cost functions
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reported in the literature was undertaken. These cost functions were denominatedPC,

PCsquared andPCinverse. Subsequently, a study of convergence among three optimisation

algorithms (i.e. Powell’s method, SDE, and CODEQ) provided an insight of their perfor-

mance for a simple misregistration case. Then, the combination among cost-functions

and optimisation methods was assessed for a set of simulatedmisalignments, where dif-

ferent DOFs and coordinate systems were involved. SDE proved to be the most suitable

optimisation method together with thePCsquared cost function during registration in the

object coordinate system. The results obtained indicate that photo-consistency could be

used as a metric for intra-operative registration in ENT surgery.

6.2 System integration

Chapters 3 - 5 of this thesis have independently investigatedseveral software-based tech-

niques that optimised the accuracy of an IESN system. Among the different evaluated

techniques, a number of methods have been selected to be included in the final integrated

system. The selection is based on the optimisation results obtained and discussed in the

corresponding chapters.

As described previously, ARView provided the basic application framework for this

research project. Therefore, some of the functionalities of the final IESN system are

inherited from its predecessor. In particular, the same workflow is followed to achieve

an overlay between virtual and real anatomies during surgery. This workflow, commonly

used in AR based systems, involves the steps of camera calibration, registration, motion

tracking and visualisation.

Regarding camera calibration, the identification of featuremarkers located in a calibra-

tion object is performed in order to estimate the internal camera parameters and establish

a relationship between world and camera coordinate systems. The final integrated sys-
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tem includes a method to reduce feature segmentation in the detected markers of a planar

calibration grid for ESS. It was shown that, after the optimisation, the overall calibration

accuracy was improved more than double (from 1.50 to 0.66 pixel error) with respect to

the original implementation. In the case of calibration using a stereoscopic microscope,

the final integrated system introduces a new hybrid approachthat uses a photogrammetric

technique (Tsai) for pre-calibration and a self-calibrating stereoscopic technique to derive

the fundamental matrix with the aim of optimising the calculated focal length and reduc-

ing the camera calibration error. For this reason, a new 3D calibration object was designed

and manufactured. The 3D object involves a set of feature markers at various depth levels

that serve as the input for the different camera calibrationalgorithms. Specifically, the

gradient-based method is selected for the estimation of thefundamental matrix between

the two microscope cameras. Although the three techniques used as cost functions for

the computation of the focal length produced similar results, Bougnoux’s method could

be chosen in the final IESN system because it involves a simpleclosed-form solution.

Among the optimisation methods, the CODEQ algorithm provided the best results during

the evaluation hence its use is recommended. An improvementof around 10% in cali-

bration accuracy was achieved by the implemented hybrid technique with respect to the

original method, both using the 3D calibration object. Table 6.1 summarises the selected

algorithms to be included in the camera calibration procedure of the final integrated sys-

tem.

Selected solution

Fundamental matrix estimationGradient-based algorithm

Focal length estimation Bougnoux’s method

Optimisation algorithm CODEQ

Table 6.1: Selected methods for camera calibration.
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It must be mentioned that in previous work using the endoscope [17, 149], sub-pixel

calibration accuracy could be obtained due to a higher precision in the manufacturing

of the planar calibration object. In the presented system, the calibration object was less

accurately manufactured due to limitations of the 3D printer employed. Nevertheless, by

improving the precision of the 3D calibration object the same level of initial calibration

accuracy is likely to be obtained, which can be further minimised by applying the hybrid

method.

Similarly to its predecessor, the final integrated system requires the use of the ICP al-

gorithm to obtain an initial registration between real and virtual models at the beginning of

the surgical procedure. In addition to this method, the finalsystem includes a technique to

intra-operatively register the models when their alignment is affected due to accumulated

tracking errors. The introduced registration method is based on photo-consistency using

a pair of images acquired by the cameras connected to a surgical microscope. The photo-

consistency cost function to be selected for the implementation of the integrated IESN

system is calledPCsquared whereas SDE would be the chosen optimisation algorithm that

minimises the photo-consistency error. The preferred coordinate system to perform the

registration is the denominated object coordinate system.As it name suggests, the pose

transformations are directly applied to the virtual object’s own coordinate system without

involving any transformation between different referenceframes. A summary of the se-

lected options for intra-operative registration is listedin Table 6.2.

Selected solution

Photo-consistency cost function PCsquared

Optimisation algorithm SDE

Coordinate system Object coordinate system

Table 6.2: Selected options for intra-operative registration.

156



Chapter 6. Conclusions and future work

The resulting accuracy of the intra-operative registration method depends on the ini-

tial misalignment between real and virtual models. In the simplest scenario that includes

only a translational offset in X and Y coordinates, the final RMSD achieved by the final

integrated system is sub-millimetric. As more DOFs are combined in the offset, the mis-

registration tends to increase mainly due to the rotationalaxes involved. It was proven

that the obtained accuracy of the final integrated system is within 3 mm from a misregis-

tration that combines 6 DOFs, corresponding to an initial offset of 6.8 mm. This allows

recovering the overlay to the same level of accuracy currently obtained by conventional

IESN systems for ENT, which is in the range of 2 - 3 mm when accumulated tracking

errors are not present.

In reference to the tracking of surgical instruments and patient during the intervention,

the IESN system registers the positional data of the entities using an optical tracking sys-

tem. The original implementation included a set of basic functions that read the tracking

signal and apply the data to the volumetric model on screen. In addition to these func-

tions, the final integrated system introduces a method to synchronise the process calls that

pull data from the optical tracking device. This synchronisation — based on semaphores

— ensures the integrity of the data when two entities are tracked simultaneously.

Finally, the visualisation of real and virtual models in theIESN system requires the use

of stereoscopic monitors that show the user two views of the surgical area as obtained by

the cameras connected to the surgical microscope. In the final integrated system, a method

was implemented to align virtual cameras and rendering viewports following the stereo-

scopic cross-viewing approach. This allows projecting the3D imagery towards the user

while providing higher depth information with respect to the original IESN implementa-

tion. It should be highlighted that, although stereo visualisation has been proved to be of

importance for the surgeon using optical instruments such as stereoscopic microscopes,

the use of stereo AR still presents perceptual issues that have to be addressed before being

completely introduced in the operating theatre. Particularly, Johnson et al. [110] described
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some issues related to depth perception using stereo overlays when a virtual model that

is located under a real surface is rendered on top of it. In their study, they found that the

problem could be reduced by rendering a virtual version of the physical object and the

virtual object at the same time; however, the perceptual error could not be entirely elim-

inated in the optical see-through microscope. By contrast, the IESN system presented in

this research involves a video-based AR application that allows the clinician to select the

level of blending between virtual and real models on screen,which could help to reduce

ambiguity in the estimation of depth. In addition, the surgeon can disable the rendering

of virtual models if depth perception is considered to be compromised. Nevertheless,

additional studies must be carried out to understand the causes that affect this and other

perception issues in the use of IESN systems.

6.3 Further work

The presented IESN system has been evaluated in a laboratorysetup, where the optimi-

sation levels achieved by the different techniques have been considered as satisfactory.

However, the resulting improvements need to be tested in a real surgical environment

in order to assess their performance in new conditions and, if necessary, extend their

functionality. Some aspects of this research that could be further explored include the

following areas:

• The assessment of optical tracking devices determined thatthe manufacturer’s

nominal specifications and the obtained accuracy in a working environment are

different. Although little can be done to improve the tracking performance due

to hardware limitations, new optical devices by different manufacturers are con-

stantly under development. These new systems differ in their specifications, such

as active or passive technology, measurement volume, and accuracy. A future eval-
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uation of different systems could provide a better judgmentof the optimal solution

for an IESN system aimed at ENT interventions.

• Concerning the camera calibration procedure, the current resolution of the man-

ufacturing device used to produce the non-coplanar calibration object for this re-

search is relatively limited. This issue influences the accuracy levels obtained in

the overall camera calibration. In order to achieve sub-pixel accuracy, the dimen-

sional precision of the manufactured object must be improved. Additionally, the

method presented for the optimisation of the focal length could be extended to

non-stereoscopic devices such as endoscopes. In this regard, the endoscope could

be placed at different positions to acquire a pair of images of the calibration object.

• It was found that the accuracy of the intra-operative registration method varied with

respect to the number of DOF involved in the initial misalignment (“starting pose”)

when using SDE. This is likely because the stochastic-basedoptimiser did not

search exhaustively over all DOFs, hence providing only an approximation to the

real global minimum. In order to improve the registration, asolution could involve

applying a second optimisation technique such as Powell’s method to refine the

search.

• The experimental setup was based on the use of a human skull asa dummy pa-

tient. In a real surgical scenario, the microscope light could produce specularities

in the captured images. Thus, the scene would not strictly correspond to a Lam-

bertian model, which might affect the registration accuracy. In order to overcome

this problem, a solution could involve using a pair of colourcameras to acquire

the real images and apply a colour filter that extracts the diffuse component and

omits the specularities. Then, the photo-consistency procedure could be carried

out by converting the resulting images to greyscale values or by comparing colour

differences.
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• Current processing times to perform the presented intra-operative registration are

of the order of minutes. A further implementation on the graphics processing

unit (GPU) using a parallel methodology such as CUDA1 or OpenCL would sig-

nificantly speed up the overall registration process. This would become a viable

method for real-time registration in IESN.

1developed by NVIDIA (www.nvidia.com)
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Appendix A

Results from the focal length

optimisation experiments

This appendix contains a complete set of graphs and tables used for the evaluation of the

results obtained in Chapter 4, which corresponds to the optimisation of focal length based

on stereo camera calibration.

A.1 Accuracy of focal length estimation in a synthetic

environment — Graphs

This section presents a series of graphs corresponding to the results obtained by the three

methods of focal length estimation using a set of artificial points in a synthetic scenario.

The compared techniques include the algorithms of Bougnoux [122], Sturm [126, 127]

and Newsam [125] that were described in Section 4.2.4.
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Figure A.1: Percentage errors in focal length calculation using Bougnoux’s Method. (Left column)
Left camera errors. (Right column) Right camera errors. First row represents an equal focal
configuration, second to fifth rows represent unequal focal values between cameras. Elevation
angles between 0◦ and 2◦ failed to produce a result (critical configuration), hence they are not
displayed. Note that the percentage error scale changes among the graphs.

163



Appendix A. Results from the focal length optimisation experiments

0
1

2
3

4
5

6
7

8

2

3

4

5

6

7

8
0

20

40

60

80

100

Convergence

Left focal length = 250 mm.

Elevation

P
er

ce
nt

ag
e 

E
rr

or

0
1

2
3

4
5

6
7

8

2

3

4

5

6

7

8
0

20

40

60

80

100

Convergence

Right focal length = 250 mm.

Elevation
P

er
ce

nt
ag

e 
E

rr
or

0
1

2
3

4
5

6
7

8

2

3

4

5

6

7

8
20

40

60

80

100

Convergence

Left focal length = 250 mm.

Elevation

P
er

ce
nt

ag
e 

E
rr

or

0
1

2
3

4
5

6
7

8

2

3

4

5

6

7

8
20

40

60

80

100

Convergence

Right focal length = 255 mm.

Elevation

P
er

ce
nt

ag
e 

E
rr

or

0
1

2
3

4
5

6
7

8

2

3

4

5

6

7

8

50

100

150

200

Convergence

Left focal length = 250 mm.

Elevation

P
er

ce
nt

ag
e 

E
rr

or

0
1

2
3

4
5

6
7

8

2

3

4

5

6

7

8

50

100

150

200

Convergence

Right focal length = 260 mm.

Elevation

P
er

ce
nt

ag
e 

E
rr

or

164



Appendix A. Results from the focal length optimisation experiments

0
1

2
3

4
5

6
7

8

2

3

4

5

6

7

8
50

100

150

200

Convergence

Left focal length = 250 mm.

Elevation

P
er

ce
nt

ag
e 

E
rr

or

0
1

2
3

4
5

6
7

8

2

3

4

5

6

7

8
50

100

150

200

Convergence

Right focal length = 265 mm.

Elevation

P
er

ce
nt

ag
e 

E
rr

or

0
1

2
3

4
5

6
7

8

2

3

4

5

6

7

8
0

100

200

300

400

Convergence

Left focal length = 250 mm.

Elevation

P
er

ce
nt

ag
e 

E
rr

or

0
1

2
3

4
5

6
7

8

2

3

4

5

6

7

8
0

100

200

300

400

Convergence

Right focal length = 270 mm.

Elevation

P
er

ce
nt

ag
e 

E
rr

or

Figure A.2: Percentage errors in focal length calculation using Sturm’s Method. (Left column)
Left camera errors. (Right column) Right camera errors. First row represents an equal focal
configuration, second to fifth rows represent unequal focal values between cameras. Elevation
angles between 0◦ and 2◦ failed to produce a result (critical configuration), hence they are not
displayed. Note that the percentage error scale changes among the graphs.
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Figure A.3: Percentage errors in focal length calculation using Newsam’s Method. (Left column)
Left camera errors. (Right column) Right camera errors. First row represents an equal focal
configuration, second to fifth rows represent unequal focal values between cameras. Elevation
angles between 0◦ and 2◦ failed to produce a result (critical configuration), hence they are not
displayed. Note that the percentage error scale changes among the graphs.
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A.2 Focal length optimisation in a pair of real cameras

— Graphs

This section contains a full list of plots obtained in the assessment of the different methods

for the optimisation of the focal length using a pair of real cameras connected to a surgical

microscope. As described in Section 4.2.5, the techniques are:

Computation of the fundamental matrix

• Linear method

• M-estimators

• Gradient-based algorithm

Focal length estimation

• Bougnoux’s method

• Sturm’s method

• Newsam’s method

Optimisation algorithms

• Levenberg-Marquard (LM)

• Self-adaptive Differential Evolution (SDE)

• CODEQ
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Figure A.4: Linear method for the fundamental matrix calculation and Levenberg-Marquardt opti-
misation algorithm.
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Figure A.5: Linear method for the fundamental matrix calculation and SDE optimisation.
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Figure A.6: Linear method for the fundamental matrix calculation and CODEQ optimisation.
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Figure A.7: Fundamental matrix calculation using M-estimators and Levenberg-Marquardt optimi-
sation algorithm.
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Figure A.8: Fundamental matrix calculation using M-estimators and SDE optimisation.
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Figure A.9: Fundamental matrix calculation using M-estimators and CODEQ optimisation.
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Figure A.10: Fundamental matrix calculation using gradient-based method and Levenberg-
Marquardt optimisation algorithm.
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Figure A.11: Fundamental matrix calculation using gradient-based method and SDE optimisation.
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Figure A.12: Fundamental matrix calculation using gradient-based method and CODEQ optimi-
sation.
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A.3 Focal length optimisation in a pair of real cameras

— Tables

This section presents different tables corresponding to statistical significance tests of the

possible combinations among optimisation algorithms, focal length techniques and fun-

damental matrix methods. Different convergence angles were evaluated using a pair of

cameras connected to a surgical microscope. The null hypothesis is stated as the means

between each pair of optimisation methods being similar andnot providing any statistical

significance of calibration error values.

The tables show the mean difference of calibration error values, the calculated t-value,

statistical degrees of freedom (df) and significance level (P-value). The columnP<0.05

indicates that if the P-value is less than 0.05, the calibration error value is determined to

be of statistical significance.
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Camera Method Mean t-value df P-value P<0.05
difference

SDE vs LM

Left
Bougnoux -0.007 -0.941 8 0.3744 N

Sturm 0.147 9.762 14 <0.0001 Y
Newsam 0.096 6.949 13 <0.0001 Y

Right
Bougnoux -0.276 -2.616 4 0.0590 N

Sturm -0.183 -1.917 4 0.1278 N
Newsam -0.031 -0.569 5 0.5943 N

SDE vs CODEQ

Left
Bougnoux 0.001 0.269 18 0.7910 N

Sturm 0.023 1.093 18 0.2888 N
Newsam 0.055 4.462 9 0.0016 Y

Right
Bougnoux -0.011 -0.975 19 0.3419 N

Sturm -0.008 -0.535 19 0.5988 N
Newsam -0.038 -2.243 10 0.0488 Y

CODEQ vs LM

Left
Bougnoux -0.008 -1.177 6 0.2836 N

Sturm 0.124 6.688 12 <0.0001 Y
Newsam 0.041 6.138 4 0.0036 Y

Right
Bougnoux -0.264 -2.511 4 0.0660 N

Sturm -0.175 -1.837 4 0.1401 N
Newsam 0.007 0.130 4 0.9029 N

Table A.1: Statistical significance of hypothesis that two optimisation methods display different
calibration error values using the linear method for fundamental matrix at 20◦ convergence angle
(bad accuracy).

Camera Method Mean t-value df P-value P<0.05
difference

SDE vs LM

Left
Bougnoux -0.351 -7.070 4 0.0021 Y

Sturm -0.299 -7.596 4 0.0016 Y
Newsam -0.419 -5.968 5 0.0019 Y

Right
Bougnoux -0.372 -13.040 8 <0.0001 Y

Sturm -0.461 -10.719 6 <0.0001 Y
Newsam -0.860 -8.880 4 0.0009 Y

SDE vs CODEQ

Left
Bougnoux 0.002 0.752 18 0.4616 N

Sturm 0.011 3.099 9 0.0127 Y
Newsam 0.035 1.670 11 0.1231 N

Right
Bougnoux 0.055 2.310 19 0.0323 Y

Sturm 0.054 2.171 19 0.0428 Y
Newsam 0.036 1.400 12 0.1867 N

CODEQ vs LM

Left
Bougnoux -0.353 -7.121 4 0.0021 Y

Sturm -0.311 -7.917 4 0.0014 Y
Newsam -0.454 -6.698 4 0.0026 Y

Right
Bougnoux -0.427 -14.064 10 <0.0001 Y

Sturm -0.515 -11.938 6 <0.0001 Y
Newsam -0.896 -9.479 4 0.0007 Y

Table A.2: Statistical significance of hypothesis that two optimisation methods display different
calibration error values using the linear method for fundamental matrix at 25◦ convergence angle
(good accuracy).
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Camera Method Mean t-value df P-value P<0.05
difference

SDE vs LM

Left
Bougnoux -0.271 -6.503 4 0.0029 Y

Sturm -0.170 -5.901 4 0.0041 Y
Newsam -0.133 -8.527 12 <0.0001 Y

Right
Bougnoux -0.238 -24.904 14 <0.0001 Y

Sturm -0.189 -20.832 8 <0.0001 Y
Newsam -0.232 -14.934 11 <0.0001 Y

SDE vs CODEQ

Left
Bougnoux 0.002 0.194 19 0.8480 N

Sturm -0.003 -0.286 17 0.7784 N
Newsam 0.002 0.178 17 0.8606 N

Right
Bougnoux -0.035 -0.871 9 0.4062 N

Sturm -0.005 -0.579 17 0.5704 N
Newsam -0.003 -0.245 18 0.8093 N

CODEQ vs LM

Left
Bougnoux -0.272 -6.558 4 0.0028 Y

Sturm -0.167 -5.697 4 0.0047 Y
Newsam -0.135 -9.895 9 <0.0001 Y

Right
Bougnoux -0.203 -5.063 9 0.0007 Y

Sturm -0.184 -17.566 12 <0.0001 Y
Newsam -0.229 -16.286 8 <0.0001 Y

Table A.3: Statistical significance of hypothesis that two optimisation methods display different
calibration error values using M-estimators at 5◦ convergence angle (good accuracy).

Camera Method Mean t-value df P-value P<0.05
difference

SDE vs LM

Left
Bougnoux -0.119 -7.223 6 0.0004 Y

Sturm -0.192 -3.655 4 0.0217 Y
Newsam -0.356 -2.158 4 0.0971 N

Right
Bougnoux -0.253 -5.121 4 0.0069 Y

Sturm -0.228 -4.153 11 0.0016 Y
Newsam -0.214 -3.830 4 0.0186 Y

SDE vs CODEQ

Left
Bougnoux -0.007 -0.517 16 0.6124 N

Sturm -0.015 -1.020 18 0.3213 N
Newsam 0.007 0.830 18 0.4172 N

Right
Bougnoux -0.002 -0.094 19 0.9258 N

Sturm 0.008 0.205 12 0.8411 N
Newsam 0.010 0.726 19 0.4769 N

CODEQ vs LM

Left
Bougnoux -0.112 -6.019 10 0.0001 Y

Sturm -0.177 -3.332 4 0.0291 Y
Newsam -0.363 -2.201 4 0.0926 N

Right
Bougnoux -0.252 -5.063 4 0.0072 Y

Sturm -0.236 -5.323 5 0.0031 Y
Newsam -0.225 -3.995 4 0.0162 Y

Table A.4: Statistical significance of hypothesis that two optimisation methods display different
calibration error values using M-estimators at 15◦ convergence angle (bad accuracy).
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Camera Method Mean t-value df P-value P<0.05
difference

SDE vs LM

Left
Bougnoux 0.119 8.343 12 <0.0001 Y

Sturm 0.106 5.490 14 <0.0001 Y
Newsam 0.077 6.262 12 <0.0001 Y

Right
Bougnoux -0.222 -1.953 4 0.1226 N

Sturm -0.192 -1.835 4 0.1404 N
Newsam -0.114 -0.914 4 0.4124 N

SDE vs CODEQ

Left
Bougnoux 0.038 1.514 16 0.1494 N

Sturm 0.013 0.623 19 0.5408 N
Newsam -0.029 -1.255 15 0.2288 N

Right
Bougnoux 0.018 1.607 19 0.1245 N

Sturm 0.015 1.230 18 0.2346 N
Newsam 0.021 1.256 11 0.2353 N

CODEQ vs LM

Left
Bougnoux 0.082 3.730 10 0.0039 Y

Sturm 0.092 5.532 14 <0.0001 Y
Newsam 0.106 5.222 10 0.0004 Y

Right
Bougnoux -0.240 -2.112 4 0.1023 N

Sturm -0.206 -1.977 4 0.1192 N
Newsam -0.135 -1.087 4 0.3381 N

Table A.5: Statistical significance of hypothesis that two optimisation methods display different
calibration error values using the gradient-based method at 15◦ convergence angle (bad accu-
racy).

Camera Method Mean t-value df P-value P<0.05
difference

SDE vs LM

Left
Bougnoux -0.303 -6.856 4 0.0024 Y

Sturm -0.343 -6.695 4 0.0026 Y
Newsam -0.100 -4.036 5 0.0100 Y

Right
Bougnoux -0.470 -15.940 5 <0.0001 Y

Sturm -0.482 -11.058 5 0.0001 Y
Newsam -0.255 -17.912 14 <0.0001 Y

SDE vs CODEQ

Left
Bougnoux 0.011 0.970 14 0.3487 N

Sturm 0.001 0.127 18 0.9005 N
Newsam 0.016 1.554 16 0.1398 N

Right
Bougnoux -0.004 -0.265 19 0.7940 N

Sturm 0.009 0.485 19 0.6334 N
Newsam 0.022 1.385 19 0.1821 N

CODEQ vs LM

Left
Bougnoux -0.313 -7.226 4 0.0019 Y

Sturm -0.345 -6.748 4 0.0025 Y
Newsam -0.116 -4.894 4 0.0081 Y

Right
Bougnoux -0.466 -15.553 6 <0.0001 Y

Sturm -0.491 -11.469 4 0.0003 Y
Newsam -0.277 -20.235 14 <0.0001 Y

Table A.6: Statistical significance of hypothesis that two optimisation methods display different
calibration error values using the gradient-based method at 25◦ convergence angle (good accu-
racy).
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Optimisation Algorithms

This appendix presents two optimisation algorithms for thenumerical minimisation of

multidimensional functions used throughout the research,Self-adaptive Differential Evo-

lution (SDE) and CODEQ. The reader is briefly introduced to thetheory behind these

optimisation methods, followed by a validation of their performance; which was consid-

ered essential for their application within an IESN system.

B.1 Evolutionary algorithms

Evolutionary algorithms (EA) are stochastic search methods that are inspired by princi-

ples of biological processes of natural evolution. In particular, they simulate the evolution

of organisms through the selection and perturbation of internal structures known as indi-

viduals. EAs initialise a population of individuals with random values at a first generation

or iteration, where each individual corresponds to a potential solution. A principle of sur-

vival during the evolution is achieved by comparing the quality of each individual using a

fitness criterion and selecting the best solution within thepopulation. Selected individu-

als are altered by applying small changes in their parameters (mutation) and recombining

them with other individuals (crossover). The procedure is repeated until the best value is
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found or a specific computational limit is reached. An advantage of EAs in comparison

to other search methods is that they are able to avoid stagnation in local minima and find

the global optimum solution.

B.1.1 Differential Evolution

Differential evolution (DE) is a population-based EA introduced by Storn and Price [156],

which differs from other EA strategies due to the use of direction and distance informa-

tion in the population. Such information is used to guide thesearch towards the global

optimum. Specifically, DE involves vectors as a representation of individuals. Their

perturbation is obtained by using arithmetic vector operations instead of logical combi-

nations. The evolution operators involved in the search of aglobal optimum in DE are

mutation, crossover and selection.

• Mutation. Two randomly selected vectors or individuals (x1 andx2) are arithmeti-

cally subtracted and their difference is weighted or adjusted based on a scale factor

F. The result is added to a third random vectorx3, which produces a trial vector

v. The random selection must ensure that the chosen vectors are different to each

other. Equation B.1 exemplifies the mutation step:

v = x3 + F (x1 − x2). (B.1)

• Crossover. This recombination stage involves mixing the elementsj of a parent

vectorxp with elements from the trial vectorv in order to produce a child vec-

tor, wherej = 1...number-of-dimensions. Crossover depends on a comparison of
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parameters according to the following criterion:

uj =











vj if rand(0,1)≤ CRor j = r

xp,j otherwise

in whichCRrepresents a user-defined variable corresponding to the probability of

reproduction in the interval [0,1], which controls the parameters that will be trans-

ferred to the child vectoru. If the uniformly distributed random numberrand(0,1)

obtained at the current generation is less or equal thanCR, the trial element will

be inherited tou. Additionally, a random index variabler = rand(1,number-of-

dimensions) is compared to the current dimension indexj within the chosen vec-

tor. If both indices are the same, the recombination is performed at the specified

dimension. In case that none of the conditions is true, the trial vector will obtain

the original element from the parent vector.

• Selection. The procedure to select the best fitted vector requires comparing the

child and parent vectors in the cost function. If the child vector produces a lower or

equal solution than the parent, it will replace the parent’sposition in the population;

otherwise the parent vector is retained.

Figure B.1 provides a schematic representation of the steps performed in DE.

DE has been successfully applied to the registration of monomodal 3D/3D MRI im-

agery [158] and other medical applications. However, one ofthe main drawbacks of

this technique relies on correctly setting the initial control parameters for each particu-

lar problem, e.g. Price et al. [159] suggest ten different approaches depending on the

problem features. Moreover, a wrong choice of initial parameters can affect the overall

performance of the algorithm. The following two strategiesaim at solving this issue by

automatically adapting the function parameters at run time.
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Figure B.1: Schematic diagram of the DE algorithm (Image adapted from [157]).

Self-Adaptive Differential Evolution (SDE)

Salman et al. [160] proposed a self-adaptive algorithm thatdynamically adjusts the control

parameters in DE which directly affect the behaviour of the optimisation search. The

parameters comprise the mutation scale factorF and the probability of reproductionCR.

This self-adaptation improves the performance of DE by exploiting a wider search in the

function shape and avoiding stagnation in the local minima.In addition, it increases the

diversity of the population and prevents premature convergence.
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SDE adjusts the mutation parameterF through a selection of random values obtained

from a normal distributionN(0, 1) at every iteration loopt within the generation size.

Similarly, the crossover operatorCR is modified by a stochastic selection based on a nor-

mal distribution but with stricter bounds. In SDE, EquationB.1 referring to the mutation

step is modified as follows:

vi(t) = xi3(t) + Fi(t)(xi1(t)− xi2(t)), (B.2)

where

Fi(t) = Fi4(t) +N(0, 1)× (Fi5(t)− Fi6(t)), (B.3)

in which i represents a vector in the current generationt. The vectorsi1...i6 are randomly

selected using a uniform distribution within the population size, andi1 6= i2 6= i3 6= i4 6=

i5 6= i6.

CODEQ

CODEQ [161] is an approach that includes concepts from chaotic search, opposition-

based learning, DE and quantum mechanics. Its main advantage resides in that it is a

completely parameter-free method (except for the population size). CODEQ resolves

some issues found in DE during the recombination of elementsin the population, which

may affect the optimisation search.

The selection of the trial vector is obtained by excluding the mutation control param-

eterF found in DE. Instead, a principle based on quantum mechanicsis used to alter the

probability of mutation, and the result is added to the parent vector. Also, the crossover

operation varies from the original procedure as rules from chaotic search and opposition-

based learning are applied. The new crossover performs the search in two different places

of the function shape at the same time for each iteration; onebased on a randomly se-
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lected position and the other at its corresponding oppositelocation in the search space.

The pseudocode of CODEQ is presented in Code B.1.

The population of individuals, chaotic variablec, and probability valuep are
randomly initialised.

For each loopt in the generation size
For each loopi in the population size

vi(t) = xp,i(t) + (xi1(t)− xi2(t))ln(
1

u
),

whereu is randomly selected using a uniform distributionU(0, 1).

If f(vi(t)) ≤ f(xp,i(t))
xp,i(t) = vi(t)

End if
wheref(x) refers to the evaluated cost function.

End for

Find the best and worst vectors in the population:xb(t) andxs(t).

If rand ≤ 0.5
w(t) = LB + UB − r × xs(t),
wherew(t) is a fitness vector,LB andUB are the function’s lower
and upper bounds, respectively; andr is randomly selected using a
uniform distributionU(0, 1).

Else

c(t) =

{

c(t− 1)/p c(t− 1) ∈ (0, p)
(1− c(t− 1))/(1− p) c(t− 1) ∈ [p, 1)

w(t) = xb(t) + |xi1(t)− xi2(t)| × (2c(t)− 1)

End if

If f(w(t)) ≤ f(xs(t))
xs(t) = w(t)

End if

End for

Code B.1:Pseudocode of the CODEQ algorithm [161].
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B.1.2 Use of the optimisation algorithms

A contributing factor to the popularity of self-adaptive optimisation methods such as SDE

and CODEQ relies on their simplicity of use. This is because the algorithms only require

a few control parameters to start the search of the global optima, as described earlier. The

rest of the parameters involved in the procedure are randomly initialised the first time that

the optimisation function is called and dynamically adjusted during the execution of the

program.

In order to start the optimisation, the user must provide thepopulation size that reflects

the universe of candidate members available throughout thesearch. Additionally, the user

needs to specify the maximum number of generations or iterations that will be carried out

during the execution of the algorithm. Both population size and number of generations

are given as integer values and must be selected according tothe requirements of the

optimisation.

An array structure is used to assign the variables of the problem as input values in

the optimisation function. The size of the array corresponds to the dimensionality of

the problem, where each dimension is related to an independent parameter or DOF. This

array serves as the initial vector upon which the search willbe based (basis vector). In

particular, the candidate vectors generated during the procedure will be combined with

this basis vector in order to modify the initial input values. This enforces the search to be

within a certain scope and reduce the possibility for the solution to diverge. In regard to

the optimisation procedures carried out in this research, the elements of the basis vector

correspond to the initial pair of focal lengths estimated bythe self-calibration methods,

whereas the candidate vectors represent a set of variationsin focal length. For the intra-

operative registration, the basis vector contains the starting pose of the virtual model to

be registered and the candidate vectors comprise the changes in translation and rotation

required to find the correct registration position.
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Finally, a real number that corresponds to a tolerance threshold must be also specified

to control the maximum acceptable error found by the optimisation algorithm. For this

purpose, an appropriate cost function evaluates the different locations in the search space

that, combined with the basis vector, produce the best solution. In this respect, the cost

function is automatically called at every iteration loop and executed as many times as

necessary until the threshold is reached or the maximum number of iterations is exceeded.

The final value returned by the optimisation algorithm represents the global optima.

B.2 Experiments and results

B.2.1 Validation of the optimisation algorithms

An evaluation of the two self-adaptive EA methods describedin the previous section,

i.e. SDE and CODEQ, was performed as it was considered important to validate the op-

timisation algorithms before their implementation in the IESN system. Additionally, a

classic DE method (known as DE/ran/1/bin [159]) was included in the evaluation to ex-

amine the differences against the two self-adaptive techniques. The procedure involved a

comparison between the results presented in the original SDE and CODEQ literature to

the author’s own implementation in the IESN system. Four benchmark problems were se-

lected among unimodal and multimodal functions used in the field to test the performance

of global optimisation algorithms. The selected functionsare:

• Stepfunction:

f(x) =
N
∑

i=1

(⌊xi + 0.5⌋)2,

whereN is the population size, global minimumx∗ = 0, andf(x∗) = 0 for

−100 ≤ xi ≤ 100.
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• Rosenbrockfunction:

f(x) =
N−1
∑

i=1

(100(xi − x2

i−1
)2 + (xi−1 − 1)2),

wherex∗ = (1, 1, . . . , 1), andf(x∗) = 0 for−30 ≤ xi ≤ 30.

• Rastrigin function:

f(x) =
N
∑

i=1

(x2

i − 10cos(2πxi) + 10),

wherex∗ = 0, andf(x∗) = 0 for−5.12 ≤ xi ≤ 5.12.

• Griewank function:

f(x) =
1

4000

N
∑

i=1

x2

i −
N
∏

i=1

cos(
xi√
i
) + 1,

wherex∗ = 0, andf(x∗) = 0 for−600 ≤ xi ≤ 600.

The optimisation algorithms were implemented in the programming language C++

using an Intel Core2 Quad processor computer at 2.4Ghz and 2GBRAM. The control

conditions specified were the same as in the literature, using a population of 50 individ-

uals, 30 dimensions and a maximum of 50,000 evaluations of the objective function. In

the case of DE, the mutation and crossover parameters wereF = 0.5 andCR = 0.9,

respectively. The error threshold defining a solution was10−6 for all objective functions.

The lower the values for the number of evaluations, the faster the algorithm performed.

A value of 50,000 denotes that the function could not find the global optima. Table B.1

shows the original results reported in the literature [160,162] (Literature). Also, the re-

sults of the own implementation are presented (Author). Error values of less than10−5

are rounded to 0 for clarity.

Although the number of evaluations for SDE can not be obtained directly from the lit-

erature, the error values show that SDE produces equal or better results than DE in most

functions. Moreover, from the information found in the original publications it can be

observed that CODEQ finds a solution in less number of evaluations and is more accurate
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Step Rosenbrock Rastrigin Griewank

DE-Literature Evals 15368(±1790) 50000(±0) 50000(±0) 38262(±6082)
Error 0(±0) 26.075(±1.364) 157.34(±19.90) 0.0022(±0.0048)

DE-Author Evals 278(±16) 50000(±0) 50000(±0) 15386(±23886)
Error 0(±0) 2.046(±1.680) 13.903(±4.457) 0.0025(±0.0040)

SDE-Literature Evals NAa NA NA NA
Error 0(±0) 52.180(±28.143) 5.743(±2.338) 0(±0)

SDE-Author Evals 436(±23) 50000(±0) 50000(±0) 908(±33)
Error 0(±0) 1.249(±0.0) 30.040(±7.351) 0(±0)

CODEQ-Literature Evals 5833(±2773) 50000(±0) 22247(±2305) 20748(±2362)
Error 0(±0) 26.196(±0.649) 0(±0) 0(±0)

CODEQ-Author Evals 76(±34) 9998(±762) 286(±68) 283(±48)
Error 0(±0) 0(±0) 0(±0) 0(±0)

aNA means that the number of evaluations was not described in the literature.

Table B.1: Comparison between mean and standard deviation (±SD) of the function optimisa-
tion results reported in the literature [160, 162] (Literature) and the author’s own implementation
(Author), for each of the three algorithms, i.e. DE, SDE and CODEQ.

than DE and SDE. On the other hand, the author’s implementation performs significantly

better for each method than the implementation results described in the literature. Al-

though there is no clear reason for such improvement, it might rely on the fact that the

original results were implemented in Matlab, whereas the author’s algorithms were pro-

grammed in C++. Still, CODEQ outperforms both DE and SDE on all functions tested.

191



Bibliography

[1] International Society for Computer Aided Surgery. Corporate website. http://www.

iscas.net. Retrieved on 8 March 2010.

[2] L. Joskowicz and R.H. Taylor. Computers in imaging and guided surgery.IEEE

Computers in Science and Engineering, 3(5):65 – 72, Sep/Oct 2001.

[3] T. Capin, I. Pandzic, N. Magnenat-Thalmann, and D. Thalmann. Avatars in Net-

worked Virtual Environments. John Wiley & Sons, 1999.

[4] F.P. Vidal, F. Bello, K.W. Brodlie, N.W. John, D. Gould, R. Phillips, and N.J. Avis.

Principles and applications of computer graphics in medicine.Computer Graphics

Forum, 25(1):113 – 137, 2006.

[5] M.G. Dubin and F.A. Kuhn. Stereotactic computer assisted navigation: state of

the art for sinus surgery, not standard of care.Otolaryngologic clinics of North

America, 38(3):535 –549, 2005.
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Gonźalez-Ballester. Calibration of a surgical microscope with automated zoom

lenses using an active optical tracker.International Journal of Medical Robotics

and Computer Assisted Surgery (IJMRCAS), 4:87 – 93, 2008.

[12] P.V. Lanfranchi, L.A. Brigandi, S.S. Becker, and D.G. Becker. Multimodality ap-

proach to sinus and nasal disorders: Results of treatment as determined by a patient

survey.Ear, Nose & Throat Journal, 85(1):40 – 46, 2006.

[13] R. Lapeer, M.S. Chen, G. Gonzalez, A. Linney, and G. Alusi.Image-enhanced sur-

gical navigation for endoscopic sinus surgery: Evaluatingcalibration, registration

and tracking. International Journal of Medical Robotics and Computer Assisted

Surgery (IJMRCAS), 4(1):32 – 45, Feb. 2008.

[14] A.M. Neumann, K. Pasquale-Niebles, T. Bhuta, and M.J. Sillers. Image-guided

transnasal endoscopic surgery of the paranasal sinuses andanterior skull base.

American Journal of Rhinology, 13(6):449 – 454, 1999.

193



BIBLIOGRAPHY

[15] R. Thoranaghatte, J. Garcia, M. Caversaccio, D. Widmer, M.A. Gonzalez Ballester,

L.-P. Nolte, and G. Zheng. Landmark-based augmented reality system for

paranasal and transnasal endoscopic surgeries.International Journal of Medical

Robotics and Computer Assisted Surgery (IJMRCAS), 5:415 – 422, 2009.
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