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Abstract. Aggregated data arises commonly from surveys and censuses where groups of individuals are studied as coherent
entities. The aggregated data can take many forms includingsets, intervals, distributions and histograms. The data analyst needs
to measure the similarity between such aggregated data items and a range of metrics are reported in the literature to achieve this
(e.g. the Jaccard metric for sets and the Wasserstein metricfor histograms). In this paper, a unifying theory based on measure
theory is developed that establishes not only that known metrics are essentially similar but also suggests new metrics.
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1. Introduction

Large data sets concerning individual entities found in medical, census or financial databases, for
example, are often too large and/or too sensitive to be released to a wider community. To facilitate
analysis of such data, it is common practice to aggregate thedata based on individuals into data based
upon groups of individuals. For example, with census data, data might be generated and analysed that
describes geographically based communities. This can not only protect the individual but also be used
as a means of comparing communities and thereby targeting strategic government funding. For medical
data, aggregated data might be based on hospitals or health authorities and comparisons between them
can then be made. Once the data has been aggregated, not only is it more manageable but it can often be
safely released to a wide community, perhaps even to the general public.

Aggregated data, often referred to as symbolic data [2,3], usually have a markedly different structure
from that of an individual. An entry for an individual might have a field describing the individual’s
age. The corresponding data for a group of individuals mightbe a set of ages, an interval of ages or a
histogram describing the distribution of ages within the group.

The analyst needs to compare one group with another and thus needs techniques to measure the
similarity between aggregated data. To measure similarities between items, it is common to seek a
metric (or perhaps a pseudometric). In this paper, metrics and pseudometrics are defined over various
types of aggregated data. These measures can then be combined to get an overall measure of similarity
between the aggregated groups. Defining such measures correctly is important because it can affect policy
and investment, internationally, nationally and locally,by companies, organisations and by governments.

In this paper, metrics and pseudometrics for aggregated data are studied. By introducing some
simple measure theory, such metrics and pseudometrics are seen to have much in common; they are all
special cases of one of two (pseudo)metrics defined in terms of a measure over an algebra. Section 2
introduces the measure theory required and Section 3 definesa metric space and explains how metrics
and pseudometrics can be derived for an algebra over which a measure is defined. Then, in Section 4,
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the theory that has been developed is applied to generate metrics and pseudometrics over sets, intervals
and histograms. Throughout, care is taken to distinguish between categorical data that is nominal and
that which is ordinal, as well as distinguishing between categorical and numeric data. The last section
of the paper presents conclusions and some suggestions for further research.

Metrics are important in the analysis of unaggregated data,especially in clustering applications (see,
e.g. [17]). Their use is dicussed further in [19] together with various metric based maesures for cluster
qulaity. A scalable, metric based algorithm is described in[9]. Studying metrics for aggregated data is
also not new. There is a large and growing corpus of work in this area both of a theoretical and of an
applied nature, see [2–4,6–8,10–12,15], several of which include case studies relating to the analysis of
census data. This paper provides a unifying theory for many existing metrics used in these articles and
also produces some new metrics.

2. Finitely additive measures

Let S be a set and letΣ be a non-empty set of subsets of S that is closed under complement and union.
Thus, ifA is in Σ then so is the complement ofA, A′ = S \A. Similarly if A,B are inΣ thenA∪B is
also inΣ. Providing these properties are satisfied,(S,Σ) is called analgebra. By applying de Morgan’s
law, any algebra,(S,Σ), will also be closed under intersection.

A finitely additive measure, µ, on an algebra,(S,Σ), is a function

µ : Σ → R ∪ {∞}

such that

1. µ(A) > 0 for all A ∈ Σ,
2. µ(A) = 0 if A = ∅,
3. If A,B are disjoint sets inΣ then

µ(A ∪ B) = µ(A) + µ(B).

A finitely additive measure is a relaxed form of a measure. A measure is defined on aσ-algebra, which
is an algebra that is also closed under the union of a countable number of sets, rather than just a finite
number of sets, see for example, [1,13]. A measure then has all the properties of a finitely additive
measure but also satisfies the additional propert that ifA1, A2, . . . is a countably infinite sequence of
disjoint sets in theσ-algebra then

µ(
⋃

Ai) =
∑

µ(Ai).

If µ(A) is finite for all A ∈ Σ, a finitely additive measure is calledfinite and all of the example
measures used in this paper are indeed finite.

A finitely additive measure,µ, will be calledstrongif µ(A) = 0 ⇒ A = ∅. Not all finitely additive
measures discussed here are strong but, when they are, a metric can be constructed rather than just a
pseudometric.

For any setsA,B ∈ Σ, the setsA \B,B \A andA∩B are mutually disjoint. Thus,the following can
be deduced.
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Fig. 1. Two intersecting sets.

Fig. 2. Three intersecting sets.

Proposition 1 For any finitely additive measure,µ, on the algebra(S,Σ) and for any sets,A,B ∈ Σ, if
a = µ(A \ B), b = µ(B \ A) andc = µ(A ∩ B), as in Fig. 1, then

µ(A) = µ(A \ B) + µ(A ∩ B) = a + c,

µ(B) = µ(B \ A) + µ(A ∩ B) = b + c and

µ(A ∪ B) = µ(A \ B) + µ(B \ A) + µ(A ∩ B) = a + b + c.

Similarly,

Proposition 2 For any three sets,A,B,C in Σ, if a = µ(A \ B \ C), b = µ(B \ A \ C), c =
µ(C \A \B), d = µ((B ∩C) \A), e = µ((C ∩A) \B), f = µ((A∩B) \C) andg = µ(A∩B ∩C),
as in Fig. 2, then

µ(A) = a + e + f + g,

µ(B) = b + d + f + g,

µ(C) = c + d + e + g,
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µ(A ∪ B) = a + b + d + e + f + g,

µ(B ∪ C) = b + c + d + e + f + gand

µ(A ∪ C) = a + c + d + e + f + g.

These two propositions are key to proving the following results on metrics and to understanding this
paper.

3. Metrics

To be ametriconΣ, a distance functionδ : Σ × Σ → R+
0 must satisfy:

1. δ(A,B) > 0 ,
2. δ(A,B) = 0 if and only ifA = B,
3. δ is symmetric, i.e.δ(A,B) = δ(B,A) for all A,B ∈ Σ, and
4. δ satisfies thetriangle inequality, i.e.δ(A,B) + δ(B,C) > δ(A,C) for all A,B,C ∈ Σ.

(Σ, δ) is then called ametric space.
Metrics are used to define the difference between objects in the setΣ and are widely used both to

compare objects and within clustering algorithms, see e.g.[17].
If δ satisfies all the conditions of being a metric, except thatδ(A,B) = 0 can occur whenA 6= B, then

δ is called apseudometric. Clearly, any pseudometric will infer a metric on the equivalence classes ofΣ
defined by the equivalence relationA ∼ B iff δ(A,B) = 0.

Given a finitely additive measure,µ, on an algebra,(S,Σ), the distance function,δ1 : Σ × Σ → R+
0

is defined by

δ1(A,B) = µ(A ∪ B) − µ(A ∩ B) = µ(A \ B) + µ(B \ A).

Then,

1. δ1(A,B) > 0 since, by Proposition 1,µ(A∪B)−µ(A∩B) = µ(A \B)+ µ(B \A), which must
be> 0,

2. δ1(A,B) = 0 if A = B since thenµ(A ∪ B) − µ(A ∩ B) = µ(A) − µ(A) = 0,
3. if δ1(A,B) = 0 thenµ(A \B) + µ(B \A) = 0 and thus bothµ(A \B) = 0 andµ(B \A) = 0. If

µ is a strong measure then it follows thatA \ B = ∅ andB \ A = ∅ and hence,A = B,
4. δ1(A,B) = δ1(B,A) by the symmetry of the definition, and
5. using the notation of Fig. 2, for any sets,A,B,C ∈ Σ,

δ1(A,B) + δ1(B,C) = a + e + b + d + b + f + c + e

> a + f + c + d

= δ1(A,C)

By the results listed above forδ1, the following result is established.

Theorem 1. Given a finitely additive measure,µ, on an algebra,(S,Σ), a pseudometric,δ1 : Σ × Σ →
R+

0 can be defined by

δ1(A,B) = µ(A ∪ B) − µ(A ∩ B).

Moreover, ifµ is a strong measure thenδ1 is a metric.
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An alternative distance measure,δ2 : Σ × Σ → R+
0 , is defined by

δ2(A,B) =

{

0 if A = B = ∅,

1 − µ(A∩B)
µ(A∪B) otherwise.

Then0 6 δ2(A,B) 6 1 since0 6 µ(A ∩ B) 6 µ(A ∪ B). Clearly

1. δ2(A,A) = 0,
2. δ2(A,B) = 0 impliesµ(A ∩ B) = µ(A ∪ B) and henceµ(A \ B) = µ(B \ A) = 0. Thus, ifµ is

strong, this impliesA \ B = B \ A = ∅ and henceA = B,
3. δ2(A,B) = δ2(B,A).

The triangle inequality is also satisfied as shown in the lemma below.

Lemma 1. For any subsets,A,B,C of Σ,

δ2(A,B) + δ2(B,C) > δ2(A,C).

Proof: Referring to Fig. 2 and assumingS = a + b + c + d + e + f + g andS − c 6= 0 then

δ2(A,B) = 1 −
f + g

S − c
.

Similarly,

δ2(B,C) = 1 −
d + g

S − a

providedS − a 6= 0 and

δ2(A,C) = 1 −
e + g

S − b

providedS − b 6= 0.
Then, provided(S − a)(S − b)(S − c) 6= 0,

δ2(A,B) + δ2(B,C) − δ2(A,C)

= 1 −
f + g

S − c
+ 1 −

d + g

S − a
− 1 +

e + g

S − b

= 1 −
(f + g)(S − a)(S − b) + (d + g)(S − b)(S − c) − (e + g)(S − a)(S − c)

(S − a)(S − b)(S − c)
.

After some tedious algebra, the numerator of this expression evaluates to a sequence of terms that are all
non-negative.

On the assumption that(S −a)(S − b)(S− c) 6= 0, the denominator is also positive, so we can deduce
thatδ2(A,B) + δ2(B,C) − δ2(A,C) > 0 and thus the triangle inequality holds.

The above argument relies on the assumption that(S − a)(S − b)(S − c) 6= 0. Now (S − a)(S −
b)(S − c) = 0 iff one or more of(S − a), (S − b) or (S − c) is zero iff at least two of the sets are empty.
If A = B = C = ∅ thenδ2(A,B) = δ2(B,C) = δ2(A,C) = 0 and the triangle inequality holds. If
A = B = ∅ andC 6= ∅ thenδ2(A,C) = δ2(B,C) = 1 andδ2(A,B) = 0 so the triangle inequality
holds. The argument for the remaining cases are similar. Theproof is thereby completed.

Hence, the following can be deduced.
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Theorem 2. The distance functionδ2 : Σ × Σ → R+
0 defined by

δ2 =

{

0 if A = B = ∅,

1 − µ(A∩B)
µ(A∪B) otherwise

is a pseudometric onΣ and, moreover, ifµ is a strong measure thenδ2 is a metric.

Proof: The pseudometric result follows from the lemma aboveand the preceeding observations. Ifµ
is strong then

δ2(A,B) = 0 ⇒ µ(A ∪ B) = µ(A ∩ B)

⇒ µ(A \ B) = µ(B \ A) = 0

⇒ A \ B = B \ A = ∅

⇒ A = B

and henceδ2 is a metric.

4. Applications to aggregated data

In this section, we consider examples of aggregated data andshow how measures can be defined and
metrics deduced.

4.1. Finite sets

One of the most common examples of aggregated data is a set. Say a database has a field, F, with
values that are categorical. Now, consider aggregating data from field F fromn records,r1, r2, . . . , rn.
The result may be a set of values taken by field F for thesen records.

Given a finite set,S, thecardinality function,µc : 2S → Z ⊂ R is defined by

µc(A) = |A|.

Clearly this is a finitely additive measure on the algebra2S and, moreover, it is a strong measure. Hence
the following.

Corollary 1 If S is a finite set then the following are both metrics on2S :

1. δc
1(A,B) = |A ∪ B| − |A ∩ B| = |A \ B| + |B \ A|,

2. δc
2 =

{

0 if A = B = ∅,

1 − |A∩B|
|A∪B| = |A\B|+|B\A|

|A∪B| , otherwise.

The first metric is the usual metric for sets, the second is known as the Jaccard metric [16]. Both
have been used to cluster sets; for example, in [20], sets of support for partial classification rules were
clustered usingδc

2 in order to identify rules that were similar semantically and thereby to gain a better
understanding of the data.
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4.2. Finite sets of ordinals

Field values may be ordinal; if the values lie in a finite ordinal set,S, then there will be a function
ρ : S → R+. This may be a simple ranking function whereby theith element of the set is assignedi
or it may be a more sophisticated assignment. For example, DEGREECLASS may contain values from
1st, 2(i), 2(ii), 3rd, Pass, Fail and a simple ranking would assign these values to integers 1, 2, 3, 4, 5
and 6, respectively. An alternative assignment that perhaps better reflects their relative merit would be
to assign each classification to the average of the marks in the span. Using a UK marking scheme, this
might result in an assignment of 85, 65, 55, 45, 37, 17.5, respectively.

Let S be a finite set of ordinal data andρ : S → R+ be an injection. Then(S, 2S) is an algebra and
therank measure induced byρ is

µρ(A) =
∑

x∈A

ρ(x).

Thenµρ is a finite measure and, sinceρ > 0, µρ(A) = 0 only whenA = ∅. Thusµρ is also a strong
measure and hence the following result.

Corollary 2 If S is a finite ordinal set andρ : S → R+ is an injection then the following are both metrics
on2S :

1. δρ
1(A,B) =

∑

x∈A∪B

ρ(x) −
∑

x∈A∩B

ρ(x) =
∑

x∈A\B

ρ(x) +
∑

x∈B\A

ρ(x),

2. δρ
2(A,B) =

{

0 if A = B = ∅,

1 −

∑

x∈A∩B
ρ(x)

∑

x∈A∪B
ρ(x)

otherwise.

which is equivalent to

δρ
2(A,B) =







0 if A = B = ∅,
∑

x∈A\B
ρ(x)+

∑

x∈B\A
ρ(x)

∑

x∈A∪B
ρ(x)

otherwise.

4.3. Intervals

Let S be the interval of the real line,[a, b] say, and letΣ denote all the finite sets of subintervals of
[a, b]. A subinterval is either the empty set or may be open, closed or half open, i.e. of the form

1. (c, d) = {x | a 6 c < x < d 6 b},
2. [c, d) = {x | a 6 c 6 x < d 6 b},
3. (c, d] = {x | a 6 c < x 6 d 6 b} or
4. [c, d] = {x | a 6 c 6 x 6 d 6 b}.

Then(S,Σ) is an algebra.
The width measure is defined on any interval,I = (c, d), [c, d), (c, d], or [c, d] by

µw(I) = d − c.

Two intervals are said to bedisjoint if their union is not itself an interval. A union of a finite number of
intervals can clearly be expressed uniquely as a union of pairwise disjoint intervals. IfA is an element
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of Σ, i.e. a set of intervals in[a, b], thenÂ will represent the corresponding set of pairwise disjoint
intervals.

The functionµw can then be extended to elements ofΣ in the obvious way by defining

1. µw(Φ) = 0, and
2. for any nonempty set of intervalsA ∈ Σ, µw(A) is the sum of the widths of the pairwise disjoint

intervals inÂ, i.e.

µw(A) =
∑

I∈Â

µw(I).

This measure is finite since for any set of intervals,A in [a, b], µw(A) 6 b − a. However, since
µw{[x, x]} = 0 for anyx ∈ [a, b], it is not a strong measure.

Corollary 3 If A,B ∈ Σ denote finite sets of intervals in[a, b] then the following are both pseudometrics
onΣ:

1. δw
1 (A,B) = µw(A ∪ B) − µw(A ∩ B),

2. δw
2 (A,B) =

{

0 if A = B = ∅,

1 − µw(A∩B)
µw(A∪B) otherwise.

4.4. Regions of the Euclidean Plain

Let S be a finitely bounded, closed region ofR2. S has a finite perimeter and contains all the points
on the perimeter and in the region bounded by that perimeter.Let B denote all finitely bounded regions
within S. An element ofB is a subspace ofS and will be contained by a perimeter but may or may not
contain points on that perimeter, i.e. it may be be closed or open. Now, letΣ denote the closure ofB
under union and complement so thatΣ is an algebra.

EveryA ∈ Σ has a finite area less than or equal to the finite area ofS. The area ofA, denoted byµa(A)
provides a finitely additive measure on(S,Σ). It is not a strong measure since ifA is an open region in
S, i.e. does not contain its boundary, whilstĀ is the corresponding closed region, i.e.A together with
its boundary, thenµa(A) = µa(Ā) althoughA 6= Ā.

Area measures are of particular interest to analysts of aggregated data when applied to distributions
and to histograms.

Let I = [a, b] be an interval and letc be a positive real. ThenFa,b,c denotes the set of continuous
functions on I bounded so that

if f ∈ Fa,b,c then0 6 f(x) 6 c for all x ∈ I.

Any f ∈ Fa,b,c defines a region,Xf , bounded by the perimeter comprising four lines

1. {(x, y) | x = a, 0 6 y 6 f(a)},
2. {(x, y) | x = b, 0 6 y 6 f(b)},
3. {(x, y) | a 6 x 6 b, y = 0},
4. {(x, y) | a 6 x 6 b, y = f(x)}

as in Fig. 3.
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Fig. 3. The regionXf .

The area of the regionXf is then
∫ b

x=a

f(x)dx.

By applying the area pseudometric, the following can be deduced.

Corollary 4 The following are metrics on elements ofFa,b,c.

1.
∫ b

x=a

|f(x) − g(x)| =

∫ b

x=a

(max(f(x), g(x)) − min(f(x), g(x))),

2. 1 −

∫ b

x=a
min(f(x), g(x))

∫ b

x=a
max(f(x), g(x))

providingf, g are not both everywhere 0.

Proof:

1. The integral simply gives the value ofµa(Xf \Xg) + µa(Xg \Xf ) and hence, by Theorem 1, is a
pseudometric. However,

∫ b

x=a

|f(x) − g(x)| = 0 ⇒ f(x) = g(x) ∀x ∈ [a, b], i.e.f = g on I

and hence the integral is also a metric.
2. This follows from Theorem 2 using a similar argument.
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Fig. 4. Representing a simple histogram on{V1, V2, V3}.

4.5. Histograms

Let F be a field of a database ofn records that has been aggregated to produce a histogram. Thefield,
F, may be nominal, ordinal or real-valued. Each case will be considered separately.

4.5.1. Histograms over nominal sets
In the nominal case, the possible values in F will be finite in number. LetV denote the set of values

that are enumerated as{v1, v2, . . . , vm}. A histogram for F,H, overV is determined by

1. a partition ofV into disjoint, nonempty, subsets,V1, V2, . . . , Vk, k 6 m and,
2. for each1 6 i 6 k, a count,cH(Vi) ∈ Z+

0 , of the number of occurrences of elements inVi that
occur in field F of the database.

Commonly, but not necessarily, eachVi is a singleton set. IfH is such a histogram andVi = {vi} then
cH({vi}) may be expressed ascH(vi).

Note that in all cases

n =

m
∑

k=1

cH(Vi)

is the number of elements in the underlying database and thiswill be called thebase numberof the
histogram.

There are two ways of representing a histogram,H overV , in R2. The first provides equal width
partitions of the x-axis for each ofV1, V2, . . . , Vk and comprises a series of rectanglesRi, 1 6 i 6 k,
whereRi = [i − 1, i) × (0, cH(Vi)).

Thus, if F comprises the values 1,2,2,3,4,4 andV1 = {1}, V2 = {2, 3}, V3 = {4}, the histogram can
be represented as in Fig. 4.

However, it is also common to label the x-axis with the elements ofV1, followed by the elements ofV2,

etc. Then a rectangle,Ri, is drawn for eachVi of width |Vi| and heightc
H(Vi)
|Vi|

. For the above example
and using the listing ofV to bev1, v2, v3, v4, this results in the histogram of Fig. 5.
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Fig. 5. Representing a simple histogram on{v1, v2, v3, v4}.

Note that, with either representation, the total area of therepresentation of the histogram is its base
number.

Assume now thatH1 andH2 are two distinct histograms overV1 andV2, respectively, where|V1| = m1

and|V2| = m2. These two histograms are to be compared.
If V1 6= V2, then setV = V1 ∪ V2 and regard each ofH1 andH2 to be a histogram overV setting

cH1(V \ V1) = 0 if V \ V1 6= ∅ and, likewise,cH2(V \ V2) = 0 if V \ V2 6= ∅. Let n1 denote the
base number ofH1 andn2 denote the base number ofH2. The histograms are then scaled by setting
n = lcm(n1, n2), and multiplyingcH1(Vi) by n/n1 andcH2(Vi) by n/n2. The two histograms are then
over the same set (although not necessarily using the same partition of this set) and have the same base
number,n.

For example, consider two histograms,H1 andH2, where

1. H1 is defined over{1, 2, 3, 4} and partitions this set into the three subsetsV11 = {1}, V12 = {2, 3}
andV13 = {4} with cH1(V11) = 1, cH1(V12) = 3 andcH1(V13) = 2.

2. H2 is defined over{1, 2, 3, 4, 5} and partitions this set into the three subsetsV21 = {1, 4}, V22 =
{3, 5} andV23 = {2} with cH2(V21) = 2, cH2(V22) = 4 andcH2(V23) = 2.

In this case, the base numbers ofH1 and H2 are 6 and 8, respectively. Both can be regarded as
histogramms over{1, 2, 3, 4, 5} and their revised, scaled values are

1. cH1
s (V11) = 4, cH1

s (V12) = 12, cH1
s (V13) = 8, cH1

s ({5}) = 0.
2. cH2

s (V21) = 6, cH2
s (V22) = 12 andcH2

s (V23) = 6.

Any two histograms that are to be compared will thus be assumed to be over the same set,V , and both
to have base number,n. Let H1,H2 denote two such histograms.

If two histograms,H1 andH2 are defined over the same partition ofV into singleton sets,V =
{v1} ∪ {v2} . . . ∪ {vm} then the obvious metric to use to compareH1 andH2 is
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Fig. 6. Derived Representation of (scaled)H1.

δ(H1,H2) =
m

∑

i=1

|cH1(vi) − cH2(vi)|.

However, when the histograms use different partitions, themetric is not so immediate but is an obvious
generalisation. With respect to a histogram,H, overV , eachv ∈ V can be assigned a derived count
value

dH(v) =
cH(V H

v )

|V H
v |

,

whereV H
v is the set in the partition ofH containingv. Then the following is clear.

Corollary 5 One metric to compareH1 andH2 is simply

δ1(H1,H2) =

m
∑

i=1

|dH1(vi) − dH2(vi)|.

The two histograms,H1 andH2, can both be presented diagrammatically inR2 where they both
have an identically labelled x-axis, which will be some enumeration ofV , v1, v2, . . . , vm. Thederived
representationof histogramHi(i = 1, 2) is constructed as follows. For each label,vj , the rectangle
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Fig. 7. Derived Representation of (scaled)H2.

[j − 1, j] × [0, dH
i (vj)] is drawn. Thus ifH1 andH2 are the scaled histograms above, their derived

representations are as in Figs 6 and 7. Note that the representation necessarily has arean.
The above metric then corresponds to the first metric that canbe deduced using proposition 1 from the

area measure applied to the two histograms viewed as regionsof [0,m] × [0, n]. A second metric then
follows from Proposition 2.

Corollary 6

δ2(H1,H2) =

∑m
i=1 |d

H1(vi) − dH2(vi)|
∑m

i=1 max(dH1(vi), dH2(vi))

= 1 −

∑m
i=1 min(dH1(vi), d

H2(vi))
∑m

i=1 max(dH1(vi), dH2(vi))

is a metric. Proof:

∑m
i=1 |d

H1(vi) − dH2(vi)| is the area of the symmetric difference of the two regions de-
fined by H1 and H2 and is equal to

∑m
i=1 max(dH1(vi), d

H2(vi)) −
∑m

i=1 min(dH1(vi), d
H2(vi)).

∑m
i=1 max(dH1(vi), d

H2(vi)) is the area of the union of these two regions.
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For our example histograms, the first metric provides a distance value of

|4 − 3| + |6 − 6| + |6 − 6| + |8 − 3| + |6 − 0| = 12

and the second normalises this as

12

4 + 6 + 6 + 8 + 6
=

4

10
.

Of course, it may not have been wise to share out the count of the number of occurrences of elements of
a partition equally between the elements in that partition as was done withdH . SincedH(v) may not be
integer valued, there may be no possible database ofn elements that could give rise to such a distribution.
Also, given two histograms with different partitions but constructed from the same database, the above
metrics constructed fromdH

1 anddH
2 are quite unlikely to measureH1 andH2 as being distance zero

apart.
One might argue that a more reasonable distance measure is touse alternative derived functions

eH1 , eH2 , which are both integer valued and are such that

1. If the partition ofH1 is V11, V12, . . . , V1k1 then
∑

v∈V1j

eH1(v) = cH1(V1j) for all 1 6 j 6 k1.

2. If the partition ofH2 is V21, V22, . . . , V2k2 then
∑

v∈V2j

eH2(v) = cH2(V2j) for all 1 6 j 6 k2.

3. Subject to the above,

δmin(H1,H2) =
m

∑

i=1

|eH1(vi) − eH2(vi)|

is minimised.

Note, such a distance measure may not itself be a metric sinceit may not satisfy the triangle inequality.
However, if two histograms are constructed from the same database, they will necessarily be distance zero
apart as measured byδmin. This distance measure can be computed using a maximum flow algorithm.
A network is constructed as follows.

1. There is a source node labelled,S, and from this node, directed edges go to nodes labelled,
V11, V12, . . . , V1k1 , where the arc fromS to V1j has capacitycH1(V1j) for all 1 6 j 6 k1.

2. There is a node labelled with eachv ∈ V and, for each node labelledV1j, 1 6 j 6 k1, there are
directed edges to eachv ∈ V1j ; these edges all have capacitycH1(V1j).

3. There are nodes labelled,V21, V22, . . . , V2k2 and, for eachV2j , 1 6 j 6 k2, there are directed edges
from eachv ∈ V2j ; these edges all have capacitycH2(V2j).

4. There is a sink node labelledT , and directed edges go to the nodeT from nodes labelled,
V21, V22, . . . , V2k2 , where the arc fromV2j to T has capacitycH2(V2j) for all 1 6 j 6 k2.

As a simple example, consider two histogramsH1 andH2, where

1. V11 = {a, b}, V12 = {c, e}, V13 = {d},
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Fig. 8. Constructed network.

2. V21 = {a, d}, V22 = {b}, V23 = {c}, V24 = {e},
3. cH1(V11) = 10, cH1(V12) = 20, cH1(V13) = 30, and
4. cH2(V21) = 20, cH2(V22) = 16, cH2(V23) = cH2(V24) = 12.

The network constructed is then as in Fig. 8.
Let F denote the maximum flow that can be put through such a network for arbitraryH1,H2 from the

source node to the sink node. This can be computed inO(m2) time using the well known Ford-Fulkerson
maximum flow algorithm [18]. For the example of Fig. 8, F is 50.One possible maximum flow is given
in parentheses alongside the arcs in Fig. 8 and it can be seen that this is a maximum flow since{S, V13, d}
are separated from the remaining nodes by edges that are saturated.

Theorem 3. δmin(H1,H2) = 2(n − F ).

Proof:
Consider the maximum flow,F and let the flow through the node labelledv be f(v). For each

V1j , 1 6 j 6 k1, if
∑

v∈V1j
f(v) = cH1(V1j) then setgH1(v) = f(v) for all v ∈ V1j . Otherwise
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∑

v∈V1j
f(v) < cH1(V1j and then select an arbitrary element,a1j ∈ V1j , and assigngH1(a1j) =

f(a1j) + cH1(V1j) −
∑

v∈V1j
f(v) > f(a1j , whilst settinggH1(v) = f(v) for all v ∈ V1j \ {a1j}.

Similarly, For eachV2j , 1 6 j 6 k2, if
∑

v∈V2j
f(v) = cH2(V2j) then setgH2(v) = f(v) for all

v ∈ V2j ; otherwise select an arbitrary element,a2j ∈ V2j and assigngH2(a2j) = f(a2j) + cH2(V2j) −
∑

v∈V2j
f(v) whilst settinggH2(v) = f(v) for all v ∈ V2j \ {a2j}. Then,

∑

v∈V1j

gH1(v) = cH1(V1j) for all 1 6 j 6 k1

and
∑

v∈V2j

gH2(v) = cH2(V2j) for all 1 6 j 6 k2.

Note also that for all nodes labelledv ∈ V ,

min(gH1(v), gH2(v)) = f(v)

since if there is any node where that does not occur, the flow through that node can be increased. For
eachV1j , if

∑

v∈V1j
f(v) < cH1(V1j then there is some arbitrary element ofV1j whosegH1 value

has been increased to take up the slack, viz.CH1(V1j) −
∑

v∈V1j
f(v). The total slack across all sets

V11, V12, . . . , V1k1 is n − F . This also applies to setsV21, V22, . . . , V2k2 and hence
∑m

i=1 |g
H1(vi) −

gH2(vi)| = 2(n − F ).
All that is now needed to be established is that

∑m
i=1 |e

H1(vi) − eH2(vi)| is minimised by
g. Say it was not and that there is some other choice of functions, hH1(vi), h

H2(vi) that satify
∑

v∈V1j
hH1(v) = cH1(V1j) for all 1 6 j 6 k1 and

∑

v∈V2j
hH2(v) = cH2(V2j) for all 1 6 j 6 k2

but where
∑m

i=1 |h
H1(vi) − hH2(vi)| <

∑m
i=1 |g

H1(vi) − gH2(vi)|.
Now, setf ′(vi) = min(hH1(vi), h

H2(vi)) and consider a flow,F ′, through the network wheref ′(vi)
passes through nodevi. This will be a valid flow through the other nodes of the network as well.
∑m

i=1 |h
H1(vi)−hH2(vi)| 6 2(n−F ′) so2F ′ > 2n−

∑m
i=1 |g

H1(vi)−gH2(vi)| > 2n−
∑m

i=1 |e
H1(vi)−

eH2(vi)| = 2F and this is a contradiction since F is a maximum flow. The theorem is thus established.
Returning now to the above simple example. If the derived values,d are used thenδ(H1,H2) =

|5 − 10| + |5 − 16| + |10 − 12| + |30 − 10| + |10 − 12| = 40. However, constructing the flow network
of Fig. 8, the maximum flow is found to be 50, comprising (say) aflow througha of 0, throughb of 10,
throughc of 10, throughd of 20 and throughe of 10. Hence,δmin(H1,H2) = 2(60–50)= 20. This could
arise ifH1 was a histogram for a database with 0 occurrences ofa, 10 occurrences ofb, 10 occurrences of
c, 30 occurrences ofd and 10 occurrences ofe andH2 was a histogram for a database with 0 occurrences
of a, 16 occurrences ofb, 12 occurrences ofc, 20 occurrences ofd and 12 occurrences ofe.

4.5.2. Histograms on ordinal sets
If a histogram,H, is over an ordinal field, F, with values in a finite ordered set, V , then there is

an injective ranking functionρ : V → R+. A histogram is then based on a partitioning ofV into
subsetsV1, V2, . . . , Vk for somek > 1. In the case whereV is ordinal, v ∈ Vi andw ∈ Vj must
satisfy i < j ⇔ ρ(v) < ρ(w). The elements ofV are assumed to be ordered by theirρ-value, i.e.
vi < vj ⇔ ρ(vi) < ρ(vj), and then, for each1 6 i 6 k, Vi = {vli , vli+1, . . . , vri

}, where
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1. vl1 = v1 andvrk
= vm,

2. vri+1 = vli+1
for 1 6 i < k.

A histogram overV = V1 ∪ V2 . . . ∪ Vk will then assign a count,cH(Vi) ∈ Z+
0 for each1 6 i 6 k, of

the number of occurrences of elements inVi that occur in field F of the database.
As in Subsection 4.5.1, the assumption is made when comparing two histograms,H1,H2, on ordinal

sets that both histograms have been scaled if necessary so that they both have the same base number,n,
and are both defined over the same set,V .

The fact thatV is ordered can be ignored and, if wished,V can be treated as nominal data. Hence
the two metrics of Corollaries 5 and 6 can be used on histograms over ordinal sets. However, such
metrics do not exploit the ordering; to do so, a cumulative histogram should be constructed. IfH is a
histogram over an ordinal set, thecumulative histogram, H̄, corresponding toH has the same partition
V1, V2, . . . , Vk asH but has count

cH̄(Vi) =

i
∑

j=1

cH(Vj).

For example, in Fig. 9,H1 andH2 are two histograms on an ordered setV = {v1, v2, . . . , v6}. H1

partitionsV into {v1, v2}, {v3, v4, v5} and{v6}. H2 partitionsV into {v1, v2, v3}, {v4} and{v5, v6}.
H̄1 andH̄2 are their corresponding cumulative histograms.

If H is a histogram over an ordinal setV = {v1, v2, . . . , vm}whereV is partitioned intoV1∪V2 . . .∪Vk

then, as for nominal data, a derived count can be computed foreachvi ∈ V ,

dH(vi) =
cH(Vf(i))

|Vf(i)|
,

whereVf(i) is the set in the partition that containsvi. Thederived cumulative countfor vi, 1 6 i 6 m,
is then

dH
c (vi) =

{

pi

|V1|
cH̄(V1) if f(i) = 1,

cH̄(Vf(i)−1) + pi

|Vf(i)|
cH(Vf(i)) otherwise,

wherevi is thepith element ofVf(i). A simple induction argument can be used to show that the following
result holds.

Proposition 3 dH
c (vi) =

∑i
j=1 dH(vj).

If H1 andH2 are histograms over an ordinal set,V , two new metrics can be deduced by applying
Corollaries 5 and 6 to the histogramsH ′

1 andH ′
2, both with partition{{v1}, {v2}, . . . , {vm}} and with

countsdH1
c (vi), d

H2
c (vi), respectively. This gives the following result.

Corollary 7 If H1 andH2 are histograms over an ordinal set,V = {v1, v2, . . ., vm}, then the following
are metrics:

1.

δ3(H1,H2) =
m

∑

i=1

|dH1
c (vi) − dH2

c (vi)|
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Fig. 9. Two histograms and their correponding cumulative histograms.

=

m
∑

i=1

|
i

∑

j=1

dH1(vj) −
i

∑

j=1

dH2(vj)|.

2.

δ4(H1,H2) = 1 −

∑m
i=1 min(dH1

c (vi), d
H2
c (vi))

∑m
i=1 max(dH1

c (vi), d
H2
c (vi))

= 1 −

∑m
i=1 min(

∑i
j=1 dH1(vj),

∑i
j=1 dH2(vj))

∑m
i=1 max(

∑i
j=1 dH1(vj),

∑i
j=1 dH2(vj))

.
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As an example, consider the two histograms,H1 andH2 of Fig. 9. The derived cumulative counts for
H1 for the 6 elementsv1, v2, v3, v4, v5 andv6 are 4, 8, 11, 14, 17, 20, respectively and forH2 they are 2,
4, 6, 10, 15, 20. Hence

δ3(H1,H2) = 2 + 4 + 5 + 4 + 2 + 0 = 17

and

δ4(H1,H2) = 1 −
2 + 4 + 6 + 10 + 15 + 20

4 + 8 + 11 + 14 + 17 + 20
=

17

74
.

4.5.3. Histograms on intervals of the real line
If a field, F, is real-valued with values in the rangeI = (a, b], a histogram,H, overI then comprises

1. a partition of the intervalI into subintervalsI1 = (l1, r1], I2 = (l2, r2], . . ., Ik = (lk, rk] where
l1 = a, rk = b andri = li+1 for 1 6 i 6 m − 1,

2. for each interval,Ii, 1 6 i 6 k, a countcH(Ii) ∈ Z+
0 of the number of occurrences of elements of

F that lie inIi.

Consider two interval histograms,H1 over(a, b], andH2 over(c, d]. Both can be regarded as acting
over the same interval,(min(a, c),max(b, d)], by setting

1. cH1(c, a] = 0 if c < a andcH2(a, c] = 0 if a < c,
2. cH1(b, d] = 0 if b < d andcH2(d, b] = 0 if d < b.

By applying a scaling function

x 7→
x − min(a, c)

max(b, d) − min(a, c)
,

it can then be assumed that both histograms are over(0, 1]. This will be assumed to have been done for
any histograms that are to be compared. Moreover, it will be assumed that the base number,n, is also
the same.

For any histogram,H over(0, 1], thecumulative distribution functionassociated withH is defined as
a continuous line from(0, 0) to (1, n) such that,

1. over the segment,I1 = (0, r1], it corresponds to the straight line joining(0, 0) to (r1, c
H(I1)), and

2. for 1 < i 6 k over the segment,Ii = (li, ri], it corresponds to the straight line joining
(ri−1,

∑i−1
j=1 cH(Ij)) to (ri,

∑i
j=1 cH(Ij)).

The cumulative distribution function associated withH will be denoted byfH .
Figure 10 gives two histograms over (0,1] together with their cumulative distibution functions.H1

partitions(0, 1] into (0, 1
2 ] and(1

2 , 1]; H2 partitions(0, 1] into (0, 1
3 ], (1

3 , 2
3 ] and(2

3 , 1]; cH1(0,
1
2 ] = 10,

cH1(
1
2 , 1] = 6, cH2(0,

1
3 ] = 8, cH2(

1
3 , 2

3 ] = 2, cH2(
2
3 , 1] = 6.

Corollary 8 If H1,H2 are histograms over the interval(0,1] then the following are metrics

1.

δI
1(H1,H2) =

∫ 1

0
|fH1(x) − fH2(x)|

=

∫ 1

0
(max(fH1(x), fH2(x)) − min(fH1(x), fH2(x))),
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Fig. 10. Two histograms over(0, 1].

2.

δI
2(H1,H2) = 1 −

∫ 1
0 min(fH1(x), fH2(x))

∫ 1
0 max(fH1(x), fH2(x))

.

Proof: Both results follow immediately from Corollary 4. The first of these metrics is known as the
Wasserstein metricand is the usual metric for comparing histograms on intervals, see, e.g. [5,14].

To computeδI
1(H1,H2), the points of intersections offH1(x) andfH2(x) need to be found and then

the integral is simply the sum of the differences of areas of trapezia. For example, referring to Fig. 10,
the functionsfH1(x) andfH2(x) are superimposed in Fig. 11. These two lines only intersect at a single
point in (0, 1] other than(1, 1), i.e. the point of intersection of the line joining(0, 0) with (1

2 , 10) with
the line joining(1

3 , 8) and(2
3 , 10), viz. (2

7 , 4
7 ). The Wasserstein metric in this case can be computed by

computing the difference between the areas of two trapezia in each of the five regions shown. In general,



V.J. Rayward-Smith / Measure based metrics for aggregated data 129

Fig. 11. The intersection offH1
andfH2

.

if H1 hask1 intervals andH2 hask2 intervals, the number of intersection points is at mostmin(k1, k2).
The Wasserstein metric can thus be computed inO(k3) time wherek = max(k1, k2).

5. Conclusions and topics for further research

Two pseudometrics, one of which is normalised, have been shown to exist on an algebra,(S,Σ),
over which a finitely additive measure,µ, is defined. Provided the measure is strong, both of these
pseudometrics have been shown to be full metrics. The first ofthese metrics is known in the measure
theory literature. The normalised version appears to be new.

From these results, metrics or pseudometrics have been deduced for aggregated data in the form of
sets, intervals and histograms. Neither of the metrics deduced for nominal sets is new but the second
metrics for ordinal sets does appear to be new. The first widthmetric for intervals is known but again
the normalised version has not been found in the literature.

With histograms, it is important to distinguish between histograms over nominal sets, over ordinal
sets and over intervals of the reals. The metrics discussed here act on histograms that do not necessarily
assume the base set has been partitioned in the same way in both of the two histograms being compared.
For histograms over nominal sets, Corollary 6 gives a novel normalised metric. Theorem 3 provides a
lower bound on the similarity of two histograms and is new. Finding a similar bound in the ordinal case
is an open problem. Of the two metrics for histograms over ordinal sets given in Corollary 7, the first is
the obvious one and, once again, it is the second, normalisedmetric that appears to be new. This is also
the case for histograms over intervals of the real line wherethe first metric is the Wasserstein metric and
the normalised metric appears to be new.

Aggregated data arises following a summarisation process of large databases and may be used as a way
of hiding sensitive information on individuals or may be purely part of an analysis process. Important,
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strategic planning decisions can result from the comparison of groups described by aggregated data and
a key step in this is to define metrics to measure the difference between aggregated data items relating to
two different groups. Normalised metrics have an obvious appeal and, in this paper, a unified theory and
notation has been developed from which they can be deduced. Given two groups of individuals, each
may have a number of fields, each describing aggregated data.The difference between any two fields
can be now be measured but how these differences are best combined to produce a fair and honest, single
measure of the difference betwreen the two groups remains a topic for research.
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