Autonomous Adaptive Agents for Single Seller Sealed Bid Auctions

Bagnall, Anthony and Toft, Iain E. (2006) Autonomous Adaptive Agents for Single Seller Sealed Bid Auctions. Journal of Autonomous Agents and Multi-Agent Systems, 12 (3). pp. 259-292. ISSN 1387-2532

Full text not available from this repository. (Request a copy)

Abstract

In developing open, heterogeneous and distributed multi-agent systems researchers often face a problem of facilitating negotiation and bargaining amongst agents. It is increasingly common to use auction mechanisms for negotiation in multi-agent systems. The choice of auction mechanism and the bidding strategy of an agent are of central importance to the success of the agent model. Our aim is to determine the best agent learning algorithm for bidding in a variety of single seller auction structures in both static environments where a known optimal strategy exists and in complex environments where the optimal strategy may be constantly changing. In this paper we present a model of single seller auctions and describe three adaptive agent algorithms to learn strategies through repeated competition. We experiment in a range of auction environments of increasing complexity to determine how well each agent performs, in relation to an optimal strategy in cases where one can be deduced, or in relation to each other in other cases. We find that, with a uniform value distribution, a purely reactive agent based on Cliff’s ZIP algorithm for continuous double auctions (CDA) performs well, although is outperformed in some cases by a memory based agent based on the Gjerstad Dickhaut agent for CDA.

Item Type: Article
Faculty \ School: Faculty of Science > School of Computing Sciences
Depositing User: Vishal Gautam
Date Deposited: 19 May 2011 09:23
Last Modified: 21 Apr 2020 19:38
URI: https://ueaeprints.uea.ac.uk/id/eprint/22728
DOI: 10.1007/s10458-005-4948-2

Actions (login required)

View Item View Item