
 

Abstract — The ensemble paradigm for machine learning has
been studied for more than two decades and many methods,
techniques and algorithms have been developed, and
increasingly used in various applications. Nevertheless, there
are still some fundamental issues remaining to be addressed,
and an important one is what factors affect the accuracy of an
ensemble, and to what extent they do, which is thus taken as the
main topic of this paper. The factors studied include the
accuracy of individual models, the diversity among the
individual models in an ensemble, decision-making strategy, and
the number of the members used for constructing an ensemble.
This paper firstly describes the conceptual and theoretical
analyses on these factors, and then presents the possible
relationships between them. The experiments have been
conducted by using some benchmark data sets and some typical
results are presented in the paper.

I. INTRODUCTION

N ensemble in the context of machine learning can be
broadly defined as a machine learning system that is
constructed with a set of individual models working in

parallel and whose outputs are combined with a decision
fusion strategy to produce a single answer for a given
problem. The models can be classifiers, predictors or filters,
depending on the type of task – classification, prediction,
regression or clustering, that the ensemble is designed to do.
The rational behind the ensemble approach is based on the
bare fact that no individual models can be perfectly
developed for solving non-trivial real world problems.
It is common nowadays to employ some inductive machine
learning algorithms to induce models, e.g. decision trees,
neural nets or other models, from data quickly at a relatively
low cost to build ensembles. Based on the mechanisms of
construction and operation, the performance of an ensemble
can be evaluated in terms of complexity, reliability and
accuracy. Complexity is concerned with the computational
time and memory space required and can be measured in the
usual ways, but is a not major issue because computing
power and resources can generally cope with most
applications except extremely large and complex problems,
thus it will be not covered in this paper. Reliability of an
ensemble is about how reliable are the answers produced by
ensembles, and may be measured by the probability that r
models chosen randomly from an ensemble fail or succeed
on randomly selected test data. However, in practice, it is the

Manuscript received on 12/12/2007. This work was partly supported by
the grants from EPSRC (GR/86041/01) and ESRC (RES-000-22-0874).

W. Wang is a senior lecturer with the School of Computing Sciences,
University of East Anglia, Norwich UK (wjw@cmp.uea.ac.uk).

accuracy that people are most interested in, and achieving a
higher accuracy is, in fact, the main motivation for using
ensemble methods. This paper therefore will focus on
investigating how the accuracy of an ensemble is influenced
by what factors, and the extent of their influence.
The rest of this paper is organized as follows. The next
section describes the representation of a generic ensemble,
the factors that may influence the accuracy of an ensemble,
and briefly summarizes the related work. Section III
describes the diversity measures. Section IV: the accuracy of
individual models; Section V: the number of models in
ensemble, and Section VI; the experiments and results. The
summary and conclusion are given in the final section.

II. ENSEMBLE METHODS

A. Generic inductive ensemble

As mentioned before, a generic ensemble can be simply
viewed as a computing system built with N individual models
trained from data by using one or several machine learning
algorithms. Without losing generality, for a given problem
with an unknown target function F(x), a model mi can be
trained by a learning algorithm to approximate F(x). Then,
we can represent this implementation of model mi as a
function fi that estimates F(x):

F(x) = fi(x) + εi(x) (1)

where, x =[x1 x2 …xn] denotes the input vector of n variables
and εi is the error between the target and the output of mi.
N models {m1, m2, … mN} need to be generated, with some
variations, to give N approximated functions {f1, f2, … fN}
respectively for building an ensemble V. These models can
work in parallel when presented simultaneously with unseen
data and each produces its own output independently. These
individual outputs are combined by a decision fusion strategy
to produce the final output f(x,V) of the ensemble. Voting
and Averaging are two commonly used decision fusion
strategies. The averaging strategy suits the system in which
the outputs of models are continuous, i.e.
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Voting strategy is appropriate for the models whose outputs
f(x,v) are categorical for classification problems and should
be an index of K possible classes. The ensemble system
decision can be determined by:
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Where cj is the count of the output of N models for the jth
class, and gj()=1 if f(x,m)=j, g()=0 otherwise. The number of
models in an ensemble, N, should be set to an odd number to
avoid ties when the voting strategy is used. The function
argmax returns a class label that has the largest value among
{c1, c2, …,cK}.

A. Analysis on Ensemble Performance

The performance of ensemble can be evaluated from
different points of views depending on the objective of the
study, and this paper focuses on the accuracy or error of
ensemble and the factors that may influence the accuracy or
error. The concept of decomposition of the classification
error in the similar manner used in liner regression error
analysis was introduced to decompose the error of a model
into bias and variance [1]. The bias term is a measure of
closeness between the function f(x) represented by a
classifier model and the target function F(x); and the
variance term measures the output difference between the
models in an ensemble, which may be viewed a kind of
diversity among the models. These two terms are useful in
evaluating the performance of learning algorithms used for
inducing models. But, when applied in the real world, their
effectiveness appears to be limited by the fact that the target
function is unknown for most data-defined problems.
Besides, they only measure the error of the ensemble and
differences among its member models, but unable to give any
information on what factors may cause these errors and
variance and how. Being able to measure error is important
but knowing the causes is even more important since once
we know what factors, in what way (either positive or
negative) and to what extent, influence the accuracy of
ensemble, we will be able to work on these causes to
improve the accuracy. It is therefore essential to carry out
further investigations in this regard.

B. Influencing Factors

Theoretically, the accuracy of an ensemble V, denoted by
acc(V), can be influenced by the factors involved in the
construction and operation of an ensemble, including N the
number of models in the ensemble, acc(mi) - the accuracy of
the individual models mi (for i=1 to N), D - diversity among
the models, S - the decision fusion strategy used in the
ensemble. In general, the relationship between the accuracy
of ensemble and these factors can be denoted by a function
f() below:

( ) ( )( )NSDtoNimaccfVacc i ,,},1{ =∀= (4)

As stated earlier, the aim of this work is to investigate the
effects these factors have on the accuracy of an ensemble.
However, this is not an easy task because these factors are
tightly coupled with each other, which means, whilst trying
to analyze and quantify the impact of one particular factor on
ensemble accuracy, the other factors cannot be excluded
from the analysis and they themselves may be affected, and
their changes can affect the ensemble’s performance and
therefore trigger a chain of interactions. This inter-influence
nature makes the analysis on all the factors simultaneously as
a whole extremely difficult. Thus, some strategies and tactics

must be devised in investigation. One simple strategy is that,
even when these factors are inseparable in the operation of
an ensemble, the influence from one factor may be reduced
to minimum or kept as constant (known or unknown) while
investigating another.
In this study, three specific tactics are devised to explore (1)
the relationships between the ensemble accuracy and
diversity among the individual classifiers, acc(V)=f(D |
(acc(mi), N, S)), given that accuracy of individual models
acc(mi) is known or bound at the lower end, and N and S are
fixed; (2) the relationships between the ensemble accuracy
and the accuracy of individual models, assuming that N, D
and S are known and constant or limited to a certain range,
i.e. acc(V)=f(acc(mi)|(N,D,S)); (3) the relationship between
the ensemble accuracy and the number of models used in an
ensemble, assuming that the other factors: accuracy of
individual classifiers acc(mi), diversity D and decision fusion
strategy S, are known or fixed ideally, i.e. acc(V) = f(N |
(acc(mi),D, S)). The experiments were carried out by using
data sets from the UCI data repository but only some results
are presented in the paper due to the limit of space.

C. Related Work

Many techniques and algorithms have been developed to
build ensembles for different applications. Bagging [2],
Boosting [3], Adaboost [4], Wang’s Hybrid ensemble [5, 6]
of neural nets and decision trees, are just some of relatively
popular methods devised with a consideration of introducing
diversity into ensemble. Breiman’s Random Forests [7]
attempts to introduce diversity into ensemble by selecting the
features at random when inducing decision trees.
The performance of various ensembles has also been studied
by many researchers [6, 8, 9, 10, 11 and 12]. The findings
from the previous studies can be simply summarized as that
an ensemble will be beneficial when its member models have
accuracy more than a random guess and are diverse enough
from each other. However, several critical issues remain
open including: (i) of many existing definitions of diversity
measure, which one is more effective? And for which
definition and at what extent a diversity value is enough? (ii)
How reliable is the answer produced by an ensemble and
how to estimate the reliability of an ensemble? (iii) What are
the possible relationships between ensemble accuracy and
the other factors above mentioned. This paper attempts to
draw some more research attentions to these issues by
exploring some fundamental aspects related to them.

III. ENSEMBLE DIVESITY

Diversity is usually considered as a quantified estimate of the
difference of making the same errors among models in an
ensemble. There are many diversity definitions and ways to
evaluate diversity. One type of diversity is estimated through
probability analysis on the N models (in an ensemble) that
disagree simultaneously in decision-making.
There are as many as dozens of different definitions of
diversity proposed from different points of view and
formulations. Basically they can be classified into two
categories in terms of the difference measured between the
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models, pair-wised and non-pair-wised. The effectiveness of
some common ones were summarized in [13] and further
evaluated by Bian and Wang [14]. One of their conclusions
is common, that is, because the pair-wised diversity measures
only consider the difference between two models, the pair-
wised definitions are not effective in measuring diversity and
show no or little relation with the accuracy of the ensemble
and thus are not useful.
In practice people are more interested to know, given an
ensemble of N models, what is the probability that all the
models fail on test data coincidentally. Partridge et al [10]
defined this probably as the Coincident Failure Diversity
(CFD) and pointed out that there can be two types of
coincident failure diversity, i.e. the CFD among the models
in an ensemble, named the intra-Coincident Failure
Diversity, and the diversity between the ensembles, named
the inter-ensemble diversity. As they will be used and
evaluated in this study we give their definitions. It will also
be useful to give a brief description on the reliability
measures of ensemble as they will be used in formulating the
diversity measures.

A. Ensemble reliability

Ensemble reliability can be considered as the probability that
any randomly chosen models from a given ensemble of N
models (or classifiers) give a correct answer on randomly
selected test data. We can estimate this probability by
calculating the failure probability of a given number of
models drawn from an ensemble. Specifically, we can work
it out in the following manner.
Firstly, we define qn the number of examples (from a test
data set of Q samples) that fail on exactly n models in
ensemble V. Then the probability pn - exactly n models fail
on randomly selected test data can be calculated by:

(5)

Then, the probability that r randomly chosen classifiers fail
on a randomly chosen input can be estimated by:

(6)

So the probability that r models succeed on a randomly
chosen data sample will be 1 - p(r).
Furthermore, the stability of an ensemble can be represented
by the probability that any q models taking from a subgroup
of n models from a given ensemble will produce correct
answer if the simple voting strategy is used in determining
the decision. For example, given a subgroup of 3 models
from randomly an ensemble of N models, we may want to
know the probability that 2 out of these three will give the
right answer, or the probability that 1 out of 3 gives the right
answer. They can be simply denoted p(2/3) and p(1/3)
respectively.

B. Intra-ensemble Coincident–Failure Diversity (CFD)

For a given ensemble of N-models, the CFD is defined as the
probability that the models fail simultaneously.
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CFD∈[0, 1]. When CFD = 0, it indicates either that the
failures are the same in all the models - hence there is no
diversity, or no test failure at all, i.e. all the models are
perfect and identical - hence no diversity (in this case there is
no need for diversity because a perfect model has been
found). CFD = 1 when all the test failures are unique to one
model, the ensemble is perfect and always produce the
correct answer when the majority-voting strategy is applied.

C. Inter-Ensemble Diversity

In ensemble applications, sometimes many ensembles may
be constructed with different variations. Then it is helpful to
know how much difference exists between the ensembles, or
the models from different ensembles that fail on a randomly
selected input simultaneously. Extending the earlier CFD
measure to two ensembles A and B, the coincident failure
diversity CFDAB [10] between A and B can be defined as
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Where pij is the joint probability that i models from A and j
models from B simultaneously fail on a randomly chosen
input. CFDAB ≡ 0 when p00=1 or pNANB=1. CFDAB = 1 when
the two ensembles are said to have maximum diversity. The
measure can be extended to multiple ensembles.

D. Minority-failure diversity (MFD)

However, based on our research, we believe that an effective
diversity measure must be defined in relation to the decision-
making strategy of the ensemble system. For example, if one
ensemble uses averaging as its decision fusion strategy (i.e.
the ensemble’s output is determined by calculating the
average of all the individual outputs of member models). In
such a case, there is no point in measuring the diversity
between the member models as the final output is always the
average of the member models’ outputs. Conversely, if one
uses the simple-majority voting method as the ensemble’s
decision fusion strategy, in such a case, it will be very vital
to know the probability that the majority of the models in an
ensemble do not make the same error coincidently. So, we
believe that a more effective diversity measure should
somehow reflect the difference in this regard. We therefore
introduced a diversity measure that estimates a kind of
difference exists among the models of an ensemble in the
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right places so that only a minority of the models fails on the
given test data and the majority produces the right answer.
Thus when the simple-majority voting strategy is applied, the
ensemble is able to take the answer of majority models as its
final decision. So, the majority-correct probability or
minority-failure diversity (MFD), can be defined as:
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Compared with the non pair-wised diversity definitions,
this measure is intuitively easier to understand and interpret
as it is derived directly from a commonly used decision
making strategy, i.e. simple majority voting and is also
mathematically simple to compute.

It is generally acknowledged that diversity among the
models plays a key role in making the ensemble approach
beneficial when the individual models are less than perfect.
If there is no diversity between the member models in an
ensemble, it will not improve accuracy and then there will be
no need to build such ensembles. On the other hand, if the
ideal diversity is somehow achieved among the member
models in an ensemble, this ensemble shall always produce
the correct answer. However, in reality, it will be extremely
difficult to achieve the ideal or maximum diversity. So, given
the facts that (1) no perfect individual models can be
generated and (2) no maximum diversity achieved, then the
critical questions that should be asked include: what
accuracy of individual models and what diversity value are
sufficient to make a better ensemble? These issues will be
analyzed and discussed in the next sections.

IV. ACCURACY OF INDIVIDUAL MODELS

When considering the influence of the accuracy of
individual models on the accuracy of an ensemble, we can
conceptually estimate it with respect to several different
conditions classified simply as: all the models have identical
or similar accuracy and the lower bound of their accuracy is
higher than the default accuracy, or the higher bound of their
accuracy is lower than the default accuracy.

A. The lower bound of accuracy

As researchers have pointed out, when the accuracy of the
individual models in an ensemble is better than a random
guess, the ensemble should be able to improve the accuracy
if these models are diverse enough from each other. This
random guess or default accuracy can then be used as the
accuracy lower bound to the individual models when
selecting models for building an ensemble. The accuracy
lower bound acclb for a classification task varies with the
number of target classes of problem and can then be
estimated by:

(10)

Where,. The relationship between K - the number of the
target classes, and the accuracy lower bound is shown in

Figure 1. For dichotomous classification problems, where
K=2, acclb = 0.5.
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Figure 1. The accuracy lower bound for individual
models with respect to the number of target classes.

B. When acc(mi) >= accuracy lower bound acclb

When the lowest accuracy of the individual models in an
ensemble is higher than or equal to the lower bound acclb
defined as above, and all the others have the same or slightly
higher accuracy, then the accuracy of the ensemble will be
determined by three factors: diversity D, the number of the
models N and decision fusions strategy S.
In such a case, when the simple majority voting strategy is
applied, the range of the accuracy of the ensemble shall be
bounded by acclb <= acc(V) <= 100%, and the actual
accuracy of the ensemble will also be influenced by the
diversity and number of the models in the ensemble.
When the models are identical, it is the worst case because
there is no diversity among them at all, i.e. D=0. Thus, if one
model makes a mistake all the others make the same mistake
as well. So the ensemble acts the same way as any individual
model does, the number of models becomes irrelevant, and
the ensemble’s accuracy is equal to any individual one’s,
acc(V) = acc(mi).
When models are different and have some diversity, D>0,
then the accuracy of the ensemble can be improved. The
degree of improvement will be determined by the degree of
diversity and the number of the models in the ensemble, but
usually not linearly proportional.
The best case is obviously that, when the maximum diversity
exists among its member models, the ensemble should be
100% accurate, given that the number of the models is
sufficient. Figure 2 depicts the range of the accuracy of an
ensemble that consists of 3 models (i.e. N=3) against the
accuracy of individual models when maximum diversity
exists. It shows that when the maximum diversity does exist,
if the individual models have accuracy equal to or higher
than, the majority threshold (2 out of 3, 66.7% in this case),
then the ensemble will be 100% accurate. Conversely, if the
accuracy of individuals is lower than the majority threshold,
then the ensemble cannot possibly achieve 100% accuracy,
and its accuracy will be bounded by the region shown in the
figure.
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Figure 2. Accuracy range of ensemble of 3 models against
the accuracy lower bound of individual models.

If one wants to improve ensemble accuracy but the accuracy
of individuals has been trained to a stable region (but not
over-trained), then increasing the number of models may
offer some benefits. The relationship between the accuracy
of the individual models and the number of models in an
ensemble will be analyzed and depicted in the next section

C. When the accuracy of individual models < acclb

When the highest accuracy of the individual models in an
ensemble is lower than the accuracy lower bound acclb, then
the accuracy of the ensemble should be bounded by 0 <=
acc(V) <= 2acc(m). The reasons are explained as follows.
In such cases, the diversity issue becomes more complicated
as all the existing definitions are unable to represent and
differentiate the different types of differences among the
individual models. Basically, there can be two kinds of
diversity existing among the models in an ensemble, which
can be defined as destructive and constructive diversity, or
negative and positive diversity respectively. The destructive
diversity is reflected by the difference among the individual
models that, when a voting strategy is employed, the number
of wrong answers can become dominant and the ensemble
then produces more wrong answers than any individual
model. The worst scenario is that the wrong answers
produced by the models may always win in voting so that the
ensemble as a whole cannot produce any correct answer at
all, i.e. acc(V)=0%, the lowest accuracy. When there is no
diversity among the models, i.e. all the models are identical,
the ensemble will have the same accuracy as any of
individuals, i.e. acc(V)=acc(m).
On the other hand, when the constructive diversity exists
among the models and this type of diversity can make the
ensemble more accurate than individuals. The upper bound
of the accuracy of ensemble will be achieved when the
maximum constructive diversity exists among the models.
The actual value of the upper accuracy also depends on the
accuracy of individual models and will be analyzed for
dichotomous classification problems below.

D. When the accuracy of individual models < 50%

For Boolean classification problems, the default accuracy is
½, i.e. 50%, which is set as the upper bound of accuracy of
individual models in this case. Then, if the models in an
ensemble V have maximum constructive diversity, then the
highest accuracy an ensemble can achieve is bounded by:
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This simply indicates that the maximum accuracy of an
ensemble V may theoretically reach to as much as twice the
accuracy of the models in V iff they have ideal diversity.
Figure 3 depicts the relationships between the accuracy of an
ensemble and the minimum number of the models required
to build an ensemble, given different accuracy lower bounds
(from 50% down to 25%) of the models and ideal
constructive diversity among them.

This shows that, in principle, even if the accuracy of
individual models is less than the accuracy lower bound, the
ensemble is still able to improve its accuracy, provided that
the models are constructively diverse enough. Nevertheless,
this may not have much use in practice because it is very rare
that individual models cannot be trained to achieve accuracy
higher than the random guess or lower bound, given that the
available data are reasonably sufficient. The point is that, in
case where the data are difficult to collect and the available
data are not enough to train the individual models to be more
accurate than the lower bound, then the ensemble approach
may still be capable of improving accuracy if the models are
sufficiently constructively diverse.
We have up to now presented some theoretical analysis on
the influence of the accuracy of individual models on the
accuracy of an ensemble and given the lower bound and
higher bound of accuracy of ensemble under different
conditions. Some computational experiments have been
conducted in these respects and the results will be presented
in the latter sections. Nevertheless, more mathematical
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Figure 3. The relations between the accuracy of
ensemble and individual models and the number of
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analysis should be conducted in the future to consolidate
these findings.

V. NUMBER OF MODELS IN ENSEMBLE

This section attempts to quantify the influence of the number
of the models used in building an ensemble and the accuracy
of the ensemble. Many empirical studies [9, 11, 12, 15, 16]
have been done and the number of models or classifiers they
used in an ensemble varies from ten members to hundreds,
and in some cases up to 10,000 [17] or more for bagging or
boosting based ensembles. Their research did not really
result in any criteria or guidelines for determining optimal
number of models. It thus appears that more in-depth
analysis is needed to explore how and under what conditions
the number of models or ensemble size will affect the
accuracy of ensembles. Again, as the operation of ensemble
is complex and involves many factors mentioned earlier,
attempting to analyze and quantify this effect alone is very
difficult. So, the same strategy employed for the earlier
analyses is used again. We assume that all the other factors
such as accuracy of individual classifiers acc(mi), diversity D
and decision fusion strategy S, are known and fixed ideally,
or can be estimated in advance, then we can focus on
investigating the relationship between the accuracy of an
ensemble and the number of models, denoted by acc(V)=f (N
| acc(mi), D, S).

A. Ensemble win threshold in simple majority voting

Firstly, as in common practice, we choose the simple
majority voting method as the ensemble decision fusion
strategy S, it is then easier to work out the majority number
for an ensemble with a given number of models. For
quantifying the influence of the number of models, we
introduce a term named the win threshold: r=(N+1)/(2N),
which is defined as the majority value of a given odd number
N. Figure 4 shows the relationship between the win threshold
r and N.
Obviously, for N=3, r=2/3=0.667 and r=lim(N+1)/(2N) 0.5
when N→∞. This is well known but its relations with the
accuracy of individual models and the ensemble are not clear
and also depend on other factors. This win threshold should
be taken into account in conjunction with the default
accuracy when determining the lower bound of the accuracy
of individual models. Since in most cases of application, the
accuracy of individual models and their diversity can be
easily estimated on training and validation data, it will be
useful to predict roughly how many models are needed to
construct an effective ensemble, which can be represented by
Nmin= f(acc{V}⏐acc(m), D).
This relationship can be established when the values of the
other associated factors such as individual models’ accuracy
acc(m) and diversity D are known and can be estimated
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ensemble when the accuracy of the individual models is
bounded at 60%.

B. Relationship acc(V) = f( N | (acc(m)>=1/K, D) )

For a given N, when the accuracy acc(mi)>=r%, if the
maximum diversity exists among the models, i.e. D=1, then
the ensemble accuracy acc(V) should be able to reach 100%.
Figure 5 shows the range of the number of models required
for building ensembles depending on the value of diversity
among the models. For example, if set N=3, then r=0.667,
then if the individual models have accuracy acc(m)>=66.7%
and maximum diversity, the ensemble should always be
correct. But if the maximum diversity cannot be achieved,
which is almost certain in reality, then more models should
be used and the actual number should be determined by the
accuracy of individual models and the estimated value of
diversity among them.
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C. Relationship acc(V)= f(N | acc(m)<1/K, D=max)

This case has been discussed in Section IV.D and depicted
by Figure 3. When acc(m) <1/K, if maximum constructive
diversity exists, the ensemble can perform better than
individuals, if N is large enough. However, in reality, the
prior probability that models have constructive diversity
should be the same as having destructive diversity, it would
be difficult to build beneficial ensembles when acc(m)<1/K,
unless some appropriate strategies are devised and applied.

VI. EXPERIMENTS AND RESULTS

A. Design of experiments and data sets

The three sets of experiments described in Section II.B, (i.e.
exploring the influence on the accuracy of the ensemble from
diversity D, accuracy of individual models acc(m), and the
number of models in ensemble N) were conducted by using
twelve data sets from UCI data repository. Table 1 lists the
characteristics of these data sets: name, numbers of
attributes, of classes, of samples and their default accuracy.
In this study, the models are decision tree classifiers, induced
by using algorithm C4.5 and the ensembles are constructed
by a method we modified from Random Forest, which can be
briefly described as follows. Firstly, a proportion of the
features are randomly selected. Then a tree is constructed
using only those features. This process is repeated until the
required number of decision trees has been generated. The
trees are taken as member candidates for forming ensembles.
The simple majority voting strategy is employed to produce
the final decision of the ensemble, but the decision making
strategy averaging is also used for comparison. The CFD is
used to measure diversity among the classifiers and the
minority-failure diversity for making voting decisions.
As in usual practice, each data set is partitioned into training
and testing subsets with equal proportions. On the training
data a 10-fold cross-validation is performed so 10 decision
trees are generated. Then the data set is shuffled and
repartitioned in the same manner for another run. This
process is repeated for 10 times. The results given are the
average of the 10 runs. Because the limit of the space, only
small parts of the results are presented in the paper and more
details can be made available on request.

B. Constructions of ensembles

To investigate the relationships as described earlier, one
hundred decision trees were generated using the method
described. From these one hundred trees thirty ensembles
were created in the following ways:
• The first ten ensembles were created by selecting, one

by one, the ten trees with the greatest accuracy on the
training data. Thus, the first ensemble comprised only a
single tree and the tenth comprised ten trees.

• The next ten ensembles were created by adding, one by
one, ten randomly selected trees to the previous ten
ensembles.

• The final ten ensembles were created by adding a further
ten trees, one by one, with the worst accuracy on the
training data, to the previous ten ensembles.

The idea was to generate ensembles with varying degrees of
diversity so that the accuracy of these ensembles could be
investigated. Using the procedure defined above for creating
ensembles, the mean accuracy of the trees in the ensembles
must strictly decrease as the first ten and last ten trees are
added. Therefore, it is possible to identify the ensembles
with 1-10 decision trees and 21–30 trees and, by default
those with 11–20 trees.

C. Experimental results and discussions

Figure 6 shows the training and testing experimental results
obtained for BC1 data set.
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Figure 6. The influence of the diversity on accuracy of 30
ensembles by using averaging and voting methods.

It should be noted that the accuracies (of training and testing)
of each ensemble, produced by averaging and voting
strategies, are shown in the Figure, along with their diversity
values using the diversity y-axis on the right. In this manner,
through a bit complex, the influence of the diversity on the
voting accuracy can be compared visually and is discussed
below with respect to the earlier theoretical analyses.
(1) Regarding diversity, obviously no diversity exists in one
model ensemble and very small in two-model ensembles. but
when N ≥ 3, in general, it can be seen that the diversity

Table 1. The data sets used in this study.

No. of attributesData
all nom cnt

no.
classes

no.
records

default
acc(%)

BC1 10 0 10 2 699 65.52
BC2 30 0 30 2 569 62.74
Cleve 13 7 6 2 303 54.46
CMC 9 5 4 3 1,473 42.70
CRX 15 9 6 2 690 55.51
Ecoli 8 1 7 8 336 42.56
Glass 10 1 9 7 214 32.71
Horse 22 15 7 2 368 63.04
Mush 21 21 0 2 8124 51.80
Pima 8 0 8 2 768 65.10
Sick 25 18 7 2 3163 90.74
Soy 35 35 0 19 683 13.47

nom=nominal type of attributes, Cnt = continuous attributes.
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increases rapidly as the number of models increases until N
reaches to 11 or 13, after which, the diversity still increases
but at a relatively small rate. This phenomenon is observed
in both training and testing as shown in the plots (the middle
two lines on the figure).
(2) Regarding accuracy, one characteristic that is clearly
indicated in the figure is that, in training the voting and
averaging strategies produced almost the identical results
(the top two lines on the figure, note that these two lines are
almost inseparable, thus like a thick single line) regardless of
what the values of the diversity were, but on the test data,
they produced very different accuracies. The bottom line is
the ensemble’s accuracy produced by the averaging strategy,
which remains almost level and even drops a little bit at the
end. However, the accuracy of ensembles, as shown by the
second line from bottom, when the voting strategy is applied,
keeps improving in general as the diversity increases, though
it may wobble a bit (for the reason that will be discussed in
the next paragraph). Even in the last ten ensembles for which
the worst decision trees were added (that is why the average
accuracy is reduced), the diversity is extended even further
therefore the voting accuracy of ensembles is improved even
further. The difference between the voting accuracy and the
mean accuracy becomes increasingly larger as the diversity
increases.
(3) Regarding the number of models N, it is clear that when
the ensembles have fewer members (N<=5 or 7), which may
be more accurate on the training data but less diverse, then
the ensembles performed relatively bad on the test data.
When N increases, even the less accurate decision tree
classifiers are added into the ensembles, but the diversity still
increases, thus the voting accuracy is improved, even though
the averaging accuracy drops. Another interesting point
shown from the results is the up-down wobbling of the
voting accuracy as pointed out earlier. A close examination
on the results found that the most of drops were actually
caused when the ensembles have even numbers of members,
e.g. 4, 6 and so on, and ties could happen in voting. We
treated a tie as a lost in voting and the win-threshold in such
cases becomes (N+2)/2N, instead of (N+1)/2N for odd N.
So, the win threshold becomes higher and thus voting for a
win needs more votes to become a majority, e.g. when an
even N=4, the win-threshold is 3/4=0.75, but for an odd N,
e.g. N=3, the win-threshold is 2/3=0.667, about 0.08 lower
than that of N=4. When N becomes bigger, the difference of
the win-thresholds between the ensembles of even and odd
numbers of models becomes smaller. For example, it is down
to 0.016 when N=29 and 30, and may be neglected when N is
even larger. This explains why that the voting accuracies of
the ensembles with even numbers of members dropped quite
considerably for smaller even Ns and the wobbling amplitude
becomes smaller and smaller as N becomes larger and larger.
This finding also justifies why odd numbers of N should be
selected when building ensembles as odd-numbered
ensembles have lower wining thresholds and therefore are
likely to be more accurate when the simple majority voting
strategy is applied and this is particularly important when N
is smaller.

VII. SUMMARY

This paper has analyzed the influence of the important
factors involved in an ensemble’s construction and
operation. Specifically, it discussed three factors: diversity,
individual model’s accuracy and number of models in an
ensemble and presented some relationships between these
factors and the accuracy of ensembles under certain
conditions. The experiments with some commonly used data
sets have been carried out to verify the findings and the
results achieved are largely in line with the theoretical
analyses. We found that building ensembles with the most
accurate models may not result in better ensembles and,
instead, adding some less accurate models can make the
ensemble more diverse and thus more reliable and accurate
on test data. Another point is when voting strategy is used
the ensemble with odd N has a lower win threshold than even
N and is better. Further work should include in-depth
mathematical analyses and empirical investigations for more
common conditions in applications, such as when diversity is
relatively low and model’s accuracy is relatively high.
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