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On partitions and permutation groups on unordered sets

By

JOHANNES SIEMONS

I. Introduction. From the action of a permutation group @ on a finite set § one
obtains a family of permutation representations (@, Xx) where & acts in the natural
way on the system Xy of k-element subsets of S. These representations are highly
interconnected (by generalised conjugation, see theorem 4.5) and one expects there-
fore general relations between the permutation invariants of (&, Xx) and (G, X)).
In this paper we establish the following theorem (4.2): The orbits of & on X deter-
mine, independently of the group in question, all G-orbits on X; whenever [ < k
and I -+ k& < », the number of points in §. This theorem is an important generaliza-
tion of a now classical result of Livingstone and Wagner [10] which asserts that the
number of orbits of (&, Xy) is at least as large as the number of orbits of (G, Xj).
There are quite a number of independent proofs for this result due among others
to Wielandt [18], Kantor [8] and Cameron [3]; this paper provides a new proof
in this list. As a corollary (4.3) to theorem 4.2 we obtain an expression for the differ-
ence between the orbit numbers of (G, Xj) and (G, X;).

The actual calculation of the G-orbits on X; is based upon a process of formal
differentiation in an algebra over the subset lattice of § which we discuss in chapters 2
and 3. Our main theorem 4.2 amounts to a combinatorial property of this lattice
rather than to a particular property of permutation groups. For this reason we
obtain a corresponding more general result (3.3) which is valid for the much wider
class of C-D-partitions (see definitions in Chapter 3) of the subset lattice of 8. Parti-
tions of this type were first introduced by Dembowski [5] as generalized orbits.
In an earlier paper [14] we have shown that an analogue of theorem 3.3 holds for
any finite incidence structure of maximal rank. We note that theorem 4.2 remains
true for permutation groups on infinite sets. This result is due to Bercov and Hobby
[1] who conjectured our theorem.

In chapter 5 we consider the equivalence relations between permutation groups
on S defined by @ ~y H provided & and H have the same orbits on the k-element
subsets of 8. The closure G of G is defined to be the largest group on 8 for which
G®) ~y G. This closure property occurs in a very natural way in the context of
geometrical groups. In fact, any geometry whose incidence relations are expressible
in terms of unordered %-relations on its underlying point set has the property that
its full automorphism group is k-closed. As a corollary to theorem 4.2 every k-closed
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group of degree n is (k + 1)-closed for k£ = # - } and more generally G ~y H implies
G -1 H.

We show that if @ ~; H for sufficiently many values of %, then G and H share
global permutation properties like primitivity (theorem 5.2) and certain prime
divisors (theorems 5.4 and 5.5). In general however G ~ H for all k£ does not imply
G = H. A yet open problem is the classification of all groups for which this implica-
tion holds. Such a result would determine all groups on § which are full automorphism
groups of some geometry on S.

A related question goes into the opposite direction: What can we say about the
orbits of (G, Xj+1) if the orbits of (G, Xi) are known ¢ Some of the techniques in
chapters 2 and 3 (in particular the integration operator ¢o ¢ o°) may be used to
produce a partition of Xz41 whose classes consist of unions of (G, Xj.1)-orbits.
Details of this will be given in a forthcoming paper. In general we can not expect
to produce the exact orbits of (7, Xz+1) as the examples of groups shows that are
2-homogeneous but not 3-homogeneous. For k. = 4 however, k-homogeneous groups
are, except for some groups of degree = 33, also (k¥ -+ 1)-homogeneous and therefore
contain the alternating group. This is one of the consequences of the classification
of all finite simple groups. Any progress on the determination of the (G, Xy+1)-orbits
in general will provide a better understanding of the rare occurrence of multiply
homogeneous groups. '

Notation. We use the standard definitions and notation of Wielandt’s book [17]
with the exception that the use of Greek characters is avoided. For a subset x of S
and any group G on S G, denotes the setwise stabilizer of # while G is the subgroup
of G fixing each element of 2. The constituent of G on z is denoted by G% = G/G(z).

IL. The set algebra RX and its dual. Let S = {s1, 82, ..., s»} be a finite set and
let X be the lattice of all subsets of S. For an arbitrary field B we consider formal
sums v over sets in X with coefficientsin R, v = Z V5 + x where x is in X and v, in R.
The set of these sums forms a vector space which we will denote by EX. A multi-
plication may be defined in RX by the following rule: If v = > v5 -z and w =
Dwyy, then vUw:i= > vz wy- (xVy) where 2 Uy is the union of the sets

@y
x and y. Straight forward verifications show that (BX, 4, U) is an associative,
distributive and commutative algebra which we shall call the sef algebra of S over R.
RX may also be considered as the set of polynomials in R[s1, sg, ..., 8,] where
each s; occurs with degree at most one. The above defined U-multiplication agrees
with the usual multiplication of polynomials if we calculate modulo the ideal 1P
generated by the polynomials of the form sf — s; for ¢ = 1, ..., n. This remark shows
that RX is isomorphic to the factor algebra R[sy, sz, .... s2]/IP and X is a set of
idempotent elements in RX.

The partial derivatives 9/0s; =: 8; on E[s1, 83, ..., 8z] become linear transforma-
tions on RX given by 0;(z) = 0 - @ if s; is not contained in z € X otherwise 0;(») =
{s|s in #, s == &;}. In combinatorial analysis the duality between s and 9/0s is an
important concept (compare G.-C. Rota, page 7 in [12]), for this reason we call J;
the dual point of s;. The product é1- ds - ... - &, as linear transformations on EX
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is commutative and since 6; - & = 0, we may call 6;-02-...- 0, the dual set of
{s1, 82, ..., sr}. Let D be the set of all dual sets in this sense and let RD denote the
vectorspace generated by the transformations in D. It is easy to verify that RD is an
associative, distributive and commutative algebra over B which is isomorphic to
R([01,0z,...,0,]/NP where NP is the ideal generated by the polynomials a;%,
t==1,...,n Here D is a set of nilpotent elements. We gather our remarks in:

Proposition 2.1. For a finite set S = {s1, s, ..., Sn} with subset lattice X, the set
algebra RX for an arbitrary field R is isomorphic to R{s1, s2, ..., ][I P. The algebra
of dual sets RD is isomorphicto R[01, 0z, ..., 0,]1/N P. Both algebras have dimension 2.

In the following we shall determine the rank (as linear transformations on RX)
of various elements in RD. The rank of a dual point clearly is 27-1 but it is less

obvious what the rank of a sum of dual points may be. Of particular interest is the
symmetric polynomial
0=101+ 02403+ + 0y
and its powers. In the remainder of this chapter we determine the rank of these
transformations.
Let u= > uy 2 and v = » vy -y be elements in RX. We shall say u and »
are disjoint if there is partitioning of § into disjoint subsets S’ and S’ such that

Uy =0ixN 8" =0 and vy =0if y "8 == 0. We obtain the following “product
rule” for disjoint elements:

Lemma 2.2. If u and v are disjoint elements in RX and if @ is the sum over all distinct
dual points, then

m (o,
)= ( @> (0m=i () U (2(0)) .
i=0
Here the binomial coefficient is to be taken in R and 40 is the identity map.
Proof. Since » and v are disjoint, » U » is the product of % and v as polynomials

in R[sy, ..., 8;] and here the product rule is valid. ]

Now suppose 8’ U 8" = § is a partition of § where |§'| =k and |§"] =1
For any 7 < k let u; be the sum over all subsets of 8 of size 7 and similarly, for j <1
let v; be the sum over all subsets of 8" of size j.

Lemma 2.3. Let k=1 and m =k — 1. Then the equation 0™ (w) = (m + j)!-
(w17 U v5) has a solution w; for every § < 1. This solution is given inductively by

. 2 (l—j4i\ [m)
w,-—_—yl-(uk_]—Uvj)—zl( lij >.<i>~2!-’lﬂj—i

where wo = ug and wj—; = 0 for § less than i.
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Proof. We show that the w; defined above satisfies the equation. Since 9 -8 - ... -

O(u;) and 0-0-... 0(v;) are disjoint, lemma 2.2 applies and therefore we obtain
m m .
om () =1 > <Z) (7 () U (3(33)
i=1
2 [l—j+2\ (m) | .
- < i ) (.)-z!-(m—}—y — ) (Ugmgas Y j—g)
t=1 7 v

We calculate the ith term in the first sum: Since
m—i+j
m—1

it
0"t (ug—) = i!( ) (m — 1) ug—j-m+s and Oi(v;) = < 7+z)) il v,

I—j

I—j+i\ (m
we obtain ( li_;- ) . (z) “(m—i+9) ! (w—j+¢ J v5—) as the ¢th term in the first
sum. For ¢ = 0 we have (m + j)! - (w;—; U v;), the right hand side of the original
equation and for positive ¢ the corresponding term is removed by the second sum.

This completes the proof of lemma 2.3. O

For k < n let X} be the family of k-element subsets of S. We identify X = {0}
and X3 = 8. If RX} denotes the corresponding subspace of RX, then RX = @ RX;
becomes a graded vectorspace and @ is a homogeneous transformation of degree — 1.

Theorem 2.4. Let S be a set of n elements and k, I, m integers such that 0 <1 <k < n
and m =k — 1. Let R be a field of characteristic zero or bigger than k. Then om:
RBXy — RX; is injective if and only if &+ 1 =n; o™ is surjective if and only if
E+1Zn.

We formulate this result also for incidence matrices: Let I(l, k, ») be the (0, 1)-
matrix whose rows are indexed by X; and whose columns are indexed by X} such
that the z, y-entry equals 1 if and only if  C y. Since I(l, £, ») is, apart from a con-
stant, the matrix of 9™, we obtain the following

Corollary 2.5. The incidence matriz I(l, k, n) has maximal rank for | £ k < n over
any field of characteristic zero or bigger than k.

Proof. In the case & 4+ I < n, we show that any z in X; is an image under 9.
Put 8 = z and let 8" be a subset of S of size & disjoint from S’. By lemma 2.3 there
is some w; in RXy satisfying o™ (w;) = k! - z. By assumption on the characteristic
of B, k! = 0 and therefore 0™ is surjective.

Ifl + & = n, we add new points to § in order to obtain a set S* of size n* = I + k.
Let 0* be the sum over all duals of points in $* and X* the lattice of subsets of S*.
By the first part, the map 9*m: RXF > RXJ is surjective and since the dimension
of the two spaces is the same, this map is also injective. Consider the inclusion map
inc: RXy+> RX} and the projection proj: RX* +> RX given by proj(z) = z if z
is in X and proj(z) = O otherwise. The composition 8*™ - inc is injective and since
Kernel (proj) N Image(d*m - inc) = 0, the same is true for proj - 9*%m - inc = om.
Note that the assumption on char R is essential: I(1, 2, 3) has rank 2 over the field
of 2 elements. O
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In X we consider the map ¢: X — X which sends any subset  onto its complement
¢z in 8. This mapping extends to an involutory linear transformation of BX.

Theorem 2.6. Let V be a subspace of RX such that 8VCV and ¢V C TV and let
Ve = RXy N\ V. Then Vi uniquely determines Vi foranyl <k, 1+ k=Z=norl=k
and L4+ k=n by Vi= 0k (Vy) or V= on*-L(¢Vy). In particular V = @ Vi s
completely determined by Vi where n* is the integer (n — 1)- 3 S n* < n- .

Proof. By assumption we have ¢(V;) = V,—; and therefore it suffices to assume
1 < k. Since V is 0-invariant, we have the chain of homomorphisms

a ) a
o=, Y, i s SV S ST

By theorem 2.4 this map is injective and since the image and pre-image spaces have
the same dimension, also surjective. Therefore V; = 0%-¥(V%) is determined as the
image of Vg under the map 0¥-!. O

I, Partitions. Let S be again a finite set of size » and X the system of k-element
subsets. For each £ < n we consider a partition Py of X into classes Pk, 1, ..., Px,1,. .-

n
and the partition P = U Py of the whole of X. To each partition Py we associate
E=1

the subspace RPy of RX; which is spanned by the vectors pg,; = Zx, zin Py ;.
Thus RP = @ RP; is a subspace of RX representing P. Conversely, we call a sub-
space V of BX a partition space if V = RP for some partition P of X. The follow-
ing observation is fundamental:

Proposition 3.1. The partitions of X and the partition subspaces of RX are in one-
one correspondence.

Proof. Observe that a partition P is finer than or equal to P’ if and only if RP 2
RP’. Therefore RP = RP’ifand onlyif P = P’. O

Definition. A partition P of X is a C-D-partition or generalized orbits if the
following two conditions are satisfied for each £ =0,1,...,7n:

C: If Py, ;is an arbitrary class in Py, then
¢(Px,¢) = {‘@|x in Py ;} is a union of classes in Pp_g.

D: For any y in Xz and any class Py ; let I(y) be the number of sets in Py, ; that
contain y. Then I{y) only depends on the class that contains y.

In [14] we have met a similar situation in the case of tactical decompositions;
it can be shown that P is a C-D-partition if and only if (P, P;) is a tactical decompo-
sition for every k <1 < n.

Proposition 3.2. A partition P satisfies C if and only if ¢(RP) C RP and D is satis-
fied if and only if 0(RP) C RP for some field R of characteristic zero or bigger than n.
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Proof. Let p = zx be the sum over all sets in some class Py ;; the vectors of
this type form a basis of RPy and °p = Zcx is contained in RP,; if and only if
{¢x|x in P} is a union of classes in Pp—x. Similarly,

v=0p)=200)= > 3 y=3 > uy.
26 Px,s £OYE€ X1 7 Y€Pxk-1,g
Then v is contained in EPj_ if and only if vy = vy whenever ¥ and ¥’ belong to

the same class Py_1,;. By assumption on the characteristic of R this is equivalent
toD. O

Our next theorem shows that C-D-partitions P are determined by Pp«, this is
a consequence of the above proposition and theorem 2.6.

Theorem 3.3. Let S be a set of size n and Xy the family of k-subsets of S. Let Py
be a partition of Xy for k= 0,1, ..., n such that P = U Py is a C-D-partition of
X = U Xy. Then Py uniquely determines Py for any 1<k, Il +-kE=n or Il = F,
I+ k=n In particular P is uniquely determined by Pp+ where n* is the integer
m—1iZn*¥=n L

Proof. Let R be a field of characteristic zero. In view of proposition 3.2 and
theorem 2.6, the vectorspaces RP; and RP are completely determined. Therefore,
by proposition 3.1, the partitions P; and P are determined by RP; and RP respec-
tively. O

In the following we shall suppose that an arbitrary partition @+ of X« is given
and we shall investigate under what circumstances there is a O-D-partition P of X
for which Pps = Qu+. If Q@ux,1, ..., @n*,;, ... are the classes of Qu+, let ¢; be the
sum over all sets in @+ ;. For any element v = z vz« z in RX; we define the level
surfaces of v: lev,(v) = {#|z in Xj, vy = 7} for any r in R. This is used to define
the level surfaces of @+ in Xjy:

Lev(Qn+, k) = {levy (0" % (gs))|rin R, e=1,..} if k< a*
and
Lev(Qu+, k) = {¢L|L in Lev(Qn+,n — k)} for k=mn*.

For each k= 0,1, ..., n we consider the coarsest partition Py of X which is as
fine as Lev(Qp+, k), that is, if L is a family of k-sets in Lev(Qu=, k) and Py,; any
class of Py, then Py ; N L = 0 or Pg,; and the number of classes in Py is minimal
with this respect. Clearly Pu+ = Q,+ since Q,x is a partition itself.

Theorem 3.4. Let @,* be a partition of Xpx, (n — 1) -3 Sne < n -4, and let P
be the partition of X defined above. Then P is a C-D-partition if and only if the number
of classes in Py, is equal to the dimension of the space 8" ~*(RQn+) for all k¥ < n* and
some field R of characteristic zero.

Proof. If P is a C-D-partition with Pp+ = Qu+, by theorem 2.6 RP; =
o™ ~¥(RP,*) and the dimension of the latter space is the number of classes in Py.
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Conversely, let RL be the vectorspace spanned by the vectors I where [ is the sum
over some level surface in Lev (@Qp*, k). Then ¢(RLy) = RLy-; and

RLy2 0" ~*(RQm) or 235" (RQn)),

according to & < n* or k > n*. By the construction of P, we have RP; 2 RL;
for all £ and by the assumption on the dimensions, we obtain that

RPy= RLy= " "*(RQp) or =o(@"*E~"(RQu)).

This implies 0(RPy) & RPg_1 and since ¢(RPy) = ¢(BLy) = RLy—3 = RPy 1, Pisa
C-D-partition by proposition 3.2. o

IV. The Theorem of Livingstone and Wagner. In this chapter we will derive some
important conclusions for permutation groups from our results on partitions. Let G
be an arbitrary permutation group on the finite set S. The G-action on § leads to an
action of G on the subset lattice X. This in turn extends naturally to linear trans-
formations on BX by defining

g o= D0z T > = p vz af

where 29 = {s9|s € z}. Note that this operation of @ on RX is compatible with the
U-multiplication defined in chapter II. The partitioning of X into G-orbits is denoted
by

X(G) = {{29|geG}|ze X}

and RX(G) is the partition space corresponding to X (@). The subspace of RX(G)
corresponding to X (G), the G-orbits on Xy, is denoted by RXy(G), in accordance
with the notation in chapter III. The following is elementary and can easily be
verified.

Proposition 4.1. For any group G on the finite set 8, the partitioning X (G) into orbits
ts @ C-D-partition in the sense of chapter I11. RX (G) is the centralizer algebra

{v|v9 = v for all g in G}
which is invariant under the maps ¢ and 0.

Representation algebras of this type and similar constructions have been con-
sidered in Siemons [13], and Wielandt [19, 20].

The main result of this paragraph is an important improvement of the theorem of
Livingstone and Wagner [10] which asserts | Xg(G)| = | X3-1(@)| for any group G
on 8 and 2k < ». (Proofs for this theorem can also be found in Wielandt [18] and
Cameron [3].) The following is an immediate consequence of 3.3:

Theorem 4.2. Let S be a set consisting of n elemenis and k an integer <n. Let X3 (G)
be the family of orbits of some permutation group G on the k-subsets of S. Then Xy (G)
uniquely determines X (G), independently of the group G, for any l <k, 1l +k = n or
L=k I+ k = n In particular X (G) is determined by Xp+(G) where n* is the integer
n—1)-3=n*<n-}
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In the proof of theorem 2.6 we have seen that RX;(G) = 0¥ (RXy(G)) for I <k,
I + k = n for any field of characteristic zero. Therefore we obtain an expression for
the number | X;(@)| = dim RX;(G) of G-orbits on the l-subsets of §:

Corollary 4.3. For L <k, 1 + k = n the number of G-orbits on X; is given by
| Xi(@)| = | X0t (@) = | X5(@)| — dim (Kernel (9%-%) N RXz(G))

where R is a field of characteristic zero.

Theorem 4.4. Let G and H be groups on S and k an integer <% -|S| so that the
following holds: For any g in G and any k-subset  there is some h in H so that 29 = x?*
Then for any subset y of size <k and any g € G there is some h* in H so that y9 = yh*.

Proof. The hypothesis is equivalent to the assumption that every G-orbit on X
is contained in some H-orbit. Therefore RX (@) 2 RX;(H) for any field of charac-
teristic zero. If y has size I and m = k — [, by theorem 2.6, 07 (EX(G)) = RX;(G)
and a similar relation holds for RX(H). Therefore RX;(G) 2 BRX;(H) and this is
equivalent to the conclusion of the theorem.

We now consider the following question. Suppose an arbitrary permutation on Xz
is given, say as permutation matrix G%. When is Gy induced by a permutation G
on S when acting on Xy in the natural way ?

Apparently this is the case if and only if for any x € Xy we obtain I - Gz (z) =
Gh - I (x) where I isthe incidence matrix of points in k-sets. If the equation holds we
obtain G4 = I - Gy - I~ for any right-inverse I~ of I (see corollary 2.5). Conversely
suppose G1 = I-Gy- I~ is a permutation matrix independent of the particular
choice of I~ as a right-inverse. Then I-Gg- M = 0 whenever I - M = 0. Taking
M = (1 — I-- I), we obtain

O=I‘Gk'(1——I"I):—-‘I'Gk—I'Gk'I_'I=I’Gk—G1’I.

Since permutation matrices are the orthogonal (0, 1)- matrices we have the follow-

ing:

Theorem 4.5. Let Gy, be a permutation matriz on Xy and let I be the incidence matrix
of points in k-sets. Then Gy is induced by a permutation G on S if and only if I1Gy I~
is an orthogonal (0, 1)-matriz independent of the choice of I~ as @ right-inverse of I,
and G, = IGI-.

A corresponding result may easily be formulated for the more general question:
When does Gy, induce a permutation on X;? Theorem 4.2 may be considered as a
consequence of 4.5 if one observes that the partitioning into orbits corresponds to a

linear operator z — zxg which commutes with the inclusion map (Proposition 3.2).
geq

V. Orbit equivalence. In this section we consider the equivalence relation of
permutation groups on S having the same orbits on the subset lattice of S:
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Definition. Let G and H be two groups on the set S consisting of » elements.
G is k-orbit equivalent to H, G ~; H, if X3(G) = Xi(H). The k-closure GF) of G is
the largest group on S with X (G®) = Xy (G). @ is orbit equivalent to H, G ~+« H,
if X(@) = X (H), and the closure G* is the largest group on § with X (G*) = X (G).

Using this terminology we obtain as a corollary to 4.2 the following theorem:

Theorem 5.1. If G ~y H are permutation groups of degree n, k < n* where

(n—1)-}=n*<n-d,

then G =~y H for any | £ k and G ~+ H if and only if G ~y+ H. Furthermore,
GCE*C---CEWCEE-DC---CHW

for 1 < n* and G is l-homogeneous if and only if G is the symmetric group.

For infinite sets Bercov and Hobby [1] have proved the same result using a form
of Ramsey’s theorem. (Their proof does not apply in the finite case). We note that
their result may also be proved independently of Ramsey’s theorem by extending
the techniques of Chapter II to infinite dimensional set algebras. In theorem 5.1
k-homogeneity can in general not be replaced by k-transitivity as the example of the
symmetric and alternating groups shows. For 5 £ k < »n*, however, k-homogeneity
and k-transitivity are equivalent and for 2 < & < 4 the same is true apart from some
well-understood exceptions, see Kantor, theorem 1 in [9].

In the following theorem we show that the primitivity of & is reflected in the
orbit algebra RX (G):

Theorem 5.2 (Rudio’s Lemma). Let G be a group on S of degree n. Then G is primitive
on S if and only if ¢o 0; o¢ 0 9;: RX(G)+> RX is a monomorphism for oll ¢ == 7§ in
{1,...,n}.

If G ~p H for some bk =2, k < n — 2, then both groups have the same blocks of
tmprimitivity. In particular, H is primitive if and only if G is primitive on S.

Rudio’s Lemma (1888, see theorem 8.1 in [17], compare also [16]) asserts a separa-
tion property: A group @ is primitive on a finite set § if and only if for any pair
s, 8" of distinet points and any subset z &= S, @ of S, there is a group element g such
that sea9ds’.

Proof of 5.2. Let R be any field and let s;, s; be two distinet points of § and let
2, 0; be their dual points. The map ¢ ¢; o¢ o 0; interchanges s; with s; in any set z
that contains s; but not s; and maps = onto zero in all other cases. For this reason
it will be sufficient to show that none of the canonical basis vectors of RX(Q) is
mapped onto zero in order that co 9; o¢ o 9; is injective.

According to Rudio’s Lemma, a subset z is a block of imprimitivity for G if and
only if ¢o 8; o¢ o 9;(x9) = O for all g in G and some pair ¢ == 4. Hence z, 2 < || <
n — 2, is a block of imprimitivity if and only if ¢o 9; o¢ o 0;(¢) = 0 for the basis
vector ¢ of RX (G) that consists of all G-images of z. If z has size 1 or n — 1, the
assumption o 8; of o 0;{g) == 0 for all ¢ == § is equivalent to the transitivity of G on S.
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For the second part of the proof we can assume G ~3 H. We call a subset @ of X,
an equivalence relation in X provided {s, s-} and {s, s~} € @ always implies that
{s+, 8} is contained in Q. Let ¢ be the sum over all sets in Q. It is easy to see that @
is an equivalence relation if and only if either 0;(q) = 0;(g) or 9;(¢) and 0;(g) are
disjoint for all ¢ and §. If @ is a G-invariant equivalence relation, (9;(¢))? = 9 (q)
for all g in G and therefore {3;(¢)|¢ = 1, ..., n} corresponds to a partitioning of S
into blocks of imprimitivity. Since G av2 H, both groups have the same block systems,
each corresponding to an equivalence relation in X»(G) = Xo(H). O

We remark that the theorem suggests a notion of primitivity for arbitrary C-D
partitions on X. Defining a partition P to be primitiveif forall ¢ == the map 0 9; o¢ 0 7;
is & monomorphism on RP, we have seen in the proof of 5.2 that P is primitive if
and only if Py contains no equivalence relations except possibly the two trivial
relations.

Lemma 5.3. Let G be a group on S of degree n and k < %n. Then the index |G® : G
is equal to |GF) : G| for any subset x of size l <k or I Z n — k. In particular, the
order of G®) divides |G : Gz |1 (n — 1) 1.

Proof. We can assume that |x] = [ =< k and, by theorem 5.1, G*) ~; G. There-
fore the G-orbit and the G*)-orbit of  are the same. Hence |G®) : GP| = |G : G,|.
For the remainder observe that G is a subgroup of the direct product of the sym-
metric groups on x and ¢x. O

Theorem 5.4. Let G and H be orbit equivalent groups of degree n. If p is a prime,
2p > n -+ 1, then p divides the order of G if and only if it divides the order of H.

Proof. In lemma 5.3 we take l = p — 1; therefore |G*: G| and |H*: H| divide
(p— 1! (n— p+ 1)! and hence are coprime to p. Since H* = G* the required
property follows. o

Theorem 5.5. Let G and H be transitive and orbit equivalent groups of degree n and
let p,n —32p=(n+ 1)L, be a prime dividing the order of G. Then both groups
contain the alternating group of degree n unless n = 9 in whick case G and H are among
the groups PSL (2, 8), PI'L(2, 8), Alt(9), Sym (9).

Proof. First we show that G is primitive on §: Let g € G be an element of order p
displacing the points {s1, ..., s} = y. A block of imprimitivity for G would have to
contain y or otherwise be disjoint from y. The first assumption contradicts the fact
p > n} while the transitivity of G excludes the second possibility. Hence both @
and H are primitive by theorem 5.2. As a consequence of Jordan’s theorem (see
theorem 13.9 in [17]), G contains the alternating group of degree n. If p > (n + 1) - &,
p divides the order of H by theorem 5.4 and hence H 2 Alt(n).

In the remaining case p = (n + 1) - = 5 does not divide the order of H so that A
is not (p)-transitive. On the other hand H =~ G which implies that H is k-homo-
geneous for every & < n. The assumption that H is (p — 1)-transitive contradicts
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lemma 9 in [10]. Hence we may apply theorem 2b in [10] and conclude n = 9, p = 5
and H = PSL(2,8) or PI'L(2.8). O

The group PI'L(2, 8) is the largest non-trivial group which is k-homogeneous
for all £ =< n. The only other groups with this property are the Frobenius group
of order 20 (n = 5), G = PGL(2, 5) (n = 6) and ¢ 2 PGL(2, 8) with n = 9. (See for
instance § 1 of Livingstone and Wagner [10)). Hence G Ao+ Alt (n) implies G D Alt (n)
unless G is one of these exceptions.

In the general case the orbit equivalence relation for permutation groups seems to
be close to the equality relation. A possible approach in this direction would be to
compare the constituents of orbit equivalent groups. The following example shows
that the equality of constituents does not imply equality for the whole group: If
G = Al6(S) and x is a subset of size =2 and =<n — 2 then G% = Sym(x) and
G*% = Sym (). However, we have the following

Proposition 5.6. Let G ~+ H be groups on 8 with G C H and suppose x is a subset
of S with the property that 1 is the only permutation in H fizing every point of . Then
G = H if and only if G* = H=.

Proof. Let 2 be in H; then there exists some g in G so that 29 = 2% and thus
g~lh e Hy. If G* = H= choose an element ¢’ in G which agrees with g=1-% on .
Then ¢’ - k1 - g fixes every point of z and hence must be the identity. This shows
that % is contained in G. o

We now turn to the more general problem of -closure. This equivalence relation
has a natural interpretation in the context of geometrical groups. The full auto-
morphism group of an (undirected) graph on the vertex set S, for instance, is 2-closed
since this group can be characterized as the largest group on § that preserves the
family of 2-subsets representing the edges of the graph. Likewise, if £ is an affine or
projective plane (or indeed any 2 — (m, k, 1)-design) then # is fully determined by
the subset of X3 representing the family of collinear point tripels. Therefore the
automorphism group of & is 3-closed.

Let C be a subgroup of G¢*) containing G for some & < % - n and let p be a prime
dividing the order of C. If P’ is a Sylow-p-subgroup of C, then {2} is contained in
X (P’) for some subset x of § if and only if 2 is a union of point orbits of P’ and hence
{z} € X (P) for any subgroup P of P’. In the opposite direction we prove

Lemma 5.7. Let P be a Sylow-p-subgroup of G for some prime p and let x be a set of
size 1 for which {x} is contained in X (P). Then for any k, L <k and 1 -+ k < n or
IlZkand I+ k =n and any given p-subgroup P’ of C C G®) there is some g in G
so that {x9} ¢ X (P"). :

Proof. By theorem 5.1 C ~; G and therefore d = |G: G| = [C: Cz] is prime
to p. Hence let P* be a Sylow-p-subgroup of C contained in C;. (This implies
{z} € X (P*)). There is some k in C such that (P*)* contains the given group P'.
This implies {z*} € X (P*?) C X (P') and hence we can choose some g € G so that
{29} = {«?} is contained in X(P'). 0o
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Theorem 5.8. Let G be a group on S of degree n and let G C C C G® for some k < % - n.
Suppose p is a prime dividing the order of C but not the order of G. Let P’ be a Sylow-p-
subgroup of C with fived point set S'. Then the size of 8’ is bigger than or equal to
min (p — 1,k) and the G-orbits on X; are in one-one correspondence to the orbits of C5
on the l-subsets of 8’ for every I < min (p — 1, k).

Proof. Let « be a set of size I < min(p — 1, k). Since G has order prime to p,
by lemma 5.7 there is some g € G so that {x9} € X (P’). Since I < p, 29 must be a
union of points fixed by P’. Hence 29 C S’ and every G-orbit on X; contains a subset
of 8 for any Il S min(p — 1, k).

It remains to show that if z, y C 8" such that 2¢ = y for some g € G, then there is
some @ in Cg with z®* = y. In this case it is clear that P’ and (P’) are Sylow-p-
subgroups of C(y. Hence there is some & in C(y) so that @ = gk is contained in the
normalizer of P’ in C(y). Therefore 27°% = y* = y and (§')% = S, i.e. a € Cs . This
shows that the sets of any (-orbit on X; contained in 8’ are precisely one Cg-orbit. o
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