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I. Introduction. From the action of a permutation group G on a finite set S one 
obtains a family of permutation representations (G, Xk) where G acts in the natural 
way on the system X~ of k-element subsets of S. These representations are highly 
interconnected (by generalised conjugation, see theorem 4.5) and one expects there- 
fore general relations between the permutation invariants of (G, X~) and (G, Xz). 
In  this paper we establish the following theorem (4.2) : The orbits of G on X~ deter- 
mine, independently of the group in question, all G-orbits on X~ whenever l ~ k 
and I + k <~ n, the number of points in S. This theorem is an important  generaliza- 
tion of a now classical result of Livingstone and Wagner [10] which asserts that  the 
number of orbits of (G, X~) is at least as large as the number of orbits of (G, X~). 
There are quite a number of independent proofs for this result due among others 
to Wielandt [18], Kantor  [8] and Cameron [3]; this paper provides a new proof 
in this list. As a corollary (4.3) to theorem 4.2 we obtain an expression for the differ- 
ence between the orbit numbers of (G, X~) and (G, Xz). 

The actual calculation of the G-orbits on Xz is based upon a process of formal 
differentiation in an algebra over the subset lattice of S which we discuss in chapters 2 
and 3. Our main theorem 4.2 amounts to a combinatorial property of this lattice 
rather than  to a particular property of permutation groups. For this reason we 
obtain a corresponding more general result (3.3) which is valid for the much wider 
class of C-D-partitions (see definitions in Chapter 3) of the subset lattice of S. Parti- 
tions of this type were first introduced by  Dembowski [5] as generalized orbits. 
In  an earlier paper [14] we have shown that  an analogue of theorem 3.3 holds for 
any finite incidence structure of maximal rank. We note tha t  theorem 4.2 remains 
true for permutation groups on infinite sets. This result is due to Bercov and Hobby 
[1] who conjectured our theorem. 

In chapter 5 we consider the equivalence relations between permutation groups 
on S defined by G ~ H provided G and H have the same orbits on the k-element 
subsets of S. The closure G(~) of G is defined to be the largest group on S for which 
G (k) ~ k  G. This closure property occurs in a very natural way in the context of 
geometrical groups. In fact, any geometry whose incidence relations are expressible 
in terms of unordered k-relations on its underlying point set has the property that  
its full automorphism group is k-closed. As a corollary to theorem 4.2 every k-closed 
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group of degree n is (k -5 1)-closed for k --<_ n .  -~ and more generally G ~ H implies 
G ~ - 1 H .  

We show tha t  if G ~ H for sufficiently many  values of k, then G and H share 
global permutat ion properties like primit ivi ty (theorem 5.2) and certain prime 
divisors (theorems 5.4 and 5.5). In  general however G ~ H for all k does not imply 
G = H.  A yet  open problem is the classification of all groups for which this implica- 
tion holds. Such a result would determine all groups on S which are full automorphism 
groups of some geometry on S. 

A related question goes into the opposite direction: What  can we say about the 
orbits of (G, X~+I) if the orbits of (G, Xk) are known ? Some of the techniques in 
chapters 2 and 3 (in particular the integration operator co a oC) m a y  be used to 
produce a parti t ion of X~+I whose classes consist of unions of (G, X~+l)-orbits. 
Details of this will be given in a forthcoming paper. In  general we can not expect 
to produce the exact orbits of (G, X~+z) as the examples of groups shows tha t  are 
2-homogeneous but not S-homogeneous. For  k _> 4 however, k-homogeneous groups 
are, except for some groups of degree __< 33, also (k -5 1)-homogeneous and therefore 
contain the alternating ~oToup. This is one of the consequences of the classification 
of all finite simple groups. Any progress on the determination of the (G, X~+l)-orbits 
in general will provide a bet ter  understanding of the rare occurrence of multiply 
homogeneous groups. 

N o t a t i o n .  We use the standard definitions and notation of Wielandt 's book [17] 
with the exception tha t  the use of Greek characters is avoided. For  a subset x of S 
and any  group G on S Gz denotes the setwise stabilizer of x while G(x) is the subgroup 
of G fixing each element of x. The constituent of G on x is denoted by  G x = Gz/G(x). 

IF[. The set algebra RX and its dual. Let  S = {Sl, s2 . . . .  , s~} be a finite set and 
let X be the lattice of all subsets of  S. For an arbi t rary field/~ we consider formal 
sums v over sets in X with coefficients in R, v ---- ~ vx �9 z where x is in X and vz in R. 
The set of these sums forms a vector space which we will denote by  RX.  A multi- 
plication m a y  be defined in R X  by  the following rule: I f  v = ~ v~ �9 x and w = 

wy y, then v u w : =  ~ v x .  Wy. (x ~ y) where x u y is the union of the sets 

x an:l y. Straight forward verifications show tha t  (RX, -5, u)  is an associative, 
distributive and commutat ive algebra which we shall call the set algebra of S over R. 
R X  m a y  also be considered as the set of polynomials in /~ [sl, s~, . . . ,  sn] where 
each s, occurs with degree at  most one. The above defined W-multiplication agrees 
with the usual multiplication of polynomials if we calculate modulo the ideal I P  
generated by  the polynomials of the form s~ - -  s~ for i = 1, . . . ,  n. This remark shows 
tha t  R X  is isomorphic to the factor algebra R[sz, s2, . . . ,  sn]/IP and X is a set of 
idempotent elements in _RX. 

The partial  derivatives a/as~ --- : of on _R [sz, s2, . . . ,  sn] become linear transforma- 
tions on R X  given by  a~ (x) ----- 0 �9 ~ if st is not contained in x e X otherwise 0t (x) ---- 
{sis in x, s ~ s~}. In  combinatorial analysis the duality between s and O/as is an 
important  concept (compare G.-C. Rota,  page 7 in [12]), for this reason we call 0i 
the dual point of s~. The product @z �9 a2 �9 ...  �9 ar as linear transformations on R X  
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is commutat ive and since a~. ai ~-0 ,  we m a y  call al" ~2" - . . "  Or the dual set of 
{sl, s~, . . . ,  st}. Let  D be the set of all dual sets in this sense and l e t /~D denote the 
vectorspaee generated by  the transformations in D. I t  is easy to verify that  R D  is an 
associative, distributive and commutat ive algebra over R which is isomorphic to 
RIO1, ~2 . . . .  , an]/-~P where N P  is the ideal generated by  the polynomials ~ ,  
i == 1, . . . ,  n. Here D is a set of nilpotent elements. We gather our remarks in: 

Proposition 2.1. _For a / i n i t e  set S = (Sl ,  s2 . . . .  , sn} with subset lattice X ,  the set 

algebra t ~ X  /or an  arb i t rary / ie ld  R is isomorphic to t~ is1, s2, �9 :. ,  sn]/ I P .  The algebra 

o /dua l  sets R D  is isomorphic to R [~z, a2, . . . ,  On]/NP. Both algebras have dimension 2 n. 

In  the following we shall determine the rank (as linear transformations on _RX) 
of various elements in R D .  The rank of a dual point clearly is 2 n-1 but  it is less 
obvious what  the rank of a sum of dual points may  be. Of particular interest is the 
symmetric polynomial 

= al § a2 § a a + - - .  § ~ 

and its powers. In  the remainder of this chapter we determine the rank of these 
transformations. 

Let u = ~ . u x . x  and v = ~ V y . y  be elements in /~X. We shall say u and v 
are disjoint  if there is partitioning of S into disjoint subsets S'  and S"  such tha t  
Ux = 0 if  x n S "  :4= 0 and Vy ~ 0 if  y (~ S'  ~ 0. We obtain the following "product  
rule" for disjoint elements: 

Lemma 2.2. I]  u and v are disjoint  elements in  .RX and i / a  is the s u m  over all distinct 

dual  points,  then 

~ = o \ ~ /  

Here the binomial coefficient is to be taken in R and a 0 is the identi ty map. 

P r o o f .  Since u and v are disjoint, u u v is the product of u and v as polynomials 
in R[sz ,  . . . ,  sn] and here the product  rule is valid. [] 

Now suppose S ' w S " : S  is a parti t ion of S where I S']  = k  and IS"  I = l .  
For any i ~ k let u~ be the sum over all subsets of S '  of size i and similarly, for ] g l 
let v 1 be the sum over all subsets of S"  of size j. 

Lemma 2.3. Let  k ~ 1 and  m = k - -  l. T h e n  the equation 0 re(w) = (m + j)!  . 

(ut_~ u vj) has a solution wj  /or every j ~ 1. Th i s  solution is given induct ively  by 

wj  = j ! .  (m:-j  w vj) - -  �9 �9 i! �9 w~-~ 
i = l  

where wo = u~ and  wj - i  = 0 / o r  j less than i. 



394 J. SIEMONS ARCH. MATH. 

Proo f .  We show that the wj defined above satisfies the equation. Since a �9 8 �9 ... �9 
8(u~) and a .  8 - . . . .  8(vj) are disjoint, lemma 2.2 applies and therefore we obtai~ 

8~(ws )  = ] ! "  �9 ( 8 ~ - ~ ( u k - l ) )  u (8~(vj)) 
i 

-~ l-] 

We calculate the ith term in the first sum: Since 

we obtain \ 1--] ] �9 ( m - - i  ~ ]) ! �9 (uz-i+~ w v1-~ ) as the ith term in the first 

sum. For i --  0 we have (m ~ ])! �9 (uz-j w vj), the right hand side of the original 
equation and for positive i the corresponding term is removed by the second sum. 
This completes the proof of lemma 2.3. [] 

For ]c ~ n let X~ be the family of k-elemerrt subsets of S. We identify X0 ---- {0} 
and Xx = S. I f  _RX~ denotes the corresponding subspace of/~X, then R X  ---- 0 R X ~  
becomes a graded vectorspace and 8 is a homogeneous transformation of degree -- 1. 

Theorem 2.4. Let S be a set o] n elements and k, l, m integers such that 0 ~-- 1 ~_ k ~-- n 
and m ---- ]~ --  l. Let 1~ be a /ield o/ characteristic zero or bigger than Ic. Then 8m: 
R X ~  --> RX~ is in]ective i/ and only i/ ]c ~ l ~ n; 8 m is sur]ective i/ and only i] 

We formulate this result also for incidence matrices: Let I( l ,  It, n) be the (0, 1)- 
matrix whose rows are indexed by X~ and whose columns are indexed by Xk such 
that the x, y-entry equals 1 ff and only if x C y. Since I(1, Ic, n) is, apart from a con- 
stant, the matrix of 8 m, we obtain the following 

Corollary 2.5. The incidence matrix I (l, ]~, n) has maximal rank /or  1 ~ ]c ~_ n over 
any / i e ld  o/characteristic zero or bigger than ~. 

Proo f .  In  the case k -{- 1 ~ n, we show that  any x in X~ is an image under 8 m. 
Put S'  ~ x and let S"  be a subset of S of size k disjoint from S'.  By lemma 2.3 there 
is some wz in RX~ satisfying 8 m (w~) ---- k! �9 x. By assumption on the characteristic 
of R, ]~! ~= 0 and therefore 8 m is surjective. 

I f  1 -~ k ~ n, we add new points to S in order to obtain a set S* of size n* ---- l ~ It. 
Let 8" be the sum over all duals of points in S* and X* the lattice of subsets of S*. 
By the first part, the map 8*m: I~X~ ~-> R X ~  is surjective and since the dimension 
of the two spaces is the same, this map is also injective. Consider the inclusion map 
inc: I~X~ ~ R X ~  and the projection pro]: JRX* ~-> R X  given by pro](x) -~- x if x 
is in X and pro](x) = 0 otherwise. The composition 8 *m �9 inc is injective and since 
Kernel (pro]) (~ Image(8 *m �9 inc) = O, the same is true for pro]. 8 *m �9 inc ~ 8 m. 
Note that  the assumption on char R is essential: I(1, 2, 3) has rank 2 over the field 
of 2 elements. [] 
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In  X we consider the map  c: X --~ X which sends any  subset x onto its complement 
Cx in S. This mapping extends to an involutory linear transformation of R X .  

Theorem 2.6. Let V be a subspace o/ R X  such that aV C V and cV C V and let 
Vt: = B X ~  c~ V. Then V~ uniquely determines Vz for any l <= lc, 1 + lc <= n or 1 >= lc 
and 1 + lc ~ n by V~ = O~-~(Vk) or Vz = On-~-z(cV~). I n  particular V = @ V~ is 
completely determined by Vn* where n* is the integer (n --  1) �9 { =< n* =< n �9 �89 

P r o o f .  By assumption we have c(Vz) = Vn-~ and therefore it suffices to assume 
l ~ lc. Since V is a-invariant, we have the chain of homomorphisms 

0 a 
~(~-2z): Vn-~ -->"" ~ Vk -->"" --> V~. 

By theorem 2.4 this map is injective and since the image and pre-image spaces have 
the same dimension, also surjective. Therefore Vz ----- a e-z (Vk) is determined as the 
image of V~ under the map  a ~-t. [] 

I II .  Partitions. Let  S be again a finite set of size n and Xk the system of it-element 
subsets. For  each lc =< n we consider a parti t ion Pk of Xk into classes P~, 1, .--, P~, , , . . .  

n 

and the parti t ion P = (,.J P~ of the whole of X. To each parti t ion P~ we associate 

the subspaee/~P~ of R X ~  which is spanned by the vectors pzc, i = ~ x, x in Pk, ~- 
Thus R P  = @ R P k  is a subspace o f /~X representing P.  Conversely, we call a sub- 
space V of R X  a part i t ion space f f  V = R P  for some parti t ion P of X. The follow- 
ing observation is fundamental :  

Proposition 3.1. The partitions of X and the partition subspaces of R X  are in one- 
one correspondence. 

P r o o f .  Observe tha t  a parti t ion P is finer than or equal to P '  if and only if R_P 
R P ' .  Therefore B P  ---- R P '  ff and only if P ---- P ' .  [] 

D e f i n i t i o n .  A parti t ion P of X is a C-D-partition or generalized orbits if  the 
following two conditions are satisfied for each k = 0, 1, . . . ,  n : 

C: I f  P~, ~ is an arbi t rary class in Pk, then 

cCP~,~) _= {Cxl x in Pc,,} is a union of classes in Pn-k .  

39: For any y in Xk-1 and any  class Pt:, t let l(y) be the number of sets in P~, ~ tha t  
contain y. Then 1 (y) only depends on the class tha t  contains y. 

In  [14] we have met  a similar situation in the ease of tactieM decompositions; 
it can be shown tha t  P is a C-D-partit ion ff and only if (P~, P~) is a tactical decompo- 
sition for every lc --< 1 --< n. 

Proposition 3.2. A partition P satisfies C if and only if r  C R P  and D is saris- 
/led if and only if  a (RP)  C R P  for some field R of characteristic zero or bigger than n. 
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P r o o L  Let  p = ~ x  be the sum over all sets in some class Pk,~; the vectors of 
this type form a basis of R P z  and Cp --_ ~ c x is contained in RPn-~  if and only if 
{cx [ x in P~, i) is a union of classes in Pu_~. Similarly, 

v =  5 y =  5 v .y 
x~Pk,~ xvyeX'k-1 ] Y~Pz-I.~ 

Then v is contained i n / ~ P ~ - I  if and only if Vy ~ Vy, whenever y and y'  belong to 
the same class P~-1,i. By assumption on the characteristic of R this is equivalent 
to D. [] 

Our next theorem shows tha t  C.D-partitions P are determined by  Pn*, this is 
a consequence of the above proposition and theorem 2.6. 

Theorem 3.3. Let S be a set o/size n and X~ the/amily o/ ~c-subsets o / S .  Let P~ 
be a partition o] X~ /or ]c =- O, 1 . . . .  , n such that .P -~ w Pk is a C-D-partition o] 
X ~ u X~. Then Pk uniquely determines P~ /or any l <--_/C, 1 -~ ]~ <~ n or l ~/C, 
1 ~/C >= n. In  lx~rticular t ) is uniquely determined by Pn* where n* is the integer 
(n--1)-~-<=n*<_-=n.�89 

P r o o f .  Let /~ be a field of characteristic zero. In  view of proposition 3.2 and 
theorem 2.6, the vectorspaces -RPI and R P  are completely determined. Therefore, 
by proposition 3.1, the partit ions Pz and P are determined by  _RP~ and _RP respec- 
tively. [] 

In  the following we shall suppose tha t  an arbi t rary parti t ion Q~, of Xn* is given 
and we shall investigate under what  circumstances there is a C-D-partit ion P of X 
for which Pn* ~- Qn*. I f  Qn,, 1 . . . .  , Qn,, ~, ... are the classes of Qn*, let q~ be the 
sum over all sets in Qn*, ~. For any  element v ----- ~ vx" x in _RX~ we define the level 
surfaces of v: levr (v) : (x I x in Xt:, vx -~ r) for any  r in _R. This is used to define 
the level surfaces of Qn, in Xk: 

Lev(Qn*,k) : (levr(On*-k(q~))lrin R, i---- 1, . . .} if /C <=n* 

and 

Lev(Qn, , / c ) - - - - (cL]LinLev(Qn, ,n - - /c ) }  for /c_>n*. 

For each /C -~ 0, 1 . . . .  , n we consider the coarsest parti t ion P~ of Xk which is as 
fine as Lev(Qn*, Ic), ~hat is, i l l  is a family of/c-sets in Lev(Qn*,/C) and Pk,~ any  
class of P~, then Pk,i t~ L = 0 or Pk,~ and the number  of classes in P~ is minimal 
with this respect. Clearly Pn* = Qn* since Qn, is a partition itself. 

Theorem 3.4. Let Qn* be a partition o / X n * ,  (n -- 1) �9 �89 __< n* --_< n -  �89 and let P 
be the partition o/ X de/ined above. Then P is a C-D-partition i /and  only i] the number 
o/ classes in Pk is equal to the dimension o] the space ~n*-k (RQn,) for all/C ~ n* and 
some/ield R o/ characteristic zero. 

P r o o f .  I f  P is a C-D-partit ion with Pn*-~ Qn*, by theorem 2.6 RPk = 
on*-k(RPn *) and the dimension of the lat ter  space is the number of classes in P~. 
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Conversely, let _RL~ be the vectorspace spanned by  the vectors l where 1 is the sum 
over some level surface in Lev (Qn*, k). Then c(RLk) = RLn-~ and 

RL~D= an*-k(RQn .) or ~=c(~n*+~-n(RQn~)), 

according to k ~ n* or k > n*. By the construction of P,  we have _RP~ D RL~ 
for all k and by the assumption on the dimensions, we obtain that  

RP~ = RL~ = ~'~*-~(RQn*) or = c(an*+~-n(RQ,,)). 

This implies ~(RP~) C RPk-1 and since c(RPk) ~ c(RLk) ~-- RLn-~: ~ RPn-~,  P is a 
C-D-partition by proposition 3.2. [] 

IV. The Theorem of Livingstone and Wagner. In  this chapter we will derive some 
important  conclusions for permutation groups from our results on partitions. Let  G 
be an arbitrary permutation group on the finite set S. The G-action on S leads to an 
action of G on the subset lattice X. This in turn extends naturally to linear trans- 
formations on R X  by defining 

g: v = Zv .x  

where xg = {sg I s a x}. Note that  this operation of G on R X  is compatible with the 
-multiplication defined in chapter II.  The partitioning of X into G-orbits is denoted 

by 

X(G) = { {xa igeG} l xeX  } 

and R X  (G) is the partition space corresponding to X (G). The subspace of R X  (G) 
corresponding to X~(G), the G-orbits on X~, is denoted by /~X~ (G), in accordance 
with the notation in chapter III .  The following is elementary and can easily be 
verified. 

Proposition 4.1. _For any group G on the/inite set S, the partitioning X (G) into orbits 
is a C-D-partition in the sense o] chapter I I I .  R X  (G) is the centralizer algebra 

(v l vg -~ v /or  all g in G} 

which i8 invariant under the maps c and a. 

Representation algebras of this type and similar constructions have been con- 
sidered in Siemons [13], and Wielandt [19, 20]. 

The main result of this paragraph is an important  improvement of the theorem of 
Livingstone and Wagner [10] which asserts [X~(G) I ~ ]X~-I (G)] for any group G 
on S and 2k ~ n. (Proofs for this theorem can also be found in Wielandt [18] and 
Cameron [3].) The following is an immediate consequence of 3.3: 

Theorem 4.2. Let S be a set consisting o / n  elements and k an integer ~ n. Let X~ (G) 
be the/amily o] orbits o/some permutation group G on the k-subsets o] S. Then X~ (G) 
uniquely determines X~ (G), independently o/the group G, ]or any 1 ~ k, l -k k ~ n or 
l ~ Ic, l "k lc ~ n. In  particular X (G) is determined by Xn* (G) where n* is the integer 
( n - - 1 ) . � 8 9  ~ n *  ~ n . � 8 9  
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In  the proof of theorem 2.6 we have seen tha t  1r (G) ---- a ~-Z (RX~(G)) for l ~ k, 
1 -~ k ~ n for any field of characteristic zero. Therefore we obtain an expression for 
the number  I XI(G)] = dim BXz(G) of G-orbits on the 1-subsets of S: 

Corollary 4.3. For l ~ k, 1 ~ k ~ n the number o/ G-orbits on X t  is given by 

I X (G) I = I (G) I = I X (G) I - (Kernel(a -z) n (G)) 

where 1~ is a ]ield o] characteristic zero. 

Theorem 4.4. Let G and H be grouts on S and k an integer ~ ~"1S I so that the 
/ollowing holds: For any g in G and any k-subset x there is some h in H so that xg -~ xa* 

Then/or any subset y o/size ~ k and any g e G there is some h* in H so that yg ---- yh,. 

P r o o f .  The hypothesis is equivalent to the assumption tha t  every G-orbit on Xe 
is contained in some H-orbit .  Therefore RX~ (G) ~= R X k  (H) for any  field of charac- 
teristic zero. I f y  has size 1 and m -~ k --  l, by theorem 2.6, Om(RXk(G)) ~ RX~(G) 
and a similar relation holds for /~X~ (H). Therefore t~X~ (G) ~= RXz (H) and this is 
equivalent to the conclusion of the theorem. 

We now consider the following question. Suppose an arbitrary permutat ion on X~ 
is given, say as permutat ion matr ix  G~. When is G~ induced by  a permutat ion Gz 
on S when acting on X~ in the natural  way ? 

Apparent ly  this is the ease ff and only if for any  x e X~ we obtain I -  Gk (x) : 
Gz" I (x) where I is the incidence mat r ix  of points in k-sets. I f  the equation holds we 
obtain Gz -~ I -  G~. I -  for any  right-inverse I -  of I (see corollary 2.5). Conversely 
suppose G1 ~ I "  Ge �9 I -  is a permutat ion matr ix  independent of the particular 
choice of I -  as a right-inverse. Then I .  Gk �9 M ~- 0 whenever I .  M ~ 0. Taking 
M = (1 - -  I - "  I) ,  we obtain 

0 = I . G x .  (1 - -  I - . I )  --~ I . G k - -  I ' G k "  I -  �9 I - ~  I . G k - - G I ' I .  

Since permutat ion matrices are the orthogonal (0, 1)- matrices we have the follow- 
ing: 

Theorem 4.5. Let G~ be a permutation matrix on X k  and let I be the incidence matrix 
o/points in k-sets. Then G~ is induced by a permutation G1 on S i / a n d  only i] IG~ I -  
is an orthogonal (0, 1).matrix independent o/ the choice o] I -  as a right-inverse o] I~ 
and Gz ~ I G k I - .  

A corresponding result may  easily be formulated for the more general question: 
When does Gk induce a permutat ion on X~ ? Theorem 4.2 may  be considered as a 
consequence of 4.5 if one observes tha t  the partitioning into orbits corresponds to a 
linear operator x --> ~ xg which commutes with the inclusion map (Proposition 3.2). 

geG 

V. Orbit equivalence. In  this section we consider the equivalence relation of 
permutat ion groups on S having the same orbits on the subset lattice of S: 
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D e f i n i t i o n .  Let  G and  H be two groups on the set S consisting of  n elements. 
G is k-orbit equivalent to H, G ~ k  H, if X~(G) = X~(H). The k-closure G(k) of G is 
the largest group on S with Xk(G(k)) = X~(G). G is orbit equivalent to  H, G ~* H, 
if  X (G) = X (H), and the  closure G* is the  largest group on S with X (G*) ~- X (G). 

Using this te rminology we obtain  as a corollary to  4.2 the  following theorem:  

Theorem 5.1. I / G  ~ H are permutation groups o/degree n, k < n* where 

(n - - 1 ) .~ -  <=n* <~n.�89 

then G ~z  H / o r  any 1 < k and G ~ ,  H i / and  only i / G  ~n* H. Furthermore, 

G c= G* c=... g G(~) C= G(z-1) g . . .  c= G(~) 

/or 1 < n* and G is l-homogeneous i /and  only i] G(O is the symmetric group. 

For  infinite sets Bercov and H o b b y  [1] have proved the same result using a form 
of  Ramsey ' s  theorem. (Their proof  does not  apply  in the finite case). We note t h a t  
their  result  m a y  also be proved independent ly  of  Ramsey ' s  theorem by  extending 
the  techniques of  Chapter  I I  to  infinite dimensional set algebras. I n  theorem 5.1 
k-homogenei ty  can in general no t  be replaced by  k-transi t ivi ty as the example of  the 
symmetr ic  and  al ternat ing groups shows. For  5 < k ~ n*, however, k-homogenei ty  
and  k-transi t ivi ty  are equivalent  and for 2 < k < 4 the same is t rue apar t  f rom some 
well-understood exceptions, see Kantor ,  theorem 1 in [9]. 

I n  the  following theorem we show t h a t  the pr imit iv i ty  of  G is reflected in the  
orbi t  algebra R X  (G) : 

Theorem 5.2 (Rudio 's  Lemma).  Let G be a group on S o/degree n. Then G is primitive 
on S i / a n d  only i/ Co 8j cco 8t : R X  (G) ~-> R X  is a monomorphism ]or all i ~= ] in 
{i , . . . ,  hi. 

I] G ~ k  H ]or some k > 2, k < n - -  2, then both groups have the same blocks o/ 
imprimitivity. In  particular, H is primitive i / and  only i] G is primitive on S. 

Rudio 's  Lemma (1888, see theorem 8.1 in [17], compare also [16]) asserts a separa- 
t ion p roper ty :  A group G is primitive on a finite set S ff and only ff for any  pair  
s, s '  of  distinct points and  any  subset x =4= S, 0 of S, there is a group element g such 
t h a t  s e xg ~b s'. 

P r o o f  o f  5.2. Let  R be a ny  field and  let s~, s i be two distinct points of  S and let 
8t~ 8j be their dual points.  The map  co 81 o c o 8~ interchanges s~ with sj in any  set x 
t h a t  contains s~ but  no t  s~ and maps  x onto zero in all other  cases. For  this reason 
it will be sufficient to  show t h a t  none of  the canonical basis vectors of  R X  (G) is 
mapped  onto zero in order t ha t  Co 8 i o c o a~ is injective. 

According to  Rudio ' s  Lemma,  a subset x is a block of  imprimit iv i ty  for G if and  
only  if Co a~ o c o a~ (xa) = 0 for all g in G and some pair i ~= ]. Hence x, 2 ~ [ x] 
n - -  2, is a block of  impr imi t iv i ty  if  and  only if  Co 0 i o c o 8i(q) = 0 for the basis 
vector  q of  R X  (G) t h a t  consists of  all G-images of  x. I f  x has size 1 or n - -  1, the 
assumpt ion co 8 i oc o a~ (q) 4- 0 for all i # ?" is equivalent  to the t rans i t iv i ty  of  G on S. 
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For  the  second pa r t  of  the proof  we can assume G ~ 2  H.  We call a subset  Q of X2 
an  equivalence relat ion in X2 p rov ided  {s, s,} and {s, s,,} e Q always implies t h a t  
{s,, s,,} is contained in Q, Le t  q be the  sum over  all sets in Q. I t  is easy to see t h a t  Q 
is an  equivalence relat ion ff and  only  if  ei ther  a~ (q) -~ ~j (q) or ai (q) and  aj-(q) are 
disjoint  for all i and  ]. I f  Q is a G- invar ian t  equivalence relation, (Oi (q))g = ai~ (q) 
for  all g in G and therefore {ai (q) I i = 1, . . . ,  n} corresponds to a par t i t ioning of  S 
into blocks of  impr imi t iv i ty .  Since G ~ 2 H, both  groups have  the  same block systems,  
each corresponding to  an equivalence relat ion in X2 (G) ---- X2 (H). [] 

We r e m a r k  t ha t  the  theorem suggests a not ion of p r imi t iv i ty  for a rb i t r a ry  C-D 
par t i t ions  on X. Defining a par t i t ion  P to  be pr imi t ive  if  for  all i -~ j the m a p  Co a~ o c o ai 
is a monomorph i sm on R P ,  we have  seen in the  proof  of  5.2 t ha t  P is pr imi t ive  if 
and  only if P2 contains no equivalence relat ions except  possibly the  two t r ivial  
relations. 

L e m m a  5.3. Let G be a group on S o/degree n and k ~ �89 Then the index I G(~) : G l 
is equal to I G(=~) : Gz I /or any subset x o/size l ~ k or 1 ~ n --  ]c. In  particular, the 
order o/G(~) divides ]G : Gx I l! (n --  l)!. 

P r o o f .  We can assume t h a t  IxI = I ~ k and,  b y  theorem 5.1, G(~) ~ G .  There-  
fore the G-orbit  and the  G(~)-orbit of  x are the  same. Hence  ]G(k) : G(~k)[ ---- ]G: Gx l- 
Fo r  the remainder  observe t h a t  G(x k) is a subgroup of the  direct  p roduc t  of  the  sym-  
metr ic  groups on x and  Cx. 

Theorem 5.4. Let G and H be orbit equivalent groups o/degree n. I f  p is a prime, 
2p > n ~ 1, then p divides the order o/G i /and  only i / i t  divides the order o /H.  

P r o o f .  I n  l emma 5.3 we take  l = p - -  1; therefore ]G*:  G t and I H * :  H I divide 
(p - -  1)! �9 (n - -  p -{- 1)1 and hence are coprime to p. Since H *  = G* the  required 
p rope r ty  follows. [] 

Theorem 5.5. Let G and H be transitive and orbit equivalent groups o] degree n and 
let p, n -- 3 ~ p ~ (n ~ 1) �9 -,~-, be a prime dividing the order o/G. Then both groups 
contain the alternating group o/degree n unless n ---- 9 in which case G and H are among 
the groups PSL(2,  8), PILL(2, 8), Alt  (9), Sym(9) .  

P r o o f .  Firs t  we show tha t  G is pr imi t ive  on S:  Let  g e G be an element  of  order p 
displacing the  points  {sl, . . . ,  sp} ----- y. A block of  impr imi t iv i ty  for G would have  to  
contain y or otherwise be disjoint f rom y. The  first a ssumpt ion  contradicts  the  fac t  
p > n�89 while the t r ans i t iv i ty  of  G excludes the  second possibility. Hence  bo th  G 
and H are pr imit ive  b y  theorem 5.2. As a consequence of  Jo rdan ' s  theorem (see 
theorem 13.9 in [17]), G contains the  a l te rna t ing  group of  degree n. I f p  > (n -~- 1 )  �9 �89 
p divides the  order of  H b y  theorem 5.4 and  hence H ~= Alt (n). 

I n  the  remaining case p = (n + 1) - �89 ~ 5 does not  divide the  order of  H so t h a t  H 
is not  (p)-transitive. On the  other  h a n d  H ~ ,  G which implies t ha t  H is /c-homo- 
geneous for  every  k <: n. The  a s sumpt ion  t h a t  H is (p - -  1)-transit ive contradic ts  
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lemma 9 in [10]. Hence we may  apply theorem 2b in [10] and conclude n = 9, p ~ 5 
and H ~- PS.L (2, 8) or P/~L (2.8). [] 

The group P_r'L(2, 8) is the largest non-trivial group which is k-homogeneous 
for all k ~ n. The only other groups with this property are the Frobenius group 
of order 20 (n = 5), G = PGL(2, 5) (n = 6) and GD PGL(2, 8) with n = 9. (See for 
instance w 1 of Livingstone and Wagner [10]). Hence, G ~ ,  Alt (n) implies G D= Alt (n) 
unless G is one of these exceptions. 

In  the general case the orbit equivalence relation for permutat ion groups seems to 
be close to the equali ty relation. A possible approach in this direction would be to 
compare the constituents of orbit equivalent groups. The following example shows 
tha t  the equality of constituents does not imply equality for the whole group: I f  
G = A l t ( S )  and x is a subset of size ~ 2  and ~ n - - 2  then G x = S y m ( x )  and 
G ~ = Sym (Cx). However, we have the following 

Proposition 5.6. Let G ~ ,  H be groups on S with G C= H and suppose x is a subset 
o/ S with the property that 1 is the only permutation in H/ i x ing  every point o /x .  Then 
G = H i~ and only i /Gx _~ H x. 

P r o o f .  Let  h be in H ;  then there exists some g in G so tha t  xg = x a and thus 
g-lh e Hx.  I f  G x = H x choose an element g' in G which agrees with g-1 .  h on x. 
Then g' �9 h -1 �9 g fixes every point of x and hence must  be the identity. This shows 
tha t  h is contained in G. 

We now turn to the more general problem of k-closure. This equivalence relation 
has a natural  interpretation in the context of geometrical groups. The full auto- 
morphism group of an (undirected) graph on the vertex set S, for instance, is 2-closed 
since this group can be characterized as the largest group on S tha t  preserves the 
family of 2-subsets representing the edges of the graph. Likewise, if  2 is an affme or 
projective plane (or indeed any 2 - -  (n, k, 1)-design) then ~ is fully determined by  
the subset of X3 representing the family of collinear point %ripels. Therefore the 
automorphism group of ~ is 3-closed. 

Let  C be a subgroup of G(~) containing G for some/c ~ �89 n and let p be a prime 
dividing the order of C. I f  P '  is a Sylow-p-subgroup of C, then {x} is contained in 
X (P')  for some subset x of S if and only ff x is a union of point orbits of P '  and hence 
{x} ~ X (P) for any  subgroup P of P ' .  In  the opposite direction we prove 

Lemma 5.7. Let P be a Sylow-p-subgroup o/ G /or some prime p and let x be a set o/ 
size l /or  which {x} is contained in X ( P ) .  Then/or  any k, 1 ~ ]~ and 1 + k ~ n or 
l ~ k and 1 + k ~ n and any given p-subgroup P'  o / C  C G(k) there is some g in G 
so that {xg} ~ X (P ' ) .  

P r o o f .  By  theorem 5.1 C ~ G  and therefore d = IG:Gx] = [C: Cz[ is prime 
to p. Hence let P *  be a Sylow-p-subgroup of C contained in Cx. (This implies 
{x} e X(P*)) .  There is some h in C such tha t  (p*)a  contains the given group P ' .  
This implies {xa} e X(p*a)  C X ( P ' )  and hence we can choose some g e G so tha t  
{xg} = {• is contained in X (P').  [] 
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Theorem 5.8. Let G be a group on S o/degree n and let G C_ C C G(~) /or some k ~ �89 n. 
Suppose p is a prime dividing the order o / C  but not the order o/G. Let P '  be a Sylow-p- 
subgroup o/ C wi th / ixed point set S'. Then the size o / S '  is bigger than or equal to 
ra in  (p - -  1,/c) and the G.orbits on X~ are in one-one correspondence to the orbits o] C a" 
on the 1-subsets o / S ' / o r  every l ~ rain (p - -  1, k). 

P r o o f .  L e t  x be a set  of  size 1 _< m i n ( p  - -  1, k). Since G has  order  p r ime  to  p, 
b y  l emma 5.7 there  is some g e G so t h a t  {xg) e X (P ' ) .  Since 1 ~ p, xg mus t  be a 
union  of po in t s  f ixed b y  P ' .  Hence  xg _C S '  and  eve ry  G-orbi t  on X~ conta ins  a subset  
of  S '  for a n y  l --< rain (p - -  1, k). 

I t  remains  to  show t h a t  i f  x, y C S '  such t h a t  xg = y for  some g e G, t hen  there  is 
some a in C s, wi th  x a -~ y. I n  th is  case i t  is clear t h a t  P '  and  (P ' )g are  Sylow-p-  
subgroups  of  C(y). Hence  there  is some h in C(v ) so t h a t  a ---- gh is con ta ined  in the  
normal izer  of  P '  in C(y). Therefore  x ~'~ ---- yh ___ y and  (S') a = S',  i .e .  a e Cz,.  This  
shows t h a t  the  sets of  a n y  G-orbi t  on X~ con ta ined  in S '  a re  prec ise ly  one Cs,-orbi t .  [] 
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