ISTITUTO LOMBARDO

ACCADEMIA DI SCIENZE E LETTERE

RENDICONTI

Scienze Matematiche e Applicazioni

A

Vol. 118 (1984)

ESTRATTO

JOHANNES SIEMONS

TACTICAL DECOMPOSITIONS
IN FINITE INCIDENCE STRUCTURES

Istituto Lombardo di Scienze e Lettere

MILANO
1987



Algebra Istituto Lombardo (Rend. Sc.) A 118, 191-202 (1984)

TACTICAL DECOMPOSITIONS
IN FINITE INCIDENCE STRUCTURES

JOHANNES SIEMONS (%)

Nota (**) presentata dal s. c¢. Cesarina Marchionna Tibiletti
(Adunanza del 11 ottobre 1984)

SUNTO. — Si studiano le decomposizioni tattiche in una struttura d’incidenza finita
e gli spettri ad essa associati.

1. - Introduction.

Let P be a finite set of points, B a finite set of blocks and
I an abstractly given incidence relation which tells us whether or not
a given point is on a given block. The objective of this paper is to
study such incidence structures employing concepts that are developed
from the understanding of well known finite structures such as projec-
tive and affine space or undirected graphs etc. There one of the most
fundamental ideas is similarity: the equivalence of elements in the strue-
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ture under its group of automorphisms. The notion of a tactical decom-
position — due to Dembowski — abstracts from the properties of similar-
ity and allows us to analyse a structure quite independently of its
automorphism group. In some way this is the equivalence of elements
and subsets being indistinguishable by means of counting incidence.

In an earlier paper [5] some of the elementary properties of tac-
tical decompositions have been derived. For instance the fact that any
partition of the elements in a structure has a unique (minimal) tactical
refinement. This essentially is the process of partitioning elements ac-
cording to colour schemes. They are the theme of chapters 2 and
3 in the present paper.

Linearization of a structure provides a natural setting for colour
schemes and tactical decompositions: the elements are taken as basis
vectors (over some field), thus spanning a point space and a block
space. The incidence relation provides a pair of maps between these
two spaces. As it turns out, a decomposition will be invariant under
these incidence maps precisely when it is a tactical decomposition. Thus
many techniques from linear algebra can be employed.

Certain subspaces of the point and block space are group in-
variant. They in turn give rise to group invariant decompositions, these
are the kernels of a structure, defined in chapter 3. Among other
results we obtain a bound in general for the number of distinct colour
schemes arising from an arbitrary partition of the points (Theorem 3.3).

The compositions of the incidence maps are endomorphisms of
the point and the block space. Their eigenvalues form the spectrum
of a structure. Similarly the spectrum of a tactical decomposition may
be defined. In theorem 4.4 we show that the spectrum of a tactical
decomposition always is contained in the spectrum of the structure.
Theorem 4.5 deals with the converse inclusion.

In the fourth chapter we also consider the case when the number
of colour schemes takes its minimal value (i.e. the number of classes
in the point partition). This leads to various characterizations of tactical
decompositions.

This paper is a continuation of [5]. Despite this fact it is as
self-contained as possible, with most of the notation given in chapter 2.
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2. - Basic definitions and notation.

Let S = (P, B) be a finite incidence structure with incidence rela-
tion I. The elements in P are called points and the elements in B
are called blocks. If a point p is incident with a block b we denote
this by pIb. Let P be a partition of P into r non-empty classes Py, ..., Pr.
Then r = |P| denotes the number of classes while | P;| is the number
of points in class Pi. When P’ is a second partition of P we call
P’ a refinement, P’ = P, of P if every class of P’ is contained in
some class of P. The same notation shall be used for the block set of S.

Let b be a block and let ¢, (b) be the number of points in P
that are incident with b. The vector c(b) = (cl ®), ..., e (b), ...y c,,(b))
is the colour scheme of b. The relation b ~ b’ if and only if c (b) = ¢ (b')
defines a partition of B into ~equivalence classes. This we call the
colour scheme partition of B relative to P. It shall be denoted by
Bp. Let By, ..., By be the classes of Bp and choose a by, in By for
every 1 = s’ < s. The (r x s) matrix

('c (bl)\

C(P) =

¢ (bs) )

is the colour scheme matriz of P.

An automorphism of S is a pair g = (gp, g8) Where gp and gs
are permutations of the point and the block set, respectively, such
that pIb iff gp (p)I gs(b). The images of p and b are also denoted
by p® and b2, similarly (Pr)® denotes the set of all images of points
in P; etc. The group of all automorphisms of S is denoted by AUT (S).
" If G < AUT(S) and if P is a partition of P we say that P is G-inva-
riant if (Pr)® is a class of P for every g in G and every 1 s v’ <r. If
(P)t = P for all gin G and all 1 < r’ < r, we say that P is G-fized.

. LEMMA 2.1. - Suppose that P is G-invariant (G-fized). Then Bp
is G-imvariant (G-fixed).
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PROOF. - This follows immediately from the definition. o

It will be extremely useful to describe a structure (P, B) in terms
of vector spaces and incidence maps. Here I refer in particular to
[5]. When R is a field of characteristic zero the point space RP is
the vector space of all formal sums 2.r; » p; where r; belongs to R
and p; to P. An inner product ( , ) is defined through the é-function
(p;, pi) = 8; when p; and p; are points in P. For a partition class P;
the vector p; shall denote the sum over all points in P;. Thus for
instance (p,p) =1 if and only if p belongs to Pi, note also that
(pi, p3) = | Ps.

The space generated by pi, ..., Pi, ..., Pr Where Py, ..., Pr are all
the classes of the partition P is called the partition space associated
to P and is denoted by RP. In general, a subspace U of RP is called
a partition space if U = RP for some partition P. In § 2 of [6] I
have shown that any subset W of RP is contained in a unique partition
space of minimal dimension. This space is denoted by L(W) and the
corresponding partition is denoted by Pw.

Precisely the same notions shall hold for the block set: RB denotes
the block space, (bi, b;) = 83 is the inner product and RB is the parti-
tion space associated to a partition B of the block set.

The incidence relation leads to incidence maps 8*: RP — RB
and 3" : RB—— RP given by 8" (p) = pZI]b b and 37 () = ;g’:b p. These

maps are adjoint to each other: pIb is equivalent to (3™ (b), p) = 1 but
also to (3% (p), ) = 1. Therefore (3" (u), w) = (u, 7 (w)) whenever u
belongs to RP and w to RB.

The components of the colour scheme vectors now are easily expressed
in terms of the incidence map: ¢r (b) = (3~ (), pr) = (b, 3" (pr)). When
By, ..., By, ..., B, are the classes of Bp and by is a block belonging
to By, we calculate 9% (pr) = 26 3" (pr), B) * b = 2 (prr, 8~ () * b = 2y
cr (bs) * bEZBJg b= 2 ce(by) » bs.

This shows that 4* (RP) < RBp and that C (P) is the matrix of
3* (with respect to the bases pi, ..., pr and by, ..., bs) when 8% is restricted
to RP.

Interchanging the role of points and blocks, starting from an
arbitrary partition B of the block set we define the colour scheme
partition Pg of the point set. This yields colour scheme vectors ¢ (p) in
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which the components count the number of blocks through p in each
block class. In the same way the colour scheme matrix C (B) is defined.
By the argument above 9~ (RB) = RPg and C (B) is the matrix of the
restricted map 98~ : RB — RPs.

3. - Some group invariant partitions.

Let K* be the kernel of 3% and let K~ be the kernel of 97.
As we have seen in the last chapter these subspaces define a partition
P+, the point kernel and Bx-, the block kernel of the structure. They
shall be abbreviated by P® and B°. So, for instance, P° is the trivial
partition into a single class if and only if K* is the null space, ie.
" is injective. This is a most common situation for interesting in-
cidence structures. In bipartite, connected graphs, however, K* is spanned
by the vector pi—p: where p; is the sum of all vertices in a part
of the graph, i = 1,2. Thus P° consist of two classes, and they are
the parts of the graph. (See also [6]). As an example of a block kernel
we may consider the complete graph on 4 vertices. Here B° consist
of 8 classes, each being a pair of edges with no vertex in common.

PROPOSITION 3.1. - P® and B® are invariant under all automor-
phisms of S. If AUT (S) is transitive on P (on B) then |P°| divides
|P| (|B°| divides |B ). If AUT (S) acts primitively on P (on B) then
P° B% is a trivial partition.

Thus, for primitive point action K* either is the null space or
otherwise is sufficiently large to generate the whole of RP as the
smallest partition space containing it.

PROOF. - When g = (gp, g8) is an automorphism of S, then the
action on points and blocks naturally extend to an action of g on
the point and block spaces as a linear transformation. It follows very
easily that d8*egp = gs+d* and as a consequence 3*(w) = 0 implies
d* (w®) = 0. This shows that K* is invariant under all automorphisms,
hence also Px+ = P%.

If AUT (S) acts transitively on P, the classes of P° are blocks
of imprimitivity, thus their number and their size divide the number
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of points. When AUT (S) acts even primitively a class of P° must
either be a single point or consist of all the points, -thus P° is a
trivial partition. The arguments for the block kernel are precisely the
same. o

When P’ is a subset of points in a structure (P, B) we consider
the substructure (P’, B) in which incidence is defined as in (P, B). The
following theorem shows that by removing a point in each but one
of the classes of P° one can always achieve a substructure in which
the point kernel is trivial.

THEOREM 3.2. - Let P° = (P9 ..., P? ...} be the point kernel of
o structure (P, B) and let P’ be o subset of P such that P{NP' = P}
for at most one of the classes of P°. Then 8*:RP’'—— RB 1s 1ngective.
In particular |P'| < |B]|.

PROOF. - Suppose that a = 2iaip; belongs to the kernel of
9*: RP’ — RB, that is a; = 0 if pi ¢ P’ and 8" (2) = 0. As K* = RP°,
also @ = 2553; » p} and from the condition on P{N P’ it follows that
a=0or a=a «p) (when P is the class entirely contained in P’).
But then 8*(a) = 0 implies that a; must be zero. Thus 9* is injective
on RP'. ]

The meet P A P’ of two partitions of the point set is the partition
P of largest class number satisfying P = P and P’ = P. Next we give
a bound for the distinct colour schemes arising from an arbitrary point
partition.

THEOREM 3.3. - Let P be a partition of the point set of a struc-
ture (P, B) with point kernel P°. Then the number of classes of the
induced colour scheme partition Be satisfies |Bp| = |P| = |P A P°| + 1.

PROOF. - We have seen that 8" maps RP into RBp. As the dimen-
sions of these spaces are the class numbers, we obtain |Be| = |P|
— dim (K* N RP). Thus we are lead to consider K*N RP. If a is an
element in this space then a also belongs to RP°. Thus a can be
written in two ways: a = 25 a; » pi and a = 2 a; » pj. This implies that
classes P; and P} with non-empty intersection carry the same coefficient,
but this is the same as saying that a belongs to R(P A P%. Finally
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observe that a standard basis vector in this space (with coefficients
0 or 1) does not lie in K*. Therefore iP./\ P°| -1 = dim (K" N RP)
and the result is proved. O

4, - Tactical decompositions.

In this chapter let (P, B) be a fixed incidence structure in which
|P| < |B|. When P and B are a pair of given partitions we may
compare them to their respective induced colour scheme partitions.
This leads to the following

" DEFINITION. - (P, B) is *tactical if B = Bp. (P, B) is “tactical if
P = Pgp. If both properties are satisfied then (P, B) is a tactical pair.

In the literature also the terms block tactical and point tactical
are used, see for instance [8]. As we have seen in § 2 the colour
scheme partitions satisfy 8* (RP) = RBp and 8~ (RB) < RPs. From pro-
position 2.1 in [5] it follows that (P, B) is *tactical (“tactical) if and
only if 8 (RP) < RB (3~ (RB) =< RP). Theorem 3.3 now gives a general
version of Block’s Lemma (see page 21 in [4]):

THEOREM 4.1. - If (B, P) is a *tactical pair then |B| = |P|
— |PAP| + 1.

Tactical pairs occur naturally as the orbit partitions of an automor-
phism group of a structure. More generally a pair is tactical if certain
regularity conditions are met. This can be seen for instance in the
case of designs. Let S = ((¥), ¥)) where (¥) denotes the collection
of all j-element subsets of the finite set X. When t < k let incidence
be given by set inclusion. Let P be the partition of (X) into a single
class and suppose that B = {By, ..., By, ...,] is a partition of ). It now
follows that (P, B) is tactical if and only if (X, B;) is a t-design for
every class of B.
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4.1. - Spectra.

Let »p be the map 87+3*: RP — RP and »p the map 97+37:
RB —— RB. As the incidence maps are adjoint to each other, the
maps »p and »p are symmetric and so their eigenvalues are real.

The spectrum of S, Spec (P, B), is the collection of eigenvalues,
with multiplicities, of the transformation ve. First we show that
and »p essentially have the same eigenvalues.

THEOREM 4.2. - If |Pl < lBl then Spec (P, B) 1s obtained by
removing |B] - ]P| zeros from the sequence of eigenvalues of vs.

PROOF. - The matrices of vz and »p are I-I' and ITeI where
I is some incidence matrix of S. Thus we consider the characteristic
polynomials det (t—TI+I7) and det (t—I"+I). The theorem now follows from

LEMMA 4.8. - Let A be an (r x symatrix and B an (s x rymatrix,
both real, such that r < s. Then det(t—BA) = t*™* « det (t— AB).

PROOF. - First let A and B be square matrices and suppose that
A is invertible. Then, as (1—AB) is conjugate to (1-BA) we have
det (1— AB) = det (1-BA). Consider this as a polynomial identity for
the real entries of A. By density and continuity arguments the equation
then also holds when A is singular. Using this equation for A’ = t<A
we obtain t* « det (1—-BA) = det (t—BA’) = det (t—A’B) and the lemma
holds for square matrices. For rectangular matrices we augment A
by rows of zeros to obtain a square matrix A’ and B by columns
of zeros to obtain a square matrix B°. The result now follows from
the consideration of A°B® and B°A°. m|

When (P, B) is a tactical pair then up can be restricted to w =
= 97+3": RP — 8" (RP) < RB — 0~ (RB) < RP. The spectrum of
(P, B), denoted Spec (P, B), is the collection of eigenvalues of vp, with
multiplicities.

THEOREM 4.4. - Let (P, B) and (P, B’) be tactical pairs in a
structure (P, B) such that P = P’. Then the spectrum of (P,B) 1s a
subsequence the spectrum of (P’, B'). In particular, the spectrum of (P, B)
is a subsequence of Spec (P, B).
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PROOF. - From P = P’ it follows that RP = RP’ and so »p is
the restriction of »p to an invariant subspace. This implies that eigen-
values of wvp are eigenvalues of vp. O

Let (P, B) and (P’, B’) be tactical pairs and suppose that some per-
mutation g of the point set maps the classes of P onto the classes of P’
Viewing g as a linear map we obtain a transformation g : RP — RP".
Then g is a similarity between P and P’ if g leypeg = vp as a map
of RP and we say that P is similar to P’ if there is a similarity
of this kind. Clearly tactical pairs with similar point partitions have
the same spectrum. When p is a point of P then there is a unique
tactical pair (P?, B®) of minimal class number such that {p} is a class
of PP, see theorem 2.3 in [5]. By the previous theorem Spec (P?, Bf)
is contained in Spec (P, B). We now deal with the converse:

THEOREM 4.5. - For every eigenvalue \ in Spec (P, B) there 1s
a point p such that N also belongs to Spec (P¥, BY). If P? 1s similar
to PP for every point p' in P then Spec (P, B) and Spec (P”, B”), as
sets, are equal and the number of distinct eigenvalues is a lower bound
for |P?| and | B”| - 1, the class nmumbers of this pair.

The assumption of similarity holds in particular when AUT (S) is
point transitive. When all eigenvalues in Spec (S) are distinct one shows
easily that AUT (S) is an elementary abelian 2-group and, independently,
that point similarity implies that each P” consists of single point classes.

PROOF. - Let x be an eigenvector for . We may assume that x =
= 1+ Ziz28i » pi. Let Py = (p1), ..., Py, ... be the classes of P? for
p = p1. Now define y = 25 (x, pi) (05, pi) ' *pi, an element in RP?. Then
(v, pi) = (x, py for all p; so that y # 0 as (y,pr) = 1. As wp restricts
to RP?, each vp(p; is a linear combination of the pi's so that also
(y, ve (p3) = (x, vp (p3)) for all j. This leads to (vr (y), Py = (¥, v (Pi)) =
=& (@) = p (X, p) = (NeX,py) = (\ey, py for all j. But this means
that y is an eigenvector in RP? with eigenvalue X

Similarity, as we remarked above, implies equality of spectra so
that every eigenvalue in Spec (P, B) belongs to Spec (P?, B) for a fixed
- p. As | P?| is the dimension d of the space RP”, the number of distinct
eigenvalues in Spec (P, B) is a lower bound for d. The bound for the
number of classes in B? now follows from lemma 4.3. o
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THEOREM 4.6. - Let P be a partition of the point set in a struc-
ture (P, B).

i) There is a partition B of B such that (P, B) 1s a tactical pair
if and only if Pey < P.

ii) For a tactical pair (P, B) in which zero does mot belong to its spec-
trum we have Py = P and Spec (P, B) is the set of eigenvalues
of C(Bp) + C(P). In particular |B| = !P] .

PROOF. - i) Suppose (P, B) is tactical. Then RBp = RB implies
0~ (RBp) = 3~ (RB) < RP. From the construction of Pey, it follows that
RP@;) is the smallest partition space containing 3~ (RBe). Thus RP@g) <
< RP and so P@y < P. Now suppose the latter holds. Then B = Be
yields a tactical pair (P, B).

ii) From 3 +8*: P — RBp — RP@,; < RP and the fact that
yp is non-singular we conclude that Py = P. With respect to the
standard bases these maps have matrices C (P) and C (Bp). Thus the
spectrum of (P, B) are the eigenvalues of C (Bp) « C(P). a

4.2. - Characterizations by flags.

A flag is a pair (p,b) such that p is incident with 5. When
Py, ..., P;, ... are the classes of a partition and p is a point we count
the number of flags simultaneously through p and a point of P;: let
& (p) = | (@, b)|p'Tb, p* in P; and pIb}|.

In terms of the incidence maps di(p) is easily seen to be equal
to (3" (p), 97 (»)- |

THEOREM 4.7. - Suppose that (P, B) is a pair of partition of
the point and the block set of a structure (P, B).
i) If (P, B) is tactical, then (*): di (p) = di (p") whenever p and p’ belong
to the same class of P, for all i.
i) If 0 does mot belong to Spec (P, B) and if |P| = |Be|, then (*) im-
plies that (P, Bp) is tactical.

PROOF. - From the orthogonality relations among the points p
and partition vectors p; we see that w belongs to RP if and only
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if (w,p) = (w,pi)  (pj, pi)~" for all j and all p in P;. If (P, B) is tactical,
then w: = 87+3* (pi) belongs to RP for every i. Thus if p and p’
are in P; then (373" (pi), p) = (@ (p1), 3" (p)) = di(p) = (37«9 (p3), py) *
« (pj, Pt = (87+8% (p1), p’) = di (p). This proves the first statement.

Now we suppose that 0 ¢ Spec (P, B). Then 8*:RP — RBp is
an injection and as the dimension of both spaces is |P|=|Bp|, o*
is even a bijection. Thus {8* (pi)| i=1,.. forms a basis of RBp. As
we have seen before, (P, Bp) forms a tactical pair precisely if 3~ (RBe) <
< RP. Thus it suffices to show that 8 «3* (pi) belongs to RP. As in
the first part of the proof this will be the case precisely if (%) is
satisfied. a

In certain types of structures condition (*) automatically holds.
This is the case for instance in a t-design, t = 2 :d;(p) only depends
on the size of the class P;. As a consequence of Fisher’s inequality
0 ¢ Spec (P, B). This gives

COROLLARY 4.8. - Suppose that (P, B) is a t-design, t = 2, and
let P be a partition of the point set such that |P | = IBp | Than (P, Bp)
18 a tactical parr.

Note that this is proposition 2.2 in [3].

A structure is a linear space if for any two points p # p’ there
is precisely one block incident with both p and p’ and this block is
not incident with every point of the structure. See for instance [1].
There it is also shown that 0 ¢ Spec (P, B). Again condition (*) is satis-
fied for arbitrary partitions.

COROLLARY 4.9. - Suppose that (P, B) is a linear space and let
P be a partition of the point set such that |P| = |Bp | Then (P, Bp)
18 a tactical pair.

In complete contrast condition (*) sometimes entirely characterizes
tactical pairs. This is the situation in graphs. Let I' be a finite, un-
directed graph that is connected. Let P denote the vertex set and
B the edge set. When P = {Py, ..., P, ...] is a partition of the vertices
we consider the subgraphs I'; whose vertices are P; UP; and whose
edges link vertices in P; to vertices in Pj. Thus di(p) is the degree
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in Ty of a vertex p belonging to P;. We say that a bipartite graph
is biregular if the vertex degree in each part is constant. The condition
(%) now is equivalent to: Tj; is biregular and Ty is regular for all i # j.

THEOREM 4.10. - Let T' = (P, B) be a finite graph and P = Py, ...,
P, ..} a partition of the vertex set. Then (P, Bp) is tactical if and
only if Ty is biregular and T is regular for all i#j.

PROOF. - By the above remarks and theorem 4.6 we only need
to show that the regularity conditions imply that (P, Bp) is tactical.
First we note that the classes in Bp are just the edges in the Ty,
thus we shall denote them by Bi. We have to show that 87 (bij) belongs
to RP: (3 (by), p) = (b, 8" (p)) = di (p) (if p belongs to Pj) or =0 (if
p does not belong to P; or Pj). In any case this implies that (3~ (by), ») =
= (37 (bi;), p’) whenever p and p’ are vertices in the same partition
class. This completes the proof. m|
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