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On finite permutation groups with the same orbits on 
unordered sets 

By 

JOHANNES SIEMONS and ASCHER WAGNER 

1. Introduction. A permutation group G acting on a set f2 induces a permutation group 
on the unordered sets of k distinct points. If H is another permutation group on f2 we shall 
write H ~ G if H and G have the same orbits on the unordered sets of k points. Bercov 
and Hobby  [2] have shown that for infinite groups H k G implies H ,,~ G if I < k. In [9] 
we have shown that this result is also true for finite groups, with the obviously necessary 
condition that k < �89 f2l- In [9] it is also shown that for finite groups H 2 G implies that 
H and G are either both primitive or both imprimitive with the same blocks of imprimi- 
tivity. 

If H and G have the same orbits on all subsets of ~2 we shall say that H and G are orbit 
equivalent and write H ~ G. Orbit equivalence for groups acting on quite arbitrary f2 has 
been considered by Betten [3]; the main results concern intransitive groups. In this paper 
we shall be concerned only with orbit equivalence for finite groups. In this case, of course, 
H ~ G if, and only if, H k G for all k. 

Suppose that H ~ G and that L is a permutation group on a set A. Then the direct 
products H x L and G x L, acting naturally on f2 u A, are orbit equivalent and intransi- 
tive. Also, if L is transitive on A the wreath products H 2, L and G 2, L, acting naturally 
on the direct sum of [A h copies of f2, are orbit equivalent and imprimitive. This suggests 
that the basic situation to investigate is when G, hence also H, is primitive on f2. 

Without loss of generality we may assume that H c G since H ~ G implies 
H ~ (H,  G). Our main result is the following theorem. 

Theorem A. Let  K be a finite primitive permutation group on a set f2. Let  H c K and 
H ,~ K. Suppose there exists aprime r dividing the order of  K but not the order of  H. Then 
only the following possibilities exist: 

H K I g21 r 2-sets 3-sets 4-sets 

(i) ~3 5;3 3 2 
(i 0 C 5 Dlo 5 2 5; 5 
(iii) A~ (5) S s 5 3 10 
(iv) A x (8) FA~ (S) 8 3 28 
(V) A 1 (8) 23 \\PSL 3 (2) 8 3 28 
(vi) P G L  z (8) •9 or S 9 9 5 36 
(vii) P F L  a (8) ~k 9 or S 9 9 5 36 

56 14;56 
56 14;56 
84 126 
84 126 



Vol. 45, 1985 Groups with the same orbits 493 

The notation is explained in Section 2. The last three columns of the table give the orbit 
lengths. The proof of Theorem A is elementary. 

In Section 6 we prove a rather stronger version of Theorem A. This, however, makes 
use of the classification of 3-transitive groups. 

Henceforth in this paper the symbols K, H and r shall always have the meaning given 
to them in Theorem A. Also n shall denote [(2[. 

Since all orbits of H on subsets of (2 have length prime to r it follows that given any 
A c ~2 there exists a Sylow r-subgroup of K leaving A fixed as a set. This property is 
implicitly used throughout the proof. 

2. Notation and results needed later. We consider a finite set ~2 consisting of elements 
called points. Upper case Greek letters shall denote subsets of ~2 and lower case Greek 
letters shall denote points of s A set of k distinct points of (2 shall be called a k-set. The 
collection of all k-sets in (2 shall be denoted by ~2 ~k~. S ~ and &a denote respectively the 
symmetric and the alternating group on ~2. 

If G is a group of permutations on ~ we denote by GE~ 1 the subgroup of G fixing A 
pointwise and by G(3) the subgroup of G fixing A as a set. We shall also say that GEA 1 
stabilizes A and that G(~) fixes A. If G is transitive on ~k~ we shall say that G is k- 
homogeneous. 

If G is an intransitive group on ~2 and F is a union of orbits of G then G r denotes the 
homomorphic image of G obtained as a permutation group by restricting G to F. 

In this paper all groups are permutation groups. Most of the groups which occur 
have a natural representation, e.g. Mll is the 4-transitive group on 11 points. When a 
group occurs we shall only mention its representation if it is other than the natural 
one. 

C, and D2, denote respectively the cyclic group of order n and the dihedral group of 
order 2 n. Their natural representation is considered to be the transitive one on n points. 
23\\PSL3(2) denotes the split extension of C2 x C2 • C2 by PSL3(2 ) and its natural 
representation for us is as a 3-transitive group on 8 points. The one dimensional linear 
and semilinear affine groups over Fq shall be denoted by A 1 (q) and FA 1 (q) respectively 
and their natural representation is on the affine line with q points. The rest of the notation 
is quite standard. 

We shall have frequent occasion to use the following elementary and old results. Proofs 
of the first two may be found for example in [7], and of the third, slightly differently 
formulated, in [5 p. 68]. The fourth is proved in a similar manner to the third. 

Result 2.1. Let C and D be permutation groups on a set (2 and let y and 6 be two points 
of  g2 and p a given prime. I f  C and D both have order a power of  p and have as their only 
f ixed point ~ and 6 respectively, then ~ and 6 belong to the same orbit o f (C ,  D ). 

Result 2.2. Let  G be a permutation group on a set ~2 of  n points; let p be a given prime 
and k a given integer with 1 <= k < n. I f  for every subset F of (2 with ]F[ = k, there exists 
a subgroup C of  G which has order a power of  p and which fixes the points of  F and no 
further points, then G is k-transitive on (2. 
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Result  2.3. Let  G be a permutation group on a set (2. Let  Z be a subset o f  ~2 and let 
F = {71 . . . . .  ?~} and A -- {~1 . . . . .  3~} be subsets o f  Z. Suppose there exists an x in G with 
?x = 61, i = 1 . . . .  , s. I f  Z is the set o f  all points stabilized by a Sylow p-subgroup S o f  GEa ] 
then there exists a y ~ N a (S) ~= G(~) with ?~ = 3i, i = 1 , . . . ,  s. 

Result  2.4. Let  G be a permutation group on a set f~ and let S be a Sylow p-subgroup o f  G. 
Let  F and A be unions o f  S-orbits and suppose there exists an x in G with F x = A. Then 
there exists a y in N~ (S) with F y = A. 

3. The fixed points of Sylow r-subgroups. Let G be a pe rm u ta t i on  group  on  O and  let 
Z c ~2, 0- e Z and  ~ ~ O. We  shall say that  ~t is X-linked to a if there exists an  element  in 
G stabil izing Z - {0-} a n d  ma p p i n g  ~ on to  a. In  par t icular  every po in t  of Z is Z- l inked 
to itself. 

L e m m a  3.1. Let  S be a Sylow r-subgroup of  K and let Z be the set of  points stabilized 
by S, Then [Z I > r -  1 and every point o f  (2 - Z is Z-linked to at least r - 1 points 
ofT,. 

P r o o f. Tha t  I ZI > r - 1 follows from the fact that  a r - subgroup  fixing a (r - 1)-set 
stabilizes it. 

Let c~ ~ f2 - Z an d  let A = Z ~ {c~}. Let S' be a Sylow r - subgroup  fixing A. Suppose S' 

fixes c~. Then  S' fixes Z and,  since S and  S' have equal ly  m a n y  fixed points,  S' c a n n o t  be 
the ident i ty  on  Z. However  K~) ~- K(z)/K m,  hence the order  of K~) canno t  con ta in  r as 
a factor. Consequen t ly  S' does n o t  fix c~. Hence  S' conta ins  a pe rm u ta t i on  x which 

permutes  cyclically the ordered set {e, a l ,  a 2 . . . . .  a t -1}  where 0-1, a 2 . . . . .  ~  ~ Z. Then  
Si = x - i S x  i has as its set of fixed points  Z i = A -  {0-i}, i =  1 , 2 , . . . , r - 1 .  Now 

Z n Zi = A - {c~, o-z} and  it follows from Result  2.1 that  (S, $I)  maps  e on to  ~i i.e. c~ and  

0-i are Z-l inked.  

L e m m a  3.2. Let  S be a Sylow r-subgroup of  K and let Z be the set of  points stabilized 
by S. Suppose some point c~ ~ (2 - Z is Z-linked to at least two points of  Z. Then 

(i) K~z) contains a transposition. 
(ii) I f  Kfz) is primitive then Kfz) = S ~. 

(iii) I f  K~z) is imprimitive with minimal blocks o f  imprimitivity FI1,. . .  , FI, then K~x) 
contains the direct product S nl x . . .  x S nt. 

P r o o f. Suppose a is Z- l inked to 0-1, 02 E E. Let A = Z - {or1, 0-2}- F r o m  the defini- 
t ion  of Z- l inked  it follows easily that  there exists an  x e K which stabilizes A and  maps  
a 1 on to  0-2- It  follows from Result  2.3 tha t  there exists a y s K(z) stabil izing A and  m a p p i n g  
a l  on to  r~ 2. Consequen t ly  y is a t ranspos i t ion  on  Z, p roving  (i). By a wel l -known theorem 
(e.g. Wieland t  [10, Theorem 13.3]) (ii) follows and  (iii) is a corol lary of (ii). 

L e m m a  3.3. A Sylow r-subgroup o f  K f ixes  exactly r - 1  points. Also K is 
(r - 1)-transitive on (2. 

P r o o f. In  view of Result  2.2, the second assert ion of the l em m a  follows immedia te ly  
from the first assertion. We shall now prove the first assertion. 
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Let S = {aa . . . .  , %} be the set of points fixed by the Sylow r-subgroup S of K. We shall 

assume throughout  that s > r - 1 since otherwise there is nothing to prove. As was noted 
in the proof of Lemma 3.1 Kfx) does not contain any elements of order r. 

We must now distinguish between cases. 

T h e c a s e r > 2. By Result 2.3 K~) is transitive and in view of Lemmas 3.1 and 3.2 
we reach a contradiction if Kf~) is primitive or imprimitive and minimal  blocks of 
imprimitivity have length > r. 

The blocks clearly have length at least r - I hence they have length r - 1 and it follows 
that each point of O - Z is Z-linked to exactly r - 1 points of Z all in the same block. 
Denote the blocks by / /~  . . . . .  H t and let A~ be the set of all points of ~2 which are Z-linked 
to all points of/I+. The A i, i = 1 . . . .  , t, are a partit ion of ~2. 

We claim that i fx  ~ KL~_{~}~, where a e Hi, then x maps A t onto itself. Suppose x maps 
c~ onto fl where e ~ Ai and f ie  A t 4: A~. Let y be an element of Ktx_{~}l mapping a onto 
e. Then y x  ~ Kcx_{~}j and maps a onto ft. Consequently f ie  A i which is a contradiction, 
establishing our claim. 

Since K is primitive on f2 there exists an x ~ K and an c~, f le  A~ such that e~E Am 

and f i~r  Let a~, a z ~ H  1 and choose an x~ ~Kt~_{~ m such that x a maps 
onto a~. Now choose an x2~K[s_{~}~ such that x 2 maps ~ onto 0- 2. Then 

y = (x 1X2) -1X(X 1X2) maps a~ onto a2. Let 7 = fl . . . .  and 6 = fl . . . . .  . Then ?~'= 3. Also 
? ~ A ~  and 6 r  

Suppose r > 3. Let a s ~ H~. Conjugating y by a suitable element in Ktx_{,+} ~ we obtain 
an element z which maps a~ onto a 2 and a a onto an element outside A~. Now conjugating 
z by a suitable element in K~x_{,,}], where a; r  we obtain an element w which maps 

a~ onto az and a s onto a~-. By Result 2.3 there exists an element in K m having the same 
action on a t, 0-2, 03, a t. This violates the imprimitivity of K~x ). 

Finally suppose r = 3. Suppose 2 = a~ r A~. Conjugating y by a suitable element in 
Ktz {,,}~, where a] r  we obtain an element v: a~ ~ cr 2 ~ aj. This leads to a contradic- 
tion as in the previous case. We now suppose 2 ~ A~. Consider a Sylow r-subgroup S' 
fixing X u {?}. From the argument used in the proofs of Lemmas 3.1 and 3.3 it is seen 
that there is an element c of order 3 in S' permuting cyclically {a~, a2, ?}. We may suppose 
that c: a~ ~ a 2 --+ ? ~ ~ .  Then u = y -~  cy:  6 ~ ~2 ~ 2 ~ 3. Conjugating u by a suitable 
element in Kts_{~,}~ we reach the situation considered at the beginning of this paragraph. 
This was seen to lead to a contradiction. 

T h e c a s e r = 2. If some point of/2 - Z is Z-linked to two points of S, then K~z ) 
contains a transposition contrary to our assumption. Consequently every point  of O - Z 
is Z-linked to exactly one point of Z. Let A~ be the set of all points of f~ which are Z-linked 
to a,, i -- 1 , . . . ,  s. As in the previous case the Az are a partit ion; also every element of 
KEz_~} 1 maps A~ onto itself. 

Let N be the subgroup of K generated by all involutions in K. Since N ~ K and K is 
primitive on f2, N is transitive on Q. Consequently some involution, say y, interchanges 
a point c~ ~ A, with a point  fl ~ A; 4: A~. 

Choose an xl ~ Ktz-{,,,~j such that x~ maps a onto a~. Let fix'E A k. Then Ak + A~. 
Choose an Xk ~ Ktz-{,~} ~ such that x k maps fix, onto ~r k. Then (X~Xk)- ly(xixg)  inter- 
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changes r h and a k. By Result 2.3 there exists an element in K(z) also interchanging a~ and 
a k. Consequently Kf~) contains an element of order 2, which is a contradiction. 

This completes the proof  of the lemma. 

4. The high transitivity of K. In the previous section we have shown that  K is 
( r -  1)-fold transitive. Here we shall prove that  K is ( 2 r -  l)-fold homogeneous in 
general. The number  of K-orbi t s  on O ~~ shall be denoted by ni (K). 

Proposition 4.1. I f  K is a group as defined in section 1, then i) nr(K) = n2r_ i (K) and 

ii): I f  4 r -  2 <_<_ n, then n~(K) = n~+i(K ) = 1 for  all i = 1 , . . . ,  r -  1. 

P r o o f. Let S be some Sylow r-subgroup of K and Z the points stabilized by S. By 
Lemma 3.3, the size of 2; is r - 1. Let  A be the set of all S-orbits that  have length r. If N 
denotes the normalizer  of S in K, then N permutes the sets in A and so A is par t i t ioned 
into N-orbits .  F r o m  each such orbit  we select one r-set, resulting in a collection 2~ , . . . ,  2~. 
The proposi t ion will now be proved in 6 steps. 

C l a i m  1. n,(K)  = s  = n 2 r _ l ( K  ). 

P r o o f. As S fixes precisely r - 1 points, an r-element set is S-invariant  if and only if 
the set belongs to A. Thus A K = {2klk e K, 2 e A} is the system of all r-element sets left 
invariant  under conjugates of S. As, by assumption,  every r-element set is left invariant  
by a Sylow r-subgroup, A K = f2 ~r~. Therefore each K-orb i t  on (2 ~ contains at least one 
of the 2,, and so by Result 2.4, exactly one of the 2~. Thus n, (K) = s. Now observe that  
a (2 r - 0-e lement  set is invariant  under S if and only if it is of the form Z u 2 for some 
2 in A. As above we conclude that  nat ~ (K) = s. This completes the proof  of Claim 1 and 
Propos i t ion  4.1 i). 

F r o m  now onward we may  assume that  r is at least 3, the case r = 2 is dealt  with in 
Propos i t ion  1 in [4]. If 4 r - 2  < n, then Claim 1 and Theorem 1 in [7] implies 
n~(K) = n~+ 1 (K) . . . . .  nz~-i  (K). It remains to show that  s = 1. 

C 1 a i m 2. Fo r  every k < r - 1 and every 2 in A the group N(a) acts k-fold homoge- 
neously on 2. 

P r o o f .  Let F be a k-subset of 2 and consider the sets F u 2 1  . . . .  , F u 2  s. By 
Result 2.4 these sets belong to different K-orbi ts  and as there are only s = n r + k (K) orbits 
on f2 ~r+k~ (by Claim 1 and the subsequent remark), each K-orb i t  contains precisely one of 
these sets. Suppose now that  A is some other k-subset of 2;. Then some g in K maps F u 21 
onto A u 21 for some i. By Result 2.4 we may  assume that  g belongs to N and therefore 
i = 1. Thus g maps F onto A. As this may  be done independently of 2, the result follows. 

We shall say that  2 i and any r-element subset in the same K-orb i t  as 2i has colour i. 
The colour content of a set of size at least r is any sequence of the colours of all its 
r-element subsets. Next we determine the colour contents of all (r + 1)-element subsets. 
We choose ~ in Z. Then, as N,,(z,) is transitive on 2i, the colour contents of c~ u 2~ is of 
the form (c,, c~, . . . ,  ci, i) where c~ is some colour depending on i, not  necessarily different 
from i. 
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C 1 a i m 3. Every (r + 1) element set has colour content (_% _q . . . . .  q ,  ~ for some 
i = 1, 2 , . . . ,  s. In particular, if an (r + 1)-elements set contains at least two sets of equal 
colour, then it contains at least r sets of the same colour. 

P r o o f. In all we get s = n,+ 1 (K) distinct colour contents of type (_q, _q,. . . ,  i) for 
(r + 1)-sets. As sets in the same orbit must have the same colour content, these are already 
all colour contents. 

C 1 a i m 4. For  any two distinct colours i and j there is an (r + 1)-element set contain- 
ing / and j simultaneously. In particular, s < 3. 

P r o o f. As K is (r - l)-fold homogeneous, for a suitable 9 in K, 2~ and 21 intersect in 
r - 1 points. So the union of these sets has the desired property. By Claim 3, an (r + 1) 

element set accomodates at most two colours simultaneously, hence we have 2 = 
sos__<3. 

C 1 a i m 5. There is a monochromatic  set of size r + 1. In particular, s __< 2, 

P r o o f. Let c( be some point different from c~ in 2; and put 2 = 21. Consider the sets 
F = {c~} ~ {c(} u 2 and F~, = F\{c(}.  By definition the latter set has colour content 
~,  _c . . . . .  _c, 1-) where c = c 1. According to Claim 2, this is also the colour content of 
F~ = F \{e} .  Thus we have accounted for the colours of all subsets of F that contain at 
most one of c~ and c(. The remaining sets are Fp = {e} u {c~'} u 2\{/~} for some ~ in 2. 
Such a set contains F~\ {~} and F~,\ {~}, both of colour c. By Claim 3, the colour content 
of Fp is Cc, c , . . . ,  c, _cp) where c~ depends only of the choice of ]~ in 2. We shall show that 
c~ = c for at least some ]? in 2, thus producing the monochromatic  set Fp. 

Assume to the contrary that cp r _c for all/~. In F~ let Fp\{/~'} be the set of colour cp. 
Then this set also is the only set in F~, of colour different from c. In this way we obtain 
a pairing Fp ~-+F~,, which contradicts the fact that 121 = r is an odd prime. Hence 
(;_, c . . . . .  c) is the colour content of an (r + 1)-element set. This implies that s _-< 2. 

C l a i m  6. s = 1. 

P r o o f. For  s = 2, the only colour contents are a: ~ ,  1_ . . . .  ,1_, ~ and (2, _2 . . . . .  _2, 2D or 
_b: (1, 1 , . . . ,  1_, 2) and (1-, 1_ . . . . .  1, 1_). This follows from Claims 3-5 .  Possibility a does not 
occur: according to the proof of Claim I, we may assume that the sets {c~} w 21 and 
{e} w 22 represent the two orbits on (r + 1)-element sets. However, their colour contents 
are not of this form. To rule out possibility b~ let A = 22 \ {/~} for some ]~ in 22. Then 22 
is the only set of colour _2 containing A, for otherwise the colour content of some 
(r + 1)-element set would be (.2, 2, ... ,). Therefore any subgroup fixing A setwise must fix 
the point ft. Considering a Sylow r-subgroup of K(~) we conclude that the Sylow subgroup 
fixes at least r point. This contradicts Lemma 3.3. Hence s = 1. 

This completes the proof  of Proposit ion 4A. 

5. Proof  of Theorem A. Suppose first that 4 r -- 2 =< n. By Proposit ion 4.1 K, hence also 
H, is transitive on (2r - / ) - s e t s .  From Theorem 2 in [7] it follows that H is at least 
(2 r - 2)-transitive, hence r divides the order of H, which contradicts the assumption. 

Archlv der Mathematlk 45 32 
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Suppose next that r > 7; then H is (r - 1)-transitive by Lemma 3.3 and Theorem 2 in 
[7]. By Lemma 10 in [7] there is a set A of size r such that H~) ___ A a. This contradicts 
the fact that r does not divide the order of H. 

It remains to consider the case that r < 5 and 4 r - 2 > n. Beaumont and Peterson 
[1] determined all finite permutation groups G on a set ~2 with G ~ A r2 and 
G ~ A a. Of the four groups with this property three meet our arithmetic condition 
and they are the cases (iii), (vi) and (vii) in the table. Henceforth we shall assume 
that K ~ A n. 

By Lemma 3.3 K is (r -- 1)-transitive. Since n - r - 1 (r) the only possibilities are that 
n = 2 r - 1 or n = 3 r - 1. The former case is ruled out by well-known theorems of 
Jordan, see Wielandt [10] Theorems 13.3 and 13.9. 

Suppose r = 5. Then K is a 4-transitive group of degree 14. It follows that K contains 
an 11-cycle, but this case is again ruled out by Theorem 13.9 in [10]. 

Suppose r = 3. The only 2-transitive groups of degree 8 not containing A 8 are: At (8), 
FA 1 (8), 2a\\PSLa(2), PSL2(7 ) and PGL2(7 ). The order of A1(8 ) is not divisible by 3, 
hence this group cannot occur here. We now consider PSL 2 (7) and PGL 2 (7). Let A be 
a set of 4 harmonic points on the projective line over F 7. The cross-ratio of these points 
is - 1, 2, �89 dependent on the order in which they are taken, and a cyclic group of order 3 
applied to A permutes cyclically these three values. However, a linear transformation 
leaves the cross-ratio unchanged, hence no group of order 3 in PSL 2 (7) or PGL2 (8) can 
fix A. Consequently K is neither of these two groups. 

It remains to show that FA 1 (8) and 23\\ PSL3 (2) satisfy the conditions for K. We have 

A1 ( 8 ) 3  FA,  (8) =s 23\\PSL3 (2). 

There are seventy 4-sets in ~ and these cannot be in one orbit under 2a\\PSL3 (2) since 
the order of this group is not divisible by 5. We now consider A 1 (8) acting on O. A 4-set 
cannot be left fixed by an element of order 7. It is easily seen that there exists a 4-set 
fixed by a group of order 4 and not 8 and that there also exists a 4-set fixed only by the 
identity. Hence the former lies in an orbit of length 14 and the latter in an orbit of 
length 56. Hence A a (8) has 2 orbits on the seventy 4-sets. It follows that 23\\PSL3 (2), 
hence also FA 1 (8), have these orbits on 4-sets. By a result in [9] mentioned in the 
introduction it follows that the three groups are orbit equivalent. These give cases (iv) and 
(v) in the table. 

Finally suppose r = 2. The only transitive groups of degree 5 not containing A s are Cs, 
Dlo and A~ (5). The number of 2-sets is even and A 1 (5) is transitive on 2-sets, hence no 
Sylow 2-subgroup of A 1 (5) fixes a 2-set. Now C 5 c Dlo and they both have two orbits 
of length 5 on 2-sets. This gives case (ii) in the table. 

6. A variant of Theorem A. 

Theorem B. Let K be a finite primitive permutation group on a set Y2 and K ~: A ~. Then 
the following conditions are equivalent: 

(a) There exists an H c K with H ~ K and there is a prime r dividing the order of  K but 
not the order of  H. 



Vol. 45, 1985 Groups with the same orbits 499 

(b) There is a prime r such that given any A ~ s there exists a Sylow r-subgroup o f  K 

leaving A f ixed  as a set. 

(c) K = V i e  and [Q[ = 5, K = F A I ( 8  ) or 23 \ \PSL3(2 )  and [Q[ = 8. 

[Note: the condit ion that  K ~ A n is essential in this theorem, since otherwise, when 
]s = m r" - I > 9, I < m < r, the symmetric and alternating groups satisfy (b) but  
not  (a).] 

That  (a) implies (b) was noted in Section 1. That  (b) implies (a) is less obvious. It follows 
from the considerat ions of Section 5 that  (c) implies (a). It remains to show that (b) implies 
(c). The proof  requires the classification of 3-transitive groups, see for example [8]. 

In Sections 3 and 4 only (b) was used. 
Suppose that  r > 7. Then by Lemma 3.3 K is at least 6-transitive, hence contains the 

al ternating group. 
Suppose r =< 5 and 4 r - 2 =< n. By Propos i t ion  4.1 K is (2 r - 1)-homogeneous. If r = 3 

or 5 it follows from Theorem 2 in [7] that  K is (2 r - 1)-transitive. If r = 5 then again K 
contains the al ternating group which is excluded. If r -- 3 then K is 5-transitive, hence 
M12 or Me4. Their degrees however are divisible by 3, hence cannot  occur in this context. 

Suppose r = 2. Then K is 3-homogeneous.  Suppose first that  K is not  3-transitive. Such 
groups are listed in Kan to r  [6] and they all have even degree, hence cannot  occur in this 
context. Consequently we may  assume that  K is 3-transitive. Since the degree must  be odd 
the only cases that  need to be considered are: 

(i) P S L  2 (q) ~= K c= P F L  2 (q), q = 2", a > 2, 
(ii) M al on 11 points, or 

(iii) M23 on 23 points. 

Suppose (i) is the case. The number  of 2-sets is even and P S L  2 (q) is transitive on 2-sets, 
hence no Sylow 2-subgroup fixes a 2-set. 

Suppose (ii) is the case. The number  of 4-sets is even and M~ 1 is transitive on 4-sets, 
hence no Sylow 2-subgroup fixes a 4-set. 

Suppose (iii) is the case. We identify s with the points  of a 4-(23, 7, 1) design on which 
M23 is the au tomorphism group. Let F consist of the points of a block together with one 
further point. Two 7-sets in F meet in 6 points, hence F contains a unique block, say 2;. 
A Sylow 2-subgroup of M23 fixing F must  also fix 2;, hence must  fix at least one point  
in S and also the point  in F - 22. This contradicts  the fact that  a Sylow 5-subgroup of 
K has only one fixed point. 

There remains the case r < 5 and 4 r - 2 > n. This case was dealt  with in Section 5 
using only condit ion (b). 
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