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Closure Properties of the Special Linear Groups

Jenni fer D. Key and Johannes Siemons*

1. Introduction.

A permutation group G on a finite set {1 has a natural action on the
set Q%) of all k-element subsets of 2. The k-closure of @ is the largest
subgroup G {e} of Sym(§2) that has the same orbits as G on Q{k}, and G 1s
said to be k-closed if G = G¥}, Cameron, Neumann and Saxl show in [2]

that any primitive group G }Alt(n) of sufficiently large degree n is [%]-

closed. The general question of k-closure was studied earlier by Inglis [6],
Siemons [9] and Siemons and Wagner [10]. In [7] and [8] the present
authors examined the k-closure of collineation groups of projective and
affine geometries over finite fields. In this paper we obtain minimal values
of k for k-closure of the special linear groups (see Theorem 3.5).

We remark that for geometric dimension at least two of our results
on k-closure are independent of the classification theorem for finite simple
groups. For the line, the lack of geometry has forced us to rely on classifi-

cation. Wherever the classification theorem is assumed, we will note it by
C.T.

The organization of this paper is as follows: in Section 2 we give ter-
minology and definitions, together with statements of earlier results
required for our theorems; Section 3 proves the main theorem (Theorem
3.5) by a sequence of lemmas and theorems, together with computations,
most of which involved the use of the Cayley package of J. Cannon (3] on
the Birmingham University computer.

2. Notation and Assumed Results.

The terminology and notation used is the same as that in [7], and is
mostly that of Dembowski [4] and Wielandt [11].

If O is a set and |Q|=n then the symmetric and alternating
groups on {2 are denoted by Sym() and Alt(Q2) respectively, or S, and
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A,. f G < Sym(Q2), and A C Q, then G (a} denotes the set stabilizer of A
(the global stabilizer), and G (a) denotes the pointwise stabilizer. We will
refer to G’{A}/G(A) as the restriction of G to A, written G2. For k <n,QG
acts in a natural way on the set Q%} of all k-element subsets of 2. The
k-closure G¥*} of G is the largest subgroup of Sym (1) having the same
orbits on 0% as G. G is k-closed if G = G*). When speaking of

k-closure we will always assume that k < [%] Members of 2%} will be

called k-sets. For A C Q, the set of all images of A under @ is denoted
by AS.

Definition 2.1. Let G < Sym(). A subset A of Q is called a base set
for G if @ < H < Sym(Q) implies that AG %= AH,

Clearly if G has a base set of size k then G is k-closed, but the con-
verse is not generally true.

Let Vy4(gq) denote the vector space of dimension d + 1 over the
Galois field GF(g). Then the projective geometry of dimension d over
GF(g) is denoted by PG(d,q). Its full automorphism group is PTL(d+1,q)
for d > 2, by the fundamental theorem of projective geometry. The affine
geometry of dimension d over GF(q) (formed by deleting a hyperplane H
and all its points from PG(d,q)) is denoted by AG(d,q). It has full auto-
morphism group AI'L(d,q) for d > 2, by the fundamental theorem of
affine geometry. We will always consider the permutation action of
PI'L(d+1,q) on points of PG(d,q), and that of ATL(d,q) on points of
AG(d,q). Clearly ATL(d,q)= (PTL(d+1,9))¢m)

If {e1,eq,...,6,} is a set of r linearly independent vectors in V4(g) and
if B; = <e¢;>, ¢ = 12,...,r, then the set of points {E,E,,....E.} is called an
r-simplex in PG(d—1,9). If r=d we will refer to a d-simplex in
PG(d—1,q) as a simplex. If {e;,es,...,.5} is the standard basis for Va(q)
then the corresponding simplgx will be called the unit simplex, with unit

point E' = <e> where ¢ = ¢;, and unit hyperplane <e’>, in terms of
i=1
homogeneous co-ordinates.
We will need the following results, which are easily deduced from the
reference given in each case.

Result 2.1. (Key and Siemons, Theorems A and B [7)).

(I): In the action on the points of PG(d—1,q), d > 3, PGL(d,q) is 4-closed
if q €{4,89,16}; PGL(3,4) is 10-closed but not k-closed for k <9;
PGL(d 4) is 8-closed but not k-closed for k < 6, when d > 4; PGL(d,8)

and PGL(d,9) are 6-closed but not 5-closed for d > 3; PGL(d,16) is
6-closed for d > 3.



(I): (C.T.) In the action on the points of PG(l,q), ¢ > 7, PTL(2,q) is
4-closed if and only if g §{8,32}; PIL(2,32) is 5-closed; PGL(2,q) is
4-closed if and only if ¢ ¢€{8,9,16}; PGL(2,16) is 6-closed but not 5-closed.

(IT): In the action on the points of AG(d,g), d > 2, AGL(d,q) is 3-closed if
g €{2,4,8,9,16}; AGL(d,2) is 4-closed but not 3-closed for d > 3; AGI.(d 4)
1s 6-closed but not 5-closed for d > 2; AGL(d,q) for q € {8,9,16} is 4-closed
but not 3-closed for d > 2.

(IV): (C.T.) In the action on the points of AG(1,g9), ¢ > 7, ATL(1,q) is
3-closed if and only if ¢ ¢€{8,9,16,32}; AT'L(1,8) is not 4-closed; ATL(1,q) is
4-closed for ¢ € {9,16,32}; AGL(1,q) is 3-closed if and only if q ¢{8,9,16};
AGL(1,16) is 4-closed; AGL(1,8) and AGL(1,9) are not 4-closed.

Result 2.2. (Siemons [9], Theorem 5.1, p. 399). Let G < Sym(Q1) where
2] = n. Let n* satisfy n—1 <n*< % Thenif 1<k <n*

G<Ghl< ... <ag® <glkll< ... <qlic Sym(Q).

Further, if n* > £ > k then
(i) if G is k-closed then G is £-closed;

(ii) if H < Sym(Q) and G and H have distinct orbits on k-sets, then G
and H have distinct orbits on £-sets;

(i) if @ < H then G < g},

Result 2.3. (Key and Siemons [8]).

A. Let PGL(d,q) act on the points of PG(d—1,q) for d > 2, ¢ > 3. If
H < PGL(d,q) then H is k-closed according to the entries in the table

below:

d = 2:
g | 13<¢<17 | >19 (C.T))
k| 6 | 5
d=3
g | 4|5 ]| >7
k|10]7]6s
d=4
g |3]4]>5
k|8|8] 7



d > 5, d odd:

g | 3<q<d | d=q€{5,7} | d<q
k| 2d | 2d | d+3

d > 6,d even:

g | 3<g<d | d<q
k| 2d-1 | d+3
B. Let AGL(d,q) act on the points of AG(d,q) for d > 1, ¢ > 3. If

H < AGL(d,q) then H is k-closed according to the entries in the table
below:

d =1:
g |11|13]16]|>7 (CT)
k| 3] 3| 4| 3
d=2
g |4]5]|7]|>8
k|{6]5]5] 4
d=3
g |3|4]>5
k|{8|8]| 7
d =4,d even:
g | g<d | q=d=4 | q=d+1€{57} | ¢>d
k| 2(d+1) | 2(d+1) | 2(d+1) | d+4
d >5,d odd:

g | g<d | q=d€{5,7} | q>d
k| 2d+1 | 2d+1 | d+4

(These results are deduced from Results 2.1 and 2.2 above and Theorems
in [8], in particular Theorems 3.1, 4.1 and 5.1, which show the existence of
regular sets for PI'L(d,q) and ATL(d,q) for ¢ > 3.)



3. k-Closure.

Our results on the k-closure of the special linear groups are collected
together in Theorem 3.5, which is proved by the lemmas and theorems
below, together with computations for the exceptional values of g.

Lemma 3.1. Let A be a simplex in PG(d-1,9), d >2. Then

(PSL(d,9))* = Sym(A).

Proof. We can suppose that A is the unit simplex. Then the matrix

0 1 0

0 Iy_g

with a = +1 suitably chosen belongs to PSL(d ,9) and induces a transposi-
tion on A, O

Definition 3.1. Let A be a simplex in PG(d—-1,q) and E the unit point
for A. Define A; = A U {E}.

Lemma 31.&2. Suppose that —1 is a dth root in GF(q), d > 2. Then
(PSL(d,q)) ¢ = Sym(A,) where A, is defined as above.

Proof. We take A to be the unit simplex. Then the matrix

0 1 0 o0. 0

0 0 1 0. 0

0O 0 0 1. 0
B =

0 0 O 0 1

-1 -1 -1 =1 -1

induces a (d+1)-cycle on the points of A; and has determinant (—1)¢-(—1);
thus it belongs to PSL(d,q). In the proof of Lemma 3.1 entry a of A may
be chosen a = 1. Thus A fixes A; and the result follows. O



Definition 3.2. If G < K < Sym(Q) and A C 2, then A is a K-base set
for G if G < H < K implies that A C Af,

Evidently from our Definition 2.1 in Section 2, if K = Sym(Q) then
a K-base set is a base set.

Lemma 3.3. In the action on the points of PG(d-1,9), d > 2, any
group H unth PSL(d,q) < H < PGL(d,q) has the same orbits on d-sets
as PGL(d,q). If —1is a dth root in GF(q) then A, is a (PGL(d,q))-base
set for H, where A ; is as in Definition 3.1 above.

Proof. Let ¢ be a d-set in PG(d—1,q). If ¢ is contained in a hyperplane
then the ¢-images under PSL(d,q) are the same as the ¢-images under
PGL(d,g). Otherwise ¢ is a simplex and as PSL(d,q) permutes simplices
transitively, any group H with PSL(d,q) < H < PGL(d,q) has the same
orbits on d-sets. Suppose (—1) is a dth root in GF(q). As
(PGL(d,q))(Ad) = 1 and (PSL(d,q)) ¢ = Sym(A,) by Lemma 3.2, it follows
that Hpy = PG'L(d,q){Ad} and hence that A, is a PGL(d,q)-base set for
H.O

Theorem 3.1. Let H be a group with PSL(d,q) < H < PGL(d,q) in the
natural action on the points of PG(d—1,q). Suppose that d > 3, (—1) is

a dth root in GF(q) and that q ¢{4,8,9,16}. Then H is (d+1)-closed but
not d-closed.

Proof. By Lemma 3.3 H is not d-closed. By Result 2.2 the (d+1)-closure
of H is contained in the (d-+1)-closure of PGL(d—1,q). Asd + 1 > 4 and
g €{4,8,9,16} Result 2.1 applies and the result follows from Lemma 3.3. O

We remark that A, is a base set for H only if ¢ is a prime.

We now consider the affine special linear groups acting on
AG(d—1,9), d > 2. For a simplex A in PG(d—1,q) let S be the unit
hyperplane. Then the points of AG(d—1,q) are the points of PG (d—1,9)
not in S so that A is a subset of AG(d—1,q). The analogue of Lemma 3.3
1s as follows:

Lemma 3.4. In the action on the points of AG(d—1,q), d > 2, any
group H with ASL(d—1,9) < H < AGL(d—1,q) has the same orbits on

(d—1)-sets as AGL(d—1,q). If —1 is a dth root in GF(q) then A is a
(AGL(d—1,q))-base set for H.



Proof. The first part of the lemma is standard. If K = AGL(d-1,q),
then K(a) =1 as K also fixes the unit hyperplane. As in the projective
case one shows that H) = Sym(A). Thus Ky = Hyyy and A is a
K-base set for H. O

Theorem 3.2. Let H be a group with ASL(d—1,q) < H < AGL(d-1,q)
in the natural action on the points of AG(d—1,q9). Suppose that d > 3,

(—1) is a dth root in GF(q) and that q §{4,8,9,16}. Then H is d-closed
but not (d—1)-closed. '

Proof. As before this follows from Lemma 3.4 above, Result 2.2 and
Result 2.1. O

As in the projective case, A is a base set for H only if ¢ is a prime. -

Now we consider the natural action of PSL(2,q) and ASL(1,q) on the
projective and affine line. The case of even characteristic is dealt with in
Result 2.1.

Lemma 3.5. If q is odd and q > 7 and q # 11 then PSL(2,9) and
PGL(2,9) have different orbits on 4-sets.

Proof. If ¢ =1 (mod 4) then PSL(2,q9) has 2 orbits on 3-sets. The result
now follows from Result 2.2. Now suppose that ¢ =3 (mod 4). In
PGL(2,q) the sets {c00,1,a} and {o00,1,a”'} (a # 000,1) belong to the
same orbit. A case by case analysis shows that these sets are not in the
same PSL(2,q)-orbit if a is chosen such that a is a non-square, a — 1 is a
square in GF(q) and @ ¥ —1,2,1/2. 0

Theorem 3.3 (C.T.). Let G = PSL(2,q) act on the projective line in the
natural way, q odd.

(i): G is 3-closed if and only if ¢ =1 (mod 4) and q is a prime, ¢ > 5.
(ii): 1f ¢ > 7, ¢ €{9,11} then G is 4-closed.

Proof. (i) Let G be the 3-closure of G. If ¢ = 3 (mod 4) then PSL(2,9)
is 3 homogeneous, thus G* = Sym(g+1).

If g=1(mod 4), G " has 2-orbits on 3-sets and it follows easily from
Result 2.5 of [7] that G~ = PSL(2,q)-<o> where o generates the automor-
phism group of GF(g). Thus G = G if and only if ¢ is a prime.

(ii) Let G be the 4-closure of G. By Result 2.2 G is contained in
the 4-closure of PGL(2,q). If ¢ # 9,11 Result 2.1 and Lemma 3.5 above
imply the result. O

The case of affine one-dimensional special linear groups can be
treated in an analogous way.



Lemma 3.8. If q > 7 is odd, then ASL(1,9) and AGL(1,q) have distinct
orbits on 3-sets.

Proof. If ¢ =1 (mod 4) then ASL(1,q) has 2 orbits on 2-sets and by
Result 2.2 ASL(1,q) and AGL(1,q) have distinct orbits on 3-sets. If g=3
(mod 4) consider {0,1,a} and {0,1,a7"}, a ¢{0,1}. These sets are in the
same AGL-orbit. Case by case analysis shows that these sets are in dis-
tinct ASL-orbits if a is chosen to be a non-square in GF (gN\{0,1,2,1 2,1},
a non-empty set for ¢ > 7.0

Theorem 83.4. Let G = ASL(1,q) act on the affine line in the natural
way, q odd.

(i): G is 2-closed if and only if q =1 (mod 4) and ¢ > 5 is a prime.
(i3): If 9 % q > 7 then G is 3-closed.

Proof. (i) Let G” be the 2-closure of G. If g =3 (mod 4) then G is
2-homogeneous and so G" = Sym(q). If ¢ =1 (mod 4), then G* has 2
orbits on 2-sets. Therefore G~ is not 2-transitive. If q is not a prime,
G:<o> (o the field automorphism of GF(q)) is contained in G*. There-
fore ¢ is a prime and a theorem of Burnside (Theorem 11.7 in [11}) implies
that G ” is contained in AGL(1,9). Thus G* = G.

(ii) Let G” be the 3-closure of G. By Result 2.2 G" is contained in
the 3-closure of AGL(1,4). By Result 2.1 G < AGL(1,q) and the result
follows from Lemma 3.6 above. O

Our theorem on the k-closure of the special linear groups can now be
proved by using the lemmas and theorems above, some of the results
stated in Section 2, and by direct computation. The latter involved the
use of the Cayley language [3].

Theorem 3.5. Let G be PSL(d,q) or ASL(d,q) acting on the points of
PG(d—1,q) or AG(d,q) respectively. Assume that G # PGL(d,q) and
G # AGL(d,q). Then G is k-closed according to the entries given in the
tables below, where w is a primitive element Jor GF(q), and where an
entry of the form "—" indicates that the group 1s not k-closed for any k.

PSL(d,q):
d=2

|3 '5,7 9 11qurime,qu(mod4),q213|q219 (C.T)
| -1s]a]s]6 | 3 | 4




d=3.¢q#16,k = 4;q =16,k = 6.

=4: ¢g=1 (mod 8), ¢ >3, k=7, g¢g=1 (mod 8), ¢ >9, k =5;
=9 k=6

d>5(dodd): k=d + 1allgq.

QK

d = 6:

g | 3|4 ¢>5-1ecw®> | ¢27,-1&w">
k|11 ] 8| 7 | 9

d > 8 (d even):
q | —le<<w > | ~ 1w > 3<q<d | —1w > ¢>d

k] d+1l | 2d—1 | d+3
ASL(d q)
= 1:
q | 3 | 5 | 7 | 9 | g prime, ¢=1 (mod 4), ¢>13 | ¢>11 (C.T)
kl-l2la]4] 2 BERR

d=2qg#316k=3q=16k =4

3:q F1(mod8),¢>5k=6qg=3k=7¢g=1(mod8),g>9k=4;
9,k = 4.

d>4(devenik=d + 1allg.

R
o

d > 5 (d odd):
q I —le<w 4> I —1cw 1> 3<g<d | q€{5,7}, —1¢<w 41> I —1dw 1> g>d
k| a1 | 2d+1 | 2d+1 l d+4

Proof. We restrict attention to PSL(d,q) # PGL(d,q) and ASL(d,q)
# AGL(d,q) as the general linear groups have already been dealt with in
Results 2.1. First we deal with the projective groups.

d = 2: We use Theorem 3.3 for all ¢ # 9 or 11. For ¢ = 9 we have 4-clo-
sure of PT'L(2,9) by Result 2.1. By computation we found that PXL(2,9)
(i.e. PSL(2,9)<o> where o is the field automorphism) has distinct orbits
on 4-sets from PI'L(2,9) and is thus 4-closed by Result 2.2. Also by



computation we found that PSL(2,9) has distinct orbits on 5-sets from
PXL(2,9), and thus, by Results 2.1 and 2.2, is 5-closed. For q =11 we
have 4-closure for PGL(2,11) and by computation we found that

PSL(2,11) has distinct orbits on 6-sets and, for the same reason as above,
is thus 6-closed.

d = 3: Since —1 is a third root, Theorem 3.1 apphes, except when
q €{4,8,9,16}; i.e. when ¢ = 4 or 16. For PSL(3,4), using the 3-closure of
FTL(3,4), we proved that PT'L(3,4) and PSL(3,4) are both 4-closed by
computing that they all have distinct orbits on 4-sets, and using the results
quoted for d = 2. For PSL(3,16), we have that PGL(3,16) is 6-closed (by
Result 2.1) and, by Lemma 3.3, PSL(3,16) has distinct orbits from

PGL(3,16) on 4-sets and hence on 6-sets by Result 2.2, and is hence also
6-closed.

d = 4: Here —1 is a 4th root if and only if ¢ =1 (mod 8). Thus by
Theorem 3.1 if ¢ # 9, G is 5-closed. If q =9 we use Lemma 3.3 and
Result 2.1 to obtain 6-closure. If ¢ #£1 (mod 8) we use Result 2.3 and by
computation improve on k=8 for ¢=3 to get 7-closure for

G = PSL(4,3).

d > 5, d odd: Here —1 is a dth root so that Theorem 3.1 applies when
g # 4,8,9,16. But for these values of ¢ (except 9), it is easy to see that
Result 2.1 always gives (d+1)-closure.

d = 6: If —1 is a 6th-root then Theorem 3.1 applies except when q = 4, 9
or 16. For ¢ =9 and 16, PGL(6,q) is 6-closed and hence 7-closed, and
thus so is G. For ¢ = 4, PGL(6,4) is 8-closed, and by Lemma 3.3, G has
distinct orbits from PGL(6,4) on 7-sets and hence on 8-sets by Result 2.2
and thus G is 8-closed by Result 2.2. If —1 is not a 6th-root then Result

2.3 must be used, and here 3 is the only value of ¢ < 6 such that —1 is not
a 6th root.

d > 8, d even: This follows from Result 2.1, Theorem 3.1 and Results 2.2.

For the affine groups the reaso_ning is similar. O

Corollary. Let G be PSL(d,q) or ASL(d—1,q) acting in the natural way
on PG(d—1,q) or AG(d—1,9) for d > 2. Suppose that G does not contain
the alternating group of the same degree and that G is not k-closed for
any k. Then G = ASL(1,8),PSL(2,8) or ASL(2,3).
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