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REGULAR SETS ON THE PROJECTIVE LINE

Jennifer D. Key, Johannes Siemons and Ascher Wagner

We show that if G 1is the group PIL(2,q)(for q a prime-power) acting on
the points of the projective line in the usual way, then for q>27 there is
a set A of 5 points such that no non-trivial element of G fixes A .

1. INTRODUCTION

A set of elements in a geometry with an automorphism group G 1is said to be
G-regular if the identity automorphism is the only automorphism in G that
leaves these elements invariant as a set. In {5] it was shown that G-regular
sets of points exist in general when G 1is the automorphism group of a finite
projective or affine space of geometric dimension at least two over a field

of at least three elements. Here we obtain a similar result for the line :

see Theorem, Section 3.

For groups acting on sets, using the classification theorem for finite
simple groups, it was shown by Cameron, Neumann and Saxl [1] that all finite
primitive groups of sufficiently large degree, not containing the

alternating group of the same degree, have regular sets. .

2. NOTATION

For permutation groups we use in general the standard notation of Wielandt
[6], and for finite geometries that of Dembowski [3]. Variations from these

are stated below.

The symmetric and alternating groups acting on a set § of finite size n
are denoted by Sym(Q) and Alt(Q) respectively, or by Sn and An . If
G ¢ Sym(2) and A C Q, then Gia) denotes the global stabilizer of A in
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G, and G(A) denotes the pointwise stabilizer of A in G . We will refer

to G{A}/G(A) as the restriction of G to A , denoted GA . The set A

is a G-regular set if G{A} = 1; if |A] = k then it will be referred to as

a regular k-set for G . When there is no ambiguity concerning the group
G , we will speak merely of regular sets or regular k-sets.

The projective semi-linear group PTL(2,q) where gq = pn, p a prime, will
act in the natural way on the projective line PG(l,q) of point set
Q= {=} U GF(q). If t,, t,, t3, t, denote the co-ordinates of four
distinct points on the projective line then their eross-ratio r is defined
by
r= (ty,t,; ty,t,) = (tg=t;)(g,~t))
CREVICRDY

1f the points are taken in all possible different orders, then the set of
. . . - -1 -1 -1 =1

cross-ratios obtained is {r,r l,l—r,(l-r) , I=-r ,(1-r ") '} (see, for

example [4] p.41). The projective gemeral linear group PGL(2,q) 1is the

subgroup preserving the cross-ratio.

3. REGULAR SETS

We note here that in all cases where non—trivial computations are required,
we have used the Cayley language of J. Cannon [2], on the Birmingham

University Computer.
Before giving the theorem, we need a lemma.

LEMMA : Let G be PIL(2,q) in its natural action on the points Q of the

projective line, where @ =K U {«}, for K = GF(q), q = p? and p a prime.
. -1

Let A = Aut(K) = <1> . For each a in K\0,1}, let ((a) = {a,a ,l-a,

-1 - -1, -
(1-a) , 1l-a 1, (l-a 1) 1}, and let S(a) = &gA C'(a)G . Then if q>11,
q#16, there exists a in K such that |S(a)| = én .

PROOF : Let A = {»,0,1} and let H = G{A} . If g, and g, are the

elements of H defined by g, 1x >3

H =1A where L =<g ,g,>= S3 . Further, A = Z(H), the centre of H .

, & 1% > 1-x for each =xeQ , then
2

Then if a is any element of K\{0,1}, S(a) is clearly the orbit
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of a under H, and C((a) is the orbit of a wunder L. Thus

|S(a) |

-1
if Ha =1. Any g in H, can be written g = ho where heL ,

6én if and only if H acts regularly on S(a) , i.e. 1if and only

oc~leA., and ah = a% ., Since o0eZ(H) , this implies that for any integer

s Y
s, ah = aos. If h® =1 then aos= a . If we choose a to be outside

all proper subfields of K then this implies that 6% = 1 . Since all
elements h of 1 have order 1, 2 or 3, the same must be true for the

corresponding o .

Suppose firstly that 2+n and 3+n . Then o=1 and ah a . Thus

1
[
i

a satisfies onme of the equationms:

: - -1 -1.-1
aZa =, a=l-a, a=(l-a) 1, a=l-a *, or a=(l-a ) ,
i.e. a?=1, 2a=1, a=0 or 2, or a%-a+l=0 .

If we choose a mnot to satisfy any of these equations, and also to be
outside any subfield.of K, them H; = 1 as required. If n=1 then we need
7<q=p 1in order to make such a choice, i.e. q211 and q prime. If n>1 ,
the solutions of the first three equations above are in any subfield, so we

n/2

need 2<qg-p , which is clearly satisfied for q = pn>1l .

Now suppose that 2|n and 34n , i.e. n=2m where 34m . Then the three
involutions in L allow also the possibility o=T" s
m m

m
i.e. aP =a }, aP =1-a or aP =(1-a 1) 1, i.e.

m+1 m m+l m

aP -1=0, aP +a-1=0 or aP -aP -a=0 .

Counting these possibilities for a together with those for ah=a , we need

2+3pm < pzm - pm , 1.2, 2 < pm(pm-4) . For pm25 this will hold, giving
the result for q=p2m225 when 3}m .
. pom
If n=3m where 24m then for h in L of order 3 we have a '=a' or
2m pil -1 p2m -1 . -1 .
a , 1.e. a" =l-a or a& <=l-a . Since h and h give the same set

of solutions, we require, as above,

2+ (pT#1) + (p2M41) < p3m - M ile:

Ay
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*y

G+ (™-1) < q(p-2) + 1.
This is satisfied for pma3 , 1.e. for q=p3®327 when 2+m .
Finally take n=6m, so that all possibilities can occur. As before we obtain

2 + (1+(q-1)/(p2™-1)) + 3p3® < g-p3™ , i.e.
(4p3™+3) (p2™-1)+1 < q(p?™-2)

This is satisfied for pm22 , i.e. for q=p6m264 .
This completes the proof of the lemma.

THEOREM : Let G be PPL(Z,q)v in its natural action on the points § of

the projective line, where q = pn and p 1is a prime. Then G has a
regular 5-set if and only if q319, q¢{25,27} . G has a regular 6-set if
qe{13,17,25,27} and G has no regular k-set for any k if q<11 or q=16 .

PROOF : We first take q=p , prime. If q211 then we can choose agK=GF (p)
such that |C(a)|=]5(a)|=6 , by the lemma. Let A={=,0,1,a} where a is
chosen in this way. Then G{A} is the Klein 4-group. Let A={~, 0,1,a,b,}
where beQ\A . Then the five possible cross-ratio sets formed by each

choice of a 4-subset of A are
C(a), C(b), C(b/a), C((b-1)/(a-1)), C(a(b-1)/b(a-1))

If we choose b such that agC(b)U C(b/a) U C((p-1)/(a-1)) U C(a(b-1)/
b(a-1)) then if ge G{A} we must have ge G{A}(\ Gb . Each cross-ratio
set gives 6 possibilities, so we exclude at most 24 values of b . If we
also require G_m}(\Gb=l , then a further 6 possible values are ‘to be
excluded. Thus if 24 + 6 < q-1 i.e. 9 >31 we can choose b outside of
these values, and thus such that G{A}=1 . This gives the result for q 237 .

For p=q<31 we obtain the stated results by direction computation.

Now let q=pn where we suppose that K=GF(q) has a subfield F=GF(pm)
where pmzll s pm#16 . By the lemma, we can choose a in F such that
|5(a) |=6m . Let A={=,0,1,a} , A=AU {b} where be\A . Then heG
can be written in the form gc—l where gePGL(2,q), ocA . Since g

{A}

. o . .
preserves cross ratios and Ag=A , 1f we choose b to be outside of any
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subfield of K , we must have Agc—1=A i.e. 08277, Since, further, a

is chosen to satisfy |S(a)| = 6m , this can only happen if o induces the
identity automorphism on F , i.e. ce<t™> , where A=<T|Tn=1> and m|n .
Le; H=PGL(2,F) . Then ‘geH{A} , and H{A} is the Klein 4-group because of
our choice of a . Now we count the maximum possible number of beK such
that b is not in any proper subfield of K and such that b could be
fixed by a non-identity element gc_l of G{A} . If g=1 then b°=b has
no solutions for o¥1 as b 1is not in any subfield. If g 1is one of the
involutions in H{A} , i.e. one of the linear maps x+a/x , x+(x-a)/(x-1)

or x+a(x-1)/(x-a) , then bE=p° , for ce<t®™> , has at most prm+1 solutions
b where o=t , and Osrg% - 1. Thus to choose b outside of these

possible values we need

n
— 1
m n
3 ™) < pt - p¥2, e, 2R ZH 5B R pn/2
m m
=0 (p-1)

whence (32 + p2)(p™1) < pRG™4) + 3 .
Now m|n , SO ms% , and pmall , S0 that (3% + pnlz)(pm-l) <

n/2 _.n n/2

(3n+pn/2)p p +3np , and pn(_pm-4)+3>7pn .

n/2

‘ 2 . . n . . .
n/ is equivalent to p > Vi which is true. This

Clearly 7pn>pn+3np
gives the result required for K containing a proper subfield of size

pmall . pm#16 . If p¥ll, q=pn where 122 , then the result follows.

Now let pe{2,3,5,7} . Deal first with p=5 or 7 . If q=p 172 where
n122 s n222 then we have the result by the above. Thus if n34 and n 1is
composite we have the result. Let q=pn where pe {5,7} and n is a
prime 3 3 . Then if F=GF(p) and a=-1, [C(a)| = 3 and if H=PGL(2,F)
then H{A} is dihedral of order 8 (where A = {»,0,1,a}). Every oeAut(X)
induces the identity automorphism on F . Now if b8=b° then as geH{A}
must satisfy g“=1 , and since g and o commute, we have also bot=b .
As b 1is to be chosen to the outside of all subfields of K , this implies
that o*=1 . But o=t  where |t]|=n is an odd prime. Thus o©=1 . For
each geH{A} , g#l , b8=b has at most two possible solutions, giving at
most 14 elements b fixed by some g . Clearly pn-p>14 for pe{5,7} ,

n23 (n prime). This leaves only the case q=5%2 and q=72 . Both these
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were done by direct computation : for q=52 there are no regular 5-sets

(although there are regular 6-sets), and for q=72 there are regular 5—sets.

For q=3n where n123 s n2;2 then we have the result by the above argument.

Thus, if n is composite, n26 , we have the result. If n is a prime 35 ,

q=3" , let F=GF(3) , and take a=-1 . Then H =S, , where H=PGL(2,F)
If bgc-1=b for gsH{A} s ceAﬁt(K) then g has order 1,2,3 or 4, and
we must have the same for o . But |Aut(R)|=n is a prime, 25 . Thus
o=1, and b8=p . The 23 non-identity elements of H{A} consists of 4
pairs of elements {g,g—l} of order 3, 3 pairs of elements {g,g_l} of
order 4 and 9 involutions. Since b8=b is equivalent to bg—1=b , the
maximum possible number of beK\F that may satisfy b8=b is 32<pn—p for
nz5 (n prime, p=3) . For q=32, 33, 3% we obtain, by direct computation,
the following: there is no regular set at all for q=32 ; there are no
regular 5-sets, but there are regular 6-sets for q=3% ; there are regular

5-sets for q=SL+ .

For q=2n where n=n;n, and n,25 , n222 we have the result by the earlier
argument, i.e. for =n310 , n composite we can find regular >-sets. Now
let q=2n where n is a prime, n37 . Let A={~,0,1,a,b} be a 5-set and
let geG{A} . Thenon A , g can have the following cyclic structure:
51,4111,3121,3112 2211 2113, 15 . Now |G|=(2™+1)2"(2"-1n=(4"-1)2"n .

Since n is odd and 4=-1(mod5), 4n=—1(mod5), i.e. 5 does not divide lGl .
Also, 2=-1(mod3) implies that 2n=—1(mod3) (since n 1is odd) and so 3 does
not divide the stabilizer of a point in G . Also, 2 does not divide the
stabilizer of 2 points, so that we have only the cyclic structures
4111,2211 15 to consider. For the case 15, if h=gc‘1eG{A} téen since h
fixes «,0 and 1, g=1 and h=o~! . But if o#l then o has prime order
n and fixes no field element. Suppose go ! has the form 2211 on A .

1 is an involution and must be linear. Now if we choose b such

Then go~
that bgC(a) and b#a?, a#b2, such elements cannot occur. Elements of the
form 4111 do not occur since the Sylow 2-subgroup is elementary abelian.

n . . .
Thus for n»7, q=2° where n is prime, we can find regular 5-sets.

. . n
It remains to consider 2 where ng9 . For n=2,3,4 there are no regular

sets. For n=5 and n=6 we have the result by direct construction of the

[

[ 1m



194 Key, Siemons and Wagner

groups. For n=8 and 9 the groups were too large to construct easily, but
here an analysis of the equations satisfied by b in the relation b%=b°

led to the solution that the regular 5-sets could be found.

The other small values of q were covered by direct computation of the

groups.
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