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REGULAR SETS AND GEOMETRIC GROUPS

*
Jennifer D. Key and Johannes Siemons

If G is a permutation group acting on a set £ , a subset A of § is
called a regular set for G if the set-stabilizer of A in G is the
identity subgroup. We show here that the projective and affine semi-linear
groups acting in the natural way as permutation groups on their respective
finite geometries, have, in general, for all finite dimensions and all finite
fields, regular sets of points. The exceptions to this are found, and an
extension of the results to infinite fields is discussed.

1. INTRODUCTION

In a geometry a set of elements is regular if only the identity automorphism
leaves these elements invariant as a set. 1In this paper we shall show that
there are such regular sets in affine and projective spaces over finite
fields of at least three elements. Exceptions do occur for some low-
dimensional spaces over small fields. These results are given in Theorems
3.1 and 4.1. For permutation groups the notion of a regular set is similar:
a set is regular for a group G if only the identity in G leaves the set
invariant. Cameron, Neumann and Saxl [2] showed that all finite primitive
groups of sufficiently large degree, not containing the alternating group,
have regular sets. From our results here it is immediate that any collinea-
tion group of an affine or projective space over a finite field of at least
three elements, has regular sets, apart from some finite number of exceptions.
Recently, Dalla Volta [4] has shown that the same is true for the field of

two elements. There are related results on regular sets in (6] and [11].

* Financial support from SERC is acknowledged.
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A permutation group is geometric if there is an incidence structure on the
same set of points such that the group is the full automorphism group of this
structure. This yields a concept related to regular sets and is due to
Betten [1]. In Section 5 of this paper we show that - apart from some
exceptions - all collineation groups of affine or projective spaces are

geometric (Theorem 5.1).

In [8], [9], [12] and [13] a permutation group G is called k-closed if the
largest group having the same orbits as G in the natural action on the
system of k-element subsets coincides with G . The results of this paper
are used to show that a permutation group of odd degree containing an
elementary abelian normal and transitive subgroup is k-closed and bounds for
k are given by logarithmic functions of the degree. The results in this

paper are independent of the classification theorem of finite simple groups.

- The paper is organized as follows: Section 2 deals with definitions and
notation, with some preliminary lemmas; Sections 3 and 4 deal with regular
sets for the projective and affine cases respectively, leading to the main
theorems on regular sets Theorems 3.1 and 4.1; Section 5 establishes
k-geometric properties of subgroups of the semi-linear groups; Section 6

deals with analogous results for infinite fields.

2. PRELIMINARIES

The terminology and notation used is mostly that of Dembowski [5] and
Wielandt [15], with exceptions as noted below. The symmetric and alternating
groups on a set { are denoted by Sym({)) and Alt(f)) respectively, or S,
and A, if IQI =n . If GS<sym(2) , and Ac  , then Gia} denotes
the set stabilizer of A and G(A) denotes the pointwise stabilizer.
We will refer to G{A}/G(A) as the restriction of G to A , written
as GA . For X €<n, G acts in a natural way on the set Q{k} of all
k-element subsets of £ . The k-closure G{k} of G is the largest sub-
group of Sym(f) having the same orbits on okl as ¢ . ¢ is k-closed
if G = G{k}. When speaking of k-closure we will always assume that

n

k € 5 - Members of Q{k} will be called k-sets. For A c {i , the set

of all images of A under G is denoted by A . All sets and groups are
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finite, except in Section 6 where we extend some of the results to' infinite

fields and groups.

DEFINITION 2.1: Let G S sSym() . A subset A of  is called a
regular set for G if Gu} =1 . If |A|l =k then A will also be

called a regular k—-set for G .

For any collection B of subsets of § , (f,B) denotes the incidence
structure whose elements are the "points" in {1 and the "blocks" in B
with incidence given by set inclusion. An automorphism is a permutation

g in Sym(f2) such that b € B implies b9 € B . The full automorphism
group of (f2,B) is denoted by Aut(R,B)

DEFINITION 2.2 (cf. [1}1): ©Let G < Sym(f) . Then G is geometric if
Aut (R,B) .
If all blocks in B have size k for some k , 1<k < |Q] , then G is

there is a collection B of subsets of § such that G

said to be k-geometric.

Thus to be geometric is a property of permutation groups in a specific
representation. It is immediately clear that a k-geometric permutation group

is k-closed.

Let Vg41(q) denote the vector space of dimension d + 1 over the Galois
field GF(q) . Then the projective geometry of dimension & over GF(q)
is denoted by PG(d,q) . Its full automorphism group is PIL(d+1,q) for
d 2 2 , by the fundamental theorem of projective geometry. The affine
geometry of dimension d over GF(q) (formed by deleting a hyperplane H
and all its points from PG(d,q)) 1is denoted by BAG(d,q) . It has full
automorphism group AIL(d,q) for 4 2 2 , by the fundamental theorem of
affine geometry. We will always consider the permutation action of
PIL(d+1,q) on points of PG(d,q) , and that of ATL(d,q) on points of
AG(d,q) . Clearly AlL(d,q) = (PTL(d+1,q))(y} - If {e, €1 -.-re ) s
a set of r 1linearly independent vectors in Vd(q) and if E; = <e;>,
i=1,2, ...,r , then the set of points {El,EE, ""Er} is called an
r-simplex in PG(d-1,q) . If r =d we will refer to a d-simplex in

PG(d-1,q) as a simplex. If {el,ez, ...,ed} is a basis for Vg(q) then
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the corresponding simplex will be called the unit simplex, with unit point

E = <e> where

and unit hyperplane <e%> , in terms of homogeneous co-ordinates. We will

need the following lemmas:

LEMMA 2.1: Let G S Sym(f) act semi-regularly on { where |Q| =n .
Let k be any integer such that 1 <k €n -1 . Then either

(1) there is a regular k-set for G , or

(ii) k=2, G is elementary abelian of order 20 = IQ] and

|G{A}I.= 2 for any subset A of I of size 2.

PROOF: Let k satisfy 1 <k € %- and suppose that there is no regular
k-set for G . Since G acts semi-regularly on §), each g € G has
n/m cycles of length m , where ig[ =m . If a k-set A is not a

regular set for G then there is at least one non~identity element of G

such that some of g's cycles lie in A . Let ml,mz, ..., be the
distinct orders of all those elements of G for which milk » and 1 #my
for 1<iSt. Let M ={g€6 | |g]=m} for 1<i<t. Let

nj =n/my and kj = k/my for 1 <i<t . Further, let ¢; = [ii}.

Then an element g € Mi stabilizes ci k-sets, so that Mi fixes at most

c;lM;| k-sets. since this holds for each i such that 1< i<t , if

the assumption (i) is false, then we must have
15 n
YocilM| > {k] . (1)
i=1 _

If m is the smallest value of m; for 1< i<t , then, since k < %—,

i
ki Sk, for 1<i<t, we have also ci Sc . Thus

L <
and ny S§n ) 1

l 7
from (1) we have

t t
2 iMi[ = 2 CiiMi| 2 {n] ' i.e. with m=m
i=1 i=1

c,(n - 1) P c,

nin -mi(n-2m ... (n -%X +m(n - 1) > nn-1) ... n -k + 1)
k(k ~m)(k - 2m) ... m kik = 1) ... 1

Since k < %— , the above implies that k = 2 , and m=m = 2 .

L%
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In this case G is an elementary abelian 2-group, and case (ii) holds. oO

LEMMA 2.2: Let G be PGL(2,q) acting on the points § of the
projective line PG(1l,q) . Suppose that ' € is a set of 3 points and
d is a given integer such that 1 <$d<q- 3. If q > 7 then there is
a set A of size d disjoint from [ such that G(r) n Gray = 1
If g =7 the same holds when d =3 or d =2
PROOF: We may take I to be the set 1{0,1,9} . Then G! = s, -
As Gy = 1 it follows that G(r} has order 6. on O\I' the group G(r)
has at most one orbit of odd length and at most one orbit of size two.
It follows that for g > 7 there is at least one orbit A of size 6 and
G(r} acts regularly on A . For a given value d', 1 <4d' <5 the
lemma 2.1 shows that there is a set A' © A, |A'|=d' such that
G{F} n G{A'} =1 . Now select any set A' in SN\{I' y A} of size 4 - Q'
and define A = A' y A' . It follows that G{F} N G{A} EEG{F} N G{A'} = 1.
For g=7, G{r)} has an orbit I; of length 2 and an orbit T3 of
length 3 on NI . Here we take one point in F2 and one or two points in
Fa to form A . g
COROLLARY: If G and T are as in the lemma, and if q > 7 and
1 <d<g , then there is a subset A of § of size d such that
Giry NGpy =1 . If q=7 the same holds for 2S<d<6; if g=35
the same holds for 3 < d <4 .
PROOF: We allow ANT # ¢ , so the proof is immediate from the lemma for

L
a> 7. For g =5 or 7 trivial computations give the result. 0O

LEMMA 2.3: Let G be PIL(2,q) acting on the points § of the
projective line PG(l,q) where g is a prime power, not a prime.

Let I'c ! be a set of 3 points, and let d satisfy 1 <d<gqg- 3.

If g > 16 then there is a set A of size 4, Ac @, ANT =¢ such
that Grpy N Grpy = 1 . The same holds for g = 16 and 2 <4< 12
for ¢g=9 and 3<d<4 or for g=8 and d= 3.
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PROOF: Again, we may take [ to be the set {0,1,»} . The lemma follows
immediately from lemma 2.1 once we have shown that G{r} has at least one
regular orbit on the points not in [ . For an element a in GF(q) we
define c(a) = {a*!, (1-a)®}, (1-aH*} . 1f a @ T then c(a) is the
set of cross-ratios obtained by arranging {0,1,®,a} in all possible ways.

The following facts are easily established:

(i) Two elements a and a' are in the same orbit of G{T} N PGL(2,q)
if and only if C(a) = C(a') . In particular the sets C(a) for
a in GF(g) form a partition of GF(§) U {»} for every subfield

of GF(q)
(ii) If a@T then |C(a)| =1 or 3 if and only if C(a) = C(-1) .
(iii) If a # -1 then |[C(a)| =2 if and only if a® -a + 1 =0 so that

a is a 6th root of unity.

So, in all other cases |C(a)| =6 . The sets C(a) are permuted by a

field automorphism O of GF(qg) according to (C(a))c = C(ac) . if

C(a) = (c(a))o for some a then this element satisfies one of the equations
o 0 -1, X0

a=a ., a=(1-a) or a=(1-a") . If g > 16 then

lemma 3.5 in [8] can be used to show that there is some a in GF(q) with
lC(a)l = 6 that satisfies none of these equations for any field automorphism
of GF(q). It follows that C = U C(ac) (where O runs over all field
automorphisms) is an orbit of G{F} of length 6n where g = p°. On the
other hand |G{F}| = 6n and hence C is a regular orbit. For gq = 8, 9

or 16 the result follows by computation. O

COROLLARY: If G, I' and q are as in the lemma then for q > 16 and
1S$d<qg there is a d-subset A of § such that Giay N Giry =1
If 9g=8,9 or 16, the same holds for 2 < d < gq .

PROOF: From the lemma for gq > 16 , since we allow ANT = ¢ , and by

computation for g =8, 9 or 16 ]
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3. REGULAR SETS IN PROJECTIVE SPACE "
In this section we establish the existence df regular sets in the projective
spaces over Galois fields of at least 3 elements. Our main result follows

at the end of this section and is proved in the general case by a sequence of
lemmas. For some exceptional parameters direct computation is required.

In the following all groups act on the points of projective space in the

natural way, and all sets and groups are finite.

LEMMA 3.1: If g2 16 , q # 17 , then any 4-set of points of PG(1,q)
can be extended to a regular 5-set for PGL(2,q) . For g < 16 , or

g = 17 , there are no regular 5-sets for PGL(2,q)

PROOF: Let G = PGL(2,q) . Comparing the order of G to the total number
of b5-sets shows that g must be at least 16. Computation shows that there
is no regular 5-set for q = 17 . Without loss of generality we may assume
that T = {m,O,l,a} , where a is arbitrarily chosen. Let b be a further

point, A =T U {b} and define A, = MANx} for x in A . We now

calculate cross-ratios: Cp = (°,0; 1,a) = a , c, = (®,0; 1,b) =b ,
S (°,0; a,b) = b/a , c, = (0,1; a,b) = (b - 1)/(a - 1) and
C, =

a.(b - 1)/b.(a - 1) . When the points in Ax are taken in all

possible orders the cross-ratios obtained are
c = +1 (1 - )il (1 - _1)11
x 1%x ! Cx! °x
for every x in A .

Let g be a collineation in G{A} with x9 = x' . As cross-ratios are

preserved and as Ag = A €C, -

xll
We now choose b ¢ {0,»,1,a} such that

it follows that Cy € Cx' and ch

(i) c, =b € Cp U <, U c uc, ,

.. b
(;1) c = E-Q Cy U C, Uuc, and
(iii) b is not a third root of -1 .

The conditions (i) and (ii) after some simplifications give a total of 26
equations, 11 of which are quadratic, that must not be satisfied by b .
Thus in total at most 44 values are excluded. Therefore, if q Z 43

a value of b may be chosen so that b satisfies conditions (i) - (iii)

above. Condition (i) implies that a is fixed by every collineation



104 Key and Siemons

in Gipy - Condition (ii) implies that also 1 is fixed. The remaining
points {W,O,b} can be displaced in G{A} only when b satisfies

b2 - b+ 1 =0 , hence is a third root of -1 . Therefore condition (iii)
implies that Gy,y = 1 . The remaining cases for 16 < g € 43 have been

considered by exhaustive computer search. O

NOTE: It is shown in [10] that PIL(2,q) has a regular 5-set for any
g2z 32 .

LEMMA 3.2:

(1) Let d% 3, g25 and g2d, where d=4 if g=5 and 4 <6
if g=7. Then PGL(d,q) has a regular (d+3)-set.

(2) Let 423, g28 and g2d, where d<g if g =8, 9 or 16
Then PIL(d,q) has a regular (d+3)-set.

PROOF: (1) Let G = PGL(d4d,q) . For a given dimension d and a basis of
Vaqlq) let £ be the line through the points A = <{(1,0,0, ... ,0)> and

A, = <(0,1,0, ... ,0)> . For a set I of three points on £ we choose
aset A of 4 points on £ such that G{F},{E} fixes every point of £ ,

where if d = 3 we choose A such that ' NA = ¢ . Such a set can be
chosen by lemma 2.2 and its corollary. Without loss of generality we may
assume that A contains the points Al, A2 and A3 = <(1,1,0,0, ... ,0)> .
Let ay, i=4, ... ,4 be such that the remaining points in A are of the
form Ai = <(1,ai,0,0, ... ,0)> . For the following matrix
e 1 -1 -a . —adj
1 0 1 1 1
0 0 1 0 0
H = 0 0 0 1 0
L O 0 0 0 1]

let Hi be the hyperplane in PG(d-1,q) whose homogeneous coordinate is the

it? column vector of H . As H has rank d , any d-1 hyperplanes H;

intersect in a point and the points so obtained form a simplex
&
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A= {Bl’Bz' .o ,Bd} in PG(d-1,q) , where B; = n Hj . We Observe the
"y

following: 7+

(a) Ay is on Hy for evexry i=1, 2, ... ,4d;

(b) if A; is on Hj then i =3 ;

(c) a point on & not in A is not on any of the Hy
It follows that

(1) if B# B' are in A and D is in I then B, B', D are not

collinear, and
(ii) no point of A is on &L .

Let A=TUA . BAs T is the only set of 3 collinear points in A any
collineation g fixing A as a set fixes both T and A setwise.

Therefore in particular £9 = £ and g permutes the hyperplanes Hy
forming our simplex A . Thus g permutes the points H; N & = A; so that
g belongs to G{F},{K? . By construction g fixes every point on % .

As distinct hyperplanes intersect £ in distinct points, every hyperplane

H; 1is fixed as a set. Therefore every simplex point is fixed. As no point

of A is on £ it follows that g is the identity on PG(d-1,q) . The

proof of (2) follows similarly, using lemma 2.3. O

LEMMA 3.3: Let d25 and g2 3 . Then PIL(d,q) has a regular set of

size 2d -1 if d is even or of size 2d if 4 is odd.

PROOF: For a given dimension d and a basis of Vd(q) let

E = <(1,0,0, ... ,00>, E, = <(0,1,0, ... ,0)>, ..., Egq = <(040,0, ...,1)>.
Define A to be the unit simplex {E , ... ,Eq} . Let a' = 1da -1 if

d is even and d* =131(d-1) if 4 is odd. We define further points P
and P;, Q; for every 1 S1i S ar. The coordinates of P, P; and Q
are the first d entries in the following tables in which w is any

primitive field element:
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1 2 3 4 5
P w w 1 1 1
0, o 1 1w
P1 w-1 w 0 0 1-w
Qfwt t 1 0 1
P2 1 w-1 0 1 0
Table 1: 4 =5, g 2 3
1 2 «3 4 5 6 7 8 9 10 11 12 13 14 15 ...
P \ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ..
Q_ w O 1 w W W W W W W W W W W W ..
P1 0 1 0 1l-w l-wl-w 1-w 1-w 1-w 1-w 1-w 1-w 1-w 1l~w 1l-w .
Q2 0 1 1 0 1 W W W W W W W W W W
PE w 0 0 1 0 1-wil-wil-wilwl-w l-w l-w 1-w 1-w 1-w .
Q, 1 1 1 1 w O 1 W W W W W W W W ...
Plw-1 0 0 0 1-w 1 0 1-w 1-w 1-w 1-w 1-w 1-w 1-w 1-w ..
Q, 0 1 1 1 1 w w 0 1 w w w w w w .
Pl w 0 0 0 0 1-wl-w 1 1-w 1-w 1-w 1-w 1-w 1-w ...
Q 1 1 1 1 1 1 w w w 0 1 W W W W ...
P, |w-1 O 0 0 0 0 1-wil-w 1-w 1 1-w 1l-w 1-w 1-w .
Q 1 1 1 1 1 1 w w w w O 1 w w
%5 w O O 0 0 0 0 1-w1il-wil-wil-w 1 0 1-w 1-w .
Table 2: d 2 6, q 2 3
* * * .
Let A = {P,Pi,Qi,I 1€i<d} and A=AUA . Note that

(a)
(b)
(c)
(d)
Thus

*
{P,Pi,Qi} is a collinear set for every i €d

If
If
If
A

*
E€A and X, YE€A , then {E,X,Y} is not a collinear set.

*
E, E' €A and X € A , then {E,E’,X} is not a collinear set.

95

is on the line PPi

then

i

3

consists of the vertices of the simplex

A and triples of collinear
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points centered at P . From (a) - (¢) it follows that 3 collirfear points
in A must be contained in A*. Therefore a collineation g of PG(4d-1,q)
fixing A as a set fixes both A and A* as sets. Therefore g is
represented by a monomial matrix M , and thus X and x9 have the same

number of zero coordinates for any point X . It follows that

(i) pg=P;

(i1) pJ =P , forall i=1, ... ,d ;
*
(iii) Qg = Qj and (d) above implies i = j for every i <d .

* .
Thus g fixes A pointwise and an easy inductive argument shows that g
also fixes A pointwise. Now having chosen w +to be primitive, the fact

that g fixes P and Q1 will force g to be the identity. O

The preceeding lemmas show that for generic parameters (d,q) there are sets
of points in PG(d-1,q) that are regular sets for PIL(4,q). For

sufficiently large fields, a regular set as constructed consists of either

A the vertices of a d-simplex together with three points on a line
avoiding these vertices and not on a line through any two vertex

points, when d £ g ; or,

B : the vertices of a d-simplex together with a set of 4 (or d-1)
points consisting of collinear points centered at a point belonging

to the regular set, when d 2 q .

Clearly a regular set for PIL(d,q) is regular for every group of col-
lineations of PG(d-1,q) . The following theorem states the existence and

L
gives the size of regular sets in projective space.

THEOREM 3.1: For 422 and g2 3, PIL(d,q) in its natural action on
the points of projective space PG(d-1,q) has a regular k-set according to
the entries given in the table below. &an entry of the form "-" indicates

that there is no regular set of any size for PIL(d,q) .
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4= q<11l13|16|17t19|23|25l27|29<j_]

- x| - | 6] -161515]16][6] 5 [~
q 3!4I5|>71 _ a3 ]4 >3]

d=3": ; d=4": :
k([ -1-T716e x[[81917]

a»s gl q<a | a=q€l5,7,93 l d@*

dodd - k|| 24 2d | a+3

aze q |l a<a | a=q€ls, 16} | d<5_+

d even k|| 28-1 24-1 | a+3|°

Note: (i) For d = 2 the entry * follows from [10].

(ii) °The values of k given in the table are not necessarily
minimal. For example, it can be shown that for d =3 and
q > 29 , a regular set of size k = 5 can be found

(in fact, a b5-arc).

PROOF: The only parameters in the table not covered by lemmas 3.1 to 3.3
are (d,q) = (2,9 for g<17, (4,9 = (3, for g<5 and
(d,q) = (4,&) for g< 4 . In these cases the results were obtained by

direct computation. D

COROLLARY 1: 1In its natural action on the points of PG(d-1,g) the group
PGL(d,q) has a regular k-set where k =5 for (d,9) = (2,16) and k = 8
for (d,q) = (3,4) . Furthermore, PGL(d,q) has a regular k-set with k

less than the value given for PIL(d,q) , £for the following parameters

@, |l 2,25 | (2,27 | 4,4 | 8,8 | (9,9 | (16,16)]
xk || 5 | 5 8 | 11 | 1z | 19 |°

COROLLARY 2: Let G be a subgroup of PIL(d,q) for d2>2 and q 23
acting primitively on the points of PG(d-1,q) without containing the
alternating group of the same degree. If there is no regular k-set for G
for any value of k , then (i) (d,@ = (2,9, q € {4,5,7,8,9,11,16}
and G 1is one of Dlo; PSL(2,5), PGL(2,5):; PSL(2,7), PGL(2,7);
PGL(2,8), PIL(2,8); sym(5), PSL(2,9), PGL(2,9), Mlo’ PSL(2,9).C2,
PIL(2,9) ; PGL(2,11) ; PGL(2,16).C2, plL(2,16) ; or

e
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(ii) (d,q) = (3,90 , a € {3,4} and G is PGL(3,3) or PIL!3,4)
(Here D,y < PIL.(2,4) & sym(5) and is the dihedral group; PSL(2,9).C2 is
PSL(2,9) extended by the field automorphism; PGL(2,16).C2 is PGL(2,16)

extended by <g%?> where 0 1is the field automorphism of order 4).

PROOF: As a regular set of PIL(d,q) is a regular set for any subgroup,
only the parameters (d,q) = (2,q9) ‘for q € {3,4,5,7,8,9,11,16} and

(d,q9) = (3,3) or (3,4) need to be considered, by theorem 3.1. 1In these
cases, all primitive subgroups not containing the alternating group of thé

same degree can be found, for example by using the list of Sims [14]. O

4, REGULAR SETS IN AFFINE SPACE

It is possible to obtain regular sets for the affine semi-linear group
alL(d,q) acting on the points of AG(d,q) for 421, g=2>3, ina
manner directly analogous to that in section 3 for the projective groups.
Since the derivation of these affine regular sets 1is so similar (but not the
same) we merely state our results here, and indicate the nature of the

geometrical configurations involved.

THEOREM 4.1: For d21 and g2 3, AIL(d,q) in its natural action on
the points of affine space BAG(d,q) has a regular k-set according to the
entries given in the table below. An entry of the form "-" indicates that

there is no regular set of any size for AFL(d,q)

go1. 9l 3Sa<0 | 9> 11, g= 16 | 16 |.
k - I 3 141" .
4= 2 all 3| 4| 5<qg<9 | g>11,qg%*16 | 16 |
k - 5 | 4 | 5 |’
_ all 31425 l_
d=3 x{lelao] 7 |’
a>4 gl g<a| g=cel4,8,16} | g=d+1€{5,7,9} | g 24 |
deven - k|| 2(d+1) 27d+1) | 2(d+1) | a+a |’
az2s  gllg<ad | g=a€{5,7,9} | g=a+1€{8,16} | g =4 |
d odd - k[i 2d+1 | 2d+1 | 2d+1 | a+a |~
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PROOF: As in Theorem 3.1, for some of the smaller parameters direct
computations had to be made. For the general cases, lemmas for the
dimensions 1, 2 and greater than 3 , established the regular sets, as in

the projective case.

For d = 2 the parameters quoted in the table refer to regular sets consist-
ing of three points on a line, and one or two points off the line. This is a
somewhat better (i.e. smaller) configuration than that obtained in the
projective plane, where the configuration of a triangle of points and three
collinear points was given as a special case of such a configuration for

higher dimensions. Such a configuration will also apply to the affine case.

For d 2 3 , *there are, as in the projective case, essentially two types of
configuration, viz. A or B as described before Theorem 3.1. The proof
of this is quite similar to the proofs of lemmas 3.2 and 3.3. For example,
the tables in lemma 3.3 can be used directly in the affine case by taking
the hyperplane at infinity to be <(1,-1,1,-1, ...)'> in table 2, with some
restrictions on 4 and q . Three other tables were constructed to cover

all the fields with g 2 3 and all dimensions 422 . O

COROLLARY 1: 1In its natural action on the points of AG(d,q) , the group
AGL(d,q) has a regular k-set where k =3 for (d,q) = (1,9) and k = 6
for (d,q) = (2,4) . Furthermore, AGL(d,q) has a regular k-set with k

less than the value given for AIL(d,q) for the following parameters:

@,9 [l1,16) 2,8 2,9 1(2,16) | (3,9 |(7,8)](8,8) | (8,9) ] (9,9 ] (15,16) | (16, 16)]
x || 3 | 4 | 4 | 4 | 8 [ it | 12 | 12 | 13 [ 19 | 20 |

COROLLARY 2: Let G be a subgroup of AlL(d,q) for d21 and g 2 3
that acts primitively on the points of AG(d,q) without containing the
alternating group of the same degree. If there is no regular k-set for G

for any value of k , then

(i) (a,q) = 1,9, gq€ {5,7,8,9} and G is ASL(1,5), AGL(1,5),
aGL(1,7), AaIrL(1,8), AIL(1,9) or AIL(1,9) or

(ii) (d,q9) = (2,90 , q € {3,4} and G is ASL(2,3) , AGL(2,3) or
ATL(2,4)

A
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*y

PROOF: As for theorem 3.1, corollary 2. O

5. GEOMETRIC GROUPS

Let G be any group of collineations of S where S 1is a finite projective
or affine space of geometric dimension d 2 2 . Throughout, the points of

S will be denoted by I . In this section we prove that G acts
k-geometrically on §! where k -depends only on the dimension of S .

It follows, as we remarked in section 2, that G is, in particular,

k-closed in its action on 2 .

For generic parameters (d,q) let A be a regular set for PIL(d+l,q) or
ATL(d,q) , respectively, as constructed in sections 3 and 4. For reasons of
uniformity in our argument we take A to be a line segment of 3 points and
a triangle for the affine plane AG(2,q) , as in lemma 3.2. Thus A is a
configuration of type A or of type B as described in the paragraph preceding
theorem 3.1. When k is the size of A let,d* be the lowest dimension of
a projective, respectively affine, space over : GF(q) containing at least

k + 1 points. Let Bs be the collection of .all k-sets of 0 that are

*
contained in some d -dimensional subspace or icoset, respectively. Now define

B, = {A9 | g€c}uBg.
It is clear that G 1is a group of automorphisms of the block structure

(Q,BG) . The following theorem shows that all its automorphisms are in G .

THEOREM 5.1: Let S be the projective space PG{d,q) or the affine space
AG(d,q) where 422, g2 3 and let G be any group of collimeations
of s . Then G

Aut(Q,BG) and G 1is k-geometric where k 1is as given

below:

d=2, qgq=z7 k =6 ; "d=3, g=25: k=17;

d24, q23: kE€{d+4,2(a+1)} if 4 is even, k € {d+4,2d+1} if 4
is odd, and k = d+4 if q 2 d in both cases.

The parameters in the theorem guarantee that there is a regular set for S
of standard type A or B . (The reader may verify this in lemmas 3.2

to 3.3.) For some of the exceptional small fields similar constructions yield
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similar results. We also note that the value given for k is not neces-
sarily minimal. However, the result on special linear groups in [9] shows
there are collineation groups of S that are not d-geometric. This remark
shows that for sufficiently large fields the values given for k are close

to being smallest possible.

PROOF: Let A be the automorphism group of (Q,BG) for a given group G .
Then G S A as G 1is a group of collineations of S. As A is a regular
set in S the proof will be completed once we have shown that A permutes

the blocks in AS and that A consists of collineations of S . We assume

first that $ is a projective space.

*
As above, let d ©be the lowest dimension of a subspace containing at least
|A] + 1 points. From the values for |A| given in theorems 3.1 and 4.1,
*
it follows that d < d so that Bg; does not consist of all k-sets in Q.

*
Notice that k24 + 1 . The proof now follows in two steps.

(i) Let O be a subset of S such that every k-subset of © ,
* *
k2d + 1, is contained in a subspace of S of dimension at most 4 .

*
Then © 1is contained in a subspace of dimension d

PROOF of (i): Let §S' be the space spanned by © , of dimension 4'. By
elementary arguments from linear algebra it follows that there are a' +1

*
independent points in ©O that span S'. If 4'>d then some k points

*
in 0O will span a subspace of dimension bigger than d .

We shall say that an m-set O is an m-clique or simply a clique if all its

k-subsets belong to By , m Zk

(ii) Suppose that © is a clique containing a k-set from L\ Then
*
l@! =k . The cliques of maximal size are the d -dimensional sub-

spaces of S .

PROOF of (ii): It is sufficient to show that no (k+1)-clique contains a
k-set from AC . From the construction of regular sets in sections 3 and 4
it follows that no (k-1)-subset of a regular set is contained in a hyperplane
of S . Suppose that O = A' U {p} is a (k+1)-clique with A' in AS

As the other k-subsets of O are of the form (A™\{A}H U {p} with X in

A' it follows that all k-subsets of O belong to AG . This is easily
seen to be impossible.

b
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To prove the second statement of (ii), observe that every d*-dime;sional
subspace S* of S is a clique. Thus let © be a clique of maximal size
o] > |S*1 . From the first part it follows that every k-subset of 0O is
in a d*—dimensional subspace of S . The step (i) now implies that ©O is

*
in fact a 4 -dimensional subspace.

We now complete the proof of the theorem. Let g be an automorphism of
(Q,BG) . Then ¢ will map maximal cligues onto maximal cliques. Hence g
preserves the d*-dimensional subspaces of S and therefore is a collinea-
tion of S . Considering the action of g on pairs (A,S*) where A
belongs to BG and S* is a d*—dimensional subspace of S we see that

A € AS implies A9 € A° since g cannot map a non-incident antiflag onto a
flag. This completes the proof of the theorem when S is a projective space.

Very similar arguments establish the result in the affine case. O

COROLLARY 1: If G 1is given as in the theorem then G is k-closed for

the value of k given in terms of the parameters defining G .

Notice that for all values of the parameters d and q , the existence of

a regular k-set implies k-~closure. We do not give the details here but the
results can be deduced easily from theorems 3.1 and 4.1 and theorems A and B
of [8]. We state the following deduction which to a minor extent depends on

the classification theorem of finite simple groups.

COROLLARY 2 (C.T): Let G be a primitive subgroup of PIL(d+1,q) or
alL(d,q) , azz1 ’ q 23 , such that G does not contain the alter-
nating group of the same degree and is not k-closed for any value of k

Then G 1is one of the following groups: C AGL(1,5), PGL(2,5), AGL(1,8),

5 r
afL(1,8), pGL(2,8), pPIL(2,8), AGL(1,9), PGL(2,9) or ASL(2,3) in their

usual representations.

For the general theory of permutation groups the results in this paper give

the following theorem on closure.

THEOREM 5.2: Let G be a transitive permutation group of odd degree with

a normal elementary abelian subgroup of order pd > 9 where p is a prime;
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Then there is a value of k satisfying k € 2(d + 1) for which G is

k-closed.

With the help of [4] this result also holds for groups of degree 2d > 32 and

k &~ 20-1 Before we prove the theorem, we need a lemma:
LEMMA 5.1: If p is a prime and p 2 11 , then AGL(1,p) 1is 3-closed.

PROOF: Let H be the 3-closure of G = AGL(l,p) , and suppose that H # G.
Since G is sharply 2-transitive of prime degree, theorem 27.1 of [15]
implies that H is 3-transitive. Since H has the same orbits on 3-sets as

G , G is 3-homogeneous. But the number of 3-sets is
pip-1(p-2/6>]|6] = pp-1 for p=>1l.

Thus we have a contradiction, so that G =H . D

PROOF of theorem: The assumption implies that G may be identified with
a subgroup of AGL(4,p) . When d is at least 4, theorem 5.1 implies that

G 1is k-geometric, hence in particular k-closed with the.given range for k.

Thus we need only deal with the case d <3. Here we select a regular
k-set A for AGL(d,p) where 3 Sk € 2(d + 1) by theorem 4.1. Hence A
is regular for G . When G{k} = H is the k-closure of G then

et} cacr(da,p) ¥} < acr(a,p 13} = acL(a,p) by theorem 5.1 of [12], theorem A
of {8] and lemma 5.1. As A is a regular set we have IAHI = iH| and

|A°| = |G| . This shows that G=H . O

6. INFINITE FIELDS

In this final section we discuss the existence of regular sets in finite
dimensional projective and affine spaces over infinite fields. Let T
denote the full automorphism group of the infinite field F ; for any sub-
group I'' of T the extension of PGL(d+1,F) or AGL(d,F) by the
automorphisms in [I'' will be denoted by PI'L(d+1,F) or AI'L(d4,F)
respectively. As before, we consider the natural action of these groups on
the set of points {} of the projective or affine space of finite dimension

d over the field F .

Ay
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THEOREM 6.1: Let G be PI'L(d+1,F) or al'L(d,F) acting on”

where 4 2 2 . Suppose that, in the natural action on the points of the
line, there is a set A of d+1 points, and a finite set A of at least

3 points such that PF'L(2,F){A},{Z} =1 or AF'L(l’F){A},{Zﬂ =1,
respectively. Then there is a reqgular set for G of size k=d + 1 + IAI .
If the assumption applies to I' =T , then every subgroup of PIL(d+1,F)

or AIL(4,F) is k-geometric in its natural action on £ .

PROOF: Identify the set A with a set of points on a line £ in PG(4,F)
or AG(4,F) so that the points of A are also on this line. As in
sections 3 and 4 we construct a simplex A' whose faces intersect £ in
distinct points A, ..., Ay, such that A= {Al, cee Ad+1} .

As before, it follows that the vertex points of A' together with A form

a regular set for G . This proves the first part of the theorem.

Suppose now that A and A exist as required with PFL(d+1,F){A}’{K} =1

or AFL(d,F){A},{Z} = 1 respectively. Then there is a regular set A for
PIL(d+1,F) or AIL(4,F) by the above argument. For any subgroup H of one
of these groups we define BH as in section 5. From the arguments in that
section, and the fundamental theorem of geometry, it follows that H is the

full automorphism group of the incidence structure (Q,BH) . O

NOTE: The existence of a finite regular set in a space over an infinite
field implies that the set of points of that space and its group are of the
same cardinality. For this reason it is clear that PIL(d+1,F) and
ATL(4,F) have no regular sets if |[T]| > lF| .

.
The hypothesis of theorem 6.1 on the other hand is satisfied for an arbitrary
field when T' is a finite group. This can be seen just as in the case of
finite fields. It follows therefore that regular sets exist in finite
dimensional spaces over fields such as R , Q or finite extensions of Q.

As a consequence any collineation group of such a space is geometric.
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