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On the k-Closure of Finite Linear Groups.

JENNIFER D. KEY - JOHANNES SIEMONS (*)

Sunto. — Se G ¢ un gruppo di permutazioni su un insieme finito Q di n
elementi, allora, per ogni k<mn, G agisce sull’insieme O} dei sottoinsiems
di Q di k elementi. La k-chiusura di G & il massimo sottogruppo G*¥* di
Sym(RQ) che su 2% ha le stesse orbite di G, e G & k-chiuso se G = G*),
Si mostra che i gruppi lineari proiettivo e affine, nella loro naturale azione
sui punti, sono in generale k-chiusi per certt valori di k, e si determi-
nano le relative eccezioni.

1. — Introduction.

Let G be a permutation group acting on a set £ of finite size n.
This gives rise to permutation actions (G, Q™) where G acts in
the natural way on the system Q% of k-element subsets of (.
Two groups G and H are said to be k-orbit equivalent, G~  H,
if they have the same orbits on Q). The k-closure of @ is the lar-
gest group G* in the symmetric group on 2 that satisfies G ~,G.
We say that @ is k-closed on Q if @ = . These definitions fol-
low Wielandt [22] where the group action on ordered k-tuples is
studied. Groups that are k-closed in our definition will in parti-
cular be k-closed in the sense of Wielandt.

The relationship between the action of G on Q% and QU has
been studied by many mathematicians. Closure properties have
been examined in earlier papers by one of the present authors.
In Siemons [18] it is shown that the orbits on Q% determine the
orbits on QW¥, without reference to the group, for all I< k and
2k < m. This result implies in particular that the k-closure of a
group is contained in its I-closure and that I-closure implies
k-closure. In Siemons and Wagner [19] and Inglis [8] all primitive
groups G are classified in which |G"7:@|# 1, n— 1< 2n* <, is

(*) The authors acknowledge financial support of the C.N.R. and of
the S.E.R.C. (grant numbers: GR/C/98856 and GR/D/1733.5).
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coprime to the order of ¢. Under the assumption of the classifica-
tion theorem of finite simple groups (which we shall refer to as
C.T.) Cameron, Neumann and Saxl[3] have shown that any
primitive group of sufficiently large degree is n*-closed or contains
the alternating group of the same degree.

It is an open problem to provide a proof independent of the
C.T. and to characterise those primitive groups that are not %-closed
for any k. Furthermore for particular classes of closed group
actions it is desirable to determine the minimal value of % for
which the group is k-closed. This paper deals with the linear groups
in their natural action on the points of projective and affine spaces.
Before we can state our main results we need to consider a related
concept. Following Betten [2] a group action G on 2 is geometric
if there exists a system $ of Q-subsets such that @ is the full auto-
morphism group of the incidence structure (2, $). If in addition
every set in % has cardinality k we shall say that G is k-geometric
on Q. It is immediately clear that a k-geometric group is k-closed.
For projective or affine spaces of dimension at least that of the
plane the semilinear groups are the largest groups preserving the
collinearity relation. Thus these groups are in particular 3-geometric
and hence 3-closed. For the linear groups we obtain the following:

TaEOREM A. — (I) In the action on the points of PG{d — 1, q),
d>3, |
PGL(d
PGL(3

(d, q) s 4-geometric if q ¢ {4,8,9,16};
(3,

PGL(d, 4) is 8-geometric but not k-closed for k<6, when d>4;
(d,
(d,

4) s 10-geometric but not k-closed for k<9;

PGL(d,8) and PGL(d,9) are 6-geometric but not 5-closed for d>3;
PGL(d, 16) is 6-geometric for d>3.

(II) In the action on the points of AG(d,q), d>2,
AGL(d, q) 1is 3-geometric if q ¢ {2, 4,8,9,16};
AGL(d, 2) is 4-geometric but not 3-closed for d>3;
AGL(d, 4) 1is 6-geometric but not 5-closed for d>2;
AGL(d, q) for ¢q = 8,9 and 16 are 4- geometrw but not 3-closed for
ad=>2.

This theorem is independent of C.T. In essence it is a con-
sequence of the KFundamental Theorem of projective and affine
geometry and some close examination of cross-ratios on the pro-
Jective line. With the exception of the small fields GF(q), ¢ = 4, 8, 9
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N
or 16 the blocks of a geometry for PGL(d, q) or AGL(d,q) may
be chosen to be segments of lines in projective or affine space.
The exceptional fields are dealt with by computational methods.
Some geometrical configurations (which in general are not unique)
for the projective and affine linear groups are shown in §5.

The Fundamental Theorem of affine or projective geometry does
not apply to the case of a line. Here we need Result 2.5 which

depends on C.T.

TEEOREM B (C.T.). — (I) In the action on the points of Pa1, q),
q=1, -

PI'L(2,q) is 4-closed if and only if q¢ {8,32}; PI'L(2,32) is
-~ b-closed; ‘

PGL(2, q) s 4-closed if and 'only if q¢ {8, 9,16};
PGL(2,16) is 6-closed but not 5-closed.

(II) In the action on the points of AG(1,q), ¢>T,
ATL(1,q) is 3-closed if and only if g ¢ 8,9, 16, 39}
AT'L(1, 8) is not 4-closed,; AT'L(1, q) s 4-élosed for q € {9, 16,.32};
AGL(1, q) is 3-closed if and only if q¢ {8, 9,16}; |
AGL(1,16) is 4-closed; AGL(L,8) and AGL(1,9) are not 4-closed.

As a corollary to Theorem A and B we can list all those general
semilinear and linear groups that are not k-closed for any k:

TaEEoREM C (C.T.). — Let G be any of the groups PI'L(d, g),
PGL(d, q), AT'L(d, q) or AGL(d, q) in their naturol action, and sup-
pose that G is not k-closed for any k. Then G is one of the following:
PGI(2, 4), PGL(2,5), PGL(2,8), PI'L(2,8), PGL(2,9), AGL(l 4),
AGL(1,5), AGL(1,8), AT'L(1,8) or AGL(1,9).

Using properties of groups with a regular orbit on k-sets for
some k, we show in [12] that this together with AGL(2, 3) N Alt(9)
contains the complete list of 2-transitive groups not containing
the alternating group of the same degree that act on finite desar-
guesian geometries over GF(q), ¢ > 2, in the natural action that
are not k-closed for any k.

The organization of this paper is as follows: in §2 we give de-
finitions, notation and some assumed results; §§ 3 and 4 deal with
the projective and affine cases respectively for the non-exceptional
fields; §5 deals with the case of small fields GF(g), ¢ = 4,8, 9
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or 16. Theorem A is a combination of theorems 3.1, 4.1, 5.1 and
Lemma 5.4. Theorem B is obtained from theorems 3.2, 4.2,
and 5.1.

This paper was written during a visit by both authors to the
Dipartimento di Matematica « Federigo Enriques », Universitd di
- Milano. We wish to thank the members of the Department for
their hospitality.

2. — Notation and assumed results.

The notation and terminology used is standard and mostly
that of Dembowski [6] and Wielandt [21]. Variations from their
notation will be given below. Our groups and sets will always be
finite.

If Qis a set and |Q| = n then the symmetric and alternating
groups on £ are denoted by Sym(2) and Alt(Q), or simply by
Sym(n) and Alt(r). If G is a permutation group on £, and 4 C Q,
then Gy, denotes the set stabilizer of A (global stabilizer) and @,
denotes the pointwise stablizer. We will refer to G;/G(, as the
restriction of G to A. If k<n then G acts in a natural way on the
set Q™ of all k-element subsets of Q. @ is k-homogeneous if it is
transitive in its action on 2, The k-closure G*} of G is the largest
subgroup of Sym(Q) that has the same orbits on Q% as G. @ is
k-closed if @ = G, When speaking of k-closure we always assume
that k<[n/2]. We may also refer to members of Q*! as E-sets.
The set of all images of 4 under @ is denoted by A€

DEFINITION 2.1. — Suppose that @ < K<Sym(Q2). A subset A
of 2 will be called a K-base set for G if @ < H <K implies A%« AZ.
If K = Sym(£2) then a K-base set of size %k is called a base k-set.

Thus notice that if there is a base set for G of size k, then G
iy k-geometric as defined in the introduction. Conversely, a
k-geometric group does not necessarily have a base k-set.

A t— (v, k, A) design D on 2, |Q2]| = v, is a pair (2, B) where B
is a collection of k-subsets of 2, called blocks, such that any t-subset
of 2 is contained in precisely A blocks.

DEFINITION 2.2. — Let @ be a transitive permutation group
on £ and suppose that A is a base set for & of size k. The demgn
(2, A°) is denoted by D(G, A).

Indeed as @ is transitive D(G, A) at least is a 1-design; a 2 -design
if G is doubly transitive. Since A is a base set @ is the full auto-
morphism group of D(G, A4).

Ar
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»
The projective geometry of dimension d over the Galois field
GF(q) will be denoted by PG(d, q). Its full automorphism group
is PI'L(d + 1, q) for d>2, by the fundamental theorem of pro-
jective geometry ([1] p. 88). The affine geometry of dimension d
over GF(q) will be denoted by AG(d,q). Its full automorphism
group is AI'L(d, q) for d>2, by the fundamental theorem of af-
fine geometry ([5] p. 32). If 8 is a hyperplane of PG(d, q) then
AT'I(d, q) = (PI'L(d + 1, q))5, where PI'L(d + 1, q) is taken as
a permutation group acting on the points of PG(d, q), and § as
a subset of points. In what follows we will alwayvs take this per-
mutation action of PI'L(d +1, q), unless otherwise stated. Similarly,
AI'L(d, ¢) will act on the points of AG(d, ¢).
The following results will be needed for the proofs of the
theorems. In some cases the statement of the result has been mod-
ified to suit our requirements.

RESULT 2.1 (Siemons [18], Theorem 5.1, p. 399). — Let G be a
permutation group on £, where |!)| = n. Let n* satisty (n —1)/2<
<m*<n/2. Then

G<G™<.. <GP <@ <GP <GP <Bym(Q)

for any % such that 1<k<n*. If G is k-closed then @ is l-closed
for n*>1>k. Further, G is k-homogeneous if and only if ‘¥ =
= Sym(Q).

RESULT 2.2 (Kantor [9], Theorem 1, p. 261). — Let @ be a group
k-homogeneous but not k-transitive on a finite set £ of » points,
where n>2k. Then, up to permutation isomorphism, one of the
following holds:

(i) ¥ =2 and G<AI'L(1, q) with # = ¢ = 3(mod 4);

(ii) ¥ = 3 and PSL(2, q)<G<PI'L(2, q) where n —1 = q =
= 3(mod 4);

(il k = 3 and G = AGL(1,8), AI'L(1, 8) or AI'L(1, 32); or
(iv) ¥k = 4 and G = PSL(2,8), PI'L(2,8) or PI'L(2, 32).
ResurLr 2.3 (Mortimer {15], Main Theorem, p. 445). — If
AGL(d, ) <G <Bym(q?) with d>2, then either
(i) @ = Alt(q?¥) or Sym(q*), or
(ii) there exist integers » and b with g = 7 such that

ASL(bd, r) <G < ATL(bd, r) ,
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or
(iil) AGL(2, 4) < & < AGL(4, 2) and G, o AlK(7).

ResULT 2.4 (Kantor and McDonough [10] or List [14]). ~ Sup-
pose p is a prime, ¢ = p", and || = (¢* —1)/(¢g — 1) where d>3.
If H is a subgroup of Sym(f2) containing PSL(d, q), then either
H<PI'L(d, q) or H>Alt(0).

Resurr 2.5 (C.T.) 4. — Suppose that a permutation group &
of degree ¢ 1 for some prime power g contains a subgroup H
permutation isomorphic to PSL(2,q). Then

(i) PSL(2,q)C G C PI'L(2,q), or

(ii) 62 Alt(g +1), 0
(iii) G = My, or M, of degree 12 or G = M,,, q = 23, or
(iv) PSL(2,7)C @< AGL(3,2), ¢ =T.

B) Suppose that a permutation group G of degree. q = p™
for some prime p contains AGL(1, q). Then either G AGL(m, p)
or @G> Alt(q).
(This result is a well-known consequence of C.T. It can easily
be proved by checking through the list of 2-transitive groups given
in [16], for example).

— The projective groups.

“In this sectlon we examine the projective groups PGL(d q) for
k-¢losure. The main results of the section are Theorems 3.1 and 3.2
which follow from the lemmas below.

In the following PI'L(d, ¢) acts on the points of the projective
space PG(d —1, q) where q = p» for a prime p.

LeMMa 3.1. — If G< K <Sym(Q) and k<[n/2] where |Q| = n,
then ' : , :
(i ) G{k}<K{k}

(ii) z]‘ K is k-closed then G{‘}<K for any 1 such that [n/‘?]>
>l>ky

(iii) #f A is a K-base set of k points for G, then if K 18 k closed
8o 18 G.

PROOF. — | Immediate from the definitions and Result 2.1.

Lemma 3.2. — PI'L(d, q) is 3-closed for d>3.
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PrOOF. — Let @ be the 3-closure of PI'L(d, q) in Sym(£), where 2

denotes the points of PG(d —1,¢). Since G has the same orbits

as PI'L(d,q) on 3-sets, G will map collinear triples to collinear

triples. - As it also preserves incidence by definition, & will preserve

the lines of PG(d, q) and hence must be a collineation group of

PG(d, q). By the fundamental theorem of projective geometry [1]
 p. 88, G<PI'L(d, q): Thus PI'L(d, q) is 3-closed for d>3.

COROLLARY. — PI'L(d, q) is k-closed for all k satisfying

d

q —
2(¢—1)

3<k< vy d>3.

PROOF - By the above and Result 2.1.

LEMMA 3.3. — For 4>3, PI'L{d, q) and PQL(d, q) have the same
orbzts on 4-sets consisting of 4 non-collinear pomts of PG(d—1,q).

PROOF — Sets of 4 non-collinear points of PG(d—l q) are of
the following types: :

-(i) -‘Exactly 3 collinear (line and point);
o (i) Nb'?, collinear, but 4 coplanar (quadrangle);

| (iii) 4 non-coplanar (tetrahedron).

We show that PGL(d, q) ) (and hence also PFL( ,g)) is transi-
tive on each of the above types

Type (i): We show that PSL(d, g) has one orbit of this type
Let 4,= {Pl,Pz,Ps,P4}, A= {QI,QZ,Q?,, o) Where ly= P, P, P,
and Zq__QZQ:,Q,l are lines, and the 4, 4 =1,2, are two 4-sets of
type (i). Since PSL(d,q) is transitive on hnes, we can map L
onto I, in PSL(d, ¢g). Since d>3, PSL(d, q) induces PGL(2,q) on
any line, and this is 3-transitive on points. of the line. Thus we
need only consider the case where P,= Q, for ¢ =2,3,4 and
l,=1,=1 Let H be a hyperplane of PG(d—1,q) containing I
but not containing P, or @,. Then there is an elation h of
PG(d —1, q) such that P;h = @Q,, b has axis H and h has centre
P,Q.Nn H. Thus Ak = A,, and he PSL(d, q).

Type (ii): PSL(d, q) is transitive on planes, so we can take the
two quadrangles to be in the same plane. Tf d>4, then PGL(3,q)
is induced on the plane, and this is transitive on quadrangles
([7] Theorem 2.12 p. 32). If d = 3, then PSL(3, q) may not be
transitive on quadrangles: see, for example [11].
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Type (iii): Here d>4 for such configurations to be present.
P8L(d,q) is transitive on projective spaces PG(3,q) inside PG(d—1,q),
so we can take the two tetrahedra to be in the same PG(3, q).
Then PSL(4,¢) is transitive on tetrahedra, and hence so is
PSL(d, q) and PGL(d, q).

LeMMA 3.4. — If G is a subgroup of PI'L(d, q) with PGL(d, q)
as a proper subgroup, d>2, then G and PGL(d, q) have the same
orbits on sets of 4 collinear points if and only if

(i) g =4,8 or 9 and G = PI'L(d, q) or

(il) ¢ = 16 and G = PGL(d, q)-{c?)> where ¢ is @ genemtor of
the field automorphism group of GF(18).

PROOF. — As PGL(d, q) is transitive on the lines of PG(d —1, q)
it will be sufficient to consider the action of @ induced on a fixed
line. Thus it will be sufficient to prove the lemma for d = 2. For
points on the projective line PG(2,q) we use GF(g) U {oo} as
parametric coordinates. As PGL(2,q) is triply transitive every
orbit on 4-sets contains a representative of the form A,=
= {00, 0,1,a} for some a in GF(q), 0 %a1. Now suppose
that G and PGL(2, q) have the same orbits on 4-sets. Let g-« be
an element in G where g € PGL(2, q) and « is some field automor-
phism of GF(q), «~1. Thus (A,)"* lies in the same orbit as A,
and in some suitable arrangement (A,)°* yields a cross-ratio a”.
As PGL(d, q) preserves cross-ratios, a* has to be one of the cross-
ratios obtained by all possible arrangements of A,. They are
a, 7'y 1—a, 1—a)?, 1 —a?! and (1 —a-2)2, gsee for instance
page 42 in [7].

When ¢ = p* for a prime p, then « is given by a: x — 2% for
some i, 0<i<n—1. Thus, if ¢ and PGL(2,q) have the same
orbits on 4-sets, then every element in GF(q) satisfies at least one
of the following equations:

I:a%"— g — 0
II: #+0—1 =0
III: 0%’ 4 a—1=0
EQ(i): IV: g4+ __ gt +1=20

V:ia® —aq +1=0

VI: a?40 — g% —q = 0.

(At a later stage we shall make use of these equations. For this
reason we have emphasized the exponent of the field automorphism).
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"
We now count the maximal number # of distinet solutions these
equations can have. Equations I and VI are solved by a = 0;
a =1 solves I and II. Thus

r<{(p’—2) + (p) + (p) + (P*+ 1) + (p'+1) + (p)} +2 =

= 6p*+ 2

and our assumption implies that ¢ = p"<6p’+ 2. Replacing «
by «—! we may assume that i<n/2 and therefore 7>p®/. This
leaves the possibilities ¢ = 4, 8,9, 16 or 25.

The Case q = 4,8 or 9. There is no group properly between
PGL(2, q) and PI'L(2, q), thus conelusion (i) holds.

The Case q = 16. Notice that PGL(2,16) and PI'L(2,16) do
not have the same orbits on 4-sets. For a primitive root o, for
instance, a PI'L(2,16)-image of A, yields a cross-ratio of w? a
value that is not amongst the possible cross-ratios of A». Thus
G = PGL(2,16)-<{c*> is the only group satisfying the hypotheses.

The Case q = 25. Here x* = % for all z in GF(25). We analyse
the equations in detail. There are at most 14 distinct solutions of
I-III. When a solves IV, then

a* —a*+1=0=a—a¥®+1=0=>a*—a+1=0= a*=1
and a solves I. Similarly, if a solves vV,
at—a +1=0=a¢"—a*"+1=0=a'=1,

i.e. a solves I. Thus at most 19 elements in GF(25) are solutions
and so the case q = 25 is ruled out.

It remains to show the converse conclusions. First we note that
PGL(2, 4) = Alt(5) and PGL(2, 8) are 4-homogeneous. (Result 2.2).
Thus there is just one orbit on 4-sets. The group PGL(2,9)
has 2 orbits on 4-sets; they have representatives A_, and Ao for
a primitive root w. Both orbits are left invariant by field auto-
morphisms. Thus PI'L(2,9) has the same orbits on 4-sets. The
group PGL(2,16) has 3 orbits on 4-sets; they are represented by
Aosy Aw: and Ae,. The field automorphism o*: x —ax* preserves
these orbits. Therefore PGL(2,16)-<{c?>) has the same orbits. The
automorphism ¢: # — 22 finally joins A to Ae: so that PI'L(2, 16)
has 2 orbits on 4-sets. This completes the proof of the lemma.
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For a given field GF(p~), p a prime, let m,, ..., m, be the distinet
prime divisors of n. We define i,= n[my,...,4',...,4, = nfm, so
that these numbers are the maximal divisors of n. Bach value 4’
gives rise to a system EQ(i') of the 6 equations (for exponent ')
described in the proof of the previous lemma. Thus we obtain in
all 6-s equations EQ(,), ..., HQ(¢,). Under suitable conditions on p»
they are not satisfied for some element in GF(p»):

LEMMA 3.5. — If n>2 and ¢ = p~+4,8,9,16 then GIF(q) con-
tains some element a satzsfymg none of the equations in EQ(i,),
.y BQ(t,) where 1y, ..., i, are the distinct maximal divisors of n.

PRrOOF. — As we have shown in the proof of lemma 3.4 each
system EQ(i') has at most 6pt' -+ 2 solutions. Thus there are at
most ¢ = 6(p + ... + p¥) 4 2 distinet solutions. When s = 1 (so
that #» is a prime power) the argument of the proof of lemma 3.4
shows that some element in GF(q) does not solve EQ(il) provided
q+#4,8,9 or 16. | |

When $>2 some elementary considerations show that r<g
requires p = 2 and n = 6. Thus only the field GF(64) and the
equations EQ(2) and EQ(3) need to be considered. Computation
shows that precisely 28 elements in GF(64) satisfy at least one
of the equations, while a primitive root in GF(64) is not a .solution
of any of the 12 equations. This completes the proof.

In the space PG(d—1, q) we fix some line ! and parametrize
its points by GF(g) U {co}. When ¢ is not one of the exceptional
values 4,8,9 or 16 let a be an element in GF(q) satisfying. none
of the equations HQ(i),..., EQ(i,) and let A,= {oo, 0,1, a}.

DEFINITION 3.1. — The design D(PGL(d, q), A4,) on the points
of PG(d—1,q) is denoted by Dg(d, q).

- Here, as PGL -acts doubly transitively on the points of
PA(d—1,q), Dg(d, q) is & 2 — ((¢*—1)/(¢ —1), 4, 1) design where
A may easily be calculated by conmdermg the 1- dlmensmnal space.

THEOREM 3.1. — In the natural action on the points of PGE(d — 1, q)
with d>3 we have:

(i) ,PGL( »q) 18 3-closed if and only if q is a prime, and
(if) PGL(d, q) is 4-closed if and only if ¢ ¢ {4, 8,9, 16}.

If g is not a prime, q¢ {4,8,9,16} and d>3 then PGL(d,q) is
4-geometric and the full automorphism ‘group of Dg(d,q).

PROOF. — The parts (i) and (ii) follow from lemmas 3.1 to 3.5.
When A is a block of the design Dg(d, g) then by definition there

L%
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»
is a unique line 1 of PG(d—1,q) containing A; conversely any
line of PG(d—1,¢) contains some bleck of the design. It follows
that an automorphism of Dg(d,q) is an automorphism of
PG(d—1,q). Since d>3, the fundamental theorem of projective
geometry (or Result 2.4) implies that Aut(Dg(d, q)) € PI'I(d, q)-
Therefore PGIL(d, ¢) € Aut(Dg(d, q)) € PI'L(d, g). If the inclu-
sion on the left is a proper one, let G be a smallest group with
PGI(d, q) C G € Aut(Dg(d, g)). Then G is the extension of PGL(d, q)
by some field automorphism ¢° where the minimality of ¢ im-
plies that ¢ is a maximal divisor of n, ¢ = p. Let A, be as in Defi-
nition 3.1 and consider the restriction G* of G to A,. Then G*
is the extension of PGL(2,q) by ¢'. In G* A, is mapped into a
set of 4 points with cross ratio a'= a®. As a is chosen not
to satisfy any of the equations in EQ(i) this is a contradiction.
Therefore Aut(Dg(d, q)) = PGL(d, q) and A, is a bage set for
PGL(d, q). This proves the theorem.
To obtain the analogous result for the projective line we need
to use the Classification Theorem, through Result 2.5.

THEOREM 3.2 (C.T.). — In the natural action on the projective
liné, PI'L(2, q), ¢>T, is 4-closed if and only if q ¢ {8,32}. The group
PGIL(2, q), g1, is 4-closed if and only if ¢ {8,9,16}. If q is not
a prime and q>25 then PGQL(2, q) is 4-geometric and is the full auto-
morphism group of Dg(2,q).

PROOF. — Let H be the 4-closure of PI'L(2, ¢). We use Result 2.5
to determine H. From the structure of the Mathieu groups (see
§ 7 of [6]), it cannot be a Mathieu group. Observe also that PGL(2, 7)
is not a subgroup of AGL(3,2). If H2Alt(q + 1), PI'L(2, q) would
have to be 4-fold homogeneous, and by Result 2.2, ¢=2,4,5,8
or 32. Thus H = PI'(2, ¢q) for the remaining values of ¢ so that
PI'L(2, q) is 4-closed. Conversely, if g€ {8, 32} then H = Sym(q +1),
by Result 2.2. \ |

Let K now be the 4-closure of PGL(2,q) when ¢>7 and q¢
¢ {8,9,16}. By lemma 3.1 KCH and so K c PI'L(2,q). For
g # 32 this follows from the above and for ¢=32 it follows from
Results 2.2 and 2.5. Now lemma 3.4 applies and K = PGL(2, q)
so that PGL(2, q) is 4-closed. The converse follows from lemma 3.1
and Result 2.2. - ' .

When ¢ is a proper power of some prime >5 let & be the auto-
morphism group of Dg(2, ¢). As above we see that G2 Alt(g + 1)
(which clearly is impossible) or G CPI'L(2,q). The remainder
follows as in the proof of Theorem 3.1. . :
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4. — The affine groups.

In this section we examine the k-closure of the affine groups
AGL(d, gq). The main results of the section are Theorems 4.1
and 4.2, which follow from the lemmas below.

In the following AI'L(d, q) acts on the ¢° points of the affine
space AG(d,q) where ¢ = p» for a prime p.

LEMMA 4.1. — For d>2 and q¢>2 AI'L(d, q) is 3-closed.

PROOF. — Let G be the 3-closure of AI'L(d,q). Since @ and
ATI'L(d, g) have the same orbits on 3-sets of points and since q
is at least three, G maps collinear triples onto collinear triples.
Thus G preserves the lines of AG(d, q) and so G < AI'L(d, q) by the
fundamental theorem of affine geometry, p. 23 in [5].

LEMMA 4.2. — For d>3 AGL(d, 2) is 4-closed but not 3-closed.

PROOF. — Let @ be the 4-closure of AGL(d,2). By Result 2.3
we conclude G = AGLd, 2) or G2 Alt(2%). The latter is not pos-
sible as AGL(d,2) is not 4-homogeneous. Hence AGL(d, 2) is
4-closed. As AGL(d,2) is 3-fold transitive, its 3-closure is Sym(zd)

LEMMA 4.3. — For d>2 AGL(d, q) is transitive on sets of 3 non-
collinear points.

PROOF. — On ordered bases of the d-dimensional vector space
over GF(q) the group GL(d, q) acts transitively.

LEMMA 4.4. — If G is a subgroup of AT'L(d, q) with AGL(d, q)
as a proper subgroup, d>1, then G and AGL(d, q) have the same
orbits on sets of 3 collinear points if and only if

(i) ¢g=4,8 or 9 and G = AT'L(d, q), or

(ii) ¢ = 16 and G = AGL(d, 16)-{o*> where o is a generator
of the automorphism group of GF(16).

PROOF. — As in the proof of lemmma 3.4 it will suffice to prove
the lemma, for the case of an affine line. Thus @ acts on the elements
of GF(q). As @ is doubly transitive, every orbit on 3-sets has a
representative of the form A,= {0, 1, a} for some ae GF(g), 0=~
#a 1. Suppose that «-g is an element of G with ge AGL(1, q)
and « a non-identity field automorphism of GF(q). By assumption
(4)*¢ is in the same AGL-orbit as A,, or equivalently (A,)*==

{0 1,6} is in the same AGL-orbit as A,.
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n

Some simple calculations show that this is only possible if
a*=a, ¢ 1—a, 1 —a’, (1 —a)? or (1—a?)t. (These are
just the values of the possible cross-ratios we obtained for the pro-
jective case in lemma 3.4). The arguments in lemma 3.4 now show
that either ¢ = 4,8 or 9 and ¢ = AI'L(1,q) or ¢ =16 and G =
— AGL(1,16):<{c%).

To prove the converse we observe that AGL(1, 4) = Alt(4)
and AGL(1,8) are 3-homogeneous, thus have the same orbits on
3-sets as AT'L(1, 4) and AT'L(1, 8) respectively. See also Result 2.2.

AGL(@1,9) has 2 orbits on 3-sets; they have representatives A_,
and Ao (o & primitive root of GF(9)). Both orbits are kept invariant
under field automorphisms, so that AT'L(1, 9) has the same orbits
on 3-sets.

AGL(1,16) has 3 orbits on 3-sets; they are represented by
Aas, Ao and Aw: (o a primitive root of GF(16)). The field auto-
morphism o%: & — a* preserves these orbits. So AGL(1,16)-<o*)
hag the same orbits on 3-sets. This completes the proof of the lemma.

In the space AG(d, q) d>1 and ¢ not a prime we fix some line [
and parametrize its points by GF(g). When ¢ is none of the ex-
ceptional values 4, 8, 9 or 16 let a be an element satisfying none of
the equations EQ(é), ..., BQ(i,) of Section 3 and lemma 3.5. Let
A, = {0,1, a}. '

DEFINITION 4.1. — The design D(AGL(d, q), 4,) on the points
of AQ(d, q) is denoted by Da(d, q). |

These designs are 2 — (¢% 3, 1) designs as AGL(d, q) is doubly
transitive.

THEOREM 4.1. — In the action on the points of AG(d,q), d>2,
AGL(d, q) is 3-closed if and only if q¢ {2,4,8,9,16}. If q is not
a prime and q ¢ {4,8,9,16} then AGL(d,q) is 3-geometric and is
the full automorphism group of Dald, q) for d>2.

PrOOF. — The fact that AGL(d, q) is 3-closed follows from lem-
mas 3.1 and 4.1 to 4.4. ‘

The remainder of the proof is analogous to the proof of theo-
rem 3.1, applying the fundamental theorem of affine geometry.

For the affine line we need Result 2.5 and C.T.

THEOREM 4.2 (C.T.). — In the action on the affine line AG(1, g),
q>17, AT'L(1, q) is 3-closed if and only if q ¢ {8,9,16,32}. AI'L(1,8)
is mot k-closed for any k, and AT'L(1, q) for ¢ € {9, 16, 32} is 4-closed.
AGL(1, g) is 3-closed if and only if ¢ ¢ {8, 9,16}.



T JUNNIFER . KXY - JOHANNES SIEMONS -

PROOF. — We take ¢>7 since the closure properties are clear
for ¢< 7. Let ¢ = p® where p is a prime, and d = d,d,. Then
AI'L(1, q) < AI'I(d,, p*), acting on AG(d,, q,) where ¢,= p*. If
d,>2 then AI'L(d,,q,) is transitive on triangles of points of
AG(dy, q,). If AT'L(1, q) has the same orbits on 3-sets as ATl'l(d,, q,)
then its order must be at least as great as the number of triangles, i.e.

¢ —1)d>3%9(¢ —1)qg—q.),

ie. p’<6d + ¢, where d,>2, d = d,d, and ¢,= p*. It is easy to
see that for ¢>7 this can hold only for ge {8,9,16,32}.

Now let @ be the 3-closure of AI'L(1,q). By result 2.5, G<
< AGL(d, p) or G<Alt(g). In the latter case @ would be 3-homo-
geneous, which is only the case here for ¢ = 8 or 32. If d — 1,
then G = AGL(1,p), so that AI'L(1,p) is 3-closed for ¢>7. If
d>2, Then AT'L(1,q)<AIL(d,,q) as above, and we choose d,
to be a minimal prime divisor of d. If ¢,2 then AT'L(dy, ¢,)
is 3-closed by lemma 4.1, so that G<AIL(d,,gq,), and G =
#AI'L(d,, ;) for q¢ {8,9,16,32} by the above argument. If
¢:= 2, then AGL(d,, 2) is 3-transitive and hence G — AT'L(1, 29)
for d>5 and d prime. ‘ - ,

Thus we have AI'L(l,q)<@ < AI'L(d,, ¢;) with q,a,d,,d,, q,
as above, and q ¢ {8, 9,16, 32}. As @ is 2-transitive with a regular
normal subgroup, the possibilities for @ have been classified by
Hering (see the list given in the appendix to Liebeck [13]). Using
this list (which depends on C.T.) it is not difficult to show that
G = AI'L(1,q). We remark only that the arguments to eliminate
the possibility of one of the infinite classes of groups either involved
the possible lengths of orbits on triangles, or the impossibility of
the particular imbedding required. For the extraspecial and ex-
ceptional cases, where g € {24, 34, 3¢, 52, 72, 112, 192, 232, 292, 592}, we
argue as follows: (i) if ¢ = p* where p = — 1(mod 6), then there
is a triangle of points A in AG(2, p) for which (ATLQA, p2))p=
= (4GL(2, p)) = Sym(3), proving that G = AI'L(1, p?); (ii) for
q = 3%, 7%19%, we showed by direct computation that AT'L(1, q)
1s maximal in AT'I(2, ¢%); (iii) for ¢ = 3¢, the imbedding is not
the one in AI'L(2,3%) as required. For ge€ {8,9, 16, 32} we ob-
tained the stated results by computation.

For q¢ {8,9,16,32} let K be the 3-closure of AGL(1, q). By
the above K C (AI'L(1, q))®'= AT'L(1, q) and lemma 4.4 then im-
plies that AGIL(1,q) is 3-closed. It remains to consider q = 32.
Here K = (AGL(1,32))® is doubly transitive and has 5 orbits
on 3-gsets. Let M 541 be a minimal normal subgroup of K. Among

&
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the simple groups only PSL(2, 31) could occur; this group, however,
is 3-homogeneous. Thus M is the elementary abelian 2 group of
order 32 and K C AGL(5,2). Theorem 1.1 in [20] implies that
K C AT'L(1, 32) and now lemma 4.4 implies the result.

5. — The exceptional cases of small fields. .

In this section we examine the projective and affine groups over
the Galois fields of 4,8,9 and 16 elements. The lemmas 5.1, 5.2
and 5.3 show that the closure properties of these groups depend
on the affine and projective geometries of dimension at most 3.
These geometries are examined case by case. and K-base sets are
given in each instance where K<PI'L(d,q) or AT'L(d, g). With
these results we establish k-closure in both the projective and the
offine case whenever the space has the dimension of at least that
of a plane: in the projective case we obtain k-closure for projective
dimension d>2 for some k>>5; in the affine ease we obtain k-closure
for affine dimension d>2 for some k>4. In most cases we have
obtained the minimal value for k.

NOTATION. — In lemmas 5.1 to 5.3 we use the following notation:
let K; be any group satisfying

PGL(d, q) < K,<PI'L{d, q) .

If @' >d then K, will denote an extension of K; to PG(d —1, q)
such that K, restricted to PG(d—1,¢) is K,, and

PGL(d, q) < Ko <PI'L(d', q) .

Tf @' <d then K, will denote a restriction of K; to PG(d"—1, q)
such that K,. extended to PG(d—1,¢) is K4, and

PGL(d", q) < Kp»<PI'L(d", q) .

The definition of a K-base set is given in §2 (Definition 2.1).
When these lemmas are applied to the exceptional fields of
order ¢ = 4,8 or 9 we take K,= PI'L(d,q); for ¢ = 16 we take
K,= PGIL(d, 16)- (o) where ¢ is a generator for Aut(GF(16)).
~ The notation is analogous for the affine case, which is dealt
with in parallel in this section.
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LemMA 5.1. — Let A be a subset of the points in PG(d' —1, q)
(in AG(d',q)) such that A is a Ky-base set for PGL(d',q) (for
AGL(, g)). |

Suppose that A is contained in a subspace 8 and let PGL(d, g),
(or AGL(d, q)) be the resiriction of PGL(d', q) (or AGL(d', q)) to 8.

Then A is a Kg-base set for PGL(d, q) or AGL(d, q) respectively.

PROOF. — Suppose A"= A’ for some he PI'L(d,q), and some
g € PGL(d, q). Then clearly he PI'L(d',q) and as A is a K,-base
set, b belongs to PGL(d',q). But this implies he PGL(d, q) and
so A is a Ky-base set for PGL(d, g). For the affine groups the same
arguments hold.

LEMMA 5.2. ~ Let A be a set of points in PG(d — 1, ¢) (in AG(d, q))
so that A is a K;-base set for PGL(d, q) (for AGL(d, q)).

Suppose PG(d — 1, q) is contained as a subspace in PG(d' — 1, q)
(AG(d, q) as a subspace of AG(d',q)). Then A is a K,-base set for
PGL(d', q) (for AGL(d', q)). |

PROOF. — We have to show the following: if A*= A’ for
he PI'L(d',q) and ge PGL(d',q) then b belongs to PGL(d,q).
Let h and g have these properties. By induction and lemma 5.1
we may assume that A is not contained in any proper subspace
of PG(d—1, q). Then gh-! fixes setwise 4 and thus also the set S
of points in PG(d —1, q). Let h* be the action of gh-* on S. As A
is a Kgbase set for PGL(d, q), h* € PGL(d, q). This implies that
there is an element a in PGL(d’, q) such that hA* is the action of a
restricted to §. Therefore a-1-g-h-1= h, fixes every point of S.
It can be shown in general that an element in PI'L fixing a proper
subspace pointwise belongs to PGL. For this reason h, and con-
sequently h belong to PGL(d',q). This completes the proof of the
lemma in case of the projective groups. For affine groups the ar-
guments are analogous.

LevmA 5.3. — (i) For @' >d>3 let A be a (d + 2)-set in
PG —1, q). If A is a K-base set for PGL(d', q), then A is inside
some PG(d—1,q) and is o Kbase set for PGL(d, q).

(ii) For d' > d>2 let A be a (d + 2)-set in AG(d',q). If A
1s a Ky-base set for AGL(d', q), then A is inside some AG(d, q) and
s a K;-base set for AGL(d, q).

ProoF. — Let A be a K,-base set of & 4 2 points for PGL(d', q).
If the projective space spanned by A has dimension d, i.e. if A is
a frame for P@G(d,q), then as PGL(d - 1,q) and PI'L(d + 1, q)
have only one orbit on frames (by [7] p. 32), A cannot be a K,-
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pase set for PGL(d',q). Thus A is inside a PG(d —1, ), so tHat
Lemma 5.1 may be applied.

It A is a Kg-base set for AGIL(d', q), then if the affine space
spanned by 4 has dimension @ -1, then A is a frame for
AGd + 1,9) and we have a contradiction as above. Thus A is
inside a AG(d, g), so that again Temma 5.1 may be applied.

We now deal with the exceptional cases, i.e. when ¢ = 4, 8, 9, 16.
Here we have already shown in Theorems 3.1 and 4.1 that PGL(d, q)
is not 4-closed and AGL(d, q) is not 3-cloged. We examine these
groups for L-closure for k>5 in the projective case and k>4 in
the affine case.

The general computational procedure is to establish k-closure
for as low dimension d as possible. Lemmas 5.1 to 5.3 may then
be used to obtain k-closure for higher values of d. We examine
each value of ¢ = 4,8,9,16 separately and give the arguments
specific to each case to establish, where feasible, the minimum value
of & for k-closure. The general method was to construct the groups
PI'L(d, q) = I" and PGL(d, q) = G for some small d (i.e. 2,3 or 4)
and to find a k-set A such that

|Gyl = il -

If this holds, then since |G|=|4°]|G 4| = || = |4T||I' g, we have
A9 AT ie. G and I' have distinet orbits on k-sets. In the cases
g =4,8 or 9, [I":G] is a prime, s0 that A is a I-base set for G.
By lemms 3.1, k-closure of I' ensures k-closure of G. In the case
g = 16, we have H = PGL(d, q)- {c*) properly containing @, and
so we apply the same method to H and G. The method for the af-
fine groups was the same.

We remark that k-closure of PI'L(2,¢q) (or AI'L(1, q)) is not
assumed, even in the cases when it iz known to be established.
Thus our results on k-closure for d>3 for the projective case (or
d>2 for the affine case) are independent of the clagsification theorem
(C.T.). However, we use lemma 3.1 constantly.

Most of the computations were done with the aid of the Cayley
package of J. Cannon [4] on the Birmingham University computer.

(1) The field GF(4). Here K,= PI'L(d,4) or ATI'L(d, 4) res-
pectively. The group PGL(2,4) is Alt(5) with 2-closure equal to
Sym(5). We constructed PI'L(3,4) and PGL(3, 4) and found a
K,-base set A of 10 points for PGL(3, 4) thus establishing 10-closure
of PGL(3,4). To show that 10 is in fact a minimum for k-closure,
we computed the lengths of all the 17 orbits of PGL(3, 4) on 9-sets
and found these to be the same as those of PI'L(3, 4) on 9-gets.
Thus PGL(3, 4) is not 9-closed.
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Lemma 5.2 assures the 10-closure of PGL(d, 4) for all d>3,
but since the 21 point plane PG(2, 4) is well known to have unusual
properties, we constructed PI'L(4,4) and PGL(4,4) and applied
the method described. A K, -base set 4 of 8 points was found.
A complete determination of the number of orbits of PGL(4, 4)
and PI'L(4,4) on 6-sets, showed this number to be 18, and thus
established that PGL(4,4) is not 6-closed. If & is the minimum
for k-closure of PGL(4,4) then T<k<8.

Lemma 5.2 then can be used to show that PGL(d, 4) for d>4
is 8-closed and Lemma 5.3 then shows that PGL(d, 4) is not 6-closed
for d>4. Thus PGL(d, 4) is k-closed for d>4 where the minimum
value of k is at most 8, greater than 6, but might possibly be 7.

The geometrical configurations of the K,-base sets of 10 and 8
points for PGL(3,4) and PGL(d,4) (for d>4), respectively are
shown below. Here we have shown a line through two points if
and only if the base set contains at least three points of the line
through the two points.

Fig. 5.1. — Geometrical conﬁguration of K,-base set A4 for PGL(3,4)
|PGL(3, 4) 5] = 2.

Fig. 5.2. — Geometrical configuration of non-coplanar K,-base set A for

" PGIL(d, 4), d>4, |PGL(4, 4) 4] = 2.
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In the affine case, AI'L(2,4) and AGL(2,4) were constructed
and a K.-base set of 6 points for AGL(2, 4) Was found. A complete
enumeration of the orbits of AGL(2, 4) on 5-sets of AG(2, 4) showed
that 6 is the minimum value of k for k-closure.

AGL(d, 4) is 6-closed for all d>2 by lemma 5.2, but that 6
is the minimum for k-closure does not follow from lemma 5.3. In
order to prove that AGL(3,4) is not 5-closed we constructed
AT'L(3, 4) and determined the lengths of the orbits of AGL(3,4)
and AT'L(3, 4) on B-sets. There are 9 orbits of 5-sets in both cases,
so AGL(3, 4) is not 5-closed. Now lemma 5.3 can be used to show
that 6 is the minimum % for k-closure for all AGL(d, 4) with d>2.

. * —
Fig. 5.3. — Geometrical configuration of coplanar Kgj-base set /A for

AGL(d, 4), d>2, |AGL(2, 4] = 2-

(2) The field GF(8). Here K,= PI'L(d,8) or AI'L(d,8) re-
spectively. PIL(2,8) and PGL(2, 8) are 4-homogeneous (by Re-
sult 2.2) and thus not 4-closed, or k-closed for any k.

PI'L(3, 8) and PGL(3, 8) were constructed and a K,-base set A4
for PGL(3, 8) of 6 points was found by the computational method
described. A complete determination of the lengths of the orbits
of PI'L(3, 8) and PGL(3, 8) on 5-sets showed that there are b such
orbits in both cases. Thus PGL(3, 8) is not 5-closed. By Lem-
ma 5.2 PGL(d, 8) is 6-closed for all d>3, and by Lemmas 5.1
and 5.3, PGL(d, 8) is not 5-closed for any d>3. Thus 6 is the mi-
nimum for k-closure for PGL(d, 8) d>3.

®
|
|
[ Y | y
\\ ”
”
~_ | -
~ : ”~
// \\
// ! \\
[ ‘L =l

Fig. 5.4. — Geometrical configuration of coplanai K,-base set A for
PGL(, 8), d>3, |PGL(3, 8) 5| = 1.
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In the affine case, AGL(2,8) was constructed and a K,-base
set of 4 points was found. Since AGL(d, 8) is not 3-closed for any
d>>2, by Theorem 4.1, 4 is the minimum for k-closure of AGL(2, 8).
By Lemma 5.2 AGL(d, 8) is 4-closed for all d>2, and by Theo-
rem 4.1, 4 is the minimum. The geometrical configuration for a
K;-set A for AGL(d, 8) is a quadrangle (i.e. 4 coplanar points, no 3
of which are collinear) and |AGL(2, 8) 4| = 4.

(3) The field GF(9). Here K,= PI'L(d,9) or AI'L(d,9) re-
spectively. By computation it was shown that PGL(2,9) has the
same orbits on bH-sets as PI'L(2,9) and thus ecannot be bH-closed
(irrespective of the closure properties of PI'L(2,9)). PI'L(3,9)
and PGL(3,9) were constructed and a K;-base set of 6 points was
found for PGL(3,9). A complete determination of the lengths of
the orbits on 5-sets showed that PGL(3,9) and PI'L(3,9) have
the same number (i.e. 9) of orbits on 5-sets. Thus 6 is the minimum
for k-closure of PGL(3,9). By Lemma 5.2 PGL(d, q) is 6-closed
for all d>3, and by Lemmas 5.1 and 5.3, 6 is the minimum value
for k-closure of PGL(d,9) d>3. The geometrical configuration of
K;-base set A for PGL(d, 9) of 6 points is the same as that shown
in Fig. 5.4. Here |[PGL(3,9) 4 = 1.

In the affine case, AGL(2,9) was constructed and a K,-base
set of 4 points was found. As in the case of GF(8), we obtain the
4-closure of AGL(d,9) for d>3, where 4 is the minimum. The
geometrical configuration of a K;-base set A of 4 points is again
a quadrangle and |AGL(2,9). | = 2.

(4) The field GF(16). Here K,= PGL(d,16)-{¢?> or AGL(d,

16)- (o> respectively. PI'L(2,16) was constructed. Its orbits on
4-gets have already been shown to be distinct from those of K,=
= PGL(2,16)-<{0*) on 4-sets (see Lemma 3.4), which are the same
as those of PGL(2,16) on 4-sets. A K,-base set A of 6 points was
found for PGL(2,16), and PGL(2,16) was shown to have the same
orbits on 5-sets as K,. By Theorem 3.2, PI'L(2,16) is 4-closed, so
that K, is also 4-closed and PGL(2,16) is 6-closed, by Lemma 3.1.
Here 6 is the minimum since the 5-closure of PGL(2,16) is K,.
Independently of Theorem 3.2, for d >3 and K,= PGL(d, 16)-
-{o*) it follows from Lemma 5.2 that A will be a K;-base set of
6 points for PGL(d,16). By Lemma 3.2, PI'L(d,16) is 3-closed
for >3, and by Lemma 3.1, K, is 4-closed. Thus PGL(d, 18) is
6-closed. The minimum for k-closure of PGL(d,16) for d>3 thus
satisfies B<k<6. A K,base set A of 6 points for PGL(d,16) is
the set of 6 collinear points with parametric coordinates {w, w?

« 03, 0%, 0% 0%}, where o is a primitive element of GF(16).
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AT'L(1,16) has distinet orbits from H = AGL(1,16) {o*) oil
3-sets, and the latter has the same orbits on 3-sets as AGL(1, 16),

_ by Lemma 4.4. A K;base set A of 4 points was found. With
. reasoning as previously, we prove that AGL(d,16) is 4-closed for

, all d>1.

-~

Thus we have the following theorem:

THaEOREM 5.1. — For the projective and affine groups in the ex-

_ ceptional cases, the minimum value of k for which the group is k-closed

is given in the table below.

(d, 9) 2, 9|3, 1) (@, 4) (2, 8)|(d, 8)|(2, 9)i(d, 9) (2, 16)| (d, 16)
d>4 d>3 d>3 d>3
PaLd,q | — | 10 |T<k<8| — | 6 _ 16| 6 |s<r<s
AGL@d—1,q)| — | 6 6 el =] a] 4 4

Here an entry in the table of the form 7<k<8 indicates that the
group is 8-closed, not 6-closed, and that the question of 7-closure
is still open. An entry «—» indicates that the group is not closed
for any value of k.

NOTE. — The K;-base sets are not, of course, unique and we have
given only one example in a single orbit on k-sets in each case.
In most cases other orbits containing K,-base sets were found.
Computer print-outs of any of the computational results of this
section are available on request from the authors. :

We show below that the K,-base sets A obtained to prov
Theorem bH.1 are in fact base sets.

LEMMA B.4. — For all values of d>2 and ¢ as in Theorem 5.1,
the K ,-base sets A are base sets. Hurther, PGL(d, q) and AGL(d, q)
are the full automorphism groups of the designs D(@, A) where G is
PGL(d, q) or AGL(d,q) respectively.

PROOF. — The designs D(G, A) are defined in §2. In this lemma
we will use the notation Dg(d, A) for D(G, A) where G = PGL(d, q)
and A is a K,-base set, and D4(d, A) for D(G, A) where G= AGL(d, q)
and A is a K;-base set. This is not the notation of Definitions 3.1
and 4.1, which do not apply for these values of g.

For the projective case when g = 4,8 or 9, that the K;-base
sets /A are base sets follows from Result 2.4 since d>3. For the
case ¢ = 16 and d = 2 of case (4), Result 2.4 is not applicable,
but we may use either Result 2.5 or argue as in Theorem 3.1, sinee
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in this case the K-base set is on a line. Similarly for ¢ = 16 and
d>3. In all these cases then PGL(d, g) is the full automorphism
group of the 2-design Dg(d, A).

For the affine case the situation is not quite so simple as the
-analogous result, Result 2.3, indicates the possibility of other
groups that could contain AGL(d, q) and fix the base set. We can
however deal with the case ¢ = 16 as for the projective case and
argue as in Theorems 3.1 and 4.1, since the K-base set is on a line.
Here we need d>2.

In the cases g = 4,8 or 9 where d>2, we have AGL(d, ¢)<
<Aut(Da(d, A)) where Dg(d,A) is a 2—(¢% k, ) design with
AGL(d, q) acting 2-transitively on points and transitively on blocks.

If AGL(d, q) < K<Sym(q?®) and Af= A4e24.9 then K <Aut-

*(Da(d, A)). The possibilities for K are given in Result 2.3. We
consider the fields of order ¢ = 4,8 and 9 in turn. In all cases
we rule out K = Alt(q?) or Sym(g?) since AGL(d, q) is not k-homo-
.geneous for these values of k.

The field}GF(4): ¢ = 4 = 2% and so from Result 2.3 we have
(1) ASL(2d,2) = AGL(2d,2) = K for d>2, or

(ii) AGL(2,4) < K < AGL(4,2) with K, ~ Alt(7) for d = 2.
In case (ii), with d = 2, we have K <Aut(ﬂ),g(2 A)) where S{)Ja‘(z A)
is a 2-(16, 6, A) des1gn W1th b blocks where

. [AGL(2, 4)| . |[AGL(2, 4)]
JAGL(2, 4) ] 2

= 1440 .

Since K > AGL(2, 4), it is also transitive on blocks, so that

Ko = 155 = 28.

Now [A] =6, so that K 4K ,<Sym(6), so that K] [ K ()]
divides 6!

Thus 7 divides [K 4|, so that K contains an element of order 7
fixing 6 points at least, and thus fixing 9 points. Now by a theorem
of Jordan quoted in Wielandt[21] p. 39, K > Alt(16), which is a
-contradiction.

Similarly for d =2 (i) cannot hold, since as above we can
-deduce that AGL(4, 2) = K must contain a 7-cycle fixing 9 points.

For d>3 we have only the case (i) to consider, i.e. K =
= AGL(2d, 2) acting as an automorphism group on the 2-(4¢, 6, A)
«design. Since AGL(2d,2) is 3-transitive on points, the 2-design

[
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»
must in fact be a 3-design. We count blocks through 3 points of
the design and show that this number depends on whether we
choose 3 collinear points or a triangle, and hence that the design
is not a 3-design. :

A triangle of points of AG(d, 4) must be in a plane of AG(d, 4),
and by the construction of the design Da(d, A), 21l the blocks con-
taining the triangle will be in the plane. This number is less than
the number through 2 points in a plane, i.e. less than 180 which
is the value of A for the 2-(16, 6, 1) design in AG(2, 4).

For 3 collinear points P, @, R: the number of blocks in any
plane containing P, @, R is 36 and the number of planes in AG(d, 4)
containing the line is (49 —4)/12. Thus the number of blocks is
12(49-* —1) and for d>3 this number is >180. This contradicts
the number of blocks through 3 points being less than 180, so that
Dald, A) (for d>3) cannot be a 3-design.

Thus /A is a base set for AGL(d, 4) for d>2, and AGL(d, 4)
is the full collineation group of the design.

The field GF(8): ¢ = 8 = 2° and so from Result 2.3 we have
the possibility . ,

ASL(3d, 2) = AGL(3d,2) = K .

Again, K is 3-transitive on points of the design, so that the design
is a 3-design. But in this case the geometrical configuration for A
inside A@(d, 8) is a quadrangle, so that if we choose 3 collinear
points of AG(d,8) there is no block containing them. Thus K
cannot act on the design and A is a base set for AG(d, 8), d>2.

The field GF(9): ¢ = 9 = 3% and from Result 2.3 we have the
possibility

AGL(d, 9) < ASL(2d, 3) <K < AGL(2d, 3) .

‘We show that K = ASL(2d,3) cannot act in the way required.
For @ = 2, Dg(2,A4) is a 2-(81, 4, A) design.

‘Using the fact that K is also transitive on blocks, we can com-
pute, as in the case ¢ = 4, that 13 divides |K4|. Since K ,/K 4<
<Sym(4) we find that 13 divides |K 4| and thus K has an element
of order 13 fixing 4 points, and thus at least 16 points. This element
moves at most 65 points. By a theorem of Marggraf in Wielandt [21]
. 38, we obtain K>Alt(81) which contradicts our conditions.
Thus A is a base set for d = 2.

For d>3, consider the action of K = ASL(2d,3) on AG(2d, 3)
and on A@Q(d,9). Since the block A of Dx(d, A) has just 4 points,
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it is inside a subspace £ of AG(2d, 3) where A — AG(4,3). As a
set of points in 4G(d, 9), £ = AG(2,9). K will induce the group
AGL(4, 3) on A and this will act on the design D4(2, 4) on points -
of A. BSince AGL(4,3) > AGL(2,9), and the latter is transitive on
blocks of D4(2, A4), AGL(4, 3) is also transitive on blocks of Da(2, ).
Now we can argue as in the case d = 2 to obtain a contradiction.

Thus in all cases we have shown that the K,-base sets A are
base sets, and the lemma is proved. The lemma then also shows
that the groups are geometric.
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