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1. Introduction

Let G be a group with finite permutation representations on two sets
Q;and Q, Letn(g) and B(g) be the number of points fixed by g in €,
and Q, respectively. Our principal assumption is n(g) = B(g) for all g

in G. Then clearly |Qll =7(1) = B(1) = |Qz| and both representations
have the same kernel. Hence assume that they are both faithful.

Furthermore, as the number of orbits on Q; or Q, is equal to the
average number of points fixed by the group elements, G has the same
number of orbits in both representations. Hence assume that they are
transitive. Similar reasoning shows that G has the same permutation
rank in both representations.

In the Kourovka Notebook (1983) Wielandt poses the following

problem: If G acts primitively on Q, does G always act primitively on
Q,? There are many examples of inequivalent permutation

representations with © = B, but none are known to contradict
Wielandt's conjecturet. Generally it seems to be a hard problem and
only little progress has been made towards a proof. The main result
to date (see §2) is due to Forster and Kovics (1990) who show that
Wielandt's problem can be reduced to the consideration of almost
simple groups.

In Dembowski's book (page 212) a similar question appears in a
more restricted situation: If G is a group of automorphisms of a finite
projective plane, acting primitively on lines, is G then necessarily
primitive on points? The answer to this question is now known, due
to the classification of projective planes with primitive collineation
group by Kantor (1987).

First we observe that Dembowski's problem is a subcase of
Wielandt's as automorphisms of finite projective planes fix an equal
number of points and lines. (In passing we note that this is not the
case in’infinite planes, see the paper of Miurer 1988). As a proof one
can quote Baer (1947) or alternatively an earlier result in Brauer
(1941). There the "permutation lemma" states that if two
permutation matrices A and B satisfy AS = SB for some non-singular
matrix 5, then A and B represent similar permutations. In the case
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of a projective plane one can take S to be the incidence matrix of the
plane.

By an incidence structure S = (P, B;I) we mean two disjoint and
finite sets P and B, the point set and block set of S, with some
incidence relation I <PxB. Dembowski's question now has an
obvious generalisation: Let S belong to some class of incidence
structures and let G be a group of automorphisms of S. Does
primitivity of G on B always imply primitivity of G on P?

We need of course some general conditions on S. The remark
above concerning Brauer's permutation lemma suggests we might
assume that the linear rank of an incidence matrix for S is equal to
|P|. This has the consequence that the associated permutation
characters n(g) = fixp(g) and B(g) = fixz(g) satisfy n <P sothat B =
n + X where ) is some character of the automorphism group of S.

For details see theorem 3.2 in Camina and Siemons (1989).
Returning to Wielandt's problems one might therefore ask about

groups G with faithful representations on sets Q; and Q, with
(G, Q,) primitive and (G, Q,) imprimitive, such that = < B for the
corresponding permutation characters. In this situation we say that

G isan exception with 1 <B. One canview Q, and Q, as the point
and block sets of an incidence structure in which the incidence

relation is given as some union of G-orbits on Q;xQ,. In section 3
we give examples of exceptions arising from the groups PSL(2, p) and
discuss the associated incidence structures.

2. Some observations and known results

Suppose that G acting faithfully on Q, and Q, is an exception with
n< B. LetP,, ..., P ..., P;be anon trivial system of imprimitivity for
the action of G on Q;. Let H be the subgroup fixing all the P;sets. If
H #1 then it is transitive on Q, as it is normal in G and it is also
transitive on €, as © <. Hence the action of fegree ¢ is faithful and by

choice we may assume it is primitive. Let ®, denote the
corresponding character. It is a simple matter to show that then

ny<m < P. This gives first of all

Lemma 1. Let (G,Q,,Q,) bean exception with < B. Then every
abelian subgroup acts intransitively on Q,.
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Proof. Let A be an abelian subgroup and consider the restriction of

To<n<P to A. If A istransitive on Q, then it must be transitive
and faithful in all three representations. But then A is regular
contradicting m, < .

For exceptions with m = this observation is mentioned already in.
the Kourovka Notebook. The lemma implies in particular that
exceptions can not have a solvable normal subgroup.

Theorem 2 (Férster and Kovics 1990). An exception G with n =B and
minimal normal subgroup TXT...xT, where T is a non-abelian simple
group, gives rise to an exception G with =B and T <G < Aul(T).

Their proof shows a little more, namely that every almost simple
exception conversely extends to exceptions with several simple factors.
We expect that Theorem 2 carries through to the general situation

1 <P but we have not yet completed a proof.

We now come to the combinatorial and geometric aspect of the
problem and assume that additional requirements on the type of
incidence structure is made. Delandtsheer and Doyen (1989) give an
elegant and elementary proof for the following

Theorem 3. Ifa 2-(v, k, A) design with v > ((lzc) - 1)2 has a block-

transitive automorphism group then the group acts primitively on
points.

This paper is also a good source of reference to conditions on 2-
designs which imply point-primitivity. It contains the conjecture that
block-primitivity and A =1 should imply point-primitivity. This has
been settled in Delandtsheer (1988, 1989) for small values of k and
small permutation rank in the block representation and in Kantor
(1973) for projective spaces of dimension at least 3.

Kantor (1987) characterizes finite projective planes with point-
primitive collineation group. This work is based on a list of primitive
permutation groups of odd degree and ultimately on the classification
of finite simple groups. As a by-product, Dembowski's original
question finally has an affirmative answer:

Theorem 4 (Kantor 1987). Let [I be a projective plane of finite order
q and let G be a group of automorphisms permuting the points
primitively.  Then either (i): Il is desarguesian and G 2 PSL(3, q)
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or (ii): G is regular or a Frobenius group and the number of points
of Il is a prime.

In this context one should also mention the classification of affine
planes with primitive collineation group by Hirame (1990).

Further evidence for the conjecture that block-primitivity implies
point-primitivity in 2-(v, k, 1) designs can be derived from a result in
Camina and Siemons (1989) which is independent of the classification
theorem.

Theorem 5. Let D bea 2-(v, k, 1) design with automorphism group
G acting primitively on the blocks of D. Suppose that the stabilizer
in G of two points p #p' fixes all points in the block through p and
p'. Then G acts primitively on the points of D.

Proof. In Theorem 2 of Camina and Siemons (1989) we have shown
that a block-transitive group as above either is flag-transitive or has
odd order. In the first case G is primitive by a theorem of Higman
and McLaughlin (1961). In the second case G is solvable and hence
point primitive by Lemma 1.

3. Splitting designs

We construct examples of groups G with two faithful representations
(G,P) and (G,B) such that the associated permutation characters

satisfy m < B. The motivation is, of course, to try and find examples

with |P| = |B], contradicting Wielandt's conjecture. There has been
no success so far nor have we been able to construct 2-designs with
this property.

The construction can be described as follows: In G =PSL(2, p) let
G, be the one point stabilizer in the usual representation on the
projective line P, of p +1 points with character my,=1+y andlet B

be some maximal subgroup of G with induced character B. When
B are the cosets of B in G, it is clear that (P, B) either is a 2-design
and n, < B or (P, B) is a trivial structure and m, and B have only
the principle character in common. Now let P be a subgroup of G,
with associated character n and let P be the cosets of P in G. This
corresponds to splitting each point of the projective line into | Gy: P
new points. On the sets P and B incidence can be defined in

various ways. Of course, it remains to be seen if n < B. For the
characters of PSL we follow Dornhoff's (1971) notation.
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Example 6. B= A, Forp atleast 7, the subgroup B is maximal if
and only if p=3or7 mod 10 and p>=9 mod 80. The cosets of B
can be identified with sets of 4 harmonic points on the projective line
and the resulting structure (P, B) isa 3-(p + 1,4, 1) design. The
character B can be calculated as B=1+[(p +£,)/12] y + [(p + £,)/24] &
+ &) + Til(p + 1,00 /1218 + Zl(p + ,1)/12] x; where the values for ¢, ¢,
and tf, are given in terms of various congruences on p, k and I

Taking P as the subgroup of index 2 in Gy, hence p=1 mod 4,
we find that x=1+y + (;+&,) sothat x <P inall cases. Defining
incidence between P and B suitably one obtains 2 - (2(p + 1), 4, A)
designs with A ={0, (p-1)/4}.

The smallest exception overall, in terms of group order, arises in
this way when G is PSL(2,13) and (P, B) isa 2-(28, 4, {0, 3}) design.
If S denotes its 28x91 incidence matrix, then SST has eigenvalues 52,
1013, and (13 + 3V13)7, from which one can see that the multiplicities
are the degrees of the characters 1, y, &; and &,.

Example 7. B =D,,. Inthiscase B is the stabilizer of the 2-set {0,%0}
on the projective line whose remaining two orbits are the squares and
non-squares in the field. Choosing either, one obtains a 2-(p + 1,
(p-1)/2, (p- 1)(p- 3)/8) design. The corresponding character B can
be calculated as B=1+2y + £,(& + &) + Z; O3+ 2 Zyepp5/5 X; Where
t,b=11if p=1 mod8 and 0 otherwise. As above, we let P bea

subgroup of index 2 in Gy Hence ®<B if p=1 mod 8.
Defining incidence between P and B suitably we now obtain

2-2(p + 1), (p-1)/2, A) designs with A={0, (p- 1)(p-5)/32, (p - 1)2/32}.

T Note added in proof: We mentioned Wielandt's problem to R
Guralnick at the Durham Symposium. Later at the meeting he
produced a counter example: it involves the triple cover of M, in
PSL(45, 43). See his preprint note Primitive Permutation Characters.
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