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Abstract

Let G be the group of rational points of a general linear group over
a non-archimedean local field F . We show that certain representations
of open, compact-mod-centre subgroups of G, (the maximal simple
types of Bushnell and Kutzko) can be realized as concrete spaces.
In the level zero case our result is essentially due to Gel′fand. This
allows us, for a supercuspidal representation π of G, to compute a
distinguished matrix coefficient of π. By integrating, we obtain an
explicit Whittaker function for π. We use this to compute the ε-
factor of pairs, for supercuspidal representations π1, π2 of G, when π1

and the contragredient of π2 differ only at the ‘tame level’ (more
precisely, π1 and π̌2 contain the same simple character). We do this
by computing both sides of the functional equation defining the epsilon
factor, using the definition of Jacquet, Piatetskii-Shapiro, Shalika. We
also investigate the behaviour of the ε-factor under twisting of π1 by
tamely ramified quasi-characters. Our results generalise the special
case π1 = π2 totally wildly ramified, due to Bushnell and Henniart.
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Introduction

Let F be a non-archimedean local field and fix an additive character ψF of F ,
with conductor pF (the maximal ideal of the ring of integers oF of F ). Let V
be an N -dimensional F -vector space and let G = AutF (V ). This paper
concerns the supercuspidal representations of G, so we adopt the notation
of [6], where these are classified in terms of maximal simple types ([6]§6).

A maximal simple type is a pair (J, λ), consisting of a (rather special) com-
pact open subgroup J of G and an irreducible representation λ of J . It is
constructed from a simple stratum [A, n, 0, β], where A is a principal hered-
itary oF -order in A and β ∈ A satisfy various properties (see [6] (1.5.5) for
the full definition). The algebra E = F [β] is a field, and E× normalises J .
If we set J = E×J and let Λ be a representation of J such that Λ|J ∼= λ,
then c-IndGJ Λ is an irreducible supercuspidal representation ofG. Conversely,
any irreducible supercuspidal representation of G arises this way.

It follows from the fact that c-IndGJ Λ has a Whittaker model, that there exist
a maximal unipotent subgroup U of G and a non-degenerate character ψα
of U such that HomU∩J(ψα,Λ) 6= 0. Moreover, the uniqueness of the Whit-
taker model implies that the pair (U, ψα) is determined up to conjugation
by J (see [3]).

Associated to the maximal simple type, we have two other groups H1 ⊂ J1 ⊂
J (see [6]§3.1). They are normal subgroups of J and λ|H1 is a multiple of a
simple character θ. Hence, ψα|U∩H1 = θ|U∩H1 and we may define a character
Ψ of (J ∩ U)H1, by

Ψ(uh) = ψα(u)θ(h), ∀u ∈ J ∩ U, ∀h ∈ H1.

Let 0 ⊂ V1 ⊂ · · · ⊂ VN = V be the maximal flag corresponding to U , and
set M = {g ∈ G : (g − 1)V ⊆ VN−1}, so that M is a mirabolic subgroup
of G. Our first main result, in §4, is

Theorem A. Let U be a maximal unipotent subgroup of G and let ψα be a
non-degenerate character of U such that HomU∩J(ψα,Λ) 6= 0. Then Λ|(M∩J)J1

is irreducible and
Λ|(M∩J)J1

∼= Ind
(M∩J)J1

(U∩J)H1 Ψ.

Moreover, the same result holds if we replace: J by K(A), the G-normaliser

of A; Λ by ρ = Ind
K(A)
J Λ; and (M∩J)J1 by (M∩K(A))U1(A), where U1(A)

is the group of principal units of A.
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We show in §4.4 that this property in fact characterises the representations
of the form Ind

K(A)
J Λ. More precisely, writing MA = (M∩ K(A))U1(A) we

have

Proposition B. Let τ be a representation of K(A) such that

τ |MA
∼= IndMA

(J∩U)H1 Ψ.

Then
τ ∼= Ind

K(A)
J Λ′,

for some representation Λ′ of J, such that (J,Λ′|J) is a maximal simple type
containing θ.

This is an analogue of Gel′fand’s characterisation of the cuspidal representa-
tions of GLN(Fq).

Before continuing with the applications of Theorem A, we will say a few
words about its proof. The strategy is as follows: We first construct a special
pair (U, ψα), such that HomU∩J(ψα,Λ) 6= 0, by carefully picking a basis of V ,
and then letting U be the group of upper-triangular matrices with respect
to this basis, and ψα be the ’standard’ nondegenerate character. The choice
of basis is made so that we can control the restriction of ψα to U ∩ B×,
where B is the centraliser of β. We then prove Theorem A for this particular
pair (U, ψα). The general case follows from the fact that any other such
pair (U ′, ψα′) is conjugate to our particular choice by some g ∈ J.

We remark also that Theorem A should follow easily from [3] Theorem 2.9,
but there are problems with the proof of that result: the unipotent group U
used in the proof is not (in general) the group required by the statement of
the Theorem; moreover, there is a gap in the proof of [3] Lemma 2.10 which,
so far as we know, nobody has been able to fix. In the course of the proof of
Theorem A, we end up proving an analogue of [3] Theorem 2.9, see Theorem
3.3. We get around the problem of [3] Lemma 2.10 by using the case when E
is maximal in A as a ‘black box’. If [3] Lemma 2.10 were true then the basis
of V referred to above could be written explicitly in terms of β and some of
our proofs would simplify.

The interest in Theorem A is that, since F× Ker Λ is of finite index in J, it
allows us to apply a very general Theorem of Alperin and James [1] for finite
groups. Following [1], we define the Bessel function JΛ of Λ by

JΛ(g) = Q−1
∑

u∈(U∩J)H1/Un+1(A)

Ψ(u) trΛ(gu−1).

where Q = ((U ∩ J)H1 : Un+1(A)). Now, [1] implies:
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Theorem C. Let S be the space of functions f : (M∩ J)J1 → C, such that

f(ug) = Ψ(u)f(g), ∀u ∈ (U ∩ J)H1, ∀g ∈ (M∩ J)J1,

and, for all g ∈ J, let L(g) ∈ EndC(S) be the operator:

[L(g)f ](m) =
∑

m1∈(M∩J)J1/(U∩J)H1

JΛ(mgm1)f(m−1
1 ),

Then L defines a representation of J on S, which is isomorphic to Λ.

The analogous result for GLN(Fq) (or, equivalently, for level zero supercus-
pidal representations of G) was first observed by Gel′fand [7].

Now we proceed as in [3] §3 and construct a Whittaker function for π =
c-IndGJ Λ. However, the observation that Λ can be realised via Bessel func-
tions results in explicit formulae and extra information about this Whittaker
function. Our main result concerning Whittaker functions (see §5.2) is as
follows:

Theorem D. Define W ∈ IndGU ψα by SuppW ⊆ UJ and

W(ug) = ψα(u)JΛ(g), ∀u ∈ U, ∀g ∈ J,

then W is a Whittaker function for π = c-IndGJ Λ. Moreover, (SuppW) ∩
M = U(H1 ∩M) and

W(uh) = ψα(u)θ(h), ∀u ∈ U, ∀h ∈ H1 ∩M.

It is the second part of Theorem D that really requires Theorem A and the
explicit realization in terms of Bessel functions. The first part of Theorem D
has also been obtained by Roberto Johnson [9], in the special case when π is
a Carayol representation.

Finally, in §7 we use our Whittaker functions to compute ε-factors of pairs
in the following situation. We fix a simple stratum as above and con-
sider two supercuspidal representations π1 = c-IndGJ Λ1 and π2 = c-IndGJ Λ2,
such that Λ1|H1 and Λ2|H1 are multiples of the same simple character θ.
Then, for i = 1, 2, we can write Λi|J ∼= κ ⊗ σi, where κ is a β-extension
(see [6] (5.2.1)) and σi is the lift of a cuspidal representation of J/J1 ∼=
GLr(kE), where kE is the residue field of E and r = dimE(V ).

One may show that, for i = 1, 2, we have Λi
∼= κ̃ ⊗ Σi, where κ̃ and Σi are

representations of J which restrict to κ and σi respectively. Moreover, we
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may think of Σi as a representation of K(A) ∩ B× ∼= E× GLr(oE) (where,

we recall, B is the centraliser of E). We set τi = c-IndB
×

K(B) Σi; then τi is a
supercuspidal level zero representation of B× ∼= GLr(E).

In Theorem 7.1 we relate ε(π × π̌2, s, ψF ) and ε(τ1 × τ̌2, s, ψE), where ψE is
an additive character of E with conductor pE which extends ψF . We obtain:

Theorem E.

ε(π1 × π̌2, s, ψF ) = ζωτ1(ν
−r)ωτ2(ν

r)q(s−1/2)rvE(ν)N/eε(τ1 × τ̌2, s, ψE),

where: ζ = ωτ2(−1)r−1ωπ2(−1)N−1; q = qF is the cardinality of kF ; vE is the
additive valuation on E with image Z; and ν = ν(θ, ψF , ψE) ∈ E×/(1 + pE)
is an invariant which we define in §6.

We prove this by computing both sides of the functional equation for the
epsilon factor, using the definition of Jacquet, Piatetskii-Shapiro, Shalika [8],
with the Whittaker functions of Theorem D. We are able to do the calculation
because the fact that the operator L in Theorem C defines a group action
imposes various identities on the Bessel function JΛ.

Theorem E implies:

Corollary F. Let χ : F× → C× be a tamely ramified quasi-character and
put χE = χ ◦ NE/F ; then

ε(π1χ× π̌2, s, ψF )

ε(π1 × π̌2, s, ψF )
= χ(NE/F (ν−r

2

))
ε(τ1χE × τ̌2, s, ψE)

ε(τ1 × τ̌2, s, ψE)
,

where ν = ν(θF , ψF , ψE).

We recover a result of Bushnell and Henniart [5], concerning the effect
on ε(π × π̌, s, ψF ) of twisting π by tamely ramified quasi-characters, when π
is totally wildly ramified, as a special case of the above Corollary. Moreover,
we show in §6.1 that the invariant ν behaves well under the tame lifting op-
eration for simple characters of Bushnell and Henniart [2], which implies [5]
Theorem 7.1.

We end the introduction with a brief summary of the contents of each section.
We begin in §1 with notation and some elementary results about nondegen-
erate characters and induced supercuspidal representations. In §2 we begin
the groundwork for the proof of Theorem A, proving a similar result for
a β-extension κ. In §3 we define the particular unipotent subgroup, and
the basis, used in the proof of Theorem A; this proof appears in §4, along
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with the proof of Proposition B. In §5, we apply the Theorem of Alperin
and James to define Bessel functions, and construct our explicit Whittaker
function from Theorem D. In §6, we define the numerical invariant ν which
appears in Theorem E. Finally, the proof of Theorem E, and its application
to twisting by tamely ramified quasi-characters, appears in §7.
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1 Notation and Preliminaries

Let F be a locally compact non-archimedean local field, with ring of in-
tegers oF , maximal ideal pF , and residue field kF = oF/pF with qF = pf

elements, p prime. We fix $F a uniformizing element of F and let vF denote
the additive valuation of F , normalised so that vF ($F ) = 1. We use similar
notation for any field extension of F .

Let V be an N -dimensional F -vector space, A = EndF (V ) and G = AutF (V )
so, after choosing a basis for V , we have

A ∼= MN(F ), G ∼= GLN(F ).

1.1 Unipotent subgroups and characters

The results of this section are stated without proof, since these proofs are
straightforward. One way to prove them would be to choose a suitable basis
for V with respect to which the unipotent subgroups considered consist of
matrices which are upper triangular.

We fix, once and for all, an additive character ψF : F → C which is trivial
on pF , non-trivial on oF . For any a ∈ A, we define a function ψa : A→ C by

ψa(x) = (ψF ◦ trA/F )(a(x− 1)), for x ∈ A,
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where trA/F denotes the matrix trace. We use the same notation for the
restriction of ψa to various subsets of A.

Let F be an F -flag in V ,

F : 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vs = V,

Let P = PF be the G-stabiliser of F , a parabolic subgroup of G, and let U =
UF be its unipotent radical. We also put

XF = {x ∈ A : xVi ⊆ Vi+1, 0 ≤ i ≤ s− 1},
X+
F = {x ∈ XF : xVi 6⊂ Vi, 0 ≤ i ≤ s− 1},

X−
F = {x ∈ XF : xVi ⊆ Vi, 0 ≤ i ≤ s− 1}.

Lemma 1.1. Let a ∈ A. The function ψa defines a linear character of U if
and only if a ∈ XF . Moreover, ψa is trivial on U if and only if a ∈ X−

F .

Now suppose that F is a maximal F -flag so that s = N and dimF Vi = i,
for 0 ≤ i ≤ N . A smooth linear character χ of U is said to be nondegenerate
if its G-normaliser is F×U . We can describe this more concretely by choosing
a basis v1, ..., vN for V such that Vi =

⊕i
j=1 Fvj, for 1 ≤ i ≤ N . Then U is

identified with the upper triangular unipotent matrices in GLN(F ) and the
smooth characters χ of U are given by

χ(u) = ψF

(
N−1∑
i=1

µiui,i+1

)
, for u = (uij) ∈ U,

where µi ∈ F , 1 ≤ i ≤ N − 1, are fixed scalars. It is easy to see that χ is
nondegenerate if and only if all µi 6= 0; or, equivalently, if and only if, for
all 1 ≤ j ≤ N − 1, there exists u(j) ∈ U with u

(j)
i,i+1 = 0, for i 6= j, such

that χ(u(j)) 6= 1.

Lemma 1.2. Let F be a maximal F -flag and a ∈ XF . Then ψa is nonde-
generate if and only if a ∈ X+

F .

1.2 Induced supercuspidals

Since the supercuspidal representations of G are all obtained by irreducible
induction from compact-mod-centre subgroups, the following Proposition
(which is mostly taken from [3] §1) will be useful.
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Proposition 1.3. Let K be an open, compact-mod-centre subgroup of G,
and suppose that ρ is a representation of K, such that π = c-IndGK ρ is an
irreducible supercuspidal representation of G. Let U be a maximal unipotent
subgroup of G, and let χ be a smooth character of U .

(i) If HomU∩K(ρ, χ) 6= 0 then χ is non-degenerate.

(ii) If χ is non-degenerate then there exists g ∈ G such that HomU∩Kg(χ, ρg) 6=
0.

(iii) If HomU∩K(χ, ρ) 6= 0 and HomU∩Kg(χ, ρg) 6= 0, for some g ∈ G, then
there exists u ∈ U such that Ku = Kg and ρu ∼= ρg.

Proof. (i) Let φ ∈ HomU∩K(ρ, χ) 6= 0 be such that φ 6= 0, and fix a Haar
measure du on U . Then this gives a non-zero Φ ∈ HomU(π, χ), by

Φ(f) =

∫
U

χ(u−1)φ(f(u))du, ∀f ∈ c-IndGK ρ.

If χ is degenerate then there exists a unipotent radical U ′ of some proper
parabolic subgroup of G, such that the restriction of χ to U ′ is trivial, but this
implies HomU ′(π,1) 6= 0. However this may not happen as π is supercuspidal.

Parts (ii) and (iii) follow from [3] Proposition 1.6 and (1.8).

2 A note on β-extensions

The main result of this section is Theorem 2.6, which asserts that the re-
striction of a β-extension κ to a certain subgroup of J is isomorphic to a
representation induced from a linear character. This result will be used
in §4. In section 2.1 we recall some results on Iwahori decompositions. We
will use the definitions and notations of [6] with little introduction.

Let [A, n, 0, β] be a principal simple stratum in A (see [6] (1.5.5)). In par-
ticular, A is a hereditary, principal oF -order in A, with Jacobson radical P,
and β ∈ P−n \P1−n is such that E = F [β] is a field with E× normalising A.
We denote by B the A-centraliser of E and put B = A ∩B.

Let L = {Lk : k ∈ Z} be the oF -lattice chain in V associated to A,
see [6] (1.1.2). Since E× normalises A we may consider L also as an oE-lattice
chain. Let e = e(B|oE) be the oE-period of L. We fix an E-basis {w1, . . . , wr}
of V , where r[E : F ] = N , such that

L0 = oEw1 + oEw2 + · · ·+ oEwr
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Li = oEw1 + · · ·+ oEw r
e
(e−i) + pEw r

e
(e−i)+1 + · · ·+ pEwr

for 0 < i < e. The choice of this basis identifies B with Mr(E) and B

with a subring of Mr(oE), which consists of block upper-triangular matrices
modulo pE, such that each block on the diagonal is of the size r

e
× r

e
.

Let F0 be the F -flag in V , given by

F0 : 0 ⊂ Ew1 ⊂ · · · ⊂ ⊕j
i=1Ewi ⊂ · · · ⊂ ⊕r

i=1Ewi = V.

Let P0 be the G-stabiliser of F0. Moreover, put Gi = AutF (Ewi), for 1 ≤
i ≤ r, and

M0 =
r∏
i=1

Gi,

a Levi component of the parabolic subgroup P0 of G. Let U0 be the unipotent
radical of P0, so that P0 = M0U0. We also denote by U−0 the unipotent radical
of the parabolic subgroup opposite to P0 relative to M0.

We note that F0 is also a maximal E-flag in V . This yields:

Lemma 2.1. Let F be an F -flag refining F0 and let U be the unipotent
radical of the G-stabiliser of F , then

U ∩B× = U0 ∩B×.

2.1 Iwahori decompositions

Put J = J(β,A), J1 = J1(β,A) and H1 = H1(β,A) (see [6] §3 for the
definitions of these groups). By [2] Example 10.9, J1 and H1 have Iwahori
decompositions with respect to (M0, P0):

J1 = (J1 ∩ U−0 )(J1 ∩M0)(J
1 ∩ U0)

H1 = (H1 ∩ U−0 )(H1 ∩M0)(H
1 ∩ U0)

It will also be useful for us to form the group

(J1 ∩ P0)H
1 = (H1 ∩ U−0 )(J1 ∩M0)(J

1 ∩ U0).

Now let F be a maximal F -flag refining F0 and U the corresponding unipo-
tent subgroup. We want to understand the group (J ∩U)H1. For 1 ≤ i ≤ r,
let Fi be the maximal F -flag in Ewi given by intersection of F with Ewi.
Let Ui be the unipotent radical of the Gi-stabiliser of Fi; then Ui = U ∩ Gi

and

U ∩M0 =
r∏
i=1

Ui.
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For 1 ≤ i ≤ r, we denote by Ai the hereditary oE-order in Ai = EndF (Ewi)
given by the lattice chain Li = {Lk ∩ Ewi : k ∈ Z}.

Lemma 2.2. (J1∩U)H1 has an Iwahori decomposition with respect (M0, P0)
and

((J1 ∩ U)H1) ∩M0 =
r∏
i=1

(J1(β,Ai) ∩ Ui)H1(β,Ai).

Proof. Since J1 and U have Iwahori decompositions with respect to (M0, P0),
so does J1 ∩ U . Since this group normalises H1, which also has an Iwahori
decomposition, we see that (J1 ∩ U)H1 has an Iwahori decomposition with
respect (M0, P0) and, in particular,

((J1 ∩ U)H1) ∩M0 = (J1 ∩ U ∩M0)(H
1 ∩M0).

The lemma now follows from the decompositions of J1 ∩M0 and H1 ∩M0

(see [2] §10) and the decompositions above.

Since dimE(Ewi) = 1, the algebra E = F [β] is a maximal subfield of Ai.
We will use the lemma above as a reduction step to the case when E is a
maximal subfield of A.

Lemma 2.3. Let U ′ be a unipotent radical of some parabolic subgroup of G,
then the image of

U ′ ∩ J → J/J1 ∼= U(B)/U1(B)

is contained in the unipotent radical of some Borel subgroup of U(B)/U1(B).

Corollary 2.4. We have

J ∩ U = (U(B) ∩ U0)(J
1 ∩ U).

Moreover, (J ∩U)H1 has an Iwahori decomposition with respect to (M0, P0).

Proof. The E-basis {w1, . . . , wr} of V identifies B× with GLr(E) and U(B)∩
U0 with a subgroup of unipotent upper-triangular matrices with entries in oE.
This implies that the image of U(B) ∩ U0 in U(B)/U1(B) is the unipotent
radical of some Borel subgroup of U(B)/U1(B). Lemma 2.3 implies that

(J ∩ U)J1 = (U(B) ∩ U0)J
1.

Intersecting both sides with U gives the first part of the lemma. The second
follows immediately from Lemma 2.2
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2.2 β-extensions

Let C(A, 0, β) be the set of simple characters of H1, in the sense of [6] (3.2.3).
Let θ ∈ C(A, 0, β); then θ is a linear character and, there exists a unique
irreducible representation η of J1 containing θ, [6] (5.1.1).

Lemma 2.5. Let kθ be the nondegenerate alternating form on J1/H1 given
by

kθ(x, y) = θ([x, y]), for x, y ∈ J1,

introduced in [6] §3.4. Let U be a subgroup of J1 containing H1 and let U
be the image of U in J1/H1. Suppose there exists a linear character χ of U
such that χ|H1 = θ. Then the following are equivalent:

(i) χ occurs in η with multiplicity one;

(ii) U is a maximal totally isotropic subspace of J1/H1 for the form kθ;

(iii) η ∼= IndJ
1

U χ.

Proof. Since H1 is normal in J1 and J1/H1 is abelian (by [6] (3.1.15)), U is
a normal subgroup of J1. Moreover, since χ|H1 = θ and J1/H1 is abelian,
the commutator subgroup of U will lie in the kernel of θ and hence U is a
totally isotropic subspace of J1/H1 for the form kθ.

(i)⇒(ii) Let Umax be a maximal totally isotropic subspace of J1/H1 con-
taining U and let Umax be its inverse image in J1, so that Umax/Ker(θ) is a
maximal abelian subgroup of J1/Ker(θ). The character χ admits extension
to a linear character of Umax in exactly (Umax : U) ways and every one of
these extensions occurs in η. Then χ occurs in η with multiplicity at least
this index so that Umax = U .

(ii)⇒(iii) Suppose that j ∈ J1 intertwines χ with itself. Let U ′ be the
subgroup of J1 generated by j and U and let U ′ be the image of U ′ in J1/H1.
A typical element of U ′ is a coset jaxH1, where a is an integer and x ∈ U .
Since

χ([jax, jby]) = χ(jaxj−a)χ(ja+byx−1j−a−b)χ(jby−1j−b) = χ([x, y]) = 1

for all x, y ∈ U , the subspace U ′ is totally isotropic for the form kθ. Hence U ′ =
U and j ∈ U . In particular, IndJ

1

U χ is irreducible. Since η is the unique ir-
reducible representation of J1 containing θ and χ contains θ, we have η ∼=
IndJ

1

U χ.

(iii)⇒(i) Since η is irreducible, this is just Frobenius reciprocity.

12



Now let κ be a representation of J , such that κ|J1
∼= η and κ is intertwined

by the whole of B×
β , that is, a β-extension of η in the sense of [6] (5.2.1).

Theorem 2.6. Let [A, n, 0, β] be a simple stratum. Let θ ∈ C(A, 0, β) and
let κ be a β-extension of η as above. Let F be a maximal F -flag in V , let U be
the unipotent radical of the G-stabiliser of F and let χ be a smooth character
of U , such that

(i) F0 ⊆ F ,

(ii) θ|U∩H1 = χ|U∩H1 ,

(iii) χ is trivial on U0.

Let Θ be the linear character of (J ∩ U)H1 defined by

Θ(uh) = χ(u)θ(h), ∀u ∈ U ∩ J, ∀h ∈ H1.

Then
κ|(J∩U)J1

∼= Ind
(J∩U)J1

(J∩U)H1 Θ.

Before proving Theorem 2.6, we remark that it is not clear that there exist a
flag F and a character χ satisfying the hypotheses. This would follow from
[3] Lemma 2.10, if we could fix the proof of that result. Instead, we will
have to wait for Theorem 3.3 to see that there are indeed such a flag and
character.

Proof. We begin by proving

IndJ
1

(J1∩U)H1 Ψ ∼= η. (∗)

Step 1. We will prove (∗) in the special case when E = F [β] is a maximal
subfield of A.

Suppose that E is a maximal subfield of A so that B = E and J = o×EJ
1.

The pair (J, κ) is a simple type in the sense of [6] (5.5.10) and, since B = oE,
we have e(B|oE) = 1. Now [6] (6.2.2) and (6.2.3) imply that there exists
a representation Λ of E×J such that Λ|J ∼= κ and π = c-IndGE×J Λ is an
irreducible supercuspidal representation of G. If u ∈ U , then detA(u) = 1
and this implies that

(E×J) ∩ U = J ∩ U.
Since dimE V = 1 the unipotent radical U0 is trivial and hence Corollary 2.4
implies that

J ∩ U = J1 ∩ U.

13



Hence Λ|(E×J)∩U ∼= η|J1∩U . Since η is the unique irreducible representa-
tion containing θ and Θ|H1 = θ, we obtain that Θ occurs in η|(J1∩U)H1 .
Since Θ|U∩J = χ|U∩J , we obtain

1 ≤ dim Hom(J1∩U)H1(Θ, η) ≤ dim HomJ1∩U(χ, η)

= dim Hom(E×J1)∩U(χ,Λ) ≤ 1,

where the last inequality follows from [3] Proposition 1.6(iii). Hence

dim Hom(J1∩U)H1(Θ, η) = 1.

The equivalence (∗) now follows immediately from Lemma 2.5 applied to U =
(J1 ∩ U)H1 and χ = Θ.

Step 2. We will prove (∗) in the general case by reducing to Step 1.

For 1 ≤ j ≤ r we have an equality of sets:

{Li ∩ Ewj : Li ∈ L} = {pkEwj : k ∈ Z}.

This follows from the explicit description of lattices in L, in terms of the E-
basis {w1, . . . wr} of V . Hence [2] Example 10.9 implies that the charac-
ter θ is trivial on its restrictions to H1 ∩ U0 and H1 ∩ U−0 . Moreover,
by [2] page 167, the restriction of θ toH1 ∩Gi = H1(β,Ai) is the simple char-
acter θi in C(Ai, 0, β) corresponding to θ under the canonical bijection τA,Ai,β

of [6] §3.6, where Ai is the hereditary oF -order corresponding to the lattice
chain {pkEwi : k ∈ Z} in Ewi. In particular, [2] Example 10.9 implies that
the analogue of [6] (7.2.3) holds in our situation:

(i) the subspaces (J1 ∩U0)/(H
1 ∩U0) and (J1 ∩U−0 )/(H1 ∩U−0 ) of J1/H1

are both totally isotropic for the form kθ, and orthogonal to the sub-
space (J1 ∩M0)/(H

1 ∩M0);

(ii) the restriction of kθ to the group

(J1 ∩M0)/(H
1 ∩M0) =

r∏
i=1

J1(β,Ai)/H
1(β,Ai)

is the orthogonal sum of the pairings kθi
;

(iii) we have an orthogonal sum decomposition

J1

H1
=
J1 ∩M0

H1 ∩M0

⊥
(
J1 ∩ U−0
H1 ∩ U−0

× J1 ∩ U0

H1 ∩ U0

)
.

In particular, the restriction of kθ to the group (J1∩U−0 )/(H1∩U−0 )×
(J1 ∩ U0)/(H

1 ∩ U0) is non-degenerate.

14



Let ((J1 ∩ U)H1) ∩M0 be the image of the natural homomorphism

((J1 ∩ U)H1) ∩M0 → (J1 ∩M0)/(H
1 ∩M0).

Lemma 2.2 and (ii) above imply that

((J1 ∩ U)H1) ∩M0 =
r∏
i=1

J1(β,Ai) ∩ Ui

where J1(β,Ai) ∩ Ui is the image of the natural homomorphism

J1(β,Ai) ∩ Ui → J1(β,Ai)/H
1(β,Ai).

Since E is a maximal subfield of Ai and we have proved (∗) when E is max-
imal, J1(β,Ai) ∩ Ui is a maximal isotropic subspace in J1(β,Ai)/H

1(β,Ai)
for the form kθi

.

Now (ii) implies that ((J1 ∩ U)H1) ∩M0 is a maximal isotropic subspace
of (J1 ∩ M0)/(H

1 ∩ M0) for kθ. Moreover, (i) and (iii) imply that (J1 ∩
U0)/(H

1 ∩ U0) is a maximal isotropic subspace of (J1 ∩ U−0 )/(H1 ∩ U−0 ) ×
(J1 ∩ U0)/(H

1 ∩ U0).

It follows from the orthogonal sum decomposition in (iii) that

((J1 ∩ U)H1) ∩M0 × (J1 ∩ U0)/(H
1 ∩ U0)

is a maximal isotropic subspace in J1/H1 for the form kθ.

Since (J1∩U)H1 contains J1∩U0, the image of (J1∩U)H1 in J1/H1 contains
a maximal totally isotropic subspace of J1/H1 described above. Since there
exists a linear character Θ of (J1∩U)H1 extending θ, we see that this image
is itself isotropic and hence must be a maximal totally isotropic subspace.
The equivalence (∗) now follows from Lemma 2.5.

Step 3. Finally, we will deduce Theorem 2.6 from (∗) by examining the
construction of κ in [6] §5.

Let Lm be the oE-lattice chain in V given by

Lm = {$k
E(oEw1 + · · ·+ oEwj + pEwj+1 + · · ·+ pEwr) : k ∈ Z, 1 ≤ j ≤ r}

Let Bm = End0
oE

(Lm) so that Bm is a minimal oE-order in B. Similarly,

let A = End0
oF

(Lm) so that Am is the unique hereditary oF -order in A nor-
malised by E× such that Am ∩ B = Bm. Moreover, [Am, nr/e, 0, β], where
e = e(B|oE), is a simple stratum in A and the groups

H1
m = H1(β,Am), J1

m = J1(β,Am)
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have Iwahori decompositions with respect to (M0, P0).

We denote by θm the simple character in C(Am, 0, β) corresponding to θ via
the canonical bijection τA,Am,β of [6] §3.6. Then θm is trivial on H1

m ∩ U0

and H1
m ∩ U−0 (see [2] (10.9)). We also denote by ηm the unique irreducible

representation of J1
m which contains θm.

Since L ⊆ Lm we have Am ⊆ A and Bm ⊆ B. Moreover,

U(B) ∩ U0 = U(Bm) ∩ U0

since with respect to the E-basis {w1, . . . , wr} of V , both groups are identified
with unipotent upper-triangular matrices, with entries in oE.

We define
η̃ := Ind

(J∩U)J1

(J∩U)H1 Θ.

Note first that η̃|J1 = IndJ
1

(J1∩U)H1 Θ ∼= η so η̃ is certainly irreducible. More-
over, [6] (5.1.1) implies that the U1(Am)-intertwining of η̃ is contained in

IU1(Am)(η) = (J1B×J1) ∩U1(Am) = U1(Bm)J1 = (J ∩ U)J1

where the last equality follows from Corollary 2.4. Hence Ind
U1(Am)

(J∩U)J1 η̃ is
irreducible.

Now we claim that
Ind

U1(Am)

(J∩U)J1 η̃ ∼= Ind
U1(Am)

J1
m

ηm.

It is enough to show that

HomU1(Am)

(
Ind

U1(Am)

(J∩U)J1 η̃, Ind
U1(Am)

H1
m

θm

)
6= 0,

since the latter is a multiple of Ind
U1(Am)

J1
m

ηm, which is irreducible by the same
argument as above. By Mackey Theory, it is enough to show that

Hom((J∩U)H1)∩H1
m
(Θ, θm) 6= 0.

But ((J∩U)H1)∩H1
m has an Iwahori decomposition with respect to (M0, P0),

since both (J∩U)H1 and H1
m do. Moreover, Θ is trivial on ((J∩U)H1)∩U−0 ,

since ((J∩U)H1)∩U−0 = H1∩U−0 and θ is trivial onH1∩U−0 . Since χ is trivial
on U0 we get that Θ is trivial on ((J ∩U)H1)∩U0. Hence both Θ and θm are
trivial on the subgroups ((J ∩U)H1)∩H1

m∩U−0 and ((J ∩U)H1)∩H1
m∩U0.

Finally, by [2] §10,

H1
m ∩M0 =

r∏
i=1

H1(β,Ai) = H1 ∩M0
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so
(J ∩ U)H1 ∩H1

m ∩M0 = H1 ∩M0 ⊂ H1 ∩H1
m,

where Θ = θ and θm agree by [6] (3.6.1).

In particular, we have shown that, upto equivalence, η̃ satisfies the conditions
of the representation (also denoted η̃) in [6] (5.1.15). Since these conditions
uniquely determine η̃, we conclude that our η̃ is, up to equivalence, the same
one used in the construction of κ in [6] (5.2.4) and hence

κ|(J∩U)J1
∼= η̃ ∼= Ind

(J∩U)J1

(J∩U)H1 Θ

as required.

3 A particular unipotent subgroup

The main result of this section says that we may choose a maximal F -flag F
in V and a character χ of the G-stabiliser U of F which satisfy the hypothe-
ses of Theorem 2.6 and, moreover, such that we can control the restriction
of certain characters of U to U ∩ U(B) (see Theorem 3.3 for details). We
will continue with the notation of the previous section but, since we will con-
sider only supercuspidal representations in the applications, we will assume
that e(B|oE) = 1.

3.1 An F -basis of E

Although we would like to work in a basis-free way, we are forced to choose
one, since the zeta function in §7, whose functional equation defines ε-factors
of pairs, is defined on matrices. In this subsection we consider the special
case when E is maximal, so we may identify V = E. We show that there
exists an F -basis B of E with ’nice’ properties. The basis is chosen to ease
the pain of calculations in §7, see also Corollary 3.4. The conditions imposed
on B imply certain uniqueness result, which will be used to define a numerical
invariant in §6.

Let F = {Vi : 1 ≤ i ≤ d}, where d = [E : F ], be a maximal F -flag in E,
let U be the unipotent radical of the AutF (E)-stabiliser of F , and let χ be
a smooth, non-degenerate character of U . Let ψE be an additive character
of E, trivial on pE, and such that

ψE(x) = ψF (x), ∀x ∈ F.

17



Definition 3.1. An F -basis B = {x1, . . . , xd} of E is (U, χ, ψE)-balanced if
the following hold:

(i) Vi = Fx1 + · · ·+ Fxi, 1 ≤ i ≤ d;

(ii) there exists functions ai : Z → Z, for 1 ≤ i ≤ d such that

pkE =
d∑
i=1

p
ai(k)
F xi, ∀k ∈ Z;

(iii) if u ∈ U , and (uij) is the matrix of u with respect to B, then

χ(u) = ψF (
d−1∑
i=1

ui,i+1);

(iv) if we embed naturally E ↪→ EndF (E) and, for ξ ∈ E, we let (ξij) be the
matrix of ξ with respect to B, then

ψE(ξ) = ψF (ξdd), ∀ξ ∈ E.

Proposition 3.2. There exists an (U, χ, ψE)-balanced basis. Moreover, if B =
{x1, . . . xd} is (U, χ, ψE)-balanced and B′ = {y1, . . . , yd} is a basis of E over F
which satisfies Definition 3.1 (i),(iii) and (iv), then xdx

−1
1 = ydy

−1
1 .

Proof. Proposition II-3 in [13] applied to F and {piE : i ∈ Z} implies that
there exists an F -basis B = {x1, . . . , xd} of E which satisfies (i) and (ii).
Since χ is non-degenerate, after replacing xi by some λixi, where λi ∈ F×,
we may ensure that B satisfies (iii).

For ξ ∈ E, let (ξij) be a matrix of ξ with respect to B. Consider the
function φB : E → C× given by φB(ξ) = ψF (ξdd). It is clear that φB is
an additive character. If x ∈ F , then φB(x) = ψF (x), hence φB is non-

trivial on oE. Since xd ∈ p
vE(xd)
E and xd 6∈ p

vE(xd)+1
E we have ad(vE(xd)) = 0

and ad(vE(xd) + 1) = 1, hence if ξ ∈ pE, then ξdd ∈ pF , and so φB is trivial
on pE. Since ψE and φB have the same conductor, there exists α ∈ o×E, such
that ψE(ξ) = φB(αξ), for all ξ ∈ E.

Set A(E) = EndF (E), let A(E) be the hereditary order corresponding to the
lattice chain L(E) = {piE : i ∈ Z}, and, for 1 ≤ i, j ≤ d, let 1ij ∈ A(E) be
given by 1ijxk = δikxj, where δik is the Kronecker delta. Since B satisfies (ii)
we have 1ij ∈ A.
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Set u = 1 + (α− 1)1dd ∈ A(E). We have

ψF (λ) = ψE(λ) = φB(αλ) = ψF (αddλ), ∀λ ∈ F.

Hence αdd = 1 and so u ∈ U ∩ A(E). So the basis uB = {ux1, . . . , uxd} also
satisfies (i),(ii) and (iii). Now

φuB(ξ) = φB(u
−1ξu) = ψF

(
d∑
i=1

ξdiαid

)
= ψF ((ξα)dd) = φB(ξα) = ψE(ξ).

Hence uB is (U, χ, ψE)-balanced.

Suppose that B = {x1, . . . xd} is (U, χ, ψE)-balanced and that B′ = {y1, . . . , yd}
satisfies Definition 3.1(i),(iii) and (iv). After translating by some λ ∈ F×,
we may assume that x1 = y1. Parts (i),(iii) imply that there exists u ∈ U
such that B′ = uB. Let (uij) be the matrix of u with respect to B. Then, for
all ξ ∈ E, we have

ψE(ξ) = φuB(ξ) = ψF
(
(u−1ξu)dd

)
= ψF

(
d∑
i=1

ξdiuid

)
= ψA

(
ξ

(
d∑
i=1

uid1di

))
.

where ψA = ψF ◦ trA(E)/F . Moreover, 1id = xix
−1
d 1dd so

ψE(ξ) = ψA

(
ξ

(
d∑
i=1

uidxix
−1
d

)
1dd

)
.

By [6] (1.3.4) there exists an (E,E)-bimodule homomorphism s : A→ E (a
tame corestriction), such that

ψA(ξa) = φB(ξs(a)), ∀ξ ∈ E, ∀a ∈ A.

Since φB(ξ) = ψF (ξdd) = ψA(ξ1dd) = φB(ξs(1dd)), for all ξ ∈ E, we obtain
that s(1dd) = 1. Hence we get

ψE(ξ) = φB

(
ξ

(
d∑
i=1

uidxix
−1
d

))
= ψE

(
ξ

(
d∑
i=1

uidxix
−1
d

))
.

Thus xd =
∑d

i=1 uidxi, which implies that uid = 0, if i 6= d. In particular, we
get yd = uxd = xd.
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3.2 A choice of maximal flag

Let [A, n, 0, β] be a simple stratum, such that e(B|oE) = 1. Let θ ∈ C(A, 0, β)
and let F0 be a maximal E-stable flag in V , U0 the unipotent radical of the G-
stabiliser of F0.

Theorem 3.3. There exist a maximal F -flag F in V , a smooth character χ
of the unipotent radical U = UF and an element b ∈ XF ∩ A , such that the
following hold:

(i) F0 ⊆ F ,

(ii) θ|U∩H1 = χ|U∩H1 ,

(iii) χ is trivial on U0,

(iv) the character

ψb : (U(B) ∩ U)/(U1(B) ∩ U) → C×, u(U1(B) ∩ U) 7→ ψb(u)

defines a non-degenerate character of a maximal unipotent subgroup
of U(B)/U1(B).

Proof. Let us consider first, as in Step 1 of the proof of Theorem 2.6 the
case when E is a maximal subfield of A. We identify V = E and A = A(E)
is the hereditary order associated to the lattice chain L(E) = {pkE : k ∈
Z}. The parts (i),(iii) and (iv) are empty in this case since F0 = {0 ⊆
V }, U0 = {1}, and U(B) = o×E does not contain non-trivial unipotent el-
ements, and so U(B) ∩ U = {1}. Consider the supercuspidal representa-
tion π = c-IndGE×J Λ, as in Step 1 of the proof of Theorem 2.6. According
to [3] Proposition 1.6(i), there exist a maximal F -flag F in E, and a smooth
character χ of the unipotent radical U of the G-stabiliser of F such that

HomU∩(E×J)(χ,Λ) 6= 0.

Since Λ|H1 = (dim Λ)θ, we obtain

θ|U∩H1 = χ|U∩H1 .

Hence the theorem holds for E maximal. Note that, since E× normalises H1

and θ = θx, for all x ∈ E×, we may replace the pair (U, χ) by a conju-
gate (Ux, χx), where x ∈ E×.

Now let us consider the general case. Put d = [E : F ].

20



Construction of F and χ. According to [13] Proposition II-3 we may choose
an E-basis BE = {w1, . . . , wr} of V such that

F0 = {
j∑
i=1

Ewi : 1 ≤ j ≤ r}, and Lk = pkEw1 + · · ·+ pkEwr, ∀k ∈ Z.

Let P0 be the G-stabiliser of F0. Moreover, put Gi = AutF (Ewi), for 1 ≤
i ≤ r, and

M0 =
r∏
i=1

Gi,

a Levi component of the parabolic subgroup P0 of G. Then U0 is the unipo-
tent radical of P0, so that P0 = M0U0. We are in the situation considered in
Step 2 of the proof of Theorem 2.6. In particular,

H1(β,A) ∩M0 =
r∏
i=1

H1(β,Ai) ∼=
r∏
i=1

H1(β,A(E)),

where the last isomorphism is induced by identifying Ewi with E. Moreover,
according to [2] Corollary 10.16, there exists θF ∈ C(A(E), 0, β) such that

θ|H1(β,A)∩M0
= θF ⊗ · · · ⊗ θF

via the above identification. Now, by the case when E is maximal considered
above, we know that there exist a maximal F -flag F1 in E, and a smooth
character χ1 : UF1 → C× such that

χ1(u) = θF (u), ∀u ∈ UF1 ∩H1(β,A(E)),

where UF1 is the unipotent radical of AutF (E)-stabiliser of F1. Proposi-
tion 1.3 (i) implies that χ1 is non-degenerate. Choose an additive charac-
ter ψE of E, such that ψE(x) = ψF (x), for all x ∈ F , and ψE trivial on pE.
Proposition 3.2 gives a (UF1 , χ1, ψE)-balanced F -basis B1 = {x11, . . . x1d}
of E. Set y = x1dx

−1
11 and for 2 ≤ j ≤ r, let Bj = {xj1, . . . , xjd} be the basis

of E over F given by

xji = yj−1x1i, 1 ≤ i ≤ d.

Note that, in particular, xj1 = xj−1,d, for 2 ≤ j ≤ r.

Let Fj = {
∑k

i=1 Fxji : 1 ≤ k ≤ d}; then Fj = yFj−1 and hence UFj
= Uy

Fj−1

so we may define a character χj : UFj
→ C× by χj = χyj−1. Since y ∈ E×

normalises θF , we obtain that

χj(u) = θF (u), ∀u ∈ UFj
∩H1(β,A(E)), 1 ≤ j ≤ r.
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Let F = {Vk : 1 ≤ k ≤ N} be the maximal F -flag in V given by

V(i−1)d+j = Fx11w1 + · · ·+ Fxjiwi, 1 ≤ i ≤ r, 1 ≤ j ≤ d,

and let UF be the unipotent radical of the G-stabiliser of F . Since UF/U0
∼=

UF ∩M0
∼=
∏r

i=1 Ui we may define χ : UF → C× by

χ|UF∩M0 = χ1 ⊗ · · · ⊗ χr, χ|U0 = 1.

The Iwahori decomposition implies that

UF ∩H1(β,A) =
(
UF ∩M0 ∩H1(β,A)

)
(H1(β,A) ∩ U0)

∼=
( r∏
i=1

UFi
∩H1(β,A(E))

)
(H1(β,A) ∩ U0)

Since θ is trivial on U0 ∩H1(β,A), it follows that

θ(u) = χ(u), ∀u ∈ U ∩H1(β,A).

Construction of b. For µ = (µ1, ..., µr−1) ∈ or−1
F , we define b = b(µ) ∈ XF by

b(xjiwj) =

{
µjxj+1,1wj+1, if i = d, 1 ≤ j ≤ r − 1;

0 otherwise.

We claim that such b also lies in A. For 1 ≤ j ≤ r we have constructed
a (UFj

, χj, ψE)-balanced basis Bj = {xj1, . . . , xjd}, of E over F , so there
exist functions aji : Z → Z, for 1 ≤ i ≤ d, such that

pkE =
d∑
i=1

p
aji(k)
F xji, ∀k ∈ Z.

Hence,

Lk =
r∑
j=1

pkEwj =
r∑
j=1

d∑
i=1

p
aji(k)
F xjiwj, ∀k ∈ Z.

Since, by construction, xjd = xj+1,1, for 1 ≤ j ≤ r − 1, we have ajd(k) =
aj+1,1(k) for all k ∈ Z. Hence

bLk =
r−1∑
j=1

µjp
ajd(k)
F xj+1,1wj+1 ⊆ Lk, ∀k ∈ Z
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which implies that b ∈ A.

Since b ∈ XF , Lemma 1.1 implies that ψb defines a linear character of U .
Since b ∈ A we have ψb(u) = 1 for all u ∈ U1(A). Hence the character ψb is
well defined. Moreover, (U(B)∩U)/(U1(B)∩U) is the unipotent radical of
the AutkE

(L0/L1)-stabiliser of the flag {
∑i

j=1 kE(wj +L1) : 0 ≤ i ≤ r}. This
follows from Lemma 2.1.

Let µ = (1, ..., 1) and let b = b(µ) as above. (Indeed, any µ ∈ (o×F )r−1 would
do.) We claim that ψb is non-degenerate. For 2 ≤ k ≤ r and ξ ∈ E we
define uξ,k ∈ U ∩B× = U0 ∩B× by

uξ,k(wj) =

{
wk + ξwk−1, if k = j;

wj, otherwise.

We will compute (χψb)(uξ,k) = ψb(uξ,k). Since xji ∈ E, it commutes with uξ,k
and hence

(uξ,k − 1)(xjiwj) =

{
ξxkiwk−1 if j = k ,
0 otherwise.

Since Bk−1 is an F -basis of E we may write uniquely

ξxki =
d∑
j=1

λ
(k)
ji xk−1,j

where λ
(k)
ji ∈ F . Then

(b(uξ,k − 1))(xjiwj) =

{
λ

(k)
di xk1wk if j = k ,

0 otherwise.

Hence,
trA/F (b(uk − 1)) = λ

(k)
d1 .

Since, by construction, xk1 = xk−1,d, we have λ
(k)
d1 = ξ

(k)
dd , where (ξ

(k)
ij )

is the matrix of ξ ∈ EndF (E) with respect to Bk−1. However, since Bk
is (UFk

, χk, ψE)-balanced

ψb(uξ,k) = ψF (ξ
(k)
dd ) = ψE(ξ).

Now, ψE has conductor pE, and so ψb is non-degenerate.

We record the following corollary to the proof of the theorem.
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Corollary 3.4. Fix an additive character ψE : E → C× such that ψE(x) =
ψF (x), for all x ∈ F and ψE is trivial on pE. Choose an E-basis BE =
{w1, . . . , wr} of V such that

F0 = {
j∑
i=1

Ewi : 1 ≤ j ≤ r}, and Lk = pkEw1 + · · ·+ pkEwr, ∀k ∈ Z.

Let F , χ and ψb be as in Theorem 3.3. There exists a basis {x1, . . . , xd}
of E over F , satisfying Definition 3.1(iv) with respect to ψF and ψE, such
that x1 = 1 and such that, if we putt

vd(i−1)+j = xi−1
d xjwi, 1 ≤ i ≤ r, 1 ≤ j ≤ d,

then the set BF = {v1, . . . , vN} is an F -basis of V with the following proper-
ties:

(i) F = {
∑j

i=1 Fvi : 1 ≤ j ≤ N};

(ii) there exist functions ai : Z → Z, for 1 ≤ i ≤ N such that

Lk =
N∑
i=1

p
ai(k)
F vi, ∀k ∈ Z;

(iii) if u ∈ U has matrix (uij) with respect to BF , then

(χψb)(u) = ψF (
N−1∑
i=1

ui,i+1);

(iv) if u ∈ U ∩B× has matrix (uij) with respect to BE, then

(χψb)(u) = ψE(
r−1∑
i=1

ui,i+1).

If we put β = 0, so that E = F , oE = oF and r = N then the proof of
Theorem 3.3 formally goes through with F = F0, Bj = {1}, for 1 ≤ j ≤ N ,
and b = b(µ), for any µ ∈ (o×F )N−1. We obtain a ‘level zero version’ of
Theorem 3.3:

Corollary 3.5. Let A be a maximal oF -order in A. Then there exist a
maximal F -flag F in V and an element b ∈ XF ∩ A such that

ψb : (U(A) ∩ U)/(U1(A) ∩ U) → C×, u(U1(A) ∩ U) 7→ ψb(u)

defines a non-degenerate character of a maximal unipotent subgroup of the
group U(A)/U1(A).
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4 Supercuspidal representations

Let π be an irreducible supercuspidal representation of G. By [6] §6, π is
compactly induced:

π ∼= c-IndGJ Λ,

from a (rather special) open compact-mod-centre subgroup J of G. More
precisely, J has a unique maximal compact open subgroup J and if we
put λ := Λ|J then (J, λ) is a maximal simple type in the sense of [6] §6.

Definition 4.1. The pair (J, λ) is a maximal simple type if one of the
following holds:

(a) J = J(β,A) is a subgroup associated to a simple stratum [A, n, 0, β],
such that if we write E = F [β] and B = EndE(V ) then B = A ∩ B a
maximal oE-order in B. Moreover, there exists a simple character θ ∈
C(A, 0, β, ψF ) such that

λ ∼= κ⊗ σ,

where κ is a β-extension of the unique irreducible representation η
of J1 = J1(β,A), which contains θ, and σ is the inflation to J of a
cuspidal representation of J/J1 ∼= U(B)/U1(B) ∼= GLr(kE).

(b) (J, λ) = (U(A), σ), where A is a maximal hereditary oF -order in A
and σ is an inflation of a cuspidal representation of U(A)/U1(A) ∼=
GLN(kF ).

In case (a), J = E×J , and in case (b), J = F×U(A). In practice we will
treat (b) as a special case of (a), with β = 0, E = F , B = A, J1 = H1 =
U1(A) and θ, η, κ all trivial. We will refer to (b) as the level zero case.

We are going to describe the main result of this section. Let F = {Vi : 1 ≤
i ≤ N} be any maximal F -flag in V , let U be the unipotent radical of the G-
stabiliser of F , and let ψα : U → C× be any non-degenerate character of U .
Let π be a supercuspidal representation of G. We know by [3] Proposition 1.6
that there exists (J,Λ) as above, such that

π ∼= c-IndGJ Λ, HomU∩J(ψα,Λ) 6= 0.

Moreover we know by Proposition 1.3 that the above properties determine
such a pair (J,Λ) up to conjugation by u ∈ U . Since Λ|H1 = (dim Λ)θ, we
obtain that

θ(u) = ψα(u), ∀u ∈ U ∩H1.

Since J normalises H1 and intertwines θ, we may define:
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Definition 4.2. Let Ψα : (J ∩ U)H1 → C× be the character given by

Ψα(uh) = ψα(u)θ(h), ∀u ∈ J ∩ U, ∀h ∈ H1.

We also define the following subgroups:

Definition 4.3. Set

MF = {g ∈ G : (g − 1)V ⊆ VN−1}, MA = (MF ∩U(A))U1(A),

and

GF = {g ∈ G : gv1 = v1, ∀v1 ∈ V1}, GA = (GF ∩U(A))U1(A).

Let K(A) = {g ∈ G : g−1Ag = A} be the G-normaliser of A and let ρ be the
representation of K(A) given by

ρ = Ind
K(A)
J Λ.

The main result of this Section is the following Theorem.

Theorem 4.4. (i) The restriction Λ|MA∩J is an irreducible representation
of MA ∩ J . Moreover,

Λ|MA∩J
∼= IndMA∩J

(J∩U)H1 Ψα.

(ii) The restriction ρ|MA
is an irreducible representation of MA. Moreover,

ρ|MA
∼= IndMA

(J∩U)H1 Ψα.

Further, both (i) and (ii) hold if we replace MA with GA.

The strategy is to show that Theorem 4.4 holds for a particular choice of U
and ψα, constructed from Theorem 3.3, and then show that the general result
may be obtained by conjugating by some g ∈ J. Before proceeding with the
proof we note that Ψα occurs in Λ with multiplicity 1, since ψα occurs in Λ
with multiplicity 1 and the proof of [3] Lemma 3.1 implies:

Corollary 4.5. The character Ψα occurs in π with multiplicity 1.

We note that the level 0 case can be formally recovered from the general
case with β = 0 and θ the trivial character, and is a well known result of
Gel′fand [7].
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4.1 Some decompositions

We will need some decompositions of G, and also of other general linear
groups, so we state the following Theorem for a general field F.

Theorem 4.6. Let F be any field, let V be an N-dimensional F-vector space,
set G = AutF(V). Let K be an extension of F of degree N and suppose that
we are given an embedding of algebras ι : K ↪→ EndF(V). Then the following
hold:

(i) Let v ∈ V, v 6= 0, and put Gv = {g ∈ G : gv = v}; then every g ∈ G
can be uniquely decomposed as

g = xh, x ∈ ι(K×), h ∈ Gv;

(ii) Let V′ ⊂ V be an F-subspace of V of dimension N − 1 and set M =
{g ∈ G : (g− 1)V ⊆ V′}; then every g ∈ G can be uniquely decomposed
as

g = xh, x ∈ ι(K×), h ∈M.

Proof. We can view V as a K-vector space, via ι. Since, [K : F] = dimF V,
we obtain dimK V = 1. Hence K× acts transitively on the set of non-zero
vectors in V and that G = ι(K×)Gv. If x ∈ Gv then it has eigenvalue 1, and
so ι(K×) ∩ Gv = {1}. This establishes Part (i).

Choose a basis B = {v1, . . . , vN} of V such that V′ = Fv1 + · · · + FvN−1.
Let δ : G → G be the map g 7→ w(g>)−1w, where w ∈ G is defined on B
by w(vi) = vN−i+1, and g> denotes the transpose of g with respect to the
basis B. We have δ2 = id and δ(M) = Gv1 . Part (ii) follows from Part (i)
with ι replaced with δ ◦ ι and v = v1.

We apply our decomposition theorem to prove several results on the inter-
section with the groups MF and GF . Analogously, we set

ME = {g ∈ B× : (g − 1)V ⊆ VN−d}, MB = (ME ∩U(B))U1(B)

and
GE = {g ∈ B× : gw1 = w1}, GB = (GE ∩U(B))U1(B).

Let K be a maximal unramified extension of E, which normalises A, so
that [K : E] = N/d. Theorem 4.6 implies that B× = K×ME. Since VN−d ⊆
VN−1, we obtain that

MF ∩B× = ME.
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Corollary 4.7. The following decompositions hold:

(i) K(A) = K×(U(A) ∩MF ), U1(A) = (U1(A) ∩MF )(1 + pK);

(ii) J = K×(J ∩MF ), J1 = (J1 ∩MF )(1 + pK);

(iii) K(B) = K×(U(B) ∩ME), U1(B) = (U1(B) ∩ME)(1 + pK).

Moreover, the statements remain true if we replace MF with GF and ME

with GE.

Proof. Note, that K× ⊂ K(B) ⊂ J ⊂ K(A). It is enough to prove (i),
since (ii) and (iii) are obtained by intersecting with J and K(B), respectively.
According to Theorem 4.6 we may write K(A) = K×(K(A) ∩MF ).

Let L = {Li : i ∈ Z} be the oE-lattice chain in V associated to A. According
to [13] Theorem II-1 there exists a decomposition of V =

∑N
i=1 V

i into one

dimensional subspaces such that VN−1 =
∑N−1

i=1 V i and Lj =
∑N

i=1 Lj ∩ V i,
for all j ∈ Z. If g ∈ K(A) ∩MF then by projecting to the V N subspace we
obtain Lj+vA(g) ∩ V N = Lj ∩ V N , for all j ∈ Z. This implies that vA(g) = 0,
hence g ∈ U(A) ∩MF . Hence K(A) ∩MF = U(A) ∩MF .

Let g ∈ U1(A). We may write by above g = hx, where h ∈ U(A) ∩MF

and x ∈ o×K . Let ḡ, h̄ and x̄ be the images of g, h, x in AutkF
(Lm/Lm+1),

where Lm ∈ L, such that Lm+1 + Lm ∩ VN−1 6= Lm. Since g ∈ U1(A), we
have ḡ = 1. Now

(h̄− 1)(Lm/Lm+1) ⊆ (Lm ∩ VN−1 + Lm+1)/Lm+1.

Our assumption on Lm, implies that h̄ has eigenvalue 1. Since h̄x̄ = 1, x̄
also has eigenvalue 1, hence x̄ = 1, which implies that x ∈ 1 + pK , and
so h ∈ U1(A) ∩MF .

Corollary 4.8. We have

K(A) = MAJ, MA ∩ J = (MF ∩ J)J1 = MBJ
1.

Moreover, the statement is true if we replace MA with GA; MF with GF
and MB with GB.

We end this section with an observation which will prove useful later.

Lemma 4.9. Suppose that g ∈ K(A) then

vF (det g) =
NvA(g)

e(A|oF )
.

In particular, J ∩ U = J ∩ U.
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Proof. Let e = e(A|oF ) and set h = ge$
−vA(g)
F , then h ∈ K(A) and vA(h) = 0.

Hence, h ∈ U(A). Since U(A) is compact, this implies that deth ∈ o×F and
this yields the Lemma.

4.2 The proof of Theorem 4.4 in a special case

Let us fix a maximal simple type (J, λ). Let [A, n, 0, β] be an associated sim-
ple stratum, and let θ ∈ C(A, 0, β) be such that λ|H1 = (dimλ)θ. Let (F , χ, b)
be a triple given by Theorem 3.3 and let U be the unipotent radical of the G-
stabiliser of F . By construction, a subflag F0 := {Vdi : 1 ≤ i ≤ r} of F is
a maximal stable E-flag in V , and let BE = {w1, . . . wr} denote an E-basis
of V chosen as in Corollary 3.4. We choose some a ∈ XF such that χ = ψa,
and we set

α = a+ b.

Then we have

ψα(u) = ψa(u)ψb(u) = ψa(u) = θ(u), ∀u ∈ U ∩H1.

The first equality is trivial; the second holds, since b ∈ A and u ∈ U1(A);
the third is Theorem 3.3(ii). Hence we may define Ψα : (J ∩ U)H1 → C×

by Ψα(uh) = ψα(u)θ(h), for u ∈ J ∩ U and h ∈ H1, as above.

Lemma 4.10. The function ψb defines a linear character on (J ∩U)J1 and

Ψα(j) = Θ(j)ψb(j), ∀j ∈ (J ∩ U)H1

where the character Θ is given by Θ(uh) = ψa(u)θ(h), for u ∈ (J ∩ U)
and h ∈ H, as in Theorem 2.6.

Proof. Since b ∈ XF , by Lemma 1.1, ψb defines a linear character of U .
Since b ∈ A, we have ψb(u) = 1, for all u ∈ U1(A). This implies that

ψb(uj) = ψb(u), ∀u ∈ U ∩ J, j ∈ J1.

Now J normalises J1 and hence ψb is a character on (J∩U)J1. Since α = a+b,
we have an equality of functions ψα = ψaψb and hence for every u ∈ J ∩ U
and h ∈ H1 we have

Ψα(uh) = ψb(u)ψa(u)θ(h) = ψb(uh)Θ(uh).
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Let L = {Li : i ∈ Z} be the oE-lattice chain in V associated to A, and put

MkE
=

{
b ∈ U(B)/U1(B) : (b− 1)(L0/L1) ⊆

r−1∑
j=1

kE(wj + L1)

}
,

the image of MB in U(B)/U1(B). Similarly, let

GkE
= {b ∈ U(B)/U1(B) : b(w1 + L1) = w1 + L1}

be the image of GB in U(B)/U1(B).

The group MkE
is known as a mirabolic subgroup. We note that it contains

the image of U(B) ∩ U in U(B)/U1(B). Moreover, with respect to the
basis w1 + L1, ..., wr + L1 of L0/L1, the group MkE

is identified with the
subgroup of matrices of the form

∗ · · · ∗ ∗
...

. . .
...

...
∗ · · · ∗ ∗
0 · · · 0 1

 .

and the image of U(B)∩U in U(B)/U1(B) is identified with the subgroup
of unipotent upper-triangular matrices.

Lemma 4.11. Let σ be a cuspidal representation of U(B)/U1(B). Let UkE

be the image of U(B) ∩ U in U(B)/U1(B), so that

UkE
∼= (U(B) ∩ U)/(U1(B) ∩ U),

and let ψ be any non-degenerate character of UkE
. Then

σ|MkE

∼= Ind
MkE
UkE

ψ, σ|GkE

∼= Ind
GkE
UkE

ψ.

Moreover, the representations σ|MkE
and σ|GkE

are irreducible representations
of MkE

and GkE
, respectively.

Proof. The statement forMkE
is [7] Theorem 8. Set w̄i = wi+L1, for 1 ≤ i ≤

r, and BkE
= {w̄1, . . . , w̄r}, a kE-basis of L0/L1. We identify U(B)/U1(B)

with GLr(kE), via BkE
. Let δ : GLr(kE) → GLr(kE) be the automorphism

given by δ(g) = w(g>)−1w, where g> denotes the transpose of g and w is
given by w(w̄i) = w̄r−i+1, for 1 ≤ i ≤ r. Then δ(UkE

) = UkE
, and ψδ, given

by ψδ(u) = ψ(δ(u)), for all u ∈ UkE
, is a non-degenerate character. The
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representation of GLr(kE), given by σδ(g) = σ(δ(g)) is cuspidal. Hence, by
the statement for MkE

,

σδ|MkE

∼= Ind
MkE
UkE

ψδ.

Since δ(GkE
) = MkE

and δ2 = id, by twisting by δ we obtain

σ|GkE

∼= Ind
GkE
UkE

ψ.

The irreducibility follows from the irreducibility of σδ|MkE
.

Theorem 4.12. The restriction λ|MBJ1 is an irreducible representation ofMBJ
1

and
λ|MBJ1

∼= IndMBJ
1

(J∩U)H1 Ψα.

The statement remains true if we replace MB with GB.

Proof. Set M = MB. In the level 0 case, M = MA and the Theorem asserts
that σ|MA

is irreducible and

σ|MA
∼= IndMA

(U∩U(A))U1(A) ψb.

Since σ is an inflation of a cuspidal representation and F and b were chosen
in Corollary 3.5 so that ψb is non-degenerate, the assertion is Lemma 4.11.

Let us consider the general case. Since σ is an inflation of a cuspidal rep-
resentation of U(B)/U1(B) and F and b were chosen in Theorem 3.3, so
that the character ψb is non-degenerate, we may again apply Lemma 4.11 to
obtain

λ|MJ1
∼= κ|MJ1 ⊗ σ|MJ1

∼= κ|MJ1 ⊗ IndMJ1

(J∩U)J1 ψb ∼= IndMJ1

(J∩U)J1 κ⊗ ψb.

Theorem 2.6 implies that κ|(J∩U)J1
∼= Ind

(J∩U)J1

(J∩U)H1 Θ and hence

λ|MJ1
∼= IndMJ1

(J∩U)J1 Ind
(J∩U)J1

(J∩U)H1 Θ⊗ ψb ∼= IndMJ1

(J∩U)H1 Ψα

where the last isomorphism is given by Lemma 4.10 and the transitivity
of induction. Moreover, since by Lemma 4.11 the restriction σ|MJ1 is irre-
ducible, a straightforward modification of [6] (5.3.2) implies that λ|MJ1 is an
irreducible representation of MJ1. The proof for GB is analogous.

Since, by Corollary 4.8, we have MA ∩ J = MBJ
1, we have now proved

Theorem 4.4(i) in our special case. We also record the following: Since J ∩
U = J ∩ U , we immediately get
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Corollary 4.13. HomU∩J(ψα,Λ) 6= 0.

Finally, part (ii) of Theorem 4.4 is given by:

Proposition 4.14. The restrictions of ρ to MA and to GA are irreducible
representations of MA and GA, respectively. Moreover,

ρ|MA
∼= IndMA

(J∩U)H1 Ψα, ρ|GA
∼= IndGA

(J∩U)H1 Ψα.

Proof. We will prove statement for MA, the proof for GA is analogous. We
have

ρ|MA
∼= IndMA

MA∩J Λ|MA∩J
∼= IndMA

MBJ1 λ|MBJ1
∼= IndMA

(J∩U)H1 Ψα

where the last two isomorphisms follow from Corollary 4.8 and Theorem 4.12.
Since Ψα|H1 = θ we have

IG(Ψα) ⊆ IG(θ) = J1B×J1

by [6] (3.3.2). Since λ|MBJ1
∼= IndMBJ

1

(J∩U)H1 Ψα, [6] (4.1.1) and (4.1.5) imply
that

IG(λ|MBJ1) = MBJ
1IG(Ψα)MBJ

1 ⊆ J1B×J1.

Hence,

IMA
(λ|MBJ1) ⊆MA ∩ (J1B×J1) = (U(B) ∩MA)J1 = MBJ

1

and hence ρ|MA
is irreducible. We note that MA contains U1(A), and

hence J1; U(A) ∩ B× = U(B) and the last equality above follows from
Corollary 4.7.

This completes the proof of Theorem 4.4 for our special choice of F and ψα.

4.3 The proof of Theorem 4.4 in the general case

We will prove Theorem 4.4 in the general case, by showing that after conju-
gation by some g ∈ J we end up in the special case, considered above.

Proof. Let F ′ = {V ′
i : 1 ≤ i ≤ N} be any maximal F -flag in V , and

let U ′ be the unipotent radical of the G-stabiliser of F ′, and let ψα′ be
any smooth non-degenerate character of U ′. Let π be a supercuspidal rep-
resentation of G, then there exists a pair (J,Λ), such that π ∼= c-IndGJ Λ
and HomU ′∩J(ψα′ ,Λ) 6= 0, and Λ|J ∼= λ, where J is the maximal compact
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open subgroup of J, and (J, λ) is a maximal simple type, with the stra-
tum [A, n, 0, β]. Moreover, λ|H1 = (dimλ)θ, where θ ∈ C(A, 0, β). We de-
fine M′

A as in Definition 4.3 and Ψα′ as in Definition 4.2. Let F = {Vi : 1 ≤
i ≤ N}, U , ψα and MA be as in §4.2. By Corollary 3.4 the character ψα is
non-degenerate, and we know that

HomU ′∩J(ψα′ ,Λ) 6= 0, and HomU∩J(ψα,Λ) 6= 0.

Hence by [3] Proposition 1.6 (ii), there exists g ∈ J, such that U ′ = U g

and ψα′ = ψgα. In particular, F ′ = gF , and hence V ′
N−1 = gVN−1, which

implies that M′
A = Mg

A. Since g ∈ J, we have J = Jg, H1 = (H1)g, θ =
θg. Hence (J ∩ U ′)H1 =

(
(J ∩ U)H1

)g
and Ψα′ = Ψg

α. We have proved
the Theorem for F and ψα, now twisting by g, we obtain the result for F ′

and ψα′ .

Remark 4.15. It follows from the proof that any F ′ and ψα′, with the prop-
erty that HomU ′∩J(ψα′ ,Λ) 6= 0, arise from the construction in Theorem 3.3,
once we replace β by gβg−1, for some g ∈ J, and so the construction in
Theorem 3.3 is a natural one.

4.4 A characterisation of Ind
K(A)
J Λ

We observe that a result of Gel′fand characterising cuspidal representations
of GLN(Fq) implies a very similar result, for the representations of K(A) of

the form Ind
K(A)
J Λ.

Proposition 4.16. Let τ be a representation of K(A) such that

τ |MA
∼= IndMA

(J∩U)H1 Ψα,

then
τ ∼= Ind

K(A)
J Λ,

for some representation Λ of J, such that (J,Λ|J) is a maximal simple type,
as in Definition 4.1.

Proof. Since IndMA

(J∩U)H1 Ψα is irreducible, so is τ . Now,

IndJ(J∩U)H1 Ψα
∼= κ⊗ IndJ(J∩U)J1 ψb ∼=

∏
σ

κ⊗ σ,

where the product runs over all the generic representations σ of J/J1 ∼=
U(B)/U1(B) ∼= GLr(kE). Hence τ |J will contain a summand of the form κ⊗
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σ. It follows from [6] (5.3.2) that the IU(A)(κ ⊗ σ) ⊆ (JB×J) ∩U(A) = J .

Hence Ind
U(A)
J κ⊗ σ is irreducible, and so is isomorphic to τ . Restricting

to MA, we obtain that σ|MBJ1 is irreducible, and [7] implies that σ is cus-
pidal. Hence, τ |J will contain some simple type λ, it follows from [6] §6.2

that τ |J will contain some Λ, and hence τ ∼= Ind
K(A)
J Λ.

5 Realisation of maximal simple types

We continue with the situation described in the beginning of §4. Let U be
a maximal unipotent subgroup of G, and ψα non-degenerate character of U .
Let π ∼= c-IndGJ Λ be a supercuspidal representation, and HomU∩J(ψα,Λ) 6= 0.
Theorem 4.4 allows us to use a rather general result of Alperin and James [1],
and realize the representation Λ as a concrete space, and describe the action
of J on this space in terms of the character of Λ and Ψα. This concrete
realization enables us to compute a certain matrix coefficient of π, and by
integrating it we obtain an explicit Whittaker function for π.

5.1 Bessel functions

We will adapt the result of Alperin and James [1] to our setting. Let K be
an open, compact-modulo-centre subgroup of G and let τ be an irreducible
smooth representation of K.

Assumption 5.1. Suppose that there exists compact open subgroups U ⊆
M ⊆ K, and a linear character Ψ of U , such that the following hold:

(i) τ |M is irreducible representation of M;

(ii) τ |M ∼= IndMU Ψ.

Let N be an open, normal subgroup of K contained in the Ker τ . Set

eΨ = (U : N )−1
∑

h∈U/N

Ψ(h)h−1.

Let χ = χτ be the (trace) character of τ and let ω = ωτ be the central
character of τ , so that

χ(xg) = ω(x)χ(g), ∀x ∈ F×, ∀g ∈ K.
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Definition 5.2. The Bessel function J : K → C of τ is defined by:

J (g) = trτ (eΨg) = (U : N )−1
∑

h∈U/N

Ψ(h−1)χ(gh).

Proposition 5.3. The Bessel function J has the following properties:

(i) J (1) = 1;

(ii) J (xg) = J (gx) = ω(x)J (g), ∀x ∈ F×, ∀g ∈ K;

(iii) J (hg) = J (gh) = Ψ(h)J (g), ∀h ∈ U , ∀g ∈ K;

(iv) if J (g) 6= 0 then g intertwines Ψ; in particular, if m ∈M then J (m) 6=
0 if and only if m ∈ U ;

(v) for all g1, g2 ∈ K we have∑
m∈M/U

J (g1m)J (m−1g2) = J (g1g2).

Proof. We observe that it is enough to prove the Proposition for a twist
of τ by an unramified character. Twisting by [g 7→ (ω($F ))−vF (det(g))/N ] we
ensure that $Z

FN lies in the kernel of τ . Hence, Ker τ is of finite index in K
and we may consider τ as a representation of a finite group.

Part (i) is a reformulation of the fact that IndMU Ψ is irreducible. Since χ
is defined by matrix trace, we have χ(gg1) = χ(g1g), for all g, g1 ∈ K, and
Parts (ii) and (iii) are straightforward consequences of the definition of J .

Part (iv): Part (iii) implies that J is a Ψ̌-spherical function on K, in the
sense of [6] (4.1), where Ψ̌ is the dual of Ψ. Hence if J (g) 6= 0 then according
to [6] (4.1.1), g intertwines Ψ.

Since IndMU Ψ is irreducible, the M-intertwining of Ψ is equal to U . Now
Parts (i),(iii) and the argument above finish the proof of Part (iv).

Part (v) is [1] Lemma 2, or [7] Theorem 9.

Theorem 5.4 (cf. [1]). Let S be the space of functions from M to C satis-
fying the condition

f(hm) = Ψ(h)f(m), ∀h ∈ U , ∀m ∈M.

For each g ∈ K we define an operator L(g) on S by the formula

[L(g)f ](m) =
∑

m1∈M/U

J (mgm1)f(m−1
1 ).

Then L defines a representation of K, which is isomorphic to τ .
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Proof. Again, it is enough to prove the statement after twisting by unramified
character, and this way we may ensure that K/Ker τ is finite. The assertion
now follows from the main Theorem in [1]. The level 0 case is [7] Theorem 10.

If τ̌ is the dual of τ , then τ̌ , M, U and Ψ̌ satisfy Assumption 5.1. Hence
Theorem 5.4 holds for τ̌ , with Ψ̌ instead of Ψ and with Š the space of
functions from M to C satisfying the condition

f(hm) = Ψ̌(h)f(m), ∀h ∈ U , ∀m ∈M.

Moreover, the Bessel function J̌ = Jτ̌ satisfies

J̌ (g) = J (g−1), ∀g ∈ K.

Let ( , ) be a non-degenerate K-invariant pairing on S × Š. Since, τ is ir-
reducible, the pairing is determined up to a scalar multiple. Let ϕ ∈ S
and ϕ̌ ∈ Š be such that Suppϕ = Supp ϕ̌ = U and ϕ(1) = ϕ̌(1) = 1. Since ϕ
and ϕ̌ span the Ψ- and Ψ̌-isotypical subspaces in S and Š respectively, we
may normalise ( , ), so that

(ϕ, ϕ̌) = 1.

This determines the pairing uniquely.

Lemma 5.5. We have

(L(g)ϕ, ϕ̌) = J (g), ∀g ∈ K.

Proof. It follows from Theorem 5.4 that

L(g)ϕ =
∑

m∈M/U

J (m−1g)L(m)ϕ.

Since the M-intertwining of Ψ is just U , for m ∈M we have (L(m)ϕ, ϕ̌) 6= 0
if and only if m ∈ U . This implies the Lemma.

We will apply the preceding results in several situations but, for now, we
observe that Theorem 4.4 implies (in the notation of §4):

Theorem 5.6. Assumption 5.1 (and hence Proposition 5.3 and Theorem 5.4)
holds in the following contexts:

(i) K = K(A), τ = ρ, M = MA or M = GA, U = (J ∩ U)H1, Ψ = Ψα;

(ii) K = J, τ = Λ, M = MA∩J or M = GA∩J , U = (J∩U)H1, Ψ = Ψα.

If π has level 0 then we recover the result of Gel′fand [7].
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5.2 Explicit Whittaker functions

Now we argue along the lines of [3] §3. However, not only do we get a
uniqueness statement as in [3], but we also obtain explicit formulae in terms
of the character of Λ and Ψα.

Let V be the underlying vector space of π and let (π̌, V̌) be the smooth dual
of (π,V). We denote by 〈, 〉 the pairing on V × V̌ given by the evaluation.
Let vα ∈ V and v̌α ∈ V̌ be non-zero vectors such that π(h)vα = Ψα(h)vα
and π̌(h)vα = Ψ̌α(h)v̌α, for all h ∈ (J ∩ U)H1. Corollary 4.5 implies that
such vectors exist and they are unique up to scalar multiple. We rescale so
that 〈vα, v̌α〉 = 1.

Proposition 5.7. The representation π admits a unique coefficient func-
tion f = fα,U with the following properties:

(i) f(1) = 1, and

(ii) f(h1gh2) = Ψα(h1h2)f(g), ∀h1, h2 ∈ (J ∩ U)H1, ∀g ∈ G.

Moreover, Supp f ⊆ J and

f(g) = 〈π(g)vα, v̌α〉 = J (g), ∀g ∈ J

where J = JΛ is the Bessel function.

Proof. For Parts (i) and (ii) we argue as in the proof of [3] Proposition 3.2.
If we set f(g) = 〈π(g)vα, v̌α〉, then f satisfies (i) and (ii); the uniqueness is
implied by Corollary 4.5.

If 〈gvα, v̌α〉 6= 0 then eΨπ(g)vα 6= 0 and, since vα ∈ VΛ, Corollary 4.5 implies
eΛ(π(g)VΛ) 6= 0. Hence g intertwines Λ and so g ∈ J.

If g ∈ J then Theorem 5.4 and Lemma 5.5 imply that

〈π(g)vα, v̌α〉 = (L(g)ϕ, ϕ̌) = J (g).

Theorem 5.8. Let du be an invariant Haar measure on U , normalised so
that

∫
U∩J

du = 1. Let Υ : π → IndGU ψα be a linear map given by

v 7→ [g 7→
∫
U

ψα(u)〈π(u−1g)v, v̌α〉du].
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Then Υ is non-zero and G-equivariant. Moreover, Supp Υ(vα) ⊆ UJ and

[Υ(vα)](ug) = ψα(u)J (g), ∀u ∈ U, ∀g ∈ J.

Further, Supp Υ(vα) ∩MF = U(H1 ∩MF ) and

[Υ(vα)](uh) = ψα(u)θ(h), ∀u ∈ U, ∀h ∈ H1 ∩MF .

Proof. The first assertion follow directly from Proposition 5.7. Now

Supp Υ(vα) ∩MF ⊆ (UJ) ∩MF = U(J ∩MF ) = U(J ∩MA) ∩MF ,

where the last equality follows from Corollary 4.8. The second assertion now
follows from Proposition 5.3(iv).

Remark 5.9. The Whittaker function Υ(vα) above, and the bound on the
support, can be obtained by integrating the matrix coefficient appearing in [2]
(see also [10]) and this is sufficient for the purposes of [5]. However, the
fact that we can realize the representation Λ via Bessel functions gives us the
precise knowledge of Supp Υ(vα) ∩MF . We use this in §7 to compute, in
some cases, epsilon factors of pairs.

Corollary 5.10. Let Jρ be the Bessel function of ρ. For g ∈ K(A),

Jρ(g) =

{
J (g) if g ∈ J,
0 otherwise.

Proof. This is implied by the uniqueness of the matrix coefficient in Propo-
sition 5.7.

5.3 Multiplicative property

Our maximal simple types are of the form (J, λ), where λ = κ ⊗ σ. In this
section, we show that the Bessel function associated to the extension Λ of λ
to J can be split as a product of two Bessel function (see Proposition 5.13).

Lemma 5.11. There exists a representation κ̃ of J such that κ̃|J ∼= κ. More-
over, given such a representation κ̃, there exists a unique representation Σ
of J, such that Σ|J ∼= σ and Λ ∼= κ̃⊗ Σ.
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Proof. We may extend the action of J on κ to the action of F×J , by mak-
ing some uniformiser $F act trivially. By definition of κ, [6] (5.2.1), E×,
(and hence J) intertwines κ. Since, F×J is normal in J and the quo-
tient J/(F×J) ∼= E×/F×o×E is a cyclic group, we may extend the action
to J.

Now suppose that we are given a representation κ̃ of J such that κ̃|J ∼= κ.
By the same argument as above, there exists a representation Σ of J such
that Σ|J ∼= σ. Moreover, we may ensure that ωκ̃($F )ωΣ($F ) = ωΛ($F ),
where ω denotes the central character. Hence

Λ|F×J ∼= (κ̃⊗ Σ)|F×J .

Thus Λ is a direct summand of

IndJ
F×J κ̃⊗ Σ ∼= κ̃⊗ Σ⊗ IndJ

F×J 1 ∼=
⊕
χ

κ̃⊗ Σ⊗ χ,

where χ runs over characters of J/F×J ∼= E×/F×o×E. Hence, after replac-
ing Σ by some Σ⊗χ, we may ensure that Λ ∼= κ̃⊗Σ. Moreover, by [6] §6 we
know that Λ ∼= Λ⊗ χ implies that χ is the trivial character. Hence, such Σ
is unique.

Let us now fix some κ̃ as above and let Σ be the unique representation
of J, given by Lemma 5.11. Let (U, ψα) be as in §4.2. In particular, we
require that U ∩ B× is a maximal unipotent subgroup of B× and we may
write ψα = ψaψb, such that ψa is trivial on U ∩ B×; ψb is a non-degenerate
character on U ∩ B×, which descends to a non-degenerate character of a
maximal unipotent subgroup of U(B)/U1(B) (see Theorem 3.3(iv)).

Lemma 5.12. Assumption 5.1 (and hence Proposition 5.3 and Theorem 5.4)
holds in the following contexts:

(i) K = J, τ = κ̃, M = J1, U = (J1 ∩ U)H1, Ψ = Θ, where Θ(uh) =
ψα(u)θ(h), for u ∈ J1 ∩ U and h ∈ H1.

(ii) K = J, τ = Σ, M = MA ∩ J or GA ∩ J , U = (J ∩ U)J1, Ψ = ψb.

Proof. Part (i) is just Theorem 2.6. Since J/J1 ∼= K(B)/U1(B) and J1 acts
trivially on Σ, part (ii) is given by Theorem 5.6(i) (together with Corol-
lary 4.8) applied in the level zero case.

Theorem 5.6 and Lemma 5.12 imply that we may associate Bessel functions
to Λ, κ̃ and Σ, via Definition 5.2.
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Proposition 5.13. We have

JΛ(g) = Jκ̃(g)JΣ(g), ∀g ∈ J.

Proof. We have Λ ∼= κ̃⊗Σ, and Ψα = Θψb, see Lemma 4.10. Let Vκ̃ and VΣ

be the underlying vector spaces of κ̃ and Σ, respectively. We claim that

eΨα(v ⊗ w) = (eΘv)⊗ (eψb
w), ∀v ∈ Vκ̃, ∀w ∈ VΣ. (†)

We choose non-zero vectors vΘ ∈ eΘVκ̃ and wψb
∈ eψb

VΣ. It follows from
Theorem 2.6 that dim eΘVκ̃ = 1 and from Lemma 4.11 that dim eψb

VΣ = 1.
Now (J ∩ U)H1 acts on vΘ ⊗ wψb

via Ψα and hence Theorem 4.12 implies
that the set

{c(vΘ ⊗ wψb
) : c̄ ∈MBJ

1/(J ∩ U)H1},

is a basis of Vκ̃ ⊗ VΣ, where c denotes a coset representative of a coset c̄. It
is enough to show the claim (†) holds for the elements of this basis.

If g ∈MBJ
1 and eΨαg(vΘ ⊗wψb

) is not equal to zero then g intertwines Ψα

and hence, by Theorem 4.12, we obtain that g ∈ (J ∩ U)H1. Conversely,
if g ∈ (J ∩ U)H1 then eΨαg(vΘ ⊗ wψb

) = Ψα(g)vΘ ⊗ wψb
.

If g ∈MBJ
1 and (eΘgvΘ)⊗ (eψb

gwψb
) 6= 0 then g intertwines ψb and hence,

by Lemma 4.11, g ∈ (J ∩ U)J1. Moreover, g intertwines Θ and so by Theo-
rem 2.6, g ∈ (J ∩ U)H1. If g ∈ (J ∩ U)H1 then

(eΘgvΘ)⊗ (eψb
gwψb

) = Θ(g)ψb(g)vΘ ⊗ wψb
= Ψα(g)vΘ ⊗ wψb

.

Hence we obtain the claim (†).
Now let Θ′ be the restriction of Θ to (J1 ∩ U)H1. According to Theo-
rem 2.6, Θ′ also occurs in κ with multiplicity one and hence eΘ′v = eΘv, for
all v ∈ Vκ̃. Hence,

JΛ(g) = trΛ(eΨαg) = trκ̃(eΘ′g) trΣ(eψb
g) = Jκ̃(g)JΣ(g).

6 A numerical invariant

In this section, we will define a certain numerical invariant which appears
in our formula for epsilon factors in §7. We continue with the notation of
previous sections.
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We suppose that E = F [β] is maximal in A and we identify V with E.
Let θ ∈ C(A, 0, β). Let F = {Vi : 1 ≤ i ≤ d} be a maximal F -flag in E;
let U be a unipotent radical of AutF (E)-stabiliser of F ; let χ be a smooth,
non-degenerate character of U , such that

χ|U∩H1 = θ|U∩H1 ;

and let ψE be an additive character of E, trivial on pE, and such that

ψE(x) = ψF (x), ∀x ∈ F.

Definition 6.1. Choose a basis B = {x1, . . . , xd} of E over F , which satisfies
Definition 3.1(i),(iii) and (iv) with (U, χ, ψE). We define ν ∈ E×/(1 + pE),
by

ν = ν(θ, ψF , ψE) = xdx
−1
1 (mod pE).

Proposition 6.2. ν(θ, ψF , ψE) depends only on θ, ψF and ψE.

Proof. Suppose that we have another triple U ′, χ′, B′ which satisfy the con-
ditions above. Then Proposition 1.3 and the first part of the proof of The-
orem 3.3 imply that there exists g ∈ J such that U ′ = U g and χ′ = χg.
Since E is maximal, we may write g = xh, where x ∈ E× and h ∈ J1.

Let ξ ∈ E be the unique element such that ξhx1 = hxd. Then (x1x
−1
d h−1ξh) ∈

G ∩ J, where G = {g ∈ AutF (E); gx1 = x1}. Now, according to Corol-
lary 4.7, G ∩ J = G ∩ J1 and hence the image of (x1x

−1
d h−1ξh) in J/J1 ∼=

E×/1 + pE, is equal to 1. This implies that ξ ≡ xdx
−1
1 (mod pE) and hence

we may assume that U = U ′ and χ = χ′. The second part of Proposition 3.2
implies that ν does not depend on the choice of basis B.

Remark 6.3. Suppose E is not necessarily maximal. Let θ ∈ C(A, β, ψF ) and
let θF ∈ C(A(E), β, ψF ) be the simple character corresponding to θ via the cor-
respondence of [6] §3.6, where A(E) is the hereditary oF -order in EndF (E),
corresponding to the lattice chain {piE : i ∈ Z}. Let {x1, ..., xd} be the F -
basis of E given by Corollary 3.4, with x1 = 1. Then it follows from the
construction in the proof of Theorem 3.3, that ν(θF , ψF , ψE) ≡ xd (mod pE).

6.1 Behaviour under tame lifting

We continue with the assumption that E is maximal in A and let us further
assume that E is totally wildly ramified. Let K be a tame extension of F .
The algebra L = K ⊗F E is a field, which is the compositum of E and K.
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Let θ ∈ C(A, 0, β); then Bushnell and Henniart in [2] define the tame lift
of θ, which is a simple character θK of H1

K = H1(β,AK), where AK is the
hereditary oK-order in EndK(L) corresponding to the oK-lattice chain {pjL :
j ∈ Z}. We will investigate how the invariant ν varies with the tame lifting.

Let ψL and ψK be the additive characters of L and K, respectively, given by

ψL(x) = ψE(trL/E x), ∀x ∈ L, ψK(x) = ψF (trK/F x), ∀x ∈ K.

Since K is tame over F , ψK has conductor pK ; likewise, ψL has conductor pL.

Let U be a maximal unipotent subgroup of G and let F = {Vi : 1 ≤ i ≤ d}
be a maximal flag corresponding to U . Let χ be a smooth non-degenerate
character of U , and let B = {x1, . . . , xd} be an F -basis of E, with respect to
which U is the group of unipotent upper-triangular matrices and, if u ∈ U
and (uij) ∈ Md(F ) is a matrix of u with respect to B, then

χ(u) = ψF (
d−1∑
i=1

ui,i+1).

Set FK = {Vi ⊗F K : 1 ≤ i ≤ d} and let UK be the unipotent radical of
the AutK(L)-stabiliser of FK . For u ∈ UK , write (uij) ∈ Md(K) for the
matrix of u with respect to {x1, . . . , xd}, and let χK : UK → C× be the
character given by

χK(u) = ψK(
d−1∑
i=1

ui,i+1).

Proposition 6.4. We have θ|U∩H1 = χ|U∩H1 if and only if

θK |UK∩H1
K

= χK |UK∩H1
K
.

Proof. By [2] Corollary 9.13(iii), tame lifting is transitive in the field exten-
sion: if K ′ is a subfield of K containing F , then

(θK
′
)K = θK .

So it is enough to prove the Proposition when K/F is Galois, cyclic, and
either unramified or totally tamely ramified, as in [2] (12.2). Let Γ be the
Galois group of K/F and fix a generator σ of Γ. For g ∈ AutK(L), let Nσ be
the cyclic norm map, given by Nσg = gσ(g) · · ·σl−1(g), where l = [K : F ].
Define H1

F , H1
K , UF , UK by

H1 = 1 + H1
F , H1

K = 1 + H1
K , U = 1 + UF , UK = 1 + UK .

We observe that the proof of [2] (12.3) Proposition (including the results
required from [2]§11) goes through if we replace H1

F with H1
F ∩ UF and H1

K

with H1
K ∩ UK . We obtain the following:
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(i) For x ∈ H1
K ∩ UK , there exists u ∈ H1

K ∩ UK such that yx = uxσ(u)−1

satisfies Nσyx ∈ H1 ∩ U .

(ii) The map x 7→ Nσyx induces a bijection between σ-conjugacy classes
in H1

K ∩ UK and conjugacy classes in H1 ∩ U .

Now, [2] (12.6), and the fact that both θK and χK are stable under Γ, imply
that

θK(x) = θK(yx) = θ(Nσyx), χK(x) = χK(yx) = χ(Nσyx).

The above coupled with (ii) gives the Proposition.

Remark 6.5. The above Proposition would follow easily from [3] Lemma 2.10,
if the gap in its proof were fixed.

Corollary 6.6. We have ν(θK , ψK , ψL) ≡ ν(θ, ψF , ψE) (mod pL).

Proof. Let (U, χ) be such that θ|H1∩U = χ|H1∩U , let B = {x1, . . . , xd} be
an F -basis of E, which satisfies Definition 3.1(i),(iii) and (iv), with respect
to U ,χ,ψF and ψE. Propositions 6.2 and 6.4 imply that it is enough to show
the following: If a ∈ L and (aij) is the matrix of a ∈ EndK(L) with respect
to B then ψL(a) = ψK(add).

Since ψL and ψK are additive, and L = K ⊗F E, it is enough to prove this
for a = c⊗ b, where c ∈ K and b ∈ E. Let (bij) be a matrix of b with respect
to B then bij ∈ F and aij = cbij. Hence,

ψK(add) = ψF (bdd trK/F c) = ψE(b trK/F c) = ψE(trL/E(bc)) = ψL(a).

7 Application to ε-factors of pairs

We will use the Whittaker function constructed in Theorem 5.8 to compute ε-
factor of pairs in the following situation:

As before, let [A, n, 0, β] be a simple stratum in A, such that e(B|oE) = 1.
Let θ ∈ C(A, 0, β)be a simple character and let κ and η be representations
of J = J(β,A) and J1 = J1(β,A), as in Definition 4.1. Let σ1 and σ2 be
lifts of cuspidal representations of J/J1 ∼= U(B)/U1(B) ∼= GLr(kE) to J .
We allow the case σ1

∼= σ2. For i = 1, 2, set λi = κ ⊗ σi and let πi be
a supercuspidal representation of G such that πi|J contains λi. According
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to [6] §6, there exists an irreducible representation Λi of J = E×J , such
that Λi|J ∼= λi and

πi ∼= c-IndGJ Λi.

We fix some extension κ̃ of κ to J, as in Lemma 5.11. For i = 1, 2, let Σi be the
unique representation of J, also given by Lemma 5.11, such that Λi

∼= κ̃⊗Σi

and Σi|J ∼= σi; we view Σi as a representation of K(B) = E×U(B) and set

τi = c-IndB
×

K(B) Σi.

Then τ1 and τ2 are level zero supercuspidal representations of B× ∼= GLr(E).
Let A(E) be the hereditary order in EndF (E), corresponding to the lattice
chain {piE : i ∈ Z}. Let θF ∈ C(A(E), n, 0, β)be the simple character corre-
sponding to θ via the correspondence of [6] §3.6.

Theorem 7.1. Choose an additive, unitary character ψE : E → C×, such
that ψE is trivial on pE and ψE(x) = ψF (x), for all x ∈ F . Then

ε(π1 × π̌2, s, ψF ) = ζωτ1(ν
−r)ωτ2(ν

r)q(s−1/2)rvE(ν)N/eε(τ1 × τ̌2, s, ψE),

where: ν = ν(θF , ψF , ψE) ∈ E×/(1 + pE) is the invariant defined in Defi-
nition 6.1; r = dimE(V ); π̌ denotes the contragredient of π; q = qF is the
cardinality of kF ; and ζ = ωτ2(−1)r−1ωπ2(−1)N−1.

We remark that, although the representation τ1 and τ2 depend on the choice
of β-extension κ, and the choice of κ̃, the ε-factor in Theorem 7.1 does not.
For a different choice of κ̃ would twist τ1 and τ2 by the same tamely ramified
character χ and we have

ε(τ1χ× τ̌2χ
−1, s, ψE) = ε(τ1 × τ̌2, s, ψE).

In §7.5, we use our invariant ν to recover (and generalise) certain results
in [5] on the behaviour of ε-factors of pairs under twists by tamely ramified
characters.

7.1 Preparation

Let U be a maximal unipotent subgroup of G, which is the G-stabiliser of
the maximal flag F = {Vi : 1 ≤ i ≤ N}, and let ψα = χψb be a smooth non-
degenerate character of U , as constructed in Theorem 3.3. Let L = {Li : i ∈
Z} be the lattice chain in V corresponding to A. Recall that, in Corollary 3.4,
we constructed an F -basis BF = {v1, . . . , vN} of V , with respect to which U
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is the group of upper triangular matrices and ψα is the ‘standard’ character.
Moreover, the vectors vi are of the form

vd(i−1)+j = xi−1
d xjwi, 1 ≤ i ≤ r, 1 ≤ j ≤ d,

where BE = {w1, . . . , wr} is an E-basis of V such that L0 =
∑r

i=1 oEwi,
and {x1, . . . , xd} is an F -basis of E, which depends on ψE (see Corollary 3.4).
Further, x1 = 1. Whenever it is required of us we will identifyG with GLN(F )
via BF . Let w ∈ G be the element defined on the basis BF by

w(vi) = vN−i+1, 1 ≤ i ≤ N.

We also define an involution δ : G→ G, by

δ(g) = wg>−1w,

where g> is the transpose of g with respect to BF and g>−1 = (g>)−1 =
(g−1)>.

We will briefly recall the definition of ε-factors of pairs, using the the formu-
lation of Jacquet, Piatetskii-Shapiro and Shalika [8], rather than Shahidi [11].

Let W1 = W(π, ψα) and W2 = W(π̌2, ψα) be the Whittaker models of π1

and π̌2 respectively. Let S(FN) be the set of compactly-supported, locally
constant functions φ : FN → C. We denote by e1 = (1, 0, . . . , 0), . . . , eN =
(0, . . . , 0, 1) the standard basis of FN . Given W1 ∈ W1, W2 ∈ W2 and Φ ∈
S(FN), we define the zeta function

Z(W1,W2,Φ, s) =

∫
U\G

W1(g)W2(g)Φ(eNg)| det g|sdg,

where dg is a G-equivariant measure on U\G. Note that, under our identifi-
cation of G with GLN(F ), via BF , the term eNg is the N th row of the matrix
of g with respect to BF . The integral converges absolutely for Re(s) suffi-
ciently large, and is a rational function of q−s. This zeta function satisfies a
functional equation, [8](2.7):

Z(W̃1, W̃2, Φ̂, 1− s)

L(π̌1 × π2, 1− s)
= ωπ2(−1)N−1ε(π1 × π̌2, s, ψF )

Z(W1,W2,Φ, s)

L(π1 × π̌2, s)
,

where, for i = 1, 2, W̃i(g) = Wi(wg
>−1); Φ̂ is the Fourier transform of Φ,

given by

Φ̂(y) =

∫
FN

Φ(x)ψF (xy>)dx, ∀y ∈ FN ,
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where dx is normalised so that
ˆ̂
Φ(x) = Φ(−x); and L(π1 × π̌2, s) is the L-

function. Since π1 and π2 are supercuspidal, it is enough for our purposes to
know that

L(π1 × π̌2, s) =
∏
χ

L(χ, s),

where the product is taken over all the unramified characters χ : F× → C×

such that π1
∼= π2⊗χ◦det, and L(χ, s) is as in Tate’s thesis [12]. In particular,

if σ1 6∼= σ2 then the product is taken over an empty set and so L(π1×π̌2, s) = 1.
If σ1

∼= σ2 then there exists χ as above such that π1
∼= π2 ⊗ χ ◦ det. In this

case, it follows from [6] (6.2.5) that

L(π1 × π̌2, s) = (1− χ($F )−N/eq−sN/e)−1,

where e = e(A|oF ) = e(E|F ).

7.2 Computation

Let W1 ∈ W(π1, ψα) and W2 ∈ W(π̌2, ψα) be the Whittaker functions con-
structed in Theorem 5.8. Then SuppW1 ⊆ UJ, SuppW2 ⊆ UJ and

W1(ug) = ψα(u)JΛ1(g), W2(ug) = ψα(u)JΛ̌2
(g), ∀u ∈ U, ∀g ∈ J.

Set J1 = JΛ1 and J2 = JΛ̌2
, and let Φ ∈ S(FN) be the indicator function

on the set eNJ
1. We are going to compute the zeta functions on both sides

of the functional equation for this particular choice of W1, W2 and Φ. This
will give us Theorem 7.1.

For X a subset of G which is a union of right U -cosets, we write volU(X) for
the volume of U\X with respect to the measure du on U\G.

Proposition 7.2. Let F : G→ C be the function given by

F(g) = W1(g)W2(g)Φ(eNg).

Then F is an indicator function on the set UH1. In particular,

Z(W1,W2,Φ, s) = volU(UH1).

Proof. We have

SuppW1 ⊆ UJ, SuppW2 ⊆ UJ, Supp[g 7→ Φ(eNg)] = MFJ
1,
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where MF = {g ∈ G : (g− 1)V ⊆ VN−1} is the mirabolic subgroup, as in §4.
Hence,

Supp F ⊆ UJ ∩MFJ
1 = U(J ∩MF )J1 = UMBJ

1,

where the last equality is given by Corollary 4.8. We have

F(ug) = W1(g)W2(g)Φ(eNg) = J1(g)J2(g), ∀u ∈ U,∀g ∈MBJ
1.

It follows from Proposition 5.3(ii) and (iv) that J1(g)J2(g) = Ψα(g)Ψα(g) =
1, if g ∈ (J ∩ U)H1, and J1(g)J2(g) = 0, otherwise. Hence F is an indicator
function on the set UH1. Since H1 is compact and U is unipotent, we obtain
that | det g| = 1, for all g ∈ UH1. Hence Z(W1,W2, s,Φ) = volU(UH1).

We write GF = {g ∈ G : gv1 = v1}, as in §4.

Lemma 7.3. For all g1 ∈ G, h ∈ G and g2 ∈ (J ∩MF )J1 we have:

Φ̂(e1(g1hg2)
>−1) = Φ̂(e1h

>−1).

Proof. Since e1g
>−1
1 = e1, we obtain Φ̂(e1(g1h)

>−1) = Φ̂(e1h
>−1). Since Φ is

an indicator function on the set eNJ
1 = eN(J ∩MF )J1, we have g2Φ = Φ,

hence

Φ̂(e1(hg2)
>−1) =

∫
FN

Φ(x)ψF (x(g−1
2 h−1e>1 ))dx

=

∫
FN

[g2Φ](x)ψF (x(h−1e>1 ))dx = Φ̂(e1h
>−1).

For L a lattice in FN , we write volF (L) for the volume of L with respect to
the measure dx on FN .

Lemma 7.4. Let i, j ∈ Z; then volF (eNPi) = q(j−i)N/e volF (eNPj).

Proof. Since there exists γ ∈ K(A) such that eN = e1γ, and then eNPi =
e1γP

i = e1P
i+vA(γ), it is enough to prove that

volF (e1P
i) = q(j−i)N/e volF (e1P

j).

Since our basis BF splits the lattice chain we may write

Pk =
⊕

1≤i,j≤N

p
cij(k)
F 1ij,
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where 1ij ∈ A are the projections given by 1ij(vk) = δikvj, for 1 ≤ k ≤ N ,

and δik is the Kronecker delta. Hence, e1P
k =

∑N
j=1 p

c1j(k)
F ej. According

to [6] (1.1.4) we have

P1−k = {a ∈ A : ψF (trA/F (xa)) = 1,∀x ∈ Pk}, ∀k ∈ Z,

which, since ψF has conductor pF , implies that 1 − cij(k) = cji(1 − k), for
all k ∈ Z. Since we have chosen v1, so that v1 ∈ L0, v1 6∈ L1 and the
lattice chain is principal, we have Pkv1 = Lk, for all k ∈ Z. Now, Pkv1 =∑N

j=1 p
cj1(k)
F vj =

∑N
j=1 p

1−c1j(1−k)
F vj. Hence

(e1P
i : e1P

j) = (L1−j : L1−i),

where the brackets denote the generalised index. Since (Li : Li+e) = qN

and L is principal, we have (Li : Li+1) = qN/e, for all i ∈ Z, and the result
follows.

We write qA = qN/e, so Lemma 7.4 says that volF (eNPi) = qj−iA volF (eNPj).

Let wE ∈ U(B) be the element defined by its action on the basis BE by

wE(wi) = wr−i+1, 1 ≤ i ≤ r.

From our construction of the bases BE and BF , we have xrdwEv1 = xrdwr = vN .
In terms of matrices with respect to BF we can rephrase this as

(xrdwE)e>1 = e>N .

Lemma 7.5. Let φ : A→ C× be the function

φ : a 7→ ψF ((eNa)e
>
1 ) = ψF (aN1),

where (aij) is the matrix of a ∈ A with respect to BF . Then

φ(axrdwE) = ψF (aNN), ∀a ∈ A.

Hence φ defines an additive character on A, which is trivial on P1+rvE(xd),
and non-trivial on PrvE(xd).

Lemma 7.6. Let b ∈ B, let (bij) be the matrix of b with respect to BE, and
define φ : A→ C× as in Lemma 7.5; then

φ(b) = ψE(x−rd br1).
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Proof. Set a = bx−rd wE, let (aFij) be the matrix of a with respect to BF and
let (aEij) be the matrix of a with respect to BE. According to Lemma 7.5, we
have φ(b) = ψF (aFNN). We have awr+VN−r = aErrwr+VN−r and, since xd ∈ E,
we obtain a(xrdwr)+VN−r = aErr(x

r
dwr)+VN−r. Since aErr ∈ E, we may consider

it as aErr ∈ EndF (E). Let (αij) be the matrix of aErr with respect to the
basis {x1, . . . , xd}. Since vd(i−1)+j = xi−1

d xjwi, for 1 ≤ i ≤ r and 1 ≤ j ≤ d,
and in particular vN = xrdwr, we obtain that

avN + VN−1 = αddvN + VN−1.

In particular, αdd = aNN . Recall that the basis {x1, . . . xd} was chosen so
that ψE(aErr) = ψF (αdd), see Definition 3.1(iv). Hence, φ(b) = ψE(aErr).
Since xd ∈ E, we obtain that aErr = x−rd (bwE)rr = x−rd br1.

To ease the notation, we set

c = volF (eNP1+rvE(xd)).

As in §4.1 let K be a maximal unramified extension of E, such that K×

normalises A.

Lemma 7.7. Let h ∈ K(A) and set j = vA(h)− vE(x−rd ); then

Φ̂(e1h
>−1) =


0 if j > 0;
c| deth|φ(h−1) if j = 0;

c| deth|qjA if j < 0.

Proof. Corollary 4.7 implies that eNU1(A) = eNJ
1 = eN(1 + pK). Hence,

Φ̂(e1h
>−1) =

∫
eNU1(A)

ψF ((xh−1)e>1 )dx

= ψF ((eNh
−1)e>1 )

∫
eNP

ψF ((xh−1)e>1 )dx

= | deth|ψF ((eNh
−1)e>1 )

∫
eNP1−vA(h)

ψF (xe>1 )dx.

Lemmas 7.4, 7.5 and the orthogonality of characters imply the Lemma.

Lemma 7.8. volU(Uδ(H1)) = volU(UH1).

Proof. Let Km = {g ∈ GLN(oF ) : g ≡ 1 (mod pmF )}. Since Km, for m ≥ 1,
form a basis of neighbourhoods of 1 in G, there exists m, such that Km ⊆
H1 ∩ δ(H1). Since δ(U) = U , δ(Km) = Km and the measure on U\G is G-
invariant, we obtain that volU(Uδ(H1)) = volU(UH1).
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Let F̃ : G→ C be the function given by

F̃(g) = W̃1(g)W̃2(g)Φ̂(eNg).

We have Supp F̃ ⊆ Supp W̃1 = δ(SuppW1)w ⊆ Uδ(J)w, and

F̃(uδ(g)w) = J1(g)J2(g)Φ̂(e1g
>−1), ∀g ∈ J,∀u ∈ U.

For x ∈ E× we define S(x), by

S(x) =

∫
Uδ(Jx)w

F̃(g)| det g|1−sdg.

Then S(x) depends only on vE(x). For Re(−s) sufficiently large,

Z(W̃1, W̃2, Φ̂, 1− s) =
∑

x∈o×E\E×

S(x).

Since H1 is normal in J, Proposition 5.3(iii), and Lemma 7.3 imply that

F̃(δ(h)g) = F̃(g), ∀h ∈ H1,∀g ∈ G.

Hence,

S(x) = volU(Uδ(H1))| detx|s−1
∑

h∈(J∩U)H1\J

J1(hx)J2(hx)Φ̂(e1(hx)
>−1).

We forget the volume term, by using Lemma 7.8 and normalising the measure
on U\G, so that volU(Uδ(H1)) = volU(UH1) = 1.

As in §4.1, we put

GE = {g ∈ B× : gw1 = w1}, GB = (GE ∩U(B))U1(B),

where BE = {w1, ..., wr} is our E-basis of V . Corollary 4.7 implies that we
have J = (GBJ

1)o×K . Then, using Lemma 7.3, we obtain:

Lemma 7.9.

S(x) = | detx|s−1
∑

y∈(1+pK)\o×K

Φ̂(e1(yx)
>−1)

∑
h∈(J∩U)H1\GBJ1

J1(hyx)J2(hyx).
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7.3 The case σ1 = σ2

Suppose that σ1
∼= σ2; then it follows from [6] (6.2.3) that there exists an

unramified quasi-character χ : F× → C×, such that Λ1
∼= Λ2 ⊗ χ ◦ det, and

hence π1
∼= π2⊗χ◦det. Then J2(g) = J1(g

−1)χ(det g), for all g ∈ J. Hence,
for all g ∈ J, we have∑

h

J1(hg)J2(hg) = χ(det g)
∑

h∈(J∩U)H1\GBJ1

J1(hg)J1(g
−1h−1) = χ(det g),

where the last equalities follow from Proposition 5.3(v),(i). It follows from
Corollary 4.7 that (J : GBJ

1) = (o×K : 1 + pK) = qN/e − 1 = qA − 1. There
exists a ∈ C such that χ(x) = |x|aF , for all x ∈ F . If x ∈ E then Lemma 4.9

implies that χ(detx) = q
−avE(x)
A . Let x ∈ E× and set j = vE(x) − vE(x−rd ),

Lemmas 4.9 and 7.7 imply that

S(x) =


0 if j > 0;

cq
rvE(xd)(s−a)
A

∑
y φ(yxrd) if j = 0;

cq
−(s−1−a)j+(s−a)rvE(xd)
A (qA − 1) if j < 0.

where, in the sum, y runs over the cosets o×K/1 + pK and φ is defined in
Lemma 7.5. It follows from 7.5 that φ restricted to K defines an additive
character, which is trivial on p

rvE(xd)+1
K and non-trivial on p

rvE(xd)
K . Hence∑

y∈o×K/1+pK

φ(yxrd) = −φ(0) = −1.

Set Z̃ = Z(W̃1, W̃2, Φ̂, 1 − s); then, for Re(−s) sufficiently large, we obtain
that

Z̃ = cq
rvE(xd)(s−a)
A (−1 + (qA − 1)

∑
k≥1

q
(s−1−a)k
A )

= cq
rvE(xd)(s−a)
A

qs−aA − 1

1− qs−1−a
A

= cq
(rvE(xd)+1)(s−a)
A

L(π̌1 × π2, 1− s)

L(π1 × π̌2, s)
.

It follows from the functional equation and Proposition 7.2 that

ε(π1 × π̌2, ψF , s) = ωπ2(−1)N−1cq
(s−a)(rvE(xd)+1)
A .

Following [4], we observe that the symmetry in the functional equation im-
plies that ε(π1 × π̌1, ψF , 1/2)2 = 1. Hence,

c = volF (eNP1+rvE(xd)) = q
−(rvE(xd)+1)/2
A .

We will now prove Theorem 7.1 in the case σ1
∼= σ2.
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Proof. Note that Λ1
∼= Λ2⊗χ◦detA implies Σ1

∼= Σ2⊗χE ◦detB, where χE =
χ ◦ NE/F and NE/F denotes the field norm. Moreover, Remark 6.3 implies
that vE(xd) = vE(ν), where ν = ν(θF , ψF , ψE). Hence,

qavE(x−r
d )N/e = χ(det ν−r) = ωτ1(ν

−r)ωτ2(ν
r).

If we compute ε(τ1 × τ̌2, s, ψE) by the same recipe we obtain that

ε(τ1 × τ̌2, s, ψE) = ωτ2(−1)r−1q
−1/2
B qs−aB ,

where qB = qrE = q
N/e
F = qA. Hence,

ε(π1 × π̌2, s, ψF ) = ζωτ1(ν
−r)ωτ2(ν

r)q(s−1/2)rvE(ν)N/eε(τ1 × τ̌2, s, ψE),

where ζ = ωπ2(−1)N−1ωτ2(−1)r−1.

7.4 The case σ1 6= σ2

Now let us suppose that σ1 6∼= σ2.

Lemma 7.10. Let x ∈ E×. If vE(x) 6= vE(x−rd ) then S(x) = 0.

Proof. Set j = vE(x)− vE(x−rd ). If j > 0 then Lemma 7.7 gives us S(x) = 0.
If j < 0 then Lemma 7.7 implies that

S(x) = c| detx|sqjA
∑

h∈(J∩U)H1\J

J1(hx)J2(hx).

Recall from §5.1 that we have the idempotent eΨα given by

eΨα = Q−1
∑

h∈Un+1(A)\(J∩U)H1

Ψα(h)h
−1,

where Q = ((J ∩ U)H1 : Un+1(A)), and similarly eΨα
. Now,∑

h∈(J∩U)H1\J

J1(hx)J2(hx) =
∑

h∈(J∩U)H1\J

trΛ1(xeΨαh) trΛ̌2
(xeΨα

h)

= Q−1 trΛ1⊗Λ̌2

(
x(eΨα ⊗ eΨα

)
∑

h∈Un+1(A)\J

h

)
,

Since σ1 6∼= σ2 we have Λ1 6∼= Λ2, hence HomJ(1,Λ1 ⊗ Λ̌2) = 0. This implies
that ∑

h∈Un+1(A)\J

Λ1(h)⊗ Λ̌2(h) = 0,

and so S(x) = 0.
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Lemma 7.11. Let b ∈ K(B); then∑
h∈(J1∩U)H1\J1

J1(hb)J2(hb) = JΣ1(b)JΣ̌2
(b).

Proof. According to Proposition 5.13, we have JΛi
(g) = Jκ̃(g)JΣi

(g), for i =
1, 2 and for all g ∈ J. The assertion follows from the fact that J1 acts trivially
on Σi and Proposition 5.3(v),(i) applied to κ̃, via Lemma 5.12.

We now prove Theorem 7.1 in the case when σ1 6∼= σ2.

Proof. Set Z̃ = Z(W̃1, W̃2, Φ̂, 1 − s). It follows from Lemma 7.10 that,

for Re(−s) sufficiently large, Z̃ = S(x−rd ). Lemmas 7.9, 4.9 and 7.7 imply
that

Z̃ = cq
−rvE(xd)s
A

∑
y∈(1+pK)\o×K

φ(y−1xrd)
∑

h∈(J∩U)H1\GBJ1

J1(hyx
−r
d )J2(hyx

−r
d ),

where c = q
(−rvE(xd)−1)/2
A . Lemma 7.11 implies that

Z̃ = cq
rvE(xd)s
A

∑
y∈(1+pK)\o×K

φ(y−1xrd)
∑

h∈U1(Bm)\GB

JΣ1(hyx
−r
d )JΣ̌2

(hyx−rd ),

where U1(Bm) = (U ∩U(B))U1(B). Now xd ∈ E so we can use Proposi-
tion 5.3(ii) and Lemma 7.3 to obtain

Z̃ = cq
rvE(xd)s
A ωΣ1(x

−r
d )ωΣ2(x

r
d)

∑
h∈U1(Bm)\U(B)

φ(hxrd)JΣ1(h
−1)JΣ̌2

(h−1).

Lemma 7.6 implies that

Z̃ = cq
rvE(xd)s
A ωΣ1(x

−r
d )ωΣ2(x

r
d)

∑
h∈U1(Bm)\U(B)

ψE(hr1)JΣ1(h
−1)JΣ̌2

(h−1),

where hr1 is the r1-coefficient of the matrix of h with respect to the basis BE.
It now follows from the functional equation and Proposition 7.2 that ε(π1 ×
π̌2, s, ψF ) = ωπ2(−1)N−1Z̃.

If we compute ε(τ1 × τ̌2, s, ψE) by the same recipe, we obtain that

ε(τ1 × τ̌2, s, ψE) = q
−1/2
B ωτ2(−1)r−1

∑
h∈U1(Bm)\U(B)

ψE(hr1)JΣ1(h
−1)JΣ̌2

(h−1),

where qB = qrE = q
N/e
F = qA. Hence,

ε(π1 × π̌2, s, ψF ) = ζωτ1(x
−r
d )ωτ2(x

r
d)q

rvE(xd)(s−1/2)N/eε(τ1 × τ̌2, s, ψE),

where ζ = ωτ2(−1)r−1ωπ2(−1)N−1. Now ωτ1 and ωτ2 are trivial on 1+pE and
Remark 6.3 finishes the proof, as in the case σ1

∼= σ2.
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7.5 Twists by tamely ramified quasi-characters

We continue in the same situation as above. Theorem 7.1 immediately implies
the following:

Corollary 7.12. Let χ : F× → C× be a tamely ramified quasi-character and
put χE = χ ◦ NE/F ; then

ε(π1χ× π̌2, s, ψF )

ε(π1 × π̌2, s, ψF )
= χ(NE/F (ν−r

2

))
ε(τ1χE × τ̌2, s, ψE)

ε(τ1 × τ̌2, s, ψE)
,

where ν = ν(θF , ψF , ψE).

In the case E is maximal, totally ramified over F and π1 = π2 we re-
cover [5]§6.1 Corollaire 2, with (in the notation of [5]) c(π1, π̌1, ψF ) = NE/F (ν).
Moreover, Corollary 6.6 implies [5]§7.1 Théorème, which describes how the
constant c(π1, π̌1, ψF ) changes under the tame lifting operation.
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