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Summary

The Madden{Julian oscillation (MJO) is examined using 20 years of outgoing longwave radiation
and NCEP{NCAR reanalysis data. Two mechanisms for the eastward propagation and regeneration of
the convective anomalies are suggested.

The �rst is a local mechanism operating over the warm pool region. At the phase of the MJO
with a dipole structure to the convection anomalies, there is enhanced tropical convection over the east-
ern Indian Ocean and reduced convection over the western Paci�c. Over the equatorial western Indian
Ocean, the equatorial Rossby wave response to the west of the enhanced convection includes a region of
anomalous surface divergence associated with the anomalous surface westerlies and pressure ridge. This
tends to suppress ascent in the boundary layer and shuts o� the deep convection, eventually leading
to a convective anomaly of the opposite sign. Over the Indonesian sector, the equatorial Kelvin wave
response to the east of the enhanced convection includes a region of anomalous surface convergence into
the anomalous equatorial surface easterlies and pressure trough, which will tend to favour convection
in this region. The Indonesian sector is also in
uenced by an equatorial Rossby wave response (of op-
posite sign) to the west of the reduced convection over the western Paci�c, which also has a region of
anomalous surface convergence associated with its anomalous equatorial surface easterlies and pressure
trough. Hence, convective anomalies of either sign tend to erode themselves from the west and initiate a
convective anomaly of opposite sign via their equatorial Rossby wave response, and expand to the east
via their equatorial Kelvin wave response.

The second is a global mechanism involving an anomaly completing a circuit of the equator. En-
hanced convection over the tropical western Paci�c excites a negative sea level pressure (SLP) anomaly
which radiates rapidly eastward as a dry equatorial Kelvin wave at approximately 35 m s�1 over the
eastern Paci�c. It is blocked by the orographic barrier of the Andes and Central America for several days
before propagating through the gap at Panama. After rapidly propagating as a dry equatorial Kelvin
wave over the Atlantic, the SLP anomaly is delayed further by the East African Highlands before it
reaches the Indian Ocean and coincides with the development of enhanced convection at the start of the
next MJO cycle.

Keywords: Madden{Julian oscillation Eastward propagation Equatorial Rossby wave Equa-
torial Kelvin wave Orography

1. Introduction

The Madden{Julian oscillation (MJO) has been extensively studied over the past
two decades and is well established as the dominant mode of tropical intraseasonal vari-
ability in the atmosphere. It is characterised by eastward-propagating tropical convective
anomalies and associated circulation anomalies, with a time period between 30 and 60
days (Knutson and Weickmann 1987; Rui and Wang 1990; Kiladis and Weickmann 1992;
Hendon and Salby 1994). However, there is still no universally accepted basic mechanism
for the eastward propagation and the regeneration of the convective anomalies over the
Indian Ocean at the start of the following cycle.

Many studies have focussed on the role of the eastward-propagating equatorial
Kelvin wave. The vertical structure of the MJO is that of a �rst internal mode, with
anomalies in the lower troposphere being out of phase with those in the upper tropo-
sphere. A dry, adiabatic wave with such a vertical structure has a phase speed of approx-
imately 40{50 m s�1 and would complete a circuit of the globe in approximately 10 days,
which is a factor of 4 faster than the observations. If friction, in the form of cumulus
momentum transport, is included, the wave can be slowed down to a phase speed closer
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to that of the observations (Chang 1977). Alternatively, the e�ects of moist convection
can also slow the Kelvin wave down, as has been shown in many idealised studies (e.g.,
Lau and Peng 1987; Emanuel 1987; Neelin et al. 1987; Raymond and Torres 1998). Some
of these idealised models can simulate an eastward-propagating tropical mode with a
time scale similar to that of the observed MJO. However, atmospheric general circula-
tion models do not tend to simulate the time scale of the MJO well; they tend to produce
too short a time period (Slingo et al. 1996).

Recently, coupled ocean-atmosphere interactions have been shown to have a signi�-
cant e�ect on the behaviour of the MJO. To the west of the convectively active region,
anomalously strong surface winds and ehnhanced evaporation, together with reduced so-
lar insolation act to decrease the sea surface temperature (SST), while to the east, weaker
surface winds and enhanced solar insolation increase the SST (Woolnough et al. 2000).
The e�ect of these SST changes in a model is to increase the coherence of organised
convection and to slow down the simulated MJO to a phase speed more in accord with
observations (Flatau et al. 1997).

Observations indicate that a series of MJOs often occur, one after the other, which
suggests that one MJO event may lead to the next. One possibility is that a perturbation
propagates eastward and completes a circuit of the equator before initiating the next
MJO. This scenario is often implicitly assumed in idealised model studies, where the
time scale for the oscillation is calculated as the earth's circumference divided by the
modal phase speed. However, the observed MJO convective anomalies are weak or non-
existent over the Western Hemisphere.

There are also periods in the observational record when the MJO is absent, hence
at the end of these periods there is clearly a role for spontaneous generation of new MJO
events. Blad�e and Hartmann (1993) proposed a \discharge{recharge" theory where the
time scale of the MJO was set locally, as the time taken for the convective anomaly
to grow and decay over the Indian Ocean, followed by a further time over which the
convective instability is recharged. They hypothesised that synoptic-scale waves could
provide the trigger to initiate the next cycle of MJO convection, and Matthews and
Kiladis (1999) observed an enhancement in such high-frequency activity in this region
just prior to the onset of MJO convection.

Previous studies of the MJO have used satellite-measured outgoing longwave ra-
diation (OLR) data as a proxy for deep tropical convection and global circulation and
pressure data from the operational analyses produced by the national weather centres.
Until recently, the length of these data sets has been fairly short, and studies using the
analysis data have been hindered by the many ongoing changes made to the operational
analysis scheme.

Recently, the National Centers for Environmental Prediction{National Center for
Atmospheric Research (NCEP{NCAR) reanalysis project has reanalysed the last 40 years
of atmospheric data using a �xed, state-of-the-art analysis scheme (Kalnay et al. 1996).
The reanalysis has also bene�ted from extra atmospheric data that were not input into
the original operational analyses. This study examines the MJO using the NCEP{NCAR
reanalysis data and the 25 years of OLR data that is now available, with an emphasis
on the mechanism for eastward propagation. In particular, it is of interest to examine
whether an MJO signal completes a circuit of the equator, and whether one MJO event
can trigger or force the next MJO event, or whether individual events arise spontaneously.

2. Data
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The OLR data were used as a proxy for deep tropical convection (Arkin and Ar-
danuy 1989). Deep convective clouds have high, cold cloud tops and are associated with
low values of OLR in the Tropics. Similarly, negative OLR anomalies correspond to pos-
itive cloudiness or convective anomalies. The OLR data were obtained from National
Oceanic and Atmospheric Administration (NOAA) polar-orbiting satellites as a daily-
mean, gridded, interpolated data set (Liebmann and Smith 1996). The data started on
1 June 1974 and ended on 16 September 1998, with missing data from 16 March to 31
December 1978, inclusive. The NCEP{NCAR reanalysis data were retrieved for the same
period as the OLR data. Both data sets were on a 2.5Æ longitude � 2.5Æ latitude grid.

To isolate the MJO signal, the time mean and �rst three harmonics of the annual
cycle were removed from both data sets, which were then passed through a 20{200-day
band-pass Lanczos �lter with 241 weights. This �lter has a much wider bandwidth than
�lters used in many other studies of the MJO and avoids the problem of successive MJO
events being arti�cially smeared into each other. For example, Fig. 1 shows the e�ect of
the 20{200-day �lter and a 241-weight 30{70-day �lter on an isolated single sine wave
with a period of 48 days, which represents an idealised isolated MJO event with no
preceding or following MJO event. The 20{200-day �ltered time series is very similar to
the original time series, but the 30{70-day �lter introduces spurious signals before and
after the isolated sine wave. This would have the e�ect of merging successive MJO events
into one another and make it diÆcult to assign particular anomalies to the beginning of
one event or the end of the previous event.
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Figure 1. Time series of single sine wave of period 48 days (solid line). The time series passed through
the 20{200-day �lter (dotted line) and the 30{70-day �lter (dashed line).

3. MJO cycle

(a) EOF analysis

An empirical orthogonal function (EOF) analysis of the OLR data was used to
de�ne the cycle of the MJO. Wilks (1995) gives a comprehensive description of EOF
analysis. For computational reasons, the OLR data were �rst interpolated onto a coarser
5Æ longitude � 5Æ latitude grid. A covariance matrix of the �ltered OLR over the Tropics
from 25Æ S to 25Æ N was calculated using the 20 years of data for which year-round
�ltered data was available (1975{76 and 1980{97). The leading two eigenvectors (EOF 1
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and EOF 2) of the covariance matrix accounted for 6.6% and 5.4% of the variance�,
respectively, and were well separated from the remaining eigenvectors by the criteria of
North et al. (1982); EOF 3 accounted for just 1.3% of the variance and EOFs 3 and
above formed a degenerate set of sampling \noise".

The spatial structure of EOF 1 shows the familiar MJO convective dipole, with
negative OLR anomalies (enhanced convection) over the Indian Ocean and positive OLR
anomalies (reduced convection) over the western Paci�c (Fig. 2a). EOF 2 has enhanced
convection over Indonesia and reduced convection over the South Paci�c convergence
zone, South America, Africa and the western Indian Ocean (Fig. 2b), and is spatially in
quadrature with EOF 1. The principal component (PC) time series were calculated by
projecting the EOF spatial structures onto the �ltered gridded OLR �elds at each time,
and show the time-varying amplitude of the EOF spatial structures. A two-year subset of
the PC time series (1987{1988) is shown in Fig. 2c. PC 1 leads PC 2 by approximately a
quarter of a cycle, particularly during a period of strong MJOs from 1 December 1987 to
1 April 1988. Together with the spatial structures of the EOFs, this behaviour of the PC
time series describes a pattern of eastward-propagating convective anomalies. The MJO
can then be represented by the vector Z in the two-dimensional phase space de�ned by
the �rst two PCs.

Z(t) = [PC1(t); PC2(t)] (1)

Alternatively, an amplitude A and phase � representation can be used, where A is the
length of the vector Z and � is the angle between the PC1 axis and the vector Z:

A(t) =
�
PC12(t) + PC22(t)

�1=2
(2)

�(t) = tan�1 [PC2(t)=PC1(t)] (3)

The eastward propagation of the convective anomalies described by PC 1 and PC 2 is
associated with an increase in the phase � with time, for example, during the December
1987 to April 1988 period (Fig. 2d). The amplitude of the MJO is also high during this
period. The eastward propagation manifests itself as an anticlockwise rotation with time
of Z(t) about the origin in phase space (Fig. 2e).

(b) Regression maps

The time series PC1(t) can be used to construct a regression map for any grid-
point variable y (for example, 1000-hPa geopotential height) for the phase of the MJO
corresponding to EOF 1 (i.e., �= 0Æ). At each grid point i a linear regression equation

ŷi = ai + bi PC1 (4)

is formed where ŷi is the regressed value of the dependent variable yi, and ai and bi are
constants to be determined for that particular grid point. A map of ŷ is then plotted for
a �xed value of PC1 = 2:0. This choice of the magnitude of the dependent variable (PC1)
is arbitrary, but corresponds to a typical peak value (Fig. 2c).

A similar regression map of y can be constructed using the PC 2 time series; this will
show the pattern of anomalies in y at the phase of the MJO corresponding to EOF 2 (i.e.,
�= 90Æ). The anomaly pattern at an intermediate phase � is then a linear combination
of the anomaly patterns at �= 0Æ and �= 90Æ:

ŷ(�) = ŷ(PC1) cos �+ ŷ(PC2) sin � (5)
� This relatively small fraction of variance is due to the wide band width of the 20{200-day �lter. If a

narrower 30{70-day �lter was used, the total variance accounted for by the �rst two EOFs increased to

24.3%.
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(c) PC Time Series: 1987 - 1988
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(d) Z: Phase, Amplitude (41-day running mean): 1987 - 1988
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(e) Z: 1 Dec 1987 - 1 Apr 1988

P
C

2

PC1

-4 -3 -2 -1 0  1  2  3  4
-4

-3

-2

-1

0

 1

 2

 3

 4

-4

-3

-2

-1

0

 1

 2

 3

 4

A

α

Figure 2. Empirical orthogonal function analysis of 20{200-day �ltered OLR. (a) EOF 1, (b) EOF 2;
contour interval is 3 W m�2; the zero contour is omitted; shading is shown by the legend. (c) PC 1
(solid line) and PC 2 (dotted line) from 1 January 1987 to 31 December 1988. (d) Phase � (dots; scale
on left-hand axis) and 41-day running mean of amplitude A (solid line; scale on right-hand axis) of Z

from 1 January 1987 to 31 December 1988. (e) Z plotted from 1 December 1987 to 1 April 1988.
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Because of the broad-band nature of the MJO (the period of any individual MJO can
vary by a factor of 2, between 30 and 60 days), there is an advantage to using this phase
representation rather than constructing time-lagged regression or composite maps with
respect to PC 1 or some other measure of the MJO at a particular phase (e.g., Knutson
and Weickmann 1987; Hendon and Salby 1994). With the time-lagged method, MJOs
with di�erent time scales can destructively interfere with each other at the longer time
lags, and the strongest signal is obtained at zero lag. This assigns a special \signi�cance"
to the phases of the MJO corresponding to � EOFs 1 and 2, while information can be
lost at intermediate phases. This is not a problem when the phase representation is used,
as all phases of the MJO are treated equally. A disadvantage of the phase representation
is that the explicit time dependence is lost. However, a nominal time can be assigned to
each phase; if the total cycle is assumed to be 48 days long, then phases that are, say,
1/16 cycle or 22.5Æ apart are nominally 3 days apart.

4. Results

(a) Tropical convection

The MJO cycle for OLR is shown at phase intervals of 22.5Æ (nominally 3 days apart)
in Fig. 3. The �= 0Æ phase in Fig. 3a has essentially the same pattern as +EOF 1 in
Fig. 2a, but scaled by a factor of 2. Similarly, the �= 90Æ, 180Æ and 270Æ phases have the
same patterns as +EOF 2, �EOF 1 and �EOF 2, respectively. The intermediate phases
allow the development of the convection anomalies to be examined in more detail. The
OLR anomalies in the latter half of the cycle (right-hand panels in Fig. 3) have identical
patterns, but with opposite sign, to those of their corresponding phases (180Æ earlier) in
the �rst half of the cycle (left-hand panels in Fig. 3).

At the start of the MJO cycle (�= 0Æ phase; Fig. 3a), there is enhanced convec-
tion over the Indian Ocean. The western edge of this enhanced convection subsequently
disappears most rapidly at the equator, such that by phase �= 67:5Æ (Fig. 3d) a \bite"
appears to have been taken out of it at 0Æ, 70Æ E. A small region of reduced convec-
tion at 0Æ, 55Æ E has now appeared, which eventually grows to form the large region of
reduced convection over the Indian Ocean half way through the MJO cycle (�= 180Æ

phase; Fig. 3i).
At the start of the MJO cycle (�= 0Æ phase) there is also a region of reduced

convection over the western Paci�c, which reached its peak toward the end of the previous
cycle (�= 315Æ phase; Fig. 3o). This reduced convection also disappears most rapidly
on, or slightly to the north of, the equator (�= 22:5Æ phase; Fig. 3b) and is replaced by
a tongue of enhanced convection extending eastward along 5Æ N from the main region of
enhanced convection over the Indian Ocean (�= 45Æ phase; Fig. 3c).

(b) Warm pool dynamics

The development of the equatorial convective anomalies over the warm pool is now
interpreted in terms of equatorial wave dynamics. The near-surface (1000-hPa) geopo-
tential height and wind vector anomalies during the �= 0Æ phase are shown in Fig. 4a.
OLR contours are drawn at �5 W m�2 to show the outline of the convective anomalies.
The enhanced convection over the Indian Ocean is colocated with a negative equatorial
1000-hPa geopotential height anomaly, which extends poleward and westward into both
hemispheres. The 1000-hPa wind vectors show anomalous cyclonic 
ow around these
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Figure 3. Regression maps of OLR for every 22.5Æ of phase � of the MJO cycle, scaled to a deviation of
PC1=2 = 2:0. Contour interval is 10 W m�2; the �rst positive contour is at 5 W m�2; negative contours

are dotted; shading is shown by the legend. The approximate time t in days is also shown.

negative geopotential height or low-pressure centers (the terms will be used interchange-
ably), with down-gradient westerly anomalies along the equator over the western Indian
Ocean. These anomalies are consistent with an equatorial Rossby wave response to the
diabatic heating associated with the enhanced convection (Gill 1980).

The 1000-hPa divergence �eld (Fig. 4b) shows anomalous equatorial convergence
at the center of the enhanced convection (0Æ, 85Æ E), consistent with the Gill model
of tropical heating. The anomalous surface convergence at the centers of the two o�-
equatorial cyclonic anomalies can be interpreted as frictional in
ow into the low-pressure
anomalies. However, there is anomalous surface divergence on the equator at the western
edge of the enhanced convection (40Æ {60Æ E). This divergence is entirely due to the
decrease in strength of the westerly anomalies with distance westward from the enhanced
convection (the @u=@x component; the @v=@y component is weakly negative), possibly
due to surface friction. This anomalous surface divergence over the equatorial western
Indian Ocean will tend to suppress ascent in the boundary layer and act to reduce the
enhanced convection that is present over the region at this phase of the MJO. Such
an interpretation is consistent with the disappearance of enhanced convection over the
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Figure 4. As in Fig. 3 but at the �= 0Æ phase only for (a) OLR and 1000-hPa geopotential height and
wind vectors. OLR is contoured at �5 W m�2 (thick dashed line) and +5 W m�2 (thick solid line).
Geopotential height contour interval is 4 m; see legend for shading. The reference wind vector is 1 m s�1.

(b) as in (a) except for 1000-hPa divergence; see legend for shading.

equatorial western Indian Ocean in the subsequent phases of the MJO and their eventual
replacement by a negative convective anomaly (Fig. 3b{d), as discussed above.

The situation is more complex to the east of the enhanced convection. A tongue of
anomalous low pressure extends eastward from the enhanced convection over the Indian
Ocean into the western Paci�c along and to the north of the equator (Fig. 4a). Together
with the associated easterly equatorial wind anomalies, this is consistent with an equa-
torial Kelvin wave response to the enhanced convection. However, there also appears
to be an equatorial Rossby wave of opposite sign, arising as a response to the reduced
convection over the western Paci�c, with anomalous o�-equatorial high pressure and an-
ticyclonic anomalies and equatorial easterly 
ow down the pressure gradient. Therefore,
the equatorial low pressure and easterly wind anomalies over the western Paci�c can
be attributed to both an equatorial Kelvin wave response to the enhanced convection
over the Indian Ocean and an equatorial Rossby wave response (of opposite sign) to the
reduced convection over the western Paci�c.

The 1000-hPa divergence anomalies over the Indonesian{western Paci�c region (Fig. 4b)
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follow a similar pattern to those over the Indian Ocean, but with opposite sign. There
is anomalous divergence at the center of the o�-equatorial anticyclones and anomalous
convergence within the equatorial easterlies. The anomalous equatorial convergence is
due to both the @u=@x and @v=@y components and can be attributed to a decrease in
the strength of the equatorial easterly anomalies with increasing westward distance from
the reduced convection (the equatorial Rossby wave response) and frictional in
ow into
the anomalous equatorial pressure trough, respectively.

The anomalous equatorial surface convergence over the Indonesian{western Paci�c
sector will tend to be associated with anomalous ascent in the boundary layer and desta-
bilisation of the atmosphere, leading to the disappearance of the reduced convection and
the eastward expansion of the enhanced convection, as discussed above.

Therefore, the convective anomalies tend to destroy themselves from the west via
their equatorial Rossby wave response and expand to the east via their equatorial Kelvin
wave response. As the analysis is linear, these arguments can be applied to the second
half of the MJO cycle if the sign is reversed. In particular, a small region of enhanced
convection over the equatorial western Indian Ocean at 0Æ, 55Æ E appears during the
�= 247:5Æ phase (Fig. 3l) and grows to become the main region of enhanced convection in
the next cycle of the MJO (�= 337:5Æ and 360Æ or 0Æ phases; Fig. 3p, a). The small region
of convection over the equatorial western Indian Ocean at the �= 247:5Æ phase can be
attributed to the region of anomalous 1000-hPa convergence that preceded it during the
�= 180Æ phase (Fig. 4; reverse sign of anomalies). This anomalous surface convergence
was part of the equatorial Rossby wave response to the reduced convection over the
Indian Ocean at that phase. This equatorial Rossby wave mechanism is essentially a
regional mechanism, in that one cycle of the MJO can trigger the next cycle by dynamics
that are con�ned to the warm pool; it is not necessary for a signal to complete a circuit
of the equator.

(c) Equatorial Kelvin waves and orography

In this section an alternative mechanism is examined that does involve a dynamical
signal completing a circuit of the globe. The MJO cycle of sea level pressure (SLP) over
the whole tropical domain is shown in Fig. 5, together with the outline of the OLR anoma-
lies. At the �= 0Æ phase (Fig. 5a) the enhanced convection (negative OLR) and negative
SLP anomalies are colocated over the Indian Ocean near 90Æ W; the SLP anomalies have
a similar equatorial Rossby/Kelvin wave structure to the 1000-hPa geopotential height
anomalies in Fig. 4a.

The enhanced equatorial convection then propagates slowly eastward over the warm
pool region at approximately 4 m s�1. This is shown by a straight dotted line segment
on an equatorial Hovm�oller diagram (Fig. 6). The negative SLP anomaly propagates
eastward at a faster speed of 8 m s�1 over the warm pool, and then at approximately
35 m s�1 over the Paci�c (straight solid line segments in Fig. 6) as an equatorial Kelvin
wave until it reaches South America where it is blocked by the Andes mountain range
(�= 45Æ phase; Fig. 5c). The Andes and the mountain ranges of Central America form
an almost unbroken barrier across the tropics (Fig. 7) and the SLP anomaly propagates
northward and southward as a trapped wave against this orographic barrier. However,
there is a gap at Panama near 10Æ N. By the �= 112:5Æ phase (Fig. 5f) the SLP anomaly
has propagated through the Panama gap; it then propagates rapidly eastward across the
Atlantic at approximately 35 m s�1 as an equatorial Kelvin wave until it is blocked for
a second time, by the East African Highlands (� = 180Æ phase; Fig. 5i). After a delay
of about 90Æ of phase, or approximately 12 days, the negative SLP anomaly propagates
eastward into the Indian Ocean and completes a circuit of the equator.



2646 ADRIAN. J. MATTHEWS

30S

0

30N

30S

0

30N

30S

0

30N

30S

0

30N

30S

0

30N

30S

0

30N

30S

0

30N

30S

0

30N

30S

0

30N

30S

0

30N

30S

0

30N

30S

0

30N

30S

0

30N

30W 0 30E 60E 90E 120E150E 180 150W120W90W 60W 30W
30S

0

30N

t=3(b) Phase 22.5

30S

0

30N

t=6(c) Phase 45

30S

0

30N

t=9(d) Phase 67.5

30S

0

30N

t=12(e) Phase 90

30S

0

30N

t=15(f) Phase 112.5

30S

0

30N

t=18(g) Phase 135

30S

0

30N

t=24(i) Phase 180

30S

0

30N

t=27(j) Phase 202.5

30S

0

30N

t=30(k) Phase 225

30S

0

30N

t=33(l) Phase 247.5

30S

0

30N

t=36(m) Phase 270

30S

0

30N

t=39(n) Phase 292.5

30S

0

30N

t=42(o) Phase 315

30S

0

30N

t=45(p) Phase 337.5

30W 0 30E 60E 90E 120E150E 180 150W120W90W 60W 30W
30S

0

30N

30S

0

30N
t=0(a) Phase 0

30S

0

30N

-70

-10

10

70

SLP

30W 0 30E 60E 90E 120E150E 180 150W120W90W 60W 30W
30S

0

30N
t=21(h) Phase 157.5

30W 0 30E 60E 90E 120E150E 180 150W120W90W 60W 30W
30S

0

30N

Figure 5. As in Fig. 3 but for SLP and OLR. SLP is shaded at �10, 70 Pa; see legend. OLR is contoured
at �5 W m�2 (dashed line) and +5 W m�2 (solid line).

The vertical structure of the equatorial Kelvin wave is shown by the latitude{pressure
cross-sections of geopotential height anomalies in Fig. 8. During the �= 67:5Æ phase the
negative equatorial SLP anomaly is propagating across the eastern Paci�c (Fig. 5d). The
equatorial geopotential height anomalies at this phase at 120Æ W (Fig. 8a) are negative
at the surface, change sign in the middle troposphere and are positive in the upper
troposphere, consistent with the �rst internal mode Kelvin wave over the Paci�c reported
by Milli� and Madden (1996) and a fast Kelvin wave structure in satellite-measured
(Microwave Sounding Unit) temperature (Bantzer and Wallace 1996). There are also
large subtropical anomalies that do not appear to be associated with the Kelvin wave. It
appears that these form part of a wave train propagating meridionally across the equator
over the eastern Paci�c. Eastward propagation of upper tropospheric geopotential height
anomalies can be seen but they are disrupted by this wave train. An idealised modelling
study should help to resolve the e�ect of the Andes mountain range on the vertical
structure of the Kelvin wave. The vertical structure over the Atlantic at 30Æ W during
the �= 157:5Æ phase shows a similar pattern (Fig. 8b), with out of phase anomalies
between the equatorial upper and lower troposphere and large subtropical anomalies.

There is a coherent relationship between the tropical convective anomalies over South
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Figure 7. Surface orography. Shading interval is 500 m.

America and Africa and the passage of the SLP anomaly. This can be seen in the regres-
sion maps of Fig. 5 and the equatorial Hovm�oller diagram (Fig. 6) where the negative
SLP anomaly leads the enhanced convection by a quarter of a cycle near 50Æ W and 15Æ

E. Such a phase relationship points toward the negative SLP anomaly forcing the MJO-
related convection over these regions. The amplitude of the convective anomalies over
South America and Africa is small (Fig. 3) and the dynamical response to this convection
appears to be weak.

The appearance of the small region of enhanced convection over the equatorial west-
ern Indian Ocean during the �= 247:5Æ phase (Figs. 3l and 5l) that signi�es the beginning
of the next cycle of MJO convection is reexamined. In the previous section this was at-
tributed to the equatorial Rossby wave response to the large region of reduced convection
over the Indian Ocean at the �= 180Æ phase. Over the western Indian Ocean, this equa-
torial Rossby wave has a local equatorial SLP minimum between two o�-equatorial SLP
maxima (Fig. 5i, or Fig. 4a with the sign reversed). The anomalous surface easterly winds

ow down the pressure gradient along the equator (Fig. 4a with the sign reversed) and
the anomalous surface convergence associated with these easterlies was hypothesised to
lead to the next cycle of MJO convection.
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Figure 8. As in Fig. 3 but for latitude{pressure sections of geopotential height anomalies at the (a)
�= 67:5Æ phase at 120Æ W, (b) �= 157:5Æ phase at 30Æ W. Contour interval is 1 m; negative contours
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However, the equatorial SLP minimum over the western Indian Ocean may also be
attributable to the eastward-propagating Kelvin wave, as at 60Æ E the equatorial SLP
anomaly is propagating eastward with time at the �= 247:5Æ phase (Fig. 6). Hence the
Kelvin wave SLP anomaly may reinforce the local equatorial SLP minimum due to the
equatorial Rossby wave and help create the conditions favourable for the next cycle of
MJO convection.

5. Discussion

The MJO cycle described here has suggested two mechanisms for the eastward prop-
agation of the convective anomalies and the initiation of the next MJO cycle over the
Indian Ocean. In the �rst mechanism, surface frictional divergence and convergence asso-
ciated with the dynamical response to convection leads to convective anomalies eroding
themselves from the west via their equatorial Rossby wave response and expanding to
the east via their equatorial Kelvin wave response. This mechanism is hypothesised to
act only over the warm pool, where the MJO can be considered as a perturbation to a
basic state of time-mean convection, hence the mechanism is linear and can be applied
to convective anomalies of either sign. If the warm pool region is bounded by Africa
to the west and the cooler sea surface temperatures of the eastern Paci�c to the east,
then the schematic in Fig. 9 describes how the convective anomalies propagate eastward
and regenerate to the west. Therefore, successive cycles of the MJO can be generated
locally within the warm pool region. Hendon and Salby (1994) also noted that anomalous
MJO convection was preceded by anomalous surface convergence, which they attributed
to frictional Kelvin wave-CISK (Conditional Instability of the Second Kind). However,
the surface convergence in their study was due to the @v=@y component, not the @u=@x
component as was found here. This may be related to the more selective spatial and
temporal �ltering they used.

The second mechanism, where the next cycle of the MJO is initiated by a Kelvin
wave completing a circuit of the equator, has received much attention in the past. As
described in Section 1, the e�ects of moisture and friction have been used to slow the dry
Kelvin wave down to a phase speed in line with observations. The blocking and delay
of the surface Kelvin wave by the orographic barriers of the Andes{Central America
and the East African Highlands, as described here, may be a further mechanism that
can be invoked to slow the dry wave down to match the observations. The meridional
propagation of the SLP anomaly as a trapped wave against the Andes leads to a pressure
torque across the mountain range which is a signi�cant part of the angular momentum
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budget of the MJO (Weickmann et al. 1997). This behaviour has also been noted in a
general circulation model analog of the MJO (Matthews et al. 1999).

It appears likely that several mechanisms are important in determining the behaviour
of the MJO. The two mechanisms proposed here are certainly compatible with those
described in section 1 such as the ocean{atmosphere coupling, in that they act to enhance
convection to the east and shut it o� to the west. The relative magnitudes of these
di�erent mechanisms may also vary from one MJO event to another. Both the equatorial
Rossby wave{surface friction and the equatorial Kelvin wave{orography mechanisms are
currently the subject of a numerical model study, to be reported on later.
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