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ABSTRACT: Existing statistical forecast models of the Madden–Julian Oscillation (MJO) are generally of very low order
and predict the evolution of a small number (typically two) of principal components (PCs). While such models are skilful
up to 25 days lead time, by design they only predict the very largest-scale features of the MJO. Here we present a higher-
order MJO statistical forecast model that is able to predict MJO variability on smaller, more localised scales, that will be of
more direct benefit to national weather agencies and regional government planning. The model is based on daily outgoing
long-wave radiation (OLR) data that are intraseasonally filtered using a recently developed technique of empirical mode
decomposition that can be used in real time. A standard truncated PC analysis is then used to isolate the maximum amount
of variance in a finite number of modes. The evolution of these modes is then forecast using a neural network model,
which does not suffer from the parametrisation problems of other statistical forecast techniques when applied to a higher
number of modes. Compared to a standard 2-PC model, the higher-order PC model showed improved skill over the whole
MJO domain, with substantial improvements over the western Pacific, Arabian Sea, Bay of Bengal, South China Sea and
Phillipine Sea. Copyright c© 2009 Royal Meteorological Society
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1. Introduction

The Madden–Julian Oscillation (MJO) is the domi-
nant mode of intraseasonal tropical convective variabil-
ity (Madden and Julian, 1994; Zhang, 2005). It has a
significant influence on precipitation patterns over the
tropical Indian ocean, the Maritime Continent and the
Western Pacific warm pool region, in addition to influ-
encing a number of other atmospheric phenomena such
as the Asian monsoon (Goswami, 2005) and El Niño
(McPhaden, 1999). The MJO can essentially be char-
acterized as an eastward propagation of tropical deep
convective precipitation anomalies over the warm pool
from the equatorial Indian Ocean over the Maritime Con-
tinent into the western Pacific region with one complete
cycle of the MJO lasting between 30 and 60 days. The
ability to accurately forecast such a significant tropical
mode as the MJO is not only important in its own right
but will be crucial to the success of medium- to extended-
range numerical weather forecasts (Hendon et al., 2000).

Numerical weather prediction (NWP) models are not
attaining the useful skill we might expect in predicting the
MJO (Jones et al., 2000; Waliser, 2005), though recently
there have been some improvements (Woolnough et al.,
2007). These errors in NWP models, associated with the
poor representation of the MJO, are a significant limiting
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factor in the forecast quality and range of synoptic
forecasts in the Tropics. However, the current limitations
are a symptom of the numerical model’s inability to
correctly represent deep tropical convection, rather than
the reaching of some intrinsic limit of predictability of
the MJO. Ferranti et al. (1990) and Hendon et al. (2000)
have demonstrated that the medium- to extended-range
forecast skill of numerical models in the Tropics can
be significantly improved if errors associated with the
representation of the MJO are eliminated.

With the problems encountered by NWP models, alter-
native approaches to representing and forecasting the
MJO have been sought; one such approach has been
the use of statistical models. Much of the work using
statistical models has focused on forecasting principal
component (PC) time series generated from the leading
empirical orthogonal functions (EOFs) of intraseason-
ally filtered outgoing long-wave radiation (OLR) and/or
streamfunction data. Several statistical models have been
developed that have demonstrated useful forecast skill of
these leading EOF patterns out to lead times of up to
25 days (Waliser et al., 1999; Jones et al., 2004; Love
et al., 2008). Furthermore, skilful forecasts of tropical
cyclone activity can also be made, based on statistical
forecasts of the MJO (Leroy and Wheeler, 2008). Waliser
et al. (1999) and Jones et al. (2004) used variations of
multiple linear regression, while Love et al. (2008) used
an auto-regressive, moving-average approach to forecast
the PC time series. This leading EOF methodology is
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based on the widely accepted assumption that the MJO is
adequately represented by the first two EOFs of OLR data
(Salby and Hendon, 1994; Wheeler and Hendon, 2004).

(The method of Wheeler and Hendon (2004) differs
from the method presented here. Given that meridional
variability dominates the seasonal cycle of the MJO,
Wheeler and Hendon (2004) use meridional averaging
to remove this seasonality and represent the MJO with
just two indices. They include seasonal variability at
the presentation stage by projecting the indices onto
seasonally varying regression maps. Our method has
no meridional averaging, thus the seasonal meridional
variation of the MJO is retained through the inclusion of
the higher-order EOFs. We also project onto seasonally
varying regression maps at the presentation stage.)

The aim of this paper is not to necessarily contradict
this assumption, but to create models that have more
degrees of freedom than the basic leading 2-PC model.
To this end, this study will produce forecast models
containing multiple-PC time series with the aim of
encapsulating the large-scale organized behaviour of the
MJO as the leading 2-PC model does, but with a much
greater spatial resolution that will allow us to produce
more detailed forecasts. In this regard, the models have
some similarity to linear inverse model techniques (e.g.
Alexander et al., 2008). Such models could be used as a
pure MJO forecast or as an input or boundary condition
in another model and would be of greater practical use
to national weather agencies and national and regional
governments.

The statistical models we will use are neural network
models; these models have been used extensively in a
number of fields to learn complex nonlinear patterns in
large sets of data. They are strongly nonlinear, and are
potentially a significant advancement on the linear or
partially nonlinear, multiple linear regression and auto-
regressive moving average (ARMA) models (Box and
Jenkins, 1970) that have been employed in previous stud-
ies. They are also able to handle large numbers of inputs
and outputs without suffering significant degradation in
model accuracy, making them ideally suited to this kind
of experiment. In contrast, ARMA-type models become
more difficult to consistently parametrise as the number
of inputs and outputs increases.

2. Data processing

2.1. Real-time intraseasonal data filtering

Producing real-time MJO forecasts with statistical models
requires the use of either a projection onto indices or
a real-time intraseasonal filtering methodology. In this
study we use the empirical mode decomposition (EMD)
methodology (Huang et al., 1998) developed in Love
et al. (2008). This method is able to efficiently extract the
MJO signal while preserving nonlinearities in the input
data and without introducing large unwanted end effects.
The methodology is discussed comprehensively in Love
et al. (2008), so we include only a brief review here.

EMD works on the assumption that the raw data consist
of a number of simple, intrinsic modes of oscillation.
These intrinsic mode functions (IMFs) have a simple
empirical definition. If x(t) is a time series of raw data at
time t , then two cubic spline-fitted functions can be found
that pass through all the local maxima and local minima
in this time series, respectively. The mean function m1(t)

of these two spline-fitted functions can then be calculated.
The first IMF e1(t) is then equal to the difference between
the raw time series and the mean function m1(t) of the
two cubic spline-fitted functions.

e1(t) = x(t) − m1(t) . (1)

The mean function is then recycled and becomes the
raw data for the calculation of the second IMF. Maximum
and minimum spline-fitted functions are again fitted and
the mean function m2(t) calculated. This mean function
is then subtracted from the input time series to give the
second IMF,

e2(t) = m1(t) − m2(t) . (2)

The remainder m2(t) then once more becomes the input
data for the next cycle, and so on, until the remaining data
are either a constant or a simple monotonic function with
some additional insignificant noise.

An IMF is a simple oscillatory mode that consists
of the locally highest frequencies of the time series
input to each decomposition, but its form is more
general than a normal oscillatory mode and can have
an amplitude and frequency that vary continuously in
time. A consequence of the EMD method selecting the
locally highest-frequency components from a time series
to create each IMF is that the broadband MJO signal tends
to be split between the first three IMFs. In addition, the
basic method produces IMFs which have non-negligible
end effects, so some empirical adaptations to the EMD
process are required.

These empirical adaptions aim to isolate the MJO
signal in a single IMF, typically using temporal running
means and changes in the data time interval (i.e. daily
to pentad means) of the input data, and by adjusting the
criteria for identifying the local maxima and minima (i.e.
over nearest neighbours or over next-nearest neighbours,
etc.). The end effects are reduced by increasing the length
of the record of extrema over which the cubic spline-
fitted functions are fitted, therefore mitigating against the
sensitivity at the end point of a cubic spline.

2.2. Data

This real-time intraseasonal filtering methodology is
applied to the interpolated 2.5◦ longitude by 2.5◦ latitude
gridded set of daily means of OLR (Liebmann and Smith,
1996), in a region from 40◦E to 240◦E and from 25◦N
to 25◦S, representing the tropical regions of major MJO
activity. The annual cycle at each grid point (calculated
from the mean and the leading three annual harmonics)
was subtracted from the raw data to produce daily
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anomaly maps. This satellite-measured dataset is a good
proxy for precipitation in the Tropics, and has been used
many times as a measure of the state of the MJO (e.g.
Waliser et al., 1999; Lo and Hendon, 2000; Matthews,
2008).

The dataset runs for 27 years, from 1 January 1979
to 31 December 2005. The data were split into an
18.5-year dependent dataset from 1 January 1979 to
30 June 1997, and an 8.5-year independent-validation
dataset from 1 July 1997 to 31 December 2005. This
adapted-EMD methodology was then used at each grid
point independently, in each of the datasets. This is a
different approach from the single methodology applied
at all points used in Love et al. (2008) and is taken
because the focus of this study is to forecast the MJO
with a high degree of spatial resolution. However the
principles developed in Love et al. (2008) that are used to
calculate the most appropriate empirical adaptions remain
the same.

From the empirical mode decompositions, the IMFs
containing the MJO signal are identified and averaged
into pentad means. All the grid point data were then
combined to make 18.5 years of dependent pentad maps
of MJO data and 8.5 years of independent-validation
pentad maps of MJO data. At this point, the first 12 and
last 6 months of the dependent dataset and the first 6
and last 12 months of the independent-validation dataset
were discarded because of the end effects from the EMD
analysis. This was so they did not influence the model
parametrisation in the case of the dependent dataset, and
so that they did not affect the verification of forecasts
in the case of the independent-validation dataset. For the
actual forecasts, only data up to the respective forecast
date were used in the filtering process so the forecasts are
considered to be true forecasts. Finally, the dependent
dataset was divided into a 12-year dependent-training
dataset (1 January 1980 to 31 December 1991) and a
5-year dependent-testing dataset (1 January 1992 to 31
December 1996).

The effectiveness of the adapted-EMD method as an
intraseasonal filter was illustrated in Figure 5 of Love
et al. (2008), by comparing two-dimensional space–
time power spectra of 30–70-day conventional bandpass-
filtered OLR data and of the adapted-EMD filtered OLR
data. They were very similar, indicating the effectiveness
of the EMD method as an intraseasonal filter.

2.3. Principal component time series

The statistical models used PC time series that were
calculated from an EOF analysis performed on the
adapted-EMD filtered dependent-training dataset over
the domain and periods used in filtering and stated
in the previous section. The PC time series used in
each of the models, along with the proportion of the
total intraseasonal variance they account for, is shown
in Figure 1. Although previous MJO statistical forecast
models have tended to use the leading two PCs, this only
accounts for 16.5% of the variance. This rises rapidly to
37.9% when the leading ten PCs are included, and then
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Figure 1. Proportion of variance (%) accounted for, as a function of
the number of PCs used in the neural network models. The first point

is the 2-PC case.

more slowly to 72.1% by 60 PCs. There are 1701 grid
points in the domain, so eventually 100% of the variance
is accounted for by all 1701 PCs.

3. Neural network modelling

3.1. Methodology

Real-time forecasts (hindcasts) of each set of time series
can be made using neural network statistical models.
Modelling using neural networks is a large and diverse
field, with a wide variety of different types of neural
network and different developmental methodologies. The
networks used here are layered feed forward networks
(Rosenblatt, 1962). These are chosen because the process
of learning patterns in the input data is relatively simple,
making them ideal for model development.

The network consists of an input layer where input data
patterns are presented to the network, a single ‘hidden’
layer (so called because it provides a hidden connection
between the inputs and outputs) and an output layer where
the final network outputs are calculated. Theoretically the
network can have any number of these hidden layers but
only one is necessary as any continuous valued function
can be represented by a three-layer network with a single
hidden layer of nonlinear neurons, given enough neurons
in the hidden layer (Cybenko, 1989). While this may
require an infinite number of neurons in practice, limiting
the neural network to a single layer on the basis of this
theory is a concise way of reducing the vast number
of potential options available when deploying neural
network models.

The architecture of the networks thus takes the general
form shown in Figure 2. The model uses data from the
last 5 pentads; this time lag was identified as optimum
for including all information pertinent to the forecasts in
Love et al. (2008), and was also used by Jones et al.
(2004). Therefore for the N = 5 time series model, there
would be I = 25 inputs in the input layer (values from
the five time series, at 1–5 pentad lags), a hidden layer
(number of units (J ) identified in section 3.3) and K = 25
outputs in the output layer (values for the five time series,
for 1–5 forecast pentads).
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Figure 2. Network architecture of the multiple-PC neural network
models. N is the number of selected time series, the subscript t indicates
the current time, t − α is α pentads previously and t + α is the α-pentad

forecast.

The values of the network parameters ωij and Wjk,
shown in Figure 2, are calculated using a supervised
learning process in conjunction with a back-propagation
method (Rumelhart et al., 1986a,b) which is described
here with reference to Figure 2. In a supervised learning
process, a portion of the dependent-training dataset is
divided into input and correct output data pairs, which
are presented iteratively to the network. Initially a set
of inputs I are fed forward through the network by
multiplication with the input to hidden layer parameters
ωij , which are initially assigned small random values.
Thus, the hidden units receive the inputs,

H
Input
j =

I∑
i=1

ωij Ii . (3)

At the hidden layer, a nonlinear activation function is
applied. The activation function used here is a sigmoid
function (Figure 3). Therefore, the hidden units produce
the outputs,

H
Output
j = g(H

Input
j ) = 1

1 + exp
(
−H

Input
j

) . (4)

The values of these hidden layer neurons are then fed
forward by multiplication by the hidden-to-output layer
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Figure 3. The sigmoid activation function.

parameters Wjk to create the values of the output layer
units

Ok =
J∑

j=1

WjkH
Output
j . (5)

This is the feed forward process; the next stage is
the back propagation part of the learning method. Back
propagation is essentially a form of gradient descent
modified to work with multi-layer nonlinear networks.
It gets its name from the manner in which errors between
forecast output and observed output are propagated back
through the network and are subsequently used to make
adjustments to the network parameters. To calculate these
errors we use the error measure

E = 1

2

P∑
p=1

K∑
k=1

(
ζ

p

k − O
p

k

)2
, (6)

where ζ
p

k is the correct or observed output k for pattern
p, and the squared errors are summed over P patterns
(days on which the forecast is initiated). Substituting the
network output into the error measure equation yields

E = 1

2

P∑
p=1

K∑
k=1


ζ

p

k −



J∑
j=1

Wjkg

(
I∑

i=1

ωij I
p

i

)





2

.

(7)

As this is a continuously differentiable function of all
its parameters, we are able to use the gradient descent
algorithm to propagate the errors back through the net-
work and consequently calculate error-related modifica-
tions to the network parameters ωij and Wjk. Through the
continual presentation of these dependent-training dataset
pairs, the parameters are forced to incrementally converge
to a solution. During this process, the decrease in network
error can be monitored for progress and signs of overfit-
ting as the parameter updates are allowed to adapt to the
local gradient of the network error. Before we consider
the results of the neural network statistical models, a brief
description of the practical process of parametrising them
is required. All of the values of the variables considered
were established in a pragmatic manner from practical
experimentation with the models.
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3.2. Practical application

The network error is calculated after the presentation of
every 73 input/correct-output data pairs (one year’s worth
of data). If the network error is less than all of those
previously calculated, then the current set of parameters
is stored as the optimal set of model parameters.

Due to the high number of degrees of freedom in a
neural network, noise is added to the dependent-training
data by selecting each input/correct-output pair from the
dependent-training dataset randomly with replacement.
This ensures that the solution found is a global rather
than a local minimum. To ensure the generalisation of
the forecast model, the network is tested for overfitting by
calculating the network errors of the dependent-training
and dependent-testing datasets after a minimum of 10
epochs of data have been presented to the network.
An epoch is defined as the number of presentations of
the input/correct-output patterns that equals the number
of pairs in the dependent-training dataset, in this case
876. The two network errors are then normalised by
dividing them by the number of patterns in each set
and then compared as a ratio (dependent-testing divided
by dependent-training). If this figure exceeds 1.05 twice
during the presentation of the data, then the network
is considered to be overfitting, the pattern presentation
process is stopped, and the final set of saved parameters
are selected for the finished model.

Overfitting may not neccesarily occur, so an upper limit
on the capacity of the model to run is set at 1000 epochs.
In addition, if the model has run for a number of epochs
equal to or greater than the number taken to reach its last
network error minimum with no further improvement,
then the parametrisation process is terminated to prevent
unnecessary computation.

3.3. Number of units in the hidden layer

While the number of units in the input and output layers
are fixed variables, the number of units in the hidden
layers of each network is a variable that can be adjusted
so as to most accurately represent the function being
modelled whilst retaining model parsimony. The most
appropriate number for each network was identified by
parametrising each network with a range of numbers of
units in the hidden layer. For each of the multiple-PC
models (Figure 1), 20 networks were created, with 2,
3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 20, 22, 25, 27, 30,
32, 35 and 40 units in the hidden layer, respectively.
For each of these networks, the network error of the
final parametrised model was plotted against the number
of units in the hidden layer. An example of such a
graph for the PC 1–7 time series model is shown in
Figure 4. The network error can be seen to decrease
as the number of units in the hidden layer increases,
it then begins to asymptote before rising again as the
model begins to overfit the data. The optimum number
of units in the hidden layer can be then be identified at
the point the graph appears to asymptote, judged to be at
approximately 8 units.
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Figure 4. Network error as a function of the number of units in the
hidden layer for the 7-PC model.

This is quite a conservative choice; we could easily
choose to have more units in the hidden layer. However,
to ensure model parsimony and prevent overfitting, the
number of units in the hidden layer and consequently
the complexity of the model is kept to a minimum. This
choice is related to the decision not to remove irrelevant
network connections after parametrisation through the
use of ‘pruning’ techniques (Karnin, 1990). Pruning is
a common practice in neural network modelling, but
experimentation showed no significant advantages in its
use with these relatively simple models if the choice
of the number of units in the hidden layer is made
conservatively.

4. Model forecast results

4.1. Individual model results

The parametrised networks were then used to produce
real-time forecasts (hindcasts) of the MJO from the
independent-validation dataset. Forecasts were made of
the sets of PCs, which were then projected onto sets of
regression maps. These regression maps were previously
calculated from the dependent-training dataset, between
maps of the total intraseasonally filtered anomaly field
and the individual PC time series making up the model.
Because of the strong seasonal cycle of the MJO, separate
regression maps were calculated for each calendar month
(i.e. 12 in total for each PC). The relevant regression maps
from the month in which the forecast was valid were then
selected, multiplied by the amplitude of their respective
forecast PCs and summed to make the forecast regression
map. A similar verification regression map was created
by regressing the observed values of the PCs onto the
regression maps and summing them.

To ensure that any forecast skill statistics calculated
are representative of intraseasonal behaviour, a mask
was applied to the maps prior to their calculation. This
mask was created by calculating the variance of the
adapted-EMD filtered dependent-training dataset over the
whole domain (Figure 5). Any grid points that had an
intraseasonal variance less than 100 W m−2 were masked
out, as the model was judged to be forecasting noise there.
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Figure 6. The median of the distribution of anomaly correlations
between forecast regression maps and verification regression maps of
real-time data as a function of forecast lead time, for the multiple-PC
models containing 2 (bold solid), 5 (thin solid), 8 (dotted), 15 (dashed)
and 25 (dot-dashed) PCs. This figure is available in colour online at

www.interscience.wiley.com/journal/qj

The pattern correlation was then calculated between
each pair of forecast regression maps and verification
regression maps. These pattern correlations were then
ordered, and the median and upper and lower quartiles
calculated. The pattern correlation distributions from the
multiple-PC models were then compared to that of the
leading 2-PC model (Figure 6). The leading 2-PC neural
network model has almost identical skill to the leading
2-PC VARMA model in Love et al. (2008). Following
Wilks (2005), useful skill is defined here as a median
pattern correlation above 0.6. Using this global measure
of skill, the leading 2-PC model appears to be the best
model, with useful forecast skill out to a lead time of 5
pentads. The skill of the multiple-PC models gradually
decreases as the number of PCs included increases,
resulting in a shortening of the forecast lead time over
which useful skill is displayed (down to 3 pentads for the
PCs 1–5 model). The large spread in model performance
should also be noted; the upper quartile forecasts for all
the models give excellent forecasts (pattern correlations
above 0.85) out to a lead time of 5 pentads, while the
lower quartile forecasts do not have useful forecast skill
at even one pentad lead time.

However, the important question that arises from these
results is whether the reductions in forecast skill, when
the multiple-PC models are compared to the leading 2-PC
model, is due to a poorer representation of the MJO, or
simply because they contain a greater number of degrees
of freedom in both the forecast regression maps and
verification regression maps. Therefore to make a true
comparison of the models, they all need to be compared
to the same, standard reference dataset.

4.2. Comparison to total anomaly field

The models can be compared by using the total anomaly
field obtained from the adapted-EMD filtered OLR data
as a standard, reference dataset. While this dataset does
contain much information that is not traditionally defined
as being part of the MJO (the leading 2-PC definition
accounts for only 16% of the variance), it allows for a
fair verification process.

Pattern correlations were calculated between forecast
regression maps and the total anomaly field maps for
each model and are shown in Figure 7. The values of the
pattern correlations are lower than what would normally
be considered to be a skilful forecast, but are adequate
for the purpose of comparing the forecasts.
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Figure 7. As Figure 6, but for the anomaly correlations between
the forecast regression maps and the total anomaly field ver-
ification maps. This figure is available in colour online at
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The multiple-PC models with 5, 8 and 15 PCs are supe-
rior to the leading 2-PC model. However, the relationship
between the skill of the forecasts and the number of PCs
they contain is not a simple monotonic one, as the 25-
PC model has lower forecast skill. There are two reasons
for this relationship. Firstly, while adding some additional
PCs to the basic leading 2-PC model produces an increase
in forecast skill, there is a point at which adding extra
PCs to the model provides no new information on organ-
ised intraseasonal behaviour; including them simply adds
noise to the model. Secondly, including additional PCs
increases the complexity of the network, which means it
becomes progressively harder to accurately parametrise.

However, the nature of the relationship between the
number of PCs included in the model and the forecast
skill means that it may be possible to identify the
optimum number of PCs required to forecast the MJO
with a neural network model. To calculate this optimum
number of PCs, the median pattern correlations between
forecast regression maps and the total anomaly field
verification maps were averaged over the five forecast
pentads and over the 20 networks with different numbers
of units in the hidden layer (section 3.3), for each of the
multiple-PC models (Figure 1). Ideally, averaging over a
number of networks would not be required and we would
use a single network with the optimum number of hidden
units for each model. However, in practice this averaging
was required to remove sample noise from the data. The
results are then plotted against the number of PC time
series used in the model (Figure 8, solid line).

This figure shows that there is a clear advantage to
be gained from using more than the leading two PCs
when forecasting the MJO. The averaged pattern corre-
lations increase with the number of PCs in the forecast
model, before levelling off between 7 and 9 PCs. They
then decrease rapidly as the number of PCs is increased
further. Using the principle of parsimony, and after exam-
ining skill scores from models with up to 25 PCs, a model
containing 7 PCs was decided to be the optimum choice.

The dotted line in Figure 8 shows the averaged pattern
correlations based on forecast regression maps from just
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Figure 8. Median anomaly correlations between forecast regression
maps and total anomaly field verification maps averaged over 5 pentad
forecasts from an ensemble of 20 models with a range of units in the
hidden layer, plotted against the number of PCs used in the model (solid
line). The dotted line shows the median anomaly correlation when the
forecast regression map is constructed using just the leading two PCs.

the leading two PCs in each of the models. For the 2-
PC model, this is identical to the solid line from the
full model. For multiple-PC models up to 40 PCs, the
anomaly correlation from the full model forecast (Fig-
ure 8, solid line) is higher than the anomaly correlation
from just the leading two PCs of the model forecast (Fig-
ure 8, dotted line). This indicates that the additional PCs
increase our ability to forecast the leading two PCs. How-
ever, above 40 PCs the increased complexity of the model
reduces our ability to accurately parametrise the network,
and the skill of the full model is lower than that based
on just its leading two PCs.

4.3. Model comparisons

With the optimum network identified (7 PCs, 8 hid-
den layer units), we can compare the ability of this
model to the conventional leading 2-PC model over
the MJO domain, during both winter and summer sea-
sons. This is done firstly by comparing maps of tem-
poral correlations at each forecast pentad for northern
winter (October–March) and northern summer (April–
September). It should be noted that although the forecasts
are separated seasonally for analysis, they are generated
from a year-round model. These are created by calcu-
lating temporal correlations at each grid point between
forecast and total anomaly field verification maps for each
season using the independent-validation dataset (Fig-
ure 9). For each season, the 7-PC model correlation maps
are similar to the 2-PC model correlation maps but the 7-
PC model has slightly greater correlations over the major-
ity of the domain, with the starkest difference between
the two models found in northern summer. Two regions
are of particular note in the northern summer correlation
maps – the northern parts of the domain (Arabian Sea,
Bay of Bengal, South China Sea and Phillipine Sea), and
the equatorial western Pacific. In these regions the opti-
mum 7-PC model has relatively higher correlations than
the conventional leading 2-PC model at both forecast lead
times illustrated.

At this juncture it is important to verify that the fully
nonlinear network model provides superior performance
to the linear multiple regression models that have been
used to forecast the MJO in previous studies (Jones
et al., 2004). This was achieved by creating multiple
regression models using the same inputs, and forecasting
the same outputs as the 2-PC and optimum 7-PC neural
network models. Maps of temporal correlations between
forecast and total anomaly field verification maps for
winter and summer seasons, for each model are compared
in Figure 10. The maps show that, as with the neural
network models, there is an increase in the correlations
with the addition of extra PCs and that this increase is
most pronounced during northern summer. Comparing
Figure 10 to Figure 9 illustrates that the neural network
models perform better than the linear multiple regression
models in general and that this improvement is most
pronounced for the 7-PC model and also during northern
summer.
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Figure 9. Masked maps of the correlation coefficient between forecasts and the total intraseasonal anomaly field from the 2-PC model in the
northern winter at lead times of (a) 1 and (b) 4 pentads. (c, d) are as (a, b), but for the northern summer. (e)–(h) are as (a)–(d), but from the

7-PC model. The contour interval is 0.1. This figure is available in colour online at www.interscience.wiley.com/journal/qj

The behaviour of the optimum 7-PC neural network
model can be analysed in greater detail by calculating
skill scores (Wilks, 2005) for the optimum model con-
taining 3, 4, 5, 6 and 7 PCs, with the conventional leading
2-PC model used as a reference, comparison forecast for
each season. The skill scores S are calculated using the
equation.

S =
(

Afor − Aref

Aper − Aref

)
× 100 , (8)

where Afor is the measure of the multiple-PC model’s
forecast ability (e.g. temporal correlation), Aper is the
value of the measure for a perfect forecast (i.e. 1 for
a correlation), and Aref is the value of the measure for
the reference 2-PC model forecast.

In northern winter the reference 2-PC model will
have skill in the regions where its constituent EOF1

(Figure 11(a)) and EOF2 (Figure 11(b)) patterns have
large amplitude. This is the core MJO region, from
the equatorial Indian Ocean eastwards to the western
Pacific. With the addition of one extra PC (PC3), the
model skill shows an improvement over the western
equatorial Pacific (Figure 11(c)). This is a region where
the corresponding EOF3 pattern has significant amplitude
(Figure 11(d)). Hence part of the extra variance accounted
for by including PC3 is coherently related to the MJO and
improves the skill of the forecast. This may be related to
the movement of the MJO convective envelope eastward
over the Pacific during El Niño events (Kessler, 2001).
The addition of PC4 to the model leads to a further
increase in skill, over the Phillipine Sea (Figure 11(e)).
This corresponds to a region of large amplitude in
the corresponding EOF4 (Figure 11(f)). PC5 sees an
increase in skill over the Bay of Bengal and the eastern
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Figure 10. Masked maps of the correlation coefficient between forecasts and the total intraseasonal anomaly field from the 2-PC model in
northern winter at lead times of (a) 1 and (b) 4 pentads. (c, d) are as (a, b) but for the northern summer. (e)–(h) are as (a)–(d), but from the 7-PC
multiple linear regression model. The contour interval is 0.1. This figure is available in colour online at www.interscience.wiley.com/journal/qj

Arabian Sea (Figure 11(g)), corresponding to an anti-
node in EOF5 (Figure 11(h)). With the addition of
PC6 (Figure 11(i)), there are marginal increases in skill
over these regions, consistent with regions of large
amplitude in EOF6 (Figure 11(j)). With the addition of
EOF7 (Figure 11(l)) there is little change in the skill
(Figure 11(k)).

However, it should be noted that the increase in skill is
not monotonic with the addition of each further PC. Not
all of the variance associated with each EOF is coherently
and predictably related to the MJO. The addition of
this noise eventually degrades the forecast, such that no
further advantage is gained by including more than 7 PCs.
Moreover, of particularly note is the region of negative
skill in the 7-PC model over the eastern Indian Ocean,
and the Banda Sea, Timor Sea and Arafura Sea just to the
north of Australia. This feature becomes coherent when

PC4 is added (Figure 11(e)) and is presumably related to
the part of the EOF4 pattern (Figure 11(f)) in this region
that is not coherently related to the MJO.

In northern summer, the superior performance of the
7-PC model compared to the 2-PC model is much more
pronounced. The addition of one extra PC (PC3), results
in an improvement in model skill over the western equa-
torial Pacific (Figure 12(a)). This improvement is over
a greater area than that of the northern winter forecasts
but is once again a region where the corresponding
EOF3 pattern has significant amplitude (Figure 11(d)).
The addition of PC4 to the model leads to a further
increase in skill, over the Phillipine Sea and an extension
and reinforcing of the improved area over the western
equatorial Pacific (Figure 12(b)). This again corresponds
to a region of large amplitude in the corresponding
EOF4 (Figure 11(f)), while the addition of PC5 sees an
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Figure 11. The spatial patterns of the leading EOFs of OLR: (a) EOF1, (b) EOF2, (d) EOF3, (f) EOF4, (h) EOF5, (j) EOF6, and (l) EOF7.
The contour interval is 2 W m−2, the zero contour is omitted and negative contours are dotted. The right-hand legend gives the shading. Maps
of the skill score of the multiple-PC models compared to the 2-PC model for the northern winter with correlation as the measure of forecast
ability, for one pentad lead time forecasts: (c) 3 PCs, (e) 4 PCs, (g) 5 PCs, (i) 6 PCs, and (k) 7 PCs. The contour interval is 10%, the zero
contour is omitted and negative contours are dashed, and the left-hand legend gives the shading. This figure is available in colour online at

www.interscience.wiley.com/journal/qj

increase in skill over the Bay of Bengal and the eastern
Arabian Sea (Figure 12(c)), which, as for the northern
winter forecasts, corresponds to an anti-node in EOF5
(Figure 11(h)). The addition of PC6 (Figure 12(d)) does
not result in any significant changes in skill, but the

addition of EOF7 (Figure 11(l)) results in an increase in
skill over the Celebes Sea and a significant reinforcing
of the existing improved areas skill (Figure 12(e)).

The effect of this regional increase in skill, particularly
in northern summer, from the addition of EOFs 3–7
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Figure 12. Maps of the skill score of the multiple-PC models compared
to the 2-PC model for northern summer with correlation as the
measure of forecast ability, for one pentad lead time forecasts: (a)
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contour interval is 10%, the zero contour is omitted and negative
contours are dashed. This figure is available in colour online at
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is further demonstrated in a sample forecast initiated
on the 5 August 2001 (Figure 13). The 7-PC model
performs better than the 2-PC model with higher anomaly
correlations at both forecast lead times. The values of the
anomaly correlations should be considered in the context
of the amount of variance accounted for by the EOFs used
in each model: 16% for the 2-PC model, and 32% for the
7-PC model (Figure 1). Comparing this sample forecast
to the map of the skill of the 7-PC model compared

to the 2-PC model in Figure 12(e), it can be seen that
the areas where the 7-PC model performs well, and the
2-PC model does not, correspond approximately to the
areas of positive skill. It should also be noted that the
7-PC model forecast not only forecasts the phase of the
anomalies well, but forecasts their amplitude accurately
as well, while the forecast from the 2-PC model is of low
amplitude when compared to the observations.

5. Conclusions and discussion

This study has assessed the ability of multiple-PC neural
network models in forecasting the MJO and has com-
pared their performance to conventional MJO forecasts
made up of the leading two PCs. By creating models
containing increasing numbers of PCs we were able to
identify the optimum number of 7 PCs to include in the
neural network model. This 7-PC model produced better
forecasts of the total intraseasonal anomaly field than the
conventional leading 2-PC model over the majority of the
MJO’s principle region of influence and at all forecast
lead times. These improvements were most significant
during northern summer particularly over the northern-
most extent of the domain and over the equatorial Western
Pacific (Figure 12). The improvements were also present
in the northern winter forecasts, although there was also
a reduction in skill over the eastern Indian Ocean. The
scale of the improvements in skill should not be underes-
timated, as they must be considered in the context of the
chosen 7-PC model accounting for approximately twice
the amount of variance in the data (32% of the total
intraseasonal anomaly field; Figure 1) that its forecasts
are compared to, than the 2-PC model (16%).

There are probably a number of reasons for the
improvements in forecasting ability. The reason that the
multiple-PC models have superior forecast skill in the
equatorial Western Pacific is likely due to the weaker
variance and less coherent spatial structure of the MJO
in this region, that is poorly represented by the leading
two PCs alone. In the northernmost extent of the domain,
it is probably a case of the additional PCs providing
information that is not present in the leading two PCs. The
analysis of this additional forecast skill also considered
which PCs contributed additional skill in particular areas.
By calculating the skill of the multiple-PC models,
compared to the leading 2-PC model, and then comparing
the results to the spatial patterns of each PC, we found
that PC3 provides the increase in skill over the equatorial
western Pacific while PCs 4–7 provide the increases in
skill over the northern extent of the domain.

There is an area of negative skill over the eastern Indian
Ocean where the leading 2-PC model performs better than
the multiple-PC models in northern winter. This result is
likely due to the inclusion of variance in EOF4 that is
uncorrelated with the MJO, and therefore degrades the
forecast. However, despite the negative skill here, the
forecast correlations in this region (Figure 9) are still
much higher than those over the western Pacific and the
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Figure 13. Observed masked OLR anomaly field on (a) 10 August 2001 and (b) 25 August 2001. Corresponding forecast regression maps
from forecasts initiated on 5 August 2001 for the 7-PC model at lead times of (c) 1 pentad and (d) 4 pentads, and for the 2-PC model at
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northernmost extent of the domain, so the optimum 7-PC
forecast model is still valid.

The decrease in skill over the eastern Indian Ocean
is best explained by consideration of the seasonal cycle
in the MJO. As the MJO is strongest in northern winter
and spring, the leading two PCs are biased towards these
seasons, when the MJO convective envelope is at its
furthest south. Hence the 2-PC model performs well in the
eastern Indian Ocean (high correlations in Figure 9(a–e)),
and may be the optimum model here. Addition of further
PCs then only adds noise here, degrading the forecast in
this region.

Conversely, the leading two PCs do not account for
much of the variance over the northernmost region, where
the MJO is active in northern summer: the Arabian Sea,
Bay of Bengal, South China Sea and Phillipine Sea. The
forecast in these areas is improved when additional PCs
are included.

The example forecast highlights the situations where
the skill of the 7-PC model exceeds that of the 2-PC
model. The observations in Figure 13(a, b) show that
the total intraseasonal anomaly field is dominated by the
quadrupole normally associated with the behaviour of
the MJO and the Asian monsoon in northern summer
(Annamalai and Slingo, 2001). The 7-PC model forecast

also shows that this model can capture the northward
deviation of the MJO’s propagation in northern summer,
whereas the ability of the 2-PC model is constrained
by the fact that the variance in the total intraseasonal
anomaly field accounted for by the first two EOFs is
dominated by the strong variability of the MJO during
northern winter. Therefore whilst the inclusion of higher-
order EOFs will have less impact on forecasting the
MJO during northern winter, it can substantially improve
forecasts (compared to the conventional 2-PC model)
when the MJO is in its weaker northern summer phase.
This is important since it could potentially lead on to
improvements in forecasting the Asian summer monsoon.
However, while the 7-PC neural network model gives
improvements in forecast skill, these improvements come
at the expense of not knowing physically where these
improvements come from, due to the ‘black box’ nature
of neural networks. This point needs to be considered in
any applications of this work or similar studies.

In summary, the 7-PC neural network model produces
more skilful forecasts of the total intraseasonal anomaly
field than a conventional leading 2-PC model. The
improved forecasting ability of this multiple-PC model
has important ramifications for the wider field of MJO
forecasting and indicates that forecasts of the MJO need
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not be limited to the leading two PCs. Being able to
produce forecasts that have a greater degree of accuracy
over certain regions could be extremely useful to national
weather services as a variable in their forecast models
or as an indicator of mean rainfall over the next few
weeks, which would be of considerable use in agricultural
planning and for the tourism industries.
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