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Abstract

We study components of the Bernstein decomposition of a p-adic classical group (with p
odd) with inertial support a self-dual positive level supercuspidal representation of a Siegel Levi
subgroup. More precisely, we use the method of covers to construct a Bushnell-Kutzko type
for such a component. A detailed knowledge of the Hecke algebra of the type should have
number-theoretic implications.

Introduction

Let F0 be a locally compact nonarchimedean local field, and G the F0-points of a connected reduc-
tive quasi-split algebraic group G defined over F0. The smooth representation theory of G plays a
key role in the modern theory of automorphic forms, and is therefore of deep interest to number
theorists. A theorem of Bernstein shows that, in the terminology of [7], it is enough to understand
the subcategories Rs(G) of smooth representations with supercuspidal support in a given inertial
class s. The class s = [L, π]G is determined by a Levi subgroup L ⊂ G and an irreducible super-
cuspidal representation π of L. The theory of types and covers [7] gives one a method for trying to
understand the subcategories Rs(G). In particular, if one knows supercuspidal types for all Levi
subgroups of G, and how to construct G-covers of all such types, then one has a complete set of
types for G. Here, we study the case where F0 has odd residual characteristic, G is a classical group,
and s = [L, π]G with L a Siegel Levi subgroup and π an irreducible supercuspidal representation
fixed by the non-trivial Weyl group element. While this work gives a complete set of G-covers
(and hence types) in this case, the theory cannot be considered complete without knowledge of the
associated Hecke algebras. As shown in [16], a precise understanding of such Hecke algebras gives
information on reducibility of induced representations and therefore determines poles of certain
Langlands L-functions. These considerations will be the subject of future work.

Let G be any of the groups Sp2M , SO2M , SO2M+1, Un or SO∗
n, i.e., a symplectic, quasi-split

special orthogonal group, or quasi-split unitary group. (Here SO∗
n stands for a quasi-split but non-

split special orthogonal group.) Let B = TN be a Borel subgroup with unipotent radical N and
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maximal torus T . There is a choice of standard maximal parabolic subgroup P = LU containing
B whose Levi component L is isomorphic to either GLM ×G0, or ResF/F0

(GLM )×G0; here G0

is an anisotropic group and F/F0 is the quadratic extension defining the unitary group. We study
the theory of types for the inertial class s = [L, π]G, where π is fixed by the non-trivial element w0

of the Weyl group NG(L)/L. The work of Bushnell and Kutzko [6] gives one a type (JL, λL) for
the inertial class sL = [L, π]L. The purpose of this paper is to construct a cover (J, λ) of (JL, λL)
for each group G. (This generalizes the work of Blondel [3] when G = Sp2M , though her proofs
are somewhat different.) Therefore, by [7], the pair (J, λ) is a type for s. One then knows that
the category Rs(G) is isomorphic to the category H(G,λ)-Mod of unital (left) modules over the
λ-spherical Hecke algebra, and we also give the structure of this Hecke algebra.

This isomorphism of categories has implications both for the location of poles of certain L-functions,
and for the classification of local galois representations. One example of this may be seen in recent
work of Kutzko and Morris [16], where G is one of the groups Sp2M , SO2M or SO2M+1, and π
is a level zero self-dual supercuspidal representation. Specific information about the Hecke algebra
H(G,λ) is employed to give a purely local proof of Shahidi’s theorem on the reducibility of parabolic
induction [21], which can also be described in terms of the poles of L-functions. On the other hand,
recent work of Henniart [15], building on work of Harris and Taylor [12] and Henniart [14], relates
this to the classification of local galois representations by their images (e.g. symplectic, orthogonal).
In the case of the level zero representations in [16], the classification of galois representations
obtained via the Hecke algebra isomorphism was known already. However, in the general situation
of this paper, the corresponding classification of galois representations is not fully understood and
has been sought for some time. We hope to address this problem in a sequel.

We now give a summary of the contents of the paper. In §1.1, we review the theory of types
for self-dual representations, via results of Blondel, which is crucial to the construction (see [3,
Proposition 2.2]). (Note that our use of the word self-dual is somewhat non-standard: it does not
mean self-contragredient.) In §1.3, we fix a self-dual representation π of L, and use these results to
define a well-adapted inner product on an F -vector space V , which defines the group G. In §1.4, we
show that there is a choice of simple stratum (see [6]), defining the type in π, which is particularly
well suited. In particular, it gives rise to a skew semisimple stratum (see [24]) in EndF (V ), which
underpins the construction of G-cover.

We construct the G-cover (J, λ) in §2, following the recipe of [6, §7]. The first stages, when we
are working with pro-p groups, are performed first in AutF (V ) (see §2.1), and then transferred to
G using the Glauberman correspondence (see §2.2). Indeed, the principle of the construction is
the same as that of Blondel for symplectic groups [3], though the details are complicated by the
presence of an anisotropic part. We diverge from [3] in the verification that (J, λ) is indeed a G-
cover, where we construct an invertible element f in the Hecke algebra H(G,λ), which is supported
on a strongly (P, J)-positive element in the centre of L (see [7]). To do this, we use an argument
which harks back to the work of Borel [4]: we find two invertible elements of the Hecke algebra
H(G,λ), which each have support in a compact subgroup of G, and whose convolution is supported
on a strongly positive element of L (see Lemmas 2.10, 2.11); a suitable power of this is the required
element f .

Finally, in §2.3, we prove a result on the Hecke algebra H(G,λ), following the techniques and
philosophy of [6, §5] (see also [19]). We show that the subalgebra of elements with support in
a fixed maximal compact subgroup is isomorphic to an algebra of the form H(G′, ρ′), where G′
is a (possibly disconnected) classical group over a finite field, and ρ′ is an irreducible cuspidal
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representation of the Siegel Levi subgroup of G′. In many cases, the calculations in [16] will give
the parameters of these Hecke algebras; in general, the calculations will be similar. This will
simplify the computation of the structure of the Hecke algebra H(G,λ); these specific calculations,
and their implications to the classification of galois representations, are left to future work.

Acknowledgements We would like to thank Kazutoshi Kariyama, for pointing out some mistakes,
and, especially, the anonymous referees, whose careful reading, apposite comments and numerous
corrections and suggestions have led to a much clearer paper.

1 Preliminaries

Let F be a locally compact nonarchimedean local field. Let µ be an automorphism of F with
µ2 = 1; we allow the possibility that µ is trivial. We set F0 = Fµ to be the fixed points of µ. Let
oF be the ring of integers in F , and pF the maximal ideal in oF . Denote by kF the residual field
oF /pF , and let qF = |kF |. We adopt similar notation for F0 and for any extension of F0.

Let p denote the characteristic of kF . We assume that p is not 2 throughout.

For r a real number, we write brc for the greatest integer less than or equal to r, and dre for the
least integer greater than or equal to r.

1.1 Self-dual representations of GLM(F)

We begin by looking at the self-dual representations of GLM (F ), following Blondel [3, §2.2]. Let
W be an M -dimensional F -vector space with basis B = {w1, . . . ,wM}, equipped with the non-
degenerate hermitian form 〈 , 〉W given by 〈wi,wj〉W = δi+j,M+1. Denote by ε̃W the induced adjoint
involution on AW = EndF (W ) and by εW the involution g 7→ ε̃W (g−1) of GW = AutF (W ) ∼=
GLM (F ). Then, writing a ∈ AW with respect to the basis B, we have

ε̃W (a) = †aµ,

where aµ ∈ AW is obtained by applying µ to the coefficients of a, and † denotes transpose with
respect to the off-diagonal. For ρ a representation of a subgroup J of GW , we write ρεW for the
representation of εW (J) given by ρεW (εW (j)) = ρ(j), for j ∈ J .

Let π be an irreducible supercuspidal representation of GW such that π ' πεW . Note that, if
F = F0, then, by Gel′fand and Kazhdan [11], this is equivalent to π being self-contragredient.
Let (JW , λW ) be a maximal simple type in GW corresponding to the inertial equivalence class
[GW , π]GW

. We will need to use the construction of λW quite explicitly so we recall it briefly here
(see [6] for more details).

It begins with a simple stratum [AW , nW , 0, β], where AW is a principal hereditary oF -order in AW ,
with Jacobson radical PW , and nW ∈ N is such that β ∈ P−nW

W \P1−nW
W . Further, E = F [β] is a

field extension of F and E× normalizes AW . We set BW to be the AW -centralizer of E and put
BW = AW ∩BW , a maximal hereditary oE-order in BW . We also fix a uniformizer $E of E.

From the stratum are defined certain subgroups Hk
W = Hk(β,AW ) and Jk

W = Jk(β,AW ), for k ≥ 0,
along with some sets C(AW , k, β) of characters of Hk+1

W called simple characters (see [6, §3]). The
construction of the type continues with a simple character θW ∈ C(AW , 0, β). There is then a
unique irreducible representation ηW of J1

W which contains θW .
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Now we take κW to be a β-extension of ηW , that is, one of a certain family of representations of
JW = J0

W which restrict to ηW . We also recall the construction of κW here, from [6, §5.1–2]. Let
Bm

W be a minimal hereditary oE-order in BW contained in BW and let Am
W ⊂ AW be the unique

hereditary oF -order in AW which is normalized by E× and such that Am
W ∩ BW = Bm

W . Then
[Am

W , nm
W , 0, β] is also a simple stratum, for some integer nm

W , and we can define simple characters
associated to this stratum also. Moreover, there is a canonical bijection τAW ,Am

W ,β : C(AW , 0, β) →
C(Am

W , 0, β) (see [6, §3.6]). Let θm
W be the transfer of θW under this bijection. There is a unique

irreducible representation ηm
W of J1(β,Am

W ) which contains θm
W .

Now we form the group J̃1
W = U1(Bm

W )J1
W . There is a unique representation η̃W of J̃1

W such that
η̃W |J1

W
= ηW and η̃W , ηm

W induce equivalent irreducible representations of U1(Am
W ). Then κW is any

representation of JW such that κW | eJ1
W

= η̃W . Finally, JW /J1
W
∼= U(BW )/U1(BW ) is isomorphic

to GLr(kE), where r = M/[E : F ]. Then there is a cuspidal representation ρW of JW /J1
W such

that
λW = κW ⊗ ρW .

By conjugating (JW , λW ) if necessary, we may and do assume AW is standard ; that is, with respect
to our chosen basis B, it consists of matrices with entries in oF which are upper block triangular
modulo pF . Note that this means that ε̃W (AW ) = AW .

Proposition 1.1 (cf. [3, 2.2 Proposition]). (i) There exists σ ∈ U(AW ) such that JW is stable
under σ̃ : g → σ εW (g)σ−1 and λW is equivalent to λW ◦ σ̃.

(ii) Such an element σ is unique up to left multiplication by JW . It satisfies:

(a) σ εW (σ) ∈ JW and $E
−1σ εW ($E

−1σ) ∈ JW .

(b) The map σ̃ stabilizes H1
W and J1

W and we have θW = θW ◦ σ̃.

(c) The lattices JW , H1
W are stable under X 7→ σε̃W (X)σ−1.

The proof is identical to that of [3, 2.2 Proposition]. Note that we will actually have to be somewhat
more careful in our choices of β and σ, as in [3, 2.3 Corollary] – see Remark 1.4 for more details.

1.2 Simple characters

We record here the following useful lemma from [3, 4.3 Lemma]. Note that this uses very strongly
the condition that p 6= 2.

Lemma 1.2 ([3, 4.3 Lemma 1]). Suppose V ′′ is any F -vector space and [A′′, n′′, 0, β′′] is a simple
stratum in A′′ = EndF (V ′′), where A′′ is a hereditary oF -order in V ′′.

(i) [A′′, n′′, 0, 1
2β

′′] is a simple stratum in A′′, with Hk(1
2β

′′,A′′) = Hk(β′′,A′′), for each k ≥ 0,
and similarly for Jk.

(ii) For each m ≥ 0, the map θ 7→ θ2 is a bijection from C(A′′,m, 1
2β

′′) onto C(A′′,m, β′′) which
is compatible with the canonical bijections τ of [6, §3.6]. We denote the inverse bijection by
θ 7→ θ1/2.
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We will write θL = θ
1/2
W ∈ C(AW , 0, 1

2β) and θm
L = (θm

W )1/2 ∈ C(Am
W , 0, 1

2β). We also let ηL be the
unique irreducible representation of J1(β,AW ) which contains θL, and likewise ηm

L .

Note also that we have (θL ◦ σ̃)2 = θ2
L ◦ σ̃ = θW . In particular, since the squaring map is a bijection,

we see that θL ◦ σ̃ = θL.

1.3 Classical groups

Let V0 be an F -vector space equipped with a nondegenerate anisotropic ν-hermitian form 〈 , 〉0,
with ν = ±1. Thus 〈v0,w0〉0 = ν 〈w0,v0〉µ0 , for all v0,w0 ∈ V0. We write G0 = AutF (V0) and
denote by G+

0 the (anisotropic) group corresponding to the form 〈 , 〉0:

G+
0 := {g0 ∈ G0 : 〈g0v0, g0w0〉0 = 〈v0,w0〉0 for all v0,w0 ∈ V0}.

We put G0 := {g0 ∈ G+
0 : NF/F0

◦ detG0/F (g0) = 1}. We allow the possibility that V0 = {0}.

Set V = W ⊕ V0 ⊕W and define a form 〈 , 〉 on V by

〈(v1,v0,v2), (w1,w0,w2)〉 =
〈
v1, σ

−1w2

〉
W

+ 〈v0,w0〉0 + ν
〈
σ−1v2,w1

〉
W
,

for v1,v2,w1,w2 ∈W and v0,w0 ∈ V0, where σ is the element given by Proposition 1.1. Note that
〈 , 〉 is now a nondegenerate ν-hermitian form in which the two copies of W are (dual) maximal
isotropic subspaces, and V0 is the maximal anisotropic subspace. Let N = dimF V ; then N =
2M +D, where D = dimF V0.

We put A = EndF (V ) ∼= M(N,F ). We set G = A× = AutF (V ) ∼= GLN (F ) and

G+ = {g ∈ G : 〈gv, gw〉 = 〈v,w〉 for all v,w ∈ V },

a unitary, symplectic or orthogonal group over F0. We also put

G := {g ∈ G+ : NF/F0
◦ detG/F (g) = 1}.

More generally, for H a subgroup of G, we will write H+ for the intersection H+ = H ∩G+, and
H for the intersection H = H ∩G.

We denote by ε̃ the adjoint involution on A determined by the form; that is, for a ∈ A, ε̃(a) is the
unique element of A such that

〈av, w〉 = 〈v, ε̃(a)w〉 , for all v, w,∈ V,

We have an involution ε on G given by ε(g) = ε̃(g−1), for g ∈ G, so that G+ = Gε.

Denote by φ1 (respectively φ2) the embedding of AW into A via the embedding of W into the
first (respectively last) factor of V = W ⊕ V0 ⊕W , so that φ1(a)(v1,v0,v2) = (av1,v0,v2). The
involution ε̃ interchanges the images of these two embeddings, and a straightforward calculation
shows that ε̃(φ1(a)) = φ2(σεW (a)σ−1) = φ2(σ̃(a)), using the notation of Proposition 1.1.

Given a representation ρ of a subgroup J of G, we denote by ρε the representation of ε(J) given
by ρε(ε(j)) = ρ(j), for j ∈ J .

For L an oF -lattice in V , we define its dual lattice to be

L# = {v ∈ V : 〈v, L〉 ⊂ pF }.
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We note that, since G+
0 stabilizes lattices L0 ⊃ L#

0 ⊃ pFL0 in V0 (see [17, §1.8]), it is contained in
a maximal ε-stable compact open subgroup of G0 (namely, the G0-stabilizer of these lattices).

Let P be the parabolic subgroup of G stabilizing the self-dual flag

{0} ( W ⊕ {0} ⊕ {0} ⊆ (W ⊕ {0} ⊕ {0})⊥ = W ⊕ V0 ⊕ {0} ( V,

with unipotent radical U . Let L denote the Levi component of P which stabilizes each copy of
W along with V0. So L ∼= GLM (F )×GLD(F )×GLM (F ). Let P− denote the opposite parabolic
subgroup, P− = LU−. We also put AL = AW ⊕A0 ⊕AW = Lie(L).

We set P = P ∩ G, the Siegel parabolic subgroup of G, with unipotent radical U = U ∩ G, and
L = L ∩ G, a Levi component of P . Then L ∼= GLM (F ) × G0; in block matrix form, we identify
GW ×G0 with L via the isomorphism

i(g, g0) =

g 0 0
0 g0 0
0 0 σ̃(g)

 , for g ∈ GW , g0 ∈ G0.

Note here that we are writing matrices with respect to the non-Witt basis B ∪ B0 ∪ B of V =
W ⊕ V0 ⊕W , for B0 any basis of V0. We choose to write all matrices with respect to this basis,
rather than with respect to the Witt basis B ∪B0 ∪ σB.

If ρ is a representation of a subgroup JW of GW , and J0 is a subgroup of G0, then we denote by
i(ρ) the representation of i(JW × J0) given by i(ρ)(i(j, j0)) = ρ(j), for j ∈ JW , j0 ∈ J0. If the
group J0 is not specified then we take it to be the whole of G0.

More generally, if J is a subgroup of G such that J ∩ L = i(JW × J0) and J has an Iwahori
decomposition with respect to (L,P ), then we denote by ĩ(ρ) the representation of J given by

ĩ(ρ)(u−lu) = i(ρ)(l), for u− ∈ J ∩ U−, l ∈ J ∩ L, u ∈ J ∩ U,

whenever this defines a representation.

It will also be useful, later, to put V ′ = W ⊕ {0} ⊕W ⊂ V , equipped with the restriction of the
form 〈 , 〉. We put A′ = EndF (V ′), G′ = AutF (V ′), ε the involution of G′ associated to the form,
and G′+ = (G′)ε. We also let P ′ be the maximal parabolic subgroup of G which stabilizes the flag

{0} ( V ′ ( V,

with unipotent radical U ′. Let L′ denote the Levi component of P ′ which stabilizes the decompo-
sition V = V ′ ⊕ V0, so that L′ ∼= G′ × G0, and let P ′− denote the opposite parabolic subgroup,
with unipotent radical U ′−. We note that, while L′ is stable under the involution ε, L′ is not a
Levi subgroup of G.

We consider the inertial class sL = [L, i(π)]L and a type (JL, λL) for it, where

JL := i(JW ) = i(JW ×G0) and λL := i(λW ).

We are going to construct a G-cover of this type, which will give a G-type for the inertial class
s = [L, i(π)]G.
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1.4 Semisimple characters

We continue with the notation of the previous sections. Let LW = {LW
k : k ∈ Z} be the oE-lattice

chain in W corresponding to AW , so that

AW = {a ∈ AW : aLW
k ⊂ LW

k for all k ∈ Z},

normalized so that LW
0 = oFw1 ⊕ · · · ⊕ oFwM . Let eW denote the oF -period of AW . We define L′

to be the oE-lattice chain of oF -period 2eW in V ′ given by

· · · ⊃ LW
k ⊕ LW

k ⊃ LW
k ⊕ LW

k+1 ⊃ LW
k+1 ⊕ LW

k+1 ⊃ · · ·

It is straightforward to check, since σ ∈ U(AW ), we have(
LW

k ⊕ LW
k

)#
= LW

eW−k ⊕ LW
eW−k and

(
LW

k ⊕ LW
k+1

)#
= LW

eW−k−1 ⊕ LW
eW−k

so that L′ is a self-dual lattice chain. We write L′ = {L′k : k ∈ Z}, where we number the lattices so
that L′0 = LW

b eW
2
c ⊕ LW

d eW
2
e = (L′0)

#. Let A′ = a0(L′) be the oF -order associated with L′.

Now let Λ′ be the oE-lattice sequence of period 4eW in V ′ = W ⊕W given by

Λ′(k) = L′b k
2
c

so that every lattice of L′ occurs twice in the sequence and Λ′(k)# = Λ′(1− k), for k ∈ Z.

We consider the element 1
2β ⊕

1
2β ∈ AW ⊕ AW , which we will also call 1

2β. Then [L′, 2nW , 0, 1
2β]

and [Λ′, 4nW , 0, 1
2β] are both simple strata in A′ so we can define the orders H, J and the groups

Hk, Jk for them, and also simple characters (see [8]). These are in fact the same, up to a scaling
of the index (loc. cit.); so, for example,

Hk(1
2β,Λ

′) = Hd k
2
e(1

2β,L
′).

In particular, H1(1
2β,Λ

′) = H1(1
2β,L

′) and we shall denote this group H ′1. Similarly, we put
J ′1 = J1(1

2β,Λ
′) = J1(1

2β,L
′) and J ′ = J(1

2β,Λ
′) = J(1

2β,L
′). Likewise, the simple characters of

H ′1 are the same: C(Λ′, 0, 1
2β) = C(L′, 0, 1

2β).

Moreover, the groups H ′1, J ′1 and J ′ are described in [3, 2.2 Lemma]. So, for example, with respect
to the basis B ∪B of V ′ (which, we recall, is not a Witt basis),

H ′1 =
(

H1
W JW

$EJW H1
W

)
and J ′

1 =
(
J1

W $E
−1HW

HW J1
W

)
.

Finally, we have the bijection τAW ,A′, 1
2
β : C(AW , 0, 1

2β) → C(A′, 0, 1
2β) from [6, §3.6]. Let θ′ be the

image of θL under this map. Note that, by [6, §7.1–2], θ′ is trivial on H ′1 ∩U and H ′1 ∩U−, while

θ′|H′1∩L = θL ⊗ θL.

It is straightforward to check that Proposition 1.1, together with our definition of the form 〈 , 〉,
implies that θ′ is fixed by the involution ε (cf. [3, 2.3 Corollary]).

Now let L0 be the unique self-dual oF -lattice chain in V0

· · · ⊇ L0 ⊇ L#
0 ⊇ pFL0 ⊇ pFL

#
0 ⊇ · · · .
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Note that we may have L0 = L#
0 or L#

0 = pFL0 so this lattice chain has oF -period e0 = 1 or 2. Let
Λ0 be the self-dual oF -lattice sequence of period 4eW given by

Λ0(k) =

{
p

j
FL0 if d k

2eW
e = 2j,

p
j
FL

#
0 if d k

2eW
e = 2j + 1,

so that every lattice of L0 appears with equal multiplicity 4eW /e0. Note also that Λ0(k)# =
Λ0(1−k), for k ∈ Z. Moreover, the filtration of A0 determined by Λ0 is the same as that determined
by L0 up to a scaling of the index. In particular, a0(Λ0) = A(L0) and a1(Λ0) = P(L0).

Finally, we define Λ to be the oF -lattice sequence in V given by

Λ(k) = Λ′(k)⊕ Λ0(k), for k ∈ Z.

Then, by construction, Λ is self-dual and of oF -period e = 4eW . We consider the element 1
2β⊕ 0 ∈

A′⊕A0 (in fact, in AL); by abuse of notation, we will still call this element 1
2β. Then [Λ, n, 0, 1

2β] is
a semisimple stratum in A, where n = 4nW . (See [24, §3.1] for the definition of semisimple stratum,
which is more general than the definition in [22, §3.3]; in particular, null strata are thought of as
simple strata so, alternatively, the definition in [22] could be used with “simple” replaced by “simple
or null” everywhere. The results of [22] all remain valid in this situation – the proofs are the same
and they are also proved in [24].)

We put J = J(1
2β,Λ) (see [22] or [24]) and similarly for J1, H1, J, H etc. In matrix form we have

J =

 JW adn/2e(Λ) $E
−1H1

W

adn/2e(Λ) A(L0) adn/2e(Λ)
H1

W adn/2e(Λ) JW

 and H =

 HW abn/2c(Λ) J1
W

abn/2c(Λ) A(L0) abn/2c(Λ)
$EJ1

W abn/2c(Λ) HW

 ,

and there are similar decompositions for Jk and Hk, k ≥ 1. Since J ′ is stable under the involution
ε and Λ is self-dual, we see that J is stable under the involution ε, and likewise for J1 and H1.

Let θ be the unique semisimple character (see [22, §3.3] or [24, §3.2]) of H1 such that

θ|H′1 = θ′.

Now θ is trivial on H1∩U ′ and H1∩U ′− by definition so, since θ′ is trivial on H ′1∩U and H ′1∩U−,
we see that θ is in fact trivial on H1 ∩ U and H1 ∩ U−. Since θ|H′1 is fixed by ε and θ|U1(L0) is
trivial (by definition), we see that θ is fixed by ε. Moreover, since θ2

L = θW , we have

θ|H1 = ĩ(θW ).

Proposition 1.3 (cf. [3, 2.3 Theorem]). There exists a semisimple stratum [Λ, n, 0, α] in A with
α ∈ AL and α = −ε̃(α) such that θ ∈ C(Λ, 0, α).

Proof Let ϕ : A′ → A′ be the involution given by conjugation by

h =
(
IM 0
0 −IM

)
.

Then (θ′)ϕ = θ′, since it is trivial on the unipotent parts, and (θ′)ε = θ′. Thus, θ′ is invariant under
the subgroup Ω of Aut(G′) generated by ε and ϕ. As εϕ = ϕε, we see Ω ∼= Z2 × Z2, and thus
by [22, Theorem 6.3] (see the Remarks at the bottom of page 139 there also), there is a choice of
α, fixed by ϕ and with α = −ε̃(α), such that θ′ ∈ C(Λ′, 0, α). Then [Λ, n, 0, α] is as required. �
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Remark 1.4. Writing α = diag(αW , 0,−σ̃(αW )) for the element of Proposition 1.3, we see that
our original type (JW , λW ) could also have been defined using 2αW in place of β. Replacing β
by 2αW , the discussion following [3, 2.3 Theorem] applies in this situation (see especially [3, 2.3
Corollary] and the Remarks following). In particular, we may assume that σ is such that σ̃ induces
a non-trivial galois involution on E = F [β] which extends the involution µ on F and sends β to −β.
From now on, we assume that σ is chosen in this more careful way; this implies that σεW (σ) ∈ BW .
Moreover, when µ is trivial, the degree [E : F ] is even so that M = dimF (W ) is even also.

As in the construction of the type (JW , λW ), we will also need the transfer of θ to a minimal order,
which we give now. Let B′ denote the centralizer in A′ of E and put B′ = A′ ∩ B′, an oE-order
of period 2 with radical Q′. Recall that we had, in §1.1, a minimal oE-order Bm

W ⊂ BW . Let
B′m ⊂ B′ be the ε̃-stable minimal oE-order in B′ given by

B′m = (Bm
W ⊕ ε̃(Bm

W )) + Q′,

(cf. [3, 4.3]). Let L′m be the corresponding self-dual oE-lattice chain in V ′, of oE-period 2r, where
r = M/[E : F ]. Let Λ′m be the self-dual oE-lattice sequence in V ′ in which every lattice of L′m

occurs twice and with the indexing chosen such that

Λ′m(k)# = Λ′m(1− k), for all k ∈ Z.

Note that [L′m, 2nm
W , 0, 1

2β] and [Λ′m, 4nm
W , 0, 1

2β] are simple strata in V ′ whose associated groups
and characters are the same up to a scaling of index.

Now let Λm be the oF -lattice sequence in V defined by

Λm(k) = Λ′m(k)⊕ Λ0

(
dk

r e
)
.

It is a self-dual lattice sequence of period re such that a0(Λm) ⊂ a0(Λ). Then [Λm, nm, 0, 1
2β] is a

semisimple stratum in A, where nm = 4nm
W = nr.

We put θ′m = τΛ′,Λ′m, 1
2
β(θ′), a simple character of H1(1

2β,Λ
′m); then also θ′m = τAm

W ,Λ′m, 1
2
β(θm

L ).

Finally, let θm be the unique semisimple character of H1
m = H1(1

2β,Λ
m) such that

θm|H1( 1
2
β,Λ′m) = θ′

m
.

In the language of [24, §3.5], we have θm = τΛ,Λm, 1
2
β(θ).

2 Covers and Hecke Algebras

In this chapter, we construct our cover and find the structure of its Hecke algebra. The method of
construction of the cover is (apart from the added complication of the anisotropic part) the same
as that in [3] (the reader may find it helpful to consult the diagram on page 552 of [3], especially
the left side). However, here we obtain full information on the intertwining of the cover (rather
than just a bound), and it is this which allows us, in §2.3, to identify the Hecke algebra. In order
to obtain this information on the intertwining, we need to review carefully the construction and
keep track of the intertwining at each stage.
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We continue with the notation above, so we have [Λ, n, 0, 1
2β] a skew semisimple stratum in A, with

β ∈ AL, and θ ∈ C(Λ, 0, 1
2β) such that

θ|H1 = ĩ(θW ).

We also have E = F [β] and B the A-centralizer of E; note here that, with notation as above,
B× = (B′)× ×G0. From Remark 1.4, the galois involution µ extends to E (as σ̃ when we consider
E embedded in AW , or as ε̃ when we consider E embedded in A), and we write E0 for the fixed
subfield, which has index 2. We fix a uniformizer $E of E such that $E

µ = ±$E . Note that
β ∈ AW embeds in A as diag(β, 0,−σ̃(β)) = diag(β, 0, β).

2.1 G-Covers

We begin by doing some work in G, before using Glauberman’s correspondence to transfer this
information to G.

Recall that, given ρ a representation of a subgroup H of G and g ∈ G, the intertwining space
Ig(ρ|H) is

Ig(ρ|H) = HomH∩gH(ρ, gρ),

where gH = gHg−1 and gρ is the representation of gH given by gρ(ghg−1) = ρ(h), for h ∈ H. The
G-intertwining IG(ρ|H) of ρ is then defined to be

IG(ρ) = IG(ρ|H) = {g ∈ G : Ig(ρ|H) 6= 0}.

In our situation, we recall the following, from [22, Theorem 3.14, Corollary 4.2 and Proposition 4.3]:

Lemma 2.1. (i) IG(θ) = J1B×J1.

(ii) There exists a unique irreducible representation η of J1 which contains θ. Moreover, dim η =
(J1 : H1)

1
2 and, for g ∈ G,

dim Ig(η|J1) =

{
1 if g ∈ J1B×J1;
0 otherwise.

From [6, §7.1] (together with [22, §3.3]), H1 has an Iwahori decomposition with respect to (L,P )
and

H1 ∩ L = H1(1
2β,AW )× U1(Λ0)×H1(1

2β,AW ).

There are also similar decompositions for J1 and for J . Moreover, θ is trivial on H1 ∩ U and
H1 ∩ U−, and the restriction of θ to H1 ∩ L takes the form

θ|H1∩L = θL ⊗ 1⊗ θL.

We recall ([22, Proposition 4.1] – see also [6, §3.4]) that the pairing

(j, j′) 7→ θ[j, j′], for j, j′ ∈ J1

induces a nondegenerate alternating bilinear form kθ on J1/H1; likewise, we have a nondegener-
ate alternating bilinear form kθL

on J1(1
2β,AW )/H1(1

2β,AW ). Then, exactly as in [6, Proposi-
tion 7.2.3], we get:
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Lemma 2.2 (cf. [6, Proposition 7.2.3]). (i) The subspaces J1∩U−/H1∩U− and J1∩U/H1∩U of
J1/H1 are both totally isotropic for the form kθ and orthogonal to the subspace J1∩L/H1∩L.

(ii) The restriction of kθ to the group

J1 ∩ L/H1 ∩ L = J1(1
2β,AW )/H1(1

2β,AW )× J1(1
2β,AW )/H1(1

2β,AW )

is the orthogonal sum of the pairings kθL
, kθL

.

(iii) We have an orthogonal sum decomposition

J1

H1
=
J1 ∩ L
H1 ∩ L

⊥
(
J1 ∩ U−
H1 ∩ U−

× J1 ∩ U
H1 ∩ U

)
.

We define the groups

H1
P = H1(J1 ∩ U), J1

P = H1(J1 ∩ P ), JP = H1(J ∩ P ).

Since J1 normalizes θ and θ|H1∩U is trivial, we can define the character θP of H1
P by

θP (hu) = θ(h), for h ∈ H1, u ∈ J1 ∩ U.

As in [6, §7.2], we immediately get:

Corollary 2.3 (cf. [6, Propositions 7.2.4, 7.2.9]). There is a unique irreducible representation ηP

of J1
P such that ηP |H1

P
contains θP . Moreover, η ' IndJ1

J1
P
ηP and, for each b ∈ B×, there is a

unique (J1
P , J

1
P )-double coset in J1bJ1 which intertwines ηP .

We note also that we certainly have ηP |J1
P∩L ' ηL ⊗ 1⊗ ηL.

Proposition 2.4. We have IG(θP ) = J1
PB

×J1
P and hence IG(ηP ) = J1

PB
×J1

P .

Proof This is a special case of [25, Lemma 5.8]. �

We will also need similar results for our character θm of H1
m = H1(1

2β,Λ
m). Let ηm be the unique

irreducible representation of J1
m = J1(1

2β,Λ
m) which contains θm. As above, H1

m and J1
m have

Iwahori decompositions with respect to (L,P ) and we can define the character θm
P of H1

m,P =
H1

m(J1
m ∩ U) by trivial extension of θm. The same proofs (indeed, they are somewhat simpler) as

those of Lemma 2.2, Corollary 2.3 and Proposition 2.4 show that

IG(θm
P ) = J1

m,PB
×J1

m,P ,

where J1
m,P = H1

m(J1
m ∩ P ), that there is a unique irreducible representation ηm

P of J1
m,P which

contains θm
P , and that ηm = IndJ1

m

J1
m,P

ηm
P .

Let θm
L denote the transfer to H1(1

2β,A
m
W ) of θL (this is just the restriction of θm to one of the

copies of GW ⊂ L). Then, if ηm
L denotes the unique irreducible representation of J1(1

2β,A
m
W ) which

contains θm
L , we have

ηm
P |H1

m∩L ' ηm
L ⊗ 1⊗ ηm

L .

11



2.2 G-Covers

Now we will transfer the information obtained in the last section to G, using Glauberman’s corre-
spondence (see [10], or [22] for the situation here). Let Ω denote a 2-group of automorphisms of
G. Recall that if H is a pro-p subgroup of G and HΩ is the group of Ω-fixed points, then there is
a bijection, denoted ρ ↔ gΩ(ρ) between (equivalence classes of) irreducible representations of H
with ρω ' ρ, for all ω ∈ Ω, and (equivalence classes of) irreducible representations of HΩ. Further,
this correspondence commutes with irreducible restriction and irreducible induction. Recall also
that the representation gΩ(ρ) is characterized as the unique component of ρ|HΩ appearing with
odd multiplicity.

We will usually apply this correspondence with Ω the group of automorphisms of G consisting of
ε and the identity, in which case we will just write g for the correspondence. Note also that, for
ε-stable pro-p subgroups H of G, we have Hε = H+ = H.

We write θ = g(θ) = θ|H1 , a skew semisimple character (see [22, §3.4]). We also set

G+
E = B ∩G+ and GE = B ∩G

so that G+
E (respectively GE) is the direct product of a unitary group, for the quadratic extension

E/E0, and the anisotropic group G+
0 (respectively G0).

We recall first the following, from [22, Theorem 3.16] (see also the Remarks following op. cit.
Corollary 4.2), and [24, Proposition 3.3.1]:

Lemma 2.5. (i) IG+(θ) = J1G+
EJ

1 and IG(θ) = J1GEJ
1.

(ii) There exists a unique irreducible representation η of J1 which contains θ. Moreover, η = g(η),
dim η = (J1 : H1)

1
2 and, for g ∈ G+,

dim Ig(η|J1) =

{
1 if g ∈ J1G+

EJ
1;

0 otherwise.

We also put θP = g(θP ) = θP |H1
P
. Note that we have

θP = ĩ(θW ).

Remark 2.6. (i) Note that, in the language of [25, Definition 5.1], the decomposition V =
W ⊕ V0 ⊕W (of which the Levi subgroup L is the stabilizer) is properly subordinate to the
stratum [Λ, n, 0, β]. Then [25, Lemma 5.3] implies that U(Λ) ∩ B ∩ U = U1(Λ) ∩ B ∩ U . In
particular, J ∩ U = J1 ∩ U .

(ii) From (i), we have JP ∩ U = H1
P ∩ U , and the same is true for U−. Then the property

θP = ĩ(θW ) implies (see [2, Lemma 1(ii)]) that

(JP ∩ U)(JP ∩ U−) ⊂ (JP ∩ U−) Ker(i(θW ))(JP ∩ U).

In particular (by loc. cit.), if ρ is a representation of a subgroup K of JW ×G0 which restricts
to a multiple of θW , then ĩ(ρ) is a well-defined representation of (JP ∩ U−)(i(K))(JP ∩ U).
We will use this several times, for example, in the definitions of η̃P and κP below.
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From Proposition 2.4, together with [22, Corollary 2.5] and[23, Theorem 2.3], we get:

Proposition 2.7. IG+(θP ) = J1
PG

+
EJ

1
P and IG(θP ) = J1

PGEJ
1
P .

Let θm = g(θm) = θm|H1
m
. Let η be the unique irreducible representation of J1 which contains θ, as

in Lemma 2.5, and let ηm be the unique irreducible representation of J1
m which contains θm. Note

that θP = g(θP ) is the trivial extension of θ to H1
P and, similarly, θm

P = g(θm
P ) the trivial extension

of θm to H1
m,P .

We also put ηP = g(ηP ) and ηm
P = g(ηm

P ). By taking ε-fixed points in J1/H1, we can imitate
Lemma 2.2 and Corollary 2.3 to show that there is a unique irreducible representation of J1

P which
contains θP and, since ηP |H1

P
is a multiple of θP , we see that this must be ηP . Likewise, ηm

P is the

unique irreducible representation of J1
m,P containing θm

P . We also have

ηP = ĩ(ηW ) and ηm
P = ĩ(ηm

W ),

since the representations on the right restrict to multiples of ĩ(θW ) = θP and ĩ(θm
W ) = θm

P respec-
tively.

The group U(Λ) ∩ B has Iwahori decomposition with respect to (L,P ), and normalizes J1(1
2β,Λ)

and H1(1
2β,Λ). Hence U(Λ) ∩ B normalizes J1

P and, since U(Λm) is contained in U(Λ), we can
form the group J̃1

P = (U1(Λm) ∩ GE)J1
P . We also recall that we have the representation η̃W of

J̃1
W = U1(Bm

W )J1
W (see §1.1) and observe that J̃1

P ∩ L = i(J̃1
W × U1(Λ0)).

Proposition 2.8 (cf. [6, Propositions 5.1.15, 5.1.19]). There is a unique representation η̃P of J̃1
P

such that

(i) η̃P |J1
P

= ηP ;

(ii) η̃P and ηm
P induce equivalent irreducible representations of U1(Λm).

Moreover, η̃P = ĩ(η̃W ) and

dim Ig(η̃P ) =

{
1 if g ∈ J̃1

PG
+
E J̃

1
P ;

0 otherwise.

Proof Let Ω1 be the group of automorphisms of G+ generated by conjugation by

h1 =

−IM ID
−IM

 .

Then (G+)Ω1 = (G′)+×G+
0 . We will denote the Glauberman correspondence gΩ1

on representations
of pro-p subgroups of G by g1. We note that, since all our representations are trivial on U ′ and
U ′−, they are fixed by Ω1 and, moreover, g1 is just restriction for these representations (since their
restrictions are irreducible).
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Let Ω2 be the group of automorphisms of (G+)Ω1 generated by conjugation by

h2 =

IM ID
−IM

 .

Then ((G+)Ω1)
Ω2 = L. We will denote the Glauberman correspondence gΩ2

on representations
of pro-p subgroups of (G+)Ω1 by g2. As above, since all our representations are trivial on U and
U−, their transfers to (G+)Ω1 are fixed by Ω2 and, moreover, g2 is again just restriction for these
representations (since their restrictions are still irreducible).

We write gΩ for the composition g2 ◦ g1. Then we have

gΩ(ηP ) = i(ηW ) and gΩ(ηm
P ) = i(ηm

W ).

We define η̃P to be ĩ(η̃W ). Then we clearly have gΩ(η̃P ) = i(η̃W ) and η̃P |J1
P

= ηP . Also, since the
intertwining of η̃P is contained in that of ηP ,

IG+(η̃P ) ∩ U1(Λm) ⊂ J1
PG

+
EJ

1
P ∩ U1(Λm) = (U1(Λm) ∩GE)J1

P = J̃1
P ,

so the induced representation IndU1(Λm)eJ1
P

η̃P is irreducible. Likewise, IndU1(Λm)

J1
m,P

ηm
P is irreducible.

Then, since Glauberman’s correspondence commutes with irreducible induction, we have

gΩ

(
IndU1(Λm)eJ1

P

η̃P

)
= Indi(U1(Λm

W )×U1(Λ0))

i( eJ1
W×U1(Λ0))

i(η̃W )

' Indi(U1(Λm
W )×U1(Λ0))

i(J1(β,Am
W )×U1(Λ0))

i(ηm
W ) = gΩ

(
IndU1(Λm)

J1
m,P

ηm
P

)
.

Condition (ii) now follows as gΩ is injective.

Now we show that these two conditions determine η̃P uniquely. For this, we need only show that ηP

occurs in IndU1(Λm)

J1
m,P

ηm
P with multiplicity one. We use the Mackey formula to compute the restriction

ResU1(Λm)

J1
P

IndU1(Λm)eJ1
P

η̃P .

If x ∈ U1(Λm) intertwines η̃P with ηP , then it intertwines ηP with itself so lies in J̃1
P , as above.

Thus the multiplicity of ηP in IndU1(Λm)

J1
m,P

ηm
P is equal to its multiplicity in η̃P , which we know to be

one.

Finally, we must show that all of G+
E intertwines η̃P . So suppose b ∈ G+

E . Since b intertwines ηm
P ,

it certainly intertwines
IndU1(Λm)eJ1

P

η̃P ' IndU1(Λm)

J1
m,P

ηm
P .

We deduce that there exist u, v ∈ U1(Λm) such that ubv intertwines η̃P . In particular, ubv in-
tertwines ηP so there exist j1, j2 ∈ J1

P such that j1ubvj2 ∈ G+
E . Note that this element also still

intertwines η̃P .

Now

U1(Λm)bU1(Λm) ∩B× = U1(Λm)bU1(Λm) ∩ L′ ∩B×

= (U1(Λm) ∩ L′)b(U1(Λm) ∩ L′) ∩B×,
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by [23, Lemma 2.1] applied with Γ = Ω1. Further,

(U1(Λm) ∩ L′)b(U1(Λm) ∩ L′) ∩B× = (U1(Λm) ∩B×)b(U1(Λm) ∩B×),

by [6, Theorem 1.6.1] (which we may apply since, in A′ we have a simple stratum). Then, apply-
ing [23, Lemma 2.1] again, with Γ = {1, ε}, we get

U1(Λm)bU1(Λm) ∩G+
E = (U1(Λm) ∩GE)b(U1(Λm) ∩GE).

So there exist u′, v′ ∈ U1(Λm) ∩GE such that u′bv′ = j1ubvj2 and, since u′, v′ ∈ J̃1
P , we see that b

intertwines η̃P .

Finally, the assertion that the intertwining spaces are all 1-dimensional follows immediately from
Lemma 2.5(ii), since η̃P extends η. �

Now we define κP = ĩ(κW ), a representation of JP , so that κP | eJ1
P
' η̃P . We also put ρP = ĩ(ρW ),

a representation of JP trivial on J1
P , and

λP = ĩ(λW ) = κP ⊗ ρP .

Writing matrices with respect to the (non-Witt) basis B ∪B0 ∪B of V = W ⊕ V0 ⊕W , we set

w1 =

 IM
ID

νσεW (σ)

 ,

where Ik denotes the k × k identity matrix. We also put

W = {i($E
a,1V0) : a ∈ Z} ∪ {i($E

a,1V0)w1 : a ∈ Z} ,

where $E is our fixed uniformizer of E ⊂ AW and 1V0 is the identity map on V0.

Proposition 2.9. IG(λP ) = JP W JP .

Proof Since JP ∩ L = i(JW ), while $E and σεW (σ) normalize JW , the elements of W normalize
JP ∩L. Since $E normalizes λW and λW ' λW ◦ σ̃ (see Proposition 1.1), we see that the elements
of W normalize i(λW ). On the other hand, they either preserve U and U− or interchange them so

we see that every element of W intertwines λP = ĩ(λW ). Hence we have IG(λP ) ⊃ JP W JP .

The proof of the opposite containment, which is a variant of the proof of [6, Proposition 5.3.2], is
inspired by [3, page 551]; in place of [3, 4.2 Lemma], we use [25, Proposition 1.1], which is a slight
generalization of [18, Proposition 4.13]. It is almost identical to the proof of [25, Proposition 6.14],
except that the definition of κP there is a priori slightly different.

Suppose g ∈ G intertwines λP = κP ⊗ ρP , so that g ∈ IG(ηP |J1
P ) = JPGEJP , as ρP is trivial on

J1
P . Thus, we may assume g lies in GE . Moreover JP ∩GE = U(Λ) ∩GE is a parahoric subgroup

of GE containing the Iwahori subgroup U(Λm) ∩ GE . Therefore, we may further assume g is a
distinguished double coset representative for U(Λ)∩GE\GE/U(Λ)∩GE (see [18, §3] or [25, §1] for
this notion).
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Since dim Ig(ηP , J
1
P ) = 1, we can imitate the proof of [6, Proposition 5.3.2] to get that any non-zero

intertwining operator in Ig(λP , JP ) has the form S⊗T , with S ∈ Ig(ηP , J
1
P ) and T an endomorphism

of the space of ρP . Now the operator S also intertwines the restriction κP | eJ1
P

= η̃P so, again as in [6,

Proposition 5.3.2], it follows that T belongs to Ig(ρP |J̃1
P ). In particular, g intertwines ρP | eJ1

P∩GE
.

But J̃1
P ∩GE = U1(Λm) ∩GE is the radical of the Iwahori subgroup U(Λm) ∩GE of GE contained

in U(Λ) ∩ GE . By [25, Proposition 1.1] and the Remarks that follow it, we conclude that we can
assume that g normalizes U(Λ) ∩GE ∩ L.

Finally, we notice (cf. [3, 4.1]) that NGE
(U(Λ) ∩ GE ∩ L) = (U(Λ) ∩ GE ∩ L)W(U(Λ) ∩ GE ∩ L).

Since U(Λ) ∩GE ∩ L ⊂ JP , we are done. �

Recall that we write JL = i(JW ) and λL = i(λW ). In order to prove that (JP , λP ) is a cover of
(JL, λL), the only thing remaining is to find a strongly (P , JP )-positive element in the centre of
L which supports an invertible element of the spherical Hecke algebra H(G,λP ). To achieve this,
we look at the λP -spherical Hecke algebras of two parahoric subgroups whose intersections with
GE are non-conjugate maximal compact open subgroups of GE . Note that we could here have
used instead the methods of [3] – indeed, the crucial ingredients (for example, the elements w1, w2

below) are the same.

Let L′(1) be the self-dual oE-lattice chain of oF -period eW in V ′ = W ⊕W given by

· · · ⊃ LW
k ⊕ LW

k ⊃ LW
k+1 ⊕ LW

k+1 ⊃ · · · ,

so that L′(1) consists of every second lattice of L′. Let Λ′(1) be the self-dual oE-lattice sequence in
V ′ in which every lattice of L′(1) occurs twice and with the indexing chosen such that

Λ′(1)(k)# = Λ′(1)(1− k), for all k ∈ Z.

Let Λ(1) be the oF -lattice sequence in V defined by

Λ(1)(k) = Λ′(1)(k)⊕ Λ0(2k).

It is a self-dual lattice sequence of period 2eW = e/2 such that a0(Λ(1)) ⊃ a0(Λ). Put K1 = U(Λ(1)).

We define K2 = U(Λ(2)) by the same process, starting from the self-dual oE-lattice chain L′(2) in
V ′ given by

· · · ⊃ LW
k ⊕ LW

k+1 ⊃ LW
k+1 ⊕ LW

k+2 ⊃ · · ·
Then U(Λ) ⊂ K1 ∩K2 so, in particular, JP ⊂ K1 ∩K2.

Note that the element w1 lies in W ∩K1. We also set w2 = i($E
−1,1V0)w1 ∈ W ∩K2.

Lemma 2.10. (i) H(K1, λP ) = 〈f1, fw1〉 where f1 is supported on JP and fw1 is supported on
JPw1JP .

(ii) H(K2, λP ) = 〈f1, fw2〉, with f1 as in (i) and fw2 supported on JPw2JP .

Proof Both parts follow from the following consideration. For i = 1, 2 the Ki-intertwining of λP

is given by
IKi

(λP ) = JP W JP ∩Ki = JP

(
W ∩Ki

)
JP .

But W ∩Ki = {1, wi}. Moreover, the restriction of λP to JP ∩ L is irreducible and wi normalizes
JP ∩ L so the intertwining space Iwi(λP ) is 1-dimensional. �
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Lemma 2.11. Consider fw1 , fw2 as elements of H(G,λP ). Then the convolution fw1 ∗ fw2 is
supported on JPw1w2JP .

Proof We know fw1 ∗ fw2 is supported on

JPw1JPw2JP

= JP

(
w1(JP ∩ U−)w−1

1

) (
w1(JP ∩ L)w−1

1

)
w1w2

(
w−1

2 (JP ∩ U)w2

)
JP .

From the explicit matrix descriptions in §1.4, JP contains w1(JP ∩ U−)w−1
1 = w1(H1 ∩ U−)w−1

1 ,
w1(JP ∩ L)w−1

1 and w−1
2 (JP ∩ U)w2 = w−1

2 (J1 ∩ U)w2, and the lemma follows. �

We will prove that fζ := fw1 ∗ fw2 is invertible. To accomplish this we prove that fw1 and fw2 are
each invertible. In each case we know

fwi ∗ fwi = c1if1 + difwi (2.12)

by Lemma 2.10. Thus, we only need to show c1i 6= 0 for each i.

Lemma 2.13. In equation (2.12) c1i 6= 0 for i = 1, 2.

Proof We treat only the case i = 1, since the other case is identical. We need to check that
fw1 ∗ fw1(1) 6= 0. Since

fw1(x) =

{
0 if x 6∈ JPw1JP

λ∨P (j1)fw1(w1)λ∨P (j2) if x = j1w1j2, with j1, j2 ∈ JP ,

we can write

fw1 ∗ fw1(1) =
∫

K1

fw1(y)fw1(y
−1)dy

=
1∣∣JP ∩ w1JP

∣∣
∫

JP×JP

fw1(j1w1j2)fw1(j
−1
2 w−1

1 j−1
1 )dj1dj2

=

∣∣JP

∣∣∣∣JP ∩ w1JP

∣∣
∫

JP

λ
∨
P (j1)fw1(w1)fw1(w

−1
1 )λ∨P (j−1

1 ))dj1.

Now w1 intertwines λ∨P = ĩ(λ∨W ) and normalizes JP ∩ L = i(JW ) so fw1(w1) is an equivalence
w1i(λ∨W ) ' i(λ∨W ). But w−1

1 = h−1
1 w1, where h1 = i(νσεW (σ),1V0) and, by Proposition 1.1,

νσεW (σ) ∈ JW ; hence w−1
1 ∈ JPw1 and fw1(w

−1
1 ) is an equivalence i(λ∨W ) ' w1i(λ∨W ). Thus

fw1(w1)fw1(w
−1
1 ) is an equivalence of i(λ∨W ) and hence a scalar c 6= 0. Thus

fw1 ∗ fw1(1) = c

∣∣JP

∣∣2∣∣JP ∩ w1JP

∣∣ 6= 0.

Therefore, fw1 is invertible, as required. �

Put ζ = i($E ,1V0); since σεW (σ) ∈ JW the function fζ is supported on JP ζJP .

Lemma 2.14. For each k ∈ N , the k-fold convolution fk
ζ is supported on JP ζ

kJP .
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Proof This is by simple induction on k, since

JpζJP ζ
kJP

= JP

(
ζ(JP ∩ U)ζ−1

) (
ζ(JP ∩ L)ζ−1

)
ζk+1

(
ζ−k(JP ∩ U−)ζk

)
JP ,

while JP contains ζ(JP ∩ U)ζ−1, ζ(JP ∩ L)ζ−1 and ζ−k(JP ∩ U−)ζk (cf. Lemma 2.11). �

In particular, since $E
e(E/F ) and $F differ only by a unit of E, the function fe(E/F )

ζ is an invertible
element of H(G,λP ) which is supported on the double coset JP ζ

e(E/F )JP = JP ζFJP , where

ζF = i($F1W ,1V0)

is a strongly (P , JP )-positive element of the centre of L. We conclude:

Theorem 2.15. Let πW be an irreducible supercuspidal representation of GW
∼= GLM (F ), with

πεW
W ' πW . Using the notation above, the pair (JP , λP ) is a G-cover of (JL, λL). In particular, it

is an s-type, with s = [L, i(πW )]G.

Proof By construction, JP is decomposed with respect to P so (i) and (ii) of [7, Definition 8.1]
are satisfied for P , and likewise for P−. By Lemma 2.13 the strongly (P , JP )-positive element ζF
supports an invertible element of H(G,λP ). Thus (JP , λP ) also satisfies (iii) of [7, Definition 8.1]
for P , and is therefore a G-cover of (JL, λL). Then [7, Theorem 8.3] implies (JP , λP ) is an s-type.

�

2.3 Hecke Algebras

In this section we derive results analogous to those of Chapter 5 of [6]. In particular, we show that
the Hecke algebra of our type, H(G,λP ) can be computed by using analogous computations in a
case where the representation π of L is of level zero. For many of these situations, [16] will give us
the parameters of the Hecke algebra.

We fix i = 1 or 2 and, in the notation of the previous section, we put ΛM = Λ(i). Then [ΛM, nM, 0, 1
2β]

is a skew semisimple stratum and we set JM = J(1
2β,Λ

M), and similarly J1
M and H1

M. Let θM denote
the transfer of θ to H1

M. By [22, Corollary 4.2], there is a unique irreducible representation ηM of
J1

M which extends θM, and by [25, Theorem 4.1], we may choose a β-extension, κM of ηM to JM –
we recall here what we mean by β-extension:

Recall the lattice sequence Λm from §1.4 such that U(Λm)∩GE is an Iwahori subgroup of U(Λ)∩GE ;
then we have θ

m the transfer of θ and ηm the unique irreducible representation of J1(1
2β,Λ

m)
containing θm. We abbreviate U(Λ)∩GE = U(ΛoE ) (and similarly for other lattice sequences) and
define ĴM = U(ΛoE )J1

M and Ĵ1
M = U1(Λm

oE
)J1

M. Thus, JM ⊃ ĴM ⊃ Ĵ1
M ⊃ J1

M and Ĵ1
M is a pro-p

Sylow subgroup of JM. By [25, Proposition 3.7], there is a unique irreducible representation, η̂M

of Ĵ1
M which extends ηM and such that η̂M and ηm induce equivalent irreducible representations of

U1(Λm). Then a β-extension κM is an extension to JM of η̂M.

Similarly (as in [6, Proposition 5.2.5] – see [25, Lemma 4.2]), there is a unique irreducible repre-
sentation, µ̂M of ĴM which extends ηM and such that

Ind
U(ΛoE

)U1(Λ)

ĴM
µ̂M ' Ind

U(ΛoE
)U1(Λ)

JP
κP . (2.16)

Moreover, as in [6, Proposition 5.2.6], we have µ̂M|Ĵ1
M

= η̂M. The following Lemma will be crucial:
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Lemma 2.17. Let τ1, τ2 be irreducible representations of U(ΛoE )/U1(ΛoE ), which we regard as
representations of JP or ĴM. Then there is a Hecke algebra isomorphism

H(G, κP ⊗ τ1, κP ⊗ τ2) −→ H(G, µ̂M ⊗ τ1, µ̂M ⊗ τ2)
f 7−→ f̂ ,

which preserves support: if f has support JP gJP , for some g ∈ GE, then f̂ has support ĴMgĴM.

Proof Note that we can also think of τ j as a representation of U(ΛoE )U1(Λ), and we get

Ind
U(ΛoE

)U1(Λ)

JP
(κP ⊗ τ j) =

(
Ind

U(ΛoE
)U1(Λ)

JP
κP

)
⊗ τ j ,

and similarly for µ̂M. The first assertion is then immediate from (2.16), by Lemma A.1 in
the Appendix. The assertion concerning supports is a mild generalization of, for example, [25,
Lemma 6.1 and Proposition 7.1] (see also [6, Proposition 5.5.13]), using Lemma A.1 in place
of [6, Corollary 4.1.5]. More precisely, put κ = IndJ

JP
κP (which is irreducible, since IG(κP ) ⊂

IG(ηP ) = JPGEJP ), and consider τ j also as representations of JM; then the results cited are
analogous to showing that there are support-preserving isomorphisms from each Hecke algebra to
H(G, κ⊗ τ1, κ⊗ τ2), and our isomorphism is the composition of these. �

Using this, we obtain:

Lemma 2.18. There is a choice of κW for which κW ◦ σ̃ ' κW .

Proof Recall that we have fixed i = 1 or 2; in the notation of the previous section, we put w = wi.
Note that, by Proposition 2.8, w intertwines the representation ηP = ĩ(ηW ) of JP .

We fix some choice of κW . Now κW ◦ σ̃ is also a β-extension of ηW so κW ◦ σ̃ ' κW ⊗χW , for some
character χW of U(BW )/U1(BW ) ∼= JW /J1

W which factors through the determinant detBW /E .
Then

wi(κW ) ' i(κW ◦ σ̃) = i(κW )⊗ i(χW )

and w intertwines κP with κP ⊗ χP (where χP = ĩ(χW ) on JP ), since both are trivial on the

unipotent parts of JP . We also put χ̂M = ĩ(χW ) on ĴM. Then Lemma 2.17 (applied with τ1 the

trivial representation and τ2 = ĩ(χW )) implies that w intertwines µ̂M with µ̂M ⊗ χ̂M.

Recall that we have κM|Ĵ1
M

= η̂M = µ̂M|Ĵ1
M
, by construction of β-extensions in [25, Theorem 4.1].

Thus, if we let κ̂M = κM|ĴM
, we must have κ̂M ' µ̂M ⊗ ψM for a character ψM of U(ΛoE )/U1(Λm

oE
),

that is, a character of the Siegel Levi subgroup of U(ΛM
oE

)/U1(ΛM
oE

) which is trivial on the maximal
unipotent subgroup U1(Λm

oE
)/U1(ΛM

oE
). Then ψM factorizes through the determinant on the Levi

subgroup and we can write ψM = ĩ(ψW ), for some character ψW of JW /J1
W .

Now w ∈ JM so w certainly intertwines κ̂M with itself. Hence w intertwines µ̂M ⊗ ψM with
µ̂M⊗ χ̂M⊗wψM. Chasing back through the isomorphism of Lemma 2.17, we see that w intertwines
κP ⊗ ψM with κP ⊗ χ̂M ⊗ wψM. Since w normalizes L, this implies that conjugation by w gives an
equivalence κW⊗ψW ' κW⊗χW (ψW ◦σ̃). By [6, Theorem 5.2.2], we deduce that ψW = χW (ψW ◦σ̃)
and, in particular, κW ⊗ ψW is a β-extension with the required property. �
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We now choose κW as in Lemma 2.18 and make the same constructions as before: κP , κ and µ̂M.
Comparing µ̂M with κ̂M, we again get a character ψM but now with the property that wψM = ψM.
If E/E0 is unramified then this implies that ψM = wψ0ψ0, for some character ψ0. Then ψ0 extends
to a character of JM and, replacing κM by κM⊗ψ−1

0 , we may assume ψM = 1. In the ramified case,
the condition on ψM is that ψ2

M = 1 but it is (at least in principle) possible that ψM 6= 1.

We write ψM = ĩ(ψW ); then we may assume ψ2
W = 1.

Proposition 2.19. With the notation as above, there is an algebra isomorphism

H(JM, λP ) ∼−−→
ι

H(U(ΛM
oE

)/U1(ΛM
oE

), ˜i(ρW ⊗ ψW ))

which preserves support: if f ∈ H(JM, λP ) has support JP b JP , for some b ∈ JM ∩GE = U(ΛM
oE

),
then ι(f) has support

(
U(ΛoE )/U1(ΛM

oE
)
)
b
(
U(ΛoE )/U1(ΛM

oE
)
)
.

Proof From Lemma 2.17, we get a support-preserving isomorphism

H(G,λP ) ' H(G, µ̂M ⊗ ĩ(ρW )) = H(G, (µ̂M ⊗ ψM )⊗ ( ˜i(ρW ⊗ ψW )),

where we are using the fact that ψ2
W = 1. On the other hand, we have support-preserving isomor-

phisms

H(JM, (µ̂M ⊗ ψM )⊗ ( ˜i(ρW ⊗ ψW )) ' H(JM, ˜i(ρW ⊗ ψW ))

' H(U(ΛM
oE

)/U1(ΛM
oE

), ˜i(ρW ⊗ ψW )),

where the first isomorphism follows from the fact that µ̂M ⊗ ψM = κ̂M extends to a representa-
tion κM of JM (cf. [6, Lemma 5.6.3]), and the second by reduction modulo J1

M, since JM/J
1
M
∼=

U(ΛM
oE

)/U1(ΛM
oE

). Putting these isomorphisms together gives the isomorphism of the Proposition.
�

Remarks 2.20. (i) Note that, writing B′
M for the self-dual oE-order a0(ΛM) ∩B′, we have

U(ΛM
oE

)/U1(ΛM
oE

) ∼= U(B′
M)/U1(B′

M)×G0/G
1
0 and

U(ΛoE )/U1(ΛM
oE

) ∼= U(B′)/U1(B′
M)×G0/G

1
0,

where G1
0 is the pro-p radical of the anisotropic group G0. Then we have an isomorphism

H(U(ΛM
oE

)/U1(ΛM
oE

), ˜i(ρW ⊗ ψW )) ' H(U(B′
M)/U1(B′

M), ˜i(ρW ⊗ ψW )).

The quotient U(B′
M)/U1(B′

M) is a unitary (if E/E0 is unramified), symplectic or orthogonal
group over kE0 and the Hecke algebra on the right is described in [13]. Alternatively, reduction
modulo U1(B′

M) gives a support-preserving isomorphism

H(U(B′
M)/U1(B′

M), ˜i(ρW ⊗ ψW )) ' H(U(B′
M), ˜i(ρW ⊗ ψW )),

and the latter is described in [18]. This will allow us, in a future work, to compute explicitly
the parameters for the Hecke algebra.
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(ii) Since (in the case where E/E0 is ramified) we have ψ2
W = 1, we may replace our choice of

κW by κW ⊗ ψW (which has the same property of being fixed by σ̃); this replaces ρW by
ρW ⊗ ψW , another self-dual cuspidal representation of U(BW )/U1(BW ), and we lose the
character ψW from the RHS of the isomorphism in Proposition 2.19. However, we cannot
do this independently for the two choices Λ(1),Λ(2) for ΛM. In particular, if we choose (as
we always can) to dispose with the character ψW in one case, then it may a priori still be
non-trivial in the other.

(iii) Since (JP , λP ) is a cover of (JL, λL), by [7, Corollary 7.12] we have a canonical embedding of
Hecke algebras tP :H(L, λL) ↪→ H(G,λP ) and we identify H(L, λL) (which is just the algebra
of Laurent polynomials in a single variable) with its image BP . We also put K = H(JM, λP ).
Then [9, Theorem 1.5] implies that the map

BP ⊗C K → H(G,λP )
f ⊗ φ 7→ f ∗ φ

is an isomorphism of (BP ,K)-bimodules.

We conclude with a description of the Hecke algebra as a convolution algebra. We put S = {w1, w2}
and recall that we have elements fwi ∈ H(G,λP ) with support JPwiJP .

Theorem 2.21 (cf. [1, (1.11) Théorème]). The algebra H(G,λP ) is a convolution algebra on (W,S).
As a vector space, it has basis fw = fs1 ∗ · · · ∗ fsr , where w = s1 · · · sr is a reduced decomposition of
w in W. It is generated as an algebra by fw1 and fw2, with relations

fwi ∗ fwi = c1ifwi + difwi , for i = 1, 2.

Proof The proof is the same as that of [1, (1.11) Théorème]. �

A Intertwining and Hecke algebras

In this short appendix we give the statement of a result, which is a mild generalization of [6,
Proposition 4.1.3, Corollary 4.1.5]. The notation here is independent of that in the rest of this
paper.

Let G be a unimodular locally compact totally disconnected topological group with a countable
base of open sets, and fix a Haar measure on G. Let K be a compact open subgroup of G and
(ρi,Wi) a continuous finite-dimensional representation of K, for i = 1, 2.

LetH(G, ρ1, ρ2) be the complex vector space of compactly supported functions φ : G→ HomC(W∨
2 ,W

∨
1 )

satisfying
φ(k1gk2) = ρ∨1 (k1) ◦ φ(g) ◦ ρ∨2 (k2), for all k1, k2 ∈ K, g ∈ G.

Then H(G, ρ1, ρ2) is an (H(G, ρ1),H(G, ρ2))-bimodule, under convolution of functions. If g ∈ G
then we write H(G, ρ1, ρ2)g for the subspace of functions which are null outside KgK.

Recall that the G-intertwining of ρ1 with ρ2 is given by

IG(ρ1, ρ2) = {g ∈ G : HomK∩gK(gρ1, ρ2) 6= 0}.

The result we need is the following:
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Lemma A.1 (cf. [6, 4.1.1–5]). In the above situation, let g ∈ G.

(i) There is a function φ ∈ H(G, ρ1, ρ2) with φ(g) 6= 0 if and only if g−1 ∈ IG(ρ1, ρ2). Moreover,
if g satisfies these conditions then there is a canonical isomorphism of vector spaces between
HomK∩Kg(W1,W

g
2 ) and H(G, ρ1, ρ2)g.

(ii) Let H be a compact open subgroup containing K. Then there is a canonical isomorphism

H(G, ρ1, ρ2) ' H(G, IndH
K ρ1, IndH

K ρ2)

of (H(G, ρ1),H(G, ρ2))-bimodules. This restricts to an isomorphism

H(G, IndH
K ρ1, IndH

K ρ2)g '
∐

g′∈K\G/K

Hg′H=HgH

H(G, ρ1, ρ2)g′ .

The proof is very similar to those of [6, 4.1.1–5]; one point to note is that we are using the canonical
isomorphisms of [6, Proposition 4.1.3] to identify H(G, ρi) with H(G, IndH

K ρi), for i = 1, 2, so that
H(G, IndH

K ρ1, IndH
K ρ2) is indeed an (H(G, ρ1),H(G, ρ2))-bimodule.
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