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Abstract. Let F' be a non-archimedean local field of residual characteristic differ-
ent from 2. This paper is a first step in the description of the smooth representation
theory of a unitary group G C GL(N, F') via types. We intersect certain double
cosets in GL(NN, F') with G and hence obtain the intertwining of certain characters
g of open compact subgroups of G, for 8 € Lie G. In the case when 3 is elliptic
regular “modulo pr”, we will then obtain supercuspidal representations of G.

1. Introduction

Let F' be a non-archimedean local field of residual characteristic different
from 2, with a (possibly trivial) galois involution with fixed field Fy. Let
V be an N-dimensional F-vector space equipped with a nondegenerate e-
hermitian form h. Put A = EndpV and let ~ be the adjoint involution on
A associated to h. We then set G = AutpV ~ GL(N, F) and let G be the
subgroup of G of fixed points of the map o : g — g !; thus G is a unitary
group (symplectic or orthogonal if F' = Fy) defined over Fy.

This paper is a step in the attempt to describe the smooth representation
theory of G via the theory of types (see [5]). Such types, in particular
those associated to supercuspidal representations, are intrinsically difficult
to construct so we seek to “transfer” types from G to G. (Note that the
types for G have been constructed in [3], [4].) In particular, we obtain new
supercuspidal representations of G, many of which are transferred from
types for non-supercuspidal representations of G.

The types for G are constructed from pairs (J,0), where J is a compact
open subgroup of G and 6 is a character of J. The irreducible representations
containing ¢ are classified by the simple modules over the Hecke algebra
H(G,0) and this algebra is “recognizable”: that is, it is isomorphic (in a
support-preserving way) to a Hecke algebra of standard type in a smaller
reductive group. In particular, if the support of the Hecke algebra (which
is just the intertwining of ) is compact modulo centre then any irreducible
representation containing 6 is supercuspidal.
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This philosophy works well for G and also for SL(N) (see [6], [7] and
the work of Goldberg and Roche [8], in which a complete set of types for
SL(N) is obtained) and this paper is a first step in extending this to the
classical group G, in a manner which is compatible with the situation for
G: that is, we show that the intertwining transfers.

’~I‘he first result of this paper (2.3) states that, if U is a pro-p subgroup
of G, H is a subgroup of G such that, for all h € H, we have UhR U N H =
(UNH)h(UNH), and U, H are both fixed by the involution o, we have

UHUNG=UNG-HNG-UNQG.

We may now apply this to computing intertwining of characters for G.

We consider skew strata, that is quadruples [4,n,r, 8], where A is an
op-lattice sequence in V fixed by the duality induced by h, n > r > 0 are
integers and 8 € LieG N a_,(A), where a_,(A) is the level —n filtration
lattice of A induced by A (see §3). If » > [§] then a skew stratum corresponds
to a character ¢g of U, = 1+ a,(A) and to the character ’l/)E of P, =U,NG
obtained by restriction.

Now we consider skew strata which are simple, that is where (3 satisfies
certain arithmetical properties relative to A (see §4). When the op-lattice
sequence A is strict, [3] (1.5.8) gives the formal intertwining of a (skew)
simple stratum in the form UHU and we generalize this (4.5) to arbitrary
lattice sequences. If 7 > [Z], this is precisely the intertwining of 13 and the
intertwining of 1/15 is UHU N G. The groups U, H satisfy the conditions of

(2.3) so we obtain the intertwining of 5 as UNG-HNG-UNG.

We now combine the notion of a simple skew stratum with that of a
split stratum from [4] (3.6) to define semisimple strata. These are orthogonal
direct sums of simple skew strata which are “sufficiently different” (see (4.9))
and generalize the characters considered in [10] (2.17). Then we may adapt
the intertwining result of [4] (3.7) to calculate the formal intertwining of
such a semisimple stratum in the same form UHU. Once again, if r > [Z],
the stratum corresponds to a character ¥, of P, and its intertwining is
UHU N G, which decomposes as in the simple case.

Finally, suppose that [A4,n,r, §] is a semisimple stratum with r > [§] and
F[3] is maximal in A (of degree N). Then the intertwining of the character
¥y is compact and contained in P = ao NG, where ag := ag(4) (see § 3). In
particular, if p is an irreducible representation of P containing the character
wﬂ_, then the (compact) induced representation IndIG,p is irreducible and
supercuspidal. If » < n — 1 and F[B] is wildly ramified then this is a new
supercuspidal representation. The construction of the representation p (in
the more general setting of simple characters) is described in [14] and, again,
is more general than that in [10].

We now give a brief summary of the contents of each chapter. In §2
we describe the double coset decomposition, in the generality of an I-group
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acting on some group G, I # p. In §3 we introduce the notations for our p-
adic groups and recall the definition of a lattice sequence and its associated
objects. In §4 we recall the notion of a simple stratum from [3], [4], define
semisimple strata and calculate their intertwining, and see that, in the case
described above, we obtain supercuspidal representations of G. Finally, in
§5, we give the proof of (4.5).

The main results of this paper are based on part of my PhD thesis.
I would like to thank my supervisor, Colin Bushnell, for starting me on
the project and for his support and encouragement. I would also like to
thank Guy Henniart, for suggesting a generalization of the main result and
its application to semisimple strata, and Paul Broussous, for his patient
explanations during my doctorate and for his corrections to earlier versions
of this paper.

2. Double cosets

This section is written in much more generality than the remainder of this
paper. Indeed, we begin with a group G and a group I" of automorphisms
of G; we denote the fixed points GT'.

Lemma 2.1. Let G be a group and I' a group of automorphisms of G. Let
U be a subgroup of G fized by I' and suppose that, for all g € GT', we have

HYI,gUg™'NU) = 1.
Then, for g € G, we have

(g =uTguT.

Proof. We have a I'-equivariant exact sequence
15 gUg NnUS UxUS UgU — 1,

where 6(u) = (u,g~'ug) and 7(u,v) = ugv=!. By [13] Prop. 36, this gives
rise to a long exact sequence of pointed sets
1— (gUg ' nO)" = (U x5 (UgU)"
— HY(I',gUg™'*NU) - H(I,U x U).

We have (U x U)I' = UT x UL and H*(I',gUg ' NU) = 1. Hence the map
7 is surjective and (UgU)T = UTgUT. O

Lemma 2.2. Let G be a group and I' an l-group of automorphisms of G, [
prime. Let U be a pro-p subgroup of G fized by I', p # 1 prime. Let g € G.
Then UgU is fized by T if and only if (UgU)T # (.
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Proof. The implication “if” is clear so suppose UgU is fixed by I'. We can
decompose UgU as a disjoint union of single cosets g;U and I" permutes the
cosets in this decomposition. The number of such single cosets is the index
of gUg~'NU in U, which is a power of p. In particular, since | # p, there is
a fixed coset for the action of I', say kU. For all v € I', we have kY € kU so
v+ kYk 1 defines a 1-cocycle of I in U. However, H(I',U) = 1 so there
exists u € U such that K7k ! = wYu ! for all y € I'. Then ku ! € (UgU)’.
O

Theorem 2.3. Let G be a group and I' an l-group of automorphisms of G,
l prime. Let U be a pro-p subgroup of G fixed by I', p # | prime. Let H be
a subgroup of G fized by I' such that, for all h € H,

UhUNH = (UN H)h(U N H). (2.4)

Then we have
(UHU)" =U"H"UT.

We remark that condition (2.4) will be satisfied if H is the fixed point
subgroup in G of some group of automorphisms of G satisfying the condi-
tions of Lemma 2.1.

Proof. Suppose that h € H is such that (UhU)T # 0; hence UhU is fixed
by I'. In particular, for all v € I', kY € UhUNH = (UNH)h(UNH). Thus
(UNH)R(UNH) is fixed by I so, by (2.2), there exists h’' € (UNH)h(UN
H))T'. In particular, we have UhU = Uh'U and k' € H''. Hence

(UHU)' = (UHT'D)"
=U"HTU" by (2.1),

since R UR~1 NU is a pro-p subgroup for all h € H'. O

Note that the above results will of course remain valid if I" is a solvable
group of order coprime to p.

3. Preliminaries

Let F be a non-archimedean local field, op its ring of integers, pr the
maximal ideal of op, kr = op/pFr the residue class field and gr = pfF =
card k. We assume throughout that the residual characteristic p is not 2.

Suppose that F' comes equipped with a galois involution -, with fixed
field Fp; we allow the possibility that ' = Fj. Then we denote by 09, po,
ko, go = p’° the objects for Fyy analogous to those above for F. We also fix a
uniformizer wp of F' such that TF = t+wp (the sign depending on whether
F/F, is ramified or not).
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Let 9y be a character of the additive group of Fpy, with conductor pg.
Then we put ¢ = gotrp/p,; since p # 2, F/Fy is at worst tamely ramified
so Y is a character of the additive group of F' with conductor pp.

Let V be an N-dimensional F-vector space and put A = Endp(V),
G = Autp (V). Let ¢4 be the character of A given by ¥4 = ¢p o try,p.
Let h be a nondegenerate e-hermitian form on V and let ~ be the adjoint
involution on A associated to h so that h(av,w) = h(v,aw) for all v,w € V,
a € A; this extends the involution on F' (for F' embedded diagonally in A).
We also denote by o the involution on G given by = — z~! and by X the
subgroup of Aut GG consisting of o and the identity. Note that the action of
o on LieG ~ A, via the differential, is given by z — —Z.

We put G = G¥ = {g € G : h(gv,gw) = h(v,w) for all v,w € V},
a unitary group over Fy (possibly symplectic or orthogonal). We also put
A_={ze€A:z2+7=0}~LieGand A, = {z € A: z =T}, since F is not
of characteristic 2 we have A = A_ ® A, and, moreover, this decomposition
is orthogonal with respect to the pairing induced by tro = trp/p, o tra/r
since, for z € A_, y € A, we have

tro(zy) = tro(zy) = tro(TY) = tro(—yz) = —tro(zy).

For S any subset of A, we write S_ (or sometimes S~) for SN A_ and
S; for SN A,. If S is an op-lattice fixed by the involution then we have
S=S8_& Sy, since the residual characteristic of F' is not 2.

Recall from [4] (2.1) that an op-lattice sequence in V is a function A
from Z to the set of op-lattices in V such that

() n > m implies A(n) C A(m);
(74) there exists a positive integer e = e(A) (the op-period of A) such that
A(n+e) =ppA(n), for all n € Z

A lattice sequence A gives rise to a filtration on A by
a, =ap(A)={z € A:zA(m) C A(m+n),meZ}, neZ
This then gives rise to a “valuation” v, on A by
va(z) =sup{n€Z:zx €a,}, forzeA,

with the understanding that v4(0) = oo.
From a lattice sequence A we obtain a compact open subgroup U =
U(A) = ag(A)* of G, equipped with a filtration

Up = Un(A) =1+a,(4), neZn>0.

This is also the Moy-Prasad filtration associated to a certain rational point
in the building of GL(N, F) (see [12], [2]). We define the normalizer of the

filtration to be
R(A) = [ Ng(0),
r>0
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where N@ denotes normalizer.

For L an op-lattice in V, we define the dual lattice L# by
L#¥ ={veV:h(v,L)Cpr}

Then L# can be identified with Hom,, (L,pr) by the non-degeneracy of
h and we have L## = L. For A an op-lattice sequence, define the dual
sequence A# by
A#(n) = A(—n)#, neZ

We say that A is self-dual if there exists d € Z such that A% (n) = A(n +d),
for all n € Z. In this case, the filtration a,, on A induced by A satisfies
a, = ap, for n € Z. In particular, the groups U, U,, n > 1, are fixed by
X and we put P = U¥, a compact open subgroup of G, and P, = U7,
for n > 1, a filtration on P. Further, by [11] (2.13)(c) we have a bijection

a, — P, given by the Cayley map = — (1+ £)(1— %)~

Lemma 3.1. Let A be an op-lattice sequence in V and let m,n € Z satisfy
2n>m>n > 1.

(¢) The map x — 1+ x induces an isomorphism of abelian groups
/0y =>Un [Up,.

(#) If A is self-dual then the map x — 1 + z induces an isomorphism of
abelian groups a,, /a, =Py, /Py,.

Let S be an op-lattice in A, hence an og-lattice in A. We define the
op-lattice

S* — {a cA: tro(aS) C po}
= {a (S A: tI'A/F(G/S) C pF}a

since F' is at worst tamely ramified over Fy. If S is also stable under the
involution, we can define

(S ) ={acA :trg(aS_) Cpo}=(S*)_

since the direct sum S = S_ @ S is orthogonal with respect to try.

We recall from [4] (2.10) that, if A is an op-lattice sequence in V' with
associated filtration a,,, then we have a), = a;_,.

Let “hat” ~ denote the Pontrjagin dual. Then we have the following;:

Lemma 3.2. Let A be an op-lattice sequence in V and let m,n € Z satisfy
2n>m>n> 1.

(2) There is a R(A)-equivariant isomorphism of abelian groups

alfm/alfn = (Un/Um)A
b + a1—n = wb

where Yyp(u) = Yr(tra p(b(u —1))), for u € Up.
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(i) If A is self-dual then there is a P-equivariant isomorphism of abelian
groups

(a_pn)/(ain) = (Pa/Pm)
bt (a_n) = Yy

where ¥, (p) = Yo(tro(b(p — 1)), for p € P,. Moreover, for b € (a;_,,),
P, s the restriction to P, of .

4. Strata and supercuspidal representations

We now give two applications of theorem (2.3) to the intertwining of certain
characters involved in representation theory. The language used will be that
of [3] and [4], as in the previous section.

4.1. Simple strata

Definition 4.1 (cf. [3] (1.5), [4] (3.1)). A stratum in A is a 4-tuple
[A,n,r, B] consisting of a lattice sequence A in V, n,r € Z with r < n, and
an element 8 € a_,(A). We say that two strata [A,n,r,B;], ¢ = 1,2, are
equivalent if 87 = B2 (mod a_,(A)).

Let [A, n,r, 8] be a stratum in A and suppose that the integers r, n satisfy
n>r>[3]>0, (4.2)

where [z] is the greatest integer less than or equal to z. By (3.2)(¢), an
equivalence class of strata [A,n,r, ] corresponds to the character g of
Ur+1(4)/Un1(4).

Definition 4.3 ([3] (1.5.5)). Let [A,n,r, ] be a stratum in A. It is pure
if

(2) the algebra E = F[3] is a field;
(73) A is an op-lattice sequence;

(731) va(B) = —n.
If [A,n,r, B3] is a pure stratum, we put, for k € Z,

(B8, A) = {z € ap(A) : Bz — 2B € ai},

an op-lattice in A. Then we define ko(8, A) to be the least integer k such
that ng4+1(8, A) is contained in B Nag + a;, where B is the A-centralizer of
B; we understand that if F[§] = F then ko(8, A) = co. Note that this is the
same definition as in [4] (5.1), though this is not clear a priori (see §5 for
further discussion). If F[8] # F then ko(8, A) is an integer greater than or
equal to —n.
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Definition 4.4 ([3] (1.5.5)). A pure stratum [A,n,r, 8] is called simple if
r < _kO(IB,A)'

We now define the formal intertwining of a stratum [4,n,r, 8] to be
TxA,n,r, ] = {x €G:z (B+a)zn(B+a_,) % 0} .

If (4.2) is satisfied, then this is nothing other than the intertwining in G of
the character vg:

T5(g) == {.7: €qG: Yp(u) = ¥5(u) for any u € Uy N Un},

where UZ = ¢ 'Upz and ¢§(u) = Yp(zuz '), for u € UZ (see, e.g. [9]
pp-484-485). Then we have the following result, which is a generalization of
[3] (1.5.8).

Theorem 4.5. Let [A,n,r, 3] be a simple stratum in A. Let B denote the
A-centralizer of B, b, = a, N B, forn € Z. Write k = ko(8,A) and put
m; = ngi(B,4) Nay, fori > 0. Then

I@[A, n,r,B] = (1+ m_(k_H))Bx 1+ m_(k_,_r)).

Essentially, the proof is identical to [3] (1.5.8), once we have proved a
few preliminary lemmas. We postpone the proof until §5.

We now consider the situation in our group G.

Definition 4.6. A stratum [A,n,7,3] in A is called skew if 8 + 3 = 0 and
A is self-dual.

Again, if (4.2) is satisfied then, by (3.2)(¢7), an equivalence class of skew
strata [4,n,, 8] corresponds to the character ¢4 of Pr11(4)/Pni1(4).

We define the formal intertwining in G of a skew stratum [A,n,r, §] to
be

IelA,n,rBl={zcG:z7 (B+a", )N (B+a",)#0}

If (4.2) is satisfied, then this is precisely the intertwining in G of the char-
acter "/’E-

Theorem 4.7. Let [A,n,r, ] be a skew simple stratum in A. Let B denote
the A-centralizer of 8, b, = a, N B, for n € Z. Write k = ko(8, A) and put
m; = ngyi(B,4) Na;, for i > 0. Then my; is fized by the involution and we
define the group Q; = (1+m;) NG, for i > 0. Then

Zg[A,n, 1, 8] = Q_ (k1) (BN G)Q_ (k)
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Proof. We write Zg for Ig[A,n,r,(] and Iz for Z5[A,n,r, 3]. We begin
with a lemma which will also prove useful later:

Lemma 4.8. g =I5 NG.

Proof. We clearly have Zg C ZzNG. Suppose, on the other hand, z € ZzNG;
then there exist b; € a_,, ¢ = 1,2 such that

.17(,3 + bl):lt_l = (B + bs.

We now write b; = u; + v;, u; € afT, vi€a_,,fori=1,2s0

z(B+v)z ™t +zuz™ = (B + v2) + us.
NowzA z7'C A andzA,z ' C A so A=A 1 A, implies that
z(B+wv)z ' =B+ v,
ie.x €Zg. O

Returning to the proof of the Theorem, we see that Zg = Iz NG =
(14+mg)B*(14+mg) NG by (4.5), where d = —r — k > 0.

Now 14my is a pro-p subgroup of G fixed by X and, since by C mg C aq
we have, for b € B*,

(14 64)b(14bg) C (1 4+mg)b(1+mg)N B
C (1 + ad)b(l + ad) NB= (1 + bd)b(l + bd),

by [3] (1.6.1). Hence all the conditions of (2.3) are satisfied and the result
follows. O

4.2. Semisimple strata

In this section we use the techniques and results of [4] (in particular §3)
to generalize the above result to the case where the element 8 does not
generate a field extension over F'. We first recall some notions, in particular
that of the characteristic polynomial of a stratum (see e.g. [3] (2.3)).

Let [A,n,r, 3] be a stratum in A and put e = e(A), the op-period of A.
Set g = (n, e) and consider the element

yﬁ = w;/gﬂe/g.

This is an element of ag(A) so its characteristic polynomial as an F-endo-
morphism of V lies in op[X]. We define ¢5(X) to be the reduction modulo
pr of this characteristic polynomial; this depends only on the equivalence
class of the stratum.

For ¢ = 1,2, let V; be subspaces of V such that V = V; 1 V5. In
particular, h;, the restriction of h to V; x V;, is a nondegenerate e-hermitian
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form on V;, for i = 1,2. We put AY = Hom p(V4,V?), for 4,5 = 1,2, and
abbreviate A* = A*. We use the notation

All A12
A= ( A21 A22> :

For i = 1,2, let A’ be a self-dual lattice sequence in V;, e; = e(A¢|or)
the op-period of A and let d; be the (unique) integer such that Ai(k)* =
Ai(d; — k), for all k € Z. After renumbering, we may assume that d; = 0 or
—1. If d; = 0 then we replace A* by the self-dual lattice sequence A’ given

by
Ai(k) =A%) fork e Z;

that is, every lattice is taken with double the multiplicity. Note that the
filtration on A* determined by A’? is the same as that determined by A?,
upto a factor in the index. We have A’i(k)* = A’i(—1 — k), for all k € Z,
so we may assume d; = —1, for : =1, 2.

We set A = A! 1 A2, a self-dual lattice sequence in V of op-period
e = lem(e1,e2) (see [4] (2.8) for the definition of direct sum of lattice
sequences). Let B; € A’ be skew elements and put n; = —v,:(5;). Put
B =1 @By and n = e - max{n;/e;,na/es}. Then we obtain a skew
stratum [A4,n,r, 8] in A, with v4(8) = —n, forany 0 <r <n—1.

Definition 4.9 (cf. [4] (8.6)). A skew stratum [A, n,r, 8] as above is called
split if
() 1 € R(AY);

(i%) either ny/e; > na/ey or else all the following conditions hold:
(a) n1/e1r = ny/es,
(b) B2 € R(4%),
(c) ged (0,5 p) = 1.

It is called semisimple if (inductive definition, on the dimension)

(77) either V5 = 0 and [A,n,r, ] is a simple stratum or it is split and each
[A*,n;, 7, B;] is a semisimple stratum, ¢ = 1,2, where r; = [re;/e].

We remark that the characters considered in [10] arise from semisimple
strata of the form [A,n,n — 1, 8] with A a strict lattice sequence.

Theorem 4.10 (cf. [4] (3.7)). Let [A,n,r, 3] as above be split, with r > 0.
Put M = Autp(V1) x Autp(V?), considered as a Levi subgroup of G. Then

I@[Aa n,r, IB] CUpr MUy,
where Us = Ug(A) =14 a4(A), for s > 0.

Proof. We proceed as in the proof of [4] Theorem 3.7.
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Proposition 4.11. Under the hypotheses of (4.10), let ¢ € a_, N A%' and
define a map &, : A2 — A2 by

0c(z) = Prz — B2 + zcz, x e A2
Then §¢c(an—r N A2) = a_,. N A2
Proof. We need some lemmas.
Lemma 4.12. The map 6 = §g maps a; N A2 onto as_, N A2 for all s.

Proof. Suppose first that n1/e; > na/es. The Al-invertibility of 3; implies
that as_, N A2 = B1(as N A12), while (a; N A'2)By C ag_pi1 N A2, Hence

a5 n NA2 =6(as N A?) +a, 1 N A

and the lemma follows immediately in this case. For the other case, see [4]
(3.7) Lemma 1. O

Lemma 4.13. We have
be(an_r NA®) +ap_,NAZ =a_, NA"2,
for all integers k > 0.

Proof. Since ¢ € a_, we have, for z € a,_, N A'?, zcx € dgp_3. C a_,, as
n—r > 0, so the lemma holds if £ = 0. The proof then follows by induction
exactly as [4] (3.7) Lemma 2. O

The proposition now follows as in [4] (3.7). O

Write M for the algebra A'! @ A2 C A, so that M = M*. We first
need:

Lemma 4.14. Let = B+ y, y € a_,. Then there exists u € U,_, such
that uzu=t € B+a_, N M.

Proof. This is essentially identical to [4] (3.7) Lemma 3. O

We now prove the theorem. Let g € Z5[A, n,r, 8]; thus there exist z,y €
a_, such that g='(B+ z)g = 8 + y. By (4.14), we may replace g by u;gus,
u; € U,_,, and assume that z,y € a_, N M. We put

B 0) ( 70 )
+z= +y=
B (0 By B+y 0 pY)
and write out the equation (8 + z)g = g(8 + y). Comparing (1, 2)-entries,
we have 3]g12 = g1264. But the map A2 — A'2 given by 2 — Bz — 2835
is injective, as in [4] (3.7) Lemma 4, so g12 = 0. Likewise g2; = 0, whence
g € M as required. 0O
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In fact, we even have
I=Ig[An,r,B]=UnrIu[An,r,BlUnr, (4.15)
where Zjs is the intertwining in M. For suppose « € Z, so that
Br=zB (moda_,z+za_,),

and let y € a,_,. Then ag(y) € a_, so (1+y)B(1+y) ' =8 —as(y)(1 +
y)™' = B (mod a_,). Then Bz = z8 = z(1 + y)B(1 + y)~! (mod a_,z +
za_,) so (1 +y) € Z, since (1 + y) € aj. By symmetry, we have Z =
Un—r ZUp_, and (4.15) follows.

Now suppose [A,n,r, 8] is a skew stratum in A; by (4.8), we have that the
formal intertwining of the stratum in G is Zg([4, n,r, 8] = Zz[4,n,r, B]NG.
Hence, applying (2.3) with H = M we have:

Corollary 4.16. Let [A,n,r, 3] as above be a skew split stratum, with r > 0.
Then, with notation as above, we have

IG[Aa n,r, /8] C Pn—r(M N G)Pn—ra
where Ps = Us NG, for s > 0.

Proof. We need only show that M, U,_, satisfy the condition (2.4). But
M is the fixed point subgroup in G of the subgroup I' = {1} x {£1} of M

acting by inner automorphisms and U, is fixed by I" so (2.4) is satisfied,
by (2.1). O

Indeed, as above for (4.15) but using the Cayley map, we have
Ia[A,n,r, 8] = Po—v InnglA,m, 7, B] Py (4.17)
For [A, n,r, 3] a skew semisimple stratum as above, with r > 0, we define

a compact open subgroup K = K (8, 4) of G inductively as follows: if the
stratum is simple then K = Q_ (., (see (4.7)); otherwise

K = K(B1,A") x K(B2, A?) - Ppy_,. (4.18)
Then, putting together (4.16) with (4.7), we have the following result.

Theorem 4.19. Let [A,n,r, (] as above be a skew semisimple stratum, with
r > 0. Then we have

Ig[A,n,r, 8] = KZK,
where K = K(B,A) and Z = Zg(B) is the centralizer in G of 3.
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4.8. Supercuspidal representations

Let [A4,n,r, 8] be a skew semisimple stratum. We will call it maximal if the
centralizer B = Z4(f3) in A of 8 has dimension N. In this case, we have that
B =3""_, E; is a sum of fields, each of which is stable under the involution
but not fixed pointwise. Moreover, the G-centralizer of 8 is the compact
maximal torus Z = [[;_, N1(E;), where Ny (E;) = {e € E; : ee = 1} is the
group of norm 1 elements of F;.

In particular, we have in this situation that Z C P; moreover, the group
K = K(f, A) defined in (4.18) satisfies K C P;. Hence, (4.19) gives us

IG[Aa n,T, /8] c P7 (420)
and we deduce the following:

Theorem 4.21. Let [A,n,r, B] be a mazimal skew semisimple stratum such
that (4.2) is satisfied. Let p be an irreducible representation of P containing
the character 1/1[;. Then the (compactly) induced representation m = Ind chp
is irreducible and supercuspidal.

Proof. Since P normalizes P,, the restriction of p to P, is a sum of P-
conjugates of ¥ . Then, if g € G intertwines p, there exist p,p’ € P such
that g intertwines Py, with p'1/)§. Hence p~lgp’ € Ic(¢s) and this is
contained in P, by (4.20). We have shown that Ig(p) = P and the result
now follows. O

5. Proof of Theorem 4.5

Let [A,n,r, (] be a pure stratum in A. Let a, = a,(A) be the associated
filtration on A, E = F[B], B = Za(B), the A-centralizer of 8, and b,, =
a, N B, for n € Z. Note that a; is the Jacobson radical of the op-hereditary
order ag and, likewise, that b; is the Jacobson radical of the og-hereditary
order bg.

Let ag : A —+ A be the map x — Sz — z(3. Recall from §4.1 that, for
k € Z, we put ng = n(8,4) = {z € ap(A4) : ag(x) € ar}, an og-lattice in
A. Then, for ¢ > 0, we define

hi = hi(B,A) = inf{k € Z : ng1o4i(8,A) C by + pra;}.

with the understanding that if E = F then h;(8, 4) = oo,
Suppose first that A is a strict lattice sequence (that is A(n) 2 A(n+1)
for n € Z). Then the filtration induced by A on A is given by

an = (a1)",

with (a1)? := a9 and likewise for the filtration b,,. We now show that h;(3, A)
coincides with ko(8, A) as defined in [3] (1.4.5).
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Lemma 5.1. Let [A,n,r,B] be a pure stratum in A, with A a strict lattice
sequence of og-period e and let i > 0. Then

h,(ﬂ,/l) = inf{k EZ: nk+1(ﬂ,/1) Cbo+ al}.

Proof. Put | = 1nf{k €Z: nk+1(B,A) C bo+ Cll} and h = hz(ﬂ,A) By [3]
(1.4.8)(i), we have Nteti = bo—i—(bl)e"—iﬂl C bo+(bl)e+ia0 = bo+(a1)e+i =
bo + pra;. Hence h <.

However, by definition np4ets C bg + pra; so, by [3] (1.4.8)(¢), we have
Npy1 = (bl)lfe*ithreHﬂao C (b1)1767i(bo+(a1)e+i)ﬂao = bg+a;. Hence
! < h also, so we have equality. O

The main ingredients in proving the intertwining theorem 4.5 are the
exact sequences analogous to those in [3] (1.4) so we proceed by proving
these. We start with some preliminary lemmas, where A is no longer assumed
to be strict and e is the og-period of A.

Lemma 5.2 (cf. [3] (1.4.8)).

(1) We have pgng = ngye. Nprag and ng = pElnk+e Nag, for all k € Z.
(i1) For k € Z, the following are equivalent:
(0) Nkteti = bo + pE(MEys Nay).

Proof. This is identical to [3] (1.4.8), since pgpy' = og. O
In particular, we have that for k > h;(3, A),
Nteti N 0 = bi + PN N ag).

Also observe that the lemma implies that the application 7 — h; is periodic,
with period dividing e.

Recall ([3] (1.3.3)) that a tame corestriction on A relative to E/F is
a (B, B)-bimodule homomorphism s : A — B such that s(2) = 2N B
for any hereditary op-order 2 in A which is normalized by E*. Such a
homomorphism exists and is uniquely determined upto multiplication by
an element of 0. We also have ker s = imag and kerag = im s.

Lemma 5.3 (cf. [3] (1.8.4)(ii)). Let A be any og-lattice sequence in V and
let s be a tame corestriction on A relative to E/F. Then we have s(a,) = by,
forn € Z.

Proof. This is identical to [3] (1.3.4)(i¢), having observed that, from [4]
(2.10), we have a, = a1_p,. O

Now we have all the tools necessary to prove (and the proof is mutatis
mutandis that of [3] (1.4.7)):
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Proposition 5.4 (cf. [3] (1.4.7), (1.4.10), [1] (5.2)). Leti,k,r € Z and
suppose i > 0, k > h;y(B,A), r > 1. Then the following sequences are exact:
0 = Mg N g /Mpgrgs N0y % Ot/ Okt rti > brti/bksrsi — 0,

a

0 — ngqy ﬁa,-/bi z ki N br4i — 0.

We now give another characterization of the integers h; (cf. [3] (1.4.11)).

Lemma 5.5. For ¢ > 0 we have h;(8,A) = inf{k € Z : ag(a;) D ag4; N
imag}.

Proof. We have ag(a;) D ag(np,+; N a;) = ker (s|ap,+;) by (5.4) and this is
precisely aj,;Nim ag. Conversely, suppose k < h; and ag(a;) D ax+;Nimag.
Then

aﬁ(pEai) D OUgteti Nimag D ap;qeqi Nimag = aﬂ(nhi_1+e+i N Clz)

by (5.4) (and since e — 1 > 0). Hence we have np,_111; N a; C bg + pra;.
Now by (5.2) we have

Mhi—1+2e+i = bo + PE(Nh;—11etri N a;) C by + pr(bo + pra;) = by + pha;

so, also by (5.2),

Mhi 14etri =P Mhi—142e+i N g C pgt(bo + pHa;) Nag = by + pra;,

contradicting the minimality of h;. O

In order to compare the integers h; with the value ko(8, A) as defined
in [4] (5.1), we must introduce the notion of a (W, E)-decomposition (see
[3] (1.2)). Let W be the F-span of an E-basis of V so the canonical map
E ®r W — V is an isomorphism. This induces an algebra isomorphism
A(E) ®r Endrp(W) ~ A, where A(F) := Endp(E), which in turn induces
an isomorphism of (A(E), B)-bimodules

A(E) ®g B ~ A. (5.6)

In the space A(FE) there is a unique hereditary op-order normalized by
E*; we denote it A(E) and write A(E) for the associated (strict) lattice
sequence in E. Then, for a suitable choice of W, the isomorphism (5.6)
restricts to an isomorphism

A(E) ®op by ~ ay,

for each r € Z (see [4] (5.3)).
We may also consider the lattices ng (8, A(E)). Then we also have

nek(ﬁu/l) = nk(ﬁaA(E)) ®op bo,
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for k € Z. This is [3] (1.4.13)(¢) in the case of a strict lattice sequence and
the general case follows since a.x = pXao for all k € Z.

We put kp(8) = inf{k € Z : ng11(8, A(E)) C og + P(E)}, where
PB(E) = pgU(FE) is the Jacobson radical of A(FE). (Note that kr(53) is de-
noted ko(8,A(E)) in [3].) We also have kr(8) = inf{k € Z : ag(A(E)) D
PB(E)* Nimag}. Then we define, as in [4] (5.1),

ko(B,A) = e kr(B).
Lemma 5.7 (cf. [3] (1.4.13)(ii)). With notation as above, ko(53,A) >
hi(B,A), for all i > 0, and h1(B, A) = ko(B, A).
Proof. Writing ® for ®,, and k = kp(8), we have
ag(a;) = ag(A(E) ® b;) O (P(E)* Nimag) @ b;
= Ql(E)p’f; ® b; Nim ag = Oekyi im ag,
so certainly h;(8,A) < ek = ko(B, A).

Now suppose ek > hy(83, A); then negye C by + pras so we have ng, =

p;Jlne;H_e Nag C bg + a;. Then

(8, A(E)) C (n(B, A(E)) ® bo) N A(E)
=ne NA(E) C (bo +a1) NA(E) C og + P(E)
contrary to the definition of k = kr(8). O

Observe that the proof also shows that ko(8,4) = inf{k € Z : ng41 C
bo + a1}, which is the definition given in §4.

In order to prove (4.5), we need one more exact sequence (cf. [3] (1.4.16)).
Let i,5,m,n € N, by,bs € B*, k = ko(B3, A) and put
L=a;15N(b10j4k + amirds + antr),
M = (a; Nnpg) N (b1 (a5 Njtg) + (am N i) b2 + (an N Npyk)).
Then we require that the sequence
M3 L% A (5.8)

be exact. This will follow exactly as in [3] (1.4.16) if we can show that
s(L) = LN B. (L is E-exact, in the language of [3] (1.3).) But this holds as
in 3] (1.3.16) so (5.8) is indeed an exact sequence.

We now have all the tools necessary to prove that
I= I@[A, n,r, ,8] = (1 + md)BX (1 + md),

for [A,n,r,(] a simple stratum and where my = a_,_j, N n,.. We have
(14+mg)Z(1+my) =7 as in [3] (1.5.8) and B* C Z. Furthermore, z € T if
and only if wrx € 7 so we only need show that ZNag C (1+mg)B*(1+my).
The remainder of the proof is then mutatis mutandis that of [3] (1.5.8). O
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