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Abstract

Numerical solutions for three-dimensional gravity capillary waves in water of finite depth are

presented. The full Euler equations are used and the waves are calculated by a boundary integral

equation method. The findings generalise previous results of E. I. Parau, J.-M. Vanden-Broeck

and M.J. Cooker [J. Fluid Mech. 536, 99 (2005)] in water of infinite depth. It is found that

there are both lumps which bifurcate from linear sinusoidal waves and other fully localised solitary

waves which exist for large values of the Bond number. These findings are consistent with rigorous

analytical results and asymptotic calculations. The relation between the solitary waves and free

surface flows generated by moving disturbances is also explored.

PACS numbers: 47.20.Ky; 47.35.+i
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I. INTRODUCTION

Two-dimensional gravity solitary waves have been investigated analytically and numer-

ically since the pioneering work of Korteweg and de Vries.1 The study of two-dimensional

gravity capillary solitary waves is more recent although Korteweg and de Vries already

included surface tension in the derivation of their classical equation.

It was found both numerically and analytically that two-dimensional gravity solitary

waves develop in the far field an oscillatory tail of constant amplitude as soon as a small

amount of surface tension is introduced (see Hunter and Vanden-Broeck2, Champneys et al3

for numerical calculations and Dias and Iooss4 for a review of analytical work). These waves

are often referred to as generalised solitary waves to contrast them from true solitary waves

which are flat in the far field.

Other studies have shown that there are also two-dimensional gravity capillary solitary

waves with decaying oscillatory tails in the far field. These waves exist both in water of

finite depth and in water of infinite depth.5–7

In a previous paper8, we computed three-dimensional gravity capillary solitary waves in

water of infinite depth for the full Euler equations. These waves are left-right and fore-aft

symmetric, have decaying oscillatory tails in the direction of propagation but have monotonic

decay in the direction perpendicular to that of propagation. They can be viewed as the

three-dimensional equivalent of the the two-dimensional gravity capillary solitary waves

with decaying oscillatory tails described in the previous paragraph.

Here we consider three-dimensional gravity-capillary solitary waves in water of finite

depth. These waves have been considered recently by Kim and Akylas9 and Milewski10

who derived weakly nonlinear models, and by Groves and Sun (“Fully localised solitary-

wave solutions of the three-dimensional gravity-capillary water-wave problem”, preprint)

who proved rigorously their existence. We show that there are two types of solutions. One

type is similar to those obtained in water of infinite depth in the sense that the waves

approach those in infinite depth in the limit as the depth tends to infinity. The other type

has profiles with monotonic decay in all directions and exists only for sufficiently large values

of the Bond number.

Introductory analytical results based on the dispersion relation are discussed in Section II.

The boundary integral equation method is described in Section III and results are presented
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in Section IV. Finally we show in Section V that some free surface flows generated by moving

disturbances can be viewed as perturbations of three-dimensional solitary waves.

II. DISPERSION RELATION

The classical problem of three-dimensional water waves in finite depth when both gravity

and surface tension are present is considered. Some insight into the problem can be gained

from the dispersion relation for linearized capillary-gravity waves travelling at a constant

velocity c in water of finite depth h. It can be written as (see for instance Lamb,11 Wehausen

and Laitone12)

D(κ; λ, β) ≡ (λ + βκ2) tanhκ − κ = 0 (1)

where κ = k∗h is the dimensionless wavenumber. This equation involves two dimensionless

numbers

λ =
gh

c2
and β =

T

ρhc2
,

where T is the constant coefficient of surface tension, g is the acceleration due to gravity, ρ

is the fluid density. The parameter λ is the inverse of the square of the Froude number and

both parameters are related to the Bond number B = T/ρgh2 by the relation B = β/λ.

Kim and Akylas9 have shown that three-dimensional solitary waves (which they call

lumps) can bifurcate from linear sinusoidal waves with wavenumber corresponding to the

minimum of the phase speed which is also a double root of the dispersion relation (1). This

minimum corresponds, in the plane (β, λ), to a a curve Γ, given in parametric form (see

Dias and Iooss6) by

β =
1

2κ sinh2 κ
(sinh κ cosh κ − κ), (2)

λ =
κ

2 sinh2 κ
(sinh κ cosh κ + κ). (3)

In the limit as κ approaches zero, β ∼ 1/3 − 2κ2/45, λ ∼ 1 + κ4/45 and as κ approaches

infinity, β ∼ 1/(2κ), λ ∼ κ/2. The curve is shown in Fig. 1. Lumps are predicted to exist

on the region above the curve Γ. It is worth noting that two-dimensional gravity-capillary

waves are shown to exist in the same region of parameters.13 Results similar to those of Kim

and Akylas9 were obtained by Milewski10 for a weakly nonlinear model equation.
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Groves and Sun have shown that fully localised solitary waves also exist for another set

of parameters

β > 1/3, 0 < λ − 1 � 1.

In this region of strong surface tension Kadomtsev and Petviashvili14 derived the well-known

KP-I equation as a long-wave approximation for solutions of the steady gravity-capillary

water wave problem which has fully localized solitary-wave solutions.

The results of Kim and Akylas9 and Milewski10 are restricted to the weakly nonlinear

regime. Here we present fully nonlinear computations of the waves described in the two

previous paragraphs.

III. FORMULATION AND NUMERICAL SCHEME

The fluid is assumed to be incompressible and inviscid, and the flow to be irrotational.

We are interested in steady waves which travel at a constant velocity c in water of finite

depth h, and we choose a frame of reference moving with the wave, so that the flow is steady.

We introduce cartesian coordinates x, y, z with the z-axis directed vertically upwards and

the x-axis in the direction of wave propagation. We denote by z = ζ(x, y) the equation

of the free surface. Dimensionless variables are introduced by taking the unit length to be

T/ρc2 and the unit velocity to be c. In terms of the velocity potential function Φ(x, y, z),

the problem is formulated as follows:

∇2Φ = 0, x, y ∈ R,− 1

β
< z < ζ(x, y), (4)

with the boundary conditions

Φxζx + Φyζy = Φz, on z = ζ(x, y), (5)

1

2
(Φ2

x + Φ2

y + Φ2

z) + λβζ−

−




ζx
√

1 + ζ2
x + ζ2

y





x

−




ζy
√

1 + ζ2
x + ζ2

y





y

=
1

2
, on z = ζ(x, y), (6)

and

Φz = 0, on z = − 1

β
. (7)
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Equations (5) and (7) are the kinematic boundary conditions on the free surface and

on the bottom. Equation (6) is the dynamic condition with the effect of surface tension

included.

Since we are looking for fully localised three-dimensional solitary waves, we impose the

conditions

(Φx, Φy, Φz) → (1, 0, 0), ζ → 0, as (x2 + y2)1/2 → ∞. (8)

to fix the value of Bernoulli’s constant in (6).

The numerical scheme is an extension to finite depth of the scheme used by Părău,

Vanden-Broeck and Cooker8 for the computation of the fully localised gravity-capillary waves

in deep water and it is based on a boundary integral equation method introduced by Forbes15

for three dimensional gravity free surface flows due to a source. Only the main points of

the formulation and of the numerical procedure are presented here. The reader is referred

to Părău and Vanden-Broeck16 for details.

The formulation involves applying Green’s second identity for the functions Φ− x and G

where G is the three dimensional free space Green function

G =
1

4π

1

((x − x∗)2 + (y − y∗)2 + (z − z∗)2)1/2
, (9)

for a volume V which consists of a cylinder bounded by the free surface (except a small

hemisphere around the point P (x∗, y∗, z∗)), and its image SF ′ on the other side of the

bottom z = −1/β (see Fig. 2). In that way, by symmetry, the condition of no flow normal

to the bottom (7) is satisfied. This technique was applied for the problem of a withdrawal

through a point sink by Hocking, Vanden-Broeck and Forbes17 and others.

After some manipulation of the surface integrals and after projecting them onto the Oxy

plane, we obtain
1

2
(φ(x∗, y∗) − x∗) =

=
∫ ∫

R2
(φ(x, y) − x)

1

4π

ζ(x, y) − ζ(x∗, y∗) − (x − x∗)ζx(x, y) − (y − y∗)ζy(x, y)

((x − x∗)2 + (y − y∗)2 + (ζ(x, y) − ζ(x∗, y∗))2)3/2
dxdy+

+
∫ ∫

R2

1

4π

ζx(x, y)

((x − x∗)2 + (y − y∗)2 + (ζ(x, y)− ζ(x∗, y∗))2)1/2
dxdy+

+
∫ ∫

R2
(φ(x, y)− x)

1

4π

ζ(x, y) + ζ(x∗, y∗) + 2/β − (x − x∗)ζx(x, y) − (y − y∗)ζy(x, y)

((x − x∗)2 + (y − y∗)2 + (ζ(x, y) + ζ(x∗, y∗) + 2/β)2)3/2
dxdy+

+
∫ ∫

R2

1

4π

ζx(x, y)

((x − x∗)2 + (y − y∗)2 + (ζ(x, y) + ζ(x∗, y∗) + 2/β)2)1/2
dxdy (10)
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where φ(x, y) = Φ(x, y, ζ(x, y)).

We look for solutions which are symmetric in x and y. Therefore we assume

ζ(x, y) = ζ(−x, y) = ζ(x,−y) = ζ(−x,−y),

φ(x, y) = −φ(−x, y) = φ(x,−y) = −φ(−x,−y).

Following Forbes15, Părău and Vanden-Broeck16 and Părău et al.8 we rewrite equation (10)

as

2π(φ(x∗, y∗) − x∗) = I1 + I2 + I3 + I4 (11)

where

I1 =

∞
∫

0

∞
∫

0

[(φ(x, y) − φ(x∗, y∗) − x + x∗)K1a(x, y, x∗, y∗)+

+(−φ(x, y) − φ(x∗, y∗) + x + x∗)K1b(x, y, x∗, y∗)] dxdy, (12)

I2 =

∞
∫

0

∞
∫

0

(ζx(x, y)K2a(x, y, x∗, y∗) − ζx(x, y)K2b(x, y, x∗, y∗)) dxdy, (13)

I3 =

∞
∫

0

∞
∫

0

[(φ(x, y) − x)K3a(x, y, x∗, y∗)+

+(−φ(x, y) + x)K3b(x, y, x∗, y∗)] dxdy, (14)

I4 =

∞
∫

0

∞
∫

0

(ζx(x, y)K4a(x, y, x∗, y∗) − ζx(x, y)K4b(x, y, x∗, y∗)) dxdy, (15)

K1a(x, y, x∗, y∗) =
ζ(x, y) − ζ(x∗, y∗) − (x − x∗)ζx(x, y) − (y − y∗)ζy(x, y)

((x − x∗)2 + (y − y∗)2 + (ζ(x, y)− ζ(x∗, y∗))2)3/2
+

+
ζ(x, y)− ζ(x∗, y∗) − (x − x∗)ζx(x, y) − (y + y∗)ζy(x, y)

((x − x∗)2 + (y + y∗)2 + (ζ(x, y) − ζ(x∗, y∗))2)3/2
,

K2a(x, y, x∗, y∗) =
1

√

(x − x∗)2 + (y − y∗)2 + (ζ(x, y) − ζ(x∗, y∗))2

+

+
1

√

(x − x∗)2 + (y + y∗)2 + (ζ(x, y) − ζ(x∗, y∗))2
, (16)

K3a(x, y, x∗, y∗) =
ζ(x, y) + ζ(x∗, y∗) + 2/β − (x − x∗)ζx(x, y) − (y − y∗)ζy(x, y)

((x − x∗)2 + (y − y∗)2 + (ζ(x, y) + ζ(x∗, y∗) + 2/β)2)3/2
+

+
ζ(x, y) + ζ(x∗, y∗) + 2/β − (x − x∗)ζx(x, y) − (y + y∗)ζy(x, y)

((x − x∗)2 + (y + y∗)2 + (ζ(x, y) + ζ(x∗, y∗) + 2/β)2)3/2
,

K4a(x, y, x∗, y∗) =
1

√

(x − x∗)2 + (y − y∗)2 + (ζ(x, y) + ζ(x∗, y∗) + 2/β)2
+
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+
1

√

(x − x∗)2 + (y + y∗)2 + (ζ(x, y) + ζ(x∗, y∗) + 2/β)2
,

and Kib(x, y, x∗, y∗) = Kia(−x, y, x∗, y∗), i = 1, .., 4.

We note that the integrand in I2 is singular whereas those in I1, I3 and I4 are not.

We truncate the intervals 0 < x < ∞ and 0 < y < ∞ to x1 < x < xN , and y1 < y < yM

and introduce the mesh points xi = (i−1)∆x, i = 1, . . . , N and yj = (j−1)∆y, j = 1, . . . , M .

The integral I2 (which contains the singularity) can be calculated using some indefinite

integral (see Forbes15). The 2NM unknowns are

u = (ζx11 , ζx12, . . . , ζxN,M−1
, ζxNM

, φ11, . . . , φNM)T ,

where we use the notation ζxij
= ζx(xi, yj), φij = φ(xi, yj), ζij = ζ(xi, yj) etc.

The integrals and the Bernoulli equation are evaluated at the points (xi+1/2, yj), i =

1, ..., N − 2, j = 1, ..., M so we have 2(N − 2)M equations. Another 2M equations are

obtained from the truncation conditions ζxNj
= 0, φxNj

= 1, j = 1, . . . , M and another 2M

equations are given by the symmetry conditions ζx1j
= 0 and by φ1j = 0. The values of ζ

are obtained by integrating ζx with respect to x by the trapezoidal rule. The values of φx,

ζy and φy are then calculated by central differences. The values of the variables ζ and φ

at (xi+1/2, yj) were obtained by interpolation and the values of the other derivatives which

appears in the problem were computed by finite differences.

The 2NM nonlinear equations are solved by Newton’s method. Most of the computations

were performed with ∆x = ∆y = 0.8 and N = 40, M = 50. The accuracy of the solutions

have been tested by varying the number of grid points and the intervals ∆x and ∆y between

grid points.

The formulation in infinite depth was given in Părău, Vanden-Broeck and Cooker8 and

was obtained by applying Green’s second identity on a volume bounded by the free surface

and a half sphere of arbitrarily large radius in the fluid. The main difference from the

present case is that equation (11) does not contain the integrals I3 and I4. We also use the

parameter

α =
gT

ρc4
,

instead of the term λβ in the equation (6), since we cannot use the parameters λ and β,

which are based on h.
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Generally, in order to obtain a solitary-wave solution in finite depth we first compute

forced gravity-capillary waves for fixed λ and β (see Section V), then we remove gradually

the pressure, by keeping the amplitude of the solution constant. The solution obtaned is

then used as an initial guess or further computations.

IV. GRAVITY-CAPILLARY SOLITARY WAVES

For small surface tension (β < 1/3) we found that the three dimensional problem is qual-

itatively similar to the two dimensional problem. In particular there are two branches of

fully localised three-dimensional gravity-capillary solitary waves. One branch has a central

depression, the other branch has a central elevation. These waves have decaying oscillations

in the direction of propagation and are monotonically decaying perpendicular to the direc-

tion of propagation. In Fig.3 we show a typical central depression gravity-capillary wave

solution and in Fig.4 a typical central elevation gravity-capillary wave solution. The curves

obtained by cutting the free surface with planes parallel to the direction of propagation are

qualitatively similar to the two dimensional profiles obtained by Vanden-Broeck and Dias5

and by Dias et al.7. The solutions are quite similar to the fully localised solitary waves found

on deep water (see Parau et al.8).

For strong surface tension (β > 1/3) we found only fully localised depression gravity

capillary solitary waves. They are similar to fully-localized solitary-wave solutions of the

KP-I equation as shown in Fig. 5 for λ = 1.14 and β = 1. The lump solution for the KP-I

equation is, as given by Milewski10 and rewritten in term of our parameters, is

ζ(x, y) =
−16µ

β

3 − 2µ
ν
β2x2 + 4µ2

ν
β2y2

(

3 + 2µ
ν
β2x2 + 4µ2

ν
β2y2

)2
,

where µ = 1− 1√
λ

and ν =
β

λ
− 1

3
. Figure 6 shows the x and y cross-section of the computed

fully-localized solitary-wave solution (solid line) and the lump solution for the KP-I equation

(dotted line). It can be observed that there is a very good agreement between the two

solutions for the centreline on the Ox direction, except at the last points, where the effect

of the truncation is visible. There is also a good agreement on the Oy direction between the

numerical and analytical solution, but the numerical solution seems to decay faster than the

analytical solution. This is likely to be caused by truncation, as the algebraic decay of the

solution in this direction is slower than on the Ox direction.
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The agreement between the amplitude of the KP-I solution and our solution of the full

equations can be observed better if we keep λ constant and vary β (see Fig. 7). We can

follow continuously a branch of central depression solitary-wave solutions from the region of

strong surface tension to the region of weak surface tension, by passing through β = 1/3, as

predicted by Milewski10 . There is a maximum amplitude for the branch of central depression

waves (with λ constant) for β near 1/3.

V. FORCED CAPILLARY-GRAVITY WAVES

In this section we consider three-dimensional free surface flows due to a moving distur-

bance. As we shall see some of the solutions can be viewed as perturbations of the solitary

waves of Section III. We choose a frame of reference moving with the disturbance and we

seek steady solutions. The disturbance can be submerged (e.g. a submarine) or surface

piercing (e.g. a ship or a probe). The results presented are qualitatively independent of the

disturbance chosen. Therefore we assume for simplicity that the disturbance is a distribution

of pressure εP (x, y) where ε is a given parameter and

P (x, y) =











e
1

(x2
−1)

+
1

(y2
−1) , |x| < 1 and |y| < 1

0, otherwise
(17)

The problem is described mathematically by the equations (4)-(7) with the term εP (x, y)

added on the left hand side of (6). For finite depth numerical solutions are calculated by

using the numerical procedure of Section III. For infinite depth the numerical scheme is

similar to that in Părău, Vanden-Broeck and Cooker8.

We calculated solutions both in finite and infinite depth and obtained qualitatively similar

results. In Fig. 8 and 9 we present two such profiles for λ = 1.132 and β = 1. The first one

is obtained by imposing a positive pressure (ε > 0) on the surface and the second one by

imposing a negative pressure distribution (ε < 0). To simplify the problem, we will present

from now on results obtained in infinite depth only, as the profiles are quite similar to the

ones in finite depth and the number of parameters is decreased by one (α and ε).

In all cases α is assumed to be greater than 1/4, which corresponds to flows where the

distribution of pressure moves steadily with a constant velocity c smaller than the minimum
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phase speed cmin, which in infinite depth is

cmin =

(

4gT

ρ

)1/4

. (18)

In this case no wave pattern was observed and only a highly localised disturbance of the water

surface is predicted. As α decreases and approaches 1/4 more and more oscillations appear

in front and behind the main disturbance, the area disturbed by the pressure increasing

considerably. In two dimensions, Vanden-Broeck & Dias5 computed capillary-gravity waves

in the same regime of parameters (α > 1/4).

We show in Figure 10 values of ζ(0, 0) versus α for various values of ε. The dashed lines

corresponds to ε = ±1. For each ε 6= 0, there is a critical number αε such that there is no

solution for 1/4 < α < αε. In order to compute solutions near the turning point we used a

variation of the scheme of Section III in which the amplitude is fixed and α is found as part

of the solution.

Linear solutions for the flow due to a moving pressure distribution were calculated by

Raphaël and de Gennes18, Sun and Keller19 and others. We have recalculated these solutions

numerically by running the code with the boundary conditions linearized. The corresponding

values of ζ(0, 0) versus α are shown in Figure 10 by dotted lines. It shows that |ζ(0, 0)| → ∞
as α → 1/4. Therefore the linear theory is not valid near α = 1/4. Our nonlinear solutions

do not blow up as α → 1/4 but have a turning point at α = αe > 1/4. The solutions

corresponding to the portions of the broken curves closest to the α-axis and extending from

αe to α = ∞ are close to the linear solutions corresponding to the dotted lines in Figure

10. These solutions are perturbations of a uniform stream in the sense that they approach

a uniform stream with constant velocity U as |ε| → 0.

The remaining portions of the broken curves (i.e. the portions of the curves further away

from the α-axis and extending to the right of the turning point αe) are perturbations of

three-dimensional gravity-capillary solitary waves. In other words the remaining portions of

the broken curves approach solitary waves as |ε| → 0. The remaining portion of the broken

curve for ε = 1 is already almost on the branch of depression solitary waves. The remaining

portion for ε = −1 is still not very close to the branch of elevation solitary waves, but it

approaches it when |ε| decreases.

The branches of solitary waves correspond to the solid curves in Figure 10 and they were

discussed in detail in Parau et al.8.

10



Figure 10 shows forced solutions that are elevation solitary waves perturbed by a negative

distribution of pressure (ε < 0) and forced solutions that are depression solitary waves

perturbed by a positive distribution of pressure (ε > 0). We found that there are also forced

capillary gravity waves that are elevation solitary waves perturbed by positive pressure

distributions and depression solitary waves perturbed by negative pressure distributions. A

typical example is shown in Figure 11.

VI. CONCLUSION

We have calculated three dimensional gravity capillary solitary waves of the full Euler

equations in finite depth. Two branches of solutions were obtained. One is bifurcating at

the minimum value of the phase speed of the linear periodic waves. There are both elevation

and depression waves. The other one is an extension of the solution of the KP-I equation

to the fully nonlinear regime. We have shown that some of the solutions corresponding to

flows due to moving disturbances can be viewed as perturbations of these solitary waves.
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FIG. 1. Curves in the β −λ plane where solitary waves can bifurcate (the grey area): above

the curve Γ for β < 1/3 and above the curve λ = 1 for β < 1/3. The curve Γ is shown as a

dark solid line.

FIG. 2. The surfaces used for the application of the Green’s second identity.

FIG. 3. Central depression solitary gravity-capillary wave for β = 0.235, λ = 1.13. Only

half of the solutions (y ≥ 0) are shown.

FIG. 4. Central elevation solitary gravity-capillary wave for β = 0.28, λ = 1.13. Only half

of the solutions (y ≥ 0) are shown.

FIG. 5. Central depression solitary gravity-capillary wave for β = 1, λ = 1.14 (x ≤ 0)

compared with the fully localised solitary wave solution for KP-I (x ≥ 0), as given by

Milewski10. Only half of the solutions (y ≥ 0) are shown.

FIG. 6. (a) The centreline in the Ox direction of the computed solitary gravity-capillary

wave (solid line) and the fully localised solitary wave solution for KP-I (dotted line). The

parameters are β = 1, λ = 1.14. (b) The centreline in the Oy direction of the computed

solitary gravity-capillary wave (solid line) and the fully localised solitary wave solution for

KP-I (dotted line). The parameters are β = 1, λ = 1.14.

FIG. 7. The maximum amplitude of the computed solution (solid line) and KP-I solutions

(dashed line) for a fixed λ = 0.132

FIG. 8. Forced capillary-gravity waves for λ = 1.132, β = 1 and ε = 0.3.

FIG. 9. Forced capillary-gravity waves for λ = 1.132, β = 1 and ε = −0.3.

FIG. 10. Values of the amplitude (ζ(0, 0)) versus α. The dashed lines corresponds to ε = 1

in the negative half of the plane and to ε = −1 on the positive half of the plane. The solid

line corresponds to free capillary-gravity waves (ε = 0). The dotted line corresponds to

linear solutions for ε = ±1.

FIG. 11. Free surface profile for α = 0.35, ε = 3 which is a perturbation of an elevation

solitary wave. Only half of the solution is shown.
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