<u>Abstract</u>

Limb tissues have a dual origin. The lateral plate mesoderm gives rise to cartilage, connective tissue and the skeletal elements of the limbs whereas cells from the dermomyotome migrate into the limb field and give rise to the limb musculature. The cells differentiate into myotubes, aggregate into a dorsal and ventral mass before undergoing sequential splitting events to give rise to individual muscles. Myogenic Regulatory Factors (MRFs) are one of the earliest markers of muscle differentiation and can be detected in the limb myocytes around embryonic stage HH 20.

MicroRNAs are 22 nucleotides long non-coding RNA molecules. They are endogenously expressed in plants and animals, where they are transcribed by RNA Polymerase III or II as a single strand called a primary miRNA (pri-miRNA) which has some internal complementarity that cause it to take on the signature stem loop structure. The pri-miRNA is cleaved by endonuclease Drosha and the resulting precursor miRNA (pre-miRNA) is exported out of the nucleus by Exportin and is then cleaved by Dicer, leaving a miRNA:miRNA* duplex which is unwound before the miRNA binds to a RNA induced silencing complex (RISC). The miRNA can then exert post translational regulation by either binding to a target mRNA and preventing translation or by causing the mRNA to be cleaved.

The muscle specific miRNAs MiR-1, MiR-206 are known to enhance the muscle differentiation process and inhibiting the muscle cell proliferation whilst MiR-133 is known to enhance muscle cell proliferation whilst hindering differentiation. Correct temporal and special expression of these miRNAs result in the correct development of muscles.

It has been shown that MRFs can induce the ectopic expression of muscle specific miRNAs and other MRFs in the neuraltube. Progenitor cells that give rise to the limb muscles differ in several ways from cells that give rise to the axial muscles. To test if the MRFs were able to induce the expression if these miRNAs in the limbs, we first took a look at their endogenous expressions in the distal forelimb in chick embryos at embryonic stage HH35. All muscles showed ubiquitous expression of all three muscle specific miRNAs with no bias towards fast or slow muscles. Next, to examine if ectopic expression of MRFs could induce miRNA expression in the limbs, we infected developing limb buds with concentrated viral particles of RCAS-MRF. No ectopic MRF expression could be seen in the limbs despite successful RCAS infection. To investigate further we infected chick DF1 cells with the RCAS-MRF that gave us the same results. On examining the RCAS-MRF construct itself we discovered, the

construct was missing the MRF insert therefore was able to infect the cells and express endogenous RCAS genes but no MRF was being expressed.

Acknowledgements

Firstly, I would like to thank my supervisor Dr. Andrea Munsterberg for giving me the opportunity to work on this project. Her guidance and support have been elemental to the completion of my work.

I would like to extend a very big thank you to my other supervisor Dr. Dylan Sweetman for helping me out with my work on a day-to-day basis; holding my hand and training me with all the method until I got up to speed.

I would like to thank my third supervisor Dr. Grant Wheeler for being available with much helpful advice.

All the people in our joint lab, specially, Dr. Kasia Goljanek, Ruth Williams and Nicola Kennerley who have been very important with helpful suggestions about my project and a thank you for keeping the lab an enjoyable place where we could look forward to the next day's work.

Not forgetting Paul Wright our very own IT guru without whom, I could have never gotten over the many technological bleeps that have occurred over the course of the project and also the staff in the Henry Welcome Imaging Suite, where I spent many long days.

Lastly, I would like convey the biggest Thank You to my parents Mr. Iftekhar U. Ahmed and Dr. Nahid T. Iftekhar, for their patience and support over the course of my MSc and everything else. Without them none of this would have ever been possible. Finally, a mention to my siblings Nafi and Brishty and my friends for keeping me sane through the course of this time.

	Title Page	01
	Abstract	02
	Acknowledgements	04
	Contents' Page	05
	Abbreviations	11
1.	Introduction	17
1.1	Introduction	18
1.2	Somites	19
1.3.	Limb Tissue Formation	22
1.3.1.	Limb Bud	22
1.3.2.	Apical Ectodermal Ridge (AER)	24
1.3.3.	Zone of Polarising Activity (ZPA)	26
1.3.4.	Progress Zone (PZ)	28
1.3.5.	Hox Genes	29
1.3.6.	Termination of Limb Development	32
1.4	Muscles of the Limb	33
1.4.1	Introduction	33
1.4.2	Formation of Muscle Precursor Cells in the Lateral Dermomyotome	35
1.4.3	Delamination and Migration of Precursor Cells into the Limb Buds	35
1.4.4	Activation of the Myogenic Program	35
1.4.5	Proliferation of Cells	36
1.4.6	Formation of Dorsal and Ventral Muscle Masses	36
1.4.7	Muscle Differentiation	36
1.4.8	Muscle Splitting	37
1.5.	Myogenic Regulatory Factors	39
1.6.	Differences Between Limb and Body Muscles of the Embryo	41
1.7.	Muscle Splitting	43

1.7.1.	Hind Limb Muscle Splitting Events	43
1.7.1.1.	Dorsal Muscle Mass	44
1.7.1.1.1.	Dorsal Thigh Muscles	46
1.7.1.1.2.	Dorsal Shank Muscles	46
1.7.1.1.3.	Dorsal Foot Muscles	46
1.7.1.2.	Ventral Muscle Mass	48
1.7.1.2.1.	Ventral Thigh Muscles	48
1.7.1.2.2.	Ventral Shank Muscles	50
1.7.1.2.3.	Ventral Foot Muscles	51
1.7.2.	Forelimb Muscle Splitting Events	54
1.7.2.2.	Dorsal Muscle Mass	55
1.7.2.2.1.	Dorsal Stylopod (Humerus) Muscles	55
1.7.2.2.2.	Dorsal Zeugopod (Radius, Ulna) Muscles	57
1.7.2.2.3.	Dorsal Autopod (Metacarpals, Phalange) Muscle Mass	59
1.7.2.3.	Ventral Muscle Mass	60
1.7.2.3.1.	Ventral Stylopod (Humerus) Muscles	60
1.7.2.3.2.	Ventral Zeugopod (Radius, Ulna) Muscle Mass	62
1.7.2.3.3.	Ventral Autopod (Metacarpals, Phalange) Muscle Mass	63
1.8.	MicroRNAs	65
1.8.1.	Biosynthesis of MiRNA	65
1.8.1.1.	Primary RNA Transcripts (Pri-MiRNA)	65
1.8.1.2.	Precursor miRNAs (pre-miRNA)	65
1.8.1.3.	Mature MiRNA	66
1.8.2.	Post-Transcriptional Regulation	66
1.9.	Muscle Specific MicroRNAs	69
1.9.1.	Structure and Location of MiRNA-1/206 and MiRNA-133	69
1.9.2.	Regulation and Function of MicroRNAs-1/206 and MicroRNA-133	70
1.10.	Myogenic Regulatory Factors Induce Myogenic Genes and Ectopic	
	MiRNA Expression	73
1.10.1.	pCAβ-Myf-5-GFP	73

1.10.2.	pCAβ-Myo-D-GFP	73
1.10.3.	pCAβ-Myogenin-GFP	74
1.10.4.	pCAβ-MRF-4-GFP	74
2.	Aims	75
2.1.	Aims of the Project	76
3.	Materials and Methods	88
3.1.	Whole Mount In Situ Hybridization	89
3.1.1.	Synthesis of Riboprobe for In Situ Hybridization Synthesis	89
3.1.1.1.	Cloning of DH5 α E Coli Competent Cells: Heat Shock Transformation	89
3.1.1.1.1.	Plating and Bacterial Culture	90
3.1.1.1.2.	Plasmid Isolation from Bacterial Cultures	90
3.1.1.1.3.	Restriction Digestion	91
3.1.1.1.4.	Agarose Gel Electrophoresis of DNA and RNA	91
3.1.1.2.	Phenol : Chloroform Purification	91
3.1.1.3.	Transcription Reaction	92
3.1.1.4.	Purification of Transcription Product	92
3.1.2	LNA Probes	93
3.1.3.	Whole Mount In Situ Hybridization Preparation	93
3.1.3.1.	Embryo Removal and Dissection	93
3.1.3.3.	Fixation	93
3.1.3.4.	Dehydration	94
3.1.3.5.	Re-Hydration	94
3.1.4.	Whole Mount In Situ Hybridization Protocol	94
3.2.	In Vivo Manipulation of Chicken Embryos	97
3.2.1.	Culture of Chicken Eggs	97
3.2.2.	Microinjection	97
3.2.3.	Harvesting of Treated Chick Embryos	98

3.3.	Sectioning of Embryos and Microscopic Analysis	99
3.4.	Making RCAS Virus Particles	100
3.4.1	Cell Culture	100
3.4.2.	Producing RCAS Virus DNA	100
3.4.3.	Cell Transfection	100
3.4.4.	Harvesting RCAS Virus Particles	101
3.4.5.	Concentrating RCAS Virus Particles	101
3.5.	Viral Infection of DF1 Cells	102
3.5.1.	Cell Culture	102
3.5.2	RCAS Virus Infection	102
3.5.3.	Immunostaining	102
3.5.4.	Verification of Plasmid	103
3.5.4.1.	Extraction of RNA from Cell Cultures	103
3.5.4.2.	Reverse Transcription Reaction	104
3.5.4.3.	Amplification of cDNA by Polymerase Chain Reaction	104
	Results and Discussion	
4.	Expression of Muscle Specific MiRNAs in the Distal Forelimb	107
4.1.1.	Introduction	107
4.1.2.	Distal Forelimb	108
4.2.	Myo-D	112
4.2.1.	Myo-D Whole Forelimb	113
4.2.2.	Myo-D Transverse Sections	116
4.2.3.	Myo-D Conclusion	118
4.3.	MiRNA-206	119
4.3.1.	MiRNA-206 Whole Forelimb	120
4.3.2.	MiRNA-206 Transverse Sections	122

4.3.3.	MiRNA-206 Conclusion	125
4.4.	MiRNA-1	126
4.4.1.	MiRNA-1 Whole Forelimb	127
4.4.2.	MiRNA-1 Transverse Sections	129
4.4.3.	MiRNA-1 Conclusion	132
4.5.	MiRNA-133	133
4.5.1.	MiRNA-133 Whole Forelimb	134
4.5.2.	MiRNA-133 Transverse Sections	136
4.5.3.	MiRNA-133 Conclusion	138
4.6.	Summary	139
5.	Regulation of MiRNA-206 by MRFs	140
5.1.	Testing RCAS-MRFs	140
5.1.1.	Testing RCAS-MyoD	140
5.1.2.	Testing RCAS-Mgn	142
5.1.3.	Testing RCAS-Myf-5	143
5.1.4.	Testing RCAS-MRF4	144
5.1.5.	Conclusion	145
5.2.	Verifying the Quality of the MiR-206 Locked Nucleic Acid (LNA) probes.	146
5.3.	Effect of Ectopic Myogenin on Mir-206 Expression	148
5.3.1.	Test for RCAS Gag	149
5.3.2.	Test for Ectopic Myogenin	150
5.3.3.	Test for Ectopic MiRNA-206	151
5.3.4.	Conclusion	152
5.4.	Effect of Ectopic MyoD on Mir-206 Expression	153
5.4.1.	Test for RCAS Gag	154

5.4.2.	Test for ectopic MyoD	155
5.4.3.	Test for Ectopic Myogenin	156
5.4.4.	Test for Ectopic Mir-206	157
5.4.5.	Conclusion	158
5.5.	Test For Ectopic Myogenin Expression as a Result of RCAS-Mgn Infection	159
5.5.1.	Test for RCAS Gag	160
5.5.2.	Test for Ectopic Myogenin	161
5.5.3.	Conclusion	163
5.6	Testing For Ectonic Expression of Myogenin on RCAS-Man Infected	
2.0.	Embryos	164
561	Test for RCAS Gag	165
5.6.2.	Testing for Ectopic Myogenin	166
5.6.3.	Conclusion	167
5.7.	Verification of RCAS-Mgn Quality	168
5.7.1.	DF1 cells infected with RCAS-Mgn	171
5.7.2.	Negative Control: Wild Type DF1 Cells Stained With α -HA	173
5.7.3.	Positive Control: DF1 cells infected with RCAS-GFP	174
5.7.4.	Positive Control: Wild Type DF1 Cells Stained With α -Microtubules Antibody	176
5.7.5.	Conclusion	178
58	Verification of the RCAS-Mon Construct	179
5.8.1	Verification by PCR	179
5.8.2	Conclusion	181
5.0.2.		101
5.9.	Future Work	182
	References	185

Abbreviations

AB2	Abductor Digiti 2
AB4	Abductor Digiti 4
Ab. I	Abductor Indicis
Ab. M	Abductor Medius
AD2	Adductor Digiti 2
ADAM	A Disintegrin and Metalloprotease Domain
Ad. I	Adductor Indicis
AER	Apical Ectodermal Ridge
Anc	Anconeus
AMB	Ambiens
BBR	Boehringer Blocking Reagent
BCIP	5-Bromo-4-chloro-3-indolyl phosphate
bLHL	Basic Helix Loop Helix
BMP	Bone Morphogenetic Protein
CFC	Caudofemoralis Pars Caudalis
CFP	Caudofemoralis Pars Pelvica
cDNA	Complementary DNA
DAPI	4',6-diamidino-2-phenylindole
DEPC	Diethylpyrocarbonate
DF	Dermofibroblast
DIG	Digoxigenin
DIG-AP	Anti - Digoxigenin - Alkaline Phosphatase
DMEM	Dulbecco's Modified Eagle Medium

DNA	Deoxyribonucleic Acid
DTT	Dithiothreitol
EB4	Extensor Brevis Digiti 4
EDC	Extensor Digitorum Communis
EDL	Extensor Digitorum Longus
EHL	Extensor Hallucis Longus
EIB	Extensor Indicis Brevis
EIL	Extensor Indicis Longus
EMB	Extensor Medius Brevis
EML	Extensor Medius Longus
EMR	Extensor Metacarpi Radialis
EMU	Extensor Metacarpi Ulnaris
En-1	Engrailed-1
Ent	Entepicondyloulnaris
EP3	Extensor Proprius 3
FB	Fibularis Brevis
FBS	Fetal Bovine Serum
FCL	Flexor Cruris Lateralis
FCLA	Flexor Cruris Lateralis Pars Accessoria
FCLP	Flexor Cruris Lateralis Pars Pelvica
FCM	Flexor Cruris Medialis
FCU	Flexor Carpi Ulnaris
FDL	Flexor Digitorum Longus
FDP	Flexor Digitorum Profundus
FDQ	Flexor Digiti Quarti

FDS	Flexor Digitorum Superficialis
FGF	Fibroblast Growth Factor
FHB	Flexor Hallucis Brevis
FHL	Flexor Hallucis Longus
FI	Flexor Indicis
FITC	Fluorescein Isothiocyanate
FITC-AP	Anti - Fluorescein Isothiocyanate - Alkaline Phosphatase
FL	Fibularis Longus
FP2	Flexor Perforatus 2
FP3	Flexor Perforatus 3
FP4	Flexor Perforatus 4
FPP2	Flexor Perforans et Perforatus 2
FTI	Femorotibialis Internus
FTE	Femorotibialis Externus
FPP3	Flexor Perforans et Perforatus 3
GE	Gastronemius Externus
GI	Gastrocnemius Internus
GM	Gastrocnemius Intermedius
GS	Goat Serum
HDAC 4	Histone Deacetylase 4
HGF	Hepatocyte Growth Factor
HH	Hamburg and Hamilton stage
Hox	Homebox
IC	Iliotibialis Cranialis
IF	Iliofibularis

IFE	Iliofemoralis Externus
IFI	Iliofemoralis Internus
IL	Iliotibialis Lateralis
IOD	Interosseus Dorsalis
IOP	Interosseus Palmaris
ISF	Ischiofemoralis
ITC	Iliotrochantericus Caudalis
ITCM	Iliotrochantericus Medius
ITCR	Iliotrochantricus Cranialis
LB	Luria Broth
Lbx-1	Ladybird homebox -1
Lmx-1	LIM Homebox 1
LNA	Locked Nucleic Acid
MABT	Maleic Acid, Sodium Chloride, NaCl, Tween-20
MEF 2	Myocyte Enhancer Factor 2
miR / miRNA	microRNA
MRF	Myogenic Regulatory Factor
NBT	Nitro Blue Tetrazolium
N-CAM	Neuronal Cadherin
NTM	Sodium Chloride, NaCl, Tris (HCl; pH 9.5), Magnesium Chloride, MgCl ₂
NTMT	Sodium Chloride, NaCl (0.1 M), Tris (HCl) pH 9.5 (0.1 M), Magnesium
	Chloride, MgCl ₂ (50 mM), Tween-20 (10% v/v)
OBT	Obturatorius
Р	Plantaris

Pax-3	Paired Box 3
PBS	Phosphate Buffer Saline
PCR	Polymerase Chain Reaction
PFA	Paraformaldehyde
PIF	Puboischiofemoralis
PP	Pronator Radius
PS	Pronator Superficialis
Pre-miRNA	Precursor microRNA
Pri-miRNA	Primary MicroRNA Transcripts
PZ	Progress Zone
RCAS	Replication-Competent Avian Sarcoma-Leukosis Virus
RCAS-MRF	Replication Competent Avian Sarcoma-Leukosis Virus with a Myogenic
	Regulatory Factor Insert
r-Fng	Radical Fringe
RISC	RNA Induced Silencing Complex
RNA	Ribonucleic Acid
RNAsin	Ribonuclease Inhibitor
SOC	Super Optimal broth with Catabolite repression
SRF	Serum Response Factor
TAE	Agarose melted in Tris base, acetic acid and EDTA,
	Ethylenediaminetetraacetic Acid
TBST	Tris-Buffered Saline Tween-20
TBST TC	Tris-Buffered Saline Tween-20 Tibialis Cranialis

- UMV Ulnimetacarpalis Ventralis
- V-CAM Vascular Cadherin
- ZPA Zone of Polarizing Activity
- 3'-UTR 3' Untranslated Region