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Abstract New diagnostics of the Madden–Julian os-
cillation (MJO) cycle in ocean temperature and, for

the first time, salinity are presented. The MJO com-

posites are based on 4 years of gridded Argo float data

from 2003–2006, and extend from the surface to 1400 m
depth in the tropical Indian and Pacific Oceans. The

MJO surface salinity anomalies are consistent with pre-

cipitation minus evaporation fluxes in the Indian Ocean,

and with anomalous zonal advection in the Pacific. The

Argo sea surface temperature and thermocline depth
anomalies are consistent with previous studies using

other data sets. The near-surface density changes due

to salinity are comparable to, and partially offset, those

due to temperature, emphasising the importance of in-
cluding salinity as well as temperature changes in mixed-

layer modelling of tropical intraseasonal processes. The

MJO-forced equatorial Kelvin wave that propagates along

the thermocline in the Pacific extends down into the

deep ocean, to at least 1400 m. Coherent, statistically
significant, MJO temperature and salinity anomalies

are also present in the deep Indian Ocean.
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1 Introduction

The MJO (Madden and Julian, 1971) is the dominant

mode of intraseasonal variability in the tropical atmo-

sphere. It consists of large (10,000 km across) positive
and negative convective cloud anomalies that propagate

eastward across the warm pool region, from the Indian

Ocean to the western Pacific. These are accompanied

by circulation anomalies that are global in extent. The

MJO affects monsoon systems across the tropics, im-
pacts on extratropical weather regimes, and plays a role

in the triggering and onset of El Niño events. Compre-

hensive reviews of the MJO are given by Zhang (2005)

and Lau and Waliser (2005).

Analysis of satellite and buoy measurements of sea
surface temperature (SST) have revealed a coherent

MJO cycle in the upper ocean, in quadrature with the

MJO surface flux anomalies. Warm SST anomalies fol-

low the calm, cloud-free, dry phase of the MJO, with its
increase in downward surface shortwave radiation and

reduction in evaporation and upward latent heat flux.

Similarly, cold SST anomalies follow the windy, cloudy,

wet phase of the MJO (Flatau et al. 1997; Shinoda et al.

1998, 1999; Woolnough et al. 2000; McPhaden 2002).
The observed MJO SST anomalies are largely repro-

ducible as the response to the observed MJO surface

flux anomalies in one-dimensional (vertical) thermody-

namic mixed layer models (e.g., Shinoda and Hendon
1998; Batstone et al. 2005), although zonal advection

is also important in the Pacific (Shinoda and Hendon

2001).
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The phase relationship between the MJO SST and

convective anomalies is also consistent with the ocean

forcing the atmosphere, as warm SST anomalies lead

the active convective phase of the MJO by a quarter cy-

cle. Atmospheric models forced with intraseasonal SST
anomalies can partly reproduce the MJO convective sig-

nal (Woolnough et al. 2001; Matthews 2004; Fu and

Wang 2004) but there are issues with the time lag of

the atmospheric response. Nonetheless, there may be
a role for ocean–atmosphere coupling within the MJO.

The simulation of the MJO in some coupled ocean–

atmosphere models has improved when compared with

that in the atmosphere-only version (e.g., Inness and

Slingo 2003), but this improvement is not universal
(Hendon 2000). Hence, one possible paradigm is that

the MJO can exist independently as an atmosphere-

only phenomenon, but that it becomes stronger and

more coherent when ocean–atmosphere coupling is in-
cluded.

The dynamical response of the ocean to the MJO is

also significant, with oceanic equatorial Kelvin waves in

the Pacific being forced by MJO wind stress anomalies
(Kessler et al. 1995; Hendon et al. 1998; Zhang 2001).

These Kelvin waves can then be instrumental in trigger-

ing El Niño events (McPhaden 1999, 2002; Kessler and

Kleeman 2000; Kutsuwada and McPhaden 2002; Zhang

and Gottschalk 2002; Seo and Xue 2005). These analy-
ses were mainly carried out using data from the TOGA–

TAO array of moored buoys, that cover the equatorial

Pacific, and measure temperature down to 500 m. Until

recently, there were no deeper temperature data suit-
able for such large-scale analysis of intraseasonal vari-

ability, and no suitable salinity data at any depth, ex-

cept from single isolated buoys (Cronin and McPhaden

1998). Some studies have found intraseasonal signals in

the deep tropical ocean (e.g. Heywood et al. 1994), but
these have been limited to local, short term measure-

ments.

However, the amount of deep-ocean data on intrasea-

sonal time scales has increased by at least an order
of magnitude with the deployment of Argo floats from

2000 onwards (Gould et al. 2004; Alverson and Baker

2006). Each float drifts at a parking depth (normally at

1000 m), and then every 10 days it descends to a base

level (normally at 2000 m) and then ascends to the sur-
face, measuring a profile of temperature and salinity as

it rises. At the surface, the data are sent via satellite,

then the float automatically descends back to its park-

ing depth. The 10-day repeat cycle and large number of
floats are now providing the oceanographic community

with unprecedented high spatial and temporal resolu-

tion data of the upper 1000–2000 m of the world oceans.

Applications of Argo data have included analysis of

ocean Rossby waves (Chu et al. 2007) and deep seasonal

temperature variations (Hosoda et al. 2006). Recently,

the high temporal resolution of the Argo data was used

to show that the temperature structure of an equato-
rial Kelvin wave in the Pacific, forced by a particular

MJO event, extended down to at least 1500 m depth

(Matthews et al. 2007), deeper than expected from the-

oretical considerations (Johnson and McPhaden 1993).

In this paper, we present the three-dimensional struc-

ture of oceanic temperature and salinity anomalies through-

out a composite MJO cycle, using gridded Argo data
from the Indian and Pacific Oceans. These are discussed

in the light of existing observational and theoretical

studies.

2 Data and methodology

2.1 Argo data

The first floats of the Argo programme were deployed in

2000, and now number over 3000. However, spatial cov-

erage of the tropical Indian and Pacific Oceans was not

sufficient to study intraseasonal variability until 2003.

This study uses 4 years of Argo data, from 1 January
2003 to 31 December 2006. The Argo float profiles were

extracted from the real-time quality controlled Argo

data base at http://www.argo.ucsd.edu. Only profiles

flagged as “good” were used. Each profile had a latitude
and longitude location, and temperature and salinity

measurements (accurate to 0.005 ◦C and 0.01, respec-

tively) at non-standard pressure levels. Temperature

data from each Argo float profile were then interpo-

lated onto standard pressure levels every 5 dbar, from
5 dbar to 2000 dbar.

A four-dimensional Cartesian grid was created, with

a horizontal resolution of 1◦ longitude × 1◦ latitude, a
vertical resolution of 5 dbar, and a time resolution of

7 days. For a given target grid point at longitude, lat-

itude (x0, y0) at a given target time, a search ellipse

was constructed, centred on the target grid point, with
a semi-major axis of 4Lx, where Lx = 1000 km in the

zonal (x) direction, and a semi-minor axis of 4Ly, where

y0 = 250 km in the meridional (y) direction. All avail-

able Argo temperature measurements within the search

ellipse, on the same level, and within a 7-day search
window centred on the target time, were then used to

construct the gridded temperature value T ,

T (x0, y0) =

∑n
i=1

wiTi
∑n

i=1
wi

, (1)
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with the observations being Gaussian-weighted by their

horizontal distance from the target grid point,

wi = exp

{

−

[

(

xi − x0

Lx

)2

+

(

yi − y0

Ly

)2
]}

, (2)

where n is the number of Argo observations within the

search ellipse, Ti is the temperature value of the ith ob-
servation, and xi and yi are the x and y coordinates of

the ith observation. Hence, the relative weightings de-

creased from 1 at the target grid point to e−4
≈ 0.02 at

the boundary of the search ellipse. If there were n < 3

observations within a search ellipse, the gridded value T
was flagged as missing, and no numerical value was cal-

culated. To interpolate over occasional missing values, a

smooth curve was fitted through the time series of tem-

perature at each grid point. The actual temperature
values were retained where they existed, but missing

values were replaced by values from the fitted curve. If

there were greater than three consecutive missing val-

ues (weeks), then the whole time series at that grid

point was set to missing. The choice of values for Lx

and Ly are consistent with gridding of other oceano-

graphic data sets (Meyers et al. 1991; Reynolds and

Smith 1994; Kessler et al. 1996) and are appropriate to

capture the spatial scales of variability in the tropical
oceans. Salinity was gridded in a similar way. Poten-

tial temperature was then calculated from temperature,

salinity and pressure.

For each grid point, the mean and first two annual

harmonics of the time series were calculated over the
four-year period 2003–06 and subtracted to produce an

anomaly time series. The interannual variability was

then removed by subtracting an 11-week running mean.

Dynamic height and geostrophic current fields were cal-

culated from the gridded Argo temperature and salin-
ity data. The reference level of zero dynamic height

anomaly and current speed was taken to be 950 dbar,

the deepest level at which there was adequate data cov-

erage.

2.2 Subsidiary data

Further data sets were used to provide information on

the MJO, and to validate the Argo data. The gridded

outgoing longwave radiation (OLR) data set of Lieb-
mann and Smith (1996) was used as a proxy for deep

tropical convection. Gridded 1000-hPa wind, surface

latent heat flux and precipitation rate fields were ex-

tracted from the NCEP-NCAR reanalysis (Kalnay et
al. 1996). These data were all daily means, on 2.5◦ lon-

gitude × 2.5◦ latitude grids. The weekly mean NOAA

optimally interpolated sea surface temperature V2 data

set (Reynolds et al. 2002) was used to validate the Argo

data. The 5-day mean fields of the depth of the 20◦C

isotherm in the tropical Pacific from the TAO buoy

network were also used to validate the Argo data set.

Only data for the study period 2003-06 were used, to
be consistent with the relatively short Argo data set.

The mean and first two harmonics of the annual cycle

were calculated over the 4-year period 2003–2006 and

subtracted to produce anomaly fields. A 7-day running
mean was then applied to the daily OLR and reanalysis

data.

2.3 Validation of Argo data

An equatorial longitude–depth section of the time-mean

gridded Argo potential temperature field (Fig. 1a) re-

produces the climatological features of the Indian and

Pacific Oceans, and is in excellent quantitative agree-

ment with climatologies constructed from much longer
data sets, such as the 2005 World Ocean Atlas (Lo-

carnini et al. 2006; Antonov et al. 2006) and the TAO

buoy data for the Pacific (Yu and McPhaden 1998). The

surface warm pool over the Indian Ocean and western
Pacific, the surface cold tongue in the eastern Pacific,

the sloping thermocline, and the cooler abyssal waters

are all represented accurately. Similarly, the mean Argo

gridded salinity (Fig. 1b) also reproduces the mean cli-

matological features: the fresh surface warm pool over
the eastern Indian Ocean and western Pacific, the saline

surface waters in the central Pacific, the fresh eastern

Pacific, and the subsurface salinity maximum along the

thermocline in the Pacific, with fresher waters below.
Again, these are all in excellent quantitative agreement

with the 2005 World Ocean Atlas. These Argo clima-

tological temperature and salinity fields will be used to

interpret the intraseasonal anomalies later.

The more demanding question of whether the grid-
ded Argo data can resolve intraseasonal features is now

addressed. For validation, a Hovmöller diagram of equa-

torial thermocline depth (depth of the 20 ◦C isotherm;

D20) anomalies from the Pacific TAO buoy array is
shown in Fig. 2b. Eastward-propagating intraseasonal

anomalies can clearly be seen over the whole four-year

period. These have an average phase speed of approx-

imately 2.2 m s−1, and are diagnostic of equatorial

Kelvin waves with a first internal mode vertical struc-
ture (e.g., Kessler et al., 1995). Individual MJO events

are shown by the eastward-propagating equatorial OLR

anomalies (hatched). Active MJO events (enhanced con-

vection, negative OLR anomalies) can be seen to force
downwelling equatorial Kelvin waves (positive D20 anoma-

lies) on many occasions; 14 such events are marked

by thick diagonal lines in Fig. 2b. This behaviour is
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consistent with previous studies of MJO-forced oceanic

Kelvin waves (Kessler et al., 1995; Hendon et al., 1998;

Zhang, 2001).

The comparable Hovmöller diagram from the grid-

ded Argo data set is shown in Fig. 2a. The Argo data re-
produces the intraseasonal variability seen in the TAO

data to a high degree of accuracy. In particular, the

timings, phase speeds and amplitudes of the equatorial

Kelvin waves are in excellent agreement. Hence, this
validation against the reliable TAO data in the upper

ocean increases our confidence in the fidelity of the Argo

data in the deeper ocean, where there are no other data

sets with this high degree of both temporal and spatial

resolution.

2.4 MJO definition and compositing

We use the real-time multivariate MJO (RMM) index of

Wheeler and Hendon (2004) to define the MJO. This
index is comprised of two daily time series, denoted

RMM1 and RMM2. These are the principal-component

time series of the first two EOFs of combined near-

equatorially averaged OLR, and 200 and 850-hPa zonal
winds. The indices are available in real time and used

to operationally monitor and forecast the state of the

MJO. The RMM1 and RMM2 daily time series were

extracted for the study period 2003–06, and then aver-

aged into 7-day means to be consistent with the Argo
and other data used here.

Following Wheeler and Hendon (2004), the 208 pairs

of (RMM1,RMM2) values, one for each 7-day mean

within the study period, are shown in the (RMM1,RMM2)
phase-space diagram of Fig. 3. The diagram is divided

into 8 regions, labelled MJO phases 1 to 8, that depend

on the relative amplitudes of RMM1 and RMM2. The

path formed by tracing forward in time through the

(RMM1,RMM2) points tends to move in an anticlock-
wise direction around the origin (not shown). Hence,

the MJO progresses from phase 1 through to 8, then

round again. The central circle, with a radius of 1, de-

notes the region of weak MJO activity. Those weeks
whose (RMM1,RMM2) values fall within this circle were

excluded from the subsequent MJO analysis.

Composite mean anomalies for a particular MJO

phase were created by averaging together the data for

all the weeks whose (RMM1,RMM2) values lie within
the relevant region in the phase-space diagram. For ex-

ample, the OLR anomaly maps from the N = 18 weeks

that lie in the phase 1 region of Fig. 3 are averaged

together to produce the composite mean for phase 1 of
the MJO (Fig. 4a).

The statistical significance of these anomalies at each

grid point is determined by a Student’s t-test. Care

needs to be taken, as this test assumes that all N sam-

ples that contribute to the mean are independent. On

average, a single MJO event lasts 44 days (Matthews

2008). Hence, the average time spent in each of the 8

phases is 44/8 = 5.5 days, which is less than the 7-day
time interval of the data. Therefore, subsequent weeks

tend to be in different phases. However, very occasion-

ally two consecutive weeks lie in the same MJO phase.

When this happens, the anomaly fields from those two
weeks are first averaged together into a single anomaly

field, which is then input into the composite mean pro-

cess. This ensures that all N samples that are used

to create the composite mean are from different MJO

events and are independent. Hence, the t-test can be
applied. There are N = 18, 13, 11, 10, 20, 11, 12, and

14 independent events in phases 1–8, respectively.

3 Composite atmospheric MJO cycle

During phase 1 (Fig. 4a), the negative OLR anomalies

over the western Indian Ocean indicate the enhanced
convection at the start of the MJO cycle. The positive

OLR anomalies over the maritime continent and the

western Pacific indicate suppressed convection there,

in the other half of the well-known MJO convective

dipole pattern. By phase 2 (Fig. 4b), the dipole pattern
has moved eastward, with enhanced convection over the

eastern Indian Ocean, and suppressed conditions over

the western Pacific. In phases 3 and 4 (Fig. 4c,d) the

enhanced convection continues eastward through the
maritime continent, while the area of suppressed con-

vection diminishes. A new region of suppressed convec-

tion appears over the western Indian Ocean in phase 5

(Fig. 4e), while it is the turn of the enhanced convec-

tion to diminish over the central Pacific. By phase 8
(Fig. 4h), there are suppressed conditions over most of

the warm pool.

The OLR features in Fig. 4 are calculated using just

the 4 years of data (2003–06) for which the Argo data
were also available in sufficient quantity. The MJO cy-

cle in OLR is very similar to one calculated using 17

years of data (1990–2006; not shown) and to many other

previous studies using longer data sets (e.g., Matthews
2000; Wheeler and Hendon 2004). Hence, the short pe-

riod over which the Argo data are available is long

enough to create a robust composite of the MJO.
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4 Oceanographic surface structure of MJO and

atmospheric thermodynamic forcing

4.1 Temperature

The (near) surface ocean conditions during the MJO

are now examined using the Argo data. Strictly speak-
ing, there is not a sea surface temperature field in the

gridded data set. The shallowest level from the gridded

data is at a pressure level of 5 dbar, corresponding to

a depth of 5 m.1 However, there were many missing
data at this level, as the highest record from many in-

dividual Argo float profiles was below 5 dbar. Hence,

the composite cycle of Argo temperature anomalies at

10 dbar (the next level) is shown in Fig. 5. Composites

of the 5 dbar Argo temperature anomalies were very
similar, where they existed. As the Argo floats drift at

a depth of around 1000 m, they cannot penetrate into

the shallow seas that surround the maritime continent.

Hence, there are missing data in this region and else-
where, shown by the black shading in Fig. 5.

During phase 1 of the MJO, there are statistically

significant positive 10 dbar Argo temperature anoma-

lies over much of the warm pool, particularly over the
eastern Indian Ocean (Fig. 5a). At this phase, the en-

hanced deep cloud cover over the western Indian Ocean

(negative OLR anomalies in Fig. 4a) reflects more in-

cident solar radiation, reducing the surface shortwave
radiation flux. This leads to negative 10 dbar Argo tem-

perature anomalies there, by phase 2 (Fig. 5b), consis-

tent with previous studies (e.g., Shinoda et al. 1998,

1999; Woolnough et al. 2000). As the MJO over the In-

dian Ocean develops further in phase 3, surface (1000-
hPa) westerly wind anomalies form (Fig. 4c), as the

part of the atmospheric equatorial Rossby wave response

to the enhanced convection (Hendon and Salby 1996;

Matthews et al. 2004). These wind anomalies are aligned
with the mean westerly winds over the Indian Ocean.

Hence, the total surface wind speed and the surface la-

tent heat flux increase. This enhanced cooling of the

ocean, together with the reduction in surface short-

wave radiation from the increased cloudiness, leads to
the strong negative Argo 10 dbar anomalies in phase 4

(Fig. 5d).

During the second half of the MJO cycle, the anoma-
lies reverse. Positive OLR anomalies over the Indian

Ocean from phase 5 onwards (Fig. 4e) indicate reduced

cloudiness and increased surface shortwave radiation

flux. There are surface easterly anomalies from phase 7

1 A pressure increase of 1 dbar corresponds to a depth increase
very close to 1 m. All calculations were made on pressure surfaces.
For simplicity, these are sometimes reported as (nominal) depths,
assuming that 1 m ≡ 1 dbar.

(Fig. 4g), as part of the atmospheric equatorial Rossby

wave response to the reduced convective heating. These

are in the opposite direction to the mean winds. They

reduce the total wind speed, and the latent heat flux,

leading to the positive Argo 10 dbar temperature anoma-
lies in phase 8 (Fig. 5h).

Over the western Pacific, the implied changes in the

surface shortwave radiation and latent heat fluxes are

also consistent with the observed changes in the Argo
10 dbar temperatures. In phases 1 and 2, the positive

OLR anomalies (Fig. 4a,b) are associated with an in-

crease in the shortwave flux, leading to the strong warm

Argo 10 dbar temperature anomalies there in phase 3

(Fig. 5c). In phases 3 and 4, the atmospheric equatorial
Kelvin wave response to the enhanced MJO convec-

tion over the Indian Ocean generates surface easterly

anomalies over the western Pacific (Fig. 4c,d). These

are in the same direction as the mean easterlies there,
increasing the total wind speed and latent heat flux.

This cools the ocean surface, leading to the negative

Argo 10 dbar temperature anomalies in the western

Pacific in phases 5 and 6 (Fig. 5e,f). These are then

reinforced by the reduction in shortwave radiation as
the MJO enhanced convection moves eastward into the

western Pacific (Fig. 4e,f).

In the eastern Pacific, the OLR and surface wind

anomalies are weak. Hence, the large Argo 10 dbar tem-
perature anomalies observed there (Fig. 5) cannot be

just a thermodynamical response to surface flux anoma-

lies. These are discussed later, in section 5, in terms of

dynamical forcing.

The Argo 10 dbar temperature composites were cal-
culated from just 4 years of data (2003–06) and are com-

parable to composites of NOAA OI v2 sea surface tem-

perature anomalies, calculated over the same period.

For example, the NOAA SST composites at phases 4
and 8 (Fig. 6) are very similar to their Argo 10 dbar

temperature counterparts in Fig. 5e,h. Previous studies

(e.g., Shinoda et al. 1998; Woolnough et al. 2000; Shin-

oda and Hendon 2001) have shown that the NOAA data

can be used to reliably diagnose the surface oceanic
component of the MJO. The two sets of composites

(Figs. 5 and 6) are qualitatively very similar. Hence,

the four years of Argo data are of sufficiently high qual-

ity and quantity to represent the surface MJO features.
This gives us further confidence in our later interpre-

tation of the subsurface MJO structure using the Argo

data.

4.2 Salinity

The oceanic salinity cycle of the MJO is now presented,

for the first time. Large-scale, coherent, statistically
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significant, 10 dbar (“surface”) salinity anomalies are

present throughout the Indian and Pacific Oceans, in

all phases of the MJO (Fig. 7). These salinity anomalies

are large amplitude, with peak values near 0.05, com-

parable to the amplitude of the annual cycle. Surface
salinity in the mixed layer can be changed by the net

evaporation minus precipitation (E −P ) flux and hori-

zontal advection (Cronin and McPhaden 1998). Hence,

composite E − P anomalies are shown in Fig. 8. The
role of advection is discussed in section 5.

In phase 1 of the MJO there are no statistically

significant surface salinity anomalies in the equatorial

Indian Ocean (Fig. 7a). However, there are negative

OLR anomalies over the central Indian Ocean (Fig. 4a),
which are associated with enhanced precipitation and

a negative (freshening) E − P flux (Fig. 8a). As these

OLR anomalies develop and move eastward (Fig. 4b,c)

they lead to the significant, negative salinity anoma-
lies that cover the central and eastern Indian Ocean in

phases 2 and 3 (Fig. 7b,c). Note that in phase 3, for

example, while the active MJO has increased precipita-

tion, this is partially offset by increased evaporation, as

the surface westerly wind anomalies are in phase with
the climatological westerlies there, increasing the total

wind speed. However, the changes in precipitation are

larger than those in evaporation, leading to a negative

E − P anomaly. In the second half of the MJO cycle
(phases 5–8), the opposite occurs, with the dry (inac-

tive) phase of the MJO in the Indian Ocean (Fig. 4e–h)

leading to positive E − P anomalies (Fig. 8e–h) and

positive salinity anomalies there (Fig. 7e–h).

The quantitative effect of the E −P flux anomalies
on the surface salinity can be calculated approximately

by a scale analysis. Assuming an E − P anomaly of

∼ 1 mm day−1 (Fig. 8b,c) acting for two MJO phases

(∼ 12 day) gives a precipitation excess of ∼ 12 mm.
Adding this to a mixed layer of depth ∼ 50 m leads to

a fractional change in salinity of ∼ 2.5×10−4. Assuming

a salinity of ∼ 35, this leads to a salinity anomaly of

∼ 0.01, which is the same order as the salinity anomalies

in Fig. 7. Hence, the MJO surface salinity anomalies in
the Indian Ocean can be semi-quantitatively explained

as a response to the MJO E − P anomalies.

This is not the case in the western Pacific. During

MJO phases 1 and 2, the E − P anomalies over the

western Pacific are positive (Fig. 8a,b), giving a posi-
tive salinity tendency. However, the salinity anomalies

that develop, in phase 3, are negative. Similarly, in the

opposite half of the cycle, the negative, freshening E−P

anomalies that cover the western Pacific during phases
3–5 (Fig. 8c–e) are followed by positive salinity anoma-

lies in phases 4–6 (Fig. 7d–f). Hence, another process

must be responsible for the salinity anomalies in the

western Pacific, and also the central and eastern Pa-

cific. In section 5, it is shown that they can be partly

explained by horizontal advection.

The relative importance of the near-surface temper-

ature and salinity anomalies to the density structure

of the ocean can be estimated. For example, in MJO
phase 8, there are positive 10-m temperature anoma-

lies of ∆T ≈ 0.1 ◦C across the tropical Indian Ocean

(Fig. 5h). These lead to a decrease in density of ∆ρ ≈

−0.03 kg m−3, using the equation of state for sea wa-

ter with a parcel at T = 28 ◦C and S = 35. These are
accompanied by positive salinity anomalies of ∆S ≈

0.02 (Fig. 7h) which lead to an increase in density of

∆ρ ≈ 0.015 kg m−3. The density effect from the salin-

ity anomalies is approximately half that from the tem-
perature anomalies, and offsets it. Hence, modelling of

the thermodynamic structure of the upper ocean in the

MJO needs to take account of both temperature and

salinity changes.

5 Dynamical forcing of the oceanic MJO in the

Pacific

Thermodynamic forcing alone is not sufficient to ex-

plain much of the surface (10 dbar) temperature and

salinity structure of the MJO in the Pacific. Here, we

look at the role of dynamical processes, particularly

equatorial waves.

5.1 Thermocline

The Argo gridded data have been shown to accurately

resolve the individual equatorial Kelvin waves forced by

the MJO over the four-year study period (Fig. 2). The

average MJO cycle in thermocline depth is shown in

a composite Hovmöller diagram (Fig. 9a) where time
is lagged relative to phase 1 of the MJO, when the

active convection is beginning over the Indian Ocean.

Clear eastward propagation can be seen right across

the Pacific. Negative D20 anomalies, corresponding to
an upward displacement of the thermocline, start in

the western Pacific around lag 12 days, which corre-

sponds approximately to phase 3. These are consistent

with forcing by westward surface wind stress anoma-

lies (Fig. 4c) and surface Ekman flux divergence along
the equator. This negative D20 anomaly then prop-

agates eastward into the central and eastern Pacific

with a phase speed of approximately 2.5 m s−1 (thick

dashed line in Fig. 9a) and an amplitude above 3 m.
Similarly, positive D20 anomalies at lag −12 (approx-

imately phase 6) in the western Pacific are consistent

with eastward wind stress anomalies in phases 5 and
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6 (Fig. 4e,f). These then also propagate eastward at

2.5 m s−1 (thick solid line in Fig. 9). The comparable

composite Hovmöller diagram from TAO data (Fig. 9b)

is in good agreement with the Argo data.

An alternative longitude–phase diagram can be con-
structed using the eight MJO phases on the y-axis as a

surrogate for time (Fig. 10a). If the MJO is assumed to

have a period of 48 days (6 days between each phase),

then an apparent phase speed can be calculated. How-
ever, this has a value over 4 m s−1, clearly much higher

than any of the individual Kelvin waves in Fig. 2. The

reason for this discrepancy is not clear, but is an arte-

fact of the analysis method. The MJO and oceanic

Kelvin waves are both genuinely broadband phenom-
ena, with individual events having periods between 30–

60 days and 60–80 days, respectively (McPhaden and

Taft 1988). Hence the linear compositing technique used

here could tend to emphasise those events where the
frequencies overlap, i.e., low-frequency MJOs and high-

frequency Kelvin waves. An alternative explanation in-

volves the MJO phase used to reference the analysis.

The longitude–time diagram in Fig. 9 is referenced to

a particular phase (phase 1) of the MJO, which can be
considered as an impulsive burst of convection and wind

stress forcing. The lagged thermocline response to this

takes the form of free Kelvin waves, which propagate

at their free phase speed of 2.5 m s−1. The longitude–
phase diagram (Fig. 10a) has no particular reference

phase, and will emphasise the forced response at each

phase of the MJO. As the forcing (OLR and wind stress

anomalies) moves eastward at 4–5 m s−1, it is perhaps

not surprising that the response propagates at a sim-
ilar speed. Hence, for the purpose of calculating accu-

rate phase speeds, actual time is the preferred dimen-

sion to use. This is not without its problems though.

Because of the wide range of life times of individual
events (typically between 30 and 60 days, up to a fac-

tor of 2 different), the composite signal attenuates at

large lags (Fig. 9), as MJO events of different periods

begin to destructively interfere. The analysis is also bi-

ased to the chosen reference phase of the MJO (phase 1
in Fig. 9). Hence, for an unbiased, robust picture of the

complete MJO cycle, when accurate phase speeds are

not required, the phase-based approach is still preferred

(e.g., Figs. 4, 5, 10).

A consistency check on the Kelvin wave structure
can be made from a latitudinal section through the

temperature anomalies. At 170 ◦W in MJO phase 5,

there are large negative temperature anomalies in the

equatorial thermocline region (Fig. 11), with largest
amplitude on the equator. The theoretical wave has a

Gaussian structure centred on the equator, e−βy2/2c,

where y is distance northward from the equator, and

β = 2.3 × 10−11 m−1 s−1 is the latitudinal gradient

of planetary vorticity. The latitudinal trapping scale

y0 = (2c/β)1/2 is estimated from Fig. 11 as approxi-

mately 4 degrees latitude, or 4 × 105 m. This implies

a phase speed of c ≈ 2 m s−1, in agreement with the
measured phase speed of c = 2.5 m s−1. The exten-

sion of the equatorially trapped anomaly in the ther-

mocline, downwards into the deep ocean, is discussed

in section 5.2.

The surface dynamic height anomalies associated

with these thermocline displacements are shown in Fig. 12.
The negative D20 anomaly (upward displacement of the

thermocline) in the equatorial western Pacific in phase 3

is mirrored by a negative surface dynamic height anomaly

(downward displacement of the surface) above (Fig. 12c).

This moves slowly eastward into the central Pacific as a
coherent, zonally elongated anomaly with a clear trough

(amplitude 0.35 m) along the equator by phase 5 (Fig. 12e).

By phase 7 (Fig. 12g), it has reached the eastern Pacific,

while a positive dynamic height anomaly has appeared
in the western Pacific. This then also propagates east-

ward to the central Pacific by phase 1 (Fig. 12a).

The zonal geostrophic current velocities calculated

from the dynamic height are shown in Fig. 13. Eastward

(westward) geostrophic currents are clearly colocated

with positive (negative) equatorial dynamic height anoma-
lies. These dynamic anomalies are consistent with oceanic

first internal mode, baroclinic equatorial Kelvin waves

forced by MJO surface wind stress anomalies, as pre-

viously diagnosed from TAO buoy data (Johnson and

McPhaden 1993; Cravatte et al. 2003; Roundy and Ki-
ladis 2006).

We can now consider the Pacific temperature and
salinity anomalies in terms of horizontal advection by

these waves. The salinity tendency due to zonal advec-

tion is ∂S/∂t = −u∂S/∂x. For example, taking u ∼

−5 cm s−1 in the equatorial western Pacific over the 18
day period during phases 3–5 (Fig. 13c–e), and a mean

salinity gradient of ∂S/∂x ∼ 3 × 10−7 m−1 between

the fresh waters of the far western Pacific and the more

saline waters further east (Fig. 1b), then the salinity

change due to advection is ∼ 0.02, which is of the same
sign and comparable magnitude to the observed sur-

face salinity anomalies in the equatorial western Pacific

during phase 5 (Fig. 7e). Similar calculations using the

mean temperature field in Fig. 1a show that many of
the surface temperature anomalies in the central and

eastern Pacific (Fig. 5) can also be semi-quantitatively

accounted for by horizontal zonal advection.
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5.2 Deep ocean MJO

Previous studies of the subsurface oceanic component

of the MJO have been mainly limited to the temper-
ature data from the TAO buoys in the equatorial Pa-

cific, down to a depth of 500 m (e.g., Roundy and Ki-

ladis 2006). The Argo data cover the world oceans to

a depth of 1000–2000 m. The deep ocean temperature

structure of an individual MJO event in the Pacific was
described by Matthews et al. (2007). Here, the canon-

ical deep ocean MJO temperature and salinity cycles

are presented for the first time.

5.2.1 Temperature

There are large-scale, coherent, statistically significant,

MJO temperature anomalies in the deep ocean through-

out the tropical Pacific. For example, in phase 8 there

are warm (cold) anomalies at 950 dbar in the central
(eastern) Pacific (Fig. 14). The available Argo obser-

vations only extend down to around 1000 dbar in the

eastern Pacific, so 950 dbar was chosen as the deepest

level at which there is satisfactory coverage. There are

similarly sized 950-dbar temperature anomalies in all
other phases of the MJO. These are summarised in a

Hovmöller diagram of equatorial 950-dbar temperature

anomalies (Fig. 10b). Eastward propagation can clearly

be seen.

These deep propagating anomalies can be compared

with those propagating at the thermocline level. Note
that temperature anomalies at a fixed level between

approximately 50 and 150 dbar show similar behaviour

to the D20 diagnostic; positive (negative) D20 anoma-

lies correspond to downwelling (upwelling) and positive

(negative) temperature anomalies. The deep anomalies
lead the thermocline anomalies, and propagate at the

same speed as them. For example, the axis of coldest

950-dbar temperature anomalies precedes the axis of

minimum D20 anomalies (thick dashed lines in Fig. 10)
by 1 MJO phase, or approximately 6 days.

The full vertical structure of the temperature anoma-
lies can be seen in the longitude–depth sections along

the equator (Fig. 15); note the expanded depth axis

in the upper 200 dbar. Significant temperature anoma-

lies fill the entire Pacific basin down to 1000 dbar.

The largest anomalies (∼ 1 ◦C) are in the thermocline,
where the vertical temperature stratification is largest.

Although the anomalies decrease in magnitude with

depth (∼ 0.1 ◦C at 600 dbar, ∼ 0.05 ◦C at 900 dbar),

they are still large as they are comparable to the am-
plitude of the seasonal cycle (∼ 0.08 ◦C at 600 dbar,

∼ 0.07 ◦C at 900 dbar). Individual MJO events can

have much larger temperature anomalies; for example,

the event of December 2003 to February 2004 included

temperature anomalies up to 0.45 ◦C at 600 dbar depth

(Matthews et al. 2007).

The vertical coherence of the temperature anomalies

from the thermocline downwards (Fig. 15) suggests that
the equatorial Kelvin wave extends downward into the

deep ocean. The 950-dbar anomalies (Fig. 10b) lead-

ing those on the thermocline (Fig. 10a) is reflected by

the vertical tilt (eastward with increasing depth) of the
anomalies in the longitude–depth section This is par-

ticularly apparent in the central and eastern Pacific

during phases 2 and 4–8 (Fig. 15). The vertical wave-

length is estimated to be of the order of 800 m. This

tilt is equivalent to a vertical tilt in the phase lines of
the wave. The sense of the tilt is one of eastward and

upward phase propagation. For an equatorial Kelvin

wave, this implies eastward and downward group ve-

locity and energy propagation (Gill 1982; Kessler and
McCreary 1993). This is consistent with the forcing of

the Kelvin wave from the surface, by the MJO wind

stress anomalies. However, there does not appear to

be uniform downward propagation. Below about 800 m

depth, the anomaly contours (phase lines of the wave)
tend to become more vertical (e.g., in MJO phase 6 at

120◦W; Fig. 15f).

Vertically propagating equatorial waves obey the

dispersion relation c = N/m, where c is the phase
speed, N is the buoyancy frequency and m is the verti-

cal wavenumber (Gill, 1982). The mean density strati-

fication was calculated from the Argo temperature and

salinity data and gave N ≈ 0.017 s−1 in the thermo-

cline. Using the observed phase speed of c = 2.5 m s−1,
the theoretical vertical wavenumber is m = 7×10−3 m−1

and the corresponding vertical wavelength is 2π/m =

900 m, consistent with the estimated observed vertical

wavelength of 800 m. However, the stratification weak-
ens considerably with depth to around N ≈ 4×10−3 s−1

at a depth of 500 m, with a correspondingly much larger

vertical wavelength of approximately 4000 m. Hence,

the vertical wavelength would be expected to increase

with depth, with the consequence that phase lines would
tilt back towards the vertical. This is consistent with

the structures described above.

An alternative interpretation to these locally ver-

tically propagating waves, is to consider the observed

structures as the superposition of several vertical modes:
the eigen modes of the vertical structure equation us-

ing the observed background stratification. However,

the effect of the mean flow also needs to be taken into

account. Using the observed Pacific background state
with both stratification and mean currents, Johnson

and McPhaden (1993) showed that the higher order

vertical modes (mode 3 and above) are dissipated in
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a critical layer due to the equatorial undercurrent. The

deep structure in their model was consistent with the

first baroclinic mode, modified by wave–mean flow in-

teractions.

Hence, from these temperature composites, there is

good evidence that a deep ocean equatorial Kelvin wave

response should be added to the canonical view of the
MJO.

5.2.2 Salinity

The deep salinity structure of the MJO is now exam-

ined in the equatorial Kelvin wave framework. In the

Pacific, there are coherent, statistically significant salin-

ity anomalies from the surface all the way down to
1400 dbar, the deepest level of observations (Fig. 16).

However, they are slightly more difficult to interpret

due to the more complex structure of the mean salin-

ity field compared to temperature. The mean tempera-

ture decreases monotonically with depth everywhere in
the equatorial Pacific (Fig. 1a). The cold anomalies at,

e.g., 160 ◦W in phase 6 of the MJO (Fig. 15f) extend

continuously from the thermocline down to 1000 dbar.

These have been interpreted as an upwelling Kelvin
wave, bringing up colder water from deeper down at

each level. The cold anomalies in the mixed layer at

160 ◦W, phase 6 are due to westward horizontal advec-

tion (Fig. 13f) of the colder water that lies to the east

(Fig. 1a). The same dynamical processes operate on
the salinity field. However, the mean vertical profile of

salinity is not monotonic (Fig. 1b). It is relatively fresh

at the surface (albeit with very strong horizontal gra-

dients), increases to a salinity maximum near the ther-
mocline, then becomes fresher with depth. At 160 ◦W,

phase 6 (Fig. 16f), the negative salinity anomalies below

100 dbar are due to the upwelling of fresher water from

below. Above the mean salinity maximum at 100 dbar,

the thin layer of positive salinity anomalies are still due
to upwelling, but of more saline water. Again, in the

mixed layer, the (negative) salinity anomalies are due

to westward horizontal advection of the fresher water

that lies to the east (Fig. 1b).

Note that the deeper salinity anomalies below about

600 dbar are not as coherent as their respective tem-

perature anomalies. This is due to the mean vertical
salinity gradients being very weak at depth (Fig. 1b).

Hence, any vertical motion will advect water of only

slightly different salinity to any given level, leading to

a small amplitude anomaly. Nonetheless, under the as-
sumption that the subsurface temperature and salinity

anomalies are due to vertical advection, in the upwelling

and downwelling parts of a Kelvin wave, the implied

vertical displacement ∆z can be calculated from the

temperature and salinity fields independently:

∆zθ = −
θ′

∂θ/∂z
, ∆zS = −

S′

∂S/∂z
, (3)

where ∆zθ and ∆zS are the displacements calculated

from the potential temperature and salinity fields, θ′

and S′ are the potential temperature and salinity anoma-

lies, and ∂θ/∂z and ∂S/∂z are the mean vertical poten-
tial temperature and salinity gradients, respectively.

For example, in MJO phase 8, the two displacement

fields (Fig. 17) are broadly consistent, in and below the

thermocline. There are negative, downward displace-

ments in the central Pacific, and positive, upward dis-
placements in the eastern Pacific. These displacements

have large amplitude, above 8 m right down to the

1400 dbar level. The two displacement fields are neither

consistent nor valid above the thermocline, as surface
fluxes and horizontal advection have a greater effect

than vertical advection on the temperature and salin-

ity anomalies there.

6 Dynamical forcing of the oceanic MJO in the

Indian Ocean

The Indian Ocean also responds to dynamical forcing

from the MJO, although the details of the response

are less clear here than they are for the Pacific. For
example, during MJO phase 3 there are westerly sur-

face wind anomalies over the central equatorial Indian

Ocean (Fig. 4c). These lead to a deepening of the equa-

torial thermocline (positive D20 anomalies in Fig. 10a),
a raising of the surface (positive surface dynamic height

anomalies in Fig. 12c) and associated eastward sur-

face geostrophic current anomalies (Fig. 13c). These

anomalies are consistent with an equatorial Kelvin wave

packet in the central Indian Ocean. Simultaneously, the
raised thermocline in the eastern Indian Ocean (nega-

tive D20 anomalies at phase 3 in Fig. 10a) is consis-

tent with a dynamic response to the easterly surface

wind anomalies there in the previous two MJO phases
(Fig. 4a,b). By phase 6, the positive equatorial D20

anomalies have moved eastward from the central to

the eastern Indian Ocean (Fig. 10a), but continuous

eastward propagation is not apparent. In phase 8, the

easterly wind anomalies over the central Indian Ocean
(Fig. 4h) give rise to dynamic anomalies of the opposite

sign, with a raised thermocline (Fig. 10a), and negative

surface dynamic height (Fig. 12h) and zonal geostrophic

current (Fig. 13h) anomalies.
There is evidence of a statistically significant deep

ocean response to the MJO in the Indian Ocean. For

example, during phase 8, there are negative 950-dbar
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temperature anomalies in the equatorial Indian Ocean

(Fig. 14), below the negative temperature anomalies at

the thermocline level. However, the vertical coherence

in the Indian Ocean is less than in the Pacific (Fig. 15),

although there are times when a coherent anomaly can
be detected from the surface down to the deepest level,

such as in the eastern Indian Ocean during phase 2

(Fig. 15b).

There are also significant salinity anomalies in the
deep Indian Ocean that are coherent with those at the

surface. For example, in phase 8 positive salinity anoma-

lies extend from the deepest level at 1400 dbar up to the

surface in the central Indian Ocean (Fig. 16h). These

are dynamically consistent with the temperature anoma-
lies in the deep ocean, as both variables imply down-

ward displacement there (Fig. 17).

7 Conclusions

The recent availability of Argo data has given unprece-

dented spatial and temporal coverage of the world oceans,

allowing a detailed analysis of intraseasonal variability

over whole ocean basins for the first time. Here, the
MJO has been shown to have a response in the deep

Indian and Pacific Oceans, that would not have been

detectable with conventional oceanographic data.

The MJO-forced equatorial Kelvin waves that ex-

tend down to the deep Pacific have very large ampli-
tude; their geostrophic currents are of the same order

of magnitude as those from the mean circulation and

annual cycle. As the waves are forced at the surface,

their large-amplitude deep structure represents a sub-
stantial energy transfer to the deep ocean. This energy

must ultimately be dissipated at depth, with implica-

tions for ocean mixing. The vertical motion fields of

these waves also has an impact on biological productiv-

ity in the mixed layer (Waliser et al. 2005). The effect
of this at depth can now be investigated.

There is also clear evidence for the existence of a

statistically significant temperature and salinity cycle

in the MJO in the subsurface and deep Indian Ocean.
However, it is less coherent and harder to interpret than

that in the Pacific, with the data available here. This is

potentially owing to data volume; the Argo float cov-

erage was less in the Indian Ocean than in the Pacific,

particularly during the first half of the analysis period
in 2003 and 2004. The MJO changes character with the

annual cycle over the Indian Ocean more than over the

Pacific. During northern winter, the MJO exhibits its

canonical equatorial eastward-propagating properties.
However, during northern summer, it switches char-

acter over the Indian Ocean to contain a significant

northward-propagating component. Together with the

change in atmospheric and oceanic basic states between

the summer and winter monsoons, the ocean dynamical

component of the MJO is likely to differ significantly

between the seasons. This would have a detrimental

effect on the MJO cycle analysed here, which used all-
year round data. With only four years of available Argo

data, the record was not long enough to analyse winter

and summer separately. As a longer data set becomes

available, such an analysis could be carried out.

During the 2003–2006 study period, the Pacific basin

was mainly in a weak El Niño state. This could po-
tentially have biased the results, as the characteristics

of the oceanic equatorial Kelvin waves can change as

El Niño events progress (Roundy and Kiladis 2006).

Again, once a longer term Argo data set becomes avail-

able, this can be investigated.

The deep ocean structure of the MJO could poten-

tially have an influence on the deep ocean circulation.
Ocean modelling studies of the MJO (e.g., Han et al.

2001; Shinoda et al. 2008) have focussed on the upper

layers; the ability of the ocean and coupled models to

simulate the MJO deep structure is not known.

The deep response to the MJO is likely to extend

beyond the tropical Indian and Pacific Oceans. The at-
mospheric MJO has a global structure (Hsu 1996) that

can be well simulated in an atmospheric model if the

MJO tropical heating pattern is correct (Matthews et

al. 2004). This will initiate a response in the extratrop-
ical oceans, such as that observed around the Antarctic

coast from bottom pressure recorders (Matthews and

Meredith 2004). The Argo float network is near-global.

An analysis of the global ocean MJO structure using

this data source, especially once several years of high
coverage become available, should prove to be reward-

ing.
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Fig. 1 Longitude–depth sections along the equator (averaged 1.5 ◦S to 1.5 ◦N) of time-mean Argo (a) potential temperature (◦ C),
(b) salinity. See legends for shading. The thick line in (a) denotes the 20 ◦C isotherm. Black shading denotes regions of land or missing
data.
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Fig. 2 Hovmöller diagrams of the anomalous depth of the 20 ◦C isotherm from 1 January 2003 to 1 January 2007, averaged between
2 ◦S and 2 ◦N, from (a) gridded Argo data, (b) TAO buoy data. Contour interval is 10 m; see legend for shading. The solid lines
indicate the propagation paths of positive eastward-propagating anomalies, and are identical in both panels. Equatorial OLR anomalies,
averaged from 10 ◦S to 10 ◦N, are hatched vertically below −15 W m−2 and diagonally above 15 W m−2; see legend for hatching.
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Fig. 3 Phase-space diagram (RMM1,RMM2) of the Wheeler–
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2006. The phase space is divided into eight MJO phases, plus
a central circle signifying weak MJO activity. The approximate
location of enhanced convection for the MJO phases is indicated
around the perimeter of the diagram.
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Fig. 4 Composite anomaly maps of OLR and 1000-hPa streamfunction and vector wind, for each phase of the MJO, calculated over
the period 2003–2006. Shading levels for OLR (in W m−2) are indicated by the legend. OLR anomalies that are statistically significant
at the 90% level are delineated by a thick contour. Streamfunction contour interval is 3 × 105 m2 s−1. Negative contours are dotted.
Wind vectors are only plotted where either the zonal or meridional component is statistically significant at the 90% level. A reference
wind vector of magnitude 2 m s−1 is shown in the lower right corner.
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Fig. 5 Composite anomaly maps of Argo 10 dbar potential temperature. Contour interval is 0.1 ◦C. Negative contours are dotted,
and the first positive contour is at 0.05 ◦C. Shading is indicated by the legend. Anomalies that are statistically significant at the 90%
level are delineated by a thick contour. Black shading denotes areas of land or missing data.
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Fig. 6 As Fig. 5 but for NOAA OI SST: (a) phase 4, (b) phase 8.
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Fig. 7 As Fig. 5 but for Argo 10 dbar salinity. Contour interval is 0.04, and the first positive contour is at 0.02.
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Fig. 8 As Fig. 5 but for evaporation minus precipitation. Contour interval is 1 mm day−1, and the first positive contour is at
0.5 mm day−1.
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Fig. 9 Hovmöller diagrams of the depth anomaly of the 20 ◦C isotherm, time lagged with respect to MJO phase 1, and averaged
between 1.5 ◦S and 1.5 ◦N, for (a) Argo, and (b) TAO, data. Contour interval is 2 m. Negative contours are dotted, and the first
positive contour is at 1 m. Shading levels are indicated by the legend. The thick lines indicate the propagation paths of the anomalies,
with a phase speed of 2.5 m s−1.
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Fig. 10 Longitude–phase diagrams of two MJO cycles of Argo (a) depth of the 20 ◦C isotherm, and (b) 950 dbar potential temperature
anomalies, averaged between 2 ◦S and 2 ◦N. Contour interval is 2 m in (a), and 0.02 ◦C in (b). Negative contours are dotted, and the
first positive contours are at 1 m in (a) and 0.01 ◦C in (b). Shading levels are indicated by the legends. The thick lines indicate the
propagation of the D20 anomalies.
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regions of missing data.
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Fig. 12 As Fig. 5 but for Argo surface dynamic height anomaly, relative to 950 dbar. Contour interval is 0.1 m, and the first positive
contour is at 0.05 m.
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Fig. 13 As Fig. 12 but for Argo surface geostrophic zonal current. Contour interval is 2 cm s−1, and the first positive contour is at
2 cm s−1.
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Fig. 14 As Fig. 5 but for Argo 950 dbar potential temperature during MJO phase 8. Contour interval is 0.02 ◦C, and the first
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Fig. 15 Longitude-depth cross-section along the equator (averaged 1.5 ◦S to 1.5 ◦N) of Argo potential temperature anomaly. Shading
levels are at ±0.02, 0.05 and 0.4 ◦C, indicated by the legend. Black shading denotes regions of land or missing data. Areas that are
statistically significant at the 90% level are delineated by a thin contour.



29

D
e

p
th

 (
m

)

90W150E 18060E 150W90E 120W120E

800

1400

200

1200

400

1000

600

D
e

p
th

 (
m

)

90W150E 18060E 150W90E 120W120E

800

1400

200

1200

400

1000

600

D
e

p
th

 (
m

)

90W150E 18060E 150W90E 120W120E

800

1400

200

1200

400

1000

600

D
e

p
th

 (
m

)

90W150E 18060E 150W90E 120W120E

800

1400

200

1200

400

1000

600

D
e

p
th

 (
m

)

90W150E 18060E 150W90E 120W120E

800

1400

200

1200

400

1000

600

D
e

p
th

 (
m

)

90W150E 18060E 150W90E 120W120E

800

1400

200

1200

400

1000

600

D
e

p
th

 (
m

)

90W150E 18060E 150W90E 120W120E

800

1400

200

1200

400

1000

600

-0.04

-0.01

-0.001

0.001

0.01

0.04

D
e

p
th

 (
m

)

90W150E 18060E 150W90E 120W120E

800

1400

200

1200

400

1000

600

0
100
200

0
100
200

0
100
200

0
100
200

0
100
200

0
100
200

0
100
200

0
100
200

90W150E 18060E 150W90E 120W120E

800

1400

200

1200

400

1000

600

90W150E 18060E 150W90E 120W120E

800

1400

200

1200

400

1000

600

90W150E 18060E 150W90E 120W120E

800

1400

200

1200

400

1000

600

90W150E 18060E 150W90E 120W120E

800

1400

200

1200

400

1000

600

90W150E 18060E 150W90E 120W120E

800

1400

200

1200

400

1000

600

90W150E 18060E 150W90E 120W120E

800

1400

200

1200

400

1000

600

90W150E 18060E 150W90E 120W120E

800

1400

200

1200

400

1000

600

90W150E 18060E 150W90E 120W120E

800

1400

200

1200

400

1000

600

0

200

0

200

0

200

0

200

0

200

0

200

0

200

0

200

(a) Phase 1

(b) Phase 2

(c) Phase 3

(d) Phase 4

(e) Phase 5

(f) Phase 6

(g) Phase 7

(h) Phase 8

Fig. 16 As Fig. 15 but for Argo salinity anomaly. Shading levels are at ±0.001, 0.01, and 0.04, indicated by the legend.
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Fig. 17 Longitude-depth cross-section along the equator (averaged 1.5 ◦S to 1.5 ◦N) of vertical displacement anomaly for phase 8
of the MJO, calculated from (a) potential temperature (∆zθ), (b) salinity (∆zS). Contours are at ±2, 4, and 8 m. Negative contours
are dotted. Shading levels are indicated by the legend.


