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PRIMES IN SEQUENCES ASSOCIATED TO POLYNOMIALS
(AFTER LEHMER)

MANFRED EINSIEDLER, GRAHAM EVEREST and THOMAS WARD

Abstract

In a paper of 1933, D. H. Lehmer continued Pierce’s study of inte-
gral sequences associated to polynomials generalizing the Mersenne
sequence. He developed divisibility criteria, and suggested that prime
apparition in these sequences — or in closely related sequences —
would be denser if the polynomials were close to cyclotomic, using
a natural measure of closeness.

We review briefly some of the main developments since Lehmer’s
paper, and report on further computational work on these sequences.
In particular, we use Mossinghoff’s collection of polynomials with
smallest known measure to assemble evidence for the distribution of
primes in these sequences predicted by standard heuristic arguments.

The calculations lend weight to standard conjectures about
Mersenne primes, and the use of polynomials with small measure
permits much larger numbers of primes to be generated than in the
Mersenne case.

1. Introduction

Let f ∈ Z[x] be a monic polynomial with factorization

f (x) = (x − α1) . . . (x − αd) (1)

over the complex numbers. Following Pierce [19] and Lehmer [12], define a sequence of
integers by

1n(f ) =
d∏

i=1

|αn
i − 1|. (2)

For example, iff (x) = x − 2, then1n(f ) = 2n − 1 is the classical Mersenne sequence.
Pierce and Lehmer studied the possible factors of1n(f ), and Lehmer in particular used
these results to compute large primes. For our purposes, the detailed arguments concerning
possible factors are not relevant, but three key observations by Lehmer are:

1. if |αi | 6= 1 for i = 1, . . . , d then1n(f )/1n−1(f ) → M(f ) = ∏
i:|αi |>1 |αi |;

2. if M(f ) is close to 1, then1n(f ) may be expected to be prime often;

3. prime factors of1n satisfy (essentially) linear congruences.

It is clear from Kronecker’s lemma thatM(f ) = 1 if and only iff is cyclotomic. Lehmer
made an extensive search for non-cyclotomic polynomials with measure close to 1, and
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Primes in sequences associated to polynomials (after Lehmer)

his example of degree 10 (referred to below asf1) with M(f ) = 1.176. . . is still the
closest known. He also made the prescient remark that for non-cyclotomic polynomials, a
zero on the unit circle‘contributes an oscillating factor which, although it never vanishes
or becomes infinite, cannot be estimated readily’and went on to useM(f ) as a natural
measure of growth in this case also (cf. the convergence (3), discovered later).

Many subsequent authors have shed new light on various aspects of the sequence(1n(f ))

and the associated growth rateM(f ). Mahler [15] pointed out that Jensen’s formula gives
the integral form

m(f ) = logM(f ) =
∫ 1

0
log |f (e2πit )|dt

for the measure, which is now called the (logarithmic)Mahler measureof f . A huge amount
of work has gone into attempts to resolveLehmer’s problem: are there polynomials with
arbitrarily small positive logarithmic measure? For an overview of this circle of results
from a theoretical perspective, see [2] and [8]. The view of polynomials with small measure
as being small perturbations of cyclotomic ones is explored in [17]. For recent results on
computations of Mahler measures and their connections with other parts of mathematics,
see [4], [7], [14] and [16].

To each polynomial of the form (1) there is an associated endomorphismTf of thed-
torus, given by the natural action of the companion matrix off . If no zero off is a root of
unity, thenTf is an ergodic transformation with respect to Lebesgue measure, and1n(f ) is
the number of points of periodn underTf . Expansiveness ofTf as a topological dynamical
system corresponds to Lehmer’s condition that|αi | 6= 1 for i = 1, . . . , d. Finally, the
topological entropy ofTf is equal tom(f ). This links arithmetic properties of the sequence
to dynamical properties of the corresponding toral endomorphism — see [13]. Accordingly,
we call the polynomialf expansiveif |αi | 6= 1 for i = 1, . . . , d, ergodicif no αi is a root
of unity, andquasihyperbolicif it is ergodic but not expansive.

Finally, the convergence observed by Lehmer in the expansive case does not extend to
the quasihyperbolic case (see [6, 8, Theorem 2.16], but the more robust convergence

1

n
log1n(f ) −→ m(f ) (3)

extends to the quasihyperbolic case by Gelfond’s Diophantine results (see [9] and [13]).
Some measure of the Diophantine subtlety involved in convergence (3) may be seen in
the sequence corresponding tof1 (defined below):1n(f1) behaves asymptotically like
(1.176...)n but1n(f1) = 1 for values ofn as large as 74. These dramatically small values
for relatively large values ofn are reflected in the graphs below by the irregular early
behaviour.

2. Arithmetic of1n

The polynomial (1) is said to bereciprocal if xdf (x−1) = f (x). Boyd [1, 3] and
Mossinghoff [16] have carried out extensive calculations of Mahler measures; from [16]
we use the list of the 100 irreducible polynomials with smallest known positive Mahler
measure. These are all reciprocal (a beautiful result of Smyth [21] shows that iff is non-
reciprocal andf (0)f (1) 6= 0, thenm(f ) > m(x3 − x − 1) = 0.281. . .), and are known
to divide polynomials with coefficients in{0, ±1}. If f is a reciprocal polynomial, then
1n(f )/11(f ) is a perfect square forn odd, by the following argument. Ifα is a zero off ,
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let K = Q(α) andK ′ = Q(α + α−1). Then

1n(f ) = |NK/Q(αn − 1)|
= |NK/Q(α − 1)NK/Q(1 + α + . . . + αn−1)|
= 11(f ) × |NK/Q(α(n−1)/2)NK/Q(α−(n−1)/2 + . . . + α(n−1)/2)|.

Now ξ = α−(n−1)/2 + . . . + α(n−1)/2 is an integral element ofK ′, so

NK/Q(ξ) = (
NK ′/Q(ξ)

)2
is a square. Accordingly, define0n(f ) by 0n(f )2 = 1n(f )/11(f ) for oddn > 1.

Prime values of0n(f ) may arise for composite values ofn, and such values are called
anomalous. In the expansive case it is clear that the anomalous primes are finite in number,
and this remains so in the quasihyperbolic case, for a deeper reason.

Proposition 1. If f is an ergodic polynomial, then there are only finitely many anomalous
primes in the sequence(0n(f )), or in (1n(f )/11(f )) in the non-reciprocal case.

Proof. First notice that the sequence is multiplicative. WriteM = M(f )1/2 for the square
root of the Mahler measure off , and0n for 0n(f ). (Note that a similar argument holds for
(1n(f )/11(f )) in the non-reciprocal case.) By Baker’s theorem (see [8] for references),
there are constantsA, B, C > 0 with

AMn > 0n > BMn/nC.

It follows that only finitely manyn can have0n = 1.
Now an anomalous prime occurs when0mn is prime withm, n > 1. If 0m and0n are

both 1, thenm andn are bounded by the previous paragraph. On the other hand,

0mn/0m > BMmn/A(mn)CMm = DMn(m−1)/(mn)C.

If the left-hand-side is 1, then there is an upper bound of the form

E + F(logn + logm)

for n(m − 1), which bounds bothm andn.
This precludes0mn = 0m for all but finitely manym andn.

Recall thatK is the field defined by the chosen irreducible polynomialf , and let

hK = class number ofK;
r1 = the number of real embeddings ofK;
r2 = half the number of complex embeddings ofK;

wK = the number of unit roots inK;
RK = the regulator ofK;
dK = the discriminant off ;
ρK = 2r1(2π)r2hKRK

wK

√|dK | .

Define as usual the Dedekind zeta-function forK by

ζK(s) =
∑
q

1

NK/Q(q)s
, (4)
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whereq runs through the ideals ofOK , with Laurent expansion ats = 1 given by

ζK(s) = ρK

s − 1
+ γK + . . . (5)

and Euler product form

ζK(s) =
∏
p

(
1 − 1

NK/Q(p)s

)−1

(6)

wherep runs through the prime ideals ofOK . Finally, there is the number-field analogue
of Merten’s theorem (see [10], [11] or [20]).

Proposition 2.∑
NK/Q(p)6x

− log

(
1 − 1

NK/Q(p)

)
= log logx + γ + logρK + O(1/ logx)

wherep runs through the prime ideals ofOK , andγ = 0.577. . . is the classical Euler
constant.

3. Heuristic arguments

The Mersenne numbersMn = 2n − 1 are well-known, and 38 values ofn are known
for which Mn is prime. An elegant probabilistic argument due to Wagstaff [22] gives the
following expected distribution of prime values ofMn. If n1, n2, . . . are the primes for
which Mnj

is prime, thenj/ log2 log2 Mnj
is conjectured to converge to a constant. This

is a consequence of the simple linear congruences satisfied by factors ofMn (from the
Euler–Fermat theorem), and Merten’s theorem.

In the Lehmer case, essentially the same argument may be applied, but the arithmetic
of the sequence and the analytic properties of the corresponding zeta function are more
involved. The calculations described below give the following results.

1. There is compelling numerical evidence to suggest that

j

log log0nj

−→ Ef (7)

for some positive limitEf asj → ∞, wheren1, n2, . . . is the sequence of prime
indices for which0nj

is prime.

2. A naive number-field analogue of Wagstaff’s heuristics suggests thatEf is given by
Wf = 2eγ /m(f ), which is compatible with the numerical evidence.

3. The more subtle quantityCf = 2eγK′ /m(f ) (or 2eγK /m(f ) in the non-reciprocal
case) is sometimes closer to the observedEf , though we do not have a heuristic
rationale for this, and the calculation ofγK ′ (or γK ) itself presents considerable
difficulties for extensions of large degree.

4. Thediscrepancybetween the observed value ofEf and either of the heuristic constants
is substantial enough to suggest that more subtle arithmetic phenomena are at work.

To explain the heuristic argument, we follow essentially Caldwell’s exposition of the
Wagstaff heuristics (available on the WWW ‘Prime Pages’ site — see [5]). Assume thatp
is prime. Ifp is a prime ideal inOK with

NK/Q(p)
∣∣ NK/Q(αp − 1)
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thenNK/Q(p) ≡ 1 modp. It follows that the probability of0p(f ) being prime is increased
by the ratioNK/Q(p)/(NK/Q(p) − 1) for each prime idealp of OK with prime norm
NK/Q(p) 6 p. The set

{r | r is an ideal ofOK with NK/Q(r) 6 x}
has asymptoticallyρKx members, of whichx/ logx are prime ideals with prime norm. It
follows that the probability that an integral idealr is a prime ideal with prime norm inOK

is 1/(ρK logNK/Q(r)).
In the Mersenne case, the resulting product is estimated using Merten’s theorem; here

we use Proposition2 instead. The discussion above suggests that the probability that0p(f )

is prime is approximately

Pf (p) =
(

2ρ−1
K

p m(f )

) ∏
NK/Q(p)6p

(
NK/Q(p)

(NK/Q(p) − 1)

)

=
(

2ρ−1
K

p m(f )

) (
eγ ρK logp + O(1/p)

)
.

So the expected number of (non-anomalous) prime values of0p(f ) with p 6 x is given
by (p running through the rational primes)

∑
p6x

Pf (p) = 2ρ−1
K

m(f )

∑
p6x

1

p
·

∏
NK/Q(p)6p

(
NK/Q(p)

NK/Q(p) − 1

)

∼ 2eγ

m(f )


∑

p6x

logp

p




∼
(

2eγ

m(f )

)
logx.

Notice that in the Mersenne case, the sum is taken over alln, weighted according to the
probability thatn is prime; summing instead over primesp without weighting, as we have
done here, gives the same estimate.

If we write n1, n2, . . . for the sequence of indices for which0nj
is prime, this suggests

that the number of prime values of0nj
with nj 6 x is approximately(2eγ /m(f )) logx. It

follows that
log log0nj

j
→ m(f )

2eγ
. (8)

Notice that the effect of any further congruence conditions on possible factors of0n(f )

will be to asymptoticallyincreasethe number of primes appearing in the sequence, so the
relationship

Ef > 2eγ

m(f )
(9)

between convergences (7) and (8) is expected. However, the results shown in Table2 do not
give a consistent inequality; if anything, they suggest the reverse (see Section6).

In the case of non-reciprocal polynomials, the factor 2 (which came from the fact that
0n is logarithmically half of1n) needs to be removed, so for non-reciprocalf the letters
Ef , Wf , Cf will be used for the analogous quantities also.
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Three questions were therefore examined numerically. Firstly, is the sequence associated
to a polynomial with small Mahler measure very rich in primes? Secondly, do calculations
suggest the distribution (7) for prime apparition in these sequences with some limiting con-
stant? Thirdly, does the ‘limiting constant’ observed lend support to the heuristic argument?

The results are — unsurprisingly — mixed. The first question can be answered with
an emphatic ‘yes’: in a short search on modest equipment, sequences have been found
containing over one hundred primes. The second is answered with an equivocal ‘yes’: the
analogous plots for the polynomials of small measure do look linear (details of the statistical
method used are given below). The third question probably requires a deeper understanding
of the arithmetic of0n, but the numbers agree fairly well. In particular, the number of primes
found does decrease as the Mahler measure increases.

In light of this, it would be of interest to find a reformulation of the Mersenne heuristics
in whichγ appears, not via Merten’s Theorem, but as the second coefficient of the Laurent
expansion of the Riemann zeta function ats = 1.

A feature of this work is that the use of polynomials with very small measure gives
significant data on Mersenne-like problems without the difficulty of testing excessively
large numbers for primality. The idea of using polynomials with small measure in this way
comes directly from Lehmer’s paper.

4. Description of the calculations

Given a candidate polynomialf with small Mahler measure, the prime values ofn for
which 0n(f ) is prime up to some limit were computed. Composite values ofn for which
0n(f ) is prime give rise to theanomalousprimes. Primality testing was for pseudo-primality
to ten randomly chosen bases: in particular, the lack of an analogue of the Lucas–Lehmer
test means that the primality test used is the Miller–Rabin test. Thus, in this paper, prime
values of0n or1n/11 areprobableprimes. All the calculations were done using PARI-GP;
see [18] for more details.

For the first two polynomials in the Mossinghoff list,

f1(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1

and

f2(x) = x18+ x17+ x16+ x15− x12− x11− x10− x9 − x8 − x7 − x6 + x3 + x2 + x + 1,

the calculations were performed forn up to 200 000. For each of the remaining polynomials
f3, . . . , f40, ranging in degree from 10 to 52, the calculations were performed forn up to
50 000. The full list of polynomials is in the paper [16]. In order to gain more insight into
how much of the prime behaviour is governed simply by the field arithmetic, the same
calculation was also carried out for the ‘negative’ polynomials,f −

j (x) = fj (−x).
The constantγK ′ has also been computed in some cases (as hasγK in some non-reciprocal

cases), though this requires extensive calculation itself. The method adopted is to use the
Laurent expansion (5) and estimateγK ′ = lims→1+((s−1)ζK ′(s)−ρK ′), with K replacing
K ′ in the non-reciprocal case, using GP’s ability to compute values of the Dedekind zeta
functions for number fields of small degree.

The empirical constantEf is found using a least-squares linear regression.
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5. Results

We present several graphs of log log0nj
(f ) againstj , which indicate the asymptotic

linearity (Figures1–9). On each graph, the number on the abscissa is the total number of
non-anomalous primes found for that polynomial. In each case the values ofCf , Wf and
Ef are given. The graphs have been chosen from the (small) sample of polynomials for
whichγK (or γK ′ ) can be computed. As mentioned above, the non-reciprocal polynomials
do not have the factor 2 in the expressions forW andC. The numerical constants have been
rounded to three decimal places.

Table1gives some data for the Mersenne case, some simple non-reciprocal polynomials,
and for thosef±j for which C could be computed (the polynomialf2, of degree 18, is
included here despite the fact that we have been unable to computeCf2). For the non-
reciprocals, the growth rate is much higher by Smyth’s result, and so the calculations are
limited. In addition to the Mersenne case and some polynomials from [16] for which C

could be found, some non-reciprocal polynomials of small height have been chosen. These
non-reciprocal polynomials are those with smallest Mahler measure in the list of irreducible
non-cyclotomic factors of trinomials with smallest known Mahler measures — we thank
David Boyd for providing this list of trinomials. Table1 is thus a mixed bag of polynomials
selected on the basis of having small measure for polynomials of a certain shape, or for
being of relatively small degree. Table1 records

1. the polynomialf ;

2. the Mahler measureM(f );

3. the range searched, 16 n 6 R;

4. the numberN of non-anomalous primes found;

5. the empirical constantEf found using least-squares;

6. the heuristic constantWf ;

7. the heuristic constantCf .

The polynomials in Table1 are arranged in order of increasing Mahler measure.
Table2 summarises the bulk of our results. It lists the following quantities:

1. the numberj of the polynomial in the list from [16];

2. the Mahler measureM(f ±
j );

3. N(f ±
j ), the number of non-anomalous prime values of0n(f

±
j );

4. Ef ±
j

, the least-squares estimate;

5. Wf ±
j

, the value computed using the heuristic argument above.

The polynomials are again arranged in order of increasing Mahler measure.

6. Open problems

Several problems are suggested by this work, of which the most pressing seem to be the
following. What is behind the examples in whichEf is smaller thanWf ? Can a heuristic
argument be found that predictsEf with the same level of accuracy as that seen in the
Mersenne case? In particular, significant differences betweenEfj

andEf −
j

in Table2suggest

that more accurate heuristics must involve the polynomial itself, and cannot depend only
on the arithmetic of the field defined by the polynomial.
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    9.7

  208
Figure 1: Graph of log log0nj

(f1) againstj for n 6 200, 000;
Ef1 = 25.719, Wf1 = 21.949,Cf1 = 24.767.

    9.6

  182
Figure 2: Graph of log log0nj

(f2) againstj for n 6 200, 000;
Ef1 = 21.852, Wf1 = 20.640.
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    8.4

  137
Figure 3: Graph of log log0nj

(f10) againstj for n 6 50, 000;
Ef10 = 18.507, Wf10 = 18.191,Cf10 = 18.844.

    8.5

  140
Figure 4: Graph of log log0nj

(f26) againstj for n 6 50, 000;
Ef26 = 19.384, Wf26 = 17.364,Cf26 = 18.782.
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    8.5

  128
Figure 5: Graph of log log0nj

(f33) againstj for n 6 50, 000;
Ef33 = 18.984, Wf33 = 17.187,Cf33 = 17.869.

    8.5

   47

Figure 6:Graph of log log0nj
(x3−x−1)againstj forn 6 20, 000;

Ef = 6.807, Wf = 6.334,Cf = 6.398.

134



Primes in sequences associated to polynomials (after Lehmer)

    8.6

   49

Figure 7: Graph oflog log0nj
(x5 − x4 + x2 − x + 1) againstj for

n 6 20, 000;Ef = 6.128, Wf = 5.939,Cf = 5.930.

    8.7

   50

Figure 8: Graph oflog log0nj
(x6 − x5 + x3 − x2 + 1) againstj

for n 6 20, 000;Ef = 6.519, Wf = 5.793,Cf = 5.942.
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    8.2

   37

Figure 9: Graph of log log0nj
(x5 + x2 − 1) againstj for n 6

20, 000; Ef = 5.411, Wf = 5.735,Cf = 5.968.

Table 1: Mahler measureM, numbersN of prime values of0n or 1n found forn 6 R,
empirical constantE, and two heuristic constantsW andC for selected polynomials.

f M(f ) R N Ef Wf Cf

f1 1.176 200,000 208 25.719 21.940 24.767

f2 1.188 200,000 182 21.852 20.640

f10 1.216 50,000 137 18.507 18.184 18.884

f−10 1.216 50,000 133 18.219 18.184 18.884

f26 1.227 50,000 140 19.384 17.358 18.782

f−26 1.227 50,000 145 21.297 17.358 18.782

f33 1.230 50,000 128 18.984 17.180 17.869

f−33 1.230 50,000 132 18.083 17.180 17.869

x3 − x − 1 1.325 20,000 47 6.807 6.334 6.398

x3 − x2 + 1 1.325 20,000 46 5.963 6.334 6.398

x5 − x4 + x2 − x + 1 1.350 20,000 49 6.128 5.939 5.930

x5 + x4 − x2 − x − 1 1.350 20,000 51 6.479 5.939 5.930

x6 − x5 + x3 − x2 + 1 1.360 20,000 50 6.519 5.793 5.942

x6 + x5 − x3 − x2 + 1 1.360 20,000 51 7.474 5.793 5.942

x5 + x2 − 1 1.364 20,000 37 5.411 5.735 5.968

x − 2 2 3,021,377 37 2.549 2.569 2.569
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Table 2: NumberN of prime values of(0n), Mahler measureM, empirical constantE, and
heuristic constantW for polynomialsf1, . . . , f40 andf −

1 , . . . , f −
40, n 6 50, 000.

j M(fj ) = M(f −
j ) N(fj ) Efj

Wfj
= Wf −

j
Ef −

j
N(f −

j )

1 1.1762 173 25.899 21.940 23.493 166
2 1.1883 151 22.482 20.640 23.420 156
3 1.2000 137 18.912 19.535 19.724 133
4 1.2013 171 24.618 19.413 20.803 146
5 1.2026 126 19.644 19.307 22.004 155
6 1.2050 148 21.374 19.100 18.356 132
7 1.2079 128 18.211 18.854 21.109 144
8 1.2128 136 19.127 18.461 18.905 136
9 1.2149 145 22.572 18.291 18.542 128
10 1.2163 137 18.507 18.184 18.219 133
11 1.2183 134 19.974 18.032 19.211 135
12 1.2188 135 18.619 17.998 19.594 140
13 1.2190 122 16.996 17.983 19.885 135
14 1.2194 114 16.258 17.954 21.704 151
15 1.2197 137 18.941 17.934 17.399 130
16 1.2202 115 16.667 17.892 16.919 124
17 1.2234 145 20.884 17.663 19.529 136
18 1.2237 136 18.806 17.639 15.666 113
19 1.2242 133 19.967 17.603 20.437 141
20 1.2255 145 19.655 17.517 19.093 132
21 1.2256 143 19.681 17.509 17.947 124
22 1.2258 125 17.293 17.495 17.837 128
23 1.2260 142 20.807 17.475 19.863 146
24 1.2264 138 20.496 17.447 15.450 111
25 1.2269 125 16.902 17.413 17.207 118
26 1.2277 140 19.384 17.358 21.297 145
27 1.2281 108 14.658 17.333 19.296 129
28 1.2294 136 19.935 17.242 14.921 105
29 1.2295 124 17.069 17.236 19.872 135
30 1.2300 128 17.973 17.207 18.011 123
31 1.2302 128 18.594 17.189 17.003 116
32 1.2302 119 16.009 17.187 17.521 129
33 1.2303 128 18.984 17.180 18.083 132
34 1.2307 125 17.453 17.157 17.693 125
35 1.2313 127 17.617 17.117 17.708 129
36 1.2322 121 17.901 17.059 17.297 122
37 1.2326 143 19.657 17.032 16.448 123
38 1.2326 128 17.987 17.031 18.130 125
39 1.2336 122 17.154 16.963 17.194 127
40 1.2343 116 15.852 16.918 16.316 112
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